
 TB3273
 Getting Started with CLC on PIC18

Introduction

Author: Gheorghe Turcan, Microchip Technology Inc.

Using logic gates, systems can make decisions based on criteria without Central Processing Unit (CPU) intervention.
Traditionally, these logic gates are manually implemented as external components. However, the PIC®

microcontrollers (MCUs) offer this as a built-in functionality.

The Configurable Logic Cell (CLC) has a variety of basic gates, as well as sequential logic options that can be
customized to create the logic specific to many applications. Using these logic gates, the CLC gives the ability of
combining signals to make a new custom signal without running code to execute it. The CLC also offers flexible input
selection (internal, external signals) and configurable output for internal or external use with the help of the Peripheral
Pin Select (PPS).

This technical brief explains the concepts of the CLC and its implementation in the PIC18 family of microcontrollers
with the following use cases:

• Using Basic Logic Gates:
This example shows how to use the CLC to implement the basic logic functions AND, OR and XOR of two
internally generated signals. The outputs of the CLCs are connected to I/O pins.

• Using CLCs to Create a Data Signal Modulator:
This example shows how to use the CLC in both J-K flip-flop and AND-OR configurations to obtain a DSM
function (multiple frequency carrier signal).

• Using the CLC to Create an LED Dimming Effect:
This example shows how to use the CLC in an SR Latch configuration to obtain a PWM signal that changes duty
cycle without code addition. The change in duty cycle can be used to generate the effect of an LED dimming or
increasing brightness instead of blinking.

Note:  For each use case, there are two different implementations that have the same functionalities: one code
generated with MPLAB® Code Configurator (MCC) and one bare metal code. The MCC generated code offers
hardware abstraction layers that ease the use of the code across different devices from the same family. The bare
metal code is easier to follow and allows a fast ramp-up on the use case associated code.

View Code Examples on GitHub
Click to browse repositories

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 1

https://www.microchip.com/mplab/mplab-code-configurator
https://github.com/microchip-pic-avr-examples?q=pic18f47q10clc&type=&language=

Table of Contents

Introduction...1

1. Peripheral Overview..3

2. Using Basic Logic Gates... 6

2.1. MCC Generated Code..9
2.2. Bare Metal Code.. 12

3. Using CLCs to Create a Data Signal Modulator (DSM).. 15

3.1. MCC Generated Code..16
3.2. Bare Metal Code.. 19

4. Using the CLC to Create an LED Dimming Effect...22

4.1. MCC Generated Code..23
4.2. Bare Metal Code.. 24

5. References..27

6. Revision History.. 28

The Microchip Website...29

Product Change Notification Service..29

Customer Support.. 29

Microchip Devices Code Protection Feature.. 29

Legal Notice... 29

Trademarks.. 30

Quality Management System... 30

Worldwide Sales and Service...31

 TB3273

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 2

1. Peripheral Overview
The Configurable Logic Cell (CLC) module provides programmable logic that operates outside the speed limitations
of software execution. The CLC takes up to 64 input signals and, using configurable gates, reduces the 64 inputs to
four logic lines that drive one of eight selectable single-output logic functions.

Input sources are a combination of the following components:
• I/O pins
• Internal clocks
• Peripherals
• Register bits

The output can be directed internally to peripherals and to an output pin.

Important:  There are several CLC instances on this device. Throughout this section, the lower
case x in register names is a generic reference to the CLC instance number (CLCx). For example,
the first instance of the control register is CLC1CON and is generically described in this chapter as
CLCxCON.

The following figure is a simplified diagram showing signal flow through the CLC.

Figure 1-1. CLC Simplified Block Diagram

In
pu

t
D

at
a

S
e

le
ct

io
n

G
a

te
s(1

)

Logic
Function

(2)

lcxg2

lcxg1

lcxg3

lcxg4

MODE[2:0]

lcxq

EN

POL

det

Interrupt

det

Interrupt

set bit
CLCxIFINTN

INTP

CLCx

to Peripherals

Q1

CLCx_out

OUT
CLCxOUT

D Q

PPS

LCx_in[0]
LCx_in[1]
LCx_in[2]

LCx_in[n-2]
LCx_in[n-1]

LCx_in[n]

.

.

.

Rev. 10-000025H
11/9/2016

CLCxPPS

TRIS

Possible configurations include:

• Combinatorial Logic:
– AND
– NAND
– AND-OR
– AND-OR-INVERT
– OR-XOR

 TB3273
Peripheral Overview

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 3

– OR-XNOR
• Latches:

– S-R
– Clocked D with Set and Reset
– Transparent D with Set and Reset
– Clocked J-K with Reset

Figure 1-2. Programmable Logic Functions

lcxg1

lcxg2

lcxg3

lcxg4

lcxq

AND-OR OR-XOR

[2 :0] = 000 [2 :0] = 001

4-input AND S-R Latch

[2 :0] = 010 [2 :0] = 011

lcxg1

lcxg2

lcxg3

lcxg4

lcxq

S

R

Q lcxq
lcxg1

lcxg2

lcxg3

lcxg4

lcxg1

lcxg2

lcxg3

lcxg4

lcxq

1-Input D Flip-Flop with S and R 2-Input D Flip-Flop with R

J-K Flip-Flop with R 1-Input Transparent Latch with S and R

[2 :0] = 100 [2 :0] = 101

[2 :0] = 110 [2 :0] = 111

D

R

Q lcxq

lcxg1

lcxg2

lcxg3

lcxg4
D

R

Q
S

lcxg1

lcxg2

lcxg3

lcxg4

lcxq

J

R

Q

K

lcxg1

lcxg2

lcxg3

lcxg4

lcxq
D

R

Q
S

LE

lcxq

lcxg1

lcxg2

lcxg3

lcxg4

Rev. 10-000122B
9/13/2016

MODE

MODE

MODE

MODE

MODE

MODE

MODE MODE

Programming the CLC module is performed by configuring the four stages in the logic signal flow. These stages are:

• Data selection
• Data gating
• Logic function selection
• Output polarity

 TB3273
Peripheral Overview

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 4

Each stage is setup at run time by writing to the corresponding CLC Special Function Registers. This has the added
advantage of permitting logic reconfiguration on-the-fly during program execution.

 TB3273
Peripheral Overview

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 5

2. Using Basic Logic Gates
This example shows a basic initialization of three CLC peripherals in the Logic Gate mode and how to link to internal
peripherals and to I/O ports. The three basic logic functions to take into consideration are: AND, OR and XOR.

The input signals going through the CLC are generated internally by the Timer2, Timer4, PWM3 and PWM4
peripherals. The outputs of the CLC and PWMs are connected to I/O ports for oscilloscope measurements as shown
in Figure 2-1.

Setup configurations are the following:

• Timer2 frequency = 100 kHz (10 us period)
• Timer4 frequency = 200 kHz (5 us period)
• PWM3 has Timer2 as source and duty cycle = 50%
• PWM4 has Timer4 as source and duty cycle = 50%
• CLC1 is set up as AND-OR: used as 2-input OR
• CLC2 is set up as 4-input AND: used as 2-input AND
• CLC3 is set up as OR-XOR: used as 2-input XOR

Figure 2-1. Internal Connections for “Using Basic Logic Gates” Example

TIMER2
100 kHz

TIMER4
200 kHz

PWM3
50% DC

PWM4
50% DC

CLC1

CLC2

CLC3

RA2

RA3

RC2

RC3

RB0

The following are the truth tables and oscilloscope results of each CLC:

1. For the OR example (CLC1), two input signals are used. The truth table is depicted below:
Table 2-1. Truth Table for 2-Input Logic OR Function

A B O = A OR B

0 0 0

0 1 1

1 0 1

1 1 1

Figure 2-2 depicts the input and output signals of CLC1 as it performs the OR logic function:

– Signal 1 (Orange) is PWM3 output used as CLC1 Input A
– Signal 2 (Green) is PWM4 output used as CLC1 Input B
– Signal 3 (Blue) is CLC1 output (logic OR between PWM3 and PWM4)

 TB3273
Using Basic Logic Gates

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 6

Figure 2-2. Oscillograms of CLC1 Performing Logic OR, Input Signals PWM3 and PWM4

2. For the AND example, two input signals are used (the CLC in AND mode can have up to four inputs). The truth
table is shown below:

Table 2-2. Truth Table for 2-Input Logic AND Function

A B O = A AND B

0 0 0

0 1 0

1 0 0

1 1 1

Figure 2-3 depicts the input and output signals of CLC2 as it performs the AND logic function:

– Signal 1 (Orange) is PWM3 output used as CLC2 Input A
– Signal 2 (Green) is PWM4 output used as CLC2 Input B
– Signal 4 (Red) is CLC2 output (logic AND between PWM3 and PWM4)

 TB3273
Using Basic Logic Gates

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 7

Figure 2-3. Oscillograms of CLC2 Performing Logic AND, Input Signals PWM3 and PWM4

3. For the XOR example, two input signals are used. The truth table is shown below:
Table 2-3. Truth Table for 2-Input Logic XOR Function

A B O = A XOR B

0 0 0

0 1 1

1 0 1

1 1 0

Figure 2-4 depicts the input and output signals of CLC3 as it performs the XOR logic function:

– Signal 1 (Orange) is PWM3 output used as CLC3 Input A
– Signal 2 (Green) is PWM4 output used as CLC3 Input B
– Signal 3 (Blue) is CLC3 output (logic XOR between PWM3 and PWM4)

 TB3273
Using Basic Logic Gates

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 8

Figure 2-4. Oscillograms of CLC3 Performing Logic XOR, Input Signals PWM3 and PWM4

To achieve the functionality described by the use case, the following actions will have to be performed:
• System clock initialization
• Port initialization
• Timer initialization
• PWM initialization
• CLC initialization.

2.1 MCC Generated Code
To generate this project using MPLAB® Code Configurator (MCC), follow the next steps:

1. Create a new MPLAB X IDE project for PIC18F47Q10.
2. Open MCC from the toolbar. More information on how to install the MCC plug-in can be found here.
3. Go to Project Resources → System → System Module and do the following configuration:

– Oscillator Select: HFINTOSC
– HF Internal Clock: 64 MHz
– Clock Divider: 1
– In the Watchdog Timer Enable field in the WWDT tab, WDT Disabled has to be selected.
– In the Programming tab, Low-Voltage Programming Enable has to be checked.

4. From the Device Resources window, add TMR2, TMR4, PWM3, PWM4, CLC1, CLC2 and CLC3. Do the
following configurations for each peripheral:
4.1. Timer2 Configuration:

• Enable Timer: checked
• Timer Clock tab

– Clock Source: FOSC/4
– Prescaler: 1:1

 TB3273
Using Basic Logic Gates

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 9

https://microchipdeveloper.com/install:mcc

– Postscaler: 1:1
• Timer Period: 10 us
• Enable Timer Interrupt: unchecked

4.2. Timer4 Configuration:
• Enable Timer: checked
• Ext Reset Source: TMR2_postscaled
• Start/Reset Options: Resets at rising TMR4_rst
• Timer Clock tab

– Clock Source: FOSC/4
– Prescaler: 1:1
– Postscaler: 1:1

• Timer Period: 5 us
• Enable Timer Interrupt: unchecked

4.3. PWM3 Configuration:
• Enable PWM: checked
• Select a Timer: Timer2
• Duty Cycle: 50%
• PWM Polarity: active_hi

4.4. PWM4 Configuration:
• Enable PWM: checked
• Select a Timer: Timer4
• Duty Cycle: 50%
• PWM Polarity: active_hi

4.5. CLC1 Configuration:
• Enable CLC: checked
• Mode: AND-OR
• The AND-OR user configurable interpretation window is now available in the CLC1 window. Set

the internal connections as shown below. By selecting PWM3 as both inputs for the AND, it
becomes the first input of the OR. The same is true for PWM4 as second input of OR; this way
CLC1 is used as a 2-input OR gate.

Figure 2-5. CLC1 Configuration Mode AND-OR, Used as 2-Input OR

4.6. CLC2 Configuration:

 TB3273
Using Basic Logic Gates

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 10

• Enable CLC: checked
• Mode: 4-input AND
• The 4-input AND user configurable interpretation window is now available in the CLC2 window.

Set the internal connections as shown below. By selecting PWM3 as two of the inputs for the 4-
input AND, and PWM4 as the other two, it becomes equivalent to a 2-input AND function from
CLC2.

Figure 2-6. CLC2 Configuration Mode 4-Input AND, Used as 2-Input AND

4.7. CLC3 Configuration:
• Enable CLC: checked
• Mode: 4-input OR-XOR
• The OR-XOR user configurable interpretation window is now available in the CLC3 window. Set

the internal connections as shown below. By selecting PWM3 as both inputs for the OR, it
becomes the first input of the XO. The same is true for PWM4 as second input of XOR; this way
CLC3 is used as a 2-input XOR gate.

Figure 2-7. CLC3 Configuration Mode OR-XOR, Used as 2-Input XOR

5. In the Pin Manager: Grid View window, select the I/O pins outputs to enable the internal signal access to the
I/O as shown in Figure 2-8.

 TB3273
Using Basic Logic Gates

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 11

Figure 2-8. Pin Mapping for the Example “Using Basic Logic Gates”

6. In the Project Resources window, click Generate.

For this example, no extra code was used aside from the one generated from MCC.

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

2.2 Bare Metal Code
The necessary code and functions to implement the presented example are analyzed in this section.

The first step will be to configure the microcontroller to disable the Watchdog Timer and to enable the Low-Voltage
Programming (LVP).

#pragma config WDTE = OFF /* WDT operating mode → WDT Disabled */
#pragma config LVP = ON /* Low-voltage programming enabled, RE3 pin is MCLR */

As described in the example functionality, the following peripherals must be initialized: Timer2, Timer4, PWM3,
PWM4, CLC1, CLC2, CLC3, the I/O PORT and PPS.

The internal oscillator has to be set to the desired value (in this case to 64 MHz), using the following function:

static void CLK_init(void)
{
 OSCCON1bits.NOSC = 6; /* HFINTOSC oscillator */
 OSCFRQ = 0x08; /* HFFRQ 64_MHz; */
}

To enable the output driver in the desired I/O pins (RA2, RA3, RB0, RC2 and RC3), the following function is used:

static void PORT_init(void)
{
 /* PORT RA2 and RA3 output driver enabled */
 TRISAbits.TRISA2 = 0;
 TRISAbits.TRISA3 = 0;
 /* PORT RB0 output driver enabled */
 TRISBbits.TRISB0 = 0;
 /* PORT RC2 and RC3 output driver enabled */
 TRISCbits.TRISC2 = 0;
 TRISCbits.TRISC3 = 0;
}

For Timer2 to use FOSC/4 as clock source and generate a pulse every 10 us (frequency = 100 kHz), the following
function is used:

static void TMR2_init(void)
{
 T2CLKCONbits.CS = 1; /* Timer2 clock source is FOSC/4 */
 T2PR = 0x9F; /* Load period values */
 T2CON = 0x80; /* Enable Timer2 */
}

 TB3273
Using Basic Logic Gates

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 12

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-clc-logic-mcc

Timer4 is configured to use FOSC/4 as clock source and generate a pulse every 5 us (frequency = 200 kHz). Timer4
is also set to start at the same time as Timer2. The following function is used:

static void TMR4_init(void)
{
 /* Timer4 clock source is FOSC/4 */
 T4CLKCONbits.CS = 1;
 /* Timer4 resets at rising TMR4_ers*/
 T4HLTbits.MODE = 4;
 /* Timer4 Reset source is TMR2_postscaled; */
 T4RSTbits.RSEL = 1;
 /* Load period values */
 T4PR = 0x4F;
 /* Enable Timer4 */
 T4CON = 0x80;
}

PWM3 uses Timer2 as pulse source and is configured to generate a pulse with 50% duty cycle. The following
function is used:

static void PWM3_init(void)
 {
 PWM3CON = 0x80; /* Enable PWM3*/
 /* Load duty cycle values */
 PWM3DCH = 0x4F;
 PWM3DCL = 0xC0;
 CCPTMRS = 0x10; /* Select Timer2 as pulse source */
 }

PWM4 uses Timer4 as pulse source and it is configured to generate a pulse with 50% duty cycle. The following
function is used:

static void PWM4_init(void)
 {
 PWM4CON = 0x80; /* Enable PWM4*/
 /* Load duty cycle values */
 PWM4DCH = 0x27;
 PWM4DCL = 0xC0;
 CCPTMRSbits.P4TSEL = 2; /* Select Timer4 as pulse source */
 }

CLC1 is configured in the AND-OR mode and uses PWM3 and PWM4 as inputs with the instructions from the
following function:

static void CLC1_init(void)
{
 CLC1POL = 0x00; /* Clear the output polarity register */
 CLC1SEL0 = 0x1A; /* Configure PWM3_OUT as input for first OR gate */
 CLC1SEL1 = 0x1A; /* Configure PWM3_OUT as input for second OR gate */
 CLC1SEL2 = 0x1B; /* Configure PWM4_OUT as input for third OR gate */
 CLC1SEL3 = 0x1B; /* Configure PWM4_OUT as input for forth OR gate */
 /* All four inputs are not inverted*/
 CLC1GLS0 = 0x02;
 CLC1GLS1 = 0x08;
 CLC1GLS2 = 0x20;
 CLC1GLS3 = 0x80;
 CLC1CON = 0x80; /* CLC1 enabled; Mode AND-OR*/
}

CLC2 is configured in the 4-input AND mode and uses PWM3 and PWM4 as inputs with the instructions from the
following function:

static void CLC2_init(void)
{
 CLC2POL = 0x00; /* Clear the output polarity register */
 CLC2SEL0 = 0x1A; /* Configure PWM3_OUT as input for first OR gate */
 CLC2SEL1 = 0x1A; /* Configure PWM3_OUT as input for second OR gate */
 CLC2SEL2 = 0x1B; /* Configure PWM4_OUT as input for third OR gate */
 CLC2SEL3 = 0x1B; /* Configure PWM4_OUT as input for forth OR gate */
 /* All four inputs are not inverted*/

 TB3273
Using Basic Logic Gates

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 13

 CLC2GLS0 = 0x02;
 CLC2GLS1 = 0x08;
 CLC2GLS2 = 0x20;
 CLC2GLS3 = 0x80;
 CLC2CONbits.EN = 1; /* CLC2 enabled */
 CLC2CONbits.MODE = 2; /* Mode 4-input AND */
}

CLC3 is configured in the OR-XOR mode and uses PWM3 and PWM4 as inputs with the instructions from the
following function:

static void CLC3_init(void)
{
 CLC3POL = 0x00; /* Clear the output polarity register */
 CLC3SEL0 = 0x1A; /* Configure PWM3_OUT as input for first OR gate */
 CLC3SEL1 = 0x1A; /* Configure PWM3_OUT as input for second OR gate */
 CLC3SEL2 = 0x1B; /* Configure PWM4_OUT as input for third OR gate */
 CLC3SEL3 = 0x1B; /* Configure PWM4_OUT as input for forth OR gate */
 /* All four inputs are not inverted*/
 CLC3GLS0 = 0x02;
 CLC3GLS1 = 0x08;
 CLC3GLS2 = 0x20;
 CLC3GLS3 = 0x80;
 CLC3CONbits.EN = 1; /* CLC3 enabled */
 CLC3CONbits.MODE = 1; /* Mode OR-XOR */
}

To measure the internal peripheral signals with the oscilloscope, the following link must be made:

Table 2-4. Peripheral Mapping to I/O Pins for the Example “Using Basic Logic Gates”

Internal CIP Signal Microcontroller Pin

PWM3_OUT RA2

PWM4_OUT RA3

CLC1_OUT RC2

CLC2_OUT RC3

CLC3_OUT RB0

This is done in the following function:

static void PPS_init(void)
{
 RA2PPS = 0x07; /*Configure RA2 for PWM3 output*/
 RA3PPS = 0x08; /*Configure RA3 for PWM4 output*/
 RB0PPS = 0x1A; /*Configure RB0 for CLC3 output*/
 RC2PPS = 0x18; /*Configure RC2 for CLC1 output*/
 RC3PPS = 0x19; /*Configure RC3 for CLC2 output*/
}

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

 TB3273
Using Basic Logic Gates

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 14

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-clc-logic-bare

3. Using CLCs to Create a Data Signal Modulator (DSM)
This example shows an initialization of the CLC in the J-K flip-flop with R mode and AND-OR mode for the
implementation of a Data Signal Modulator (DSM) with timings controlled from the CCP peripheral. The truth table of
the J-K flip-flop is shown below.

Table 3-1. Truth Table for the J-K Flip-Flop

CLK J K O

0 0 0 Latch

0 0 1 0

0 1 0 1

0 1 1 Toggle

1 0 0 Latch

1 0 1 Latch

1 1 0 Latch

1 1 1 Latch

CLC1 (J-K flip-flop 1) has Timer2 as clock source (which represents the first modulated frequency), while the carrier
signal generated from the CCP is connected to the J gate of the J-K flip-flop. The K gate is left to logic 1. This allows
the CLC to toggle when the J input is high and stay 0 when the J input is low.

CLC2 (J-K flip-flop 2) is connected in the same way with Timer4 as clock source and the negated CCP as input for
the J gate. This CCP connection to the J gates ensures that one CLC is toggling while the other has the output set to
0 logic. CLC3 set in AND-OR mode is connecting CLC1 and CLC2 outputs to create a DSM.

The internal architecture is shown in Figure 3-1.

Figure 3-1. Internal Connections for “Using CLCs to Create a DSM” Example

CCP1
50% DC

TIMER6
62.5 kHz

TIMER2
1 MHz

TIMER4
500 kHz

J

K

CLK OUT

CLC1

CLC3

J

K

CLK OUT

CLC2

RB0

RA2

RA3

‘1’

RB3

‘1’

DSM setup configurations:

• Timer2 frequency = 1 MHz (1 us period)
• Timer4 frequency = 500 kHz (2 us period)
• Timer6 frequency = 62.5 kHz (16 us period)
• CCP1 has Timer6 as source and duty cycle = 50%
• CLC1 is set up as J-K flip-flop with R
• CLC2 is set up as J-K flip-flop with R
• CLC3 is set up as AND-OR: used as 2-input OR

 TB3273
Using CLCs to Create a Data Signal Modulator ...

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 15

Figure 3-2 displays all the CLCs outputs and the CCP1 output side by side to show how this configuration
implements the DSM function:

• Signal 1 (Orange) is CCP1 output
• Signal 2 (Green) is CLC1 output
• Signal 3 (Blue) is CLC3 output
• Signal 4 (Red) is CLC2 output

Figure 3-2. Oscillograms of CLC1, CLC2, CLC3 and CCP1 Performing a DSM Function

To achieve the functionality described by the use case, the following actions will have to be performed:
• System clock initialization
• Port initialization
• Timer initialization
• CCP initialization
• CLC initialization.

3.1 MCC Generated Code
To generate this project using MPLAB® Code Configurator (MCC), follow the next steps:

1. Create a new MPLAB X IDE project for PIC18F47Q10.
2. Open MCC from the toolbar. More information on how to install the MCC plug-in can be found here.
3. Go to Project Resources → System → System Module and do the following configuration:

– Oscillator Select: HFINTOSC
– HF Internal Clock: 64 MHz
– Clock Divider: 1
– In the Watchdog Timer Enable field in the WWDT tab, WDT Disabled has to be selected.
– In the Programming tab, Low-Voltage Programming Enable has to be checked.

4. From the Device Resources window, add TMR2, TMR4, TMR6, CCP1, CLC1, CLC2 and CLC3. Do the
following configurations for each peripheral:

 TB3273
Using CLCs to Create a Data Signal Modulator ...

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 16

https://microchipdeveloper.com/install:mcc

4.1. Timer2 Configuration:
• Enable Timer: checked
• Timer Clock tab

– Clock Source: FOSC/4
– Prescaler: 1:1
– Postscaler: 1:1

• Timer Period: 1 us
• Enable Timer Interrupt: unchecked

4.2. Timer4 Configuration:
• Enable Timer: checked
• Timer Clock tab

– Clock Source: FOSC/4
– Prescaler: 1:1
– Postscaler: 1:1

• Timer Period: 2 us
• Enable Timer Interrupt: unchecked

4.3. Timer6 Configuration:
• Enable Timer: checked
• Timer Clock tab

– Clock Source: FOSC/4
– Prescaler: 1:1
– Postscaler: 1:1

• Timer Period: 16 us
• Enable Timer Interrupt: unchecked

4.4. CCP1 Configuration:
• Enable CCP: checked
• CCP Mode: PWM
• Select Timer: Timer6
• Duty Cycle: 50%
• CCPR Alignment: right_aligned

4.5. CLC1 Configuration:
• Enable CLC: checked
• Mode: J-K flip-flop with R
• The J-K flip-flop with R user configurable interpretation window is now available in the CLC1

window. Set the internal connections as shown below. By selecting TMR2 as clock source for
the J-K, the CLC will generate a PWM signal with 500 kHz frequency and 50% duty cycle.
Select CCP1 as the J input, allowing to have O = 0 when J is 0 and K is 1.

 TB3273
Using CLCs to Create a Data Signal Modulator ...

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 17

Figure 3-3. CLC1 Configuration Mode J-K Flip-Flop with R

4.6. CLC2 Configuration:
• Enable CLC: checked
• Mode: J-K flip-flop with R
• The J-K flip-flop with R user configurable interpretation window is now available in the CLC2

window. Set the internal connections as shown below. By selecting TMR as clock source for the
J-K, the CLC will generate a PWM signal with 250 kHz frequency and 50% duty cycle. Select
CCP1 as the J input, allowing to have O = 0 when J is 0 and K is 1.

Figure 3-4. CLC2 Configuration Mode J-K Flip-Flop with R

4.7. CLC3 Configuration:
• Enable CLC: checked
• Mode: AND-OR
• The AND-OR user configurable interpretation window is now available in the CLC3 window. Set

the internal connections as shown below. By selecting CLC1 as both inputs for the AND, it
becomes the first input of the OR. The same is true for CLC2 as second input of OR; this way
CLC3 is used as a 2-input OR gate.

 TB3273
Using CLCs to Create a Data Signal Modulator ...

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 18

Figure 3-5. CLC3 Configuration Mode AND-OR, Used as 2-Input OR

5. In the Pin Manager: Grid View window, select the I/O pins outputs to enable the internal signal access to the
I/O as shown in Figure 3-6.
Figure 3-6. Pin Mapping for the Example “Using CLCs to Create a Data Signal Modulator”

6. In the Project Resources window, click Generate.

For this example, no extra code was used aside from the one generated from MCC.

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

3.2 Bare Metal Code
The necessary code and functions to implement the presented example are analyzed in this section.

The first step will be to configure the microcontroller to disable the Watchdog Timer and to enable the Low-Voltage
Programming (LVP).

#pragma config WDTE = OFF /* WDT operating mode → WDT Disabled */
#pragma config LVP = ON /* Low-voltage programming enabled, RE3 pin is MCLR */

As described in the example functionality, the following peripherals must be initialized: Timer2, Timer4, Timer6,
CCP1, CLC1, CLC2, CLC3, the I/O PORT and PPS.

The internal oscillator has to be set to the desired value (in this case to 64 MHz), using the following function:

static void CLK_init(void)
{
 OSCCON1bits.NOSC = 6; /* HFINTOSC oscillator */
 OSCFRQ = 0x08; /* HFFRQ 64_MHz; */
}

 TB3273
Using CLCs to Create a Data Signal Modulator ...

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 19

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-clc-flipflop-mcc

To enable the output driver in the desired I/O pins (RA2, RA3 and RB3), the following function is used:

static void PORT_init(void)
{
 /*PORT RA2 and RA3 output driver enabled*/
 TRISAbits.TRISA2 = 0;
 TRISAbits.TRISA3 = 0;
 /*PORT RB3 and RB0 output driver enabled*/
 TRISBbits.TRISB0 = 0;
 TRISBbits.TRISB3 = 0;
}

Timer2 is configured to use FOSC/4 as clock source and generate a pulse every 1 us (frequency = 1 MHz). Timer2 is
also set to start at the same time as Timer4. The following function is used:

static void TMR2_init(void)
{
 T2CLKCONbits.CS = 1; /* Timer2 clock source is FOSC/4 */
 T2HLTbits.MODE = 4; /* Timer2 resets at rising TMR2_ers*/
 T2RSTbits.RSEL = 2; /* Timer2 Reset source is TMR4_postscaled; */
 T2PR = 0x0F; /* Load period values */
 T2CON = 0x80; /* Enable Timer2 */
}

Timer4 is configured to use FOSC/4 as clock source and generate a pulse every 2 us (frequency = 200 kHz). The
following function is used:

static void TMR4_init(void)
{
 T4CLKCONbits.CS = 1; /* Timer4 clock source is FOSC/4 */
 T4PR = 0x1F; /* Load period values */
 T4CON = 0x80; /* Enable Timer4 */
}

Timer6 is configured to use FOSC/4 as clock source and generate a pulse every 16 us (frequency = 62.5 kHz). The
following function is used:

static void TMR6_init(void)
{
 T6CLKCONbits.CS = 1; /* Timer6 clock source is FOSC/4 */
 T6PR = 0xFF; /* Load period values */
 T6CON = 0x80; /* Enable Timer6 */
}

CCP1 works as a PWM with 50% duty cycle and Timer6 as pulse source. The following function is used:

static void CCP1_init(void)
 {
 CCP1CON = 0x8C; /* Enable CCP1 in PWM mode*/
 /* Load duty cycle values */
 CCPR1H = 0x01;
 CCPR1L = 0xFF;
 CCPTMRS = 0x03; /* Select Timer6 as pulse source*/
 }

CLC1 is configured in the J-K flip-flop with R mode and uses TMR2 and CCP1 as inputs. The following function is
used:

static void CLC1_init(void)
{
 CLC1POL = 0x08; /* Negated output for fourth OR gate*/
 CLC1SEL0 = 0x13; /* Configure TMR2_OUT as input for first OR gate */
 CLC1SEL1 = 0x18; /* Configure CCP1_OUT as input for second OR gate */
 CLC1SEL2 = 0x13; /* Configure TMR2_OUT as input for third OR gate */
 CLC1SEL3 = 0x13; /* Configure TMR2_OUT as input for forth OR gate */
 /* All four inputs are not inverted*/
 CLC1GLS0 = 0x02;
 CLC1GLS1 = 0x08;
 CLC1GLS2 = 0x00;
 CLC1GLS3 = 0x00;

 TB3273
Using CLCs to Create a Data Signal Modulator ...

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 20

 CLC1CONbits.EN = 1; /* CLC1 enabled */
 CLC1CONbits.MODE = 6; /* Mode J-K flip-flop with R */
}

CLC2 is configured in the J-K flip-flop with R mode and uses TMR4 and CCP1 as inputs. The following function is
used:

static void CLC2_init(void)
{
 CLC2POL = 0x08; /* Negated output for fourth OR gate*/
 CLC2SEL0 = 0x15; /* Configure TMR4_OUT as input for first OR gate */
 CLC2SEL1 = 0x18; /* Configure CCP1_OUT as input for second OR gate */
 CLC2SEL2 = 0x15; /* Configure TMR4_OUT as input for third OR gate */
 CLC2SEL3 = 0x15; /* Configure TMR4_OUT as input for forth OR gate */
 /* Inputs 1, 3 and 4 are not inverted; Input 2 inverted*/
 CLC2GLS0 = 0x02;
 CLC2GLS1 = 0x04;
 CLC2GLS2 = 0x00;
 CLC2GLS3 = 0x00;
 CLC2CONbits.EN = 1; /* CLC2 enabled */
 CLC2CONbits.MODE = 6; /* Mode J-K flip-flop with R */
}

CLC3 is configured in the AND-OR mode and uses CLC1 and CLC2 as inputs. The following function is used:

static void CLC3_init(void)
{
 CLC3POL = 0x00; /* Clear the output polarity register */
 CLC3SEL0 = 0x21; /* Configure CLC1_OUT as input for first OR gate */
 CLC3SEL1 = 0x21; /* Configure CLC1_OUT as input for second OR gate */
 CLC3SEL2 = 0x22; /* Configure CLC2_OUT as input for third OR gate */
 CLC3SEL3 = 0x22; /* Configure CLC2_OUT as input for forth OR gate */
 /* All four inputs are not inverted*/
 CLC3GLS0 = 0x02;
 CLC3GLS1 = 0x08;
 CLC3GLS2 = 0x20;
 CLC3GLS3 = 0x80;
 CLC3CONbits.EN = 1; /* CLC3 enabled */
 CLC3CONbits.MODE = 0; /* Mode AND-OR */
}

To measure the internal peripheral signals with the oscilloscope, the following link must be made:

Table 3-2. Peripheral Mapping to I/O Pins for the Example “Using CLCs to Create a Data Signal Modulator”

Internal CIP Signal Microcontroller Pin

CLC1_OUT RA2

CLC2_OUT RA3

CLC3_OUT RB0

CCP1_OUT RB3

This is done in the following function:

static void PPS_init(void)
{
 RA2PPS = 0x18; /*Configure RA2 for CLC1 output*/
 RA3PPS = 0x19; /*Configure RA3 for CLC2 output*/
 RB0PPS = 0x1A; /*Configure RB0 for CLC3 output*/
 RB3PPS = 0x05; /*Configure RB3 for CCP1 output*/
}

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

 TB3273
Using CLCs to Create a Data Signal Modulator ...

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 21

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-clc-flipflop-bare

4. Using the CLC to Create an LED Dimming Effect
This example shows an initialization of the CLC in the SR Latch mode for the implementation of an automatic fixed
frequency with variable duty cycle PWM signal. The function is automatically called as it does not require code or
core supervision to work. The hardware is set at start-up and can be reconfigured during run-time. The truth table of
the SR Latch is shown below.

Table 4-1. Truth Table for the SR Latch

S R O

0 0 0

0 1 0

1 0 1

1 1 0

CLC1 (SR Latch) has Timer2 as S gate source (which creates the fixed frequency of the generated PWM), and
connected at the R gate is Timer4 to generate the duty cycle of the PWM. Timer4 is set with a slightly higher
frequency than Timer2. At each cycle, the duty cycle will get smaller with the difference between the two signals until
it reaches zero and the process restarts. The difference between Timer2 and Timer4 represents the step of the duty
cycle change, which in this case is 0.1 Hz (or 1 Least Significant Byte difference), and therefore creating 255
repetitive PWM signals.

When this PWM signal is connected to an LED, the created effect is that the LED is repetitively dimmed. If the signal
is inversed, it creates the effect of repetitively increasing LED light (the kind of loading effect).

The internal architecture is shown in Figure 4-1.

Figure 4-1. Internal Connections for “Using CLC to Create an LED Dimming Effect” Example

TIMER2
24.41 Hz

TIMER4
24.51 Hz

S

R

OUT

CLC1

RA2

Test setup configurations:

• Timer2 frequency = 24.41 Hz (4.096 ms period)
• Timer4 frequency = 24.51 Hz (4.08 ms period)
• CLC1 is set up as SR Latch

Figure 4-2 displays the CLC1 output implementing the fixed frequency with variable duty cycle function:

• Signal 2 (Green) is CLC1 output

 TB3273
Using the CLC to Create an LED Dimming Eff...

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 22

Figure 4-2. Oscillograms of CLC1 Output Generating the Fixed Frequency Variable Duty Cycle PWM Signal

To achieve the functionality described by the use case, the following actions will have to be performed:
• System clock initialization
• Port initialization
• Timer initialization
• CLC initialization.

4.1 MCC Generated Code
To generate this project using MPLAB® Code Configurator (MCC), follow the next steps:

1. Create a new MPLAB X IDE project for PIC18F47Q10.
2. Open MCC from the toolbar. More information on how to install the MCC plug-in can be found here.
3. Go to Project Resources → System → System Module and do the following configuration:

– Oscillator Select: HFINTOSC
– HF Internal Clock: 64 MHz
– Clock Divider: 1
– In the Watchdog Timer Enable field in the WWDT tab, WDT Disabled has to be selected.
– In the Programming tab, Low-Voltage Programming Enable has to be checked.

4. From the Device Resources window, add TMR2, TMR4 and CLC1. Do the following configurations for
each peripheral:
4.1. Timer2 Configuration:

• Enable Timer: checked
• Timer Clock tab

– Clock Source: FOSC/4
– Prescaler: 1:128
– Postscaler: 1:2

• Timer Period: 4.096 ms
• Enable Timer Interrupt: unchecked

 TB3273
Using the CLC to Create an LED Dimming Eff...

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 23

https://microchipdeveloper.com/install:mcc

4.2. Timer4 Configuration:
• Enable Timer: checked
• Timer Clock tab

– Clock Source: FOSC/4
– Prescaler: 1:128
– Postscaler: 1:2

• Timer Period: 4.08 ms
• Enable Timer Interrupt: unchecked

4.3. CLC1 Configuration:
• Enable CLC: checked
• Mode: SR Latch
• The SR Latch user configurable interpretation window is now available in the CLC1 window. Set

the internal connections as shown below. By selecting TMR2 as clock source for the ‘S’ input
and TMR4 as source for the ‘R’ input, the CLC will generate a PWM signal with 24.51 Hz
frequency and variable duty cycle with steps equal to the difference between TMR2 and TMR4.

Figure 4-3. CLC1 Configuration Mode SR Latch

5. In the Pin Manager: Grid View window, select the I/O pins outputs to enable the internal signal access to the
I/O as shown in Figure 4-4.
Figure 4-4. Pin Mapping for the Example “Using the CLC to Create an LED Dimming Effect”

6. In the Project Resources window, click Generate.

For this example, no extra code was used aside from the one generated from MCC.

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

4.2 Bare Metal Code
The necessary code and functions to implement the presented example are analyzed in this section.

 TB3273
Using the CLC to Create an LED Dimming Eff...

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 24

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-clc-latch-mcc

The first step will be to configure the microcontroller to disable the Watchdog Timer and to enable the Low-Voltage
Programming (LVP).

#pragma config WDTE = OFF /* WDT operating mode → WDT Disabled */
#pragma config LVP = ON /* Low-voltage programming enabled, RE3 pin is MCLR */

As described in the example functionality, the following peripherals must be initialized: Timer2, Timer4, CLC1, the I/O
PORT and PPS.

The internal oscillator has to be set to the desired value (in this case to 64 MHz), using the following function:

static void CLK_init(void)
{
 OSCCON1bits.NOSC = 6; /* HFINTOSC oscillator */
 OSCFRQ = 0x08; /* HFFRQ 64_MHz; */
}

To enable the output driver in the desired I/O pins (RA2), the following function is used:

static void PORT_init(void)
{
 TRISAbits.TRISA2 = 0; /*PORT RA2 output driver enabled*/
}

For Timer2 to use FOSC/4 as clock source and generate a pulse every 4.096 ms (frequency = 24.41 Hz), the
prescaller must also be added to 1:128 and postcaller to 1:2. The following function is used:

static void TMR2_init(void)
{
 T2CLKCONbits.CS = 1; /* Timer2 clock source is FOSC/4 */
 T2PR = 0xFF; /* Load period values */
 T2CONbits.CKPS = 7; /* Set prescaller to 1:128 */
 T2CONbits.OUTPS = 1; /* Set postcaller to 1:2 */
 T2CONbits.ON = 1; /* Enable Timer2 */
}

For Timer4 to use FOSC/4 as clock source and generate a pulse every 4.08 ms (frequency = 24.51 Hz), the
prescaller must also be added to 1:128 and postcaller to 1:2. The following function is used:

static void TMR4_init(void)
{
 T4CLKCONbits.CS = 1; /* Timer4 clock source is FOSC/4 */
 T4PR = 0xFE; /* Load period values */
 T4CONbits.CKPS = 7; /* Set prescaller to 1:128 */
 T4CONbits.OUTPS = 1; /* Set postcaller to 1:2 */
 T4CONbits.ON = 1; /* Enable Timer4 */
}

CLC1 is configured in the SR Latch mode and uses TMR2 and TMR4 as inputs. The following function is used:

static void CLC1_init(void)
{
 CLC1POL = 0x00; /* Clear the output polarity register */
 CLC1SEL0 = 0x13; /* Configure TMR2_OUT as input for first OR gate */
 CLC1SEL1 = 0x13; /* Configure TMR2_OUT as input for second OR gate */
 CLC1SEL2 = 0x15; /* Configure TMR4_OUT as input for third OR gate */
 CLC1SEL3 = 0x15; /* Configure TMR4_OUT as input for fourth OR gate */
 /* All four inputs are not inverted*/
 CLC1GLS0 = 0x02;
 CLC1GLS1 = 0x08;
 CLC1GLS2 = 0x20;
 CLC1GLS3 = 0x80;
 CLC1CONbits.EN = 1; /* CLC1 enabled; */
 CLC1CONbits.MODE = 3; /* Mode SR latch */
}

To measure the internal peripheral signals with the oscilloscope, the following link must be made:

 TB3273
Using the CLC to Create an LED Dimming Eff...

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 25

Table 4-2. Peripheral Mapping to I/O Pins for the Example “Using the CLC to Create an LED Dimming Effect”

Internal CIP Signal Microcontroller Pin

CLC1_OUT RA2

This is done in the following function:

static void PPS_init(void)
{
 RA2PPS = 0x18; /*Configure RA2 for CLC1 output*/
}

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

 TB3273
Using the CLC to Create an LED Dimming Eff...

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 26

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-clc-latch-bare

5. References
1. How to install MCC
2. PIC1000: Getting Started with Writing C-Code for PIC16 and PIC18 Technical Brief
3. DS40001725B - MPLAB Code Configurator User’s Guide
4. AN2133 - Extending PIC® MCU Capabilities Using CLC
5. TB3133 - Configurable Logic Cell on PIC® Microcontrollers
6. AN2805 - Robust Debouncing with Core Independent Peripherals
7. DS41631B - Configurable Logic Cell Tips ’n Tricks
8. AN2912 - Using CLCs in Real-Time Applications
9. AN1606 - Using the Configurable Logic Cell (CLC) to Interface a PIC16F1509 and WS2811 LED Driver
10. 20007 CIP1 - Applying Configurable Logic Cell CLC to Interconnect Peripheral Functions

 TB3273
References

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 27

https://microchipdeveloper.com/install:mcc
https://www.microchip.com/wwwappnotes/appnotes.aspx?appnote=en1002117
http://ww1.microchip.com/downloads/en/devicedoc/40001725b.pdf
http://ww1.microchip.com/downloads/en/AppNotes/00002133a.pdf
http://ww1.microchip.com/downloads/en/Appnotes/90003133A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/AN2805-Robust-Debounc-Core-Inddep-Periph-DS00002805A.pdf
http://ww1.microchip.com/downloads/en/devicedoc/41631b.pdf
http://ww1.microchip.com/downloads/en/Appnotes/AN2912-Using-CLCs-in-Real-Time-Apps_00002912A.pdf
http://ww1.microchip.com/downloads/en/appnotes/00001606a.pdf
https://www.youtube.com/watch?v=qT2Ma_XR3ZQ

6. Revision History
Document Revision Date Comments

A 05/2020 Initial document release

 TB3273
Revision History

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 28

The Microchip Website
Microchip provides online support via our website at www.microchip.com/. This website is used to make files and
information easily available to customers. Some of the content available includes:

• Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service
Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support
Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Embedded Solutions Engineer (ESE)
• Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature
Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is one of the most secure families of its kind on the market today,

when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these

methods, to our knowledge, require using the Microchip products in a manner outside the operating
specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of
intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code

protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection
features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital
Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you
may have a right to sue for relief under that Act.

Legal Notice
Information contained in this publication regarding device applications and the like is provided only for your
convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with

 TB3273

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 29

http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support

your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER
EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such
use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless
otherwise stated.

Trademarks
The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox,
KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST,
MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer,
QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control,
HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus,
ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider,
Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom,
CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM,
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP,
INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM,
PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad
I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense,
ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2020, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-6289-7

Quality Management System
For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.

 TB3273

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 30

http://www.microchip.com/quality

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
www.microchip.com/support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 31

http://www.microchip.com/support
http://www.microchip.com

	Introduction
	Table of Contents
	1. Peripheral Overview
	2. Using Basic Logic Gates
	2.1. MCC Generated Code
	2.2. Bare Metal Code

	3. Using CLCs to Create a Data Signal Modulator (DSM)
	3.1. MCC Generated Code
	3.2. Bare Metal Code

	4. Using the CLC to Create an LED Dimming Effect
	4.1. MCC Generated Code
	4.2. Bare Metal Code

	5. References
	6. Revision History
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

