Moku Cloud Compile Tutorial October 13, 2021

Moku Cloud Compile with MathWorks HDL Coder

Generate Deployable VHDL Code on Moku:Pro
Part 2 — Simulink

This is Part 2 of the “Moku Cloud Compile with MathWorks HDL Coder” tutorial, Part 1 can be found here. In
part 2, we will use MathWorks” Simulink to build and deploy a two-channel Schmitt trigger on Moku:Pro. The
general workflow between the MATLAB script approach and Simulink model approach is similar, but Simulink
provides additional first-party DSP and test blocks that are ready to use. The block diagram-based design
method provides a more intuitive way to construct a DSP workflow, especially for more complicated systems.

In this tutorial, we will construct the first channel via a hybrid MATLAB-Simulink design and the second channel
with the Simulink library.

1 Moku Cloud Compile with MathWorks HDL Coder © 2021 Liquid Instruments. liquidinstruments.com

https://www.liquidinstruments.com/
https://download.liquidinstruments.com/documentation/app-note/HDLCoderTutorialPart1-MATLAB.pdf?hsCtaTracking=db68f91b-2d35-4ff8-99fd-27d991c293b8%7C4f07d140-0b7d-432c-969d-8326fcebc9d4

Moku Cloud Compile Tutorial October 13, 2021

Overview

Design and construct the DSP 4
AJUST TNE TEMIPIATE ..ottt ettt ettt 4
FIOAtING-POINT DSP AESIGN ..ottt 4
CONSITUCT TNE 1O SO e 6
FIX=POINT CONMVETSION ..ottt ettt ettt sesens 7
FiX-POINt MOAEI VEIITICATION ...ttt 9
VHDL COAE GONMETALION ...t]
VHDL simulation with a third-party t00l (OPtIONAI) ..o]
DSP Compile and Deployment 9
Compiling and deploying the INSTIUMENT ... 10
Conclusion 12
Code Availability 12
Questions or comments? 12

Moku Cloud Compile with MathWorks HDL Coder © 2021 Liquid Instruments.

https://www.liquidinstruments.com/

Moku Cloud Compile Tutorial October 13, 2021

Overview

Liguid Instruments’ Moku Cloud Compile (MCC) tool enables users to design custom instruments for
implementation on Moku platforms. Compared to CPU and application-specific integrated circuit (ASIC) based
DSP approaches, FPGAs provide ASIC-level input-to-output latency while being software-defined and
reprogrammable like a CPU. FPGA programming is typically done with hardware description language (HDL). The
learning curve for HDL coding can be steep compared to software programming languages, but there are a few
tools available to convert scripts in other programming languages to HDL. We covered how to use MathWorks
HDL coder to convert a MATLAB script into HDL code for implementation on a Moku:Pro in Part | of the tutorial, in
this Part Il we will demonstrate how to generate HDL code from a Simulink model.

Simulink is a graphical-based modeling tool developed by MathWorks. The block diagram-based design
philosophy streamlines the process of translating a hand-drawn digital signal processing (DSP) system into a
computer-based model. The virtual test and measurement instruments, such as waveform generators and
oscilloscopes, provide a more intuitive way to construct the testbench and validate the DSP model. In addition,
users have the option to use Simulink to build a fixed-point system from the ground up. Some of the logic
operations are easier to implement with MATLARB functions, in this case users can add MATLAB function blocks
into their design. For more complicated systems, utilizing both tools could significantly streamline the design
process.

In this tutorial, we will construct a two-channel Schmitt trigger. The basics and concept design of the Schmitt
Trigger can be found Part | of the tutorial. For the first channel, we will use the exact same MATLAB function from
Part | of the tutorial to construct the DSP. For the second channel, we will use a Simulink built-in DSP block to
achieve the same function.

DSP Design Floating-Point Simulation

Conceptual Adjust the Floating Point Testbench
Design Template Design Construction

HDL Generation

Fixed Point Fixed Point Floating Point
Simulation Conversion Simulation

HDL Generation

DSP Compile and Deployment

Instrument

VHDL Simulation ‘ Compile and

Wrapper Deployment

Figure 1: Recommended workflow for Moku Cloud Compile + HDL Coder DSP Design.

Requirements

Before we get started with building and implementing the Schmitt trigger, please ensure your system satisfies the
following requirements. For generating VHDL code from a Simulink model you will need to have MATLAB with
Simulink, HDL Coder, and Fixed-Point Converter. Note: Mac users will also need to have XCode installed for
MATLAB to generate the VHDL code. For compiling the VHDL code you will need to have access to Moku Cloud
Compile. For implementing the compiled instrument bitstream, you will need to have a Moku:Pro running
firmware version 551 or above, the Moku: iPad app, and access to multi-instrument mode on your Moku:Pro.

3 Moku Cloud Compile with MathWorks HDL Coder © 2021 Liquid Instruments. liquidinstruments.com

https://www.liquidinstruments.com/

Moku Cloud Compile Tutorial October 13, 2021

Design and construct the DSP

Adjust the template

The first step in creating our model is to adjust the Simulink template to fit our DSP design. As our design is a
two-channel system, we will only need the InputA, InputB, OutputA, and OutputB ports.

0.0 3 E0E G ER AR

DpsP

Add your design targeted for FPGA inside DSP and then run the following command: Add your design targeted for FPGA inside DSP and then run the following command:
makehdI(DSP") makehdI('DSP")

Figure 2: Remove the redundant channels

Floating-point DSP design

In this section we will construct the two Schmitt triggers, with the first channel using a MATLAB function block and
the second channel using a Simulink trigger block.

Simulink building blocks can be found in the “Library Browser” under the simulation tab. The search function is
the best way to find the desired element. Please note that not all Simulink blocks support HDL code generation.
We recommend only using blocks under the “HDL Coder” or “HDL Support” catalog for everything within the
DSP subsystem.

e
a =
Search Results: MATLAB Function
= <<+ Page 1 of 1 (6 Blocks found)
v Simulink [+ simuliok -3
I Commonly Used Blocks
= — ;
o v =3
= = oMM 2 2
= ==

Logic and Bit Operations. + DSP System Toolbox - 2

Lookup Tables
Math Operations.
Matrix Operations

Messages & Events Identity Matrix identity Matrix
Model Verification » HOL Coder - 1

St st =1

> Fixed-Point Designer HOL Support v

gvﬂi

125%

Figure 3: Simulink building blocks can be found via the Library Browser.

4 Moku Cloud Compile with MathWorks HDL Coder © 2021 Liquid Instruments. liquidinstruments.com

https://www.liquidinstruments.com/

Moku Cloud Compile Tutorial October 13, 2021

For the first channel we will place a MATLAB function block in the model. As the MATLAB function is a floating-
point model and the Simulink template has pre-defined the data type for all the ports, the data type will not
match. We address this issue by placing two “convert” blocks before and after the MATLAB function block. Users
can design the model with a fixed-point algorithm, but we find it is easier to start with floating-point when
implementing a MATLAB function block in the model. Please note the first convert block may need to be
removed before the HDL conversion step.

To add the Schmitt trigger function to the MATLAB function block, double-click the block. We will use the same
MATLAB function as Part | of the tutorial, except for the function name (so we are not using the same name for
the MATLAB function and Simulink subsystem).

double double
convert »! inputagutputa » convert

InputA Schimitt_Trigge OutputA

Figure 4:Block diagram design of the MATLAB function-based Schmitt trigger.

function OutputA = Schimitt Trigger (Inputh)

persistent outO0;
if isempty (outO)
out0 = 0;

end
upperThreshold = floor (2715/10) ;

lowerThreshold = -floor (2715/10) ;

if InputA >upperThreshold
out0 = 2715-1;

elseif InputA <lowerThreshold
out0 = 0;

end

OutputA = outO;

For the second channel, we will use Simulink’s “Relay” block to perform the Schmitt trigger logic. We placed the
relay block between InputB and OutputB, then double-clicked the “Relay” block to change the switch on and off
thresholds to floor(2"5/10), and - floor(2215/10), respectively. In the “Signal Attributes” tab, set the signal output to
fixdt(1, 16,0) to match the output.

5 Moku Cloud Compile with MathWorks HDL Coder © 2021 Liquid Instruments.

https://www.liquidinstruments.com/

Moku Cloud Compile Tutorial October 13, 2021

) T

double
InputB OutputB
E] Block Parameters: Relay X E] Block Parameters: Relay X
Relay Relay
Output the specified 'on’ or 'off' value by comparing the input to the Output the specified 'on' or 'off' value by comparing the input to the
specified thresholds. The on/off state of the relay is not affected by input specified thresholds. The on/off state of the relay is not affected by input
between the upper and lower limits. between the upper and lower limits.
Main Signal Attributes Main Signal Attributes
Switch on point: Output minimum: Output maximum:
floor(2115/10) E [[t [B
Switch off point: Output data type: | fixdt(1,16,0) “i T >
St Rl H [] Lock output data type setting against changes by the fixed-point tools
Qutput when on:
[2715-1 E
Output when off:
0 |
Input processing: \Elements as channels (sample based) v
Enable zero-crossing detection
0 | OK | ‘ Cancel ‘ Help ‘ | Apply ‘ 0 | OK] | Cancel ‘ Help ‘ Apply |

Figure 5: The “Relay” block was set to perform the same Schmitt trigger logic as the first channel.

Construct the testbench

Simulink has a built-in signal generator, oscilloscope, and other common test and measurement equipment
blocks. This allows us to design the testbench in a more intuitive way. Please note the building blocks outside of
the DSP system do not need to be supported by HDL Coder, as they will be used for simulation only.

To construct the testbench, we used a “Signal Generator” block to produce the same signal we used for the
testbench in Part I. We rescaled and converted the signal from the generator to match the 16-bit signed input for
our system. Before feeding the signal into the Inputs, an additional “Convert” block was added to convert the
floating-point numbers to fixed-point. Then, we fed the generator signal, OuputA, and OutputB into the
oscilloscope to observe the system response.

(Group 1 doubla

‘Signal Generator

double
215

Oscilloscope

Add your design targeled for FPGA inside DSP and then run the following command:
makehd|(DSP’)

Figure 6: Block diagram of the Simulink-based testbench.

6 Moku Cloud Compile with MathWorks HDL Coder © 2021 Liquid Instruments. liquidinstruments.com

https://www.liquidinstruments.com/

October 13, 2021

Moku Cloud Compile Tutorial

Once the system is constructed, we run the simulation and verify the output. We observed the output signal was

as expected.

4 Oscilloscope
fle Tools View Simulation Help
Q@ SOP® - Q- @ FlA-
X

Data may be missing. Try unchecking Limit data points o last from the Configuraion Properties Logging lab.

Sample based T-0.001

Figure 7: The output of the DSP subsystem on the oscilloscope.

Fixed-point conversion

Before generating the VHDL code for our DSP subsystem, we will need to convert the floating-point MATLAB
function block to a fixed-point function block. We achieve this using MathWorks’ Fixed-Point Tool in the “Apps”
tab, with “lterative Fixed-Point Conversion” method. Please note that if we build the Simulink model with fixed-
point DSP from the beginning, we do not have to run the fixed-point conversion.

[Group 1

—
Signal Welcome to the Fixed-Point Tool

Signal Generator

Figure 8: Iterative Fixed-Point Conversion can be initiated via Simulink Apps tab.

Next, we selected the MATLAB function as the target and initiated the conversion process by clicking the
“Collect Ranges” button. Simulink uses the testbech data points as the reference to convert the model.

Moku Cloud Compile with MathWorks HDL Coder © 2021 Liquid Instruments.

https://www.liquidinstruments.com/

Moku Cloud Compile Tutorial October 13, 2021

4\ Fixed-Point Tool = o X
ITERATIVE FIXED-POINT CONVERSION
% %) ®
C{P @ l“"® B> e A % Run to compare in SDI r <&/
New Prepare | Collect é Propose D S it v | Compare Restore
4 Ranges v Data Types Data Types | Embed es v e Original Mode
WORKFLOW PREPARE _ COLLECT CONVERT VERIFY MANAGE ry

¥ Workflow Br..©

v System Under Design (SUD)

Select the system to analyze or convert
Selected system under design: ../DSP/MATLAB Function
[= ¥y Simulink Root
[[%3] System_Template*
= [P3 DSP

#.] MATLAB Function

] q Simulink Root — Range Collection Mode
£ Data Object
[[%a] System_Ter

Select whether to collect ranges through simulation or through static analysis that derives the ranges.

o] m DSP ®) Simulation ranges
#] MATL Derived ranges
< » ") Simulation with derived ranges
— Simulation Inputs
14 Soecify inputs for simulations You can choose to use the current model inputs orselecta X

Figure 9: The MATLAB function was selected to as the “System Under Design”.

Then, we can use the “Propose Data Types” button to let Simulink decide the best fixed-point precision. The
histograms in the bottom displays the range of each signal. We can manually override any signal precision if
needed. Once the precisions are decided, we can use the “Apply Data Types” button to proceed the conversion.

4\ Fixed-Point Tool - o X
ITERATIVE FIXED-POINT CONVERSION
Ll ® [settings 7 % Run to compare in SDI
New a [MATLAB Functions _Propose Apply M
- - Data Types Data Ty 2
WORKFLOW PREPARE COLLECT CONVERT VERIFY MANAGE =
¥ Workflow Browser ° Results ¥ Result Details o
43 setup Name - CompiledDT DT ProposedDT Accept SimMin SimMax ©
e BaselineRun @ InputA it: Same ... n/a
@ Outputa Inherit: Same ... n/a
9 Schimitt_Trigger : InputA double numerictype(1... M -13337 11682 Sele ct a result to €
B Schimitt_Trigger : OutputA double numerictype(0... 4 0 32767
&% Schimitt_Trigger : lowerThr... double numerictype(1... ¥ -3276 -3276 J
&9 Schimitt_Trigger : out0 double numerictype(0... M 0 32767
B schimitt_Trigger : upperThr... double numerictype(0... ¥ 3276 3276
»
15 ¥ Simulink Root Visualization of Simuation Data
i Data Objects Histograms of all results in the model E
[[System_Tempiate*
= [OSP
” I I
(s) £ MATLAB Functiq
g o i |
a
g
|
2
|8 —— Overows
—— inRange
29 Underfiows
I« »
int16 A uint16 int16
4 InputA<OutputA convert v
== in
InputA OutputA
@
int16 MATLAB Fu
2 > ;
int16
InputB OutputB

Figure 10: @ Propose the signal precision based on the testbench data; @Observe the signal range with the

histograms; @ Proceed to convert the model to fixed-point design. @ Delete the first “convert” block.

8 Moku Cloud Compile with MathWorks HDL Coder © 2021 Liquid Instruments. liquidinstruments.com

https://www.liquidinstruments.com/

Moku Cloud Compile Tutorial October 13, 2021

After the fixed-point conversion, the first “Covert” block needs to be removed; as the new “MATLAB Function”
block takes in fixed-point numbers instead of floating/double.

Fixed-point model verification

After the models have been converted, it is important to run another round of simulation to make sure the
behaviors and precision loss are as expected.

VHDL code generation

HDL code can be generated by clicking the “Generate HDL Code” button under the HDL Code tab. HDL Coder
generation settings are already preconfigured in the Simulink template, therefore we do not need to adjust
settings here.

P4 System_Template - Simulink

SIMULATION MODELING FORMAT HDLCODE X
pres -
L
QE) @ @ Code for @ ¥ Navigate to Code)) (:
Workflow = HDLBlock = HDLCode Settings psp ¥ | Generate Open F $ Generate Share
Advisor Properties v Advisor - HDL Code Testbench v o
ASSISTANCE MODELING PREPARE GENERATE CODE REVIEW RESULTS VERIFY SHARE

Figure 11: “Generate HDL Code” button is located under the HDL Code app.

VHDL simulation with a third-party tool (Optional)

VHDL testbench file can be generated by clicking the “Generate Testbench” button under the HDL Code app.
The verification step is identical to the MATLAB example.

"i System_Template - Simulink

SIMULATION MODELING FORMAT S HDLCODE X
e 1
- . L]
W @ @ s x| Navigate to Code gl g
Workflow =~ HDLBlock HDL Code Settings | psp § Generate Open Report Generate Share
Advisor Properties ¥ Advisor - HDL Code flestbench | >
ASSISTANCE, MODELING PREPARE GENERATE CODE REVIEW RESULTS VERIF SHARE

Figure 12: “Generate Testbench” button is located under the HDL Code app.

DSP Compile and Deployment

Moku Cloud Compile has a standard wrapper built-in to allow the custom instrument to interact with the other
parts of the Moku:Pro. The standard wrapper uses all four input channels and output channels for the instrument;
this does not match our Schmitt trigger example, which has two inputs and two outputs. Therefore, we will need
to create a custom wrapper for the instrument from the provided template.

Please note even with the “Minimize clock enables” option selected, sometimes HDL Coder still generates VHDL
code with clock_enable and ce_out ports (like in this tutorial). We will connect the clock_enable with a constant
high signal and leave the ce_out ports open if these ports are created during the VHDL conversion process.

9 Moku Cloud Compile with MathWorks HDL Coder © 2021 Liquid Instruments. liquidinstruments.com

https://www.liquidinstruments.com/

Moku Cloud Compile Tutorial October 13, 2021

ARCHITECTURE HDLCoderWrapper OF CustomWrapper IS

SIGNAL ConstantHigh : std_logic

COMPONENT DSP

PORT(Clk : std_logic;
Reset : std_logic;
clk_enable : std_logic;
InputA : signed(15 DOWNTO 0); -- sfix16_En16
InputB : signed(15 DOWNTO 0); -- sfix16_En16
ce_out_0O : std_logic;
ce_out_1 : std_logic;
OutputA : signed(15 DOWNTO 0); -- sfix16_En14
OutputB : signed(15 DOWNTO 0) -- sfix16_En14
);

END COMPONENT;

BEGIN
u_DSP : DSP

PORT MAP(Clk => CIK,
Reset => Reset,
clk_enable => ConstantHigh,
INputA => InputA,
InputB => InputB,
ce_out_0 =>
ce_out_1=>
OutputA => OutputA,
OutputB => OutputB

);
HDLCoderWrapper;

Compiling and deploying the instrument

Detailed instructions on how to use Moku Cloud Compile to build instrument bitstream and deploy the instrument
can be found in our Moku Cloud Compile Getting Started Guide.

To compile the Schmitt trigger, create a new project on Liquid Instruments' Moku Cloud Compile. In this project,
create a file for the DSP_fixpt.vhd, which is the VHDL code for the Schmitt trigger; also create a wrapper file for
the custom wrapper from the previous sections. Select a target device as a Moku:Pro with 4 slots and build the

Moku Cloud Compile with MathWorks HDL Coder © 2021 Liquid Instruments.

https://www.liquidinstruments.com/
https://download.liquidinstruments.com/documentation/guide/software/moku-cloud-compile/Moku-Cloud-Compile-Getting-Started.pdf

Moku Cloud Compile Tutorial October 13, 2021

project. Once the bitstream is built, you will be able to deploy the Schmitt trigger on your Moku:Pro using the web
interface and the iPad app.

To demonstrate the Schmitt trigger is functioning as per our conceptual design, we implemented the instrument
on a Moku:Pro using the Moku: App and Multi-Instrument Mode. In slot 1, we placed in an Arbitrary Waveform
Generator to generate the same signal we have used in the testbench as the input signal to the Schmitt trigger.
In slot 2, we placed in our Schmitt trigger. In Slot 3, we placed in an Oscilloscope to compare the output signals
from the Schmitt trigger and the Arbitrary Waveform Generator.

We first verify the Schmitt trigger in Channel A designed with the MATLAB function block. We can confirm the
output from the Schmitt trigger is switched to high when the input signal is above 110 mV and waited until the
signal is dropped below -110 mV to switch to zero.

Arbitrary
Waveform

Generator

Figure 13 (a) Multi-Instrument system configuration for testing the MATLAB function block Schmitt trigger. (b)
Oscilloscope measurement verifying the Schmitt trigger is functioning as designed.

We also verified the Schmitt trigger in Channel B, which was designed using the Simulink trigger block, and
observed the same behavior.

Figure 14 (a) Multi-Instrument system configuration for testing the Simulink trigger block Schmitt trigger. (b) Oscilloscope
measurement verifying the Schmitt trigger is functioning as designed.

Finally, we compared the two output channels together and can verify that they switch to high and low at the
same point.

Moku Cloud Compile with MathWorks HDL Coder © 2021 Liquid Instruments.

https://www.liquidinstruments.com/

Moku Cloud Compile Tutorial October 13, 2021

Math channel .

-100 ps

Figure 15 The Schmitt trigger designed using the MATLAB function block and the trigger block have the same
behaviors.

In this second part of the tutorial, we covered how to utilize MathWorks’ Simulink and HDL Coder to build,
validate, and deploy a DSP model on Moku:Pro. Compared to MATLAB only approach, Simulink gives you the
option to design the DSP via its DSP library and build the model with the fixed-point model from the ground up. It
is recommended for building complicated DSP systems.

The source code for this project can be downloaded with this link.

Please contact us at

Moku Cloud Compile with MathWorks HDL Coder © 2021 Liquid Instruments.

https://www.liquidinstruments.com/
https://download.liquidinstruments.com/documentation/app-note/reference-files/21-1003-HDLCoderPart2CodeforDownload.zip
mailto:support@liquidinstruments.com

