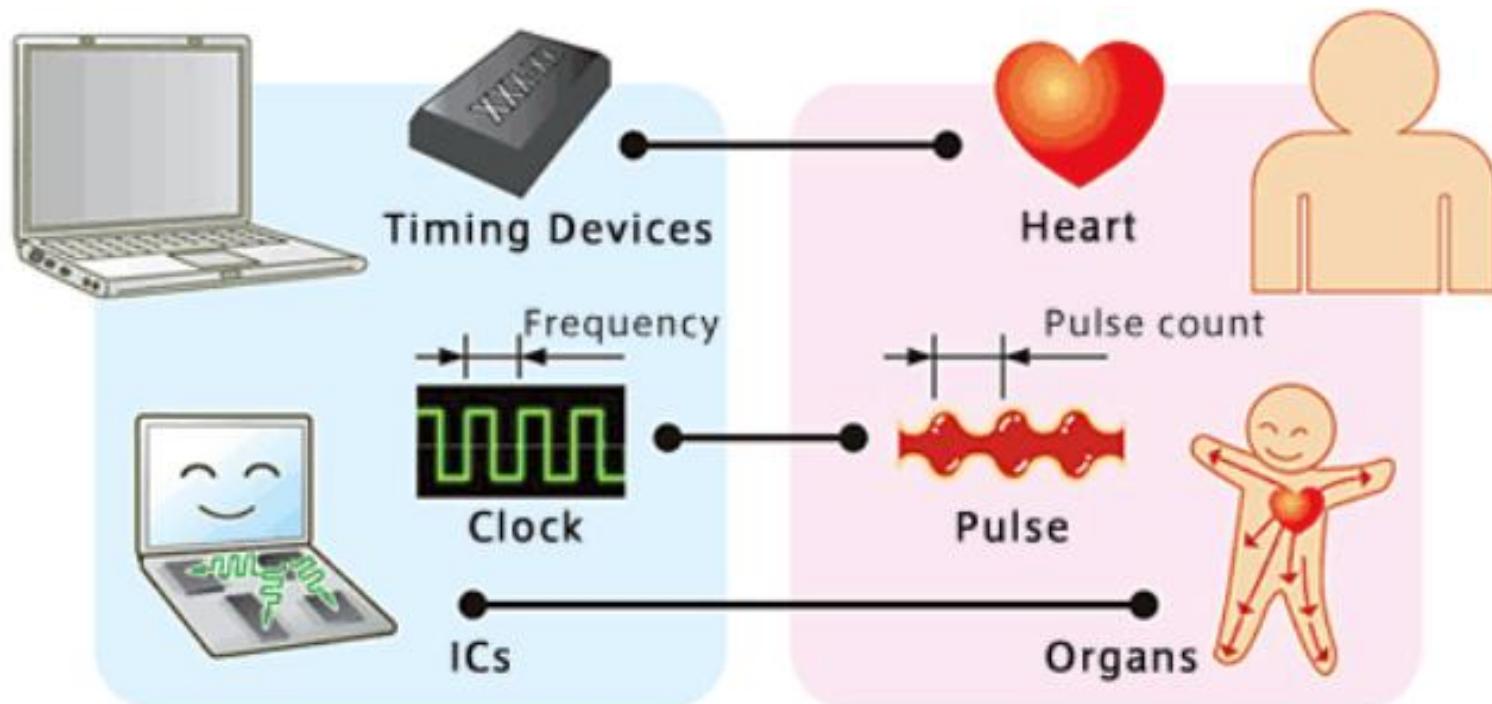


Introduction

Purpose

- To educate about crystal devices and present Epson's crystal device portfolios

Objectives

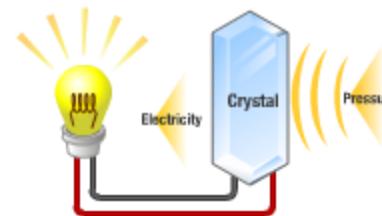

- Explain timing devices, quartz crystals and the manufacturing processes
- Review kHz and MHz crystal cuts and characteristics
- Educate on Epson's breakthrough QMEMS photolithography processing technology
- Provide tips for oscillation circuit designs
- Explain important electrical parameters of crystal devices
- Provide overview of Epson's kHz and MHz crystal device portfolios

Content

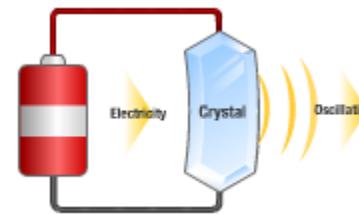
- 19 pages

Timing Devices are Vital

A timing device is the “heart” of an electronic equipment!



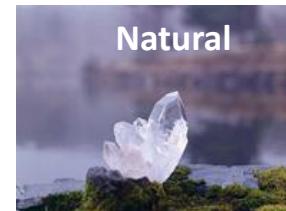
Why Quartz Crystals?


Crystal Device Timeline

- 1880
The Curie brothers discover the piezo-electric effect
- 1905–1909
Italian George Spezi succeeds in growing crystals in an autoclave of his own design.
- 1917
French physicist Paul Langevin, inventor of ultrasonic equipment using the piezo-electric effect, announces the detection of ice submerged in water using ultrasound pulses.
- 1922
Cady invents the crystal oscillator in the U.S.
- 1969
The world's first quartz watch

- the revolutionary Seiko Quartz Astron 35SQ - goes on sale.
- 1980s
VTR & PC production booms and crystal unit production expands
- 1990s
PC, cell phone & car navigation system demand explodes

Crystal Properties


Piezo-electric effect

Reverse
Piezo-electric effect

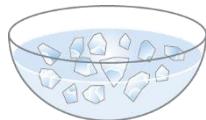
Conceptual Illustrations

Natural vs. Synthetic Quartz

Contains Impurities

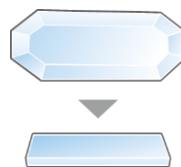
Consistent Quality!

Process of growing synthetic quartz crystals


Material: Natural quartz crystal (fragments), alkaline solution, seed crystals

Temperature: 360 deg. C

Pressure: Approx. 1t **Time:** Approx. 3 months at high heat


1 Washing the natural quartz fragments

The fragments are washed and then dried.

2 Seed crystal processing

Crystals are cut into the shape required for seed crystals.

3 Solvent preparation

An alkaline aqueous solution is prepared.

Alkaline solution

NaOH(sodium hydroxide)
Na₂CO₃(sodium carbonate)

3. Alkaline aqueous solution

The chamber is filled to about 80%

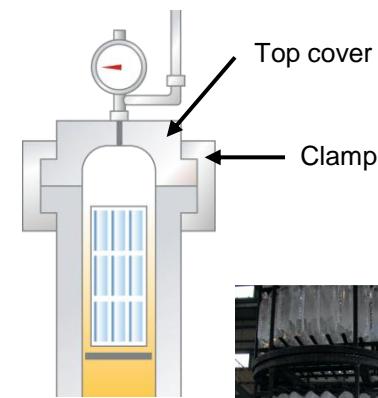
2. Seed crystals

Hung in the top half (growth chamber) of the autoclave

1. Natural quartz fragments

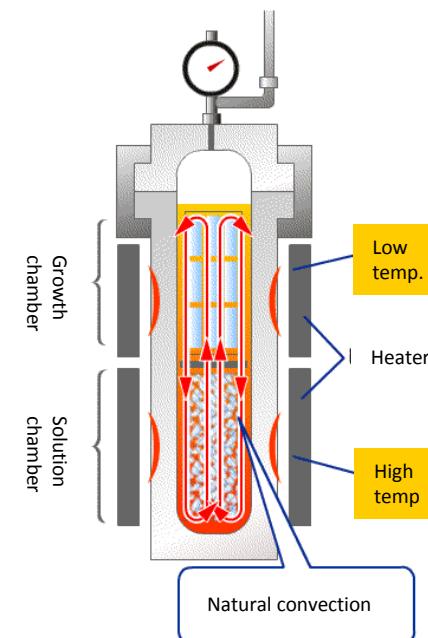
Placed in the bottom half of the autoclave and separated by a baffle.

4 Autoclave preparation

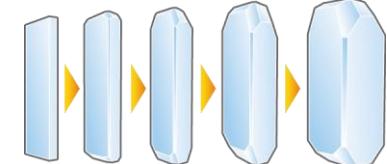

Growth chamber

Baffle

Solution chamber


5 Sealing

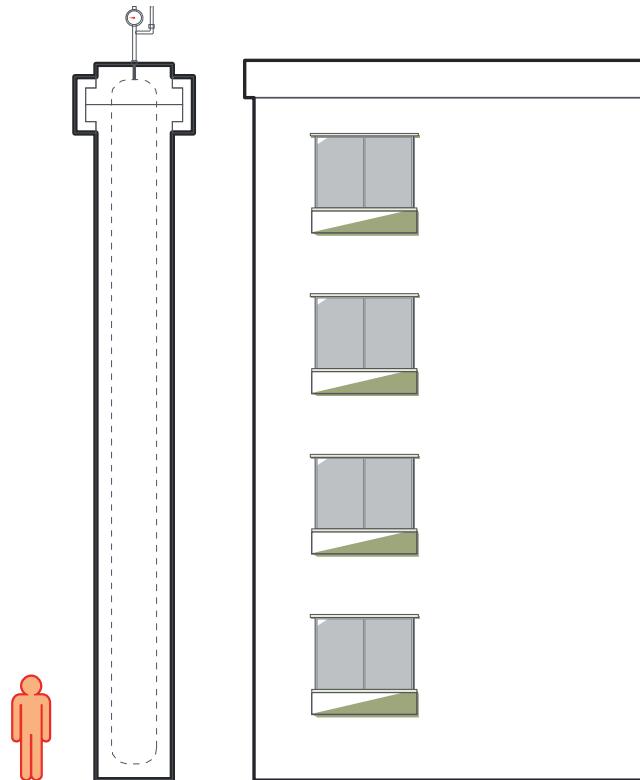
The autoclave is sealed with a top cover and a clamp.


6 Autoclave heating

The top half (growth chamber) is heated to a lower temperature than the bottom half (solution chamber) to produce natural convection.

7 Growth

The elevated temperature and pressure of the autoclave are maintained, and the crystals are allowed to grow slowly.



Growth starts 2~6months

8 Completion!

The synthetic crystal growth process, from start to finish, takes about 2-6 months.

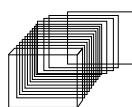
Quartz Bars in Autoclave

Autoclaves are as tall as a 4~5 story building

Grown quartz bars in an autoclave

Process for manufacturing tuning-fork crystal devices

The process used to manufacture tuning-fork crystal devices are illustrated and explained here.


1 From rough synthetic crystal to block cutting

Synthetic crystals grown for tuning-fork crystal devices are cut into blocks.

2 Wafer slicing

The blocks are sliced into thin wafers.

3 Wafer polishing

The quartz crystal wafers are polished.

1.Lapping

Surface hills and valleys are removed with a grinding fluid.

2.Etching

The wafer surface is etched to remove roughness.

3.Polishing

The wafer is polished to a mirror finish with an abrasive compound.

4 Photoetching

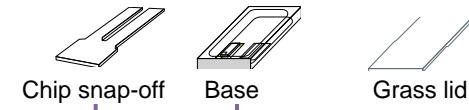
A photolithographic process is used to form the tuning-fork shape.

1.Sputtering

The wafer is coated with gold and chrome.

2.Contour etching

The gold and chrome is removed.



3.Electrode processing

Electrodes are added and circuits are patterned by a photolithographic process.

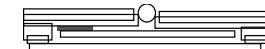
5 Mounting

The crystal chip is connected to a base with a conductive adhesive.

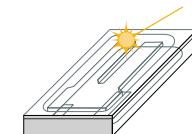
Chip snap-off

Base

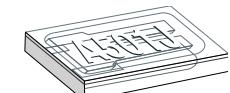
Grass lid


6 Lid sealing

The low-melting-point glass is melted to bond the glass lid to the base.


7 Vacuum sealing

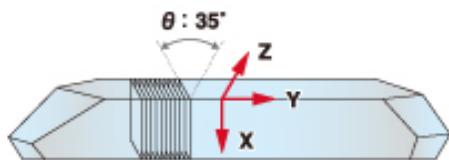
A ball of gold and germanium is melted to seal the device in a vacuum state.


8 Frequency adjusting

The frequency of the crystal chip is fine-tuned by shaving off part of the electrodes on the tips of the crystal chip with a laser.

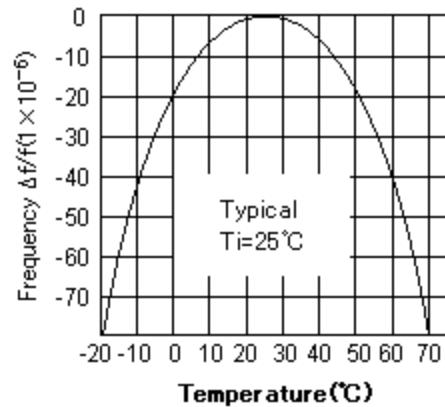
9 Marking

The products are marked with a designated number.



10 Completion!

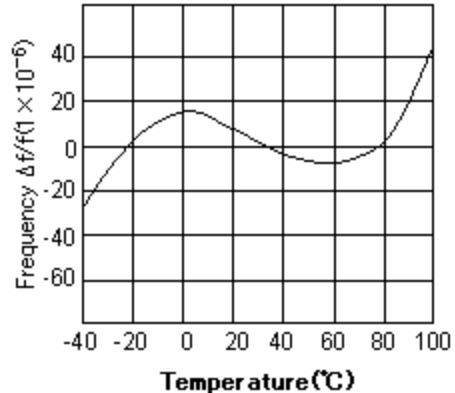
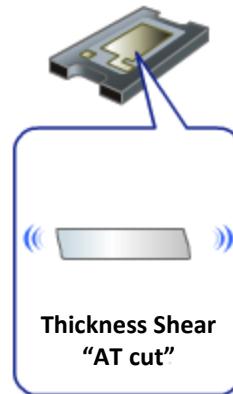
The process from rough synthetic crystal to a finished tuning-fork crystal device takes about one month to complete.


Crystal Cut and Temperature Curves

Crystal Cut

A crystal's vibration mode differs depending on the angle at which it is cut. The vibration mode determines the frequency range of the crystal.

kHz Temperature Curve

$$\Delta f/f = B(Ti - \theta X)^2$$

θX : specified temperature

B: Parabolic coefficient

MHz Temperature Curve

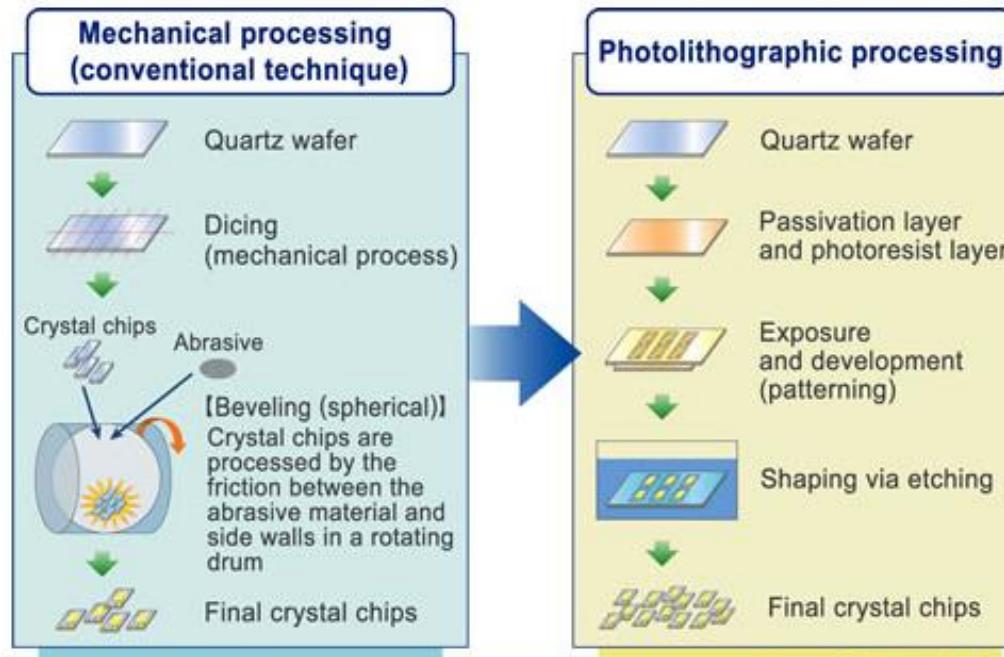
$$\Delta f/f = \alpha (\theta X - 25) + \beta (\theta X - 25)^2 + \gamma (\theta X - 25)^3$$

θX : specified temperature

QMEMS: Epson's Breakthrough Technology

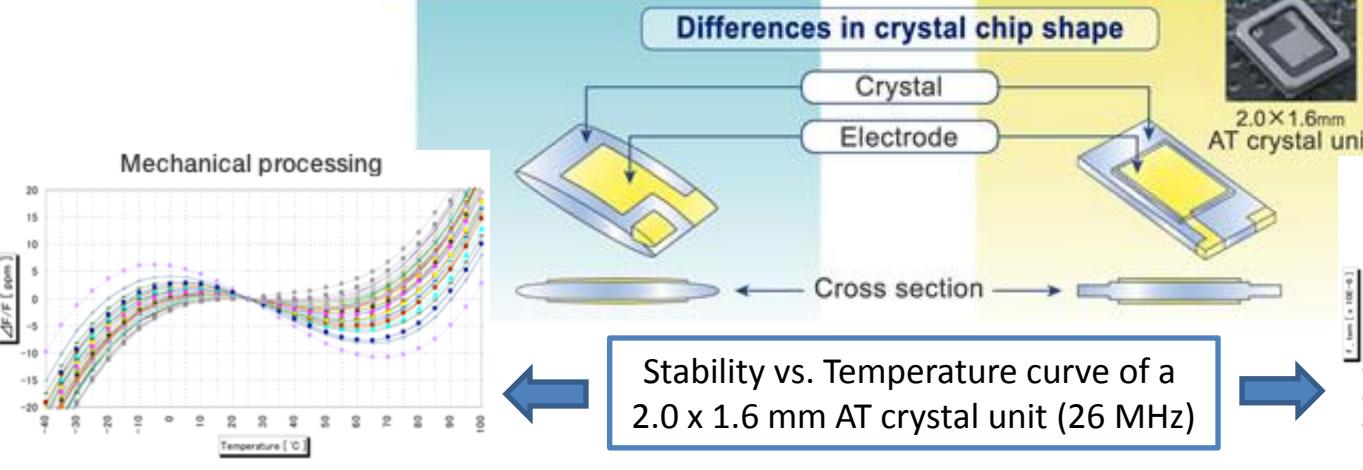
There is constant demand for compact, high-precision quartz devices to serve the decreasing form factor and high performance electronic device market.

“QMEMS” is Epson’s response to serve this need!


QUARTZ+MEMS

high accuracy and high stability

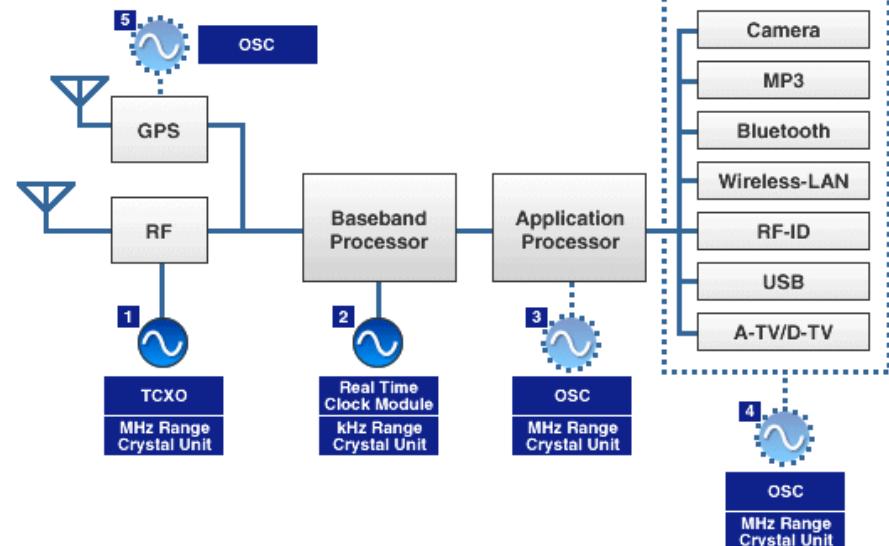
Micro Electro
Mechanical Systems

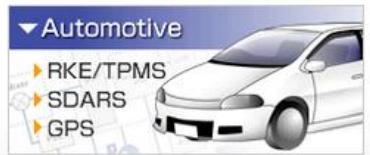


QMEMS – Photolithography Process

Click link below to learn more about QMEMS:

<http://www5.epsondevice.com/en/quartz/aboutus/qmems/index.html>





Applications

Cellular (Select “Cellular” as example)

Cellular (Resulting web page)

 1 MHz Range Crystal Unit FA-20H Details	 1 kHz Range Crystal Unit TSX-3225 Details	 1 MHz Range Crystal Unit FA-128 Details
 2 kHz Range Crystal Unit FC-135 Details	 2 Real Time Clock Module RX-4571LC Details	 3 SPXO 4 MHz Range Crystal Unit SG-210 Series Details
 3 SPXO 4 MHz Range Crystal Unit SG-310 Series Details	 3 MHz Range Crystal Unit FA-238 Details	 3 MHz Range Crystal Unit FA-238V Details

Click link below to access all applications:

<http://www5.epsondevice.com/en/quartz/application/index.html>

Circuit Design

Freescale
(Select “Freescale” as example)

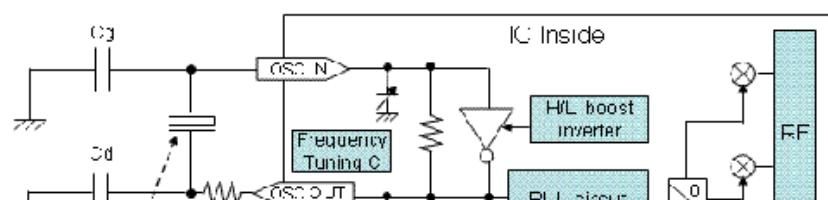
Freescale (Resulting web page)

For customer designing Freescale Semiconductor IC
MC132xx Series ZigBee/IEEE802.15.4 applications

The following provides a basic explanation of design considerations for the external oscillation circuit using quartz crystal for Low Power RF technology including ZigBee, IEEE80215.4 wireless applications. *Please refer to Freescale Semiconductor ZigBee/IEEE80215.4 solution below.

> Clock solution recommendations for Freescale MC132xx Series

Please refer to [Freescale Semiconductor official site](#) for additional information.


In realizing low power consumption RF designs, the following factors should be taken into consideration.

1. Oscillation start-up time
2. Frequency tuning
3. Lower BER(Bit Error Rate) over operating temperature

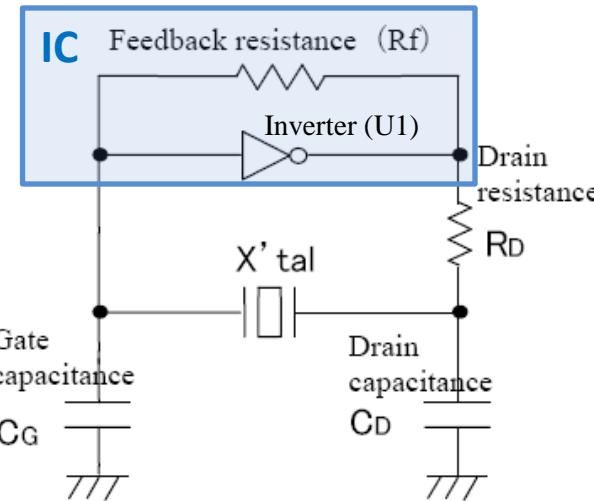
No.	Oscillation Circuit Factor	2.4 GHz
		< AT crystal unit spec >
1	Quick oscillation start-up time *High oscillation allowance *Boost inverter	*Lower ESR(Rt) *High drive level
2	Easy frequency control *Inner frequency tuning capacitor	*proper frequency sensitivity *low parameters' variation
3	Lower BER *Temperature compensation	*High frequency stability

Click link below to access circuit design info:

http://www5.epsondevice.com/en/quartz/tech/c_design/index.html

Circuit Design

Parameters to consider when designing with a crystal device:


- R_f and U1 are typically internal to the IC
- R_d to control drive level across crystal unit
- C_g and C_d to control center frequency with respect to the load capacitance (C_L) of the crystal unit :

$$C_L \cong \frac{C_g \times C_d}{C_g + C_d} + C_s \text{ [pF]} \quad (\text{stray})$$

Goal:

- Low drive level
- Fast oscillation start up time
- Sufficient oscillation allowance
- Small frequency deviation

Typical Pierce Oscillator Circuit

Example values:

Preliminary Parameters	R _f [MΩ]	R _d [kΩ]	C _g [pF]	C _d [pF]
20 to 60 [KHz]	20	500	10	10
60 to 165 [KHz]	10	300	10	10
5.5 to 24 [MHz]	1	0.5	10	10

Epson offers both kHz and MHz crystal oscillators to help designers reduce board space and design risk, as well as save time and money.

Important Electrical Parameters

- **Package Size and Type** – SMD or Thru-hole
- **Frequency** – Desired nominal frequency
- **Operating Temperature** – Temperature range that the crystal unit electrical parameters are guaranteed
- **Stability** – MHz xtals only, frequency deviation over operating temperature
- **Parabolic coefficient** – kHz xtals only, used to calculate frequency deviation over operating temperature
- **Frequency Tolerance** – Deviation of the actual/measured frequency from the nominal frequency value at +25°C ambient temperature
- **Load Capacitance** – Match the crystal's load capacitance to the oscillation circuit's capacitance. The oscillation output frequency is determined based on this matching.
- **ESR** – Equivalent Series Resistance or motional resistance. It can be regarded as a reference for the ease of oscillation. The higher the value, the more difficult for oscillation start up.
- **Drive Level** – Power or oscillation output level required to operate (drive) a crystal device. 1 μ W to 100 μ W range is used to maintain stable oscillation and minimize structural damage to the internal quartz crystal.

kHz Crystal Products

Page	Model	External Dimensions (mm)	t Max.	Frequency	20 kHz	32 kHz	100 kHz	200 kHz	300 kHz
4	FC-12D	■	2.05×1.25×0.35			● 32.768 kHz			
	FC-12M	■	2.05×1.2×0.6	*	32 kHz		77.5 kHz		
5	FC-13A	■	3.2×1.5×0.9			● 32.768 kHz			
6	FC-135	■	3.2×1.5×0.9	*	32 kHz		77.5 kHz		
	FC-255	■	4.9×1.8×0.9	*	32 kHz		100 kHz		
7	MC-146	■	7.0×1.5×1.4	*	32 kHz		100 kHz		
	MC-156	■	7.1×3.3×1.5	*					
8	MC-306	■	8.0×3.8×2.54	*	20 kHz		120 kHz		
	MC-405/406	■	10.41×4.06×3.6	*	20 kHz		120 kHz		
9	MC-30A	■	8.0×3.8×2.54	*	20 kHz		120 kHz		
10	C-002RX	■	Φ2.0						
	C-004R	■	Φ1.5			● 32.768 kHz			
	C-005R	■	Φ1.2						
	C-2-TYPE	■	Φ2.0	*	20 kHz		120 kHz		
	C-4-TYPE	■	Φ1.5	*	32 kHz		120 kHz		

New kHz Products

kHz RANGE CRYSTAL UNIT LOW PROFILE SMD

FC - 12D / FC - 12M

- Frequency range : 32.768 kHz (32 kHz to 77.5 kHz)
- External dimensions : 2.05 × 1.25 × 0.35 mm ··· FC-12D
: 2.05 × 1.2 × 0.6 mm ··· FC-12M
- Overtone order : Fundamental
- Applications : Smart card, Small devices ··· FC-12D
: Small devices ··· FC-12M

Thin Tuning-fork crystal units contribute to the realization of slim, card-mountable crystal devices for secure smart cards.

Specifications (characteristics)

Item	Symbol	Specifications			Conditions / Remarks
		FC-12D	FC-12M		
Nominal frequency range	f_nom	32.768 kHz	32.768 kHz	32 kHz to 77.5 kHz	Please contact us for inquiries regarding available frequency.
Storage temperature	T_stg		-55 °C to +125 °C		Store as bare product.
Operating temperature	T_use		-40 °C to +85 °C		
Level of drive	DL	0.25 µW Max.	0.5 µW Max.		
Frequency tolerance (standard)	f_tol	$\pm 20 \times 10^{-6}$	$\pm 20 \times 10^{-6}$ $\pm 30 \times 10^{-6}$	+25 °C, DL=0.1 µW Please ask for tighter tolerance	
Turnover temperature	Ti	+25 °C ± 5 °C			
Parabolic coefficient	B	-0.04×10^{-6} / °C ² Max.			
Load capacitance	CL	7 pF, 9pF, 12.5pF	12.5pF		Please specify
Motional resistance (ESR)	R1	75 kΩ Max.	90 kΩ Max.	90 kΩ to 65 kΩ	
Motional capacitance	C1	3.7 fF Typ.	6.4 fF Typ.	7.0 fF to 2.7 fF	
Shunt capacitance	Co	0.8 pF Typ.	1.3 pF Typ.	1.6 pF to 0.8pF	
Frequency aging	f_age	$\pm 3 \times 10^{-6}$ / year Max.			+25 °C, First year

Small and thin Tuning-fork crystal units contribute to the realization of small, thin, stylish mobile devices.

New kHz Products

**kHz RANGE CRYSTAL UNIT
FOR AUTOMOTIVE APPLICATIONS
LOW PROFILE SMD**

FC - 13A

- Frequency range : 32.768 kHz
- External dimensions : 3.2 × 1.5 × 0.9 mm
- Overtone order : Fundamental
- Applications : Accessories and ECU sub clock
- Conforms to AEC-Q200

Product Number (please contact us)
X1A000091xxxx00

Actual size

Specifications (characteristics)

Item	Symbol	Specifications	Conditions / Remarks
Nominal frequency range	f_nom	32.768 kHz	
Storage temperature	T_stg	-55 °C to +125 °C	Store as bare product.
Operating temperature	T_use	-40 °C to +125 °C	
Level of drive	DL	0.5 µW (1.0 µW Max.)	Please contact us if you require 1.0µW Max.
Frequency tolerance (standard)	f_tol	±20 × 10 ⁻⁶ , ±30 × 10 ⁻⁶ , ±50 × 10 ⁻⁶	+25 °C, DL=0.1 µW
Turnover temperature	T _i	+25 °C ±5 °C	
Parabolic coefficient	B	-0.04 × 10 ⁻⁶ / °C ² Max.	
Load capacitance	C _L	9 pF, 12.5 pF	Please specify
Motional resistance (ESR)	R ₁	70 kΩ Max.	
Motional capacitance	C ₁	3.2 fF Typ.	
Shunt capacitance	C ₀	0.9 pF Typ.	
Frequency aging	f_age	±3 × 10 ⁻⁶ / year Max.	+25 °C, First year

Infotainment Systems

Safety & Security Systems

Environmental Systems

Engine Control Systems

MHz Crystal Products

Model	Actual size (mm)	t Max.	Frequency				64 MHz
			1 MHz	10 MHz	20 MHz		
FA-118T	NEW	1.6×1.2×0.35 t			24 MHz	54 MHz	
FA-128		2.0×1.6×0.5 t			24 MHz	54 MHz	
FA-20H		2.5×2.0×0.55 t		12 MHz		48 MHz	
FA-238V		3.2×2.5×0.7 t		12 MHz	15.999 MHz		
FA-238		3.2×2.5×0.7 t			16 MHz	60 MHz	
TSX-3225		3.2×2.5×0.6 t			16 MHz	48 MHz	
FA-365	20.000 E12R01	6.0×3.5×1.4 t		● 12 MHz			
				14 MHz		41 MHz	
MA-306	20.000M E 572	8.0×3.8×2.54 t			● 14.31818 MHz		
				17.734 MHz		41 MHz	
MA-406	16934M E 572	11.7×4.8×3.7 t		4 MHz			64 MHz*
MA-505/506	20.000M E 5251A	13.46×5.08×4.6 t			* 8.0 MHz < f _{nom} < 8.2 MHz : Unavailable. Available frequencies from 4 MHz to less than 5.5 MHz (4 MHz, 4.032 MHz, 4.096 MHz, 4.19 MHz, 4.194304 MHz, 4.433619 MHz, 4.5 MHz, 4.8 MHz, 4.9152 MHz)		
CA-301	983AM99	Φ3.1					

New MHz Products

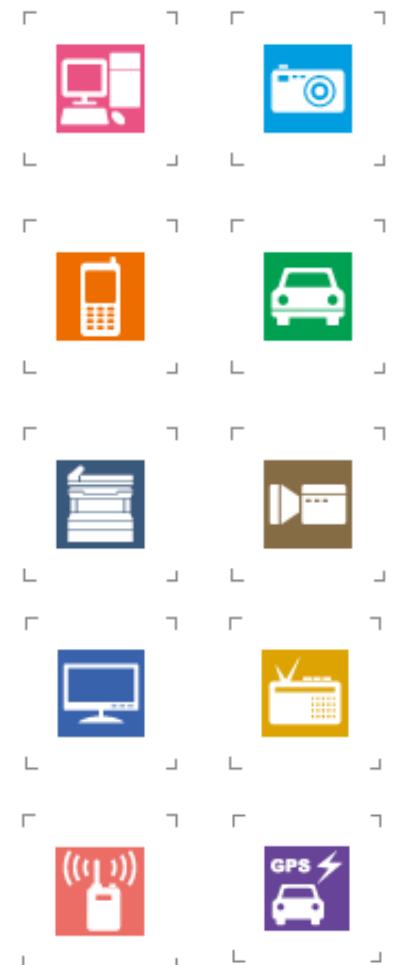
MHz RANGE CRYSTAL UNIT
ULTRA MINIATURE SIZE LOW PROFILE SMD

FA-118T

- Nominal frequency range : 24 MHz to 54 MHz
- External dimensions : 1.6 x 1.2 x 0.35 t (mm)
- Overtone order : Fundamental
- Applications : Mobile phone, Bluetooth, W-LAN ISM band radio, Clock for MPU

Product Number (please contact us)
FA-118T : X1E000251xxxx00

Actual size



NEW

Specifications (characteristics)

Item	Symbol	Specifications		Remarks
		For RF Reference	For Clock	
Nominal frequency range	f_nom	24.000 MHz to 54.000 MHz		Fundamental Please contact us for inquiries regarding the available frequencies.
Storage temperature range	T_stg	-40 °C to +125 °C		Store as bare product after unpacking
Operating temperature range	T_use	-40 °C to +85 °C		
Level of drive	DL	100 µW Max.	200 µW Max.	Recommended: 1 µW to 100 µW
Frequency tolerance (standard)	f_tol	$\pm 10 \times 10^{-6}$ *1	$\pm 30 \times 10^{-6}$	+25 °C For the out of standard specifications, please contact us for inquiries.
Frequency versus temperature characteristics (standard)	f_tem	$\pm 12 \times 10^{-6}$ *1	$\pm 30 \times 10^{-6}$	-20 °C to +75 °C For the out of standard specifications, please contact us for inquiries.
Load capacitance	C _L	6 pF to ∞		Please specify.
Motional resistance (ESR)	R ₁	As per below table		-20 °C to +75 °C
Frequency aging	f_age	$\pm 1 \times 10^{-6}$ / year Max.	$\pm 5 \times 10^{-6}$ / year Max.	+25 °C, First year

Minimization trend (ex)...

Summary

- Epson offers an extensive portfolio of kHz and MHz crystal devices.
- kHz crystal devices are sometimes called tuning fork crystals or clock crystals. MHz crystal devices are sometimes called AT crystals.
- Epson offers both kHz and MHz crystal oscillators to help designers reduce board space and design risk, as well as save time and money.
- A timing device is the “heart” of an electronic equipment
- Epson has extensive knowledge of the growing and manufacturing processes of synthetic quartz since it started producing it in 1960
- QMEMS photolithography processing technology enables Epson to produce miniature quartz crystals with outstanding electrical characteristics.
- Epson’s website has great tips for recommending the appropriate crystal for various applications and common circuit designs.