

IXD0579M

100V High Frequency High-Side and Low-Side Gate Driver with Bootstrap Diode

Features

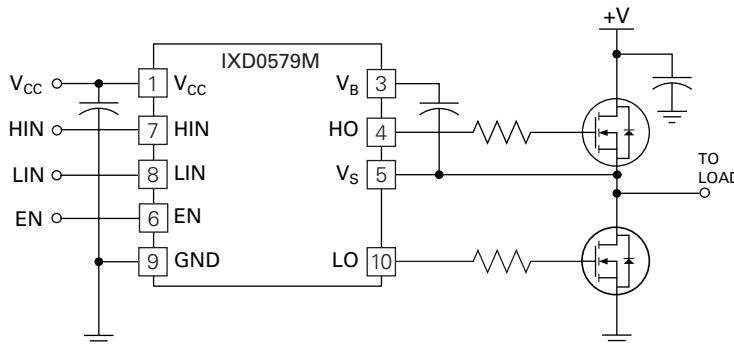
- Drives two N-channel MOSFETs in a half bridge configuration
- Integrated bootstrap diode
- Floating high-side driver up to 100V in bootstrap operation
- 1.5A source/2.5A sink output current capability
- Undervoltage lockout for high and low side drivers
- 10 ns maximum propagation delay matching
- 60 ns typical propagation delay
- <1 μ A ultra low standby current
- Logic inputs 3.3V compatible
- -40°C to $+125^{\circ}\text{C}$ ambiant temperature range
- Space saving $3 \times 3 \text{ mm}^2$ TDFN-10 package

Applications

- Brushless DC (BLDC) Motor Drivers
- Battery Powered Hand Tools
- DC/DC converters

Description

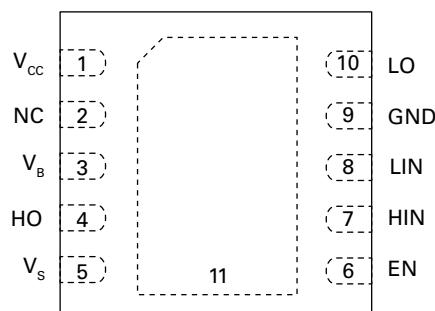
The high frequency IXD0579M gate driver is capable of driving two N-channel MOSFETs in a half-bridge configuration. An integrated diode provides the bootstrap configuration necessary to allow the floating high-side driver to switch up to 100V. Integration of the bootstrap diode along with its companion current limiting resistor simplify circuit and layout design, reduce PCB real estate demands, and reduce BOM count.


Two Under Voltage Lockout (UVLO) detectors are employed to ensure the affected low side and high side drivers are shut down any time their monitored voltage supply is less than their internally set threshold. To protect the power MOSFET switches, cross conduction prevention logic within the IXD0579M prohibits the HO and LO outputs from going high at the same time.

Fast and well-matched propagation delays, as provided by the IXD0579M, are crucial for the successful implementation of high frequency switching designs. High frequency switching designs allow for selection of smaller support components resulting in a more efficient PCB layout. To support the more compact PCB design, the IXD0579M is provided in a space saving TDFN-10 package, capable of operating over the extended temperature range of -40°C to $+125^{\circ}\text{C}$.

Ordering Information

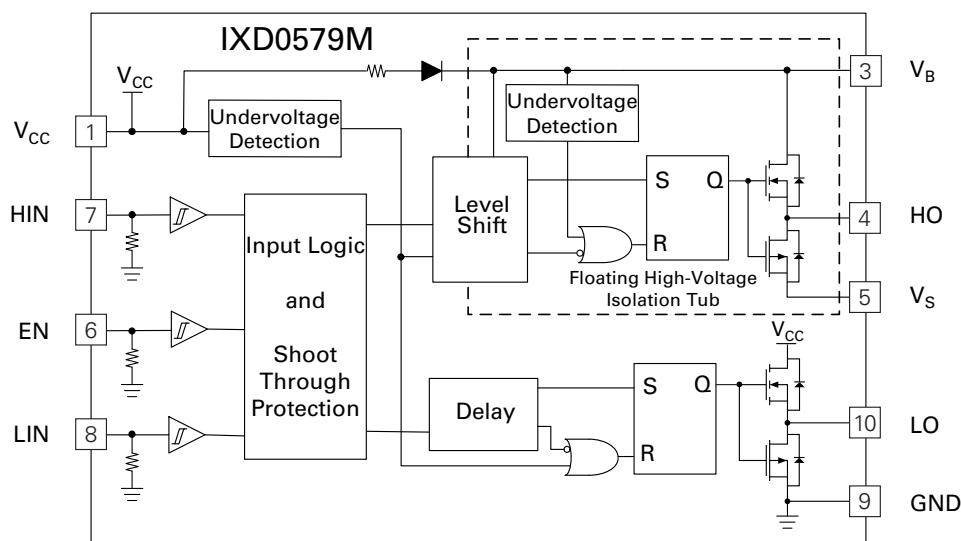
Part Number	Description
IXD0579MTR	TDFN-10 with exposed bottom side pad. In Tape and Reel: (3000/Reel)


IXD0579M Typical Application

1 Specifications	3
1.1 Package Pinout	3
1.2 Pin Description	3
1.3 Absolute Maximum Ratings	4
1.4 Recommended Operating Conditions	4
1.5 DC Electrical Characteristics	5
1.5.1 Power Supplies	5
1.5.2 Inputs	5
1.5.3 Outputs	5
1.5.4 Bootstrap Diode	5
1.6 AC Electrical Characteristics	6
1.7 Timing Waveforms	6
1.7.1 Switching Time Waveform Definitions	6
1.7.2 Delay Matching Waveform Definitions	6
1.7.3 Input / Output Timing Diagram	6
1.8 Thermal Characteristics	6
2 Performance Data	7
3 Application Information	8
4 Manufacturing Information	9
4.1 Moisture Sensitivity	9
4.2 ESD Sensitivity	9
4.3 Soldering Profile	9
4.4 Board Wash	9
4.5 Mechanical Dimensions	10
4.5.1 TDFN-10 Package	10

1 Specifications

1.1 Package Pinout



Top View

1.2 Pin Description

Pin	Name	Type	Description
1	V _{CC}	Power	Low-side and logic supply voltage
2	NC	—	No Connection
3	V _B	Power	High-side floating supply
4	HO	Output	High-side gate driver output
5	V _S	Power	High-side floating supply return
6	EN	Logic Input	Enable, a logic low turns gate drivers off
7	HIN	Logic Input	Input for high-side gate driver, in phase with HO
8	LIN	Logic Input	Input for low-side gate driver, in phase with LO
9	GND	Power	Low-side and logic return
10	LO	Output	Low-side gate driver output
11	EP	Thermal	Bottom side exposed thermal pad. Connect to Pin 9 (GND) on PCB. Exposed pad is not intended for carrying current.

Figure 1 Functional Block Diagram

1.3 Absolute Maximum Ratings

Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at conditions beyond those indicated in the operational sections of this data sheet is not implied.

Unless otherwise specified all voltages are with respect to GND, electrical ratings are over the operational ambient temperature range.

Parameter	Symbol	Value		Units
		Minimum	Maximum	
High-side floating supply voltage	V_B	0.3	120	V
High side floating negative supply voltage	V_{SS}	$V_B - 20$	$V_B + 0.3$	V
High-side floating output voltage	V_{HO}	$V_S - 0.3$	$V_B + 0.3$	V
Offset supply voltage transient	dV_S / dt	—	50	V/ns
Logic and low-side fixed supply voltage	V_{CC}	$V_{SS} - 0.3$	+20	V
Low-side output voltage	V_{LO}	-0.3	$V_{CC} + 0.3$	V
Logic input voltage (HIN, LIN, and EN)	V_{IN}	-0.3	$V_{CC} + 0.3$	V
Package power dissipation @ $T_A = 25^\circ\text{C}$ ¹	P_D	—	2	W
Junction operating temperature	T_J	-40	+150	°C
Storage Temperature	T_{STG}	-55	+150	°C

¹ When mounted on a standard JEDEC 2-layer FR-4 board.

1.4 Recommended Operating Conditions

Parameter	Symbol	Value		Units
		Minimum	Maximum	
High-side floating supply	V_B	$V_S + 5.8$	$V_S + 18$	V
High-side floating supply offset voltage	V_S	-5	+100	V
High-side floating output voltage	V_{HO}	V_S	V_B	V
Logic and low-side fixed supply voltage	V_{CC}	6.5	18	V
Low-side output voltage	V_{LO}	0	V_{CC}	V
Logic input voltage (HIN, LIN and EN)	V_{IN}	0	5	V
Ambient temperature	T_A	-40	+125	°C

1.5 DC Electrical Characteristics

Typical values are characteristic of the device at $T_A = 25^\circ\text{C}$ and are the result of engineering evaluations. They are provided for informational purposes only and are not part of the manufacturing testing requirements.

$V_{CC} = V_{BS} = 12\text{V}$, $\text{GND} = V_S = 0\text{V}$, $T_A = 25^\circ\text{C}$, unless otherwise specified.

The V_{IN} and I_{IN} parameters are applicable to the logic input pins: HIN, LIN, and EN. The V_O and I_O parameters are applicable to the respective output pins: HO and LO.

1.5.1 Power Supplies

Parameter	Conditions	Symbol	Value			Units
			Minimum	Typical	Maximum	
Offset supply leakage current	$V_B = V_S = 100\text{V}$	I_{LK}	—	0.1	1	
V_{CC} shutdown supply current	$V_{IN} = 0\text{V}$ or 5V , $V_{EN} = 0\text{V}$	I_{CCSD}	—	0	1	μA
V_{CC} quiescent supply current	$V_{IN} = 0\text{V}$ or 5V	I_{CCQ}	—	80	150	
V_{CC} operating supply current	$f_s = 500\text{kHz}$, $C_L = 1\text{nF}$	I_{CCOP}	—	8.2	—	mA
V_{BS} quiescent supply current	$V_{IN} = 0\text{V}$ or 5V	I_{BSQ}	—	50	100	μA
V_{BS} operating supply current	$f_s = 500\text{kHz}$, $C_L = 1\text{nF}$	I_{BSOP}	—	8	—	mA
V_{BS} supply under-voltage positive going threshold	—	V_{BSUV+}	3.8	4.9	5.8	V
V_{BS} supply under-voltage negative going threshold	—	V_{BSUV-}	3.3	4.5	5.3	
V_{CC} supply under-voltage positive going threshold	—	V_{CCUV+}	4	5.2	6	
V_{CC} supply under-voltage negative going threshold	—	V_{CCUV-}	3.5	4.7	5.5	

1.5.2 Inputs

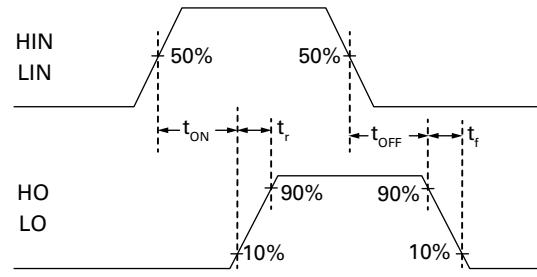
Parameter	Conditions	Symbol	Value			Units
			Minimum	Typical	Maximum	
Logic "1" input voltage, HIN and LIN	—	V_{IH}	2.5	—	—	V
Logic "0" input voltage, HIN and LIN	—	V_{IL}	—	—	0.8	
Enable logic "1" input voltage, EN	—	V_{EIH}	1.6	—	—	
Enable logic "0" input voltage, EN	—	V_{EIL}	—	—	0.5	
Input voltage hysteresis	—	V_{INHYS}	—	0.7	—	
Logic "1" input bias current	$V_{IN} = 5\text{V}$	I_{IN+}	—	—	50	μA
Logic "0" input bias current	$V_{IN} = 0\text{V}$	I_{IN-}	—	—	5	

1.5.3 Outputs

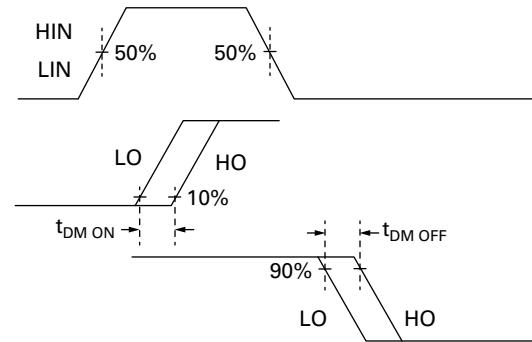
Parameter	Conditions	Symbol	Value			Units
			Minimum	Typical	Maximum	
High level output voltage, $V_{BIAS} - V_O$	$I_{O+} = 10\text{mA}$	V_{OH}	—	0.05	0.3	V
Low level output voltage, V_O	$I_{O-} = 10\text{mA}$	V_{OL}	—	0.02	0.1	
Output high short circuit pulsed current	$V_O = 0\text{V}$, $PW \leq 10\text{\mu s}$	I_{O+}	1	1.5	—	A
Output low short circuit pulsed current	$V_O = 12\text{V}$, $PW \leq 10\text{\mu s}$	I_{O-}	1.5	2.5	—	

1.5.4 Bootstrap Diode

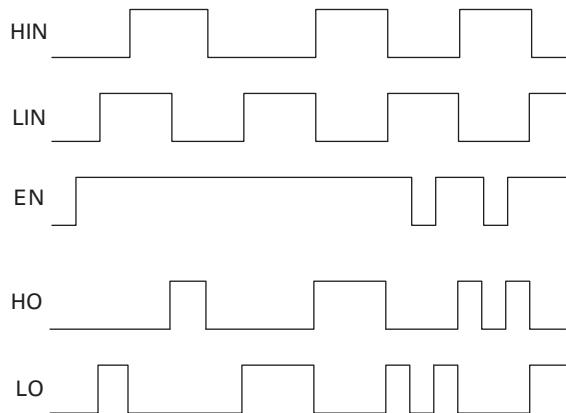
Parameter	Conditions	Symbol	Value			Units
			Minimum	Typical	Maximum	
Forward voltage of bootstrap diode	$I_F = 100\text{\mu A}$	V_{F1}	—	0.6	0.75	V
Forward voltage of bootstrap diode	$I_F = 100\text{mA}$	V_{F2}	—	1.4	1.75	


1.6 AC Electrical Characteristics

$V_{CC} = V_{BS} = 12V$, $GND = V_S = 0V$, $C_L = 1\text{nF}$, $T_A = 25^\circ\text{C}$, unless otherwise specified.

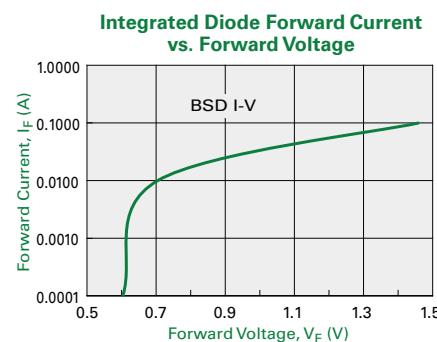
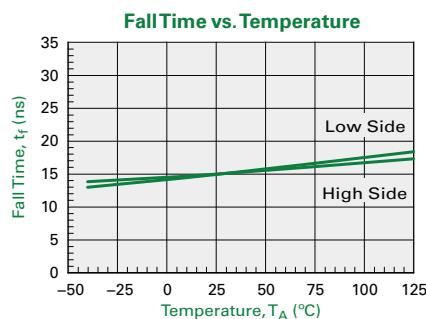
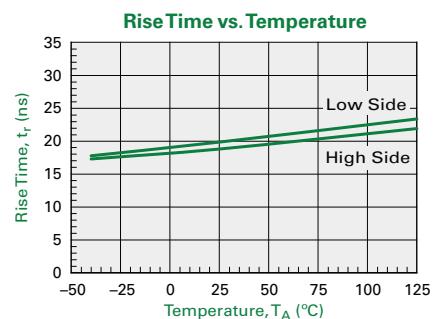
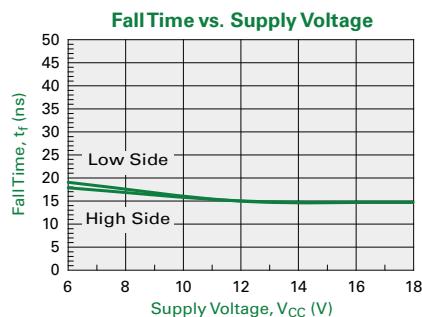
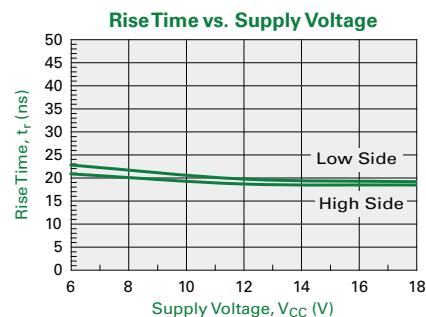
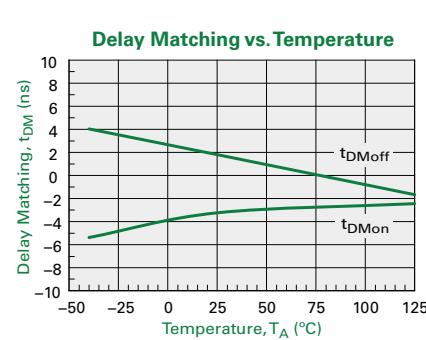
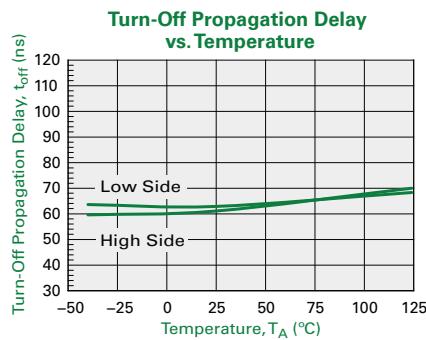
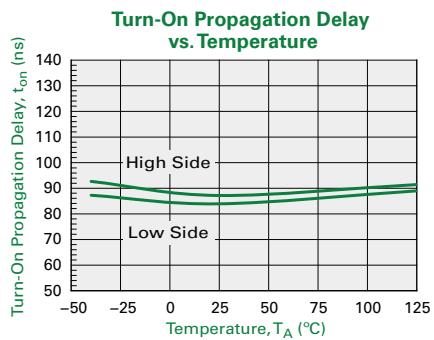
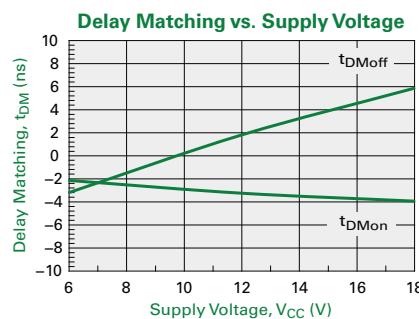
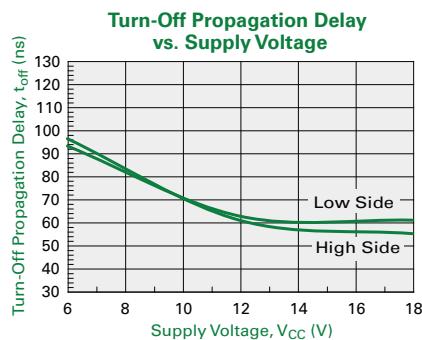
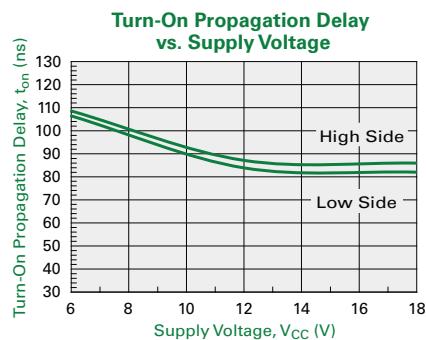

Parameter	Conditions	Symbol	Value			Units
			Minimum	Typical	Maximum	
Turn-on propagation delay	—	t_{on}	—	65	—	ns
Turn-off propagation delay	$V_S = 100V$	t_{off}	—	58	—	
Delay matching, HS and LS turn-on	—	t_{DM}	—	—	10	
Turn-on rise time	—	t_r	—	19	—	
Turn-off fall time	—	t_f	—	15	—	

1.7 Timing Waveforms


1.7.1 Switching Time Waveform Definitions

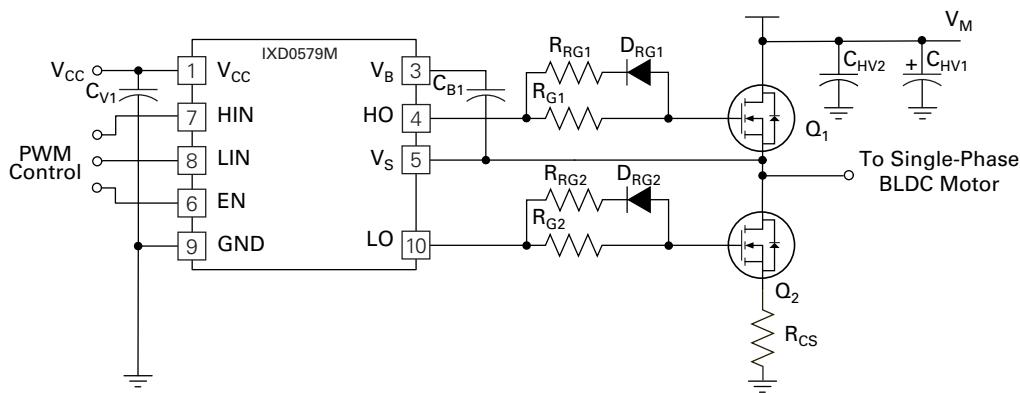
1.7.2 Delay Matching Waveform Definitions

1.7.3 Input / Output Timing Diagram

1.8 Thermal Characteristics

Parameter	Symbol	Rating	Units
Thermal Impedance, Junction to Ambient	θ_{JA}	62	$^\circ\text{C}/\text{W}$
Thermal Impedance, Junction to Case	θ_{JC}	42	$^\circ\text{C}/\text{W}$


Note: When mounted on a standard JEDEC 2-layer FR-4 board.

2 Performance Data

3 Application Information

Figure 2 Single phase (of three) for BLDC motor driver application using the IXD0579M

- R_{G1} and R_{G2} values are typically between 10Ω and 50Ω , optimal value decided by MOSFET gate capacitance and drive current of gate driver. Gate resistor values are increased to decrease system noise, minimize ringing, and hence lower EMI.
- R_{RG1} and R_{RG2} values are typically between 5Ω and 20Ω , optimal value decided by MOSFET gate capacitance and drive current of gate driver. Also, sink current gate resistor values are increased to decrease system noise, minimize ringing, and hence lower EMI.
- C_{V1} is the decoupling capacitor for V_{CC} and is typically between $0.1\mu F$ and $2.2\mu F$. Also C_{B1} is decoupling capacitor for V_{BS} and is the supply for high side when set high and is typically between $0.1\mu F$ and $2.2\mu F$.
- It is recommended that the input pulse (to HIN and LIN) should have an amplitude of $2.5V$ minimum (for $V_{CC} = 12V$) with a minimum pulse width of 140 ns .

4 Manufacturing Information

4.1 Moisture Sensitivity

 All plastic encapsulated semiconductor packages are susceptible to moisture ingress. Littelfuse classifies its plastic encapsulated devices for moisture sensitivity according to the latest version of the joint industry standard, **IPC/JEDEC J-STD-020**, in force at the time of product evaluation. We test all of our products to the maximum conditions set forth in the standard, and guarantee proper operation of our devices when handled according to the limitations and information in that standard as well as to any limitations set forth in the information or standards referenced below.

Failure to adhere to the warnings or limitations as established by the listed specifications could result in reduced product performance, reduction of operable life, and/or reduction of overall reliability.

This product carries a Moisture Sensitivity Level (MSL) classification as shown below, and should be handled according to the requirements of the latest version of the joint industry standard **IPC/JEDEC J-STD-033**.

Device	Moisture Sensitivity Level (MSL) Classification
IXD0579M	MSL 1

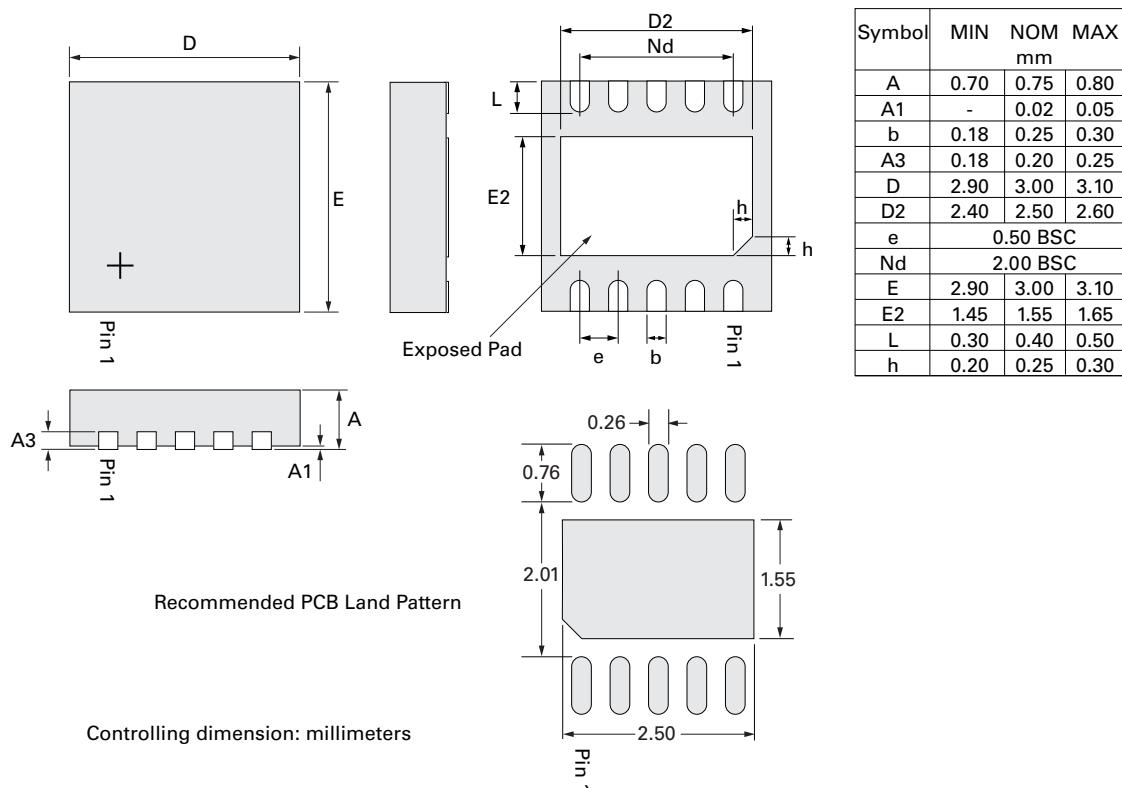
4.2 ESD Sensitivity

 This product is ESD Sensitive, and should be handled according to the industry standard **JESD-625**.

4.3 Soldering Profile

Provided in the table below is the **IPC/JEDEC J-STD-020** Classification Temperature (T_c) and the maximum dwell time the body temperature of these surface mount devices may be ($T_c - 5$) °C or greater. The Classification Temperature sets the Maximum Body Temperature allowed for these devices during reflow soldering processes.

Device	Classification Temperature (T_c)	Dwell Time (t_p)	Maximum Reflow Cycles
IXD0579M	260°C	30 seconds	3


4.4 Board Wash

Littelfuse recommends the use of no-clean flux formulations. Board washing to reduce or remove flux residue following the solder reflow process is acceptable provided proper precautions are taken to prevent damage to the device. These precautions include but are not limited to: Using a low pressure wash and providing a follow up bake cycle sufficient to remove any moisture trapped within the device due to the washing process. Due to the variability of the wash parameters used to clean the board, determination of the bake temperature and duration necessary to remove the moisture trapped within the package is the responsibility of the user (assembler). Cleaning or drying methods that employ ultrasonic energy may damage the device and should not be used. Additionally, the device must not be exposed to halide flux or solvents.

4.5 Mechanical Dimensions

4.5.1 TDFN-10 Package

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at <https://www.littelfuse.com/disclaimer-electronics>