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About this document

Scope and purpose

This document introduces a complete system solution from Infineon Technologies AG for a high power density
3.3 kW power supply unit (PSU) which targets specifications for server and datacenter applications.

This document describes the converter hardware, provides with a summary of the experimental results and
design recommendations for the complete Infineon solution, including an innovative planar magnetic
construction. The REF_3K3W_HFHD_PSU comprises a front-end AC-DC converter and a back-end isolated DC-DC
converter. The AC-DC converter is an interleaved bridgeless totem pole (ILTP) stage featuring two phases that
provide power factor correction (PFC) and limits total harmonic distortion (THD). The back-end DC-DC is a GaN
half-bridge (HB) LLC converter with full bridge (FB) rectification, which provides safety isolation and regulates
the output voltage. The PSU also features a baby-boost converter to comply with the hold-up time specifications
of server applications with a reduced overall bulk capacitance, increasing the overall power density.

The measured peak efficiency of the complete PSU at 230 Vac input line is 97.4 percent, not including the internal
fan and the overall outer dimensions of 72 mm x 192 mm x 40 mm, yielding to 98 W/inch® power density.
Intended audience

The document and the related REF_3K3W_HFHD_PSU hardware is intended for R&D engineers, hardware
designers, and developers of power electronic systems.
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Figure 1 3.3 kW REF_3K3W_HFHD_PSU server power supply overview and measured efficiency
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About this document

The main Infineon components used in the REF_3K3W_HFHD_PSU are:

e CoolSiC™650V M1,57 mQ TOLL (IMT65R057M1H), and EiceDRIVER™ 2EDB9259Y
for the fast legs of the totem-pole PFC converter

e CoolMOS™ 600V CM8,16 mQ TOLL (IPT60R016CM8), EiceDRIVER™ 1EDN8511B, and 1EDB8275F for the slow
leg of the totem-pole PFC converter and the static switch of the baby boost converter
e CoolGaN™650V GIT,35mQ TOLL (IGT65R035D2), EiceDRIVER™ 1EDN8550B, and 1EDB8275F
for HB switches at the primary side of the LLC converter
e OptiMOS™80V, 4.6 mQ source-down (IQE046N08LM5), and EiceDRIVER™ 2EDB7259K
for the synchronous rectification (SR)s switches at the secondary side of the LLC converter
e CoolMOS™ 600V G7,80 mQ (IPT60R080G7), CoolSiC™ 600 V diode (IDL10G65C5), and
EiceDRIVER™ 1EDB8275F for the baby boost converter
e ISOFACE™ 4DIR1400H digital isolator for the primary to secondary isolation in the LLC converter

e XMC4200-Q48K256 microcontroller for the implementation of the PFC control
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Safety information

Please read this document carefully before starting up the device.

€ ) (T ™
ELECTRICAL HAZARD HOT SURFACE
This equipment is to be used Do not touch during operation.
by trained personnel only. Contact can result in servere
. . burns or injury.
Contact could result in serious
shock or death. Allow to cool before servicing.
\o —/ \_ v

Important notice

Evaluation boards, demonstration boards, reference boards and kits are electronic devices typically provided
as an open-frame and unenclosed printed circuit board (PCB) assembly. Each board is functionally qualified by
electrical engineers and strictly intended for use in development laboratory environments. Any other use
and/or application is strictly prohibited. Our boards and kits are solely for qualified and professional users who
have training, expertise, and knowledge of electrical safety risks in the development and application of high-
voltage electrical circuits. Please note that evaluation boards, demonstration boards, reference boards and kits
are provided “as is” (i.e., without warranty of any kind). Infineon is not responsible for any damage resulting
from the use of its evaluation boards, demonstration boards, reference boards or kits. To make our boards as
versatile as possible, and to give you (the user) opportunity for the greatest degree of customization, the virtual
design data may contain different component values than those specified in the bill of materials (BOM). In this
specific case, the BOM data has been used for production. Before operating the board (i.e. applying a power
source), please read the application note/user guide carefully and follow the safety instructions. Please check
the board for any physical damage, which may have occurred during transport. If you find damaged
components or defects on the board, do not connect it to a power source. Contact your supplier for further
support. If no damage or defects are found, start the board up as described in the user guide or test report. If
you observe unusual operating behavior during the evaluation process, immediately shut off the power supply
to the board and consult your supplier for support.

Operating instructions

Do not touch the device during operation, keep a safe distance. Do not touch the device after disconnecting the
power supply, as several components may still store electrical voltage and can discharge through physical
contact. Several parts, like heatsinks and transformers, may still be very hot. Allow the components to
discharge and cool before touching or servicing. All work such as construction, verification, commissioning,
operation, measurements, adaptations, and other work on the device (applicable national accident prevention
rules must be observed) must be done by trained personnel. The electrical installation must be completed in
accordance with the appropriate safety requirements.

Application note 5 V1.0
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Safety precautions
Note: Please note the following warnings regarding the hazards associated with development systems.

Table1 Safety precautions

Warning: The evaluation or reference board contains DC bus capacitors, which take
time to discharge after removal of the main supply. Before working on the converter
system, wait five minutes for capacitors to discharge to safe voltage levels. Failure to
do so may result in personal injury or death. Darkened display LEDs are not an
indication that capacitors have discharged to safe voltage levels.

Warning: The evaluation or reference board is connected to the AC input during
testing. Hence, high-voltage differential probes must be used when measuring voltage
waveforms by oscilloscope. Failure to do so may result in personal injury or death.
Darkened display LEDs are not an indication that capacitors have discharged to safe
voltage levels.

Warning: Remove or disconnect power from the converter before you disconnect or
reconnect wires, or perform maintenance work. Wait five minutes after removing
power to discharge the bus capacitors. Do not attempt to service the drive until the bus
capacitors have discharged to zero. Failure to do so may result in personal injury or
death.

Caution: The heatsink and device surfaces of the evaluation or reference board may
become hot during testing. Hence, necessary precautions are required while handling
the board. Failure to comply may cause injury.

Caution: Only personnel familiar with the converter, power electronics and associated
equipment should plan, install, commission, and subsequently service the system.
Failure to comply may result in personal injury and/or equipment damage.

Caution: The evaluation or reference board contains parts and assemblies sensitive to
electrostatic discharge (ESD). Electrostatic control precautions are required when
installing, testing, servicing or repairing the assembly. Component damage may result
if ESD control procedures are not followed. If you are not familiar with electrostatic
control procedures, refer to the applicable ESD protection handbooks and guidelines.

Caution: A converter that is incorrectly applied or installed can lead to component
damage or reduction in product lifetime. Wiring or application errors such as
undersizing the cabling, supplying an incorrect or inadequate AC supply, or excessive
ambient temperatures may result in system malfunction.

> BB BB

Application note 6 V1.0
2024-06-12



o _.
3.3 kW high-frequency and high-density PSU for server and ‘ In f| neon
datacenter applications

System and functional description

1 System and functional description

The operating principle of the totem-pole PFC AC-DC and LLC DC-DC converter blocks shown in Figure 6 can be
studied independently thanks to Infineon’s open-frame evaluation boards EVAL_3K3W_TP_PFC_SIC and
EVAL_3K3W_LLC_HB_CFDT7, available to order on the Infineon website or via third-party distributors.

EVAL_3K3W_TP_PFC_SIC is a single-phase stand-alone totem-pole AC-DC converter with PFC and THD
functionalities. It is an open-frame converter with an integrated internal fan. EVAL_3K3W_LLC_HB_CFD7is a
stand-alone LLC DC-DC converter with integrated probing points, easily replaceable primary-side switches, and
an oversized heatsink. Like EVAL_3K3W_TP_PFC_SIC, it is an open-frame converter that allows easy evaluation.
In REF_3K3W_HFHD_PSU both functional blocks slightly differ, as they have been modified to achieve the
required power and efficiency targets (e.g. interleaving of the AC-DC stage, different switches/packages etc.) of
the full PSU.

Note: In REF_3K3W_HFHD_PSU, the two blocks share power earth (PE) via the metallic chassis and
cooling is done via piping of the airflow by means of the plastic enclosure. For electrical safety and
cooling reasons, it is therefore, recommended not to operate the board without enclosure or
chassis. It is the user’s responsibility to ensure proper cooling and connections when operating the
unit outside of the recommended operating conditions.

1.1 Bridgeless interleaved totem-pole PFC

A simplified schematic of the interleaved totem-pole PFC stage of REF_3K3W_HFHD_PSU is shown in Figure 2
while the hardware implementation of the fast SiC leg and its location within the board is shown in Figure 8.
The AC inlet is followed by a two-stage input EMI filter and the NTC + relay. The AC line is connected to the two
high-frequency CoolSiC™ fast-legs of the totem-pole PFC via filter-inductors (Qa_ns, Qa_ts, Qe_ns, and Qs_s in
Figure 2) and neutral to the SR leg of the converter (Qsr s and Qsg s in Figure 2). The two high-frequency SiC
legs operate at 65 kHz switching frequency in the interleaving mode, phase shifted by 180°, whereas the two SR
legs rectify the AC current according to the detected line voltage.

QSR,HS }_}:jg — }— —
"|: oh sense Qa s : Qg s '—;
LphA
(- 2 L.UhB +
Vae Ini;‘;:eEMI || NTC+ I - Y Y ;: Cbulk Vbulk
] Relay
— —
- Qa s -9 Qa5 |9
Qspis |4 M ]
r )_ '_
'_4.
_L_ o
Figure 2 Simplified schematic of the totem-pole AC-DC converter in REF_3K3W_HFHD_PSU
Application note 7 V1.0
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2 Background and board overview

2.1 Background

Recently, power demand at rack level in server and data centers has grown substantially to accommodate the
higher computing workload in less floor space. This increase in the power demand is consistently tightening
the requirements in terms of power density and efficiency in the power supplies to reduce the space occupied

and also the heat dissipated.

These requirements can be observed in the OCP rectifier v3 specification for server and datacenter PSU [1]. In
terms of efficiency and power density, a 97.5 percent peak efficiency at 230 V¢ is required, with additional
requirements of a minimum power density of 32.15 W/inch® (1.96 W/cm?), 520 mm x 73.5 mm x 40 mm
maximum dimensions, and 20 ms hold-up time at full power. Infineon’s EVAL_3KW_50V_PSU released in 2021
[2] meets all these specifications, and REF_3K3W_HFHD_PSU presented in this document showcases a possible

increase of the power density with no compromise in terms of the system efficiency.

2.2 Power supply unit description

REF_3K3W_HFHD_PSU comprises a front-end AC-DC converter and a back-end isolated DC-DC converter. The
AC-DC converter is an interleaved bridgeless totem-pole stage featuring two phases that provide power factor
correction and limits total harmonic distortion. The back-end DC-DC is a GaN half-bridge LLC converter with full-
bridge rectification. The back-end provides safety isolation and regulates the output voltage. The PSU also
features a baby-boost converter to comply with the hold-up time specifications of server applications with a

reduced overall bulk capacitance, increasing the overall power density.

The measured peak efficiency of the complete PSU at 230 Vac input line is 97.4 percent, not including the internal
fan, and overall outer dimensions of 72 mm x 192 mm x 40 mm, yielding a 98 W/inch® power density.
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The main Infineon components used in REF_3K3W_HFHD_PSU are:

e CoolSiC™IMT65R057M1H, 650V M1 57 mQ TOLL, and EiceDRIVER™ 2EDB9259Y
for the fast-legs of the totem-pole PFC converter

e CoolMOS™IPT60R016CM8, 600V CM8 16 mQ TOLL, EiceDRIVER™ 1EDN8511B for the slow leg of the totem-
pole PFC converter, and EiceDRIVER™ 1EDB8275F for the static switch of the baby-boost converter

e CoolGaN™IGT65R035D2 650V GIT 35 mQ TOLL, EiceDRIVER™ 1EDN8550B, and 1EDB8275F
for HB switches at the primary side of the LLC converter

e OptiMOS™ IQE046N08LM5, 80 V 4.6 mQ source-down, and EiceDRIVER™ 2EDB7259K
for the synchronous rectification (SR)s switches at the secondary-side of the LLC converter

e CoolMOS™IPT60R080G7, 600V G780 mQ, and CoolSiC™IDL10G65C5, 600 V diode, and
EiceDRIVER™ 1EDB8275F for the baby-boost converter

e |ISOFACE™ 4DIR1400H digital isolator for the primary to secondary isolation in the LLC converter

e XMC4200-Q48K256 microcontroller for the implementation of the PFC control

e CoolSET™ICE2QR2280G, 800 V quasi-resonant flyback controller

The evaluation board REF_3K3W_HFHD_PSU is mounted over a metallic frame and covered by a plastic
enclosure to ensure proper airflow and cooling. It has dimensions of 192 mm x 72 mm x 40 mm including a fan
and an AC inlet connector. For comparison, OCP v3 specifies a maximum dimension of 520 mm x 73.5 mm x
40 mm). Overall, the PSU results in a power density of 98 W/inch?.

DC/DCLLC EMI Filter

Output
48 Ve
51 Vpe

AC Input
180 Ve
275V,

Hold-up time extension circuit

Figure 4 Overview of the REF_3K3W_HFHD_PSU

To achieve the power density target, a tri-dimensional mechanical assembly is necessary and multiple
daughter boards are assembled on the main PCB as shown in Figure 5.

Application note 9 V1.0
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Figure 5 REF_3K3W_HFHD_PSU main board and daughter cards with their assembly.

The following daughter boards are used:

e The main board (M1000003074) hosts the passive components of the input and output EMI filters, the two
PFC inductor chokes, the capacitors of the intermediate bulk, and provides mechanical support and
electrical connections for the daughter boards.

e The ILTP-PFC high-frequency board (PW400003071) is a daughter board encompassing the two
high-frequency legs of the PFC and is mounted perpendicular to the main board.

e TheLLC and PFC SR power card (PW200003075) is assembled in the center of the board, and hosts the PFC
SR stage, the LLC primary-side, and the flyback power supply for housekeeping.

e The planar primary and secondary PCBs (MG500003080 and MG700003071) are embedded in the
transformer structure for primary- and secondary-side planar windings.

e The control PCBA (CD100003074) hosts the two primary- and secondary-side controllers, plus provides
isolation to the UART communication channel and the PWM of the LLC HB MOSFETSs. The fan airflow is
sucking air out of the chassis for better thermal performances.
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2.3 Converter architecture
REF_3K3W_HFHD_PSU is a unidirectional PSU that comprises two stages:

e Afront-end bridgeless totem-pole AC-DC converter that provides PFC and THD
e Ahalf-bridge LLC DC-DC converter that provides safety isolation and regulated output

A simplified block diagram of the full PSU is shown in Figure 6.

The control of the totem-pole AC-DC converter is implemented with the Infineon XMC™ 4200 microcontroller
with PFC, THD, voltage regulation, phase overcurrent protection (OCP1 and OCP2), overvoltage protection
(OVP), undervoltage protection (UVP), undervoltage lockout (UVLO), soft-start, synchronous rectification (SR)
control, adaptive dead-times, and serial communication interface towards the LLC secondary-side controller.

The control of the LLC converter is implemented with a third-party microcontroller referenced to the
secondary-side ground, and features voltage-regulation functionality, burst-mode operation, output OCP, OVP,
UVP, UVLO, soft-start, SR control, adaptive dead-times, and a serial communication interface. The isolation
between the two controllers (UART communication and PWM signals for the primary-side HB of the LLC) is
managed by means of a quad-channel digital isolator.

In the front-end AC-DC converter, the two interleaved high-frequency HB legs use in total four 57 mQ CoolSiC™
switches driven by two EiceDRIVER™ 2EDB9259Y. The low-frequency leg uses four of 16 mQ CoolMOS™ switches
in parallel with a combination of EiceDRIVER™ 1EDB8275F and EiceDRIVER™ 1EDN8115B in a hybrid
configuration.

For the LLC converter, four of 42 mQ CoolGaN™ are used for the HB HV primary-side in conjunction with a
combination of EiceDRIVER™ 1EDB8275F and EiceDRIVER™ 1EDN8550B. For the secondary-side SR, an
integrated approach is followed - the SR MOSFETs are mounted on the secondary-side PCB windings and
integrated on the same magnetic structure that realizes the main transformer, the resonant inductance, and
the magnetizing inductance. The LLC SR stage uses 32 of 4.6 mQ OptiMOS™ 5 power transistors, driven by eight
EiceDRIVER™ 2EDB7259K. See 2.4.3 for more information about the integrated transformer assembly.

To ensure hold-up time specifications are met while reducing the amount of bulk capacitance of the PSU, a
baby-boost converter is used to decouple the bulk voltage from the LLC input during the hold-up event. During
steady-state operation, the baby-boost is bypassed by a low-ohmic 16 mQ CoolMOS™ switch.
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Figure 6 Simplified schematic of the REF_3K3W_HFHD_PSU prototype
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Figure 7 Measured efficiency and power losses of REF_3K3W_HFHD_PSU vs. minimum OCP v3
targets
2.3.1 Hardware implementation

The hardware implementation of the PFC is distributed among the PFC power card (PW400003071) hosting the
two high-frequency MOSFETSs, the LLC power card (PW200003075) hosting the synchronous rectification stage
and the main board (M100003074) hosting the two PFC inductors, input line filter, and NTC. Figure 8 shows the
main board and a top view of the power daughter cards and their location.
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1EDN8511B)
Figure 8 Hardware implementation of the interleaved totem-pole PFC
2.3.2 Efficiency and losses

Overall, the AC-DC PFC stage is capable of near-99 percent peak efficiency at 70 percent of the rated load, which
remains above 98.8 percent up to full-load. The measured efficiency and the losses of the totem-pole PFC are
shown in Figure 9 at both nominal AC line voltage (230 VAC) and at 180 VAC input.
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Figure 9 Efficiency of the PFC

Figure 10 shows an estimation of the power loss breakdown at 50 percent load for 100 percent load for a 230 Vac
input using a CoolSiC™ device with a 57 mQ on-resistance. The main contributors to losses are the fast-leg
boosting switches (CoolSiC™ IMZA65R057M1H) at turn-on as they are the hard-commutated MOSFETs in CCM.
The low temperature-dependence of the Ry, 0f CoolSiC™ together with the higher maximum junction
temperature T,[1], reduce conduction loss, especially critical at 180 Vac input voltage when the thermal hotspot
of the PSU is the PFC fast-leg card. In this specific design, since the airflow is constrained by the very high
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power-density of the PSU, CoolSiC™ IMZA65R057M1H with a 57 mQ on-resistance has been preferred in place of
CoolSiC™IMZA65R072M1H with a 72 mQ on-resistance to maintain an adequate temperature margin during
180 Vac operation at full-load.

Losses distribution of the PFC, 230 V AC, 50% load Losses distribution of the PFC, 230 V AC, 100% load
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Figure 10 Power loss breakdown of the totem-pole PFC AC-DC stage with a CoolSiC™ device having a
57 mQ on-resistance

2.3.3 Driving CoolSiC™ and CoolMOS™ in the interleaved TP PFC

To ensure correct operation of the PFC converter, proper operation of the driving stage is crucial. For CoolSiC™
devices, 18 Vpc/0 Voc unipolar driving voltage is used as per the driving voltage recommendations [3]. The bias
supplies are initially generated via charge pumping of the flyback 12 Vpc output to 24 Vpc. The two high-side
supplies are generated from the 24 Vpc via bootstrapping plus post-regulation, and the low-side is generated via
post-regulation to 18 Vpc.

The main reason for using this method is that it is simple and cheap to implement. In fact, implementing the
bootstrap can generate the high-side gate driver voltage supply by adding only a few components (one
high-voltage diode and one resistor) from the low-side gate driver supply. As an example, the bootstrap circuit
used in the ILTP PFC with Infineon CoolSiC™ MOSFETs and isolated gate drivers is shown in Figure 11.

Note: The same half-bridge stage can also be driven with a combination of a low-side non-isolated
driver plus a high-side isolated gate driver IC.
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Figure 11 Driving CoolSiC™ with EiceDriver™ 2EDN9259Y

SiC MOSFETSs are sensitive to gate voltage supply, so reducing the recommended voltage will lead to a
channel-resistance increase. Using a bootstrap circuit in the PFC CCM totem-pole topology could generate a
modulation of the high-side gate voltage, under some conditions (3.1). Clearly, while the high-side MOSFET
device acts as a diode, the gate voltage decreases following the shape of the input AC. When the input peaks,
the high-side gate has the minimum voltage and the biggest duty cycle. This leads to an increase in conduction
losses in the high-side device when acting as a diode and conducting with the channel. Similarly, when the
high-side is the active switch, the gate voltage increases. To overcome this cross-modulation issue, the classic
bootstrap is complemented with a low-dropout regulator (LDO) post-regulation stage for the gate-driver
bias-supplies. Further information about this approach is extensively discussed in 3.1 of [4].

SWITCH

SWITCH

R R LA

(b)

V. voltages of CoolSiC™ in the high-frequency leg of a totem-pole PFC: (a) Without LDO
post-regulation, (b) With post-regulation

Figure 12
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Figure 12 shows waveforms with and without LDO post-regulation, with green waveforms being the high-side
Vgs, and the yellow waveforms being the low-side Vg.

The driving of the CoolMOS™ is shown in Figure 13. A hybrid driving approach with an isolated high-side and
non-isolated low-side switch has been adopted [9]. Also, for the four CoolMOS™ synchronous rectification legs
that are switching at 50 Hz, a bootstrap approach has been adopted to minimize costs. In this case, proper
capacitor dimensioning is required to avoid discharging and breaching the UVLO threshold of the driver.
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Figure 13 Driving CoolMOS™ with hybrid driving (EiceDriver™ 1EDB8275F along with 1EDN8511B)

2.3.4 Signal conditioning for digital control of totem-pole CCM PFC

The interleaved PFC of EF_3K3W_HFHD_PSU implements CCM average current mode control with duty and
load feed-forward. Unlike the classic PFC in which the AC voltage is rectified by the diode bridge, in the
bridgeless totem-pole PFC converter the inductor current is both positive and negative. In addition, isolation or
common-mode rejection is required to measure the inductor current if the control ground is in place in the
negative rail of the bulk voltage, as has been traditionally done in the classic PFC. A hall-effect sensor is
therefore a good solution for this kind of system.

The output of the hall-effect sensor matches the ADC inputs when supplied with the same voltage - positive
and negative currents are measured with the span of the ADC and a shift to half of the ADC range for zero
current. The sensor has enough bandwidth to also sense the high-frequency ripple and therefore, the same
signal can be used for peak-current limitation and input overcurrent protection (OCP). In case of a lower
bandwidth, the hall-effect sensor typically offers an overcurrent detection signal, which could be used for the
same purpose.

With respect to the bulk and the LLC input voltage, they are sensed by the PFC controller via resistive partition
as shown in blue in Figure 14 (for simplicity, only the voltage gain is reported). The AC sensing chain is shown in
Figure 14 in violet. It is split into positive and negative AC sensing with respect to ground and the two resulting
signals are then summed in the analog domain. Lastly, the polarity of the AC input is obtained via comparator,
shown in orange.
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Figure 14 Sensing circuitry required to control the interleaved totem-pole PFC converter with XMC™

Since the AC voltage is used for the current reference generation in the selected average current mode
structure, the current reference is a full-wave rectified sinusoidal sequence. However, the current-sense after
the ADC is a sinusoidal sequence with offset at half of the ADC spam. Therefore, the ADC result from the
current-sense requires that the offset be removed before being rectified according to the AC polarity signal.
These two steps, together with extra gain, are implemented by software in the XMC™ controller.

Because of the low amount of bulk capacitance available in REF_3K3W_HFHD_PSU, feed-forward of the PSU
load current to the PFC voltage loop was required to ensure smooth response during 10 percent to 100 percent
to 10 percent, and 50 percent to 100 percent to 50 percent load jumps with 20 Hz repetition rate, as required
per server and datacenter standards. Experimental results for load jump tests are discussed in 3.4.1.1.
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2.4 Half-bridge LLC converter

As a back-end DC-DC converter, a half-bridge LLC topology with full-bridge rectification has been selected. This
conversion stage provides safety isolation and regulates the output from the 400 V bulk voltage. A simplified
schematic of the chosen topology is available in Figure 16.

Vicin r
°© Integrated planar transformer

QHEI—“—/: QHSZ - QSRLHS g Jé} O\SRl,HS

4:1

|
|
|
|
|
|
L) - I
= Output Vout
|
|
|
|
|
|

v Baby boost
bulk converter

filter 50V

;..
o
2
o
L]
—
3
NAAAASA

T T

Figure 16 Simplified schematic of the LLC HB DC-DC converter in REF_3K3W_HFHD_PSU

2.4.1 Hardware implementation

The LLC DC-DC converter primary is placed on the LLC power card, which drives the integrated transformer that
integrates the secondary-side synchronous rectifiers.

M100003074 MG500003080 Primary PCBs

mpe S
iﬂg 4 MG700003071 SR PCBs
U

Qutput filter
Bulk cap

Planar magnetic structure with integrated
secondary side synchronous rectification stage
(IQE046NO8LMS + 2EDB7259K)

Primary side half bridge of the LLC
(IGT65R035D2 + 1EDB8275F and 1EDN8550B)

Figure 17 Primary and secondary sides of the LLC converter
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2.4.2 Efficiency and losses

The measured efficiency of the half-bridge LLC converter is plotted for 400 VDC nominal input voltage in
Figure 18. Efficiency is near 98.5 percent at 50 percent of the rated load and remains around 98 percent at
full-load.
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Figure 18 Efficiency of the LLC DC-DC stage with a CoolGaN™ device having a 35 mQ on-resistance

Figure 19 shows an estimation of the breakdown of the power losses for the LLC converter only. The main
contributors to power losses are conduction losses of the primary-side, the synchronous rectifiers, and total
copper losses of the series and parallel inductance, and of the main transformer itself.
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Figure 19 Power loss breakdown for the LLC DC-DC stage with a CoolGaN™ device having a 35 mQ on-
resistance
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2.4.3 Integrated LLC half-bridge magnetics and SR

One of the advantages of the LLC topology is reusing the leakage inductance of the main transformer as the
resonant inductance of the tank and the magnetizing inductance of the transformer as a parallel resonant
inductor. However, this compromises the overall efficiency and therefore, the design of REF_3K3W_HFHD_PSU
has series and parallel inductors integrated in the main transformer structure to minimize space. Figure 20
shows the cross section of the transformer structure.

It is important to mention that the magnetic structure presented in Figure 20 is key to this design achieving the
target efficiency of 98.5 percent (LLC only), integration of the synchronous rectification stage, and the required

power density.

___— Ferroxcube core PQ35/16.8/G1500-3F36-G800

w/ integrated gap
35 mm

{--.“ Triple insulated litz wire 800x 0.05mm

Resonant inductor E ___ \————— " PacklitzWire Rupalit Safety V155 — 3 turns
(1.65 puH nominal) [> ;
£ ——t——————__ Plasticring spacer
Magnetizing ind. =
(10 uH nominal) ; I c Triple insulated litz wire 300x 0.05mm
£ PackLitzWire Rupalit Safety V155 — 8 turns
£ & ,
£ -+ FR4ring spacers
2 _
Main HF [> ~— Primary-side windings (standard FR4 PCB)
transformer £
= " Secondary-side windings (standard FR4 PCB)
g + sinchronous rectification stage
i .
T-T-T-‘-L--*————_Ql:._ Ferroxcube main trafo
Z-dimensions: core PQ35/20-3F36
- Core only: 26 mm
- Core with planar winding PCBs: 47.5 mm
Figure 20 Integrated planar transformer assembly - cross section

The overall size of the full magnetic structure including series and parallel inductors of the LLC converter is

35 mm x 37 mm x 47.5 mm. The magnetic structure adopts two PQ35/20-3F36 cores from Ferroxcube for the
main transformer, and two PQ35/16.8/G1500-3F36-G800 cores with integrated gaps from Ferroxcube for the
resonant series inductor and the parallel inductor of the LLC converter. The 8:2 main transformer stack uses
four primary and four secondary PCBs as shown in Figure 21 with full interleaving to reduce high-frequency
copper losses. In between each PCB couple, an FR4 spacer is also inserted to increase the air gap between the
windings, consequently, reduce the inter-winding capacitance for each interleaving layer, and keep it constant.
It has been measured that the ring spacers between PCBs decrease the inter-winding capacitance from about
140 pF (no spacers) to about 60 pF (with FR4 spacers).

. . - MG700003071 Secondary-side windings
MG500003080 Primary-side windings with Integrated SR stage

SR stage: Optimos™ 5 IQE046NOBLM S
plus EiceDriver™ 2EDBT253K

Figure 21 Primary- and secondary-side winding PCBs of the transformer in Figure 20
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Figure 22 Arrangement of the planar windings in the main transformer

As mentioned previously, both the series and parallel inductors use cores with distributed gaps to reduce
losses caused by stray magnetic fields. Litz wires are employed to reduce AC resistance and high-frequency
copper losses. The series resonant inductor uses three turns of 800 strand 0.05 mm triple-insulated wire, and
the parallel inductor uses eight turns of 300 strand 0.05 mm, both Rupalit Safety V155 from PackLitzWire. This
results in the overall height of the full magnetic structure being only 37 mm, enabling it to fit in the 40 mm 1U
maximum height limit according to the standards.

Primary side planar windings

SIDE VIEW =JOE
.:-ul- }

~

Secondary side planar windings

Figure 23 Integrated planar transformer assembly - picture of an assembled prototype.

2.4.4 Driving CoolGaN™ and OptiMOS™ in the LLC converter

The primary-side of the LLC converter uses four CoolGaN™ GIT devices, each having a 35 mQ on-resistance in
TOLL package (CoolGaN™ IGT65R035D2), with both high and low sides having two devices in parallel. To drive
the CoolGaN™ devices efficiently with paralleling, a common mode (CM) choke is suggested in series with the
gate-loop in order to increase CM impedance without affecting the differential mode (DM) impedances, which
could affect the driving loop. For this purpose, four CM chokes from Bourns (SRF2012-361YA) have been used,
as shown in Figure 24. Further information about GaN paralleling, see [6].
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The GaN HB primary leg of the LLC does not require isolation since it is already implemented with ISOFACE™
digital isolators (see 2.4.5) [7]. For this reason, hybrid driving is employed to ensure high CMTI, flexible
placement, and a lower overall impedance due to gate-loop optimization. Further information about hybrid
driving for CoolGaN™ can be found in [7]-[10].
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Figure 24 Driving CoolGaN™ with hybrid driving (EiceDriver™ 1EDB8275F with 1IEDN8550B)

For the bias supply of the OptiMOS™ MOSFETSs on the secondary-side, a bootstrapped solution with a 5 Vpc bias
is used as shown in Figure 25. Because of the space constraints, EiceDriver™ 2EDB7275Kina5 mm x5 mm
package is used, which exactly fits the small space available on the secondary board stacked in the transformer
structure (see Figure 21).
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Figure 25 Driving OptiMOS™ with EiceDriver™ 2EDB7259K
o oge o
245 Isolation partitioning

The isolation partitioning is implemented on the control board with the ISOFACE™ 4DIR1400H digital isolator.
The isolator is based on the coreless transformer technology and enables robust data transmission as well as
safe behavior. Each side of the digital isolator can be independently supplied with any voltage between 2.7 Vpc
and 6.5 Vpc. In this case, both primary and secondary sides are supplied with 3.3 Vpc, as shown in the schematic
(see Figure 26).

Application note 22 V1.0
2024-06-12



o _.
3.3 kW high-frequency and high-density PSU for server and ‘ In f| neon
datacenter applications

Background and board overview

Compared to similar devices, ISOFACE™ 4DIR1400H offers a higher reliability (VISO = 5700 Vrus according to

UL 1577) and high CMTI>100 V/ns. Input pull-down resistors allow for a default and defined startup state of the
signals, which is highly recommended when transferring PWM signals. A low propagation delay and a precise
timing accuracy minimize deadtime and consequently achieve a high system efficiency. An internal deglitch-
filter also detects and bypasses any glitch on the input side with a pulse duration <10 ns, preventing the
transfer of unwanted noise from the primary-side to the secondary-side and vice versa.
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Figure 26 Isolation of the UART and PWM signals between primary and secondary on the control card

via ISOFACE™ 4DIR1400H

Eventually, the improved delay performance of the ISOFACE™ 4DIR1400H compared to similar competitor parts
allows for an increased timing budget to improve the safety margin or reduce deadtimes. Table 2 shows a
comparison of the timing performance between ISOFACE™ 4DIRx40xH product family and equivalent
competitor part. Further information about designing with Infineon ISOFACE™ digital isolators can be found in

[9].

Table 1 Timing specification of ISOFACE™ 4DIRx40xH vs competitor parts
ISOFACE™ 4DIRx40xH | Equivalent competitor part
Symbol | Parameter Unit |Min. |Typ. |Max. |Min. Typ. Max.
trp,on Input-to-output propagation ns 22.0 26.0 |[33.0 50.0 75.0 100.0
tep,off delay
Atpppp Part-to-part propagation delay ns - - 3.0 - - -
mismatches
Atpp chech Codirectional channel-to- ns - - 3.0 - - 50.0
channel propagation delay
mismatch
PWD Pulse width distortion ns - - 3.5 - - 40.0
Tow,min Minimum pulse width [ns] ns 8.0 12.5 |15.0 1000.0 - -
2.5 Baby-boost stage to extend hold-up time

To have a significant improvement in the power density, a possible viable and widely accepted approach is to
implement a reduction of the bulk capacitance. Indeed, under steady-state conditions, the converter can
operate with a lower bulk capacitance provided that the 100 Hz ripple of the bulk voltage keeps below the
maximum voltage rating of the components, the maximum RMS current can still be handled by the remaining
bulk capacitors and the converter still meets the requirements in terms of load transients.
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Overall, two criteria need to be satisfied: the total PFC output AC current stress must be lower than the maximum
RMS current that the capacitor bank can handle, and the capacitance value must be high enough to:

e Avoid the bulk voltage to exceed the voltage rating (usually capacitors are limiting the voltage stress)

e Allow the PFC stage to operate with the required power factor and total harmonic distortion (e.g., minimum
steady-state bulk voltage coming too close to the Vi peak at the input)

e Supply the LLC converter for 10 ms at full output power (3.3 kW) during AC line dropout (ACLCDO)

In a standard server power supply with 3.3 kW maximum nominal output power, assuming average (Vousnom) and
minimum bulk voltage (Vousmin) being 410 Voc and 395 Ve respectively during steady-state operation at full-load,
and minimum bulk voltage during LCDO (Vpus,coomin) being 360 Vpc as in Figure 27, the minimum capacitance
required to achieve the 10 ms hold-up time is 2 Pyy¢ max taup/ [Vius min — Vius.Lcpomin] Which results in
around 2.5 mF total capacitance.

In the case of REF_3K3W_HFHD_PSU, by allowing the Viusocomin to g0 to a voltage as low as 290 Vpc, the amount
of capacitance required to continue providing full-load current is in the 900 uF range, which is far lower than
the 2.5 mF estimated above, enabling higher power density.

— AC grid voltage
A PSU AC input current

) <10 ms ,
—

\1 AC-LCDO event

N PSU Bulk voltage

DR Vbus.max Vbus.nom

’Vbus.min

"~ Vbus,LCDOmin

t

Figure 27 Simplified waveforms of the AC voltage, AC current and bulk voltage during a 10 ms LCDO
event

Figure 28 shows an excerpt of schematic of the baby-boost converter implemented in REF_3K3W_HFHD_PSU,
where Vi is the bulk voltage (input of the baby-boost converter), and V+ is the input voltage of the LLC DC-DC
back-end stage (output of the baby-boost converter).

During an ACLDO event, the static switch Q3 disconnects the V+ and the Vyi rails, and as soon as an
undervoltage is detected together with absence of grid voltage, the baby-boost starts operating to bring the V+
voltage back to the nominal value allowing a deeper discharge of the bulk cap voltage.
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Figure 28 Schematic of the baby-boost circuity on the main board to comply with ACLDO specs
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Figure 29 Baby-boost operation during ACLDO event at 100 percent load
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Experimental results

3 Experimental results

3.1 Power supply unit specifications

This chapter presents the specifications, performance, and the behavior of the PSU for each single block, and
for the overall power supply unit. Table 2 shows the required performance and specifications under several
steady-state and dynamic conditions.

Table 2

Summary of specifications and test conditions for the 3300 W PSU

Test

Conditions

Specification

Input voltage Vac

180 Vacto 275 Vac

Output voltage Voc

Input 230 Vac at 50 Hz

50 Vpc nominal

Output power

Input 180 Vac t0 275 Vac

3300 W

Steady-state ripple (max.)

+ 500 mV peak-to-peak max.

Efficiency test (full PSU) Input 230 Vac at 50 Hz 97.4% peak
30% to 100% of full-load 96.5% min.
Input 230 Vacat 50 Hz 94.0% min.
10% to 30% of full-load
iTHD (max.) 230 Vacat 50 Hz; 5-10% load 15%
230 Vacat 50 Hz; 10-30% load 10%
230 Vacat 50 Hz; 30-100% load 5%
Power factor 30% to 100% load 0.98 min.
Dynamic response 10% to 50% load; 20 Hz; 1 A/us 0.5V max.
(output voltage overshoot) 10% to 90% load; 20 Hz; 1 A/us | 1.0V max.
Hold-up time 100% load 20 ms min.
Overcurrent protection (OCP) Shut down and latch >65 A
Overvoltage protection (OVP) PFC bulk voltage 440 Vpc

Undervoltage protection (UVP)

PFC bulk voltage

330 Vpc in LCDO conditions

AC Line cycle dropout (LCDO) 100% load 10x [10 ms dropout, 100 ms interval]
Brown-out AC voltage 180 Vac 0N, 176 Vac off

3.2 Steady-state performance and waveforms

3.2.1 PSU efficiency and power losses

Figure 30 shows the efficiency measurements for steady-state operation of the full PSU at different AC
voltages. The efficiency measurements have been obtained with a WT3000 power analyzer with 5 kHz input and
no output line filters at 50 Hz line voltage, and do not include fan power consumption.

Note:
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Figure 30 Measured efficiency and power losses of REF_3K3W_HFHD_PSU (no fan) for different input

line voltages at 50 Hz, with comparison to minimum OCP efficiency targets

Figure 31 shows the efficiency measurements for steady-state operation including fan power consumption. Fan
speed is not optimized for minimum power losses at the peak efficiency point.
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——PSU f 134.8
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Figure 31 Measured efficiency and power losses of REF_3K3W_HFHD_PSU (with fan) for different

input line voltages at 50 Hz.
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3.2.2 Output and bulk voltage ripple

AC input voltage (Ch2) — 200 V/div

Bulk voltage (Ch3) — 20 V/div, 400 V offset

PSU output voltage (Ch4) — 10 V/div, 50 V offset
LLC resonant current (Ch5) — 20 A/div

= AC input current (Ch6) — 20 A/div

Horizontal zoom scale — 10 ms/div
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Figure 32 Output voltage ripple for 100 percent load conditions
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Figure 33 (a) LLC Resonant current at full-load, steady-state for maximum and (b) minimum bulk
voltage
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AC input voltage (Ch2) — 200 V/div
Bulk voltage (Ch3) - 20 V/div, 400 V offset
PSU output voltage (Ch4) — 10 V/div, 50 V offset
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Figure 34 Output voltage ripple for 10 percent load conditions

3.2.3 PSU startup
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Figure 35 PSU startup at 50 percent output load
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3.2.4 Interleaved totem-pole PFC
3.24.1 Steady-state performance of the PFC conversion stage

Figure 36 shows the efficiency measurements for steady-state operation of the PFC only at different AC
voltages. The efficiency measurements have been obtained with a WT3000 power analyzer with 5 kHz input and
10 kHz output line filters at 50 Hz line voltage, and do not include fan power consumption.

Note: Due to production and measurement setup tolerance, worst case efficiency variations of
+0.2 percent maximum could be observed.
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Figure 36 Measured efficiency of the PFC stand-alone at different RMS input voltage and 50 Hz (no
fan)

Figure 37 depicts the total input current harmonic distortion (iTHD) and power factor measured at 230 VAC and
180 VAC line voltages at 50 Hz. The iTHD and PF measurements have been performed with the full PSU
operating in steady state conditions.
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Figure 37 Measured iTHD (a) and PF (b) at different RMS voltages for 50 Hz high-line 230 V,c and 180
Vi line voltage
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3.2.5 PFC waveforms and zero crossing
[

Vbs_Ls phase A switching voltage (Ch2) — 100 V/div
Ipna phase A inductor current (Ch3) — 5 A/div
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Horizontal zoom scale — 5 ms/div
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Figure 38 PFC steady-state operation at 230 V,, full-load. Current through the two inductor chokes
of phases A and B, VDS_LS of phase A are shown
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Figure 39 Detailed waveforms of zero crossings at 230 V¢ input voltage and at full-load
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Figure 40 PFC steady-state operation at 180 V,, full-load. Current through the two inductor chokes

of phases A and B, VDS_LS of phase A are shown
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Figure 41 Detailed waveforms of zero crossings at 180 V.c input voltage and at full-load
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3.2.5.1 Steady-state performance comparison of CoolSiC™ devices with 57 mQ
on-resistance vs. 72 mQ on-resistance

During the design process, PFC performances have been compared between CoolSiC™ IMT65R072M1H and
IMT65R057M1H with the full PSU operating and enclosed. The main reason for performing this evaluation was
the excessive temperature of the PFC fast-leg when using IMT65R072M1H. Indeed, at 180 V¢ line voltage the
fast-leg of the ILTP-PFC becomes the hotspot of the converter due to the higher input current and the airflow
direction. It has been observed that IMT65R072M1H devices were experiencing Tcase of ~120°C at full-load and
180 Vac input line voltage and 25°C ambient temperature. While this is acceptable when operating at ambient
temperature, it does not give an adequate temperature margin when operating at the maximum ambient
temperature of Tavsmax=45°C. By using IMT65R057M1H, a total reduction of 6.3 W power dissipation at full-load,
180 Vi line voltage on the HF switch only has been observed (lower conduction losses), which resulted in a
significant lowering of the PFC temperature in the full-load, 180 Vac line (worst-case) condition.

In Figure 42, efficiency and losses of the PFC extracted during the debugging process are reported for 230 Vac
and 180 Vac input. At 230 Vac a crossing point can be observed. This is related to the change in the Rpsionyand Qg
of the MOSFETSs (Roson at 25 °C and Qg at 18 Vpc driving are 72 mQ, 27 nC and 57 mQ, 28 nC respectively), which
shifts the peak efficiency point from near 62 percent to 75 percent. Efficiency at full-load is slightly increased at
230 Vac, but no major benefit is observed when operating only at this input AC voltage. However, the use of the
IMT65R057M1H is particularly beneficial at the lowest input line voltage, as shown in Figure 42. Thermal
performance with the 57 mQ device is reported in Figure 45.

PFC Efficiency and losses @ 230 VAC

PFC Efficiency and losses @ 180 VAC
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Figure 42 PFC comparison with CoolSiC™ devices with 57 mQ on-resistance vs. 72 mQ on-resistance

at 230 Vac and 180V,

Application note 33 V1.0
2024-06-12



o _.
3.3 kW high-frequency and high-density PSU for server and In f| neon
datacenter applications
Experimental results

3.3 Half-bridge LLC

The half-bridge LLC using CoolGaN™ IGT65R035D2 on the primary-side and IQE046N08LMS5 for the SR stage.

Figure 43 and Figure 44 shows ZVS turn-on and the lossless turn-off of the half-bridge LLC at 100 percent and 50
percent of the rated load.

LLC series resonant current (Ch6) — 10 A/div
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Figure 43 LLC waveforms during steady-state operation at 100 percent of the rated load
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Figure 44 LLC waveforms during steady-state operation at 50 percent of the rated load
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34 Thermal performance

Thermal performance of the full rectifier has been taken with Type J thermocouples, fan supplied externally,
and a 25°C ambient temperature. The PSU temperature has been taken with full enclosure to provide proper
cooling as the enclosure conveys the airflow through the high-temperature component through a “pipe” on the
right-hand side of the converter. Critical hotspots such as the PFC high-frequency leg, LLC primary-side, and SR
MOSFETs and drivers are shown in Figure 45.

95.0

230VAC PFC HF Leg
230VAC LLC Primary
—&—230VAC LLC SR
180VAC PFC HF Leg
180VAC LLC Primary
--¥--180VAC LLCSR

85.0

75.0

55.0

45.0

25.0
1200 1500 1800 2100 2400 2700 3000 3300

Figure 45 PSU temperature vs. load with IMT65R057M1H at 180 Vxc (dashed lines) and 230 V,c (solid)

Itis clear from the temperature profiles that the PSU can operate at both 230 VAC and 180 VAC input, with a
maximum temperature of nearly 88°C on the PFC SiC MOSFETs IMT65R057M1H as already discussed in 3.2.5.1.
This also provides enough margin with respect to the maximum ambient temperature of 45°C.

3.4.1 Dynamic conditions

3.4.1.1 Load transients

The PSU has been tested for 10 percent to 50 percent and 10 percent to 90 percent load transient [1], with

1 A/us slew rate and 20 Hz repetition-rate as shown in Figure 46 and Figure 47. Also, PSU ruggedness against
zero to full-load transient and vice versa have been tested. Figure 46 and Figure 47 also show +1.0 V peak
overvoltage during the 100 percent to 10 percent transient, and -1.7 V peak undervoltage during the 10 percent
to 100 percent transients.

Finally, a feed-forward mechanism of the output current to the PFC voltage loop has been implemented. This
allows ultra-fast recovery of the bulk voltage in less than 25 ms, which enables the PSU to withstand the
transients with 20 Hz repetition-rate even without a power-buffer like the baby-boost converter.
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AC input voltage (Ch2) - 200 V/div
- Bulk voltage (Ch3) — 20 V/div, 400V offset
§ PSU output voltage (Ch4) — 1 V/div, 50 V offset
LLC resonant cument (Ch5) — 20 A/div
AC input current (Ch6) — 20 A/div
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Figure 46 10 to 50 percent to 10 percent load transients of the full PSU at 20 Hz repetition-rate
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Figure 47 10 percent to 90 percent to 10 percent load transients of the full PSU at 20 Hz repetition-
rate

3.4.2 Hold-up time extension

Hold-up time extension with the baby-boost converter (see 2.5) has been tested within the PSU. From the
operation point of view, the baby-boost stage is always not active, and triggers when a bulk voltage drop below
380 Vpc is detected together with absence of AC line input. At this point, the CM8 static switch opens and the
voltage at the LLC input is boosted (taking the energy from a deep discharge of the bulk capacitors) until the
bulk voltage achieves a cut-off threshold of 250 Vpc. Under these conditions, a maximum hold-up time
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extension of 14.8 ms has been proved at full-load until the PSU output drops, with 900 uF nominal bulk
capacitance.

PFC LS LF MOSFET Vgs (Ch1) - 2 V/div
AC input - after EMI filter (Ch2) — 100 V/div | . v

Baby-boost output (Ch5) — 20 A/div
Bulk voltage Veuik (Ch6) — 100 V/div sy
Horizontal zoom scale — 11 ms/div

-0V

44 s 33 ms 22 e -11 s 0s 1 ms 2m 33 ms “ms S5ms

Figure 48 Hold-up time at 100 percent of the rated load

3.4.2.1 AC line-cycle drop-out (ACLDO)

With the baby-boost circuitry fully operating, AC line cycle drop-out has been tested at both 50 percent load
and full-load, with a drop of the phase voltage at both 0° and 45° (the worst condition as the bulk voltage is at
the peak minimum). The ACLDO is repeated ten times, each time with a 10 ms line drop, and with a time
interval of 100 ms in between. The main results of the ACLDO test are reported in Figure 49 to Figure 52.

Duringeach ACLDO event the baby-boost stage is enabled as described in 2.5 and 3.4.2, therefore the bulk voltage
discharges faster to a minimum voltage of 260 Vpc during each ACLDO event. During the worst-case 100 percent
load-abnormal condition, the output voltage remains within +/- 2.0 Vpc of the nominal output.
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Figure 49 AC line-cycle drop-out (ACLDO) at 100 percent load, AC phase 45 degrees
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Figure 50 AC line-cycle drop-out (ACLDO) at 50 percent load, AC phase 45 degrees

Application note 38 V1.0
2024-06-12



o _.
3.3 kW high-frequency and high-density PSU for server and In f| neon

datacenter applications
Experimental results

f) . . 404/
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Figure 51 AC line-cycle drop-out (ACLDO) at 100 percent load, AC phase 0 degrees
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LLC resonant current (Ch8) — 20 A/div
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Figure 52 AC line-cycle drop-out (ACLDO) at 50 percent load, AC phase 0 degrees
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3.4.3 EMI measurements

The conducted electromagnetic interference (EMI) of the full PSU was measured with the setup shown in
Figure 53. The AC voltage is generated by an AC source and the connection to the PFC is done with a line
impedance stabilization network (LISN). The spectrum analyzer is connected to the LISN. The load used for the
test is a passive resistive load.

AC source

5 ] ()
TR L] : ; g
| e ——— <

Spectrum analyzer Resistive I*(")/ad

Figure 53 Setup used for EMI test

The EMI tests were performed for both line and neutral with an input of 230 Vac and 3 kW output power.
Figure 54 shows the results of the average (AVG) and the positive-peak measurements at 230 Vac. The PSU is
fully compliant with Class A limits in both peak and average measurements. Furthermore, the measured
positive peak values represent a worst-case compared to the quasi-peak of the standard. A margin of 6 dB is
also always achieved.

80 — Average L 80F Average N
W‘ — — — AVGlimit ClassA 1[ — — — AVG limit ClassA
——————————— Quasi-peakL —— T ——— == Quasi-peak N
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s s
ﬂ 60 - 5 60 [
5 5
£ 50 £ 50 -
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Figure 54 AC input EMI of the PSU at 230 V¢ input and 3 kW, and a comparison with the EN 55032
limit
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3.4.3.1 EMI improvement through clamping of LF PFC MOSFETs

It is important to remark that a substantial improvement in the EMI behavior can be observed for both line and
neutral positive-peak EMI spectra by modifying the zero-crossing sequence of the PFC. In the original driving
sequence “without clamping”, all the switches of the low- and the high-frequency half-bridges of the PFC are
turned-off simultaneously. In this case, a residual current due to PFC modulation will be still stored in the two
PFC inductors at the zero crossing. This current resonates with the Coss of the high-frequency legs, and
eventually generate the oscillations shown in Figure 55.

essvmmsRA— | o s R
i Vds HS LF MOSFETs (Ch5 — Ch4) )
Horizontal zoom scale - 100 ps/div e QLF,HS QHF s ZX =
E= T
&=
e 5 <
) o FR
Figure 55 Resonance at zero-crossing (left) and the equivalent simplified circuit for LS LF clamping
(right)

A slight modification in the firmware for the turn-off sequence can effectively improve the QP EMI results. If the
low-side switch of the low-frequency leg is kept on during the high-frequency leg’s turn-off (few switching
cycles, e.g. 3/fsw - 46 ps), it could clamp the resonating voltage by providing an effective freewheeling path for
the residual current to discharge. Furthermore, the Rosion) Of the LS, LF MOSFET also provides additional passive
damping of this current.

From the EMI perspective, the reduction of the resonating voltage during zero-crossing can be appreciated in
the positive-peak results in Figure 56 where a peak component of 1.5 MHz and related harmonics is reduced by
~10 dB. Figure 57 provides a comparison of the average EMI but with no significant improvement due to the
clamping of the LS LF MOSFET technique during zero-crossing.

Application note 41 V1.0
2024-06-12



o _.
3.3 kW high-frequency and high-density PSU for server and In f| neon

datacenter applications
Experimental results

[ 10 J) = i QP N w/outclamp | -
i QP N w/clamp
——————————— — — —QPlimitClassA

70 1

QP L w/out clamp
L w/ clamp
___________ — — —QPlimit ClassA

o
[=]
T

~
o

D
S

LISN measurement [dBLV]
] g

LISN measursment [dBLV]
4]
(=]

w
[=3

8]
(=]

108 107 10° 107
Frequency [Hz] Frequency [Hz]
Figure 56 Quasi-peak EMI comparison: With and without extended clamping of LF at zero-crossing
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Figure 57 Average EMI comparison: With and without extended clamping of LF at zero-crossing
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4 Summary

This document provides a complete system solution from Infineon designed for server PSU applications. The
solution incorporates a bridgeless interleaved totem-pole PFC converter and a DC-DC isolated half-bridge LLC
converter, achieving efficiency levels of 97.4 percent at 230 Vac and 97.1 percent at 180 Vac, along with a power
density of 98 W/in®.

The REF_3K3W_HFHD_PSU reference board utilizes CoolSiC™ 650 V, CoolMOS™ 600 V MOSFETSs, and CoolGaN™

power transistors in TOLL packages, and OptiMOS™ 6 from Infineon. This combination of CoolSiC™, CoolMOS™,

CoolGaN™, and OptiMOS™ MOSFETS enables high performance within a compact form factor, as detailed in this
application note.

The bridgeless PFC topology and the half-bridge LLC incorporate full digital control through an XMC™ 4000
series microcontroller from Infineon.

Note that the PSU's performance excels not only in steady-state conditions, offering high efficiency, but also
meets power line disturbance and hold-up time requirements with additional hold-up time boost converter,
which can achieve the required 10 ms hold-up at full-load.

Furthermore, the REF_3K3W_HFHD_PSU board has been tested using a programmable AC source and an
electronic load. Efficiency, THD, and PF results are obtained using the WT3000 power analyzer from Yokogawa,
alongside waveform analysis with the MSO58 (1 GHz; 6.25 GS/s) oscilloscope from Tektronix.
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5 Bill of materials

Infineon main components are marked in bold.

Table 3 Bill of materials for the main board M100003074

Designator Value Tolerance |Voltage Description
C1,C2,Ce,C7 4.7nF Y2 300V Capacitor Ceramic
C3 0.82uF X2 275 Vac Capacitor Foil
C4,C5 2.2uF X2 275 Vac Capacitor Foil
C8,(C9,C32,C33,C34,C35 10nF 5% 630V Capacitor Ceramic
C10 10uF 10% 450V Capacitor Foil
C11,C12,C13,C14,C15,Cl6, 100uF 20% 450V Capacitor Polarized
C17,C18,C29

C19,C20, C21,C24,C25,C44, 1uF X7R 35V Capacitor Ceramic
C48

C22,C23,C26,C27,C37,C43, 4. 7uF X8L 100V Capacitor Ceramic
C45, C46, C47,C49, C50,C51,

C52

C28,C36, C38,C41, C53,C54 100nF X7R 630V Capacitor Ceramic
C30,C31,C39 820uF 20% 63V Capacitor Electrolyt
C40,C42 100pF X7R 50V Capacitor Ceramic
D1,D2 S8KCDICT - 800V Standard Diode
D3 IDL10G65C5 - 650 V Schottky-Diode

F1 20A - - Sicherung

IC1,1C2 MCR1101-20-3 - - Hall Sensor

IC3 1EDN8511B - - Integrated Circuit
IC4 1EDB8275F - - Integrated Circuit
J1,J2 7460307 - - Screw Terminal
L1, L2 1.4mH - - Common Mode Choke
L3 30uH - - Buffer Choke

L4, L5 385uH - - PFC-Choke

L6 32uH - - Inductor

NTC1 14R 25% - NTC Resistor

Q2 IPT60R080G7 - 600 V MOSFET

Q3 IPT60R016CM8 - 600V MOSFET
R1,R17,R18,R19, R20, R21, 309k 0.1% - Resistor

R22, R23, R24, R29, R30, R31,

R32, R33, R35, R38

R2, R6 10R 1% - Resistor

R3, R4, R5,R7,R9 4R7 1% - Resistor

R8, R27 100R 1% - Resistor
R12,R13,R16, R40,R41 ROO1 1% - Resistor
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Designator Value Tolerance |Voltage Description

R14, R25, R28, R34, R36, R37, 2k7 1% - Resistor

R39, R42, R43, R44

R15 OR 1% - Resistor

R45 RO03 1% - Resistor

T1 MG500003079 - - PWR Transformer

TR1 MG600003070 - - Current Sense
Transformer

X1, X4, X5 Faston Connector - - Connector

TE1217421-1

X3 SQW-106-01-L-D-ND - - Female Header, 10
Contacts 2mm

X6 200-SQW11301LD - - Female Header, 26
Contacts 2mm

Table 4 Bill of materials for the ILTP PFC HF power card PW400003071

Designator Value Tolerance | Voltage Description

C1,C6,C8 10uF X5R 35V Capacitor Ceramic

C2,(C4,C5,C7,C9,C10,C11, 1uF X7R 50V Capacitor Ceramic

C13,C14,C15,C19, C20

C3,C21,C22,C23,C24 100pF X7R 50V Capacitor Ceramic

C12,C16,C17,C18 100nF X7R 630V Capacitor Ceramic

D1,D2 ES1JAL_M3G - 600V Diode

D3,D5 DFLS140L-7 - 40V Standard Diode

D4, D6, D7, D8 BAT165 - 40V Schottky-Diode

IC1 1EDN8511B - - Gate Driver IC

IC2,I1C3,1C4 L78L18ACUTR - - Integrated Circuit

IC5, IC6 2EDB9259Y - - Gate Driver IC

Q1, Q2,Q3, Q4 IMT65R057M1H - 650V MOSFET

R1 43k 1% - Resistor

R2, R6 1k 1% - Resistor

R3, R4 10R 1% - Resistor

R5 12k 1% - Resistor

R7,R10,R12,R15 2R2 1% - Resistor

R8,R11,R13, R16 1R 1% - Resistor

R9, R14, R18, R19 510R 1% - Resistor

R17 10K NTC - - Resistor
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Table 5 Bill of materials for the LLC power card PW200003075

Designator Value Tolerance | Voltage Description

C2,C26 150uF 20% 16V Capacitor Polarized

C3,C7,C8,C9,C17,C18,C30 1uF X7R 35V Capacitor Ceramic

C4,Ce,C10,C11 2n2 X7R 50V Capacitor Ceramic

C5, C19, C20, C23,C28 100pF X7R 50V Capacitor Ceramic

C12,C14,C15,C35,C36 100nF X7R 630V Capacitor Ceramic

C13 10uF X7R 25V Capacitor Ceramic

Cl16,(C21,C31,C32 10uF X7R 50V Capacitor Ceramic

C24 100nF X7R 25V Capacitor Ceramic

C27 1nF X7R 50V Capacitor Ceramic

C29 33uF 10% 20V Capacitor Polarized

C34 330pF X7R 50V Capacitor Ceramic

D1,D9,D10 BAT165 - 40V Schottky-Diode

D2,D7,D8 DFLS1200 - 200V Diode

D5 FES1JE - 600V Diode

IC1, I1C4 1EDB8275F - - Gate Driver IC

IC2 1EDN8550B - - Gate Driver IC

IC5, 1C9 1EDN8511B - - Gate Driver IC

IC6 TLV431B 0.5% 1.24V TLV431B- Adjustable
Precision Shunt
Regulator 0.5%

IC7 ICE2QR2280G - - Integrated Circuit

IC8 VOL617A-3 - - Integrated Circuit

L1,L2,L3,L4 SRF2012-361YA - - Common Mode
Power Line Choke

Q1,Q2,Q3,Q4 IGT60R042D2 - - GaN HEMT
Transistor

Q5, 06, Q7, Q8 IPT60R016CM8 - 600 V MOSFET

Q9, Q10 BSS138N - 60V MOSFET

R2, R5,R9, R14, R15,R16,R19, | 10R 1% - Resistor

R20, R23, R24, R26, R29, R47

R3, R4, R27, R28 2R7 1% - Resistor

R6, R7, R46, R48 1k 1% - Resistor

R8 150R 1% - Resistor

R10, R13, R45 33k 1% - Resistor

R11,R17,R18,R21, R22, R25, 510R 1% - Resistor

R36

R12 10K NTC 3% - Resistor

R30, R31,R32,R33 270R 1% - Resistor

R34, R35, R40 15k 1% - Resistor
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Designator Value Tolerance | Voltage Description
R37,R39 825R 1% - Resistor
R38 3k6 1% - Resistor
R41 1k18 0.1% - Resistor
R42 1R5 1% - Resistor
R43 2K7 1% - Resistor
R44 10k 1% Resistor
REL1 G2RL-1A-E2-CV-HA - - 12V Relay
DC12
TF1 ICE 8032.0205.024 - - Transformer
TR1,TR3 XT01 - - Common Mode
Power Line Choke
Table 6 Bill of materials for the control card CD100003074
Designator Value Tolerance | Voltage Description
C1,C2,C8,C18,C24,C26,C28, | 100nF X7R 25V Capacitor Ceramic
C31, C33,C35,C36, C42, C49,
€50, C54, C59, C65, C66, C67,
C68,C74,C75
C3,C4,C40,C41 10pF X7R 50V Capacitor Ceramic
C5 10uF X5R 25V Capacitor Ceramic
C6,C9,C14,C15,C16,C17, 330pF X7R 50V Capacitor Ceramic
C19, C45, C46,C47,C57, C58,
C61,C63,C64,CT71
C7,C70,C72 100pF X7R 50V Capacitor Ceramic
C10, C23, C25, C27,C30,C32, 10uF X5R 6.3V Capacitor Ceramic
C34, C48, C55,C56, C69
C43,C52 47pF X7R 50V Capacitor Ceramic
C60, C62 4n7 X7R 50V Capacitor Ceramic
D3,D7,D8,D9,D10,D12 BAT165 - 40V Schottky-Diode
D5, D6, D11 GREEN LED - - LED
IC1 4DIR1400H - - Integrated Circuit
IC2 TLS4120DOEPV33 - - Synchronous Step-
Down Regulator
IC3 TLV1391IDBVR - - Single Differential
Comparators.
IC4,IC10 TLV2376IDR - - Integrated Circuit
IC8 dsPIC33CK256MP203- - - MCU
I/M5
IC11,1C12 LMH6642MF - - Integrated Circuit
IC13 TLS820DOELV33XUM - - Low Dropout Linear

Voltage Regulator
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Designator Value Tolerance | Voltage Description

IC14 XMC4200-Q48K256 - - Integrated Circuit

L1 100uH - - Magnetic

L2,L3 Ferrite bead - - Magnetic

600hm@100MHz

NTC1 10K 1% - NTC Resistor

R1,R6,R11,R12,R17,R41, R44, | 510R 1% - Resistor

R71,R72,R76,RT7

R2, R3, R4, R5, R34, R39, R43, 15k 1% - Resistor

R60, R69

R7,R16, R23, R24, R26, R28 309k 0.1% - Resistor

R8, R9, R13, R15, R25, R47,R53 | 10k 0.1% - Resistor

R10, R30, R37, R42, R62 2k7 1% - Resistor

R14,R18, R19, R20, R45, R70 100R 1% - Resistor

R21,R22,R27,R29 17k8 0.1% - Resistor

R31 1k 1% - Resistor

R48, R56, R57, R63, R65 4k99 0.1% - Resistor

R49, R52 124R 0.1% - Resistor

R50, R54, R58 49k9 0.1% - Resistor

R51, R55, R59 54k9 0.1% - Resistor

R66, R68, R73, R74 261R 1% - Resistor

R75 1R8 1% - Resistor

X1, X5 FTSH-105-01-L-DV-K - - Connector

X2 TMM-113-03-L-D - - Pin Header, 26
Contacts

X3 Fan connector - - Pin Header, 4
Contacts

X4 TMM-106-03-L-D - - Pin Header, 26
Contacts

X6 B2B-ZR - - Connector

XTAL1 QT325S5-12.000MEEQ-T |- - Crystal Oscillator

Application note

48

V1.0
2024-06-12



o _.
3.3 kW high-frequency and high-density PSU for server and ‘ In f| neon
datacenter applications

Bill of materials

Table 7 Bill of materials for the secondary-side transformer PCB MG700003071

Designator Value Tolerance |Voltage Description
C1,C2,(C3,C4,C5,C6,CT7,C8, 4.7uF X8L 100V Capacitor Ceramic
C9,C10,C11

C13,C14,C15,C16,C17,C18 1uF X7R 35V Capacitor Ceramic
D1, D2 BAT46WIJ - 100V Schottky Diode
IC1, IC2 2EDB7259K - - Gate driver IC
R1,R2 2R2 1% - Resistor

R3, R4, R5, R6, R7, R8, R9, R10 1R 1% - Resistor

R11,R12 2k 1% - Resistor
T1,T2,73,T4,T5,T6,T7,T8 IQE046NO8LMS5 - 80V MOSFET
Application note 49 V1.0
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Acronyms/abbreviations

Table 8 Acronyms/abbreviations

(infineon

Acronym Description

ACLDO AC line-cycle drop-out

BW bandwidth

BTM bottom

CCcM continuous conduction mode
DFF duty-cycle feed-forward

FB full-bridge

GaN gallium nitride

HB half-bridge

HV high voltage

iTHD input current total harmonic distortion
LCDO line cycle drop out

LDO low dropout voltage regulator
LLC series parallel resonant converter
OCP overcurrent protection

OVP overvoltage protection

PF power factor

PFC power factor correction

PSU power supply unit

PWM pulse width modulation

Si silicon

SiC silicon carbide

SMPS Switched Mode Power Supply
SR synchronous rectification
THD total harmonic distortion
UvVLO undervoltage lockout

UvP undervoltage protection

WBG wide bandgap
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respect to such application.
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