

Using TraceID

Technical Note

FPGA-TN-02084-2.5

January 2023

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS, with all faults and associated risk the responsibility entirely of the Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice's product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

Contents

Acronyms in This Document	5
1. Introduction	6
2. Why is TracelID Important?	6
3. How Does TracelID Work?	6
4. How to Program User-Defined Code of the TracelID for MachXO2	7
5. Accessing the TracelID Register	7
5.1. TracelID Access Through the JTAG Port	9
5.2. TracelID Access Through the WISHBONE Slave Interface (MachXO2 and MachXO3 Only)	10
5.3. TracelID Access Through the Slave SPI Port	10
5.4. TracelID Access Through the I ² C Port (MachXO2, MachXO3, CrossLink-NX, Certus-NX, CertusPro-NX, and MachXO5-NX Only)	12
5.5. TracelID Access Through the LMMI (Avant Only)	13
6. MachXO2 Example Uses of TracelID	14
Technical Support Assistance	15
Revision History	16

Figures

Figure 5.1. Read TracelD through Diamond Programming Tool.....	7
Figure 5.2. Program TracelD through Lattice Radiant Programmer Tool	8
Figure 5.3. Feature Row Editor	8
Figure 5.4. Avant - Program Feature Row through Lattice Radiant Programmer Tool.....	9
Figure 5.5. TracelD Read through SPI	11
Figure 5.6. TracelD Read through SPI, Continued.....	11
Figure 5.7. TracelD Read through I ² C.....	13
Figure 6.1. TracelD Read through I ² C.....	14

Tables

Table 3.1. TracelD Register	6
Table 5.1. WISHBONE Register	10

Acronyms in This Document

A list of acronyms used in this document.

Acronym	Definition
EFB	Embedded Function Block
I ² C	Inter-integrated circuit
IP	Intellectual property
JTAG	Joint Test Action Group
LMMI	Lattice Memory Mapped Interface
OEM	Original equipment manufacturer
PLD	Programmable Logic Device
SPI	Serial Peripheral Interface
SSPI	Security Support Provider Interface

1. Introduction

Design theft has caused many companies to explore methods to insure that their designs and intellectual property (IP) are protected or less prone to blatant copying.

Design theft occurs when a design is copied in part or as a whole and then designed into a cheaper competing product.

The MachXO2™, MachXO3™, ECP5™, ECP5-5G™, CrossLink™-NX, Certus™-NX, CertusPro™-NX, MachXO5™-NX, and Avant™ FPGA families have a feature called TracelD for securing original design and IP. TracelD is a unique, 64-bit code that is programmed during the manufacturing of the device, thus linking a specific design to a specific device. This ensures that only the original product manufacturer who ordered a specific device has access to it.

2. Why is TracelD Important?

TracelD can be used to prevent overbuilding and cloning of user designs. Overbuilding occurs when a contract manufacturer builds more products than the original company has approved. These extra products are, in turn, sold through other channels for profit without the knowledge or consent of the original company. Cloning is the act of making exact copies of a product and selling them under a different name at a lower price (thus reducing the OEM profit). These practices cause OEMs to lose money not only from lost sales and lower margins, but also from unseen support costs such as failure analysis.

The TracelD feature can be used to prevent both overbuilding and cloning.

3. How Does TracelD Work?

TracelD is a unique, 64-bit device identification tracking number which is stored in the feature row of the device.

The 64 bits contain the following unique information:

- Wafer lot number
- Wafer number within the lot
- Die X location
- Die Y location
- User-defined design-specific code

The TracelD register format is shown in [Table 3.1](#).

Table 3.1. TracelD Register

[63:56]	8 bits, User-Defined Code
[55:24]	32 bits, Wafer Lot Number
[23:19]	5 bits, Wafer Number (within the lot)
[18:12]	7 bits, Wafer Die X Location
[11:5]	7 bits, Wafer Die Y Location
[4:0]	5 bits, Extra Spare Bits

The most significant eight bits are the user-defined design-specific code. These eight bits are read and write accessible. The remaining 56 bits are read-only and are programmed at the time the device is manufactured by Lattice. The 8-bit user-defined code plus the 56-bit factory-programmed portion together guarantee that every device has a unique TracelD. This uniqueness provides OEMs greater control over how many of their products are introduced in the market and the ability to detect false products.

4. How to Program User-Defined Code of the TracelID for MachXO2

Lattice design software can be used to set a specific 8-bit user-defined code in the TracelID register. The TRACE_ID_BINARY preference must be set to a chosen value in the LPF file.

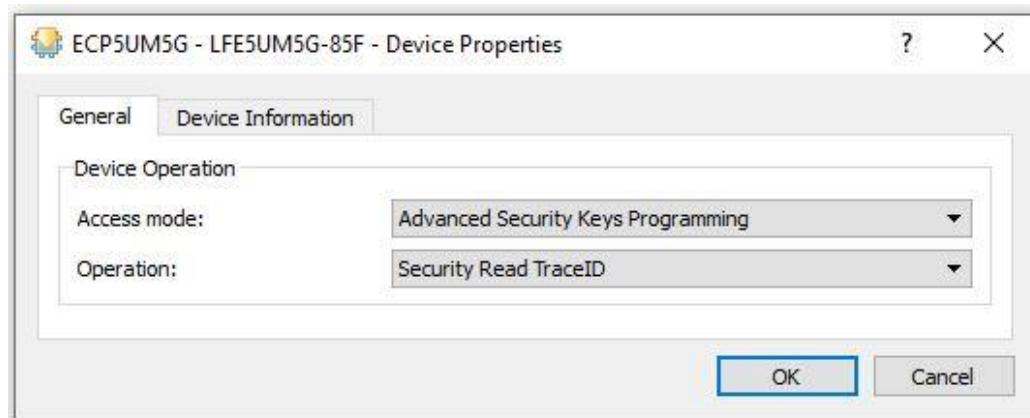
In the LPF file, set the TracelID value using the following format:

```
TRACEID "<8-bit value>"
```

Below is an example:

```
TRACEID "01101001"
```

When a programming file is created, the 8-bit TracelID value is embedded in the JED file feature row. During programming,


the TracelID registers in the device are updated with the one in the JED. The default value for the user defined code is "00000000".

5. Accessing the TracelID Register

The TracelID value in the MachXO2 and MachXO3 devices can be read using the internal WISHBONE port or externally through the JTAG, SSPI or I²C ports. The TracelID value in ECP5 and ECP5-5G devices can be read through JTAG or SSPI port since ECP5 and ECP5-5G does not have I²C port nor internal WISHBONE. The TracelID value in CrossLink-NX, Certus-NX, CertusPro-NX, and MachXO5-NX devices can be read using the JTAG, SSPI, or I²C ports. The TracelID value in Avant can be read using JTAG, SSPI, or Lattice Memory Mapped Interface (LMMI) ports.

For SSPI, I²C, and JTAG interfaces, the UPCODE_PUB command must be used to read the TracelID register. The OPCODE for the UPCODE_PUB command is "00011001".

The TracelID value can also be read using either the Lattice Diamond® Programmer tool or the Lattice Radiant® Programmer tool, depending on the device family. [Figure 5.1](#) and [Figure 5.2](#) show the settings required to read the TracelID through the Diamond Programmer and Lattice Radiant Programmer tools, respectively.

Figure 5.1. Read TracelID through Diamond Programming Tool

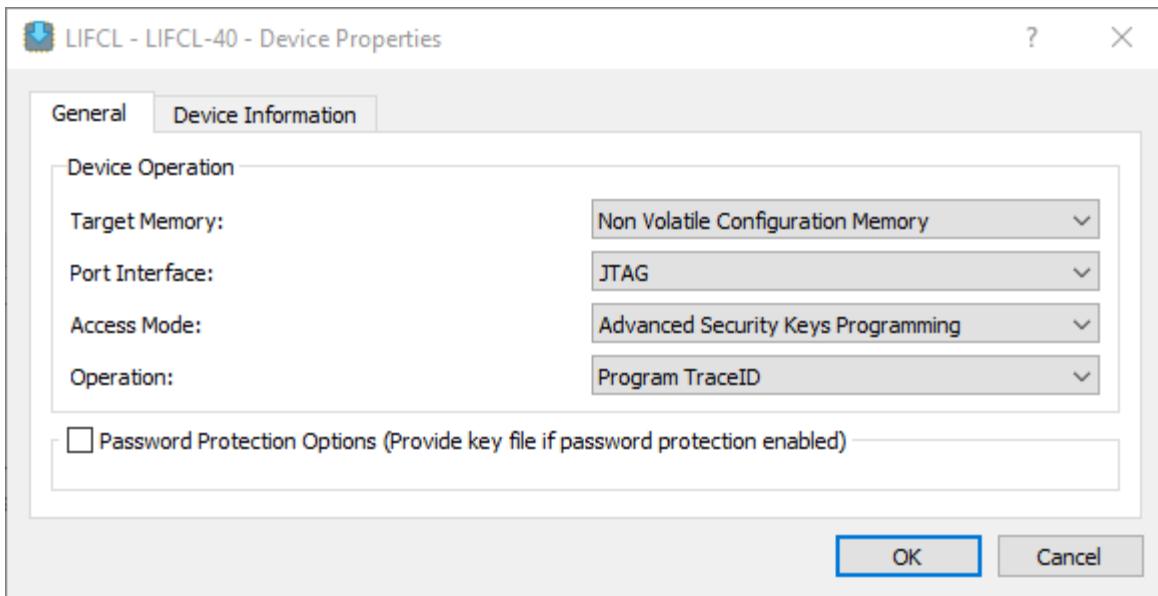


Figure 5.2. Program TracelD through Lattice Radiant Programmer Tool

For MachXO2, MachXO3, CrossLink-NX, Certus-NX, CertusPro-NX, and MachXO5-NX bits [63:56] of the TracelD can be written through the Feature Row. In Diamond Programmer, select **Advanced Security Keys Programming** in **Access Mode** and **Security Program Feature Rows in Operation**. In Radiant Programmer, select **Advanced Security Keys Programming in Access Mode** and **Program TracelD in Operation**. When the operation is run, a window similar to Figure 5.3 opens. For Avant, bits [63:56] of the TracelD can be programmed through Radiant Programmer by selecting **Feature Rows Programming in Access Mode** and **Program Feature Row in Operation** (Figure 5.4).

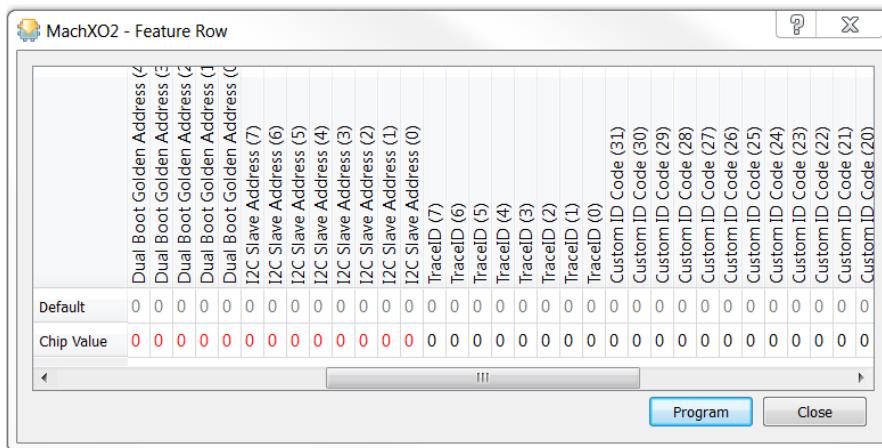


Figure 5.3. Feature Row Editor

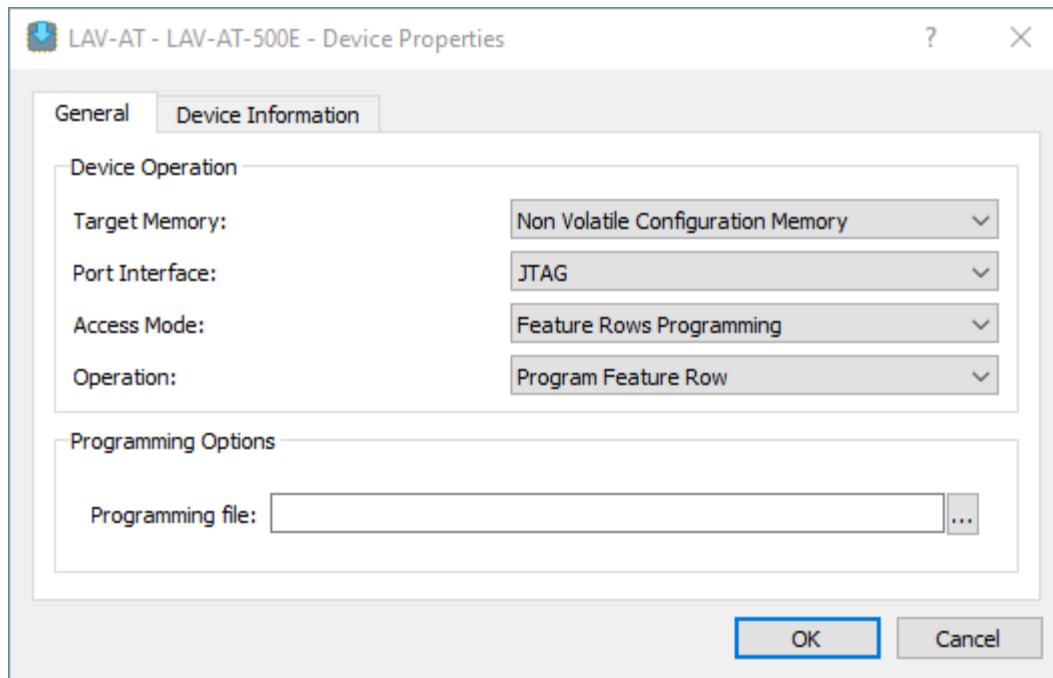


Figure 5.4. Avant - Program Feature Row through Lattice Radiant Programmer Tool

5.1. TracelID Access Through the JTAG Port

The JTAG port has access to all configuration logic resources including the TracelID. To read the TracelID using JTAG, shift the command (0x19h) into the instruction register then read the 64-bit TracelID out of the data register.

5.2. TracelD Access Through the WISHBONE Slave Interface (MachXO2 and MachXO3 Only)

The WISHBONE Slave interface of the EFB module enables designers to access the TracelD directly from the PLD core logic. The WISHBONE bus signals are utilized by a WISHBONE host that designers can implement using the general purpose PLD resources. In addition to the WISHBONE bus signals, an interrupt request output signal is brought to the PLD fabric.

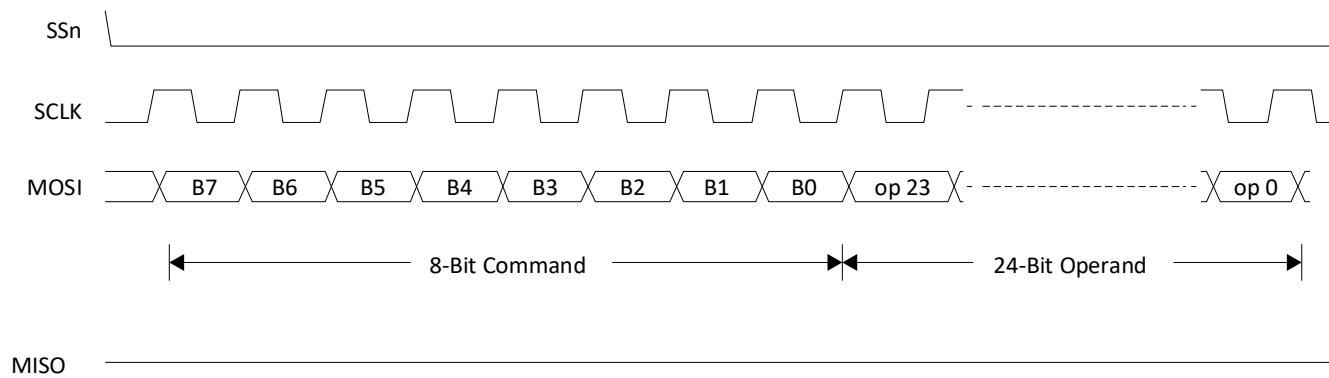
The WISHBONE interface communicates to the configuration logic through a set of data, control and status registers. [Table 5.1](#) shows the register names and their functions. These registers are the subset of the EFB register map. The details of the WISHBONE slave interface pins, EFB register map, and WISHBONE register definition can be found in [Using User Flash Memory and Hardened Control Functions in MachXO2 Devices \(FPGA-TN-02162\)](#) and [Using Hardened Control Functions in MachXO3 Devices \(FPGA-TN-02063\)](#).

Table 5.1. WISHBONE Register

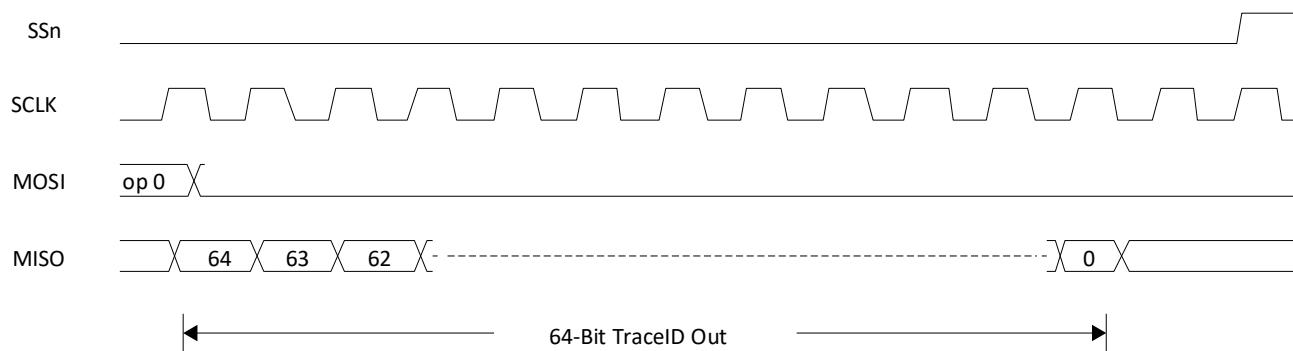
WISHBONE to CFG Register Name	Register Function	Address	Access
CFGCR	Control	0x70	Read/Write
CFGTXDR	Transmit Data	0x71	Write
CFGSR	Status	0x72	Read
CFGRXDR	Receive Data	0x73	Read
CFGIRQ	Interrupt Request	0x74	Read/Write
CFGIRQEN	Interrupt Request Enable	0x75	Read/Write

When using the WISHBONE bus interface, the opcodes, operand, and data are written to the CFGTXDR register. This is required only when communicating with the configuration logic inside the MachXO2 and MachXO3 devices. The TracelD can be accessed through the WISHBONE interface by writing the opcode and operand into the CFGTXDR register. The TracelD information can then be read from the CFGRXDR register.

The opcode to access the TracelD is 0x19h and the operand is 0x000000h.


5.3. TracelD Access Through the Slave SPI Port

The Slave SPI port can be used to perform read operations to the TracelD. The configuration SPI port is shared with the hardened SPI core of the EFB module. Asserting the configuration SN (select) pin causes the SPI port to transition its service from user mode to configuration mode. The TracelD can be accessed using the SPI port by following the command sequence described below.


To access the TracelD:

1. Pull down the configuration SN select pin (SPI Slave Select)
2. Send 8'h19 command from the external SPI master
3. Send 24-bit operand 24'h000000
4. Receive TracelD from SPI slave in next 64 SCLK cycle
5. Pull up configuration SN select pin

The complete sequence is shown in [Figure 5.5](#) and [Figure 5.6](#).

Figure 5.5. TracelID Read through SPI

Figure 5.6. TracelID Read through SPI, Continued

5.4. TracelID Access Through the I²C Port (MachXO2, MachXO3, CrossLink-NX, Certus-NX, CertusPro-NX, and MachXO5-NX Only)

All MachXO2, MachXO3, CrossLink-NX, Certus-NX, CertusPro-NX, and MachXO5-NX devices have an I²C port, which can be used to perform read operations to the TracelID.

For MachXO2 and MachXO3, the configuration I²C port is shared with the hardened I²C primary core of the EFB module. Addressing the I²C primary port with the configuration address changes the port service from user mode with the WISHBONE interface to configuration mode. The pin locations of the configuration I²C port are pre-assigned in all MachXO2 and MachXO3 devices.

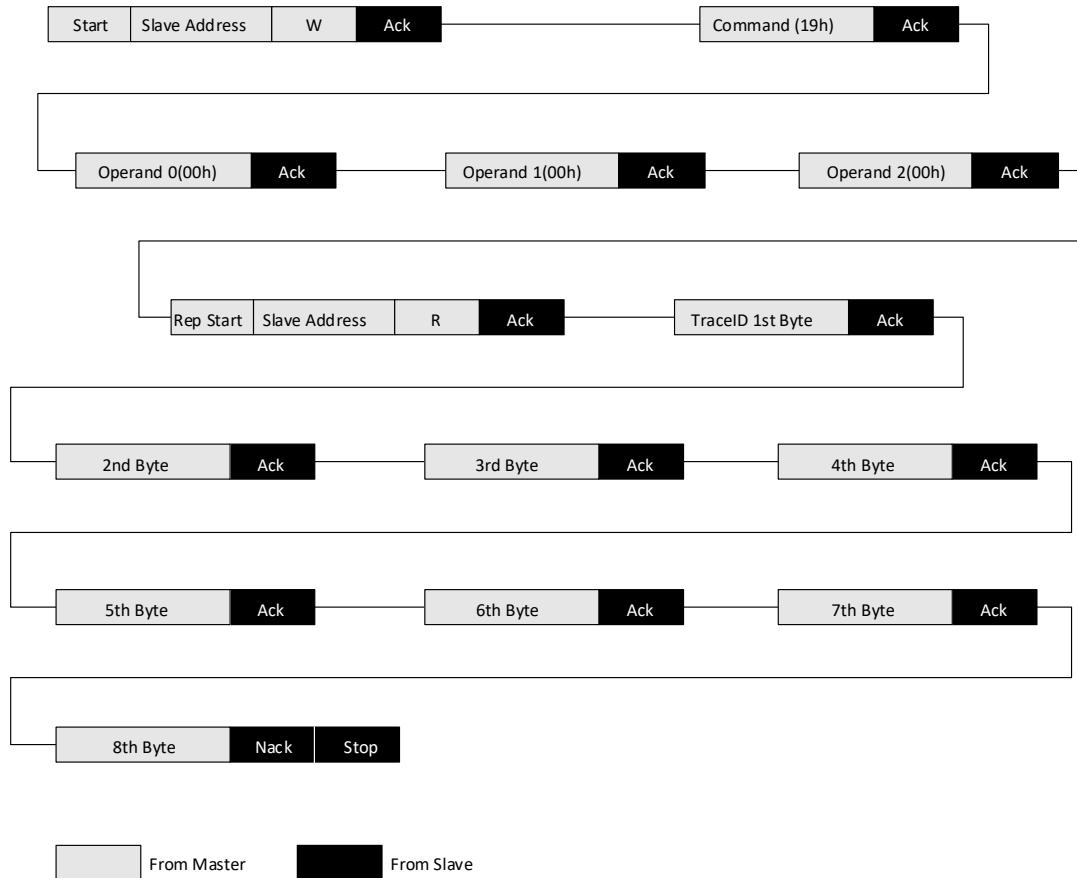
For CrossLink-NX, Certus-NX CertusPro-NX, and MachXO5-NX devices, the configuration I²C port is separate from the hard I²C block accessible from user logic, and has pre-defined pins. Sending the I²C address followed by the correct preamble activates the port. The I²C configuration port is a shared interface to the configuration logic with the configuration SPI port, and only one can be active at a time.

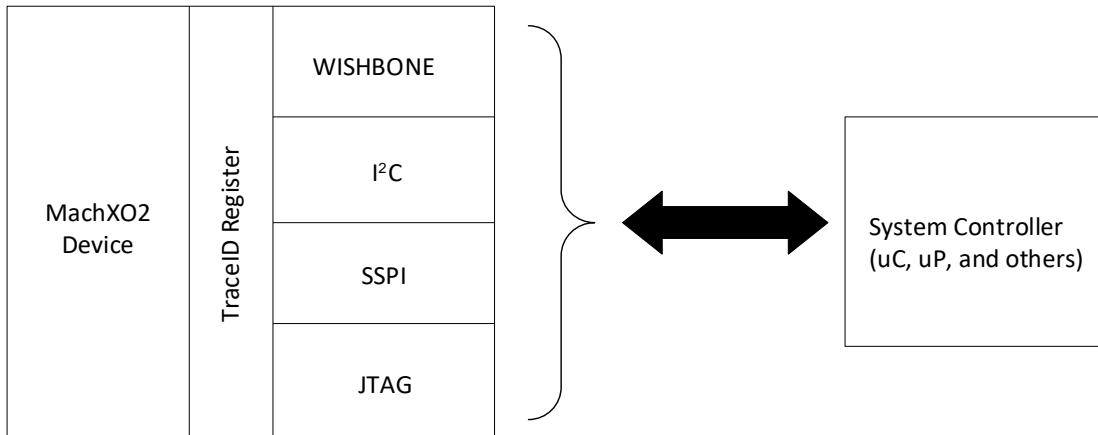
There is one address byte required since 7-bit addresses are used. The last bit of the address byte is the read/write bit and should always be set according to the required operation. This 7-bit I²C address is 1000000 (80h) which is the default address. The read sequence uses a repeated start condition during the sequence to avoid bus release during communication. For 10-bit addressing the I²C slave address is 10'b1111000000.

To read the TracelID through the I²C bus:

1. Send start condition.
2. Send default slave address (8'h80) and write command.
3. Send the 8-bit command 8'h19.
4. Send the 24-bit operand 24'h000000 in three single-byte transfers.
5. Send repeated start.
6. Send the slave address and read command.
7. Read the first through seventh bytes of the TracelID and send ack for each byte read.
8. Read the last TracelID byte and send nack.
9. Send the stop command.

Figure 5.7 shows the TracelID read through I²C.




Figure 5.7. TracelID Read through I²C

5.5. TracelID Access Through the LMMI (Avant Only)

The Lattice Memory Mapped Interface (LMMI) is a memory-mapped address/data interface. It defines a standard set of interface signals for register/memory access and supports both single and burst transactions. LMMI allows the designer to access the TracelID directly from the PLD core logic. The opcode to access the TracelID is 0x19h. Details on LMMI can be found in [Lattice Memory Mapped Interface and Lattice Interrupt Interface User Guide \(FPGA-UG-02039\)](#).

6. MachXO2 Example Uses of TracelD

TracelD can be used to validate that the MachXO2 device or the system in general, as authorized by the OEM.

Figure 6.1. TracelD Read through I²C

One way of implementing this is to use the system controller, either a microcontroller or microprocessor, to access the TracelD register (through WISHBONE, I²C, SPI or JTAG interfaces) and compare it against a list of approved TracelD device tables. If the TracelD matches the approved device list, the system can continue to function as intended.

In cases where the read TracelD does not match with the approved device list, the system controller can choose to log the event and take one of the following actions:

- Stall – Stop working
- Continue with limited functionality – Partial operation of system
- Erase or destroy integral data in the system – Erase the boot ROM, Flash memory, register tables, etc.

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

For frequently asked questions, refer to the Lattice Answer Database at
www.latticesemi.com/Support/AnswerDatabase.

Revision History

Revision 2.5, January 2023

Section	Change Summary
Accessing the TracelD Register	Fixed the figure reference error for Figure 5.1. Read TracelD through Diamond Programming Tool and Figure 5.2. Program TracelD through Lattice Radiant Programmer Tool .
Technical Support Assistance	Removed https: from the Technical Support Assistance Section.

Revision 2.4, November 2022

Section	Change Summary
All	Updated formatting styles.
Accessing the TracelD Register	Added link to FPGA-UG-02039 in Section 5.5 TracelD Access Through the LMMI (Avant Only).

Revision 2.3, May 2022

Section	Change Summary
All	Added MachXO5-NX device family.
Accessing the TracelD Register	Updated the document numbers of referenced technical notes.

Revision 2.2, June 2021

Section	Change Summary
All	Added CertusPro-NX device family.

Revision 2.1, October 2020

Section	Change Summary
Accessing the TracelD Register	<ul style="list-style-type: none">Updated process of writing TracelD through Feature Row.Updated Figure 5.2. Read TracelD through Lattice Radiant Programmer Tool.Corrected reference to Figure 5.6. TracelD Read through I2C.

Revision 2.0, June 2020

Section	Change Summary
All	<ul style="list-style-type: none">Added Certus-NX device family.Minor changes in formatting and style.

Revision 1.9, December 2019

Section	Change Summary
All	<ul style="list-style-type: none">Changed document number from TN1207 to FPGA-TN-02084.Updated document template.Updated document links.
Disclaimers	Added this section.
Introduction	Added CrossLink-NX device family.
Accessing the TracelD Register	<ul style="list-style-type: none">Added CrossLink-NX device family.Added Figure 5.2. Read TracelD through Lattice Radiant Programmer Tool.

Revision 1.8, October 2015

Section	Change Summary
Introduction	Added ECP5-5G device family.
Accessing the TracelID Register	Added ECP5-5G device family.
Technical Support Assistance	Updated this section.

Revision 1.7, March 2015

Section	Change Summary
All	Product name adjustment. Included MachXO3LF device.

Revision 1.6, June 2014

Section	Change Summary
All	Corrected typographical errors on product name.

Revision 1.5, April 2014

Section	Change Summary
All	<ul style="list-style-type: none"> Changed document title to Using TracelID. Added support for MachXO3L device family.

Revision 1.4, April 2014

Section	Change Summary
TracelID Access Through the JTAG Port	Updated Table 1, TracelID Register.

Revision 1.3, March 2014

Section	Change Summary
All	Updated Technical Support Assistance information.

Revision 1.2, March 2014

Section	Change Summary
All	<ul style="list-style-type: none"> Changed document title to Using TracelID in MachXO2 and ECP5 Devices. Added support for ECP5 device family.

Revision 1.1, February 2012

Section	Change Summary
All	<ul style="list-style-type: none"> Document status changed from advance to final. Updated document with new corporate logo.
Accessing the TracelID Register	<p>Added the following sections:</p> <ul style="list-style-type: none"> TracelID Access Through the JTAG Port TracelID Access Through the WISHBONE Slave Interface TracelID Access Through the Slave SPI Port TracelID Access Through the I²C Port

Revision 1.0, November 2010

Section	Change Summary
All	Initial release.

www.latticesemi.com