

LINEAR SYSTEMS

QUALITY THROUGH INNOVATION SINCE 1987

HIGHER-PERFORMANCE MILITARY SENSOR SIGNAL CHAINS

EMAIL: SALES@LINEARSYSTEMS.COM
CALL: (510) 490-9160
WWW.LINEARSYSTEMS.COM

BY: RON QUAN

LINEAR SYSTEMS
4042 CLIPPER COURT
FREMONT, CA 94538

Higher-performance sensors

are becoming increasingly important to modern battlefield systems. Sensors ranging from sonobuoys to radiation detectors are critical, leading-edge components of C4ISR systems. Better sensor systems enable earlier threat detection and more effective countermeasures.

Military systems employ a wide range of sensors – nuclear, biological, and chemical sensing, infrared, electro-optical, laser, radar, and acoustical – that all have one aspect in common: the requirement for ultra-low-noise signal chains to produce the best possible sensor signal. Less-than-optimal front-end amplification means C4ISR clients receive inadequate information and are not able to make effective, real-time decisions.

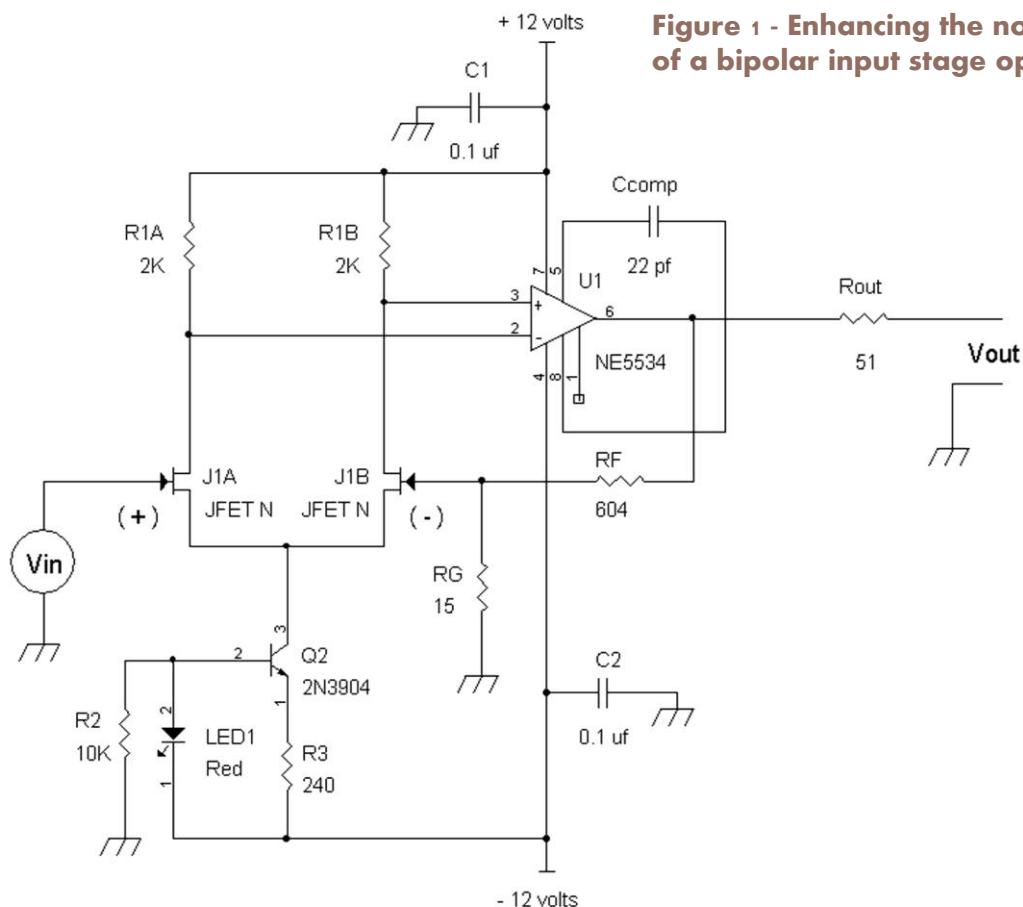
This paper describes techniques to employ to create the lowest-noise, most effect front-end amplification for sensor signal chains. Advanced lithography design and fab process techniques enable the creation of

discrete components uniquely capable of performing the critical initial amplification of sensor signals.

Integrated circuits contain a wide range of components and can include specialized design features that preclude design optimization for low noise. As this paper documents, ultra-low-noise discrete components added to an IC-based circuit will produce the lowest-noise signal chain. Though this paper focuses on the [LSK489](#) dual monolithic N-channel JFET, many other Linear Systems parts -- including the [LSK389](#), [LSK170](#) and [LSK189](#) -- also are excellent sensor system components.

Linear Systems is the world leader in ultra-low-noise monolithic dual JFETs and other front-end discrete components key to high-performance sensing systems. For over three decades, Linear Systems has led the development of this class of devices, and it continues to advance their design and introduce new sensor-specific parts.

Linear Systems provides a variety of FETs (Field Effect Transistors) suitable for use in low noise amplifier applications for photo diodes, accelerometers, transducers, and other types of sensors.


In particular, low noise JFETs exhibit low input gate currents that are desirable when working with high impedance devices at the input or with high value feedback resistors (e.g., $\geq 1M\Omega$). Operational amplifiers (op amps) with bipolar transistor input stages have much higher input noise currents than FETs.

In general, many op amps have a combination of higher noise and input capacitance when compared to some discrete FETs. For example, a typical FET input op amp may have input capacitances of about 20 pF, whereas many discrete FETs have input capacitances of less than 5 pF. Also, there are few low noise FET input op amps that have equivalent

input noise voltages density of less than $4 \text{ nV}/\sqrt{\text{Hz}}$. However, there are a number of discrete FETs rated at $\leq 2 \text{ nV}/\sqrt{\text{Hz}}$ in terms of equivalent Input noise voltage density.

For those op amps that are rated as low noise, normally the input stages use bipolar transistors that generate much greater noise currents at the input terminals than FETs. These noise currents flowing into high impedances form added (random) noise voltages that are often much greater than the equivalent input noise.

One advantage of using discrete FETs is that an op amp that is not rated as low noise in terms of input current can be converted into an amplifier with low input current noise. For example, see the circuit shown in **Figure 1**.

Figure 1 - Enhancing the noise performance of a bipolar input stage op amp

In [Figure 1](#) on the previous page, current source Q2, JFETs J1A and J1B with load resistors R1A and R1B form a preamp to the input of U1 to provide better noise performance in terms of input bias current noise and equivalent input noise voltage.

The collector current of Q2 is approximately 1 volt across R3 or about 4 mA. The drain currents of J1A and J1B are equal when $V_{in} = 0$, or about 2 mA each. With the load resistors set at $2\text{ k}\Omega$, there are about 4 volts DC across each of these resistors. The typical transconductance, g_m , for an [LSK489](#) matched dual JFET is about $3\text{ mS} = 3\text{ mmho}$ at 2 mA drain current. Thus, the differential mode gain from the gates of J1A and J1B to the drains of J1A and J1B will be approximately $3\text{ mS} \times 2\text{ k}\Omega = 6$.

Note: $1\text{ mho} = 1\text{ S} = 1\text{ amp/volt}$, and $1\text{ mmho} = 1\text{ mS} = 1\text{ mA/volt}$.

Although an NE5534 op amp has about 4 nV per root Hertz in terms of equivalent noise voltage density, its input bias noise current in the order of 0.60 pA per root Hertz.

The DC gate current of a JFET will typically be less than 0.1 nA, and the input noise current will be:

$$\sqrt{2qIgB} = \text{noise current from the gate of the JFET}$$

Ig = gate bias current

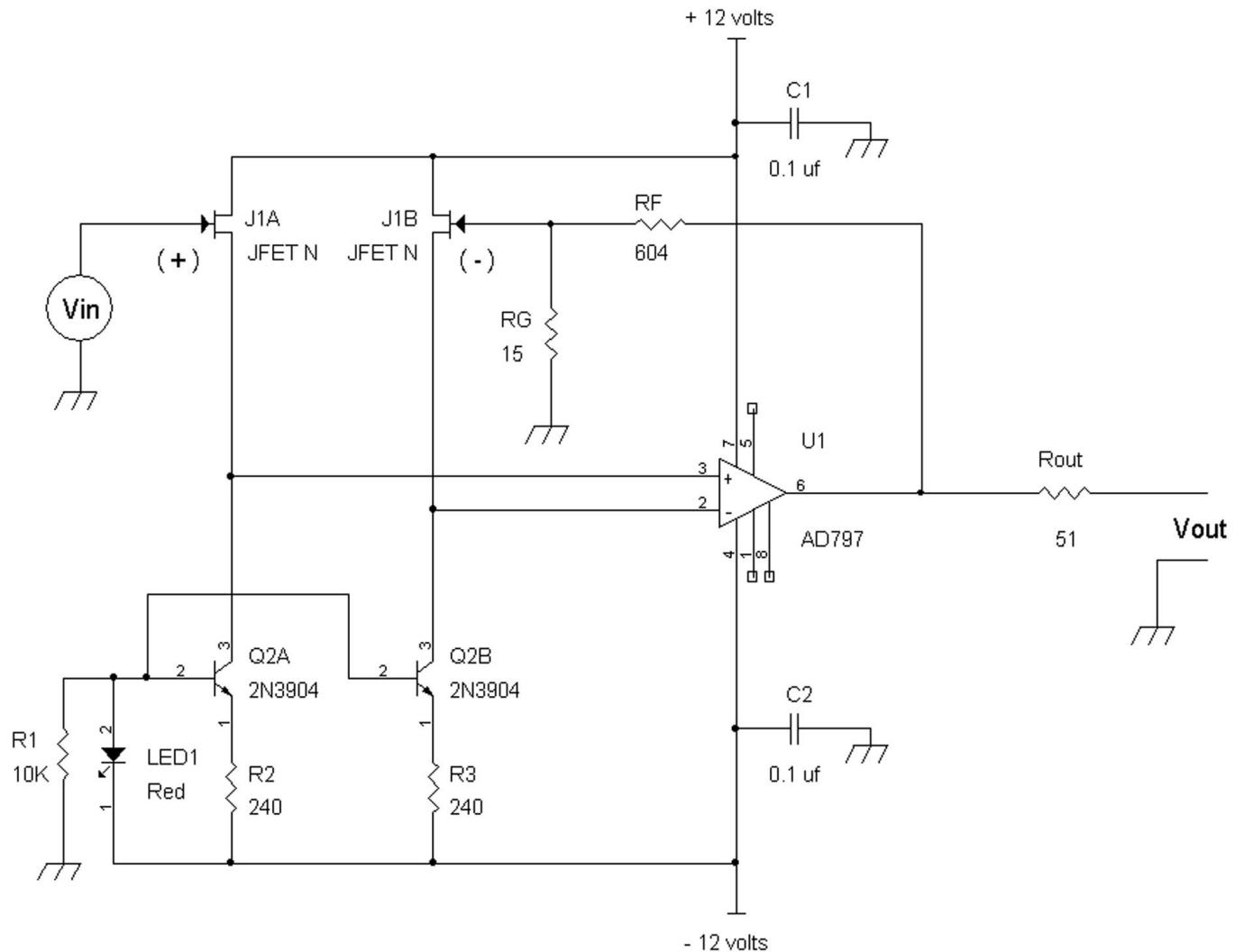
q = electron charge = 1.6×10^{-19} coulomb

B = bandwidth in Hertz. For a noise density calculation, the bandwidth is 1 Hz. Thus, $B = 1$.

For $0.1\text{ nA} = Ig$.

$$\sqrt{2qIgB} = 0.00566\text{ pA}/\sqrt{\text{Hz}} = \text{noise density current from the gate of the JFET.}$$

In comparison to $0.60\text{ pA}/\sqrt{\text{Hz}}$ for the input noise density current for the NE5534, the JFET has about 100 times lower input noise current at $0.00566\text{ pA}/\sqrt{\text{Hz}}$. The [LSK489](#) has $1.8\text{ nV}/\sqrt{\text{Hz}}$ of noise voltage density per FET.


For J1A and J1B to be a dual matched JFET transistor such as the [LSK489](#), the equivalent input noise voltage will be about 2.54 nV per root Hertz, or about 3.925 dB lower noise than the $4\text{ nV}/\sqrt{\text{Hz}}$ rating of the NE5534.

Alternatively, even lower noise can be achieved by using an [LSK389B](#) for J1A and J1B, which will result in an equivalent input noise voltage of $1.27\text{ nV}/\sqrt{\text{Hz}}$. The [LSK389B](#) has typically $0.9\text{ nV}/\sqrt{\text{Hz}}$ per FET.

One should note that the added JFET front circuit (J1A and J1B) will increase the gain bandwidth product of the amplifier by the gain of the FET circuit. For example, at 2 mA per JFET, the transconductance of the [LSK489](#) is typically 3 mmho or 3 mS . With the $2\text{ k}\Omega$ load resistors, R1A and R1B, the differential mode gain is about 6. Thus, the 10 MHz gain bandwidth product of the NE5534 is increased to 60 MHz ($6 \times 10\text{ MHz} = 60\text{ MHz}$). Note the feedback resistors, RF and RG, are set for a gain ≥ 6 to ensure stability in the amplifier without oscillation. That is, $(RF/RG) \geq 5$ since the gain is $[1 + (RF/RG)]$.

The transconductance of the [LSK389B](#) is about 3 times more than the [LSK489](#). Thus, if the [LSK389](#) is used in [Figure 1](#), $(RF/RG) \geq 20$ to ensure stability without oscillation.

Another way to reduce input bias current noise is shown in [Figure 2](#) via source followers, on the following page.

Figure 2 - An amplifier with a differential pair source follower to reduce input bias current noise

In Figure 2 above, FETs, J1A and J1B, are configured as source followers to the inputs of an op amp such as a low noise type, AD797 (or LT1028).

In terms of equivalent input voltage noise the AD797 and LT1028 are rated at about $0.9 \text{ nV}/\sqrt{\text{Hz}}$. However, their input noise currents are in the order of $1.0 \text{ pA}/\sqrt{\text{Hz}}$.

By using the source followers as shown, the input noise currents are reduced to about $0.00566 \text{ pA}/\sqrt{\text{Hz}}$.

For low input capacitance operation ($< 3 \text{ pF}$), J1A and J1B can be a matched pair [LSK489](#).

This will result in an equivalent input noise voltage of

$2.7 \text{ nV}/\sqrt{\text{Hz}}$ with an [LSK489](#). If slightly higher input capacitance is tolerated ($< 5 \text{ pF}$), then an [LSK389](#) B is used for an equivalent input noise voltage of $1.55 \text{ nV}/\sqrt{\text{Hz}}$.

Q2A and Q2B should be a matched pair of NPN transistors to ensure equal source currents for J1A and J1B. However, often purchasing discrete transistors on tape provides very close DC matching in terms of base to emitter turn on voltage.

SPECIFIC APPLICATIONS

PIEZOELECTRIC ELEMENT PREAMPS

One of the common types of sensors today is based on the piezoelectric effect. These types of sensors include accelerometers and hydrophone transducers.

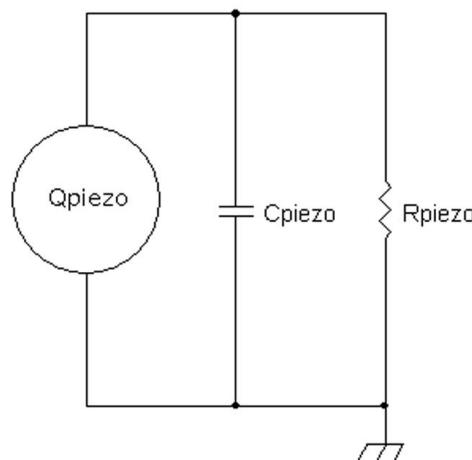
The basic piezoelectric device is modeled at the bottom of the page.

Figure 3(a): Charge model of piezo device.

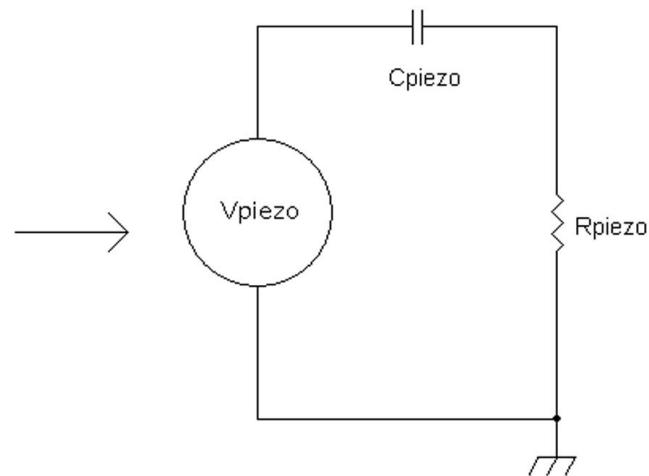
Figure 3(b): Equivalent voltage model.

In **Figure 3(a)**, a piezoelectric device delivers charge instead of current. The charge, Q_{piezo} , flows into a capacitor, C_{piezo} , to develop a voltage. Recall that:

$Q_{\text{piezo}} = C_{\text{piezo}} \times V_{\text{piezo}}$, or expressed another way via algebra:


$V_{\text{piezo}} = Q_{\text{piezo}} / C_{\text{piezo}}$ (where V_{piezo} is the voltage across the capacitor C_{piezo})

As shown in **Figure 3(a)**, there is also a resistor, R_{piezo} , in parallel with the charge generator and capacitor. R_{piezo} has a very high resistance, usually very close to an open circuit. For example, the measured DC resistance across a piezoelectric earphone/microphone is $> 2000 \text{ M}\Omega$.


However, it may be easier to look at a piezoelectric device as a voltage generator. By equivalently converting the charge source, Q_{piezo} , and capacitor, C_{piezo} into a “Thevenin” voltage source and series impedance, we have the model as shown in **Figure 3(b)**.

From **Figure 3(b)** we see that the piezoelectric device provides an AC coupled signal and it cannot provide a sustained DC voltage across R_{piezo} .

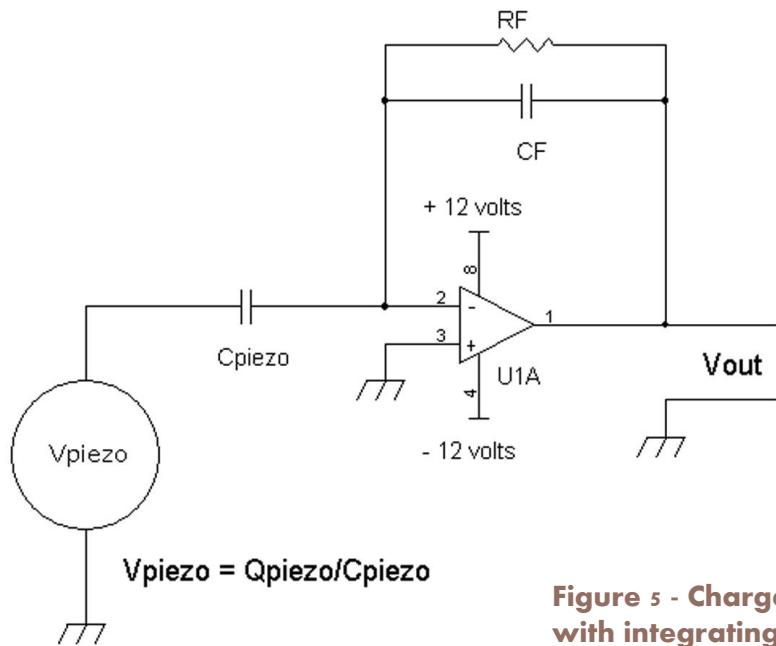
Figure 3(a) - Charge model of piezo device

Figure 3(b) - Equivalent voltage model

From **Figure 3(b)**, we see that the low frequency cut-off response is dependent on the values of C_{piezo} and R_{piezo} . In practice for the most extended low frequency response, we need C_{piezo} to load into a very high resistance value.

For simplicity, let's take a look at a simple FET buffer amplifier in **Figure 4** at the bottom of the page.

Figure 4 A piezo device connected to a simple JFET source follower amplifier.


Generally, R_1 can be in the range of $1\text{M}\Omega$ to $10\text{M}\Omega$. However, it is not uncommon to have R_1 in the order of $100\text{M}\Omega$ to $1000\text{M}\Omega$. Source resistor R_2 is set to

bias the source to a DC bias current from about 100\textmu A to 5 mA or R_2 can be in the range of $100\text{K}\Omega$ to $2\text{K}\Omega$. $J1A$ can be an [LSK170](#) JFET. The drain of $J1$ is connected to a plus supply voltage and the source provides a signal voltage, V_{out} with a medium to low impedance output resistance that is able to drive another amplifier. Note that V_{out} may be connected in series to an AC coupling capacitor to remove the DC voltage at the source of $J1A$.

Another way to amplify the signal from a piezo device is shown in **Figure 5** on the next page. For simplicity, we will ignore the effect of R_{piezo} , which is close to infinite resistance.

Figure 4 - A piezo device connected to a simple JFET source follower amplifier

Figure 5 - Charge amplifier with integrating capacitor CF

If we ignore the feedback resistor, RF, for now, then we see that the gain is:

$$V_{\text{out}}/V_{\text{piezo}} = -Z_{\text{CF}}/Z_{\text{Cpiezo}}$$

Where Z_{CF} and Z_{Cpiezo} are the impedances for CF and Cpiezo

$$V_{\text{out}}/V_{\text{piezo}} = -Z_{\text{CF}}/Z_{\text{Cpiezo}} = -[1/j\omega C_{\text{CF}}]/[1/j\omega C_{\text{Cpiezo}}] = -C_{\text{Cpiezo}}/C_{\text{CF}}$$

Since Cpiezo is fixed and is internal to the piezo device, the gain is changed by setting the value of CF. For example, the smaller the value of CF, the larger the gain.

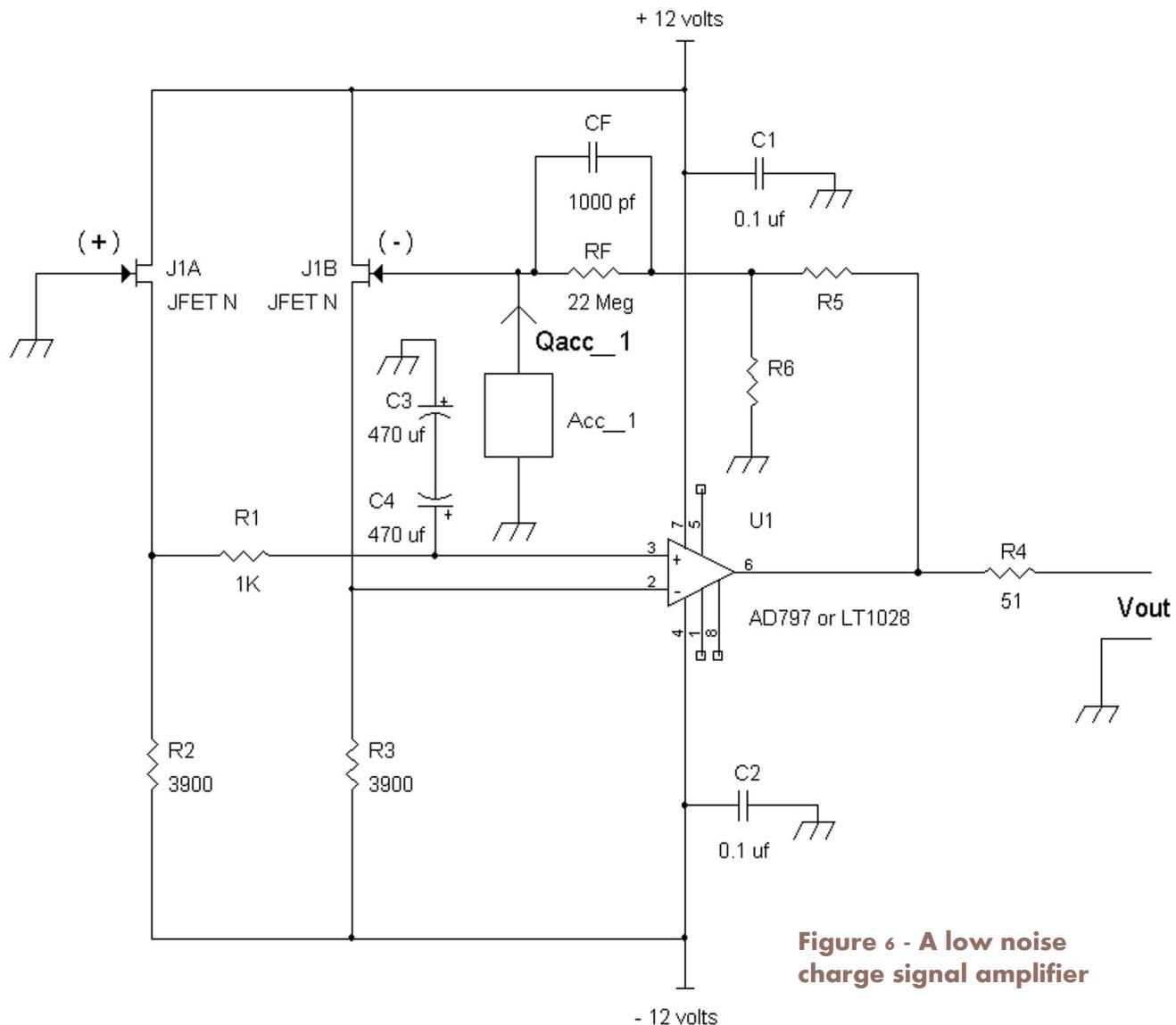
Ideally, CF should work as an integrating capacitor. However, to prevent Vout from latching to the supply rails, RF is connected in parallel to CF provide a DC path from the output of U1A to the (-) input of the op amp. Resistor RF also provides a discharge path for CF.

It may be “counter intuitive” but RF actually works as a high pass filter and sets the low cut-off frequency. To see how this happens, let’s suppose $RF = 1\text{M}\Omega$ and $CF = 1000\text{ pF}$. At 10 Hz, the magnitude of the $Z_{\text{CF}} \sim 16\text{M}$. Since CF is in parallel with RF, we see that RF at $1\text{M}\Omega$ dominates $Z_{\text{CF}} \parallel RF$ at 10 Hz. At low frequencies, we can then “ignore” CF and now see that **Figure 5** looks like a differentiator circuit

(imagine removing CF from the schematic) with Cpiezo as the input capacitor and RF as the feedback resistor. Now note that a differentiator circuit has a high pass filtering effect.

When the AC gain is calculated for magnitude versus frequency, the -3 dB cut-off frequency for the high pass filter effect is $1/2\pi(RF)(CF)$, and the gain is $V_{\text{out}}/V_{\text{piezo}} = C_{\text{Cpiezo}}/C_{\text{CF}}$.

As an example, consider the model 765M25 dynamic pressure sensor from Columbia Research Laboratories. It has a transducer capacitance of $C_{\text{Cpiezo}} = 6500\text{ pF}$ and a charge sensitivity of 1200 pC/psi where $\text{pC} = \text{pico coulombs}$, and $\text{psi} = \text{pounds per square inch}$. Suppose $CF = 1000\text{ pF}$ and $RF = 10\text{M}\Omega$. We have the following


$$\text{Voltage Gain} = C_{\text{Cpiezo}}/CF = 6500\text{ pF}/1000\text{ pF} = 6.5$$

$$V_{\text{piezo}} = Q_{\text{piezo}}/C_{\text{Cpiezo}} = [1200\text{ pC/psi}]/6500\text{ pF}$$

$$V_{\text{out}} = V_{\text{piezo}} \times \text{Voltage Gain} = \{[1200\text{ pC/psi}]/6500\text{ pF}\} \times 6.5 = 1.2\text{ volts/psi}$$

$$\text{High pass filter cut-off frequency @ } -3\text{ dB} = 1/2\pi(10\text{M}\Omega)(1000\text{ pF}) = 15.924\text{ Hz}$$

We will now look at an example of a low noise FET amplifier for a piezo device is shown in **Figure 6**.

Figure 6 - A low noise charge signal amplifier

The charge amplifier above uses an piezo signal source such as a piezo accelerometer, Acc_1 that provides a charge signal Qacc_1 into the gate input terminal of FET J1. Although the schematic shows an accelerometer as the signal source, other types of charge output devices can be used such as a quartz accelerometer, piezoelectric pressure sensor, or piezoelectric hydrophone.

JFETs J1A and J1B such as the [LSK389](#) or [LSK489](#) are source followers. They are coupled to the (+) and (-) inputs of U1, a low noise bipolar input stage op amp. By taking advantage of the low gate current in J1B, noise is kept to a minimum. However, source follower J1B does provide some phase shift (in the negative feedback loop) at high frequencies that can cause the charge amplifier to oscillate if the output of U1 were to be connected to RF and CF directly via bypassing

R5 and R6, which “wires” the amplifier in unity gain configuration.

To ensure sufficient phase margin that avoids oscillation, the amplifier’s voltage gain factor is increased above unity gain via voltage divider R5 and R6. The voltage division by R5 and R6 adds more phase margin to the negative feedback amplifier to ensure stable and oscillation free operation. With the insertion of R5 and R6 in the feedback path, the voltage gain factor is $[1 + (R5/R6)]$.

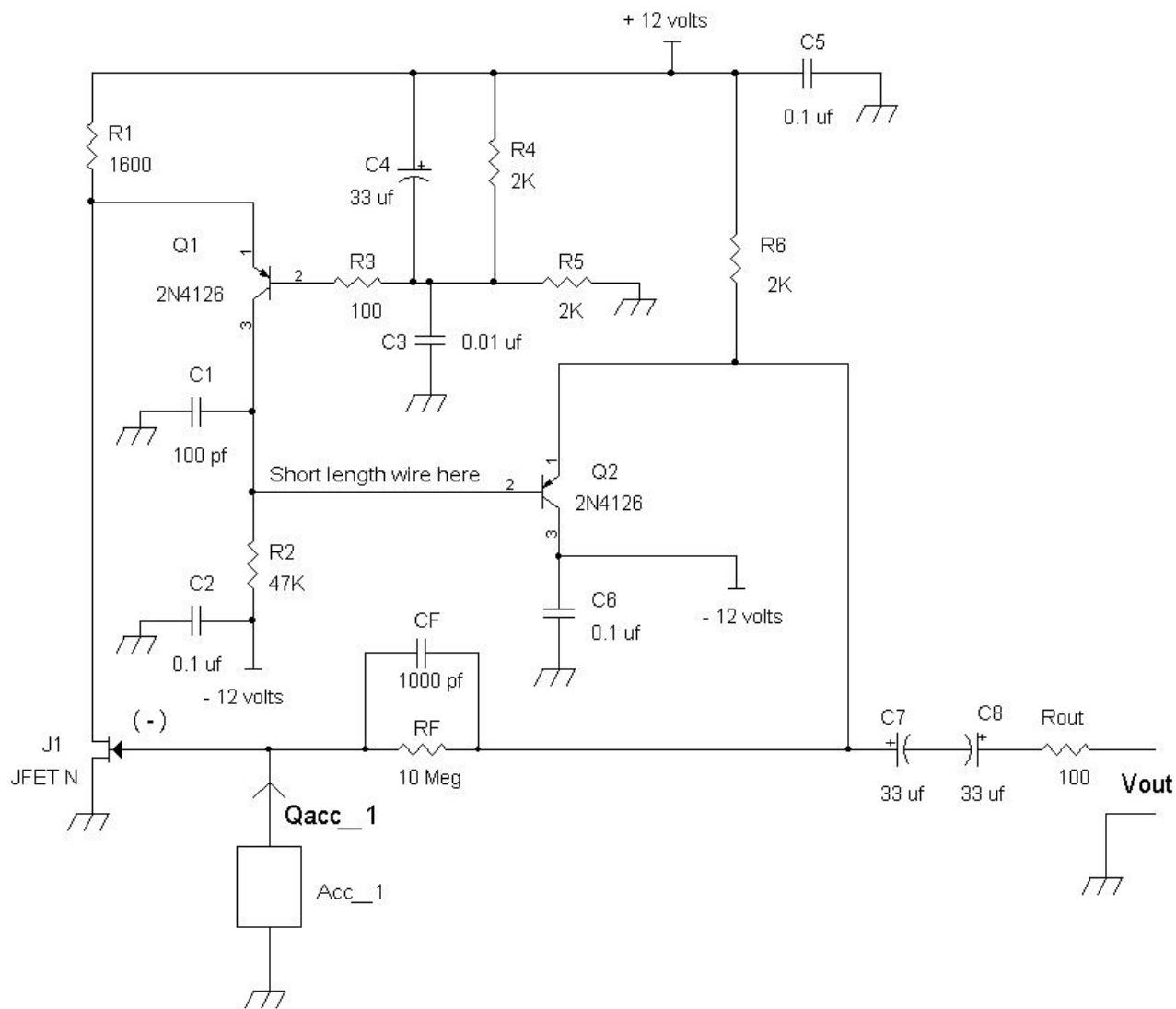
For example, if $R5 = 510\Omega$ and $R6 = 100\Omega$, the amplifier system starts off with a voltage gain of $[1 + (510/100)] = 6.1$, which was found experimentally to provide sufficient phase margin to avoid oscillation in some op amps.

It is recommended that $R5 \parallel R6 \ll RF$, and for the values chosen $510\Omega \parallel 100\Omega$ is indeed $\ll 10M\Omega$. Also it is preferred that RF is driven with a low impedance source $< 100\Omega$, and the drive resistance (via the Thevenin resistance) is $R5 \parallel R6 = 510\Omega \parallel 100\Omega = 83\Omega < 100\Omega$.

The overall gain of the system given the piezo device that has a rated capacitance of C_{piezo} is:

$$V_{out}/V_{piezo} = -[1 + (R5/R6)] \times C_{piezo}/CF$$

Where $V_{piezo} = Q_{piezo}/C_{piezo}$


Figure 6 shows nominally $CF = 1000 \text{ pF}$ and $RF = 22M\Omega$, but other values may be used. Also keep in mind that the high pass filter cut-off frequency is

$$1/2\pi(RF)(CF)$$

In **Figure 6**, JFETs, J1A and J1B, are configured as differential source followers. Although normally, the source of J1A would be tied directly to the (+) input of U1 (pin 3), lower noise can be achieved via low pass filter R1, C3, and C4 that removes random noise from the source of J1A. Achieving the lowest possible equivalent input noise is necessary when the high impedance signal source includes capacitance across it.

For a discrete charge amplifier implementation see **Figure 7** below.

Figure 7 - A discrete transistor charge amplifier

In the charge amplifier in **Figure 7** on the previous page, a low noise JFET, J1 may be an [LSK170](#). Although the capacitance of the [LSK170](#) is higher than an [LSK489](#), which can also be used, the accelerometer's capacitance (e.g., Cpiezo in **Figure 3(a)**) is much higher making the input capacitance of the JFET negligible.

The advantage of using a discrete design is that this amplifier has only one voltage gain stage that allows its output at the emitter of Q3 to be connected directly to RF and CF for an oscillation free operation. Because of the finite open loop gain of this amplifier, the voltage gain, Cpiezo/CF, should be generally kept to ≤ 10 .

FET J1 and bipolar transistor Q1 form a folded cascade amplifier. With about 6 volts at the base of Q1, there is about 6.7 volts at Q1's emitter, which forms 5.3 volts across $R_1 = 1600\Omega$. This results in about 3.3 mA of current flowing into R_1 . The DC voltage at the gate of J1 will be approximately -0.5 volt or so due to the negative feedback configuration via RF. Working backwards from the emitters of Q3 and Q2, the base of Q2 should have about $[-0.5 \text{ volt} - V_{EB_{Q2}}] = -1.2$ volts at the base of Q2 and the collector of Q1. The voltage across R_2 is then $[-1.2 \text{ volts} - (-12 \text{ volts})] = 10.8$ volts, which results in Q1's collector current of $(10.8 \text{ volts}/47\text{K}\Omega) = IC_{Q1} = 0.230 \text{ mA}$. Since $\beta \gg 1$, the emitter current is essentially equal to the collector current, which is 0.230 mA.

The sum of Q1's emitter current and J1's drain current is the current flowing through R_1 , which is 3.3 mA.

Put in another way, the $I_{R1} = ID_{J1} + IE_{Q1}$

Also note that the current gain of Q1 (and Q2) is high with $\beta \gg 1$, which leads to $IE_{Q1} = IC_{Q1}$.

Therefore, $I_{R1} = ID_{J1} + IC_{Q1}$

By use of algebra,

$$ID_{J1} = I_{R1} - IC_{Q1}$$

$$I_{R1} = 3.3 \text{ mA} \text{ and } IC_{Q1} = 0.230 \text{ mA}$$

Therefore, the drain current of J1,

$$ID_{J1} = 3.3 \text{ mA} - 0.230 \text{ mA}$$

$$ID_{J1} = 3.07 \text{ mA} = \text{drain current of J1.}$$

Open loop gain of the charge amplifier is the transconductance of J1, g_{mJ1} , multiplied by R_2 and K_1 . The scaling factor K_1 represents the transfer of signal from the drain of J1 to Q1. There is a small amount of signal taken away from R_1 . Also we can approximate that the gain of emitter follower, Q2 = 1.

$$\text{Open loop gain} = g_{mJ1} \times R_2 \times K_1$$

For an [LSK170](#) biased at about 3 mA, $g_{mJ1} = 15 \text{ mS} = 15 \text{ mmho}$

$$R_2 = 47\text{K}\Omega$$

$$K_1 = R_1 / [(R_1) + (1/g_{mQ1})]$$

Note that: $(1/g_{mQ1}) = 0.026 \text{ volt}/IC_{Q1} = 0.026 \text{ volt}/0.230 \text{ mA} = 113\Omega = (1/g_{mQ1})$

$$K_1 = 1600\Omega / [1600\Omega + 113\Omega] = 0.934$$

$$\text{Open loop gain} = g_{mJ1} \times R_2 \times K_1 = 15 \times 47 \times 0.934 = 705 \times 0.934 = 658.$$

Note that Q2 form an emitter follower circuit and Q2 provides a low impedance output for V_{out} . Because there will be an offset voltage, DC blocking capacitors C7 and C8 are used.

SPECIFIC APPLICATIONS

PHOTODIODE PREAMPS

In some JFET op amps such as the AD743, the input capacitance is in the order of 18 to 20 pF. In comparison, with an [LSK489](#) dual FET, the input capacitance is in the order of 3 pF, which will be suitable for low noise photodiode applications. In this section we will see why it is important to have low equivalent input noise and low input capacitance in a photodiode preamp. A simple photodiode is shown in **Figure 8** below, which uses an op amp.

In the photodiode amplifier below, when light is shined onto the photodiode, current is generated by the photodiode, PD1. As configured with the cathode

of PD1 connected to the (-) input terminal of U1, V_{out} generates a positive voltage proportional to the amount of light into the photodiode. Also shown in **Figure 8** are the equivalent capacitances from the photodiode, C_{pd} , and (-) input terminal, $C_{in}(-)$, which are connected in parallel. To minimize C_{pd} , the photodiode capacitance, the anode of PD1 is connected to the minus 12 volt power supply for maximum reverse bias to lower its junction capacitance. For example, if a BPV10 photodiode is used, C_{pd} is about 2.7 pF at 12 volts reverse bias. At a lower reverse bias voltage such as 1 volt, C_{pd} is about 7 pF.

Figure 8 - A simple photodiode transresistance amplifier

For low noise considerations, these two capacitances, C_{pd} and $C_{in}(-)$, should be low as possible. The reason is that the equivalent input noise density voltage, V_{noise_input} of the op amp will be amplified in the following manner at V_{out} , neglecting any noise current from the photodiode:

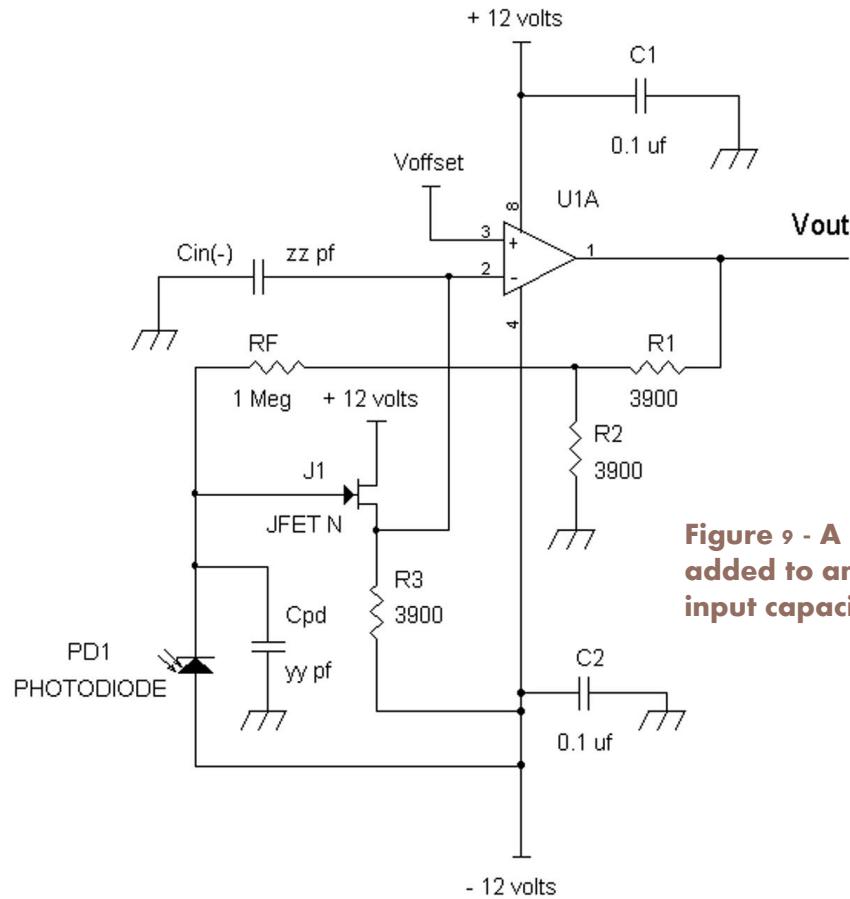
$$V_{out_noise} \text{ for a bandwidth of 1 Hz} = (V_{noise_input}) \sqrt{1 + (\omega R F C t)^2} + \sqrt{4 k T R F} \quad (1)$$

Where $\omega = 2\pi f$, RF = feedback resistor, $k = 1.38 \times 10^{-23}$ Joules per degrees Kelvin, $T = 298$ degrees Kelvin

$C_t = C_{pd} || C_{in}(-)$ = total capacitance at the (-) input terminal, and

$$C_t = C_{pd} + C_{in}(-)$$

$\sqrt{4 k T R F}$ = thermal noise voltage of the feedback resistor RF for a bandwidth of 1 Hz.


As we can see from the equation above, the output noise, V_{out_noise} , goes higher if C_t is increased.

In designing a low noise transresistance preamps the goals are to:

1. Minimum equivalent input noise voltage.
Equation (1) above shows that the output noise voltage is dependent on the equivalent input noise voltage, V_{noise_input} .
2. Minimize noise current from the (-) input because the noise current at the input will form a noise voltage across the feedback resistor. Generally, a JFET is desirable for the (-) input because of its low gate noise current.
3. Minimize the capacitance from the (-) input to ground. The equation (1) shows that more noise is generated at the output when the capacitance, $C_t = C_{pd} + C_{in}(-)$, at the (-) input terminal is increased.
4. Use as large value RF as possible. At first glance, it would appear increasing the resistance in RF would increase the output noise because of the resistor's thermal noise. This is true but the signal

amplification from the photodiode is increased more so that results in a net increase in signal to noise ratio when RF is increased in value. For example, doubling the value in RF increases the resistor noise from RF by $\sqrt{2} = 1.41$ while increasing the photodiode signal output voltage by 2. Thus, there is a net gain of $\sqrt{2}$ or + 3 dB, in terms of signal to noise ratio in this example.

In **Figure 8**, the typical input capacitance, $C_{in}(-)$ at the (-) input of an FET op amp is about 18 pF. To lower the capacitance of the op amp, a low capacitance and low noise JFET is used as a buffer or source follower to the (-) input. See **Figure 9** on the following page.

Figure 9 - A low capacitance JFET added to an op amp circuit to lower input capacitance and reduce noise

A low noise JFET such as an [LSK189](#) is configured as a source follower, with a source biasing resistor R3. In terms of input capacitance at the gate of J1 with an [LSK189](#), it is about 3 pF from the gate to the drain, which is much less than the 18 pF of $C_{in}(-)$.

Capacitance between the gate and ground due to the gate to source capacitance approaches zero. This is because the source follower configuration provides substantially the same AC voltage at the gate and at the source, which substantially cancels out the capacitance between the gate and the source. The source follower also greatly reduces the capacitance seen at the gate to ground even when the source is driving signal into a capacitive load, $C_{in}(-)$, the capacitance at the (-) input terminal of the op amp U1A.

It should be noted that the source follower circuit may add some phase shift to the overall amplifier circuit. To ensure phase margin and no oscillations, a resistive divider R1 and R2 is used. With the values given at 3900Ω for R1 and R2, the equivalent feedback resistance is $[1 + (R2/R1)] \times RF = 2 \times 1M\Omega = 2M\Omega$, the same resistance value shown in [Figure 8](#) for RF.

If the (+) input of the op amp in [Figure 9](#) is grounded, such that $V_{offset} = 0$ volts, V_{out} will most likely have a DC offset. To “zero” V_{out} when there is no signal from the photodiode, a clean DC voltage, V_{offset} may be applied to the (+) input of U1.

Op amp U1A = AD797 has an equivalent input noise voltage of $0.9 \text{ nV}/\sqrt{\text{Hz}}$ and J1 = [LSK189](#) with an equivalent input noise voltage of $1.8 \text{ nV}/\sqrt{\text{Hz}}$, the total equivalent input noise voltage is about $2.0 \text{ nV}/\sqrt{\text{Hz}}$. This is lower than a very low noise JFET op amp such as an AD743 that has $3.2 \text{ nV}/\sqrt{\text{Hz}}$. Note that bipolar input stage op amps AD797 with $0.9 \text{ nV}/\sqrt{\text{Hz}}$ has lower equivalent input noise voltage than $2.0 \text{ nV}/\sqrt{\text{Hz}}$, but the AD797’s input noise current is too high and are not suitable for amplifier circuits with large value feedback resistors (RF) in the $M\Omega$ such as the circuit shown in [Figure 8](#).

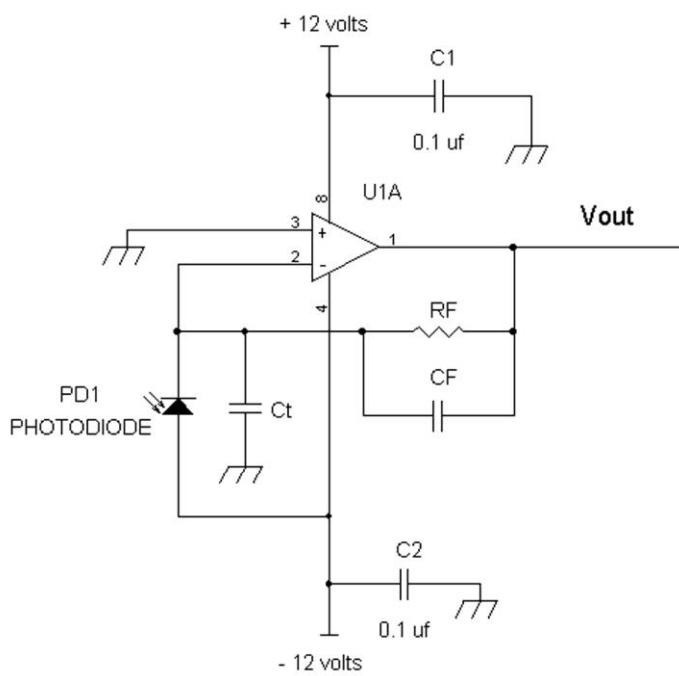
Note that J1 may be substituted with an [LSK170](#) ($0.9 \text{ nV}/\sqrt{\text{Hz}}$) if a slight increase in capacitance from the gate to ground is acceptable. This FET has about half the equivalent input noise of the [LSK189](#).

SPECIFIC APPLICATIONS

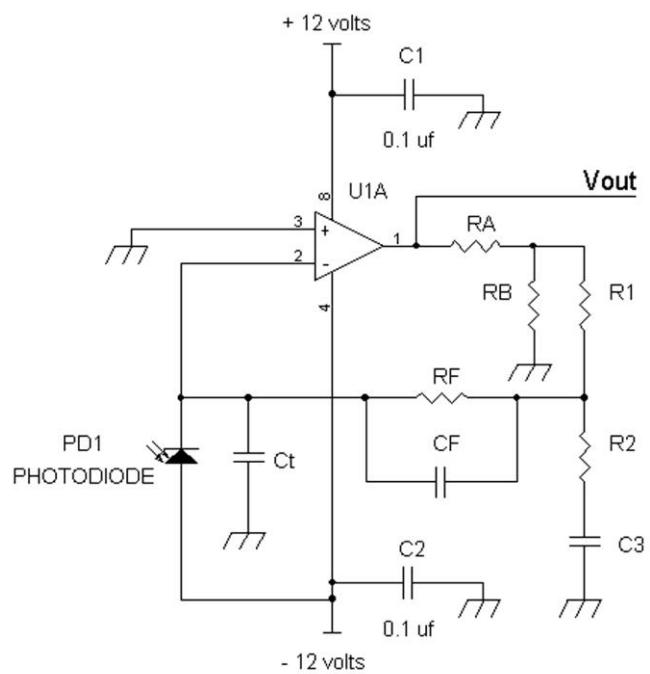
EXTENDING THE FREQUENCY RESPONSE OF A TRANSRESISTANCE AMPLIFIER

In transresistance amplifiers, a feedback resistor will have a capacitance, CF , across its leads. This capacitance will reduce the bandwidth of the output signal at high frequencies. See **Figures 10(a)** and **10(b)** below.

Figure 10(a) shows a photodiode preamp with $Ct = Cpd + Cin(-)$, and CF a capacitor across the feedback resistor RF . CF can be the internal parasitic capacitance from resistor RF , or it can be capacitor often connected across RF to add positive phase shift that offsets the negative shift from Ct . This added positive phase shift due to CF ensures stability in the photodiode preamp. However, one side effect from CF is reducing the bandwidth of the amplified


photodiode signal at $Vout$.

The -3 dB bandwidth at $Vout$ is $1/[2\pi(RF)(CF)] = f_{-3dB}$. For example, $RF = 2M\Omega$ and $CF = 1pF$, then $f_{-3dB} = 1/[2\pi(2M\Omega)(1pF)] = 79.6$ kHz


One way to reduce the effects this roll off in frequency response is to make RF a series connection of ten $200K\Omega$ resistors. If CF is still $1pF$, the new bandwidth will be: $f_{-3dB} = 1/[2\pi(200K\Omega)(1pF)] = 796$ kHz

However, there is another alternative and that is to equalize the frequency response as shown in **Figure 10(b)**.

Figure 10(a) - Simple preamp

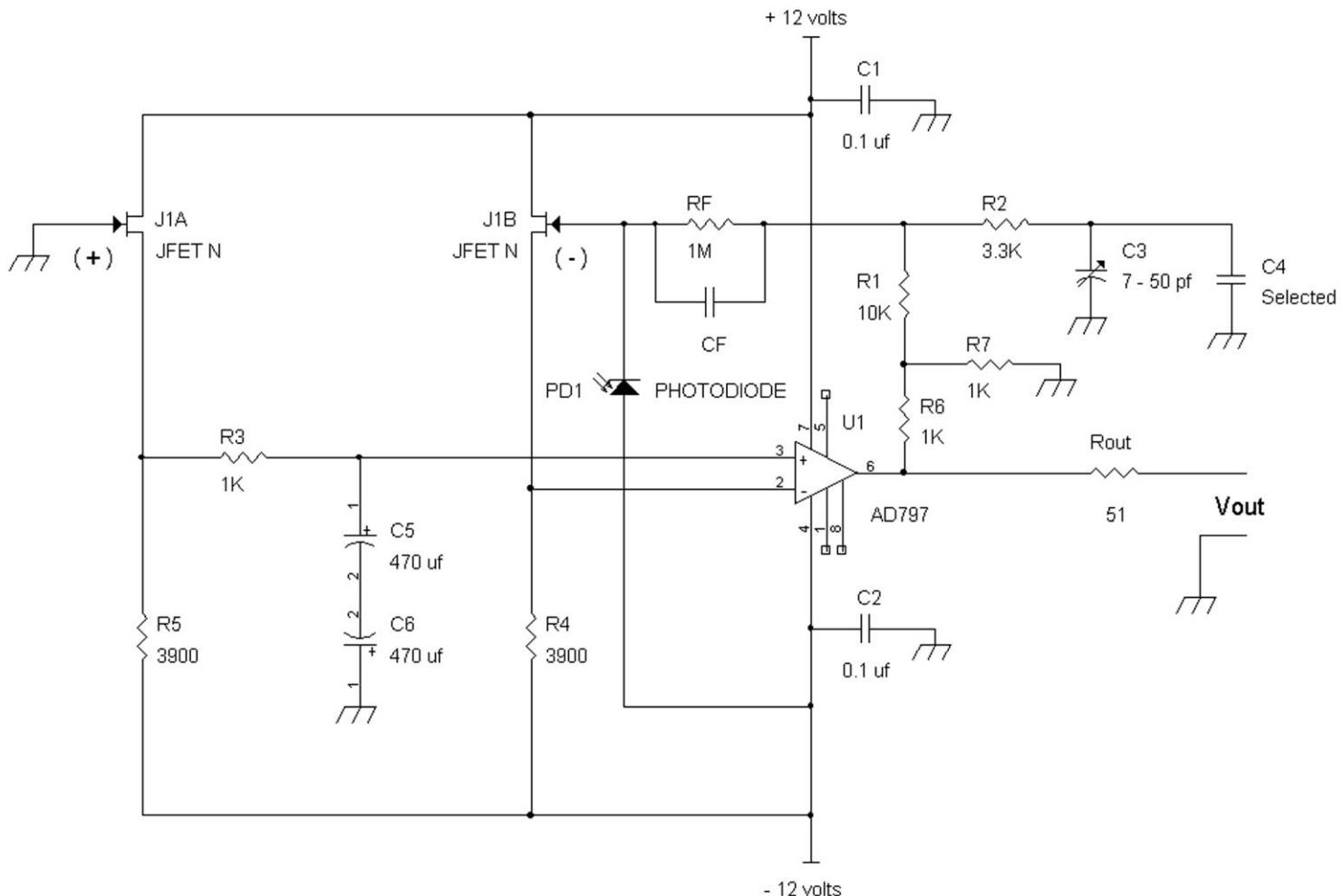
Figure 10(b) - Simple preamp with equalization

For now, let's assume that that op amp U1A in **Figure 10(b)** has sufficient phase margin to not oscillate when $R_A = 0\Omega$, and when $R_B = \text{open circuit}$ or removed.

If $(R_1 + R_2)(C_3) = (R_F)(C_F)$ there will be a "boost" that compensates for the roll-off. When the boost ends is determined by the $(R_2)(C_2)$ time constant. The amount of bandwidth extension is $[1 + (R_1/R_2)]$. Generally there is a limit on bandwidth extension. If $R_2 \rightarrow 0\Omega$, then C_3 is grounded and forms a low pass filter and lagging phase shift network with R_1 , that will most likely cause oscillation.

Generally, it is recommended to start with $R_2 = 33\%$ of R_1 , which gives a bandwidth extension of $[1 + (R_1/0.33R_1)] = [1 + 3] = 4$ = bandwidth extension.

For example, if $R_F = 2M\Omega$ and $C_F = 1\text{pF}$, we want $R_1 \ll R_F$, so let's make $R_1 = 10K\Omega$ and $R_2 = 3.3K\Omega$, then


$(R_1 + R_2)(C_3) = (R_F)(C_F)$ or $(10K\Omega + 3.3K\Omega)(C_3) = (13.3K\Omega)(C_3) = (2M\Omega)(1\text{pF})$, or

$C_3 = (2M\Omega)(1\text{pF})/(13.3K\Omega) = 150\text{ pF} = C_3$. With these values, the frequency response will increase from 79.6 kHz to about 318 kHz for **Figure 10(b)**.

Note: Often the op amp U1A may require voltage divider resistors R_A and R_B to ensure sufficient phase margin so that the amplifier in **Figure 10(b)** does not oscillate. Typically, start out with a voltage divider of 2 or more. That is, $(R_A/R_B) \geq 1$. Also, it is recommended that $R_A || R_B \leq 500\Omega$ and that $R_A || R_B \ll R_1$.

Figure 11 shows an equalized preamplifier with discrete FETs at the input terminals.

Figure 11 - A low noise photodiode preamp with frequency equalization

In [Figure 11](#) on the previous page, the effective feedback resistor is about $2M\Omega$ because $R6$ and $R7$ provide a divide by two voltage divider. The effective feedback resistance is $[1 + (R6/R7)] \times RF = [1 + 1] \times 1M\Omega = 2M\Omega$, given that $R1 \ll RF$ or $10K\Omega \ll 1M\Omega$.

$J1A$ and $J1B$ are low noise and low capacitance matched pair JFETs such as the [LSK489](#).

$U1$ can be typically a bipolar input stage op amp for the lowest equivalent input voltage noise density such as the [AD797](#). Variable trimmer capacitor $C3$ is adjusted for the flattest frequency response.

Alternatively $C3$ may be adjusted for the best pulse response. Generally an LED is driven with a square wave signal and is pointed into the photodiode $PD1$. $C3$ is adjusted for the fastest rise and fall times while avoiding overshoot at $Vout$.

In [Figure 11](#), $R6$ and $R7$ form a voltage divider to multiply RF for an effective resistance of $2M\Omega$. But $R6$ and $R7$ also adds some series resistance to $R1$. This series resistance is $R6 \parallel R7 = 1K\Omega \parallel 1K\Omega = 500\Omega$, which is the Thevenin resistance from the voltage divider circuit. To calculate the proper time constants for frequency compensation we have:

$[(R6 \parallel R7) + (R1 + R2)] \times [C3 + C4] = RF \times CF$ which leads to:

$$[C3 + C4] = [RF \times CF] / [(R6 \parallel R7) + (R1 + R2)]$$

For example, in [Figure 11](#), suppose $CF = 2.2$ pF is the capacitance across $RF = 1M\Omega$.

Also $U1 = AD797$

$$[C3 + C4] = [1M\Omega \times 2.2 \text{ pF}] / [(500\Omega) + (10K\Omega + 3.3K\Omega)]$$

$$[C3 + C4] = [1M\Omega \times 2.2 \text{ pF}] / [(500\Omega) + (13.3K\Omega)]$$

$$[C3 + C4] = 72.46 \times 2.2 \text{ pF} = 159 \text{ pF}$$

Let $C4 = 130$ pF so that the remaining 29 pF can be set by variable capacitor $C3$. Note that $C3$ is adjusted for best transient or frequency response.

The circuit was built with and without the equalization network, $R1$, $R2$, $C3$, and $C4$.

Without the equalization network and with $CF = 2.2$ pF, the -3 dB measured frequency response was about 71 kHz which matches closely to $[1/2\pi(1M\Omega)(2.2 \text{ pF})] = 72.5$ kHz.

The bandwidth extension is $[1 + (R1/R2)] = [1 + (10K/3.3K)] = [1 + 3] = 4$.

Thus, we will expect the frequency response to be extended to 4×72.5 kHz = 290 kHz.

With the equalization network and $C4$ adjusted, the measured frequency response was extended to > 300 kHz.

Note: When an [LT1028](#) op amp was used instead of the [AD797](#) for $U1$, $R7$ had to be reduced to 100Ω to avoid oscillation and to provide sufficient phase margin. Not all op amps will necessarily have the enough phase margin to ensure an oscillation free condition with $R6 = R7$ in [Figure 11](#). At times $R7$ may have to be lowered in value for stability, but also keep in mind that the effective feedback resistance is $RF \times [1 + (R6/R7)]$.

SPECIFIC APPLICATIONS

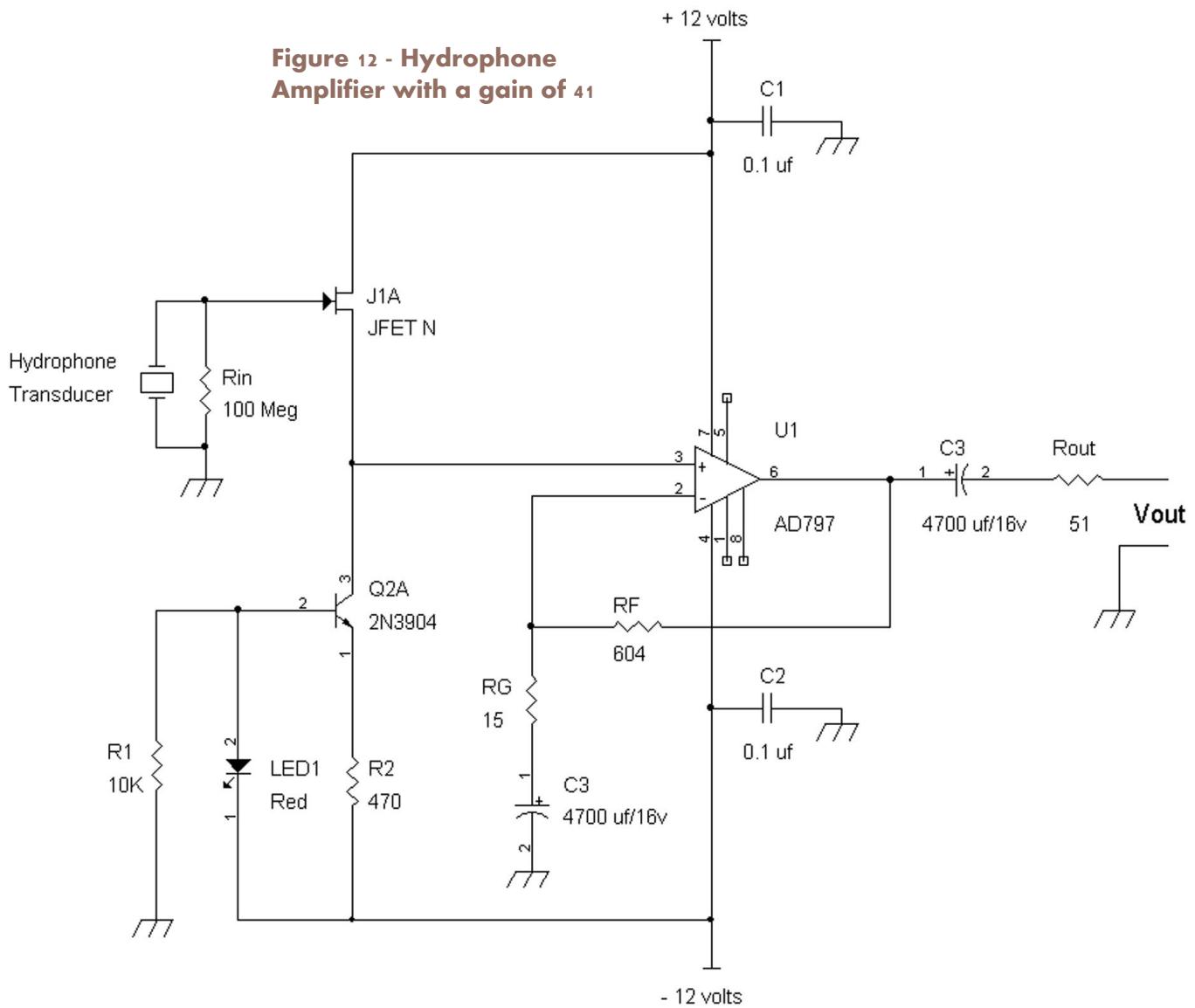

HYDROPHONE VOLTAGE GAIN AMPLIFIER

Figure 12 shows an example with a hydrophone amplifier.

In some instances, piezoelectric elements can be amplified with a low noise voltage amplifier instead of a charge amplifier. In this case a hydrophone

transducer or microphone is connected to a source follower circuit J1A and current source Q2A. J1A can be an [LSK170](#) for the lowest noise. Current source circuit R1, LED1, R2, and Q1A may be replaced with a 3900Ω resistor from the source of J1A to -12 volts.

Figure 12 - Hydrophone Amplifier with a gain of 41

REFERENCES:

- 1) "Piezoelectric Transducers", Dale Pennington, Endevco Dynamic Instrument Division, Rev. 7/70.
- 2) Columbia Research Laboratories, General Purpose Accelerometers, Models 3021,3022, 3023, 5001, and 5002.
- 3) Columbia Research Laboratories, Dynamic Pressor Sensors, Models P-308-C, P-766, 765M25, and 765M27.
- 4) Kistler Instrument Corporation, Quartz High Resonant Frequency, Charge Mode, Shock Accelerometer, Type 8044.
- 5) Analog Devices, Data Sheet, AD797.
- 6) Analog Devices, Data Sheet, AD743.
- 7) Linear Technology, Data Sheet, LTC6078.
- 8) Linear Technology, Data Sheet,LT1028.
- 9) Vishay Semiconductors, Data Sheet, BVP10 Silicon PIN Photodiode.