

DESCRIPTION

The EVCS1823-Q-00A is an evaluation board designed to demonstrate the capabilities of the MCS1823 series, which are linear Hall-effect current sensors for AC or DC current sensing with integrated over-current detection (OCD). The Hall array is differential, which cancels out stray magnetic field. The MCS1823 series provides two power supply options (3.3V or 5V) and current ranges of 5A to 50A to optimize accuracy in different applications.

The output voltage (V_{OUT}) is proportional to the applied current flowing through the primary conductor. The galvanic isolation between the primary conductive path pins and the sensor leads allow the MCS1823 to replace optoisolators or other expensive isolation devices.

The MCS1823 is available in an ultra-small TQFN-12 (3mmx3mm) package.

PERFORMANCE SUMMARY


Specifications are at $T_A = 25^\circ\text{C}$, unless otherwise noted.

Parameters	Conditions	Value
Supply voltage (V_{CC})		3.3V or 5V
Maximum primary applied current (I_{P_MAX})		$\pm 5\text{A}$ to $\pm 50\text{A}$
Output voltage (V_{OUT}) for bidirectional options	Ratiometric option	$0.5 \times V_{CC} + \text{Sens}_{(TYP)} \times I_P$ ⁽¹⁾
	Absolute option, 3.3V option	$1.65\text{V} + \text{Sens}_{(TYP)} \times I_P$ ⁽¹⁾
	Absolute option, 5V option	$2.5\text{V} + \text{Sens}_{(TYP)} \times I_P$ ⁽¹⁾
V _{OUT} for unidirectional options	Ratiometric option	$0.1 \times V_{CC} + \text{Sens}_{(TYP)} \times I_P$ ⁽¹⁾
	Absolute option, 3.3V option	$0.33\text{V} + \text{Sens}_{(TYP)} \times I_P$ ⁽¹⁾
	Absolute option, 5V option	$0.5\text{V} + \text{Sens}_{(TYP)} \times I_P$ ⁽¹⁾
Total accuracy	I_P from $10\% \times I_{P_MAX}$ to I_{P_MAX}	<2.5%
/OCD error		<10%

Note:

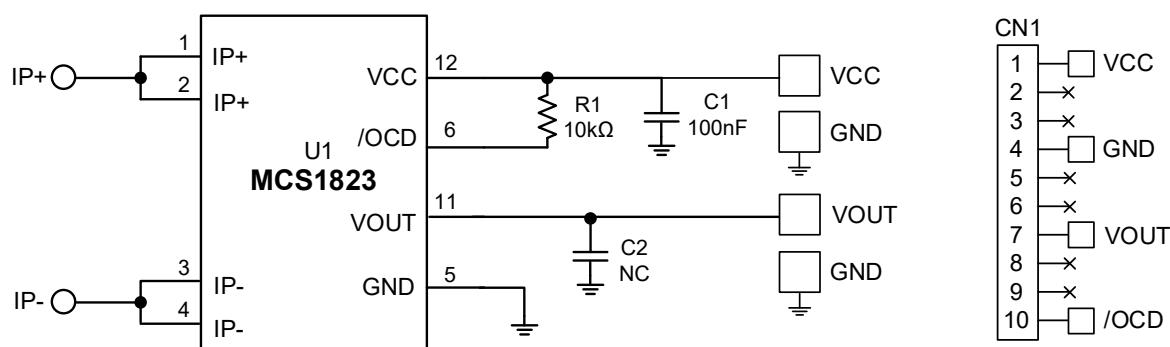
1) $\text{Sens}_{(TYP)}$ is the symbol for "typical sensitivity."

EVCS1823-Q-00A EVALUATION BOARD

LxWxH (45mmx115mmx17mm)
2 Layers

Board Number	MPS IC Number
EVCS1823-Q-ABBCDEFF-00A	MCS1823GQTE-ABBCDEFF

EVALUATION BOARD BASIC INFORMATION ⁽²⁾


Evaluation Board PN	Typical V _{cc} Supply Voltage (V)	Optimized Primary Current (A)	Typical Sensitivity (mV/A)	/OCD Trigger Point (A)
EVCS1823-Q-305BRN96-00A	3.3	±5	264	±4.8
EVCS1823-Q-305BRN23-00A	3.3	±5	264	±11.5
EVCS1823-Q-310BRN-00A	3.3	±10	132	±10
EVCS1823-Q-320BRN-00A	3.3	±20	66	±20
EVCS1823-Q-330BRN-00A	3.3	±30	44	±30
EVCS1823-Q-330BAL-00A	3.3	±30	44	±30
EVCS1823-Q-330BAN-00A	3.3	±30	44	±30
EVCS1823-Q-335URN-00A	3.3	35	75.4	35
EVCS1823-Q-340BRN-00A	3.3	±40	33	±40
EVCS1823-Q-350BRN-00A	3.3	±50	26.4	±50
EVCS1823-Q-505BRN-00A	5	±5	400	±5
EVCS1823-Q-510BRN-00A	5	±10	200	±10
EVCS1823-Q-520BRN-00A	5	±20	100	±20
EVCS1823-Q-530BRN-00A	5	±30	66	±30
EVCS1823-Q-540BRN-00A	5	±40	50	±40
EVCS1823-Q-550BRN-00A	5	±50	40	±50

Note:

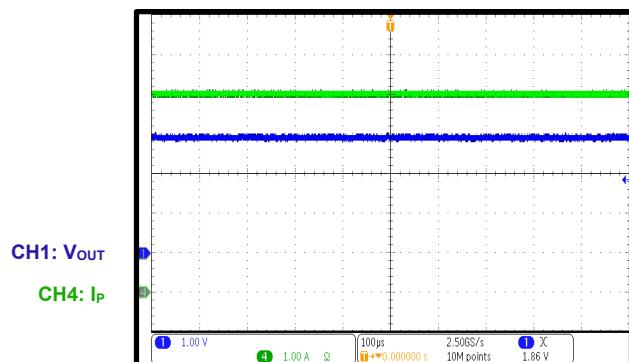
- 2) Contact an MPS FAE for additional variants.

QUICK START GUIDE

1. Preset the DC power supply to 3.3V or 5V, then turn the power supply off.
2. Connect the DC power supply terminals to:
 - a. Positive (+): VCC
 - b. Negative (-): GND
3. Connect the current source load terminals to:
 - a. Positive (+): IP+
 - b. Negative (-): IP-
4. Turn on the DC power supply and current source, then measure the output result via the VOUT pin.
5. If over-current detection (OCD) is required, measure the /OCD signal via the /OCD pin.

EVALUATION BOARD SCHEMATIC**Figure 1: Evaluation Board Schematic**

EVCS1823-Q-00A BILL OF MATERIALS

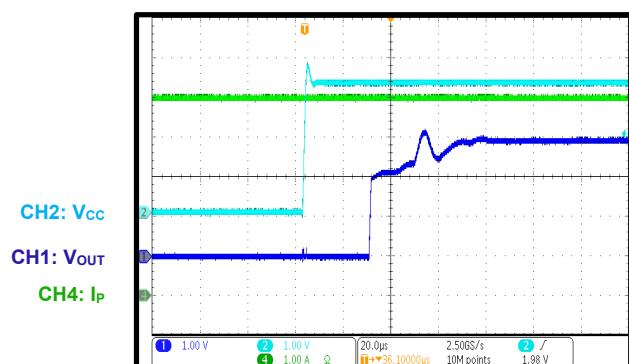

Qty	Ref	Value	Description	Package	Manufacturer	Manufacturer PN
1	C1	0.1 μ F	VCC ceramic decoupling capacitor, 16V, X7R	0603	Murata	GRM188R71C104KA01D
1	C2	NC				
1	R1	10k Ω	/OCD pull-up resistor	0603	Yageo	RC0603FR-0710KL
1	CN1	2.54mm	Male pin header, 10-pin	DIP	Custom	
1	U1	MCS1823	Ultra-small, Hall-effect linear current sensor with OCD	TQFN-12 (3mmx 3mm)	MPS	MCS1823GQTE-ABBCDEFF

EVB TEST RESULTS

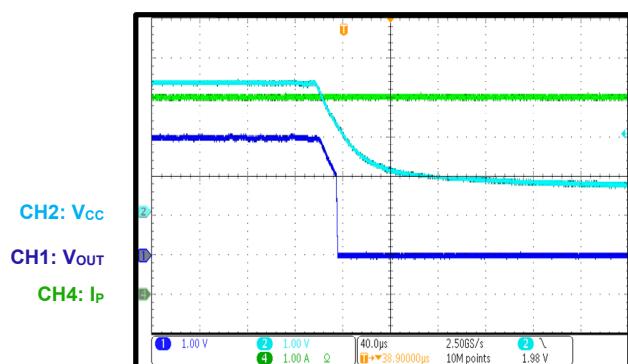
Performance waveforms are tested on the EVCS1823-Q-305BRN23-00A evaluation board (see the Evaluation Board Basic Information section on page 2) with an /OCD trigger point at 11.5A. $V_{CC} = 3.3V$, $C2$ is open, $T_A = 25^{\circ}C$, unless otherwise noted.

DC Current Status

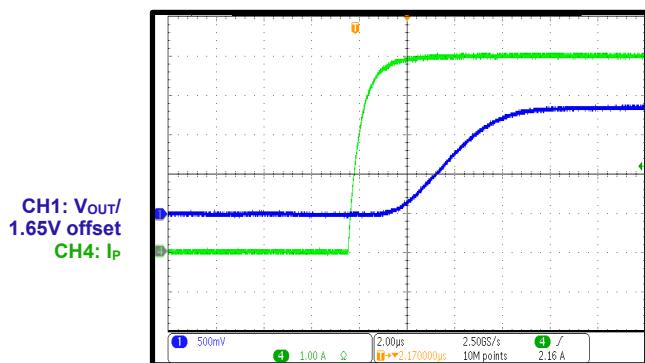
$I_P = 5A$


DC Current Status

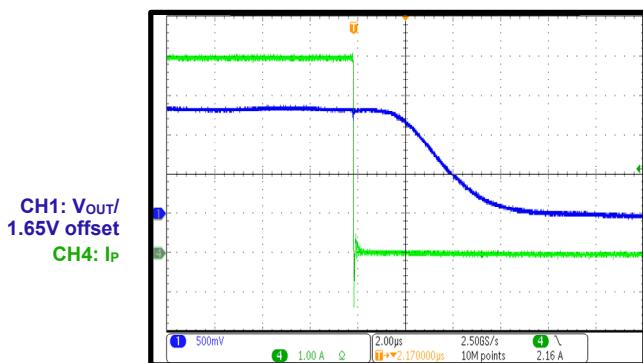
$I_P = -5A$


Start-Up through VCC

$I_P = 5A$


Shutdown through VCC

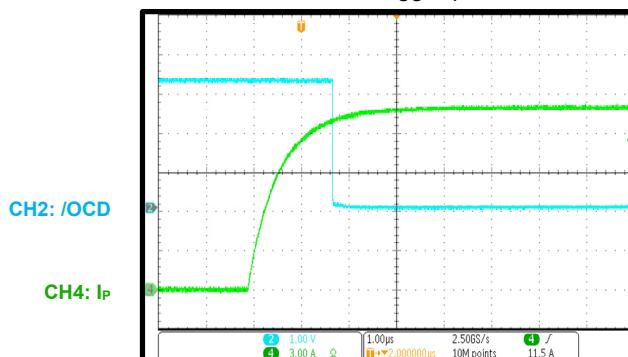
$I_P = 5A$


Step-Up Current

$I_P = 5A$

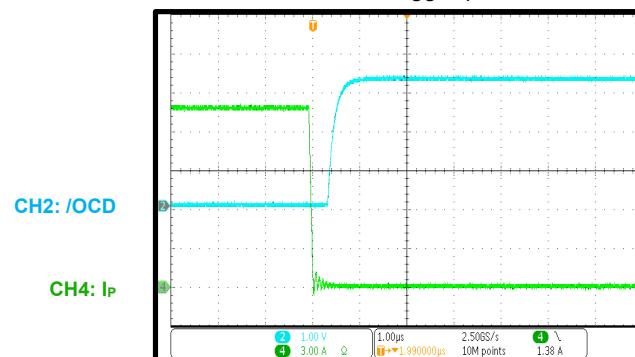
Step-Down Current

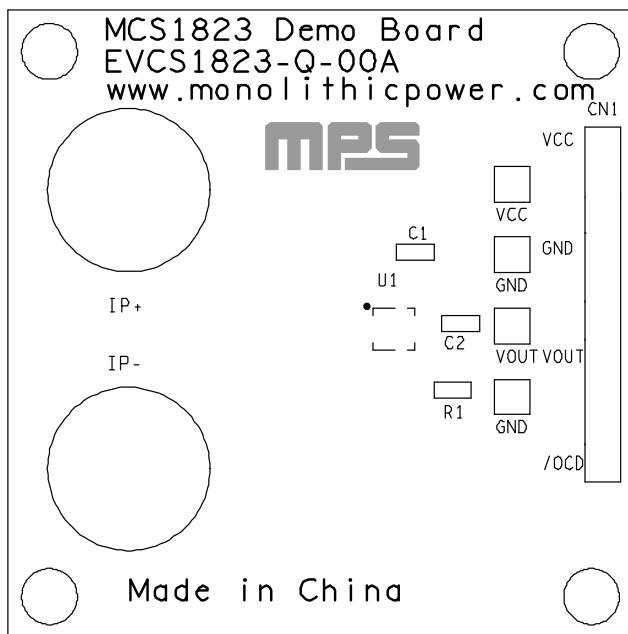
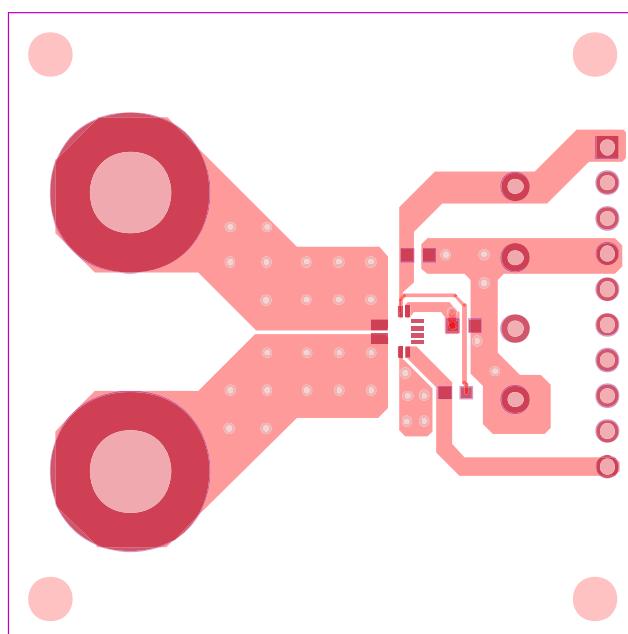
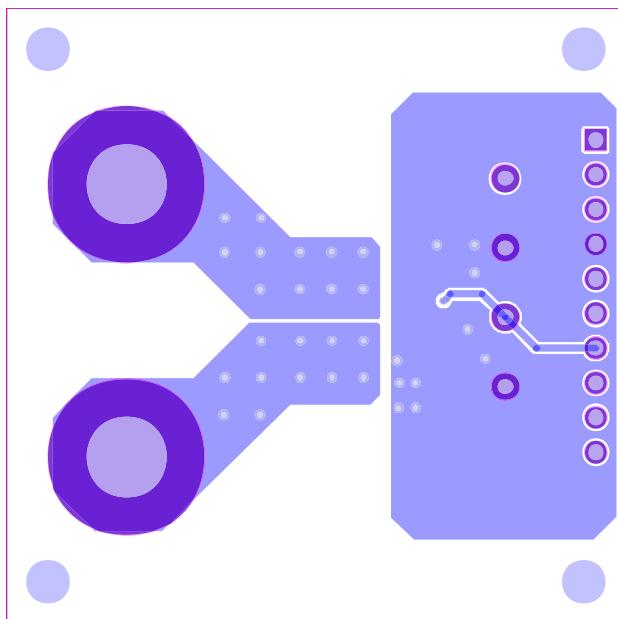
$I_P = 5A$



EVB TEST RESULTS (*continued*)

Performance waveforms are tested on the EVCS1823-Q-305BRN23-00A evaluation board (see the Evaluation Board Basic Information section on page 2) with an /OCD trigger point at 11.5A. $V_{CC} = 3.3V$, C2 is open, $T_A = 25^{\circ}C$, unless otherwise noted.


/OCD Response




$I_P = 20\%$ above /OCD trigger point

/OCD Recover

$I_P = 20\%$ above /OCD trigger point

PCB LAYOUT**Figure 2: Top Silk****Figure 3: Top Layer****Figure 4: Bottom Layer**

REVISION HISTORY

Revision #	Revision Date	Description	Pages Updated
1.0	8/15/2023	Initial Release	-

Notice: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third-party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.