

Application Note

Leveraging Differences in Packaging to Customize Amplifier Performance

AN004

The [GRF4004](#) is a high-linearity driver with low noise. It is fabricated in a 250 nm E-mode pHEMT process and packaged in GRF's standard 1.5 mm DFN-6. For applications above 1500 MHz which require high input-referenced linearity and very low noise, it is ideal. However, for sub-1 GHz applications, its high gain degrades the input-referenced P1dB and IP3.

So, if we want to quickly modify the [GRF4004](#), how could we do that? Is there an easy way to change the device packaging so that we can create a [GRF4004](#) derivative product optimized for a different frequency band?

Here is the challenge: *Improve the input linearity of the device while allowing only minimal impact to the NF.*

Adding resistive loss to the input would certainly improve the input linearity, but with an unacceptable impact to NF. Similarly, allowing S(1,1) to degrade via reactive mismatch on the input will improve the input linearity, but most applications require a minimum input return loss of 10 dB or more for a specific application frequency.

A third option is available which allows for the input linearity to be increased, while the input return loss and NF are minimally impacted. This method involves increasing the inductance to ground on the source node of the amplifier.

Within a packaged device, the FET source node is connected to the package die flag (ground) via a thin, inductive bond wire. During the creation of the [GRF4004](#), this bond wire length (inductance) was optimized to achieve the best tradeoff of RF performance over a wide range of frequencies.

To achieve our goal of decreasing the low-frequency gain, and thus optimizing input linearity, it was necessary to increase the length of the source bond wire to ground. There was only so much physical space to accomplish this in the 1.5 mm package, so we decided to place the die into our larger 2x2 mm DFN-8 package. In this environment, the bond wire length was then optimized to achieve the desired gain, NF, return losses and input linearity in the 700-960 MHz band. This derivative product is called the [GRF2114](#).

If you look at the tables below, you may notice that the [GRF2114](#) IIP3 was improved most of all. It is not unusual for this increased source inductance to result in both improved OIP3 and reduced gain. The combination of these two results here accounted for a large increase in input-referenced IP3. As usual, there is a tradeoff with this source inductance technique: the use of increased source inductance results in gain roll-off at the high end of the band. This is why the gain flatness over 700-960 MHz is slightly worse for [GRF2114](#) than it is for [GRF4004](#).

Descriptor	Freq (MHz)	Gain (dB)	IIP3 (dBm)	OIP3 (dBm)	IP1dB (dBm)	OP1dB (dBm)	EVB NF (dB)
GRF4004_5V/135mA	700	22.0	15.8	37.8	4.1	25.0	0.92
GRF4004_5V/135mA	830	21.3	15.7	37.0	5.0	25.1	0.84

AN004

Leveraging Differences in Packaging to Customize Amplifier Performance

APPLICATION NOTE

GRF4004_5V/135mA	960	20.3	16.0	36.2	6.0	25.2	0.84
------------------	-----	------	------	------	-----	------	------

Descriptor	Freq (MHz)	Gain (dB)	IIP3 (dBm)	OIP3 (dBm)	IP1dB (dBm)	OP1dB (dBm)	EVB NF (dB)
GRF2114_5V/135mA	700	19.1	20.9	40.0	7.3	25.4	1.00
GRF2114_5V/135mA	830	18.0	22.6	40.6	8.7	25.7	0.93
GRF2114_5V/135mA	960	16.7	24.2	40.9	10.2	25.9	0.96

In the above example, the improvement in input-referenced linearity of **GRF2114** compared to its parent device is significant, thus highlighting one of the primary methods we use to optimize for one particular frequency range over another. For a given MMIC die, the device packaging and internal bond wire configuration make significant contributions to the performance of the device.

As always, Guerrilla RF's application engineering team stands ready to assist you with your design and applications needs. Our goal is to make using our parts as easy as possible. We welcome customer suggestions for new devices. Many products in our current portfolio are the direct result of customer requests. What can we design for you?

AN004

Leveraging Differences in Packaging to Customize Amplifier Performance

APPLICATION NOTE

Disclaimers

Information in this application note is specific to the Guerrilla RF, Inc. ("Guerrilla RF") product identified.

This application note, including the information contained in it, is provided by Guerrilla RF as a service to its sales team, sales representatives and distributors and may be used for informational purposes only. Guerrilla RF assumes no responsibility for errors or omissions within this note or the information contained herein. Information provided is believed to be accurate and reliable, however, no responsibility is assumed by Guerrilla RF for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. Guerrilla RF assumes no liability for any datasheet, datasheet information, materials, products, product information, or other information provided hereunder, including the sale, distribution, reproduction or use of Guerrilla RF products, information or materials.

No license, whether express, implied, by estoppel, by implication or otherwise is granted by this datasheet for any intellectual property of Guerrilla RF, or any third party, including without limitation, patents, patent rights, copyrights, trademarks and trade secrets. All rights are reserved by Guerrilla RF.

All information herein, products, product information, datasheets, and datasheet information are subject to change and availability without notice. Guerrilla RF reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice. Guerrilla RF may further change its datasheet, product information, documentation, products, services, specifications or product descriptions at any time, without notice. Guerrilla RF makes no commitment to update any materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

GUERRILLA RF INFORMATION, PRODUCTS, PRODUCT INFORMATION, APPLICATION NOTES, DATASHEETS AND DATASHEET INFORMATION ARE PROVIDED "AS IS" AND WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. GUERRILLA RF DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. GUERRILLA RF SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Customers are solely responsible for their use of Guerrilla RF products in the Customer's products and applications or in ways which deviate from Guerrilla RF's published specifications, either intentionally or as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Guerrilla RF assumes no liability or responsibility for applications assistance, customer product design, or damage to any equipment resulting from the use of Guerrilla RF products outside of stated published specifications or parameters.

Revision History

Revision	Date Reason for Revision
Initial Release	September 1, 2020