
 User Guide

Apr.15.20 Page 1 of 20

ZSSC3240
Calibration Sequence and DLL
Introduction
The calibration DLL file described in this document is created to expedite the calibration process for the
ZSSC3240. Section 2 gives a short overview for the main steps of calibration using the file. Section 3 covers
how to implement a DLL (CalibrationL6.DLL) in customer-specific software.

Contents
2.2.1.1 Definition of Reference Values for Raw Measurements ... 8
2.2.1.2 Raw Measurement Commands ... 9
2.2.1.3 Raw Data Output ... 9
3.3.1.1 COEFFICIENT_COUNT .. 12
3.3.1.2 Calibration Type .. 12
3.3.1.3 Indexes for Coefficients ... 13
3.3.1.4 Sign Flags of the Coefficients ... 13
3.3.2.1 Bridge Conversion Routines ... 14
3.3.2.2 Temperature Conversion Routines ... 14
3.3.2.3 Raw Values Conversion .. 15
3.3.4.1 GetCorrectedTemp .. 18
3.3.4.2 GetCorrectedBridge .. 18
3.3.4.3 BackCalcRawTemp ... 19
3.3.4.4 BackCalcRawBridge .. 19

List of Figures
Figure 1. Calibration Flow Chart .. 4
Figure 2. Calibration Point Locations for Selected Calibration Methods ... 7
Figure 3. Assignment Input Resistive Range to SSC-output ... 8
Figure 4. Raw Data Handling for Coefficient Calculation (DLL) .. 9

ZSSC3240 Calibration Sequence and DLL

Apr.15.20 Page 2 of 20

List of Tables
Table 1. Calibration Types ... 6
Table 2. Commands for Programming Coefficients and Final Settings of ZSSC3240 10
Table 3. Overview of the Routines .. 14
Table 4. Parameter Bridge Routines ... 14
Table 5. Overview of the Routines .. 14
Table 6. Parameter Temperature Routines ... 15
Table 7. Overview of the Routine .. 15
Table 8. Parameter CalculateCoefficients Function .. 17
Table 9. Parameter BackClacRawTemp/BackCalcRawBridge Functions .. 20

ZSSC3240 Calibration Sequence and DLL

Apr.15.20 Page 3 of 20

2. Calibration Sequence
A typical calibration flow for the ZSSC3240 devices contains five steps in the following order:

1. Set-up and initialization

2. Data collection

3. Coefficient calculation

4. Memory programming

5. Verification

There are two approaches for data collection with the ZSSC3240:

• Using the raw measurement commands described in section 2.2.1 which requires a simpler initialization
of the IC’s memory (customer ID and AFE setup). This is the recommended approach.

• Using the IC-internal signal-correction math core. Thereby, the memory page must be utilized to feed the
math core with proper initialization coefficients, and the IC-internal saturation mechanisms can
significantly limit the dynamic range of the digital output.

See Figure 1 for a more detailed calibration flow graph.

ZSSC3240 Calibration Sequence and DLL

Apr.15.20 Page 4 of 20

Initialized? No

Enter in NVM:
- Chip ID
- Interface Configuration
- SM_Config1/2 Setup

Set temperature and external
sensor values at calibration

reference machine

Power-On Reset

Enough Points?

Yes

Verify Calibration
Take further data points, calculate
error at existing points, etc.

Add Point

No

Yes

Calculate coefficients

Write Values to NVM

DONE

Write CheckSumC (CRC)

Power-On reset

Convert IC output (Bridge/Temp
values) into linear characteristic …

mapping of „negative“ bridge values

Call CalculateCoefficients()

Get raw value: Bridge

Get Raw value: Temperature

Initialization

Data Collection

Calculate
Coefficients

NVM
Programming

Verification

Figure 1. Calibration Flow Chart

ZSSC3240 Calibration Sequence and DLL

Apr.15.20 Page 5 of 20

2.1 Set-up and Initialization
2.1.1 Assigning a Unique Identification Number to the IC
This identification is programmed in ICs memory and can be used as an index in the database stored on the
calibration PC. Such a database could contain all the raw values of external sensor readings (and
temperature readings if applied or vice versa) for that part, as well as the according reference values for the
calibration. See the ZSSC3240 Datasheet, for detailed description of the registers 0x00 (Cust_ID0) and 0x01
(Cust_ID1) dedicated to the customer for his product identification.

2.1.2 Analog Front End Configuration
Before useful raw data can be collected from the IC, the circuitry must be initialized. The initialization step
involves setting the AFE (Analog Front End) configuration bits for the end application and optionally
programming the math coefficients to their default value. See the ZSSC3240 Datasheet for detailed
description for the single parameters of the AFE, and for the default settings of the AFE-parameters and
coefficients, which have been already programmed during the wafer test.

2.1.3 Temperature Configuration
For a possible temperature measurement with the IC-internal temperature sensor, the default configuration is
programmed into the temperature configuration registers. These default settings allow the full temperature
range of -40°C to +125°C to be used.

2.2 Data Collection
The minimum number of calibration points used depends on the precision required and the behavior of the
resistive bridge in use (it is normally between two and seven). There is no maximum number of calibration
points that can be used; in general, taking more calibration points results in a better calibration.

Description of the standard set of calibration points are displayed in Figure 2.

• 2-point calibration is used to obtain only a gain and offset terms for bridge compensation with no
temperature compensation for either term.

• 3-point calibration could be used either to
o obtain the additional term SOT for 2nd order correction for the bridge (SOT_sens), but no temperature

compensation of the bridge output.

o temperature only is compensated, without using any external sensor

• 4-point calibration could be used to obtain bridge offset and gain, and both the Tco term and the Tcg
term, which provides 1st order temperature compensation of the bridge offset and gain term. Additionally,
the temperature sensor’s offset and gain can be compensated based on the same calibration points.

• 5-point calibration could be used to obtain bridge sensor’s gain, offset and 2nd-order term, Tco (bridge
sensor related temperature offset term) and 2nd-order term that provides correction applied to the
bridge’s temperature coefficient’s offset. Additionally, the temperature sensor’s offset, gain and 2nd-order
nonlinearity can be compensated based on the same calibration points.

• 6-point calibration could be used to obtain bridge sensor’s gain, offset, Tcg, Tco, SOT_tco and SOT_tcg.
Additionally, the temperature sensor’s offset, gain and 2nd-order nonlinearity can be compensated based
on the same calibration points.

• 7-point calibration could be used to obtain the complete set off supported signal correction coefficients
for sensor bridge and IC-internal temperature sensor.

ZSSC3240 Calibration Sequence and DLL

Apr.15.20 Page 6 of 20

Table 1. Calibration Types

Type Calculated Coefficients[a] Required number of data points
Bridge Temp

2 Points OFFSET_S, GAIN_S 2 0

3 Points OFFSET_S,GAIN_S, SOT_S 3 0

3 Points OFFSET_T,GAIN_T, SOT_T 0 3

4 Points OFFSET_S, GAIN_S, TCO, TCG, OFFSET_T, GAIN_T 2 2

5 Points OFFSET_S, GAIN_S, TCO, OFFSET_T, GAIN_T, SOT_TCO, SOT_S, SOT_T 3 3

6 Points OFFSET_S,GAIN_S, TCO, TCG, OFFSET_T, GAIN_T,SOT_TCO, SOT_TCG, SOT_T 2 3

7 Points OFFSET_S,GAIN_S, TCO, TCG, OFFSET_T, GAIN_T,SOT_TCO, SOT_TCG,SOT_T,
SOT_S 3 3

[a] Coefficients notation as used in the Calibration.dll / Calibration.h.

• Gain_S: External Sensor/Bridge gain term;

• Offset_S: External Sensor/Bridge offset term;

• Tcg: Temperature coefficient gain term;
• Tco: Temperature coefficient offset term;

• SOT_tcg: Second-order term for Tcg non-linearity;

• SOT_tco: Second-order term for Tco non-linearity;
• SOT_sens: Second-order term for bridge non-linearity;

• Gain_T: Gain coefficient for temperature;

• Offset_T: Offset coefficient for temperature;
• SOT_T: Second-order term for temperature source non-linearity.

ZSSC3240 Calibration Sequence and DLL

Apr.15.20 Page 7 of 20

5-Point Calibration

Temperature
B

rid
ge

Temperature

B
rid

ge

Temperature

B
rid

ge

Temperature

B
rid

ge

Temperature

B
rid

ge

Temperature

B
rid

ge

3-Point Calibrations

4-Point Calibration

6-Point Calibration 7-Point Calibration

Temperature

Br
id

ge

Temperature

Br
id

ge

2-Point Calibrations

Figure 2. Calibration Point Locations for Selected Calibration Methods
Figure 2 shows the expected, recommended placement of calibration points for the different calibration
options. The order of the points taken is not important; however, the number of points per temperature must
be followed or the calibration might fail. It is important to keep the calibration points as orthogonal as possible
to maximize calibration accuracy.

Further, the provided calibration DLL can also generate other subsets and combinations of calibration
coefficients based on calibration points at different locations than described in Figure 2.

2.2.1 Data Collection by Raw Measurement Requests
The number of unique points (external sensor and/or temperature) at which calibration must be performed
generally depends on the requirements of the application and the behavior of the resistive bridge in use. The
minimum number of points required is equal to the number of bridge/temperature coefficients to be
calculated. For a full calibration resulting in values for all seven possible bridge coefficients and three
possible temperature coefficients, a minimum of seven pairs of bridge with temperature measurements must
be collected.

ZSSC3240 Calibration Sequence and DLL

Apr.15.20 Page 8 of 20

2.2.1.1 Definition of Reference Values for Raw Measurements
The reference points for the resistive sensor calibration are usually defined in percent in relation to the full
target application range. After that, they have to be converted into digital value relative to the full scale (FS)
output of 24-bit, by a given function in the DLL.

The reference values for the raw temperature measurements are defined in degree Celsius (°C). In
combination with user defined temperature limits (also in °C), the reference input for each point is then
converted into the according digital reference value for the DLL.

For example, defining pressure reference points for calibration dependent on customers target range can be
the following:

• Customer’s target application range: 0 to 16bar
• Customer’s pressure reference points: 2bar/6bar/14bar.

• Exact assignment would be:

o 0bar -> 0% of the range
o 16bar -> 100% of the range

• The defined reference points have the following assignment:

o 2bar -> 12.5% of the range
o 6bar -> 37.5% of the range

o 14bar -> 87.5% of the range

• To add buffers for parasitic impact and to have integer percentage values for the calibration, it is
recommended to change the points slightly as follows:

o 2bar -> 15% of the range

o 6bar -> 35% of the range

o 14bar -> 85% of the range

Figure 3. Assignment Input Resistive Range to SSC-output

To obtain the potentially best and most robust coefficients, it is recommended that measurement pairs
(temperature vs. pressure) are collected near the outer corners of the intended operation range or at points
which are located far from each other. It is essential to provide highly precise reference values as nominal,
expected values. The measurement precision of the external calibration-measurement equipment must be
ten times more accurate than the expected ZSSC3240 output precision after calibration in order to avoid

ZSSC3240 Calibration Sequence and DLL

Apr.15.20 Page 9 of 20

precision losses caused by the nominal reference values (that is resistive sensor signal and temperature
deviations).

Note: There is an inherent redundancy in the seven resistive sensor-related and three temperature-related
coefficients. Since the temperature is a necessary output (which also needs correction), the temperature-
related information is mathematically separated, which supports faster and more efficient DSP calculations
during the normal usage of the sensor-IC system.

2.2.1.2 Raw Measurement Commands
Prior to the data collection, it is recommended to find the optimal AFE-configuration for the applied sensor
and the target voltage input range, and then program it to the NVM configuration registers SM_config1 and
SM_config2 (ZSSC3240). After AFE-configuration, raw data can be acquired. For it, the following two
commands have to be used:

• for external sensor values:
A2HEX: Single raw data resistive sensor measurement for which the configuration is loaded from the
SM_config1 / SM_config2 registers

• for temperature values:
A6HEX: Single raw data temperature measurement for which the configuration register is loaded
from an internal temperature configuration register (preprogrammed by Renesas in NVM prior to IC
delivery). If an external temperature sensor is configured, the configuration is loaded from the
extTemp_config1 / extTemp_config2 registers.

2.2.1.3 Raw Data Output
The raw data measurement results are always MSB (Most Significant Bit)-aligned. The internal temperature
sensor has a preconfigured setup with an ADC resolution of 13-bit. Figure 4 summarizes the recommended
raw data process before passing it to the CalculateCoefficients function of the DLL.

In order to adapt both resistive and temperature raw values to the expected format (integer representation,
24-bit, MSB-aligned in the range of -2^23..2^23 in), they have to be converted from the two's complement
representation to integer values in a range from -2^23..2^23.

Resistive Sensor
Raw-CMD: A2HEX

ADC resolution: N-bit

DLL Function
BRAW_DLL = TwosComplementToDecimal

(BRAW_MSB)

BRAW_MSB

Output range:
[-223..223-1]

Two’s Complement,
MSB aligned

DLL Function
CalculateCoefficients

(...BRAW_DLL’
 TRAW_DLL’…)

Output range:
[-223..223-1]

Integer, 24-bit
MSB aligned

Temperature Sensor
Raw-CMD: A6HEX
ADC resolution: 13-bit

DLL Function
TRAW_DLL = TwosComplementToDecimal

(TRAW_MSB)

TRAW_MSB

Output range:
[-223..223-1]

Integer, 24-bit
MSB aligned

Output range:
[-223..223-1]

Two’s Complement,
MSB aligned

ZSSC3240

Figure 4. Raw Data Handling for Coefficient Calculation (DLL)

2.3 Coefficient Calculations
The coefficients are calculated after all calibration data points are collected. The DLL exposes a C code
interface and can be used directly from code (see section 3 for details). Features of the DLL are:

• Coefficient calculation

• Verification at calibration points

• Extended range verification

ZSSC3240 Calibration Sequence and DLL

Apr.15.20 Page 10 of 20

2.4 Programming NVM
After the coefficients have been calculated, they must be written to the NVM. The following table lists the
commands necessary to program the coefficients to the according registers. Every coefficient is saved in the
NVM in two different 16-bit registers, since each coefficient is a 24-bit wide value.

Table 2. Commands for Programming Coefficients and Final Settings of ZSSC3240
Command

[Hex] Data from Coefficients for the According Register Description Provided by

45 coefficients[INDEX_OFFSET_S] & 0x00FFFF Offset_S[15:0] DLL
46 coefficients[INDEX_GAIN_S] & 0x00FFFF Gain_S[15:0] DLL
47 coefficients[INDEX_TCG] & 0x00FFFF Tcg[15:0] DLL
48 coefficients[INDEX_TCO] & 0x00FFFF Tco[15:0] DLL
49 coefficients[INDEX_SOT_TCO] & 0x00FFFF SOT_tco[15:0] DLL
4A coefficients[INDEX_SOT_TCG] & 0x00FFFF SOT_tcg[15:0] DLL
4B coefficients[INDEX_SOT_S] & 0x00FFFF SOT_sens[15:0] DLL
4C coefficients[INDEX_OFFSET_T] & 0x00FFFF Offset_T[15:0] DLL
4D coefficients[INDEX_GAIN_T] & 0x00FFFF Gain_T[15:0] DLL
4E coefficients[INDEX_SOT_T] & 0x00FFFF SOT_T[15:0] DLL

4F

(coefficients[INDEX_OFFSET_S] & 0x7F0000) >> 8 Offset_S[22:16] DLL
(coefficients[INDEX_GAIN_S] & 0x7F0000) >> 16 Gain_S[22:16] DLL
(coefficients[INDEX_OFFSET_S] & 0x800000) ? 1 : 0 Offset_S[23] DLL
(coefficients[INDEX_GAIN_S] & 0x800000) ? 1 : 0 Gain_S[23] DLL

Data stream composition for MSB/SIGN register bits by the example of the offset and gain coefficients of the
external sensor:

offset_s_msb = (coefficients[INDEX_OFFSET_S] & 0x7F0000) >> 8;
gain_s_msb = (coefficients[INDEX_GAIN_S] & 0x7F0000) >> 16;

if (coefficients[INDEX_OFFSET_S]<0) sign_offset_s = 1;
else sign_offset_s = 0;

//the same if-else condition can be written as
// sign_offset_s = (coefficients[INDEX_OFFSET_S]<0) ? 1 : 0;
//this notation is used in the table below

if (coefficients[INDEX_GAIN_S]<0) sign_gain_s = 1;
else sign_gain_s = 0;

//define command and the register content
cmd = 0x4F;
//register data combination
data_0Fhex = sign_offset_s << 15 | offset_s_msb | sign_gain_s << 7| gain_s_msb;

//pseudo code for writing data to a specific (here 0x0D) register
//with the according command
write_mtp(cmd, data);

Numerical example:
// results from coefficients calculation
coefficients[INDEX_OFFSET_S] = -520831 // = 0x87F27F (24 bit sign-magnitude
 //representation)
coefficients[INDEX_GAIN_S] = 5880722 // = 0x59BB92 (24 bit sign-magnitude
 //representation)

offset_s_msb = 0x07
sign_offset_s = 1
gain_s_msb = 0x59
sign_gain_s = 0
data_0Fhex = 34649 = 0x8759

Note: The composition is equivalent for all further SIGN/MSB-registers.

ZSSC3240 Calibration Sequence and DLL

Apr.15.20 Page 11 of 20

Command
[Hex] Data from Coefficients for the According Register Description Provided by

50

(coefficients[INDEX_TCG] & 0x7F0000) >> 8 Tcg[22:16] DLL
(coefficients[INDEX_TCO] & 0x7F0000) >> 16 Tco[22:16] DLL
(coefficients[INDEX_TCG]<0) ? 1 : 0 Tcg[23] DLL
(coefficients[INDEX_TCO] <0) ? 1 : 0 Tco[23] DLL
data_10hex = register data combination as described in the example above in the example

51

(coefficients[INDEX_SOT_TCO] & 0x7F0000) >> 8 SOT_tco[22:16] DLL
(coefficients[INDEX_SOT_TCG] & 0x7F0000) >> 16 SOT_tcg[22:16] DLL
(coefficients[INDEX_SOT_TCO] <0) ? 1 : 0 SOT_tco[23] DLL
(coefficients[INDEX_SOT_TCG] <0) ? 1 : 0 SOT_tcg[23] DLL
data_11hex = register data combination as described in the example above in the example

52

(coefficients[INDEX_SOT_S] & 0x7F0000) >> 8 SOT_sense[22:16] DLL
(coefficients[INDEX_OFFSET_T] & 0x7F0000) >> 16 Offset_T[22:16] DLL
(coefficients[INDEX_SOT_S] <0) ? 1 : 0 SOT_sens[23] DLL
(coefficients[INDEX_OFFSET_T] <0) ? 1 : 0 Offset_T[23] DLL
data_12hex = register data combination as described in the example above in the example

53

(coefficients[INDEX_GAIN_T] & 0x7F0000) >> 8 Gain_T[22:16] DLL
(coefficients[INDEX_SOT_T] & 0x7F0000) >> 16 SOT_T[22:16] DLL
(coefficients[INDEX_GAIN_T] <0) ? 1 : 0 Gain_T[23] DLL
(coefficients[INDEX_SOT_T] <0) ? 1 : 0 SOT_T[23] DLL
data_13hex = register data combination as described in the example above in the example

2.5 Verification
The DLL interface provides verification at calibration time (see section 0). To verify if results are consistent
with expected results, also perform an online verification at a different bridge measurand / temperature
combination than was used for calibration.

3. CalibrationL6.DLL
The CalibrationL6.DLL’s properties, interfacing and variable declaration, and the available routines with the
respective returns of the available methods are characterized in detail. The main focus in this document is to
enable the reader to integrate the DLL in a customer software environment for production purposes.

3.1 DLL Setup
Take the following setup steps to use the CalibrationL6.DLL in a user program:

1. Declare all functions to be used from the DLL:

a. In C/C++, link CalibrationL6.lib into the final executable.

b. In VB (Visual Basic), add CalibrationL6.DLL as a reference and verify that it is in the path.

2. Create CalibrationL6.h that must contain the same declarations for the functions used in
CalibrationL6.DLL. The user’s program must be setup to use Windows calling conventions (stdcall),
not “C” style calling conventions (cdecl).

All functions listed in section 3 can be called as if they were local functions.

3.2 DLL Use
CalibrationL6.DLL typically is used for the following calibration steps:

1. Data Conversion: all raw and target data input for both bridge and temperature (if applicable) must be
converted into the correct format, see section 0.

2. Coefficient Calculation: The converted data along with control information is passed to the
CalculateCoefficients method which generates all necessary coefficients, see section 3.3.3.

3. Verification: The coefficients are verified both for accuracy and proper operation across the entire region
of operation. The CalibrationL6.DLL provides methods to do this verification offline, see section 0.

ZSSC3240 Calibration Sequence and DLL

Apr.15.20 Page 12 of 20

3.2.1 Using Customer Default Values as Coefficients
The CalibrationL6.DLL library supports calibration using customer-calculated default values; these values
can be applied to all calibrations without recalculating each time allowing one less calibration point for every
used default value. The pre-condition for using customer default values is a known, repeatable sensor
characteristic. The result of a calibration using default values is always less accurate than a complete
calibration. To use a default value during calibration, do not select coefficient for calculation.

3.3 CalibrationL6.DLL Application Programming Interface (API)
3.3.1 Constants used with CalibrationL6.DLL
Within CalibrationL6.DLL many different enumerations are used to clarify the control and separation of data
going to and from the DLL.

3.3.1.1 COEFFICIENT_COUNT
COEFFICIENT_COUNT is a constant that represents the number of coefficients. All coefficient arrays
passed to CalibrationL6.DLL are expected to be of size COEFFICIENT_COUNT.

Example: Declaration of an array of integers for the coefficients and initialize the array to 0.

int coefficients[COEFFICIENT_COUNT] = {0}; //c compiler will 0 fill remaining entries

3.3.1.2 Calibration Type
The programmable coefficients have the listed flag values (see the following C code declaration) in the DLL.
The most common combinations of coefficients are shown in the source code Example of this section. The
type of calibration desired is indicated through the coefficients selected for calibration. For best results, use
the pre-defined combinations. The coefficients can be individually OR’ed together in order to form other
calibration types.

C code declaration:

#define CO_OFFSET_S 0x1
#define CO_GAIN_S 0x2
#define CO_TCG 0x4
#define CO_TCO 0x8
#define CO_SOT_TCO 0x10
#define CO_SOT_TCG 0x20
#define CO_SOT_S 0x40
#define CO_OFFSET_T 0x80
#define CO_GAIN_T 0x100
#define CO_SOT_T 0x200

Example: The following C code lines show applicable combinations of coefficients and a possible definition of
a variable which passes this information validly to the CalculateCoefficients method.

int errorcode;
int negCoeffs;

// Variable definition for required coefficients
int P2_S = (CO_OFFSET_S|CO_GAIN_S);
int P3_S = (CO_OFFSET_S|CO_GAIN_S|CO_SOT_S);
int P3_T = (CO_OFFSET_T|CO_GAIN_T|CO_SOT_T);
int P4_S = (CO_OFFSET_S|CO_GAIN_S|CO_TCO|CO_TCG|CO_OFFSET_T|CO_GAIN_T);
int P5_S = (CO_OFFSET_S|CO_GAIN_S|CO_TCO|CO_OFFSET_T|CO_GAIN_T|CO_SOT_TCO|CO_SOT_S|CO_SOT_T);
int P6_S =
(CO_OFFSET_S|CO_GAIN_S|CO_TCO|CO_TCG|CO_OFFSET_T|CO_GAIN_T|CO_SOT_TCO|CO_SOT_TCG|CO_SOT_T);
int P7_S =
(CO_OFFSET_S|CO_GAIN_S|CO_TCO|CO_TCG|CO_OFFSET_T|CO_GAIN_T|CO_SOT_TCO|CO_SOT_TCG|CO_SOT_T|CO_SOT_S);
…

// calculate just bridge coefficients -> P3_S
// possible function call

ZSSC3240 Calibration Sequence and DLL

Apr.15.20 Page 13 of 20

errorcode = CalculateCoefficients(coefficients,
 &negCoeffs

2,
P3_S,
0,
rawBridge,
desiredBridge,
rawDummy,
desiredDummy, /* Not calibrating anything with temp */
);

3.3.1.3 Indexes for Coefficients
After calculating coefficients, the CalibrationL6.DLL provides them in a certain order in the coefficients array.
The access with these indexes returns the signed value of each coefficient.

C code declaration:

//INDEXES for coefficients array
#define INDEX_OFFSET_S 0
#define INDEX_GAIN_S 1
#define INDEX_TCG 2
#define INDEX_TCO 3
#define INDEX_SOT_TCO 4
#define INDEX_SOT_TCG 5
#define INDEX_SOT_S 6
#define INDEX_OFFSET_T 7
#define INDEX_GAIN_T 8
#define INDEX_SOT_T 9

Example: Accessing the OFFSET_S coefficient value after calculation with CalculateCoefficients method:

//assuming int coefficients[COEFFICIENT_COUNT]; has been previously declared
int offset_s = coefficients[INDEX_OFFSET_S];

3.3.1.4 Sign Flags of the Coefficients
The sign flags allow excluding a certain sign from the representative ‘sign number’, which contains the sign
information for all coefficients. The coefficients themselves are signed, too. This ‘sign number’ makes data
processing more comfortable. Gain coefficients do not have a flag for negative presentation, the results are
always positive.

C code declaration:

//FLAGS for negCoeffs
#define NEG_SOT_S 0x1
#define NEG_SOT_TCO 0x2
#define NEG_SOT_TCG 0x4
#define NEG_SOT_T 0x8
#define NEG_TCO 0x10
#define NEG_TCG 0x20
#define NEG_OFFSET_S 0x40
#define NEG_OFFSET_T 0x80

Example:

 int negSOT_S =0;

//negSOT_S=0 when the coefficient is positive, = 1 when it’s negative.
negSOT_S = negCoeffs & NEG_SOT_S;

ZSSC3240 Calibration Sequence and DLL

Apr.15.20 Page 14 of 20

3.3.2 Conversion Routines
The following conversion routines are used for translation of an input value into the necessary format to
complete the calculations.

3.3.2.1 Bridge Conversion Routines
Table 3. Overview of the Routines

Name Description

ConvertBridgeFromPercent
Converts a percentage value [0,100] into the proper domain for use by CalibrationL6.DLL.
100 percent correspond to the full scale output (16777215 = 2^24-1) of the 24-bit wide IC
output

ConvertBridgeToPercent Converts result from the IC (corrected measurement) or DLL’s calculation domain into a
percentage reading for use in error calculations.

The percentage declarations for the bridge input are useful for defining the common range of the measured
item, for example, pressure. For calculation or verification routines listed in sections 3.3.3 and 0, the sensor
inputs must be processed through ConvertBridgeFromPercent routine which maps the bridge sensor
precentral values (0% to 100%) to the full scale range of 24-bit.

C code declaration:

double ConvertBridgeFromPercent(double percent);

Returns: The desired (reference) sensor value in counts according to the input in percent.

Example: One calibration input represents the desired and reference value of 10%. To convert this sensor
value for valid use in further process of coefficients calculation, this function has to be applied:

double desired_s1 = ConvertBridgeFromPercent(10.0);

ConvertBridgeToPercent can be used to convert any output from CalibrationL6.DLL back into the percentage
domain for error analysis. This routine should be used for the external sensor output after calibration.
Otherwise the percentage numbers is meaningless.

C code declaration:

double ConvertBridgeToPercent(double codes);

Returns: The sensor value in percent according to the input in code is provided.

Table 4. Parameter Bridge Routines
Parameter Description

codes 24-bit digital result value from the IC or DLL’s calculation (corrected measurement).
percent Bridge value in percent, referring to the applied measurement range.

3.3.2.2 Temperature Conversion Routines
Table 5. Overview of the Routines

Name Description

ConvertTempFromDegrees
Converts a Celsius value [-45,150] into the proper domain for use by CalibrationL6.DLL.
User entered limit for the maximum temperature corresponds to the full scale output
(16777215 = 2^24-1) of the 24-bit wide IC output.

ConvertTempToDegrees Converts result from the IC (corrected measurement) or DLLs domain back into Celsius to
use in error calculations or to display values in Celsius.

All ‘°C‘ temperature inputs must be run through the ConvertTempFromDegrees function before coefficients
calculation. It expects a value between [-45, +150°C]. The result in code is saved to the variable, which is
passed on first place as a reference.

C code declaration:

__int32 ConvertTempFromDegrees(double *tempInCodes,
double tempInDegrees,

ZSSC3240 Calibration Sequence and DLL

Apr.15.20 Page 15 of 20

double minTemp,
double maxTemp);

Returns: an error code denoting the status of the calculations. ‘0’ is returned if the method was passed
successfully. ‘1’ is returned if the input parameters are out of the expected ranges.

Example: During calibration, an environmental temperature of 50°C is applied as a calibration point. It needs
to be converted for further coefficient determination. The limits for minimum and maximum temperature have
to be provided to the function.

double desiredTemp;
int errorcode = 0;

errorcode = ConvertTempFromDegrees(&desiredTemp, 50.0, -40.0, 125.0);

ConvertTempToDegrees can be used to convert a 24-bit temperature as returned by GetCorrectedTemp into
degrees Celsius.

C code declaration:
__int32 ConvertTempToDegrees(double *tempInDegrees,

__int32 tempInCodes,
double minTemp,
double maxTemp);

Returns: an error code denoting the status of the calculations. ‘0’ is returned if the method was passed
successfully. ‘1’ is returned, if the input parameters are out of expected ranges.

Example: It is assumed that calibration is performed successfully. The coefficients are calculated and stored
in coefficients [COEFFICIENT_COUNT].

double tempCorrectedCodes;
double tempDegreesC;
int errorcode = 0;

tempCorrectedCodes = GetCorrectedTemp(coefficients, 320000);
errorcode += ConvertTempToDegrees(&tempDegreesC, tempCorrectedCodes, -40, 85);

Table 6. Parameter Temperature Routines
Parameter Description

*tempInCodes Pointer to the variable where the calculated raw temperature value is stored.
tempInDegrees Temperature in Celsius to be converted to codes.

minTemp The lower temperature limit of the calibration range, in Celsius.
maxTemp The upper temperature limit for of the calibration range, in Celsius.

3.3.2.3 Raw Values Conversion
Table 7. Overview of the Routine

Name Description

TwosComplementToDecimal
Converts a raw measurement value into a signed integer number in the range
 [-2^23..2^23-1].

Raw bridge measurement results are provided from the ZSSC3240 as N-bit two’s complement numbers,
where N is the customer configured ADC-resolution. For a proper input to the CalculateCoefficients function
or for common display in as a signed integer values, they have to be converted accordingly. Further details
are described in section 0.

For the conversion from a 24-bit two’s complement value to a 24-bit decimal value, the
TwosComplementToDecimal function can be used.

C code declaration:

__int32 TwosComplementToDecimal (__int32 input);

ZSSC3240 Calibration Sequence and DLL

Apr.15.20 Page 16 of 20

Returns: Digital value in signed magnitude representation.

Example:

 __int32 testTwosComp = 0;
__int32 signMagn = 0;

testTwosComp = 0xfffff6;
signMagn = TwosComplementToDecimal(testTwosComp);
// signMagn = -10

testTwosComp = 0x7000A3;
signMagn = TwosComplementToDecimal(testTwosComp);
// signMagn = 7340195

testTwosComp = 0x5;
signMagn = TwosComplementToDecimal(testTwosComp);
// signMagn = 5

testTwosComp = 0x800005;
signMagn = TwosComplementToDecimal(testTwosComp);
// signMagn = -8388603

3.3.3 Coefficients Calculation
CalculateCoefficients is the main function for doing the actual calibration calculations. It determines a set of
coefficients that provides calibrated output based on the provided set of data points. This function provides
the calibrated coefficients, which can be used in all of the verification methods listed in section 0.

C code declaration:
 __int32 CalculateCoefficients(__int32 coefficients[COEFFICIENT_COUNT],
 __int32 *negCoeffs

__int32 numPoints,
__int32 selCoeffs,
__int32 calType,
double *bridgeRaw,
double *bridgeDesired,
double *tempRaw,
double *tempDesired);

Returns: an error code denoting the status of the calculations. ‘0’ is passed if the method was passed
completely.

Before using the CalculateCoefficients function, the collected raw data must be converted to the expected
format. For further details on the IC-provided measurement data, see section 2.2.

Example:

int errorcode = 0;

 int numPoints = 2;
 int negCoeffs=0;

 double rawBridge[2], desiredBridge[2];

 // temperature input not relevant
 double rawDummy[2] = = {NULL,NULL};
 double desiredDummy[2] = {NULL,NULL};

 int selCoeffs = CO_OFFSET_S | CO_GAIN_S;

 // set coefficient array to zero
 int coefficients[COEFFICIENT_COUNT] = {0};

ZSSC3240 Calibration Sequence and DLL

Apr.15.20 Page 17 of 20

 // calibration type, default value
 int calType = 0;

 // raw data as double values
 rawBridge[0] = -10000.0;
 rawBridge[1] = 8236410.0;

 // convert percentage reference values into the digital representative
 desiredBridge [0] = ConvertBridgeFromPercent(10.0);
 desiredBridge [1] = ConvertBridgeFromPercent(90.0);

 // run coefficients calculation
 errorcode = CalculateCoefficients(coefficients,
 &negCoeffs,
 numPoints,
 selCoeffs,
 calType,
 rawBridge,
 desiredBridge,
 rawDummy, /* Not calibrating anything with temp */
 desiredDummy /* Not calibrating anything with temp */
);
 /************resulting coefficients******
 coefficients[0] = coefficients[INDEX_OFFSET_S] = -1028301
 coefficients[1] = coefficients[INDEX_GAIN_S] = 3413303
 errorcode = 0
 ***/

Table 8. Parameter CalculateCoefficients Function

Parameter Description

coefficients[COEFFICIENT_COUNT] This array contains the calculated coefficients (functions’ return). The array must be zero-
filled prior to calling CalculateCoefficients unless using default values.

*negCoeffs Pointer to the representative sign parameter, with bitwise negative coefficient flags.
numPoints Number of calibration points used.
selCoeffs In binary representation, this parameter indicates which coefficient is to be calculated.

calType The type of calibration desired. A default value of 0 is recommended, which represents the
parabolic correction function and provides the best calculation approach.

*bridgeRaw [a]
Array of raw sensor values. Must be converted for DLL input and have the length of
numPoints.
If not calibrating for bridge correction, the array elements can be NULL.

*bridgeDesired [a]
Array of target sensor values. Must be converted for DLL input and have the length of
numPoints
If not calibrating for bridge correction, the array elements can be NULL.

*tempRaw [a]
Array of raw temperature values. Must be converted for DLL input and have the length of
numPoints.
If not calibrating for temperature correction, the array elements can be NULL.

*tempDesired [a]
Array of target temperature values. Must be converted for DLL input and have the length of
numPoints.
If not calibrating for temperature correction, the array elements can be NULL.

[a] The array must have matching indices to the according calibration points.

3.3.4 Verification Routine
The function checks whether the DLL calculation produced coefficients, or has a size exceeding the destined
dimensions. It is recommended to apply this function after each calculation of coefficients.

C code declaration:

__int32 VerifyCoefficients(const __int32 coefficients[COEFFICIENT_COUNT]);

Returns: An __int32 error code denoting the status of the calculations: ‘1’ on failure, ‘0’ on success.

ZSSC3240 Calibration Sequence and DLL

Apr.15.20 Page 18 of 20

Example:

int errorcode = 0;
errorcode = VerifyCoefficients(coefficients);

if (errorcode != 0) // coefficients out of range

3.3.4.1 GetCorrectedTemp
GetCorrectedTemp calculates the calibrated temperature output based on the given calculated coefficients
and a raw temperature value.

C code declaration:

double GetCorrectedTemp(const __int32 coefficients[COEFFICIENT_COUNT], double rawTemp);

Returns: The calibrated temperature in double-precision floating-point format is provided. It can be converted
to Celsius using the ConvertTempToDegree function, see section 0.

3.3.4.2 GetCorrectedBridge
GetCorrectedBridge calculates the calibrated bridge output based on the given calculated coefficients and
raw sensor and raw temperature values.

C code declaration:

double GetCorrectedBridge(const __int32 coefficients[COEFFICIENT_COUNT],
 double rawBridge, double rawTemp);

Returns: The calibrated output in double-precision floating-point format is provided. It can be converted to
percentage using Bridge Conversion Routines, see section 3.3.2.1.

Example: Assuming a seven point bridge/temperature calibration has been accomplished with raw data
(rawBridge[], rawTemp[]) and the result of a set of valid coefficients. Then a possible verification of the target
accuracy (here: 1.5% for the external bridge sensor and 3°C for temperature) at the calibration points could
be done as the below source code shows. Such verification does not include the inaccuracies caused by the
sensor and measurement, but the deviations caused by correction calculation.

 // rawBridge[], rawTemp[] -> contain raw bridge/temperature data
 // coefficients[] -> contain a set of valid coefficients

// refTempDeg[] -> contain reference temperature values in degree Celsius
// rawBridgePerc[] -> contain reference pressure values in percent

 int errorcode = 0;

 double outBridgeCodes, outBridgePerc, outTempCodes, outTempDeg;

 // loop over calibration points
 for(int i=0; i<3; i++) {

 //Verify Temperature accuracy
 outTempCodes = GetCorrectedTemp(coefficients, rawTemp[i]);
 errorcode += ConvertTempToDegrees(&outTempDeg, outTempCodes, -40.0, 125.0);

 // check ambient temperature accuracy comparing degC values
 // between measured and reference values
 if(fabs(refTempDeg[i]-outTempDeg) > 3.0) //ERROR

 outBridgeCodes = GetCorrectedBridge(coefficients, rawBridge[i], rawTemp[i]);
 outBridgePerc = ConvertBridgeToPercent(outBridgeCodes);

ZSSC3240 Calibration Sequence and DLL

Apr.15.20 Page 19 of 20

 // check external sensor accuracy comparing percentage values
// between measured and reference values

 if(fabs(outBridgePerc-rawBridgePerc[i]) > 1.5){…} //ERROR

 };

3.3.4.3 BackCalcRawTemp
BackCalcRawTemp is the inverse function of GetCorrectedTemp. It calculates the raw temperature value
based on the given calculated coefficients and a corrected temperature value.

C code declaration:

__int32 BackCalcRawTemp(const __int32 coefficents[COEFFICIENT_COUNT],
double *rawTemp, double correctedTempInDeg,
double minTemp, double maxTemp);

Returns: an error code denoting the status of the calculations. ‘0’ is returned if the method was passed
successfully.‘1’ is returned, if the input parameters are out of expected ranges.

3.3.4.4 BackCalcRawBridge
BackCalcRawBridge is the inverse function of GetCorrectedBridge. It calculates the raw bridge value based
on the given calculated coefficients and a corrected temperature value. Since the correction of bridge values
is processing also raw temperature values for specific calibration types, BackCalcRawBridge expects also
the passing of it.

C code declaration:

__int32 BackCalcRawBridge(const __int32 coefficents[COEFFICIENT_COUNT],
 double * rawBridge,
 double correctedBridgeInPerc,
 double rawTemp);

Returns: an error code denoting the status of the calculations. ‘0’ is returned if the method was passed
successfully. ‘1’ is returned, if the input parameters are out of expected ranges.

Example:

// rawBridge[], rawTemp[] -> contain raw bridge/temperature data
 // coefficients[] -> contain a set of valid coefficients
 // caliPoints -> number of calibration points
 // T_min,T_max -> temperature calibration limits

 double correctedTempInCodes[caliPoints], correctedTempInDegC[caliPoints];

double correctedBridgeInCodes[caliPoints], correctedBridgeInPerc[caliPoints];
double rawT = 0, rawB = 0;

// correction functions applied in this loop calculating corrected output
for (i = 0;i<caliPoints;i++){

 correctedTempInCodes[i] = GetCorrectedTemp(coefficients, rawTemp[i]);

// convert corrected codes into degree celsius
 ConvertTempToDegrees(&correctedTempInDegC[i], (int)correctedTempInCodes[i], T_min, T_max);

 correctedBridgeInCodes[i] = GetCorrectedBridge (coefficients, rawBridge[i] , rawTemp[i]);
 // convert corrected codes into percent
 correctedBridgeInPerc[i] = ConvertBridgeToPercent(correctedBridgeInCodes[i]);
}

// back calculation functions applied in this loop calculating raw values
// from corrected degree celsius/percentage values

 for (i = 0;i<cali_points;i++){

 BackCalcRawTemp(coefficients, &rawT, CorrectedTempInDegC[i], T_min, T_max);
 BackCalcRawBridge(coefficients, &rawB, correctedBridgeInPerc[i], rawT);

 // origin and recalculated raw values should be the same
 // rawTemp[i] == rawT -> True

ZSSC3240 Calibration Sequence and DLL

Apr.15.20 Page 20 of 20

// rawBridge[i] == rawB -> True
 }

Table 9. Parameter BackClacRawTemp/BackCalcRawBridge Functions

Parameter Description
coefficients[COEFFICIENT_COUNT] This array contains the applied coefficients.

*rawTemp [a] Array of raw temperature values (functions’ return).
correctedTempInDeg The corrected temperature measurement output, should be provided in degree Celsius

*rawBridge [a]
Array of raw sensor values. Must be converted for DLL input and have the length of
numPoints.
If not calibrating for bridge correction, the array elements can be NULL.

correctedBridgeInPerc The corrected bridge measurement output, should be provided in percent
minTemp The lower temperature limit of the calibration range, in Celsius.
maxTemp The upper temperature limit for of the calibration range, in Celsius.

[b] The array must have matching indices to the according calibration points.

4. Glossary
Term Description
AFE Analog Front End
API Application Programming Interface

CMD Command
CRC Cyclic Redundancy Check
DLL Dynamic-Link Library: an executable file that enables programs to share code and resources for completing

specific tasks
FS Full Scale
GUI Graphical User Interface
IC Integrated Circuit
ID Identifier

LSB Least Significant Bit
MSB Most Significant Bit
NVM Non Volatile Memory
PC Personal Computer

SSC Sensor Signal Conditioner
T Temperature

VB Visual Basic

5. Revision History

Rev. Date
Description
Page Summary

1.0 Apr.15.20 Initial release

20

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most up-to-date version
of a document, or your nearest sales office, please visit:
www.renesas.com/contact/

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property of
their respective owners.

	2. Calibration Sequence
	2.1 Set-up and Initialization
	2.1.1 Assigning a Unique Identification Number to the IC
	2.1.2 Analog Front End Configuration
	2.1.3 Temperature Configuration

	2.2 Data Collection
	2.2.1 Data Collection by Raw Measurement Requests

	2.3 Coefficient Calculations
	2.4 Programming NVM
	2.5 Verification

	3. CalibrationL6.DLL
	3.1 DLL Setup
	3.2 DLL Use
	3.2.1 Using Customer Default Values as Coefficients

	3.3 CalibrationL6.DLL Application Programming Interface (API)
	3.3.1 Constants used with CalibrationL6.DLL
	3.3.2 Conversion Routines
	3.3.3 Coefficients Calculation
	3.3.4 Verification Routine

	4. Glossary
	5. Revision History

