
 TB3282
 Getting Started with UART Using EUSART on PIC18

Introduction

Author: Alexandru Niculae, Microchip Technology Inc.

The UART-capable peripherals come in different variants on microcontrollers. Sometimes, the peripheral is named
UART or USART and sometimes it is called EUSART to emphasize enhanced functionalities. The data sheet of each
device shows the type of UART peripheral it has.

The purpose of this document is to describe how to configure the Enhanced Universal Synchronous Asynchronous
Receiver Transmitter (EUSART) on PIC18 devices to demonstrate its usage for some common use cases.

Notes: 
• For each use case, there are three different implementations, which have the same functionalities: one

generated with MPLAB® Code Configurator (MCC), one generated using the Foundation Services MCC Library
and one bare metal.

• The MCC generated code offers hardware abstraction layers that ease the use of the code across different
devices of the same family. The Foundation Services generated code offers a driver-independent Application
Programming Interface (API) and facilitates the portability of code across different platforms. The bare metal
code is easier to follow and allows a fast ramp-up on the use case associated code.

While EUSART is a complex peripheral and can work in various modes, this document will use it in Asynchronous
mode and describes the following use cases:

• Send ‘Hello World’:
This example shows how to send a string to the PC and see it in the MPLAB® Data Visualizer Terminal.

• Send Formatted Messages Using printf:
This example shows how to enhance the first use case with the ability to use the printf function to send
messages over EUSART. In this example, messages are Data Stream protocol frames, and the MPLAB Data
Visualizer can be used to display them as plots.

• Receive Control Commands:
This example shows how to implement a command line interface. This way, the microcontroller can receive
control commands via the EUSART. In this use case, an LED is controlled using commands sent from the
MPLAB Data Visualizer.

The examples in this technical brief have been developed using the PIC18F47Q10 Curiosity Nano development
board, which is equipped with the QFN40 package.

View Code Examples on GitHub
Click to browse repositories

© 2020 Microchip Technology Inc. Technical Brief DS90003282A-page 1

https://www.microchip.com/mplab/mplab-code-configurator
https://github.com/microchip-pic-avr-examples?q=pic18f47q10-cnano-eusart&type=&language=

Table of Contents

Introduction...1

1. Peripheral Overview..3

2. Send ‘Hello World’...4

2.1. MCC Generated Code..4
2.2. Foundation Services Generated Code...5
2.3. Bare Metal Code.. 6

3. Send Formatted Messages Using printf...9

3.1. MCC Generated Code..9
3.2. Foundation Services Generated Code...10
3.3. Bare Metal Code...11

4. Receive Control Commands... 15

4.1. MCC Generated Code..15
4.2. Foundation Services Generated Code...16
4.3. Bare Metal Code.. 17

5. References..22

6. Appendix .. 23

6.1. How to Receive Data in MPLAB® X Data Visualizer..23
6.2. How to Configure MPLAB® X Data Visualizer to Decode Data Stream Protocol.......................23
6.3. Send Commands from MPLAB® X Data Visualizer... 25

7. Revision History.. 26

The Microchip Website...27

Product Change Notification Service..27

Customer Support.. 27

Microchip Devices Code Protection Feature.. 27

Legal Notice... 27

Trademarks.. 28

Quality Management System... 28

Worldwide Sales and Service...29

 TB3282

© 2020 Microchip Technology Inc. Technical Brief DS90003282A-page 2

1. Peripheral Overview
The EUSART module is a serial Input/Output (I/O) communications peripheral. It contains all the clock generators,
shift registers and data buffers necessary to perform an input or output serial data transfer, independent of device
program execution. The EUSART, also known as a Serial Communications Interface (SCI), can be configured as a
full-duplex asynchronous system or half-duplex synchronous system. The Full-Duplex mode is useful for
communications with peripheral systems, such as CRT terminals and personal computers. The Half-Duplex
Synchronous mode is intended for communications with peripheral devices, such as A/D or D/A integrated circuits,
serial EEPROMs or other microcontrollers. These devices typically do not have internal clocks for baud rate
generation and require the external clock signal provided by a master synchronous device.

The RXx/DTx and TXx/CKx input pins are selected with the RXxPPS and TXxPPS registers, respectively. TXx, CKx
and DTx output pins are selected with each of the pin’s RxyPPS register. Since the RX input is coupled with the DT
output in Synchronous mode, it is the user’s responsibility to select the same pin for both of these functions when
operating in Synchronous mode. The EUSART module will control the data direction drivers automatically.

Figure 1-1. EUSART Block Diagram

 TB3282
Peripheral Overview

© 2020 Microchip Technology Inc. Technical Brief DS90003282A-page 3

2. Send ‘Hello World’
This use case demonstrates how to send string messages from the microcontroller to the PC and use MPLAB Data
Visualizer to see them. The EUSART will be configured for Asynchronous mode and only the TX pin will be used.

Note: 
If a platform without an on-board UART to USB converter is used, there are many options of external UART to USB,
such as the MCP2200 and the MCP2221A.

This use case follows the steps:

• Configure the system clock
• Configure EUSART2
• Configure the pins

2.1 MCC Generated Code
To generate this project using the MPLAB Code Configurator (MCC), follow these steps:

1. Create a new MPLAB X IDE project .
2. Open the MCC from the toolbar (information on how to install the MCC plug-in can be found on the Microchip

website).
3. Go to Project Resources > System > System Module and use the following configurations:

– Oscillator Select: HFINTOSC
– HF Internal Clock: 4 MHz
– Clock Divider: 4
– In the Watchdog Timer Enable field, in the WWDT tab, ensure WDT Disable is selected
– In the Programming tab, ensure Low-Voltage Programming Enable is checked

4. From the Device Resources window, add EUSART2 to the project, then use the following configurations:
– Mode: Asynchronous
– Enable EUSART: Checked
– Enable Transmit: Checked
– Baud Rate: 9600
– Transmission-bits: 8 bits
– Reception-bits: 8 bits
– Data Polarity: Noninverted

5. Open the Pin Manager > Grid View window, select UQFN40 in the MCU package field and select pin RD0 as
EUSART TX.
Figure 2-1. Pin Mapping

6. Click Generate in the Project Resources tab.
7. In the main.c file, which has been generated by MCC:

– Add the following code in the main function (replacing the existing while(1) loop):

 TB3282
Send ‘Hello World’

© 2020 Microchip Technology Inc. Technical Brief DS90003282A-page 4

https://www.microchip.com/wwwproducts/en/en546923
https://www.microchip.com/wwwproducts/en/MCP2221A
https://microchipdeveloper.com/install:mcc
https://microchipdeveloper.com/install:mcc

char msg[] = "Hello World\r\n";
while (1)
{
 for(uint8_t i = 0; i < strlen(msg); i++)
 {
 EUSART2_Write(msg[i]);
 }
}

8. Use MPLAB X Data Visualizer as described in the appendix, How to Receive Data in MPLAB X Data
Visualizer.

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

2.2 Foundation Services Generated Code
To generate this project using the Foundation Services library, follow these steps:

1. Create a new MPLAB X project.
2. Open the MCC from the toolbar (information on how to install the MCC plug-in can be found on the Microchip

website).
3. Go to Project Resources > System > System Module and use the following configurations:

– Oscillator Select: HFINTOSC
– HF Internal Clock: 4 MHz
– Clock Divider: 4
– In the WDT Enable field, in the WWDT tab, ensure WDT Disable is selected
– In the Programming tab, ensure Low-Voltage Programming Enable is checked

4. In Device Resources under Libraries, find Foundation Services, expand it and double-click UART to add it to
the project.

5. Click the + button at the bottom to add a new Foundation Services federated UART.
6. Select EUSART2 from the UART drop down in Foundation Services.
7. Open the Pin Manager > Grid View window, select UQFN40 in the MCU package field and select pin RD0

EUSART TX.
Figure 2-2. Pin Mapping

8. Click Generate in the Project Resources tab.
9. In the main.c file, which was generated by MCC:

– Uncomment the line that enables global interrupts and the one that enables peripheral interrupts
– Add the following code in the main function (replacing the existing while(1) loop):

char msg[] = "Hello world\r\n";
while (1)
{
 for(uint8_t i = 0; i < strlen(msg); i++)
 {

 TB3282
Send ‘Hello World’

© 2020 Microchip Technology Inc. Technical Brief DS90003282A-page 5

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-eusart-hello-world-mcc
https://microchipdeveloper.com/install:mcc
https://microchipdeveloper.com/install:mcc

 uart[UART0].Write(msg[i]);
 }
}

10. Use MPLAB X Data Visualizer as described in the appendix, How to Receive Data in MPLAB Data Visualizer.

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

2.3 Bare Metal Code
The first step is to configure the microcontroller to disable the Watchdog Timer (WDT) and to enable the Low-Voltage
Programming (LVP).

/* WDT operating mode → WDT Disabled */
#pragma config WDTE = OFF
/* Low-voltage programming enabled, RE3 pin is MCLR */
#pragma config LVP = ON

2.3.1 How to Configure the System Clock
To use the High-Frequency Internal Oscillator (HFINTOSC) at 1 MHz, two settings must be made in the registers.
First, select HFINTOSC as the oscillator source in the OSCCON1 register by writing to the NOSC bit field:

/* Set HFINTOSC as new oscillator source. */
OSCCON1bits.NOSC = 0b110;

Then, select the nominal frequency of 1 MHz in the OSCFRQ register:

/* Set HFFRQ to 1 MHz. */
OSCFRQbits.HFFRQ = 0;

2.3.2 How to Configure EUSART2
EUSART2 will be configured for 9600 baud rate and the standard 8-N-1 (eight data bits, no parity bit and one Stop
bit) frame format.

Given the configured frequency and the desired baud rate of 9600, the 16-bit Baud Rate Generator (BRG16) must be
used, and High Baud Rate (BRGH) must be enabled. The SPEN bit enables the Serial Port (EUSART) as a whole,
while TXEN enables its transmitter.

/* Transmit Enable */
TX2STAbits.TXEN = 1;
/* High Baud Rate Select */
TX2STAbits.BRGH = 1;
/* 16-bit Baud Rate Generator is used */
BAUD2CONbits.BRG16 = 1;
/* Serial Port Enable */
RC2STAbits.SPEN = 1;

The value to be written in SP2BRG is found in the table below, taken from the device data sheet.

 TB3282
Send ‘Hello World’

© 2020 Microchip Technology Inc. Technical Brief DS90003282A-page 6

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-eusart-hello-world-fs

Table 2-1. Sample Baud Rates for Asynchronous Modes

BAUD
RATE

SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1
FOSC = 8.000 MHz FOSC = 4.000 MHz FOSC = 3.6864 MHz FOSC = 1.000 MHz

Actual
Rate

%
Error

SPBRG
value

(decimal)

Actual
Rate

%
Error

SPBRG
value

(decimal)

Actual
Rate

%
Error

SPBRG
value

(decimal)

Actual
Rate

%
Error

SPBRG
value

(decimal)

300 300.0 0.00 6666 300.0 0.01 3332 300.0 0.00 3071 300.1 0.04 832

1200 1200 -0.02 1666 1200 0.04 832 1200 0.00 767 1202 0.16 207

2400 2401 0.04 832 2398 0.08 416 2400 0.00 383 2404 0.16 103

9600 9615 0.16 207 9615 0.16 103 9600 0.00 95 9615 0.16 25

10417 10417 0 191 10417 0.00 95 10473 0.53 87 10417 0.00 23

19.2k 19.23k 0.16 103 19.23k 0.16 51 19.20k 0.00 47 19.23k 0.16 12

57.6k 57.14k -0.79 34 58.82k 2.12 16 57.60k 0.00 15 — — —

115.2k 117.6k 2.12 16 111.1k -3.55 8 115.2k 0.00 7 — — —

/* Baud rate 9600 */
SP2BRGL = 25;
SP2BRGH = 0;

2.3.3 How to Configure the Pins
Since only the transmission is necessary for this use case, only the TX pin must be configured. The pin used as TX in
this example, is the RD0 pin and it must be configured using the Peripheral Pin Select (PPS). To find the value that
needs to be written to the RD0PPS register, inspect the Peripheral PPS Output Selection Codes table below, taken
from the device data sheet.

Table 2-2. Peripheral PPS Output Selection Codes

RxyPPS
Pin Rxy
Output
Source

PORT to Which Output can be Directed

28-Pin Devices 40-Pin Devices

0x0C EUSART2
(DT)

— B C — B — D —

0x0B EUSART2
(TX/CK)

— B C — B — D —

0x0A EUSART1
(DT)

— B C — B C — —

0x09 EUSART1
(TX/CK)

— B C — B C — —

The following line will route the EUSART2 TX to RD0:

/* RD0 is TX2 */
RD0PPS = 0x0B;

 TB3282
Send ‘Hello World’

© 2020 Microchip Technology Inc. Technical Brief DS90003282A-page 7

The pin direction is set by default as output, but if it were not, the following line sets it.

/* Configure RD0 as output. */
TRISDbits.TRISD0 = 0;

Table 2-3. Pin Locations

Function Pin

EUSART2 TX RD0

Before sending data, the user needs to check if the previous transmission is complete by checking the PIR3.TXnIF bit
field. The following code example waits until the transmit buffer is empty, then writes a character to the TXnREG
register:

static void EUSART2_write(uint8_t txData)
{
 while(0 == PIR3bits.TX2IF)
 {
 ;
 }

 TX2REG = txData;
}

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

Use MPLAB X Data Visualizer as described in the appendix, How to Receive Data in MPLAB X Data Visualizer.

 TB3282
Send ‘Hello World’

© 2020 Microchip Technology Inc. Technical Brief DS90003282A-page 8

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-eusart-hello-world-bare

3. Send Formatted Messages Using printf
It is a common use case for an application to send a message with variable fields over EUSART, such as when the
application reports a sensor reading. Using formatted messages is a very flexible approach and reduces the number
of code lines. This can be accomplished by redirecting Standard Input/Output (STDIO) to EUSART.

In this example, a counter value and twice its value are sent in a binary format, using the Data Stream Protocol, over
EUSART. The MPLAB X Data Visualizer has a built-in Data Stream Protocol decoder and can display charts of the
values in the message in real time.

This use case follows the steps:

• Configure the system clock
• Configure EUSART2
• Configure the pins

3.1 MCC Generated Code
To generate this project using the MCC, follow these steps:

1. Create a new MPLAB X IDE project.
2. Open the MCC from the toolbar (information on how to install the MCC plug-in can be found on the Microchip

website).
3. Go to Project Resources > System > System Module and use the following configurations:

– Oscillator Select: HFINTOSC
– HF Internal Clock: 4 MHz
– Clock Divider: 4
– In the Watchdog Timer Enable field, in the WWDT tab, ensure WDT Disable is selected
– In the Programming tab, make sure Low-Voltage Programming Enable is checked

4. From the Device Resources window, add EUSART2 to the project, then use the following configurations:
– Mode: Asynchronous
– Enable EUSART: Checked
– Enable Transmit: Checked
– Baud Rate: 9600
– Transmission-bits: 8 bits
– Reception-bits: 8 bits
– Data Polarity: Noninverted
– Redirect STDIO to USART: Checked

5. Open Pin Manager > Grid View window, select UQFN40 in the MCU package field and select pin RD0 as
EUSART TX.
Figure 3-1. Pin Mapping

6. Click Generate in the Project Resources tab.
7. In the main.c file, which has been generated by MCC:

 TB3282
Send Formatted Messages Using printf

© 2020 Microchip Technology Inc. Technical Brief DS90003282A-page 9

https://microchipdeveloper.com/install:mcc
https://microchipdeveloper.com/install:mcc

– Add the following defines:

#define START_DATA_STREAM_PROTOCOL 0x03
#define STOP_DATA_STREAM_PROTOCOL 0xFC

– Add the following code in the main function (replacing the existing while(1) loop):

uint8_t cnt = 0;
while (1)
{
 printf("%c%c%c%c", START_DATA_STREAM_PROTOCOL, cnt, cnt * 2,
STOP_DATA_STREAM_PROTOCOL);
 cnt = cnt + 1;
 __delay_ms(50);
}

8. Use MPLAB X Data Visualizer as described in the appendix, How to Configure MPLAB X Data Visualizer to
Decode Data Stream Protocol.

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

3.2 Foundation Services Generated Code
To generate this project using the Foundation Services library, follow these steps:

1. Create a new MPLAB X IDE project for PIC18F47Q10.
2. Open the MCC from the toolbar (information on how to install the MCC plug-in can be found on the Microchip

website).
3. Go to Project Resources > System > System Module and use the following configurations:

– Oscillator Select: HFINTOSC
– HF Internal Clock: 4 MHz
– Clock Divider: 4
– In the WDT Enable field, in the WWDT tab, ensure WDT Disable is selected
– In the Programming tab, make sure Low-Voltage Programming Enable is checked

4. In Device Resource, under Libraries, find Foundation Services, expand it and double-click UART to add it to
the project.

5. Click the + button at the bottom to add a new Foundation Services federated UART.
6. Select EUSART2 from the UART drop down in Foundation Services.
7. Open the Pin Manager > Grid View window, select UQFN40 in the MCU package field and select pin RD0

EUSART TX.
Figure 3-2. Pin Mapping

8. In Project Resources, under Peripherals, select EUSART2 and use the following configuration:
– Redirect STDIO to USART: Checked

 TB3282
Send Formatted Messages Using printf

© 2020 Microchip Technology Inc. Technical Brief DS90003282A-page 10

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-eusart-printf-mcc
https://microchipdeveloper.com/install:mcc
https://microchipdeveloper.com/install:mcc

9. Click Generate in the Project Resources tab.
10. In the main.c file, which was generated by MCC:

– Uncomment the line that enables global interrupts and the one that enables peripheral interrupts
– Add the following defines:

#define START_DATA_STREAM_PROTOCOL 0x03
#define STOP_DATA_STREAM_PROTOCOL 0xFC

– Add the following code in the main function (replacing the existing while(1) loop):

uint8_t cnt = 0;
while (1)
{
 printf("%c%c%c%c", START_DATA_STREAM_PROTOCOL, cnt, cnt * 2,
STOP_DATA_STREAM_PROTOCOL);
 cnt = cnt + 1;
 __delay_ms(50);
}

11. Use MPLAB X Data Visualizer as described in the appendix, How to configure MPLAB X Data Visualizer to
Decode Data Stream Protocol.

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

3.3 Bare Metal Code
The first step will be to configure the microcontroller to disable the WDT and to enable the LVP.

/* WDT operating mode → WDT Disabled */
#pragma config WDTE = OFF
/* Low-voltage programming enabled, RE3 pin is MCLR */
#pragma config LVP = ON

3.3.1 How to Configure the System Clock
To use the HFINTOSC at 1 MHz, two settings must be made in the registers. First, select HFINTOSC as the oscillator
source in the OSCCON1 register by writing to the NOSC bit field:

/* Set HFINTOSC as new oscillator source. */
OSCCON1bits.NOSC = 0b110;

Then, select the nominal frequency of 1 MHz in the OSCFRQ register:

/* Set HFFRQ to 1 MHz. */
OSCFRQbits.HFFRQ = 0;

3.3.2 How to Configure EUSART2
EUSART2 will be configured for 9600 baud rate and the standard 8-N-1 (eight data bits, no parity bit and one Stop
bit) frame format.

 TB3282
Send Formatted Messages Using printf

© 2020 Microchip Technology Inc. Technical Brief DS90003282A-page 11

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-eusart-printf-fs

Given the configured frequency and the desired baud rate of 9600, the 16-bit Baud Rate Generator (BRG16) must be
used and High Baud Rate (BRGH) must be enabled. The SPEN bit enables the Serial Port (EUSART) as a whole,
while TXEN enables its transmitter.

/* Transmit Enable */
TX2STAbits.TXEN = 1;
/* High Baud Rate Select */
TX2STAbits.BRGH = 1;
/* 16-bit Baud Rate Generator is used */
BAUD2CONbits.BRG16 = 1;
/* Serial Port Enable */
RC2STAbits.SPEN = 1;

The value to be written in SP2BRG is found in the table below, taken from the device data sheet.

Table 3-1. Sample Baud Rates for Asynchronous Modes

BAUD
RATE

SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1
FOSC = 8.000 MHz FOSC = 4.000 MHz FOSC = 3.6864 MHz FOSC = 1.000 MHz

Actual
Rate

%
Error

SPBRG
value

(decimal)

Actual
Rate

%
Error

SPBRG
value

(decimal)

Actual
Rate

%
Error

SPBRG
value

(decimal)

Actual
Rate

%
Error

SPBRG
value

(decimal)

300 300.0 0.00 6666 300.0 0.01 3332 300.0 0.00 3071 300.1 0.04 832

1200 1200 -0.02 1666 1200 0.04 832 1200 0.00 767 1202 0.16 207

2400 2401 0.04 832 2398 0.08 416 2400 0.00 383 2404 0.16 103

9600 9615 0.16 207 9615 0.16 103 9600 0.00 95 9615 0.16 25

10417 10417 0 191 10417 0.00 95 10473 0.53 87 10417 0.00 23

19.2k 19.23k 0.16 103 19.23k 0.16 51 19.20k 0.00 47 19.23k 0.16 12

57.6k 57.14k -0.79 34 58.82k 2.12 16 57.60k 0.00 15 — — —

115.2k 117.6k 2.12 16 111.1k -3.55 8 115.2k 0.00 7 — — —

/* Baud rate 9600 */
SP2BRGL = 25;
SP2BRGH = 0;

3.3.3 How to Configure the Pins
Since only the transmission is necessary for this use case, only the TX pin must be configured. The pin used as TX,
in this example, is the RD0 pin and it must be configured using the Peripheral Pin Select (PPS). To find the value that
needs to be written to the RD0PPS register, inspect the Peripheral PPS Output Selection Codes table below, taken
from the device data sheet.

Table 3-2. Peripheral PPS Output Selection Codes

RxyPPS Pin Rxy Output Source
PORT to Which Output can be Directed

28-Pin Devices 40-Pin Devices

0x0C EUSART2 (DT) — B C — B — D —

0x0B EUSART2 (TX/CK) — B C — B — D —

0x0A EUSART1 (DT) — B C — B C — —

 TB3282
Send Formatted Messages Using printf

© 2020 Microchip Technology Inc. Technical Brief DS90003282A-page 12

...........continued

RxyPPS Pin Rxy Output Source
PORT to Which Output can be Directed

28-Pin Devices 40-Pin Devices

0x09 EUSART1 (TX/CK) — B C — B C — —

The following line will direct the EUSART2 TX to RD0:

/* RD0 is TX2 */
RD0PPS = 0x0B;

The pin direction is set by default output, but otherwise, the following line sets it.

/* Configure RD0 as output. */
TRISDbits.TRISD0 = 0;

Table 3-3. EUSART Pin Locations

Function Pin

EUSART2 TX RD0

Before sending data, the user needs to check if the previous transmission is complete by checking the PIR3.TXnIF bit
field. The following code example waits until the transmit buffer is empty, then writes a character to the TXnREG
register:

static void EUSART2_write(uint8_t txData)
{
 while(0 == PIR3bits.TX2IF)
 {
 ;
 }

 TX2REG = txData;
}

3.3.4 How to Implement the Function that Handles STDIO
The function that handles STDIO is void puthc(char c). Implementing this function will transmit its char
argument over EUSART and will cause the printf to be redirected to EUSART.

void putch(char txData)
{
 EUSART2_write(txData);
}

The following line will send messages over EUSART:

printf("%c%c%c%c", START_DATA_STREAM_PROTOCOL, cnt, cnt * 2, STOP_DATA_STREAM_PROTOCOL);

The Data Stream Protocol frame has start and stop tokens, as inverse/one’s complement each other. In between
those, the payload may contain any number of values. The protocol must be sent in binary format.

Note:  The printf function uses placeholder specifiers in the format string to mark where to insert variables. Some
of the available placeholders are displayed in the table below.

 TB3282
Send Formatted Messages Using printf

© 2020 Microchip Technology Inc. Technical Brief DS90003282A-page 13

Table 3-4.  printf Specifiers

Placeholder Description

%d Insert a signed integer

%f Insert a floating point number

%s Insert a sequence of characters

%c Insert a character

%x Insert integer unsigned in hex format

In this example, the %c specifier is used, because the row binary value will be transmitted.

Note:  The %x specifier inserts the hex value as ASCII characters, thus, this is not well-suited here.

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

Use MPLAB X Data Visualizer as described in the appendix, How to Configure MPLAB X Data Visualizer to Decode
Data Stream Protocol.

 TB3282
Send Formatted Messages Using printf

© 2020 Microchip Technology Inc. Technical Brief DS90003282A-page 14

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-eusart-printf-bare

4. Receive Control Commands
One important usage of the EUSART represents the implementation of a command line interface. This way, the
microcontroller can receive control commands via EUSART. It is convenient to use the line terminator as command
delimiter, so for this use case, EUSART will read full lines and then check if the line contains a valid command.

This use case follows the steps:

• Configure the system clock
• Configure EUSART2
• Configure the pins
• Implement STDIO receive and send functions
• Read lines and execute valid commands

4.1 MCC Generated Code
To generate this project using MPLAB Code Configurator (MCC), follow these steps:

1. Create a new MPLAB X IDE project.
2. Open the MCC from the toolbar (information on how to install the MCC plug-in can be found on the Microchip

website).
3. Go to Project Resources > System > System Module and use the following configurations:

– Oscillator Select: HFINTOSC
– HF Internal Clock: 4 MHz
– Clock Divider: 4
– In the Watchdog Timer Enable field, in the WWDT tab, ensure WDT Disable is selected
– In the Programming tab, make sure Low-Voltage Programming Enable is checked

4. From the Device Resources window, add EUSART2 to the project, then use the following configurations:
– Mode: Asynchronous
– Enable EUSART: Checked
– Enable Transmit: Checked
– Baud Rate: 9600
– Transmission-bits: 8 bits
– Reception-bits: 8 bits
– Data Polarity: Noninverted
– Redirect STDIO to USART: Checked

5. Open Pin Manager > Grid View window, select UQFN40 in the MCU package field and make the following pin
configurations:

– RD0 – EUSART2 TX
– RD1 – EUSART RX
– RE0 – GPIO output

Figure 4-1. Pin Mapping

6. In Project Resource, locate Pin Module and rename RE0 from IO_RE0 to LED0; uncheck the Analog check
box.

 TB3282
Receive Control Commands

© 2020 Microchip Technology Inc. Technical Brief DS90003282A-page 15

https://microchipdeveloper.com/install:mcc
https://microchipdeveloper.com/install:mcc

7. Click Generate in the Project Resources tab.
8. Replace the main.c file with the code provided in the code example.
9. Use MPLAB X Data Visualizer as described in the appendix, Send Commands from MPLAB X Data Visualizer.

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

4.2 Foundation Services Generated Code
To generate this project using the Foundation Services library, follow these steps:

1. Create a new MPLAB X IDE project.
2. Open the MCC from the toolbar (information on how to install the MCC plug-in can be found on the Microchip

website).
3. Go to Project Resources > System > System Module and use the following configurations:

– Oscillator Select: HFINTOSC
– HF Internal Clock: 4 MHz
– Clock Divider: 4
– In the WDT Enable field, in the WWDT tab, ensure WDT Disable is selected
– In the Programming tab, make sure Low-Voltage Programming Enable is checked

4. In device resource, under Libraries find Foundation Services, expand it and double-click UART it to add it to
the project.

5. Click the + button at the bottom to add a new Foundation Services federated UART.
6. Select EUSART2 from the UART drop down in Foundation Services.
7. Open the Pin Manager > Grid View window, select UQFN40 in the MCU package field and make the following

pin configurations:
– RD0 – EUSART TX
– RD1 – EUSART RX
– RE0 – GPIO output

Figure 4-2. Pin Mapping

8. In Project Resources, under Peripherals, select EUSART2 and use the following configuration:
– Redirect STDIO to USART: Checked

9. In Project Resources, locate Pin Module and rename RE0 from IO_RE0 to LED0, and uncheck the Analog
check box.

10. Click Generate in the Project Resources tab.
11. Replace the main.c file with the code provided in the code example.
12. Use MPLAB X Data Visualizer as described in the appendix, Send Commands from MPLAB X Data Visualizer.

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

 TB3282
Receive Control Commands

© 2020 Microchip Technology Inc. Technical Brief DS90003282A-page 16

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-eusart-commands-mcc
https://microchipdeveloper.com/install:mcc
https://microchipdeveloper.com/install:mcc
https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-eusart-commands-fs

4.3 Bare Metal Code
The first step will be to configure the microcontroller to disable the WDT and to enable the LVP.

/* WDT operating mode → WDT Disabled */
#pragma config WDTE = OFF
/* Low-voltage programming enabled, RE3 pin is MCLR */
#pragma config LVP = ON

4.3.1 How to Configure the System Clock
To use the HFINTOSC at 1 MHz, two settings must be made in the register. First, select HFINTOSC as the oscillator
source in the OSCCON1 register by writing to the NOSC bit field:

/* Set HFINTOSC as new oscillator source. */
OSCCON1bits.NOSC = 0b110;

Then, select the nominal frequency of 1 MHz in the OSCFRQ register:

/* Set HFFRQ to 1 MHz. */
OSCFRQbits.HFFRQ = 0;

4.3.2 How to Configure EUSART2
EUSART2 will be configured for 9600 baud rate and the standard 8-N-1 (eight data bits, no parity bit and one Stop
bit) frame format.

Given the configured frequency and the desired baud rate of 9600, the 16-bit Baud Rate Generator (BRG16) must be
used and High Baud Rate (BRGH) must be enabled. The SPEN bit enables the Serial Port (EUSART) as a whole,
while TXEN enables its transmitter.

In Asynchronous mode, the EUSART supports two types of receive: Single Receive and Continuous Receive. Since
a command can be received at any time, Continuous Receive mode will be used.

/* 16-bit Baud Rate Generator is used */
BAUD2CONbits.BRG16 = 1;
/* Transmit Enable */
TX2STAbits.TXEN = 1;
/* High Baud Rate Select */
TX2STAbits.BRGH = 1;
/* Continuous Receive Enable */
RC2STAbits.CREN = 1;
/* Serial Port Enable

The value to be written in SP2BRG is found in the table below, taken from the device data sheet.

Table 4-1. Sample Baud Rates for Asynchronous Modes

BAUD
RATE

SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1
FOSC = 8.000 MHz FOSC = 4.000 MHz FOSC = 3.6864 MHz FOSC = 1.000 MHz

Actual
Rate

%
Error

SPBRG
value

(decimal)

Actual
Rate

%
Error

SPBRG
value

(decimal)

Actual
Rate

%
Error

SPBRG
value

(decimal)

Actual
Rate

%
Error

SPBRG
value

(decimal)

300 300.0 0.00 6666 300.0 0.01 3332 300.0 0.00 3071 300.1 0.04 832

1200 1200 -0.02 1666 1200 0.04 832 1200 0.00 767 1202 0.16 207

 TB3282
Receive Control Commands

© 2020 Microchip Technology Inc. Technical Brief DS90003282A-page 17

...........continued

BAUD
RATE

SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1
FOSC = 8.000 MHz FOSC = 4.000 MHz FOSC = 3.6864 MHz FOSC = 1.000 MHz

Actual
Rate

%
Error

SPBRG
value

(decimal)

Actual
Rate

%
Error

SPBRG
value

(decimal)

Actual
Rate

%
Error

SPBRG
value

(decimal)

Actual
Rate

%
Error

SPBRG
value

(decimal)

2400 2401 0.04 832 2398 0.08 416 2400 0.00 383 2404 0.16 103

9600 9615 0.16 207 9615 0.16 103 9600 0.00 95 9615 0.16 25

10417 10417 0 191 10417 0.00 95 10473 0.53 87 10417 0.00 23

19.2k 19.23k 0.16 103 19.23k 0.16 51 19.20k 0.00 47 19.23k 0.16 12

57.6k 57.14k -0.79 34 58.82k 2.12 16 57.60k 0.00 15 — — —

115.2k 117.6k 2.12 16 111.1k -3.55 8 115.2k 0.00 7 — — —

/* Baud rate 9600 */
SP2BRGL = 25;
SP2BRGH = 0;

4.3.3 How to Configure the Pins
In this example, the pin used as TX is RD0 and it must be configured using the Peripheral Pin Select (PPS). To find
the value that needs to be written to the RD0PPS register, inspect the Peripheral PPS Output Selection Codes table
below, taken from the device data sheet.

Table 4-2. Peripheral PPS Output Selection Codes

RxyPPS Pin Rxy Output Source
PORT to Which Output can be Directed

28-Pin Devices 40-Pin Devices

0x0C EUSART2 (DT) — B C — B — D —

0x0B EUSART2 (TX/CK) — B C — B — D —

0x0A EUSART1 (DT) — B C — B C — —

0x09 EUSART1 (TX/CK) — B C — B C — —

The following line will direct the EUSART2 TX to RD0:

/* RD0 is TX2 */
RD0PPS = 0x0B;

The pin direction is set by default output, but if it were not, the following line sets it.

/* Configure RD0 as output. */
TRISDbits.TRISD0 = 0;

The pin used as RX is RD1, so using PPS, EUSART2 RX must be routed to this pin. For this, the RX2PPS register is
used. The value to be written is determined based on the xxxPPS register definition:

 TB3282
Receive Control Commands

© 2020 Microchip Technology Inc. Technical Brief DS90003282A-page 18

Figure 4-3. Peripheral xxx Input Selection
17.9.1 Peripheral xxx Input Selection

Name:  xxxPPS

Bit 7 6 5 4 3 2 1 0
PORT[1:0] PIN[2:0]

Access R/W R/W R/W R/W R/W
Reset g g g g g

Bits 4:3 – PORT[1:0] Peripheral xxx Input PORT Selection bits
See the input selection table for a list of available ports and default pin locations.
Value Description
11 PORTD
10 PORTC
01 PORTB
00 PORTA

Bits 2:0 – PIN[2:0] Peripheral xxx Input Pin Selection bits
Value Description
111 Peripheral input is from PORTx Pin 7 (Rx7)
110 Peripheral input is from PORTx Pin 6 (Rx6)
101 Peripheral input is from PORTx Pin 5 (Rx5)
100 Peripheral input is from PORTx Pin 4 (Rx4)
011 Peripheral input is from PORTx Pin 3 (Rx3)
010 Peripheral input is from PORTx Pin 2 (Rx2)
001 Peripheral input is from PORTx Pin 1 (Rx1)
000 Peripheral input is from PORTx Pin 0 (Rx0)

Therefore, the following line routes RX2 to pin RD1.

RX2PPS = 0b00011001;

Since the pin is not a digital input by default, this needs to be configured (enable digital input buffers using the
ANSELD register and set as input using the TRISD register).

/* Configure RD1 as input. */
TRISDbits.TRISD1 = 1;
/* Enable RD1 digital input buffers.*/
ANSELDbits.ANSELD1 = 0;

The LED pin, RE0 in this example, must be configured as a digital output.
/* Configure RE0 as output. */
TRISEbits.TRISE0 = 0;

Table 4-3. EUSART Pin Locations

Function Pin

EUSART2 TX RD0

EUSART2 RX RD1

LED0 RE0

 TB3282
Receive Control Commands

© 2020 Microchip Technology Inc. Technical Brief DS90003282A-page 19

Before sending data, the user needs to check if the previous transmission is complete by checking the PIR3.TXnIF bit
field. The following code example waits until the transmit buffer is empty, then writes a character to the TXnREG
register:

static void EUSART2_write(uint8_t txData)
{
 while(0 == PIR3bits.TX2IF)
 {
 ;
 }
 TX2REG = txData;
}

Before reading the data, the user must wait for it to be available by polling the PIR3.RCnIF flag.

uint8_t EUSART2_read(void)
{
 while(0 == PIR3bits.RC2IF)
 {
 ;
 }

 return RC2REG;
}

4.3.4 Implement STDIO Receive and Send Functions
The function that handles STDIO is void puthc(char c). Implementing this function will transmit its char argument
over EUSART and will cause printf to be redirected to EUSART.

void putch(char txData)
{
 EUSART2_write(txData);
}

Similarly, to implementing putch, char getch(void) must be implemented so that the EUSART incoming data
are mapped to STDIO.

char getch(void)
{
 return EUSART2_read();
}

4.3.5 How to Read Lines and Execute Valid Commands
The following code snippet reads one line of data and stores it in an array. A valid line is shorter than the array length
in this example.

The array index is reset to zero when reaching the array end, to avoid a bugger overflow error in case of longer lines
received. The characters, ‘\n’ (line feed) and ‘\r’ (carriage return), are ignored, because they are part of the line
terminator. When ‘\n’ is found, the string end (NULL) is added to the command, and the function ‘executeCommand’
will interpret it and change the state of the LED .

char command[MAX_COMMAND_LEN];
uint8_t index = 0;
char c;
while(1)
{
 c = getch();
 if(c != '\n' && c != '\r')

 TB3282
Receive Control Commands

© 2020 Microchip Technology Inc. Technical Brief DS90003282A-page 20

 {
 command[index++] = c;
 if(index > MAX_COMMAND_LEN)
 {
 index = 0;
 }
 }

 if(c == '\n')
 {
 command[index] = '\0';
 index = 0;
 executeCommand(command);
 }
}

Using the MPLAB X Data Visualizer, ‘LED ON’ and ‘LED OFF’ commands can be sent to the board.

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

Use the MPLAB X Data Visualizer as described in the appendix, Send Commands from MPLAB X Data Visualizer.

 TB3282
Receive Control Commands

© 2020 Microchip Technology Inc. Technical Brief DS90003282A-page 21

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-eusart-commands-bare

5. References
1. Getting Started with USART
2. MPLAB Code Configurator User’s Guide
3. PIC1000: Getting Started with Writing C-Code for PIC16F and PIC18F

 TB3282
References

© 2020 Microchip Technology Inc. Technical Brief DS90003282A-page 22

http://ww1.microchip.com/downloads/en/Appnotes/TB3216-Getting-Started-with-USART-90003216B.pdf
http://ww1.microchip.com/downloads/en/devicedoc/40001725b.pdf
https://www.microchip.com/wwwappnotes/appnotes.aspx?appnote=en1002117

6. Appendix

6.1 How to Receive Data in MPLAB® X Data Visualizer
First, ensure the plug-in is installed; if not, install it from within MPLAB® X Integrated Development Environment (IDE)
by going to Tools > Plug-ins > Available Plug-ins.

If using a platform with on-board UART to USB, no further hardware setup is needed. If not, connect the TX pin to the
RX pin of a UART to USB converter and connect that to the PC.

Open the Data Visualizer by clicking the icon at the top of the MPLAB X IDE.

Figure 6-1. MPLAB® X Data Visualizer Icon

Available COM ports will be listed on the left hand side of the screen. Find the one associated with the connected
board and click the Play button. In the terminal window settings (right hand side), select Input Source to be the COM
port associated with the board. It will start receiving messages from the microcontroller.

Figure 6-2. MPLAB® X Data Visualizer Receiving Data

6.2 How to Configure MPLAB® X Data Visualizer to Decode Data Stream Protocol
• In Data Visualizer, click the Plot Data button and select Data Stream Protocol.

 TB3282
Appendix

© 2020 Microchip Technology Inc. Technical Brief DS90003282A-page 23

Figure 6-3. MPLAB® X Data Visualizer Data Format

• Click Next and in the second screen, configure the frame format for the two fields in the payload.
Figure 6-4. MPLAB® X Data Visualizer Data Stream Protocol Payload Configuration

• Click Next and then Plot, as the default name for the Decoder works well the way it is generated. As soon as
this is done, given the device is correctly programmed with the example code and is connected to the PC, the
plots should start showing in real time.

 TB3282
Appendix

© 2020 Microchip Technology Inc. Technical Brief DS90003282A-page 24

Figure 6-5. MPLAB® X Data Visualizer Displaying Plots

6.3 Send Commands from MPLAB® X Data Visualizer
Program the example code on the device, then open MPLAB® X Data Visualizer. Select the correct COM port as the
input source. In the output section, ensure Newline Character is set to ‘CR+LF’. Type one of the commands, ‘ON’ or
‘OFF’, and observe the LED changing its state accordingly.

Figure 6-6. Commands Sent from MPLAB® X Data Visualizer

 TB3282
Appendix

© 2020 Microchip Technology Inc. Technical Brief DS90003282A-page 25

7. Revision History
Doc Rev. Date Comments

A 08/2020 Initial document release

 TB3282
Revision History

© 2020 Microchip Technology Inc. Technical Brief DS90003282A-page 26

The Microchip Website
Microchip provides online support via our website at www.microchip.com/. This website is used to make files and
information easily available to customers. Some of the content available includes:

• Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service
Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support
Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Embedded Solutions Engineer (ESE)
• Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature
Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is one of the most secure families of its kind on the market today,

when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these

methods, to our knowledge, require using the Microchip products in a manner outside the operating
specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of
intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code

protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection
features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital
Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you
may have a right to sue for relief under that Act.

Legal Notice
Information contained in this publication regarding device applications and the like is provided only for your
convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with

 TB3282

© 2020 Microchip Technology Inc. Technical Brief DS90003282A-page 27

http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support

your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER
EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such
use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless
otherwise stated.

Trademarks
The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox,
KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST,
MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer,
QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control,
HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus,
ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider,
Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom,
CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM,
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP,
INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM,
PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad
I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense,
ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2020, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-6528-7

Quality Management System
For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.

 TB3282

© 2020 Microchip Technology Inc. Technical Brief DS90003282A-page 28

http://www.microchip.com/quality

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
www.microchip.com/support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2020 Microchip Technology Inc. Technical Brief DS90003282A-page 29

http://www.microchip.com/support
http://www.microchip.com

	Introduction
	Table of Contents
	1. Peripheral Overview
	2. Send ‘Hello World’
	2.1. MCC Generated Code
	2.2. Foundation Services Generated Code
	2.3. Bare Metal Code
	2.3.1. How to Configure the System Clock
	2.3.2. How to Configure EUSART2
	2.3.3. How to Configure the Pins

	3. Send Formatted Messages Using printf
	3.1. MCC Generated Code
	3.2. Foundation Services Generated Code
	3.3. Bare Metal Code
	3.3.1. How to Configure the System Clock
	3.3.2. How to Configure EUSART2
	3.3.3. How to Configure the Pins
	3.3.4. How to Implement the Function that Handles STDIO

	4. Receive Control Commands
	4.1. MCC Generated Code
	4.2. Foundation Services Generated Code
	4.3. Bare Metal Code
	4.3.1. How to Configure the System Clock
	4.3.2. How to Configure EUSART2
	4.3.3. How to Configure the Pins
	4.3.4. Implement STDIO Receive and Send Functions
	4.3.5. How to Read Lines and Execute Valid Commands

	5. References
	6. Appendix
	6.1. How to Receive Data in MPLAB® X Data Visualizer
	6.2. How to Configure MPLAB® X Data Visualizer to Decode Data Stream Protocol
	6.3. Send Commands from MPLAB® X Data Visualizer

	7. Revision History
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

