MICROCHIP TB3273
Getting Started with CLC on PIC18

Introduction

Author: Gheorghe Turcan, Microchip Technology Inc.

Using logic gates, systems can make decisions based on criteria without Central Processing Unit (CPU) intervention.
Traditionally, these logic gates are manually implemented as external components. However, the PIC®
microcontrollers (MCUs) offer this as a built-in functionality.

The Configurable Logic Cell (CLC) has a variety of basic gates, as well as sequential logic options that can be
customized to create the logic specific to many applications. Using these logic gates, the CLC gives the ability of
combining signals to make a new custom signal without running code to execute it. The CLC also offers flexible input
selection (internal, external signals) and configurable output for internal or external use with the help of the Peripheral
Pin Select (PPS).

This technical brief explains the concepts of the CLC and its implementation in the PIC18 family of microcontrollers
with the following use cases:

» Using Basic Logic Gates:
This example shows how to use the CLC to implement the basic logic functions AND, OR and XOR of two
internally generated signals. The outputs of the CLCs are connected to 1/O pins.

» Using CLCs to Create a Data Signal Modulator:
This example shows how to use the CLC in both J-K flip-flop and AND-OR configurations to obtain a DSM
function (multiple frequency carrier signal).

* Using the CLC to Create an LED Dimming Effect:
This example shows how to use the CLC in an SR Latch configuration to obtain a PWM signal that changes duty
cycle without code addition. The change in duty cycle can be used to generate the effect of an LED dimming or
increasing brightness instead of blinking.

Note: For each use case, there are two different implementations that have the same functionalities: one code
generated with MPLAB® Code Configurator (MCC) and one bare metal code. The MCC generated code offers
hardware abstraction layers that ease the use of the code across different devices from the same family. The bare
metal code is easier to follow and allows a fast ramp-up on the use case associated code.

View Code Examples on GitHub

Click to browse repositories

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 1


https://www.microchip.com/mplab/mplab-code-configurator
https://github.com/microchip-pic-avr-examples?q=pic18f47q10clc&type=&language=

TB3273

Table of Contents

Y igeo [UTex (To] o TN 1
1. PEriPREIal OVEIVIEW...... ...ttt e et e e e et e e e e et e e e e e s aabaeeaesentaaeaeeeeasnsaeeaesasnsreneas 3
2. USING BASIC LOGIC GAES.......eiiiiiiiiiiiii ettt e e e ettt e e e e ettt a e e e e ebeeeaeeaannseeaaeeeannsaeeaeeaansnneens 6

b P /(@ O 1T 0 1T =1 (=Y I @ o [T 9

2.2, BAre Metal COE.........uuueeiiieeeeeeeeeee ettt e e e e e e e e e e et e e e e e e e e e eer e aaaaaes 12
3. Using CLCs to Create a Data Signal Modulator (DSM)..........ccooiiiiiiiiiiiiie et 15

3.1, MCC Generated COUE.........coooi e e e e e e e e e aaaaeaeeaeaeaeaaaan 16

3.2, Bare Metal COdE.......ccuuuuuiiiiiiiiieiieeeeee ettt e e e e e e e e e e e e e e e e e e e e e e e e abrr—r—————.. 19
4. Using the CLC to Create an LED Dimming EffecCt..........oo i 22

o P V(@] O €11 1T =1 (=Y I @ oo [T 23

4.2, Bare Metal COUE........coooiiieie ettt e et e e e e e e e e e e e e e e e eaeaeeeeeeeeeaeaeaeaenaaes 24
LT 3= (=1 =Y o Lot T SRR RRRRORURPRN 27
6.  REVISION HISTOIY ... ettt e e ettt e e e e te et e e e e e nbeeeeaeaannteeeaeeannneeaaean 28
The MICrOChID WEDSITE. ..ottt et e e e e e e e eeaaaaaaeeaeaesesaaanannnssnenennnnnes 29
Product Change Notification SEIVICE. ..........ooiiiiiiiii e s 29
(OIS (o] 0 LY AR TU o] o o] SO OSSPSR PR 29
Microchip Devices Code Protection Feature.............ooiiiiiiiiiiiii e 29
[I=To P 1 Ao i o7 TSRS PPRRRRN 29
B = Lo (=10 =T G TS 30
Quality Management SYSTEM........coi ittt 30
WOrIdWIide SalES @NA SEIVICE........uuuuiiiiieieieeeieeeee ettt ettt r e e e e e eaeeeeeeeeeeeseeeeessssssssssssssnnnns 31

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 2



TB3273

Peripheral Overview

Peripheral Overview

The Configurable Logic Cell (CLC) module provides programmable logic that operates outside the speed limitations
of software execution. The CLC takes up to 64 input signals and, using configurable gates, reduces the 64 inputs to
four logic lines that drive one of eight selectable single-output logic functions.
Input sources are a combination of the following components:

* 1/O pins

* Internal clocks

* Peripherals

* Register bits

The output can be directed internally to peripherals and to an output pin.

Important: There are several CLC instances on this device. Throughout this section, the lower

case Xx in register names is a generic reference to the CLC instance number (CLCx). For example,
the first instance of the control register is CLC1CON and is generically described in this chapter as
CLCxCON.

The following figure is a simplified diagram showing signal flow through the CLC.

Figure 1-1. CLC Simplified Block Diagram

Rev. 10-000025H
111922016

ouT
b Q CLCXOUT
Q1 —
LCx_in[0]—
LCx_in[1]— CLCx_out .
LCx_in[2]— - » to Peripherals
e
—'® EN
O lexgt L CLCxPPS
c
~ 1211992 | Logic | g
= | 21 |cxg3 |Function PPS CLCx
3 @
| & | lexg4
— @®©
- 1< POL TRIS
3 |
LCx_in[n-2] | = MODE([2:0] Interrupt
LCx_in[n-1]— a det
LCx_in[n]—

INTP .
set bit

[
INTN —\ CLCxIF

Interrupt
det

Possible configurations include:

» Combinatorial Logic:
— AND
— NAND
— AND-OR
— AND-OR-INVERT
— OR-XOR

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 3



TB3273

Peripheral Overview

— OR-XNOR
« Latches:
- SR

Clocked D with Set and Reset
Transparent D with Set and Reset
Clocked J-K with Reset

Figure 1-2. Programmable Logic Functions

Rev. 10-0001228
911312016

MODE[2:0] = 010

AND-OR OR-XOR
lexg1 — lexg1
lexg2 —— lexg2
lexq lexq
lexg3 —— lexg3
lexgd — lexg4
MODE[2:0] = 000 MODE([2:0] =001
4-input AND S-R Latch
lexg1 lexg1
] Qr— loxq
lexg2 ————— lexg2
lexq
lexg3 ———— lexg3
R
lcxg4 lcxg4

MODE[2 :0] =011

1-Input D Flip-Flop with S and R
lexg4 — ]

lexg2 — D

QF— lexq

MODE [2:0] = 100

lexg4
D Q— lexq
lexg2

2-Input D Flip-Flop with R

MODE[2 :0] =101

J-K Flip-Flop with R

lexg2 — J QF— lexq
lexg1 —p
lexgd —K
R
lexg3 — 1

MODE [2:0] = 110

1-Input Transparent Latch with S and R

loxgd ———
S

lexg2 — D Q— lexq

MODE[2:0] = 111

Programming the CLC module is performed by configuring the four stages in the logic signal flow. These stages are:

» Data selection

« Data gating

» Logic function selection
* Output polarity

© 2020 Microchip Technology Inc.

Technical Brief

DS90003273A-page 4



TB3273

Peripheral Overview

Each stage is setup at run time by writing to the corresponding CLC Special Function Registers. This has the added
advantage of permitting logic reconfiguration on-the-fly during program execution.

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 5



TB3273

Using Basic Logic Gates

Using Basic Logic Gates
This example shows a basic initialization of three CLC peripherals in the Logic Gate mode and how to link to internal
peripherals and to 1/O ports. The three basic logic functions to take into consideration are: AND, OR and XOR.

The input signals going through the CLC are generated internally by the Timer2, Timer4, PWM3 and PWM4
peripherals. The outputs of the CLC and PWMs are connected to 1/O ports for oscilloscope measurements as shown
in Figure 2-1.

Setup configurations are the following:

» Timer2 frequency = 100 kHz (10 us period)

» Timer4 frequency = 200 kHz (5 us period)

* PWMBS has Timer2 as source and duty cycle = 50%

+ PWM4 has Timer4 as source and duty cycle = 50%

* CLC1 is set up as AND-OR: used as 2-input OR

* CLC2is set up as 4-input AND: used as 2-input AND
* CLC3is set up as OR-XOR: used as 2-input XOR

Figure 2-1. Internal Connections for “Using Basic Logic Gates” Example

RA2 2
X
TIMER2 PWM3 J
100 kHz 50% DC
> RC3
CLC2
—|
TIMER4 PWM4
200 kHz 50% DC
RBO
X
3 A
RA3

The following are the truth tables and oscilloscope results of each CLC:

1. For the OR example (CLC1), two input signals are used. The truth table is depicted below:
Table 2-1. Truth Table for 2-Input Logic OR Function

0 0 0
0 1 1
1 0 1
1 1 1

Figure 2-2 depicts the input and output signals of CLC1 as it performs the OR logic function:

— Signal 1 (Orange) is PWM3 output used as CLC1 Input A
— Signal 2 (Green) is PWM4 output used as CLC1 Input B
— Signal 3 (Blue) is CLC1 output (logic OR between PWM3 and PWM4)

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 6



TB3273

Using Basic Logic Gates

Figure 2-2. Oscillograms of CLC1 Performing Logic OR, Input Signals PWM3 and PWM4
200y 2 2ooys 3 2oove 4 49205 1.200%/ Auto

=

r

1

2. For the AND example, two input signals are used (the CLC in AND mode can have up to four inputs). The truth
table is shown below:

Table 2-2. Truth Table for 2-Input Logic AND Function

0 0 0
0 1 0
1 0 0
1 1 1

Figure 2-3 depicts the input and output signals of CLC2 as it performs the AND logic function:
— Signal 1 (Orange) is PWM3 output used as CLC2 Input A

— Signal 2 (Green) is PWM4 output used as CLC2 Input B
— Signal 4 (Red) is CLC2 output (logic AND between PWM3 and PWM4)

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 7



TB3273

Using Basic Logic Gates

Figure 2-3. Oscillograms of CLC2 Performing Logic AND, Input Signals PWM3 and PWM4
200y 2200y 3 4 2004 49205 1.200%/ Auto

3. For the XOR example, two input signals are used. The truth table is shown below:
Table 2-3. Truth Table for 2-Input Logic XOR Function

0 0 0
0 1 1

Figure 2-4 depicts the input and output signals of CLC3 as it performs the XOR logic function:

— Signal 1 (Orange) is PWM3 output used as CLC3 Input A
— Signal 2 (Green) is PWM4 output used as CLC3 Input B
— Signal 3 (Blue) is CLC3 output (logic XOR between PWM3 and PWM4)

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 8



21

TB3273

Using Basic Logic Gates

Figure 2-4. Oscillograms of CLC3 Performing Logic XOR, Input Signals PWM3 and PWM4
20004 20 200 3 200V 4 4.820% 1.200=/ Auto

To achieve the functionality described by the use case, the following actions will have to be performed:
» System clock initialization
» Portinitialization
» Timer initialization
*  PWM initialization
+ CLC initialization.

MCC Generated Code
To generate this project using MPLAB® Code Configurator (MCC), follow the next steps:

1. Create a new MPLAB X IDE project for PIC18F47Q10.
2.  Open MCC from the toolbar. More information on how to install the MCC plug-in can be found here.
3. Go to Project Resources — System — System Module and do the following configuration:
— Oscillator Select: HFINTOSC
HF Internal Clock: 64 MHz
Clock Divider: 1
In the Watchdog Timer Enable field in the WWDT tab, WDT Disabled has to be selected.
In the Programming tab, Low-Voltage Programming Enable has to be checked.

4. From the Device Resources window, add TMR2, TMR4, PWM3, PWM4, CLC1, CLC2 and CLC3. Do the
following configurations for each peripheral:

4.1. Timer2 Configuration:
* Enable Timer: checked
» Timer Clock tab
— Clock Source: FOSC/4
— Prescaler: 1:1

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 9


https://microchipdeveloper.com/install:mcc

TB3273

Using Basic Logic Gates

— Postscaler: 1:1
« Timer Period: 10 us
+ Enable Timer Interrupt: unchecked
4.2, Timer4 Configuration:
« Enable Timer: checked
» Ext Reset Source: TMR2_postscaled
« Start/Reset Options: Resets at rising TMR4_rst
« Timer Clock tab
— Clock Source: FOSC/4
— Prescaler: 1:1
— Postscaler: 1:1
* Timer Period: 5 us
* Enable Timer Interrupt: unchecked
4.3. PWM3 Configuration:
+ Enable PWM: checked
» Select a Timer: Timer2
* Duty Cycle: 50%
+ PWM Polarity: active_hi
4.4. PWM4 Configuration:
+ Enable PWM: checked
+ Select a Timer: Timer4
+ Duty Cycle: 50%
*+  PWM Polarity: active_hi
4.5. CLC1 Configuration:
« Enable CLC: checked
* Mode: AND-OR

+ The AND-OR user configurable interpretation window is now available in the CLC1 window. Set
the internal connections as shown below. By selecting PWM3 as both inputs for the AND, it
becomes the first input of the OR. The same is true for PWM4 as second input of OR; this way
CLC1 is used as a 2-input OR gate.

Figure 2-5. CLC1 Configuration Mode AND-OR, Used as 2-Input OR

PWM3_OUT v

PWM3_OUT v |

PWM4_OUT v

PWNM4_OUT ~

4.6. CLC2 Configuration:

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 10



TB3273

Using Basic Logic Gates

« Enable CLC: checked

*  Mode: 4-input AND

* The 4-input AND user configurable interpretation window is now available in the CLC2 window.
Set the internal connections as shown below. By selecting PWM3 as two of the inputs for the 4-

input AND, and PWM4 as the other two, it becomes equivalent to a 2-input AND function from
CLC2.

Figure 2-6. CLC2 Configuration Mode 4-Input AND, Used as 2-Input AND

PWM3 OUT v |_

" PWM3_OUT M|

PWM4 OUT =

PWM4_OUT -

4.7. CLC3 Configuration:
» Enable CLC: checked
* Mode: 4-input OR-XOR
* The OR-XOR user configurable interpretation window is now available in the CLC3 window. Set
the internal connections as shown below. By selecting PWM3 as both inputs for the OR, it

becomes the first input of the XO. The same is true for PWM4 as second input of XOR; this way
CLC3 is used as a 2-input XOR gate.

Figure 2-7. CLC3 Configuration Mode OR-XOR, Used as 2-Input XOR

| PWM3 OUT v |_

PWM3_OUT M |

PWM4 OUT =

PWM4_OUT -

5. In the Pin Manager: Grid View window, select the I/O pins outputs to enable the internal signal access to the
1/0 as shown in Figure 2-8.

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 11



TB3273

Using Basic Logic Gates

Figure 2-8. Pin Mapping for the Example “Using Basic Logic Gates”

Package:'UQFNdol'H Pin No: |I7|IB‘19‘20\21|22‘29128 8\9‘10|11|12‘13‘14\15 30‘31132|33|38‘39|40|1 34‘35\36|37‘2J3l4|5 23'24|25‘16
| PortAY PortBY PortCVvY PortD ¥ PortEV

Module Function Direction|0|23\4567012|3456\70123‘456701\234}5670|123
ac |aciour ot B || BB |0 |h | _ I CICICICI

ace |acour  lopwt b || BB | |B|h | M1 ACICIS

ccs  [acsour foutput AACCICICICIS FCCICICICICIS

CLCx = = =

0SC - - - ‘ l

s [pwmz foupt || @[ | B B \ CICICICICICICE
T N 1 I I tlaalalalnlala

6. In the Project Resources window, click Generate.

For this example, no extra code was used aside from the one generated from MCC.

View the PIC18F47Q10 Code Example on GitHub

Click to browse repositories

2.2 Bare Metal Code
The necessary code and functions to implement the presented example are analyzed in this section.

The first step will be to configure the microcontroller to disable the Watchdog Timer and to enable the Low-Voltage
Programming (LVP).

#pragma config WDTE = OFF /* WDT operating mode — WDT Disabled */
#pragma config LVP = ON /* Low-voltage programming enabled, RE3 pin is MCLR */

As described in the example functionality, the following peripherals must be initialized: Timer2, Timer4, PWM3,
PWM4, CLC1, CLC2, CLC3, the I/O PORT and PPS.

The internal oscillator has to be set to the desired value (in this case to 64 MHz), using the following function:

static void CLK init (void)

{
OSCCON1lbits.NOSC = 6; /* HFINTOSC oscillator */
OSCFRQ = 0x08; /* HFFRQ 64 MHz; */

}

To enable the output driver in the desired 1/O pins (RA2, RA3, RB0O, RC2 and RC3), the following function is used:

static void PORT init (void)

{
/* PORT RA2 and RA3 output driver enabled */
TRISAbits.TRISA2 = 0;
TRISAbits.TRISA3 = 0;
/* PORT RBO output driver enabled */
TRISBbits.TRISBO = 0;
/* PORT RC2 and RC3 output driver enabled */
TRISCbits.TRISC2 = 0;
TRISCbits.TRISC3 = 0;

}

For Timer2 to use FOSC/4 as clock source and generate a pulse every 10 us (frequency = 100 kHz), the following
function is used:

static void TMR2 init (void)

{
T2CLKCONbits.CS = 1; /* Timer2 clock source is FOSC/4 */

T2PR = 0x9F; /* Load period values */
T2CON = 0x80; /* Enable Timer2 */
}
Technical Brief DS90003273A-page 12

© 2020 Microchip Technology Inc.


https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-clc-logic-mcc

TB3273

Using Basic Logic Gates

Timer4 is configured to use FOSC/4 as clock source and generate a pulse every 5 us (frequency = 200 kHz). Timer4
is also set to start at the same time as Timer2. The following function is used:

static void TMR4 init (void)

{

/* Timer4 clock source is FOSC/4

T4CLKCONbits.CS = 1;
/* Timer4 resets at rising TMR4 ers*/

T4HLTbits.MODE =

45

*/

/* Timer4 Reset source is TMR2 postscaled;

T4RSTbits.RSEL =

1;

/* Load period values */

T4PR = 0Ox4F;
/* Enable Timer4
T4CON = 0x80;

*/

*/

PWM3 uses Timer2 as pulse source and is configured to generate a pulse with 50% duty cycle. The following

function is used:

static void PWM3_ init (void)

{
PWM3CON = 0x80;

PWM3DCH = 0x4F;
PWM3DCL = 0xCO;
CCPTMRS = 0x10;

/* Enable PWM3%*/
/* Load duty cycle values */

/* Select Timer2 as pulse source */

PWM4 uses Timer4 as pulse source and it is configured to generate a pulse with 50% duty cycle. The following

function is used:

static void PWM4_ init (void)

{
PWM4CON = 0x80;

PWM4DCH = 0x27;
PWM4DCL = 0xCO;

CCPTMRSbits.P4TSEL =

/* Enable PWM4*/
/* Load duty cycle values */

28 /* Select Timer4

as pulse source */

CLC1 is configured in the AND-OR mode and uses PWM3 and PWM4 as inputs with the instructions from the

following function:

static void CLCl init (void)

{
CLC1POL = 0x00;
CLC1SELO 0x1A;
CLC1SEL1 0x1A;
CLC1SEL2 = 0x1B;
CLC1SEL3 = 0x1B;

/*
/*
/*
/*
/*

Clear the
Configure
Configure
Configure
Configure

output polarity register */

PWM3_OUT
PWM3_OUT
PWM4 OUT
PWM4 OUT

/* All four inputs are not inverted*/

CLC1GLSO = 0x02;
CLC1GLS1 = 0x08;
CLC1GLS2 = 0x20;
CLC1GLS3 = 0x80;
CLCI1CON = 0x80;

/* CLC1l enabled; Mode

as
as
as
as

input
input
input
input

AND-OR* /

for
for
for
for

first OR gate */
second OR gate */
third OR gate */
forth OR gate */

CLC2 is configured in the 4-input AND mode and uses PWM3 and PWM4 as inputs with the instructions from the

following function:

static void CLC2 init (void)

{
CLC2POL = 0x00;
CLC2SELO = 0x1A;
CLC2SEL1 = 0x1A;
CLC2SEL2 = 0x1B;
CLC2SEL3 = 0x1B;

/*
/*
/*
/*
/*

Clear the
Configure
Configure
Configure
Configure

output polarity register */

PWM3_OUT
PWM3_OUT
PWM4_OUT
PWM4_OUT

/* All four inputs are not inverted*/

as
as
as
as

input
input
input
input

for
for
for
for

first OR gate */
second OR gate */
third OR gate */
forth OR gate */

© 2020 Microchip Technology Inc.

Technical Brief

DS90003273A-page 13



TB3273

Using Basic Logic Gates

CLC2GLSO0 0x02;

CLC2GLS1 0x08;

CLC2GLS2 = 0x20;

CLC2GLS3 = 0x80;

CLC2CONbits.EN = 1; /* CLC2 enabled */
CLC2CONbits.MODE = 2; /* Mode 4-input AND */

CLC3 is configured in the OR-XOR mode and uses PWM3 and PWM4 as inputs with the instructions from the
following function:

static void CLC3_init (void)
{

CLC3POL = 0x00; /* Clear the output polarity register */

CLC3SELO = 0x1A; /* Configure PWM3 OUT as input for first OR gate */
CLC3SEL1 = 0x1A; /* Configure PWM3 OUT as input for second OR gate */
CLC3SEL2 = 0x1B; /* Configure PWM4 OUT as input for third OR gate */
CLC3SEL3 = 0x1B; /* Configure PWM4 OUT as input for forth OR gate */

/* All four inputs are not inverted*/
CLC3GLS0 = 0x02;

CLC3GLS1 = 0x08;

CLC3GLS2 = 0x20;

CLC3GLS3 = 0x80;

CLC3CONbits.EN = 1; /* CLC3 enabled */
CLC3CONbits.MODE = 1; /* Mode OR-XOR */

To measure the internal peripheral signals with the oscilloscope, the following link must be made:

Table 2-4. Peripheral Mapping to I/0 Pins for the Example “Using Basic Logic Gates”

Internal CIP Signal Microcontroller Pin

PWM3_OUT RA2
PWM4_OUT RA3
CLC1_OUT RC2
CLC2_OouT RC3
CLC3_OUT RBO

This is done in the following function:

static void PPS init (void)

{

RA2PPS = 0x07; /*Configure RA2 for PWM3 output*/
RA3PPS = 0x08; /*Configure RA3 for PWM4 output*/
RBOPPS = 0x1A; /*Configure RBO for CLC3 output*/
RC2PPS = 0x18; /*Configure RC2 for CLCl output*/
RC3PPS = 0x19; /*Configure RC3 for CLC2 output*/

View the PIC18F47Q10 Code Example on GitHub

Click to browse repositories

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 14


https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-clc-logic-bare

3.

TB3273
Using CLCs to Create a Data Signal Modulator ...

Using CLCs to Create a Data Signal Modulator (DSM)

This example shows an initialization of the CLC in the J-K flip-flop with R mode and AND-OR mode for the
implementation of a Data Signal Modulator (DSM) with timings controlled from the CCP peripheral. The truth table of
the J-K flip-flop is shown below.

Table 3-1. Truth Table for the J-K Flip-Flop

A S R RS R
0 0

0 Latch

0 0 1 0

0 1 0 1

0 1 1 Toggle
1 0 0 Latch

1 0 1 Latch

1 1 0 Latch

1 1 1 Latch

CLC1 (J-K flip-flop 1) has Timer2 as clock source (which represents the first modulated frequency), while the carrier
signal generated from the CCP is connected to the J gate of the J-K flip-flop. The K gate is left to logic 1. This allows
the CLC to toggle when the J input is high and stay 0 when the J input is low.

CLC2 (J-K flip-flop 2) is connected in the same way with Timer4 as clock source and the negated CCP as input for
the J gate. This CCP connection to the J gates ensures that one CLC is toggling while the other has the output set to
0 logic. CLC3 set in AND-OR mode is connecting CLC1 and CLC2 outputs to create a DSM.

The internal architecture is shown in Figure 3-1.

Figure 3-1. Internal Connections for “Using CLCs to Create a DSM” Example

RB3
CLC | s
TIMER6 | | ccp1 | | = J
62.5kHz|  [50% DC RA2
~>CLK  OUT 4
TmEHRz ‘> K
VA
CLC2 X
L—>qg J
TIMER4 RAS
~CLK  OUT
500 kHz X
4| K

DSM setup configurations:

« Timer2 frequency = 1 MHz (1 us period)

» Timer4 frequency = 500 kHz (2 us period)

» Timer6 frequency = 62.5 kHz (16 us period)

* CCP1 has Timer6 as source and duty cycle = 50%
* CLC1is set up as J-K flip-flop with R

* CLC2is set up as J-K flip-flop with R

* CLC3is set up as AND-OR: used as 2-input OR

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 15



31

TB3273
Using CLCs to Create a Data Signal Modulator ...

Figure 3-2 displays all the CLCs outputs and the CCP1 output side by side to show how this configuration
implements the DSM function:

» Signal 1 (Orange) is CCP1 output
» Signal 2 (Green) is CLC1 output
» Signal 3 (Blue) is CLC3 output

» Signal 4 (Red) is CLC2 output

Figure 3-2. Oscillograms of CLC1, CLC2, CLC3 and CCP1 Performing a DSM Function
200y 20 200 5 200 4 200/ 9.900% 2800z

— FIm RS

el an

- J T L

o M5

j [
S

To achieve the functionality described by the use case, the following actions will have to be performed:
» System clock initialization
» Portinitialization
« Timer initialization
* CCP initialization
+ CLC initialization.

MCC Generated Code
To generate this project using MPLAB® Code Configurator (MCC), follow the next steps:

1. Create a new MPLAB X IDE project for PIC18F47Q10.
2. Open MCC from the toolbar. More information on how to install the MCC plug-in can be found here.
3. Go to Project Resources — System — System Module and do the following configuration:
— Oscillator Select: HFINTOSC
HF Internal Clock: 64 MHz
Clock Divider: 1
In the Watchdog Timer Enable field in the WWDT tab, WDT Disabled has to be selected.
In the Programming tab, Low-Voltage Programming Enable has to be checked.

4. From the Device Resources window, add TMR2, TMR4, TMR6, CCP1, CLC1, CLC2 and CLC3. Do the
following configurations for each peripheral:

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 16


https://microchipdeveloper.com/install:mcc

TB3273
Using CLCs to Create a Data Signal Modulator ...

4.1. Timer2 Configuration:
« Enable Timer: checked
+ Timer Clock tab
— Clock Source: FOSC/4
— Prescaler: 1:1
— Postscaler: 1:1
* Timer Period: 1 us
« Enable Timer Interrupt: unchecked
4.2, Timer4 Configuration:
+ Enable Timer: checked
» Timer Clock tab
— Clock Source: FOSC/4
— Prescaler: 1:1
— Postscaler: 1:1
* Timer Period: 2 us
+ Enable Timer Interrupt: unchecked
4.3. Timer6 Configuration:
* Enable Timer: checked
* Timer Clock tab
— Clock Source: FOSC/4
— Prescaler: 1:1
— Postscaler: 1:1
* Timer Period: 16 us
* Enable Timer Interrupt: unchecked
4.4. CCP1 Configuration:
« Enable CCP: checked
+ CCP Mode: PWM
» Select Timer: Timer6
* Duty Cycle: 50%
» CCPR Alignment: right_aligned
4.5. CLC1 Configuration:
« Enable CLC: checked
* Mode: J-K flip-flop with R
+ The J-K flip-flop with R user configurable interpretation window is now available in the CLC1
window. Set the internal connections as shown below. By selecting TMR2 as clock source for

the J-K, the CLC will generate a PWM signal with 500 kHz frequency and 50% duty cycle.
Select CCP1 as the J input, allowing to have O = 0 when Jis 0 and K is 1.

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 17



TB3273
Using CLCs to Create a Data Signal Modulator ...

Figure 3-3. CLC1 Configuration Mode J-K Flip-Flop with R

TMR2_OUT M|

CCP1.OUT M|

TMR2_OUT o

TMR2_OUT .

4.6. CLC2 Configuration:
+ Enable CLC: checked
*  Mode: J-K flip-flop with R
* The J-K flip-flop with R user configurable interpretation window is now available in the CLC2
window. Set the internal connections as shown below. By selecting TMR as clock source for the
J-K, the CLC will generate a PWM signal with 250 kHz frequency and 50% duty cycle. Select
CCP1 as the J input, allowing to have O = 0 when J is 0 and Kis 1.

Figure 3-4. CLC2 Configuration Mode J-K Flip-Flop with R

TMR4_OUT hd H_

CCP1_OUT M|

TMR4_OUT o

o]

4.7. CLC3 Configuration:
* Enable CLC: checked
* Mode: AND-OR

+ The AND-OR user configurable interpretation window is now available in the CLC3 window. Set
the internal connections as shown below. By selecting CLC1 as both inputs for the AND, it
becomes the first input of the OR. The same is true for CLC2 as second input of OR; this way
CLC3 is used as a 2-input OR gate.

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 18



TB3273
Using CLCs to Create a Data Signal Modulator ...

Figure 3-5. CLC3 Configuration Mode AND-OR, Used as 2-Input OR

CLC1.ouT > w_

” CLC1 ouT M|

CLC2 ouT =

cLcz.out .

5. In the Pin Manager: Grid View window, select the I/O pins outputs to enable the internal signal access to the
1/0 as shown in Figure 3-6.

Figure 3-6. Pin Mapping for the Example “Using CLCs to Create a Data Signal Modulator”

Packaga[uqmwlv“ Pin No: 17‘18}19\20|21[22‘29‘28 s\9|1o‘11‘12|13[14\15 30‘31‘32‘33[38\39‘40[1 34‘35‘36\37‘2‘3‘4‘5‘23\24‘25‘16
PortA Y PortB ¥ PortCV¥ PortD ¥ ‘ PortEV
Module | Function | Direction |0 [ 1{2[3Ya[s[6[7{oV1[2|3]a[s[6][7[0]1][2]z]a[s]6][7]0[1[2]3][a]s]6[7]0][1][2]3
CCP1 |ccPt output GGG GGG R GBI
et actour Joutput GG GGG \ |
clc2  |cLcaout output GGG TGO CRCECRC RG]
acs  |acsour  [output a/vasaanln MONNNANNN

6. In the Project Resources window, click Generate.

For this example, no extra code was used aside from the one generated from MCC.

View the PIC18F47Q10 Code Example on GitHub

Click to browse repositories

3.2 Bare Metal Code
The necessary code and functions to implement the presented example are analyzed in this section.
The first step will be to configure the microcontroller to disable the Watchdog Timer and to enable the Low-Voltage

Programming (LVP).

#pragma config WDTE = OFF /* WDT operating mode — WDT Disabled */
#pragma config LVP = ON /* Low-voltage programming enabled, RE3 pin is MCLR */

As described in the example functionality, the following peripherals must be initialized: Timer2, Timer4, Timer6,
CCP1, CLC1, CLC2, CLC3, the I/O PORT and PPS.

The internal oscillator has to be set to the desired value (in this case to 64 MHz), using the following function:

static void CLK init (void)

OSCCON1lbits.NOSC = 6; /* HFINTOSC oscillator */
OSCFRQ = 0x08; /* HFFRQ 64 MHz; */

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 19


https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-clc-flipflop-mcc

TB3273
Using CLCs to Create a Data Signal Modulator ...

To enable the output driver in the desired I/O pins (RA2, RA3 and RB3), the following function is used:

static void PORT init (void)

{
/*PORT RA2 and RA3 output driver enabled*/
TRISAbits.TRISA2 = 0;
TRISAbits.TRISA3 = 0;
/*PORT RB3 and RBO output driver enabled*/
TRISBbits.TRISBO = 0;
TRISBbits.TRISB3 0;

Timer2 is configured to use FOSC/4 as clock source and generate a pulse every 1 us (frequency = 1 MHz). Timer2 is
also set to start at the same time as Timer4. The following function is used:

static void TMR2_ init (void)
{
T2CLKCONbits.CS = 1; /* Timer2 clock source is FOSC/4 */

T2HLTbits.MODE = 4; /* Timer2 resets at rising TMR2 ers*/
T2RSTbits.RSEL = 2; /* Timer2 Reset source is TMR4 postscaled; */
T2PR = 0x0F; /* Load period values */

T2CON = 0x80; /* Enable Timer2 */

Timer4 is configured to use FOSC/4 as clock source and generate a pulse every 2 us (frequency = 200 kHz). The
following function is used:

static void TMR4 init (void)
{

T4CLKCONbits.CS = 1; /* Timer4 clock source is FOSC/4 */
T4PR = Ox1F; /* Load period values */
T4CON = 0x80; /* Enable Timerd */

Timer6 is configured to use FOSC/4 as clock source and generate a pulse every 16 us (frequency = 62.5 kHz). The
following function is used:

static void TMR6_init (void)
{

T6CLKCONbits.CS = 1; /* Timer6 clock source is FOSC/4 */
T6PR = OxFF; /* Load period values */
T6CON = 0x80; /* Enable Timer6 */

CCP1 works as a PWM with 50% duty cycle and Timer6 as pulse source. The following function is used:

static void CCP1l _init (void)
{
CCP1CON = 0x8C; /* Enable CCP1l in PWM mode*/
/* Load duty cycle values */
CCPR1H = 0x01;
CCPR1L = OxFF;
CCPTMRS = 0x03; /* Select Timer6 as pulse source*/

CLC1 is configured in the J-K flip-flop with R mode and uses TMR2 and CCP1 as inputs. The following function is
used:

static void CLC1 init (void)

{

CLC1POL = 0x08; /* Negated output for fourth OR gate*/

CLC1SELO = 0x13; /* Configure TMR2 OUT as input for first OR gate */
CLC1SEL1l = 0x18; /* Configure CCP1 OUT as input for second OR gate */
CLC1SEL2 = 0x13; /* Configure TMR2 OUT as input for third OR gate */
CLC1SEL3 = 0x13; /* Configure TMR2 OUT as input for forth OR gate */

/* All four inputs are not inverted*/
CLC1GLSO0 = 0x02;

CLC1GLS1 = 0x08;
CLC1GLS2 = 0x00;
CLC1GLS3 = 0x00;

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 20



TB3273
Using CLCs to Create a Data Signal Modulator ...

CLC1CONbits.EN = 1; /* CLC1 enabled */
CLC1CONbits.MODE = 6; /* Mode J-K flip-flop with R */

CLC2 is configured in the J-K flip-flop with R mode and uses TMR4 and CCP1 as inputs. The following function is
used:

static void CLC2 init (void)
{

CLC2POL = 0x08; /* Negated output for fourth OR gate*/

CLC2SELO = 0x15; /* Configure TMR4 OUT as input for first OR gate */
CLC2SEL1l = 0x18; /* Configure CCP1l OUT as input for second OR gate */
CLC2SEL2 = 0x15; /* Configure TMR4 OUT as input for third OR gate */
CLC2SEL3 = 0x15; /* Configure TMR4 OUT as input for forth OR gate */

/* Inputs 1, 3 and 4 are not inverted; Input 2 inverted*/
CLC2GLS0 = 0x02;

CLC2GLS1 = 0x04;

CLC2GLS2 = 0x00;

CLC2GLS3 = 0x00;

CLC2CONbits.EN = 1; /* CLC2 enabled */
CLC2CONbits.MODE = 6; /* Mode J-K flip-flop with R */

CLC3 is configured in the AND-OR mode and uses CLC1 and CLC2 as inputs. The following function is used:

static void CLC3_init (void)
{

CLC3POL = 0x00; /* Clear the output polarity register */

CLC3SELO = 0x21; /* Configure CLC1l OUT as input for first OR gate */
CLC3SEL1 = 0x21; /* Configure CLCl OUT as input for second OR gate */
CLC3SEL2 = 0x22; /* Configure CLC2 OUT as input for third OR gate */
CLC3SEL3 = 0x22; /* Configure CLC2 OUT as input for forth OR gate */

/* All four inputs are not inverted*/
CLC3GLSO = 0x02;

CLC3GLS1 = 0x08;

CLC3GLS2 = 0x20;

CLC3GLS3 = 0x80;

CLC3CONbits.EN = 1; /* CLC3 enabled */
CLC3CONbits.MODE = 0; /* Mode AND-OR */

To measure the internal peripheral signals with the oscilloscope, the following link must be made:

Table 3-2. Peripheral Mapping to /0O Pins for the Example “Using CLCs to Create a Data Signal Modulator”

Internal CIP Signal Microcontroller Pin

cLC1_ouT RA2
CLC2_ouT RA3
CLC3_OUT RBO
CCP1_OUT RB3

This is done in the following function:

static void PPS init (void)

{

RA2PPS = 0x18; /*Configure RA2 for CLCl output*/
RA3PPS = 0x19; /*Configure RA3 for CLC2 output*/
RBOPPS = 0x1A; /*Configure RBO for CLC3 output*/
RB3PPS = 0x05; /*Configure RB3 for CCPl output*/

View the PIC18F47Q10 Code Example on GitHub

Click to browse repositories

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 21


https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-clc-flipflop-bare

TB3273
Using the CLC to Create an LED Dimming Eff...

Using the CLC to Create an LED Dimming Effect

This example shows an initialization of the CLC in the SR Latch mode for the implementation of an automatic fixed
frequency with variable duty cycle PWM signal. The function is automatically called as it does not require code or
core supervision to work. The hardware is set at start-up and can be reconfigured during run-time. The truth table of
the SR Latch is shown below.

Table 4-1. Truth Table for the SR Latch

0 0 0
0 1 0
1 0 1
1 1 0

CLC1 (SR Latch) has Timer2 as S gate source (which creates the fixed frequency of the generated PWM), and
connected at the R gate is Timer4 to generate the duty cycle of the PWM. Timer4 is set with a slightly higher
frequency than Timer2. At each cycle, the duty cycle will get smaller with the difference between the two signals until
it reaches zero and the process restarts. The difference between Timer2 and Timer4 represents the step of the duty
cycle change, which in this case is 0.1 Hz (or 1 Least Significant Byte difference), and therefore creating 255
repetitive PWM signals.

When this PWM signal is connected to an LED, the created effect is that the LED is repetitively dimmed. If the signal
is inversed, it creates the effect of repetitively increasing LED light (the kind of loading effect).

The internal architecture is shown in Figure 4-1.

Figure 4-1. Internal Connections for “Using CLC to Create an LED Dimming Effect” Example

CLCH
TIMER2 > S
24.41 Hz RA2
ouT
TIMER4
2451 Hz[ ] R

Test setup configurations:

» Timer2 frequency = 24.41 Hz (4.096 ms period)
» Timer4 frequency = 24.51 Hz (4.08 ms period)
« CLC1is setup as SR Latch

Figure 4-2 displays the CLC1 output implementing the fixed frequency with variable duty cycle function:
» Signal 2 (Green) is CLC1 output

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 22



41

TB3273

Using the CLC to Create an LED Dimming Eff...

Figure 4-2. Oscillograms of CLC1 Output Generating the Fixed Frequency Variable Duty Cycle PWM Signal

2100y 3 4

-4.000%

108,02/ Stop

To achieve the functionality described by the use case, the following actions will have to be performed:

» System clock initialization
» Port initialization

» Timer initialization

* CLC initialization.

MCC Generated Code

To generate this project using MPLAB® Code Configurator (MCC), follow the next steps:

1. Create a new MPLAB X IDE project for PIC18F47Q10.

2. Open MCC from the toolbar. More information on how to install the MCC plug-in can be found here.
3. Go to Project Resources — System — System Module and do the following configuration:

Oscillator Select: HFINTOSC
HF Internal Clock: 64 MHz
Clock Divider: 1

— In the Watchdog Timer Enable field in the WWDT tab, WDT Disabled has to be selected.
— In the Programming tab, Low-Voltage Programming Enable has to be checked.
4. From the Device Resources window, add TMR2, TMR4 and CLC1. Do the following configurations for

each peripheral:
4.1. Timer2 Configuration:
+ Enable Timer: checked
+ Timer Clock tab
— Clock Source: FOSC/4
— Prescaler: 1:128
— Postscaler: 1:2
» Timer Period: 4.096 ms
« Enable Timer Interrupt: unchecked

© 2020 Microchip Technology Inc. Technical Brief

DS90003273A-page 23


https://microchipdeveloper.com/install:mcc

TB3273
Using the CLC to Create an LED Dimming Eff...

4.2. Timer4 Configuration:
« Enable Timer: checked
+ Timer Clock tab
— Clock Source: FOSC/4
— Prescaler: 1:128
— Postscaler: 1:2
* Timer Period: 4.08 ms
« Enable Timer Interrupt: unchecked
4.3. CLC1 Configuration:
+ Enable CLC: checked
* Mode: SR Latch

» The SR Latch user configurable interpretation window is now available in the CLC1 window. Set
the internal connections as shown below. By selecting TMR2 as clock source for the ‘S’ input
and TMR4 as source for the ‘R’ input, the CLC will generate a PWM signal with 24.51 Hz
frequency and variable duty cycle with steps equal to the difference between TMR2 and TMR4.

Figure 4-3. CLC1 Configuration Mode SR Latch

TMR2_OUT - H_‘

TMR2_OUT M|

{ TMR4_OUT A

—
TMR4_OUT -

5. In the Pin Manager: Grid View window, select the I/O pins outputs to enable the internal signal access to the
I/O as shown in Figure 4-4.

Figure 4-4. Pin Mapping for the Example “Using the CLC to Create an LED Dimming Effect”

Package: [uommlv” Pin No: 17}19[19[20‘21‘22\29[29 s‘9||o|u[12|13|14|15 30‘31132[33‘39[39‘40[1 34‘35‘36\37[2[3‘4.5 23[24|zs'|6
PortA 'Y PortBY PortC'V¥ PortD ¥ PortEV
Module | Function | Direction |0 | 1|2 )3 |4|5]6|7|0|1|2|3/4|5|6|7|0]1|2]3/4|5|6/ 7|0|1/2|3]|4|5]/6/7|0|1|2]|3
ClC1  [CICTOUT  Joutput CRCIERCRCRCECEEC] | | ] 'h|'i| CRCRCRCEN]

6. In the Project Resources window, click Generate.

For this example, no extra code was used aside from the one generated from MCC.

View the PIC18F47Q10 Code Example on GitHub

Click to browse repositories

4.2 Bare Metal Code

The necessary code and functions to implement the presented example are analyzed in this section.

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 24


https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-clc-latch-mcc

TB3273
Using the CLC to Create an LED Dimming Eff...

The first step will be to configure the microcontroller to disable the Watchdog Timer and to enable the Low-Voltage
Programming (LVP).

#pragma config WDTE = OFF /* WDT operating mode — WDT Disabled */
#pragma config LVP = ON /* Low-voltage programming enabled, RE3 pin is MCLR */

As described in the example functionality, the following peripherals must be initialized: Timer2, Timer4, CLC1, the 1/O
PORT and PPS.

The internal oscillator has to be set to the desired value (in this case to 64 MHz), using the following function:

static void CLK init (void)

OSCCON1bits.NOSC = 6; /* HFINTOSC oscillator */
OSCFRQ = 0x08; /* HFFRQ 64 MHz; */

To enable the output driver in the desired 1/O pins (RA2), the following function is used:

static void PORT init (void)
{

TRISAbits.TRISA2 = 0; /*PORT RA2 output driver enabled*/
}

For Timer2 to use FOSC/4 as clock source and generate a pulse every 4.096 ms (frequency = 24.41 Hz), the
prescaller must also be added to 1:128 and postcaller to 1:2. The following function is used:

static void TMR2 init (void)
{

T2CLKCONbits.CS = 1; /* Timer2 clock source is FOSC/4 */
T2PR = OxFF; /* Load period values */
T2CONbits.CKPS = 7; /* Set prescaller to 1:128 */
T2CONbits.OUTPS = 1; /* Set postcaller to 1:2 */
T2CONbits.ON = 1; /* Enable Timer2 */

For Timer4 to use FOSC/4 as clock source and generate a pulse every 4.08 ms (frequency = 24.51 Hz), the
prescaller must also be added to 1:128 and postcaller to 1:2. The following function is used:

static void TMR4 init (void)
{

T4CLKCONbits.CS = 1; /* Timerd4 clock source is FOSC/4 */
T4PR = OxFE; /* Load period values */
T4CONbits.CKPS = 7; /* Set prescaller to 1:128 */
T4CONbits.OUTPS = 1; /* Set postcaller to 1:2 */
T4CONbits.ON = 1; /* Enable Timer4d */

CLC1 is configured in the SR Latch mode and uses TMR2 and TMR4 as inputs. The following function is used:

static void CLC1 init (void)
{

CLC1POL = 0x00; /* Clear the output polarity register */

CLC1SELO = 0x13; /* Configure TMR2 OUT as input for first OR gate */
CLC1SEL1l = 0x13; /* Configure TMR2 OUT as input for second OR gate */
CLC1SEL2 = 0x15; /* Configure TMR4 OUT as input for third OR gate */
CLC1SEL3 = 0x15; /* Configure TMR4 OUT as input for fourth OR gate */

/* All four inputs are not inverted*/
CLC1GLSO = 0x02;

CLC1GLS1 0x08;

CLC1GLS2 = 0x20;

CLC1GLS3 = 0x80;

CLCI1CONbits.EN = 1; /* CLC1l enabled; */
CLC1CONbits.MODE = 3; /* Mode SR latch */

To measure the internal peripheral signals with the oscilloscope, the following link must be made:

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 25



TB3273
Using the CLC to Create an LED Dimming Eff...

Table 4-2. Peripheral Mapping to 1/0 Pins for the Example “Using the CLC to Create an LED Dimming Effect”

Internal CIP Signal Microcontroller Pin

CLC1_OuUT RA2

This is done in the following function:

static void PPS_init (void)
{

RA2PPS = 0x18; /*Configure RA2 for CLC1 output*/
}

View the PIC18F47Q10 Code Example on GitHub

Click to browse repositories

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 26


https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-clc-latch-bare

TB3273

References

5. References

How to install MCC

PIC1000: Getting Started with Writing C-Code for PIC16 and PIC18 Technical Brief
DS40001725B - MPLAB Code Configurator User’s Guide

AN2133 - Extending PIC® MCU Capabilities Using CLC

TB3133 - Configurable Logic Cell on PIC® Microcontrollers

AN2805 - Robust Debouncing with Core Independent Peripherals

DS41631B - Configurable Logic Cell Tips 'n Tricks

AN2912 - Using CLCs in Real-Time Applications

AN1606 - Using the Configurable Logic Cell (CLC) to Interface a PIC16F1509 and WS2811 LED Driver
0. 20007 CIP1 - Applying Configurable Logic Cell CLC to Interconnect Peripheral Functions

S 0NN

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 27


https://microchipdeveloper.com/install:mcc
https://www.microchip.com/wwwappnotes/appnotes.aspx?appnote=en1002117
http://ww1.microchip.com/downloads/en/devicedoc/40001725b.pdf
http://ww1.microchip.com/downloads/en/AppNotes/00002133a.pdf
http://ww1.microchip.com/downloads/en/Appnotes/90003133A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/AN2805-Robust-Debounc-Core-Inddep-Periph-DS00002805A.pdf
http://ww1.microchip.com/downloads/en/devicedoc/41631b.pdf
http://ww1.microchip.com/downloads/en/Appnotes/AN2912-Using-CLCs-in-Real-Time-Apps_00002912A.pdf
http://ww1.microchip.com/downloads/en/appnotes/00001606a.pdf
https://www.youtube.com/watch?v=qT2Ma_XR3ZQ

6.

TB3273

Revision History

Revision History

A 05/2020 Initial document release

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 28



TB3273

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and
information easily available to customers. Some of the content available includes:

* Product Support — Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

* General Technical Support — Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

* Business of Microchip — Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

» Distributor or Representative

* Local Sales Office

»  Embedded Solutions Engineer (ESE)
» Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

* Microchip products meet the specification contained in their particular Microchip Data Sheet.

* Microchip believes that its family of products is one of the most secure families of its kind on the market today,
when used in the intended manner and under normal conditions.

» There are dishonest and possibly illegal methods used to breach the code protection feature. All of these
methods, to our knowledge, require using the Microchip products in a manner outside the operating
specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of
intellectual property.

» Microchip is willing to work with the customer who is concerned about the integrity of their code.

» Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code
protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection
features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital
Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you
may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for your
convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 29


http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support

TB3273

your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER
EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such
use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless
otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox,
KeelLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST,
MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer,
QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control,
HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus,
ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider,
Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BlueSky, BodyCom,
CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM,
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP,
INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM,
PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad
1/0, SMART-1.S., SQI, SuperSwitcher, SuperSwitcher Il, Total Endurance, TSHARC, USBCheck, VariSense,
ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany || GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2020, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.
ISBN: 978-1-5224-6289-7

Quality Management System

For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.

© 2020 Microchip Technology Inc. Technical Brief DS90003273A-page 30


http://www.microchip.com/quality

MICROCHIP

Worldwide Sales and Service

AMERICAS ASIA/PACIFIC ASIA/PACIFIC B

Corporate Office

2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200

Fax: 480-792-7277
Technical Support:

www.microchip.com/support

Web Address:
www.microchip.com
Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX

Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075
Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924
Detroit

Novi, Ml

Tel: 248-848-4000
Houston, TX

Tel: 281-894-5983
Indianapolis
Noblesville, IN

Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC

Tel: 919-844-7510
New York, NY

Tel: 631-435-6000
San Jose, CA

Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

© 2020 Microchip Technology Inc.

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing

Tel: 86-10-8569-7000
China - Chengdu

Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing

Tel: 86-25-8473-2460
China - Qingdao

Tel: 86-532-8502-7355
China - Shanghai

Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou

Tel: 86-186-6233-1526
China - Wuhan

Tel: 86-27-5980-5300
China - Xian

Tel: 86-29-8833-7252
China - Xiamen

Tel: 86-592-2388138
China - Zhuhai

Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune

Tel: 91-20-4121-0141
Japan - Osaka

Tel: 81-6-6152-7160
Japan - Tokyo

Tel: 81-3-6880- 3770
Korea - Daegu

Tel: 82-53-744-4301
Korea - Seoul

Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore

Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei

Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Technical Brief

Austria - Wels

Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo

Tel: 358-9-4520-820
France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan

Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana

Tel: 972-9-744-7705
Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova

Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw

Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham

Tel: 44-118-921-5800
Fax: 44-118-921-5820

DS90003273A-page 31


http://www.microchip.com/support
http://www.microchip.com

	Introduction
	Table of Contents
	1. Peripheral Overview
	2. Using Basic Logic Gates
	2.1. MCC Generated Code
	2.2. Bare Metal Code

	3. Using CLCs to Create a Data Signal Modulator (DSM)
	3.1. MCC Generated Code
	3.2. Bare Metal Code

	4. Using the CLC to Create an LED Dimming Effect
	4.1. MCC Generated Code
	4.2. Bare Metal Code

	5. References
	6. Revision History
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service



