

EC7BW 20W Isolated DC-DC Converters

Application Note V12 August 2019

ISOLATED DC-DC Converter EC7BW SERIES APPLICATION NOTE

Approved By:

Department	Approved By	Checked By	Written By
Research and Development Department	Enoch	Danny/Mike	Joyce
		Jacky	
Quality Assurance Department	Ryan	Benny	

EC7BW 20W Isolated DC-DC Converters

Application Note V12 August 2019

Content

1. INTRODUCTION	3
2. DC-DC CONVERTER FEATURES	3
3. ELECTRICAL BLOCK DIAGRAM	3
4. TECHNICAL SPECIFICATIONS	5
5. MAIN FEATURES AND FUNCTIONS	8
5.1 Operating Temperature Range	8
5.2 Remote On/Off	8
5.3 UVLO (Under Voltage Lock Out)	8
5.4 Over Current Protection	8
5.5 Over Voltage Protection	8
6. APPLICATIONS	8
6.1 Recommended Layout PCB Footprints and Soldering Information	8
6.2 Power De-Rating Curves for EC7BW Series	9
6.3 Efficiency vs. Load Curves	10
6.4 Input Capacitance at the Power Module	13
6.5 Test Set-Up	13
6.6 Output Voltage Adjustment	13
6.7 Output Ripple and Noise Measurement	14
6.8 Output Capacitance	14
7. SAFETY & EMC	14
7.1 Input Fusing and Safety Considerations.	14
7.2 EMC Considerations	15
8. PART NUMBER	23
9. MECHANICAL SPECIFICATIONS	23

EC7BW 20W Isolated DC-DC Converters

Application Note V12 August 2019

1. Introduction

The EC7BW series offer 20 watts of output power in a 1.00x1.00x0.4 inches copper packages. The EC7BW series has a 4:1 wide input voltage range of 9-36 and 18-75VDC, and provides a precisely regulated output. This series has features such as high efficiency, 1500VDC of isolation and allows an ambient operating temperature range of -40°C to 85°C (de-rating above 71 °C). The modules are fully protected against input UVLO (under voltage lock out), output over-current, over-voltage protection and continuous short circuit conditions. Furthermore, the standard control functions include remote on/off and adjustable output voltage. All models are very suitable for distributed power architectures, telecommunications, battery operated equipment and industrial applications.

2. DC-DC Converter Features

- * 20W Isolated Output
- * Efficiency to 90%
- * Fixed Switching Frequency
- * 4: 1 Wide Input Range
- * Regulated Outputs
- * Continuous Short Circuit Protection
- * Pi Input Filter
- * Safety Meets UL60950-1, EN60950-1, and IEC60950-1
- * Meets EN50155 with External Circuits
- * Shock & Vibration Meets EN50155 (EN61373)
- * Fire & Smoke meet EN45545-2

3. Electrical Block Diagram

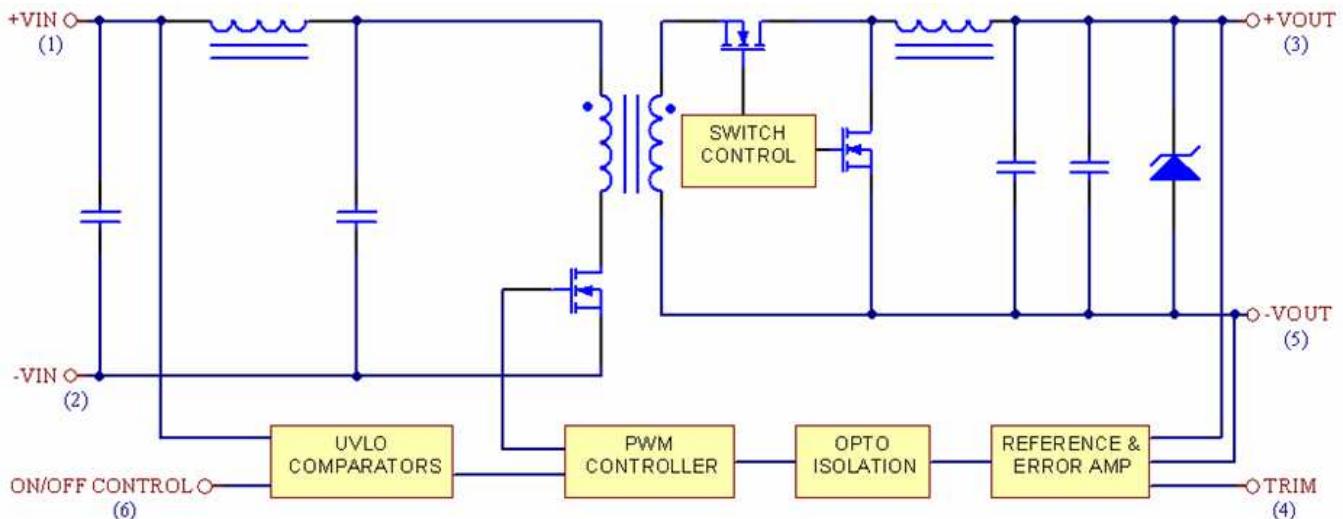


Figure1 Electrical Block Diagram of Single output module

EC7BW 20W Isolated DC-DC Converters

Application Note V12 August 2019

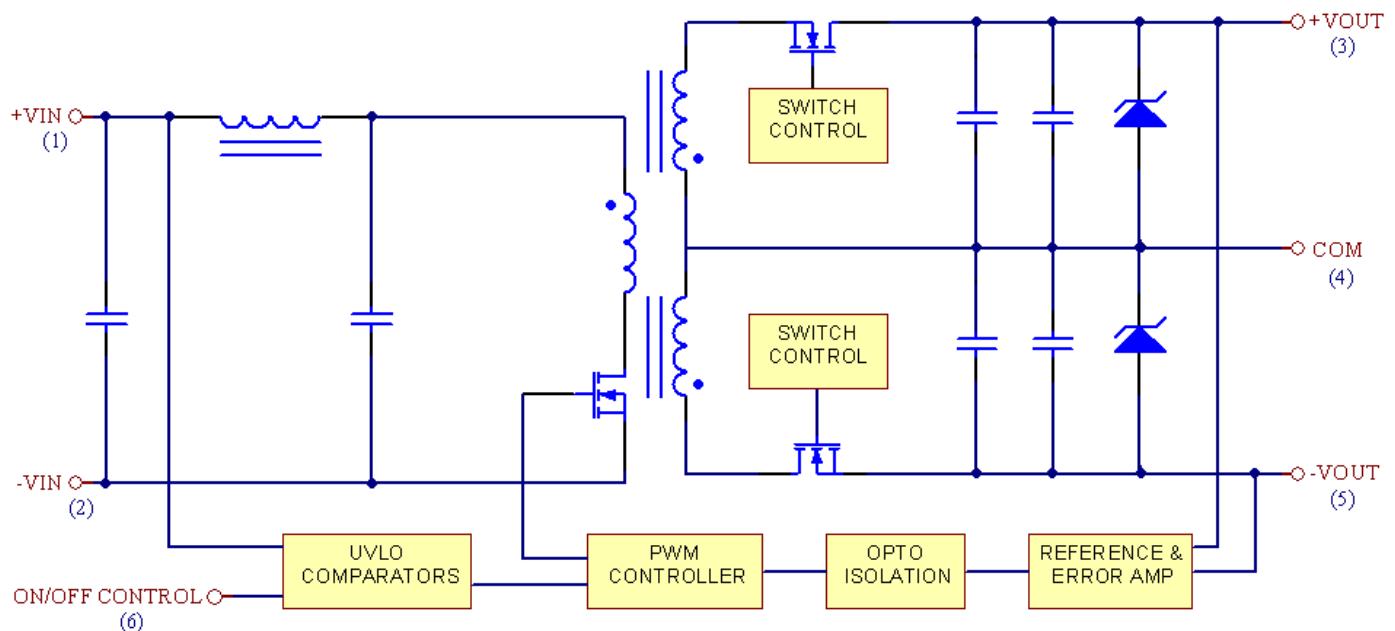


Figure2 Electrical Block Diagram of XXD05

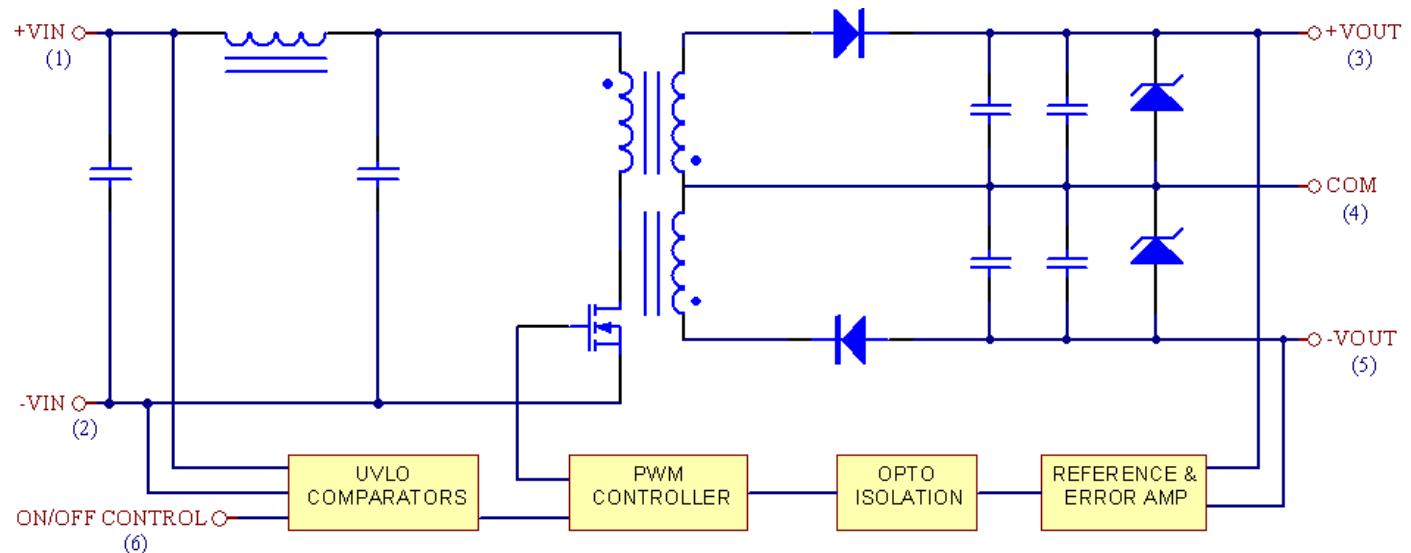


Figure3 Electrical Block Diagram of XXD12 and XXD15

EC7BW 20W Isolated DC-DC Converters

Application Note V12 August 2019

4. Technical Specifications

(All specifications are typical at nominal input, full load at 25°C unless otherwise noted.)

ABSOLUTE MAXIMUM RATINGS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Input Voltage						
Continuous		24Vin 48Vin	-0.3 -0.3		36 75	Vdc
Transient	100ms	24Vin 48Vin			50 100	Vdc
Operating Ambient Temperature	De-rating, above 71°C	All	-40		+85	°C
Case Temperature		All			105	°C
Storage Temperature		All	-55		+125	°C
Input/Output Isolation Voltage	1 minute	All	1500			Vdc

INPUT CHARACTERISTICS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units	
Operating Input Voltage		24Vin 48Vin	9 18	24 48	36 75	Vdc	
Input Under-Voltage Lockout							
Turn-On Voltage Threshold		24Vin 48Vin	8 16.5	8.5 17	8.8 17.5	Vdc	
Turn-Off Voltage Threshold		24Vin 48Vin	7.7 15.5	8 16	8.3 16.5	Vdc	
Lockout Hysteresis Voltage		24Vin 48Vin		0.6 0.9		Vdc	
Maximum Input Current	100% Load, Vin=9V	24Vin		2610		mA	
	100% Load, Vin=18V	48Vin		1305			
No-Load Input Current	Vin=Nominal input	24S33		55		mA	
		24S05		55			
		24S12		55			
		24S15		55			
		24D05		70			
		24D12		35			
		24D15		35			
		48S33		25			
		48S05		25			
		48S12		25			
		48S15		25			
		48D05		25			
Inrush Current (I^2t)		48D12		25		A ² s	
		48D15		25			
Input Reflected-Ripple Current	P-P thru 12uH inductor, 5Hz to 20MHz	All		30		mA	

EC7BW 20W Isolated DC-DC Converters

Application Note V12 August 2019

OUTPUT CHARACTERISTIC						
PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Output Voltage Set Point	Vin=Nominal Vin, Io=Io.max, Tc=25°C	Vo=3.3	3.2505	3.3	3.3495	
		Vo=5.0	4.925	5	5.075	
		Vo=12	11.82	12	12.18	
		Vo=15	14.775	15	15.225	Vdc
		Vo=±5V	4.925	5	5.075	
		Vo=±12V	11.82	12	12.18	
Output Voltage Balance	Vin=nominal, Io=Io _{max} , Tc=25°C	Vo=±15V	14.775	15	15.225	
		Dual			±1.0	%
Output Voltage Regulation						
Load Regulation	Io= Full Load to min. Load	All			±1.0	%
Line Regulation	Vin=low line to high line	Single Dual			±0.2 ±0.5	% %
Temperature Coefficient	Tc=-40°C to 85°C	All			±0.03	%/°C
Output Voltage Ripple and Noise						
Peak-to-Peak	Full Load, 20MHz bandwidth 0.1uF Ceramic capacitor	All			75	mV
Operating Output Current Range		Vo=3.3V	0		5.5	
		Vo=5V	0		4	
		Vo=12V	0		1.67	
		Vo=15V	0		1.33	
		Vo=±5V	0		2	
		Vo=±12V	0		0.835	
		Vo=±15V	0		0.666	
Output DC Current-Limit Inception	Output Voltage =90% Nominal Output Voltage	All	110	125	150	%
Maximum Output Capacitance	Full load, Resistance	Vo=3.3V			5500	
		Vo=5V			4000	
		Vo=12V			1800	
		Vo=15V			1500	
		Vo=±5V			2000	uF
		Vo=±12V			1000	
		Vo=±15V			800	
DYNAMIC CHARACTERISTICS						
PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Output Voltage Current Transient						
Step Change in Output Current	75% to 100% of Io max.	All			±5	%
Setting Time (within 1% Vo _{nominal})	di/dt=0.1A/us	All			500	us
Turn-On Delay and Rise Time						
Turn-On Delay Time, From On/Off Control	Von/off to 10%Vo, set	All		1.5		ms
Turn-On Delay Time, From Input	Vin,min. to 10%Vo, set	All		2.5		ms
Output Voltage Rise Time	10%Vo, set to 90%Vo, set	All		6		ms

EC7BW 20W Isolated DC-DC Converters

Application Note V12 August 2019

EFFICIENCY						
PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
100% Load	Vin=Nominal Vin, $Io=Io_{max}$, $Tc=25^\circ C$	24S33		87		
		24S05		90		
		24S12		90		
		24S15		90		
		24D05		89		
		24D12		88		
		24D15		88		
		48S33		88		
		48S05		90		
		48S12		90		
		48S15		90		
		48D05		89		
		48D12		88		
		48D15		88		
ISOLATION CHARACTERISTICS						
PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Input to Output	1 minutes	All			1500	Vdc
Isolation Resistance		All	100			MΩ
Isolation Capacitance		All		1000		pF
FEATURE CHARACTERISTICS						
PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Switching Frequency		Single Dual		350 400		KHz
On/Off Control, Positive Remote On/Off logic						
Logic Low (Module Off)	Von/off at $Io=1.0mA$	All	0		1.2	V
Logic High (Module On)	Von/off at $Io=0.1uA$	All	5.5 or Open Circuit		75	V
On/Off Control, Negative Remote On/Off logic						
Logic Low (Module On)	Von/off at $Io=1.0mA$	All	0		1.2	V
Logic High (Module Off)	Von/off at $Io=0.1uA$	All	5.5 or Open Circuit		75	V
On/Off Current (for both remote on/off logic)	$Io=0.0V$	All		0.3	1	mA
Leakage Current (for both remote on/off logic)	Logic High, $Von/off=15V$	All			30	uA
Off Converter Input Current	Shutdown input idle current	All		4	10	mA
Output Voltage Trim Range	$Pout=\text{max rated power}$ (Single Output)	All	-10		+10	%
Output Over Voltage Protection	Zener or TVS Clamp	Vo=3.3V Vo=5.0V Vo=12V Vo=15V		3.9 6.2 15 18		Vdc
GENERAL SPECIFICATIONS						
PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
MTBF	$Io=100\%$ of Io_{max} ; $Ta=25^\circ C$ per MIL-HDBK-217F	All		720		K hours
Weight		All		35		grams

EC7BW 20W Isolated DC-DC Converters

Application Note V12 August 2019

5. Main Features and Functions

5.1 Operating Temperature Range

The EC7BW series converters can be operated by a wide ambient temperature range from -40°C to 85°C (de-rating above 71°C). The standard model has a Copper case and case temperature can not over 105°C at normal operating.

5.2 Remote On/Off

The EC7BW series allows the user to switch the module on and off electronically with the remote on/off feature. All models are available in "positive logic" and "negative logic" (optional) versions. The converter turns on if the remote on/off pin is high (>5.5Vdc or open circuit). Setting the pin low (0 to <1.2Vdc) will turn the converter off. The signal level of the remote on/off input is defined with respect to ground. If not using the remote on/off pin, leave the pin open (converter will be on). Models with part number suffix "N" are the "negative logic" remote on/off version. The unit turns off if the remote on/off pin is high (>5.5Vdc or open circuit). The converter turns on if the on/off pin input is low (0 to <1.2Vdc). Note that the converter is off by default.

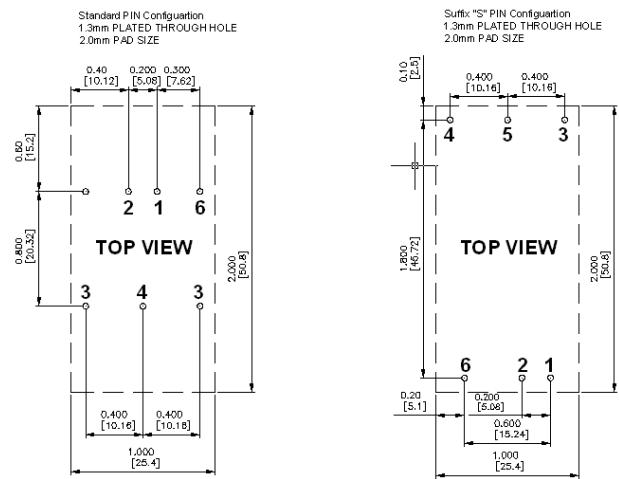
5.3 UVLO (Under Voltage Lock Out)

Input under voltage lockout is standard on the EC7BW unit. The unit will shut down when the input voltage drops below a threshold, and the unit will operate when the input voltage goes above the upper threshold.

5.4 Over Current Protection

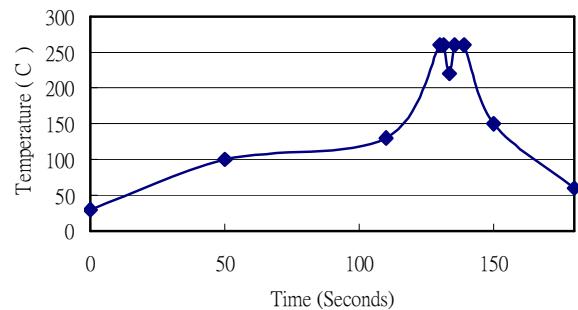
All models have internal over current and continuous short circuit protection. The unit operates normally once the fault condition is removed. At the point of current limit inception, the converter will go into hiccup mode protection.

5.5 Over Voltage Protection


The over-voltage protection consists of a zener diode to limiting the output voltage.

6. Applications

6.1 Recommended Layout PCB Footprints and Soldering Information


The system designer or the end user must ensure that other components and metal in the vicinity of the converter meet the spacing requirements to which the

system is approved. Low resistance and low inductance PCB layout traces are the norm and should be used where possible. Due consideration must also be given to proper low impedance tracks between power module, input and output grounds. The recommended footprints and soldering profiles are shown as Figure4.

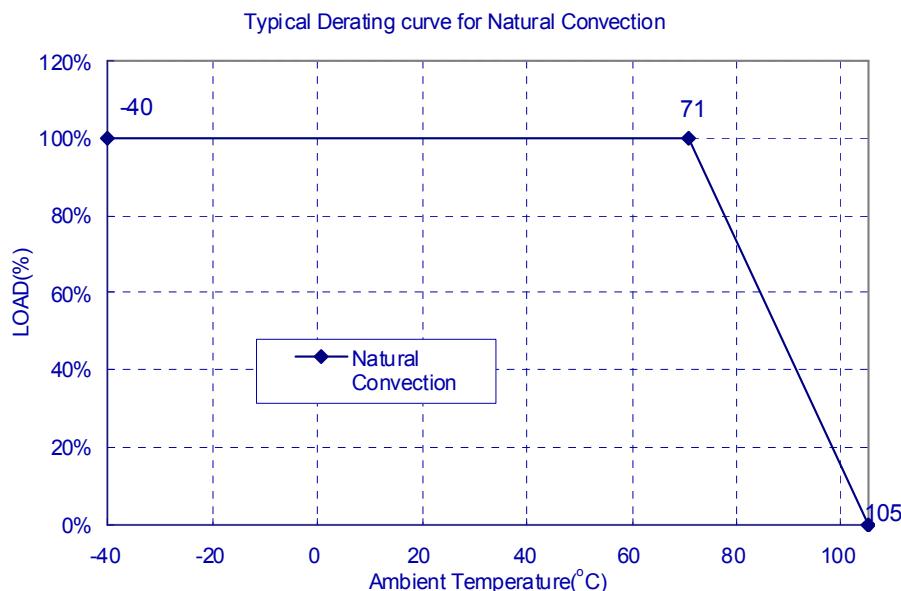
Note: Dimensions are in inches (millimeters)

Lead Free Wave Soldering Profile

Note :

1. Soldering Materials: Sn/Cu/Ni
2. Ramp up rate during preheat: 1.4 °C/Sec (From 50°C to 100°C)
3. Soaking temperature: 0.5 °C/Sec (From 100°C to 130°C), 60±20 seconds
4. Peak temperature: 260°C, above 250°C 3~6 Seconds
5. Ramp up rate during cooling: -10.0 °C/Sec (From 260°C to 150°C)

Figure4 Recommended PCB Layout Footprints and Wave Soldering Profiles for B packages

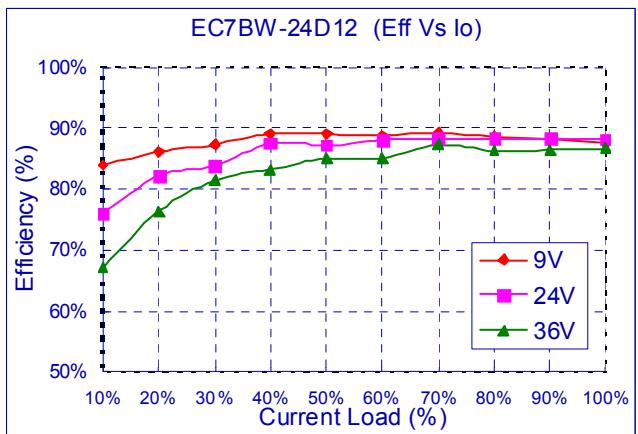
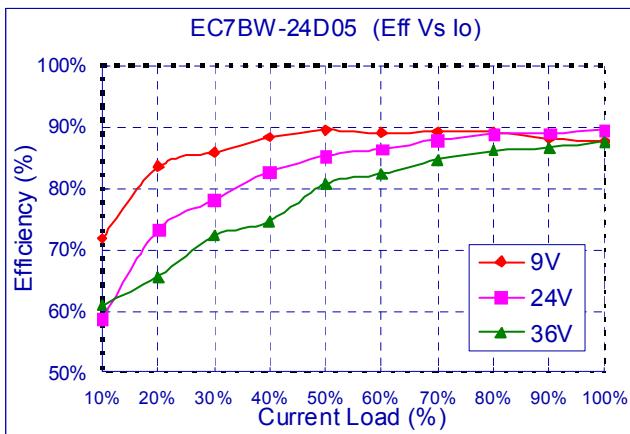
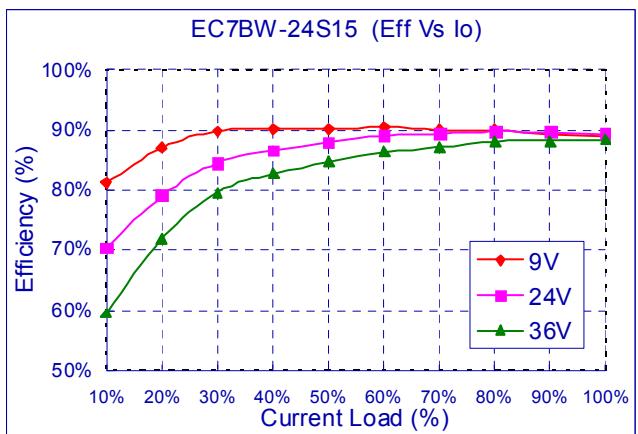
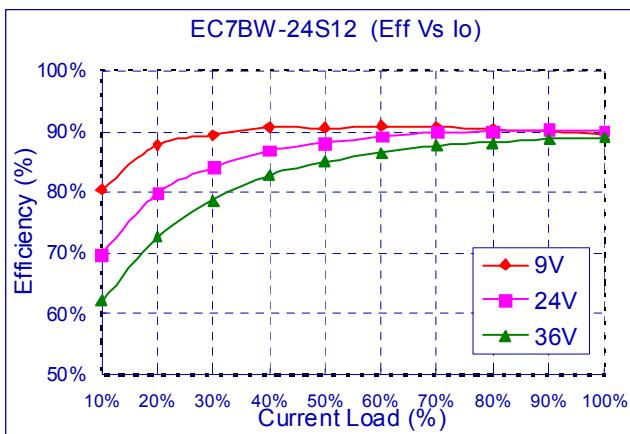
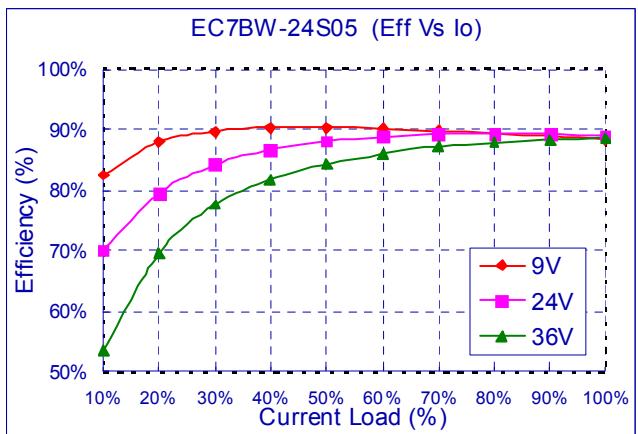
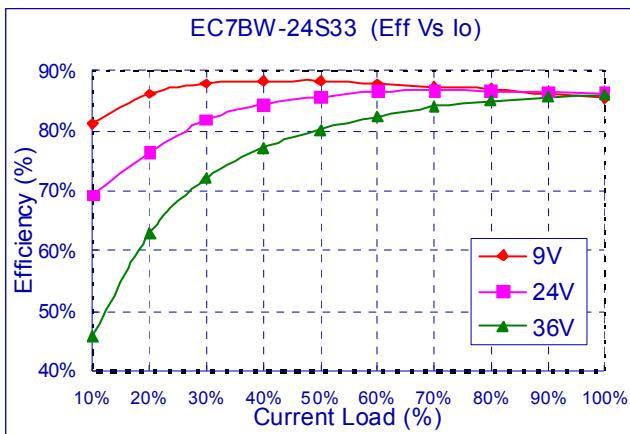

EC7BW 20W Isolated DC-DC Converters

Application Note V12 August 2019

6.2 Power De-Rating Curves for EC7BW Series

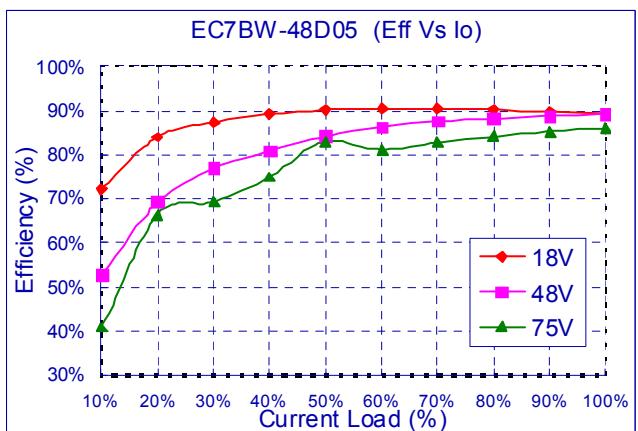
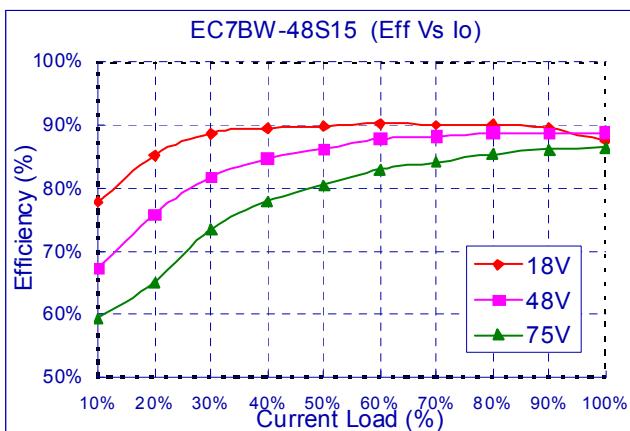
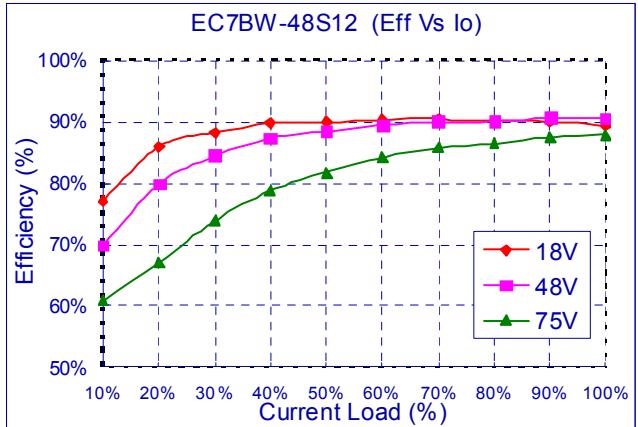
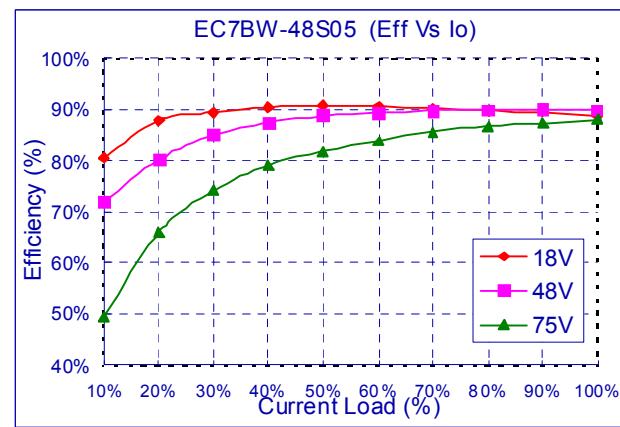
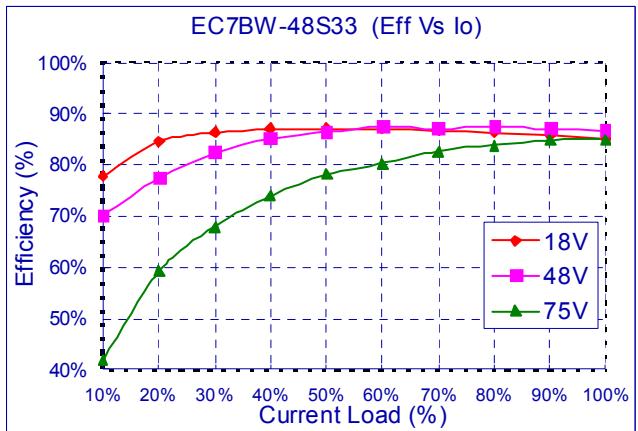
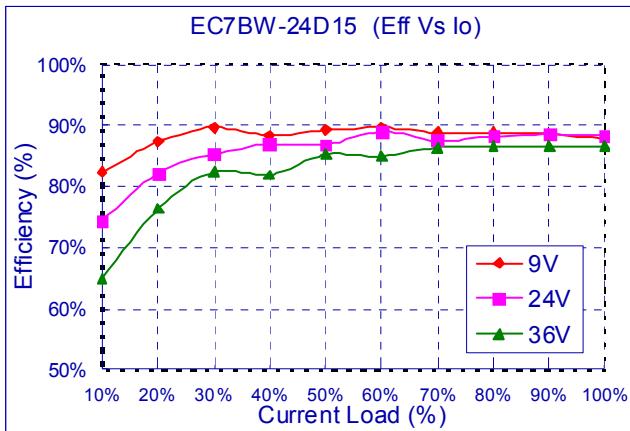
Operating Ambient temperature Range: -40°C ~ 85°C (derating above 71°C).

Maximum case temperature under any operating condition should not exceed 105°C.

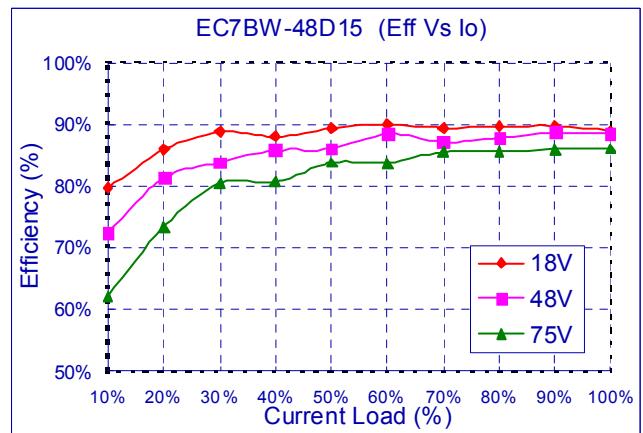
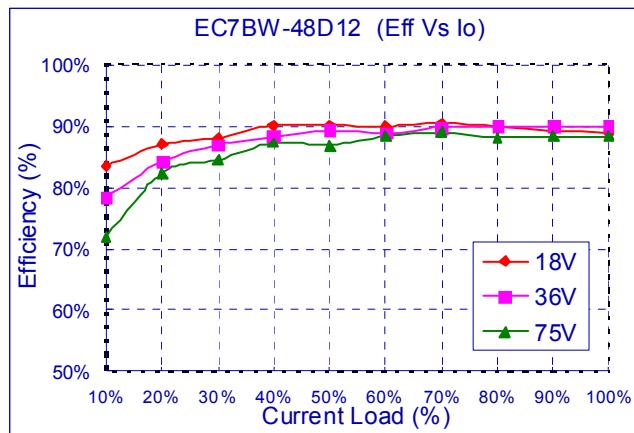







EC7BW 20W Isolated DC-DC Converters

Application Note V12 August 2019

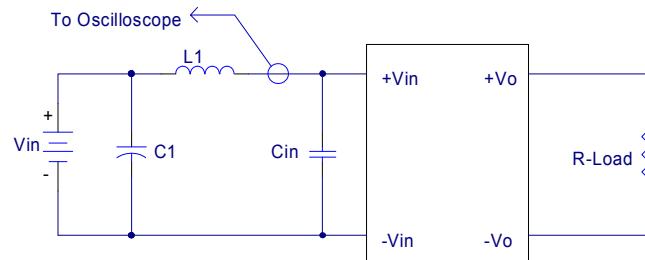






6.3 Efficiency vs. Load Curves

EC7BW 20W Isolated DC-DC Converters



Application Note V12 August 2019

EC7BW 20W Isolated DC-DC Converters

Application Note V12 August 2019


EC7BW 20W Isolated DC-DC Converters

Application Note V12 August 2019

6.4 Input Capacitance at the Power Module

The converters must be connected to low AC source impedance. To avoid problems with loop stability source inductance should be low. Also, the input capacitors (C_{in}) should be placed close to the converter input pins to de-couple distribution inductance. However, the external input capacitors are chosen for suitable ripple handling capability. Low ESR capacitors are good choice. Circuit as shown in Figure5 represents typical measurement methods for reflected ripple current. C_1 and L_1 simulate a typical DC source impedance. The input reflected-ripple current is measured by current probe to oscilloscope with a simulated.

source Inductance (L_1).

$L_1: 12\mu H$

$C_1: 220\mu F$ ESR<0.3ohm @100KHz

$C_{in}: 33\mu F$ ESR<0.7ohm @100KHz

Figure 5 Input Reflected-Ripple Test Setup

6.5 Test Set-Up

The basic test set-up to measure parameters such as efficiency and load regulation is shown in Figure6. When testing the modules under any transient conditions please ensure that the transient response of the source is sufficient to power the equipment under test. We can calculate the

- Efficiency
- Load regulation and line regulation.

The value of efficiency is defined as:

$$\eta = \frac{V_o \times I_o}{V_{IN} \times I_{IN}} \times 100\%$$

Where

V_o is output voltage,

I_o is output current,

V_{IN} is input voltage,

I_{IN} is input current.

The value of load regulation is defined as:

$$Load.reg = \frac{V_{FL} - V_{NL}}{V_{NL}} \times 100\%$$

Where

V_{FL} is the output voltage at full load

V_{NL} is the output voltage at 10% load

The value of line regulation is defined as:

$$Line.reg = \frac{V_{HL} - V_{LL}}{V_{LL}} \times 100\%$$

Where

V_{HL} is the output voltage of maximum input voltage at full load.

V_{LL} is the output voltage of minimum input voltage at full load.

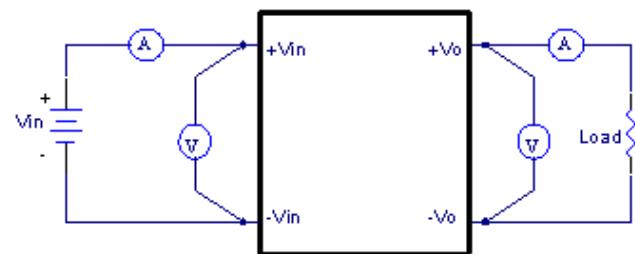


Figure 6 EC7BW Series Test Setup

6.6 Output Voltage Adjustment

In order to trim the voltage up or down one needs to connect the trim resistor either between the trim pin and $-V_o$ for trim-up and between trim pin and $+V_o$ for trim-down. The output voltage trim range is $\pm 10\%$. This is shown in Figures 7 and 8:

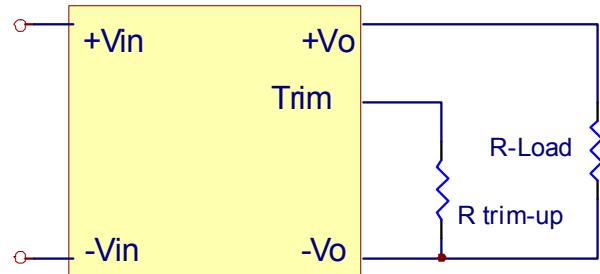


Figure 7 Trim-up Voltage Setup

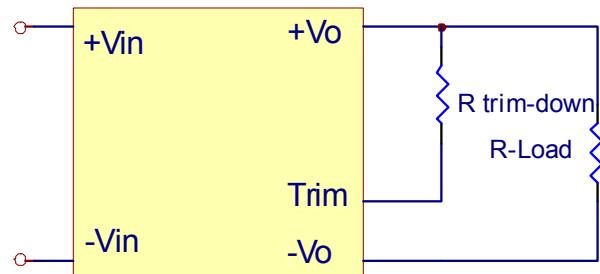


Figure 8 Trim-down Voltage Setup

EC7BW 20W Isolated DC-DC Converters

Application Note V12 August 2019

1. The value of Rtrim-up defined as:

$$R_{trim-up} = \left(\frac{V_r \times R1 \times (R2 + R3)}{(V_o - V_{o,nom}) \times R2} \right) - R_t \text{ (K}\Omega\text{)}$$

Where

$R_{trim-up}$ is the external resistor in Kohm.

$V_{o,nom}$ is the nominal output voltage.

V_o is the desired output voltage.

$R1, R_t, R2, R3$ and V_r are internal to the unit and are defined in Table 1.

Table 1 – Trim up and Trim down Resistor Values

Model Number	Output Voltage(V)	R1 (KΩ)	R2 (KΩ)	R3 (KΩ)	Rt (KΩ)	Vr (V)
EC7BW24S33	3.3	2.74	1.8	0.27	9.1	1.24
EC7BW48S33						
EC7BW24S05	5.0	2.32	2.32	0	8.2	2.5
EC7BW48S05						
EC7BW24S12	12.0	6.8	2.4	2.32	22	2.5
EC7BW48S12						
EC7BW24S15	15.0	8.06	2.4	3.9	27	2.5
EC7BW48S15						

For example, to trim-up the output voltage of 5.0V module (EC7BW-24S05) by 10% to 5.5V, R trim-up is calculated as follows:

$$V_o - V_{o,nom} = 5.5 - 5.0 = 0.5V$$

$$R1 = 2.32 \text{ K}\Omega$$

$$R2 = 2.32 \text{ K}\Omega$$

$$R3 = 0 \text{ K}\Omega$$

$$Rt = 8.2 \text{ K}\Omega$$

$$Vr = 2.5 \text{ V}$$

$$R_{trim-up} = \left(\frac{2.5 \times 2.32 \times (2.32 + 0)}{0.5 \times 2.32} \right) - 8.2 = 3.4(\text{K}\Omega)$$

2. The value of R trim-down defined as:

$$R_{trim-down} = R1 \times \left(\frac{Vr \times R1}{(V_{o,nom} - V_o) \times R2} - 1 \right) - R_t \text{ (K}\Omega\text{)}$$

Where

$R_{trim-down}$ is the external resistor in Kohm.

$V_{o,nom}$ is the nominal output voltage.

V_o is the desired output voltage.

$R1, R_t, R2, R3$ and Vr are internal to the unit and are defined in Table 1

7. Safety & EMC

7.1 Input Fusing and Safety Considerations.

The EC7BW series converters have not an internal fuse. However, to achieve maximum safety and system protection, always use an input line fuse. We recommended a time delay fuse 4A for 24Vin models and 2A for 48Vin modules. Figure10 circuit is recommended by a Transient Voltage Suppressor diode across the input terminal to protect the unit against surge or spike voltage and input reverse voltage.

For example, to trim-down the output voltage of 5.0V module (EC7BW-24S05) by 10% to 4.5V, R trim-down is calculated as follows:

$$V_{o,nom} - V_o = 5.0 - 4.5 = 0.5V$$

$$R1 = 2.32 \text{ K}\Omega$$

$$R2 = 2.32 \text{ K}\Omega$$

$$R3 = 0 \text{ K}\Omega$$


$$Rt = 8.2 \text{ K}\Omega$$

$$Vr = 2.5 \text{ V}$$

$$R_{trim-down} = 2.32 \times \left(\frac{(2.5 \times 2.32)}{0.5 \times 2.32} - 1 \right) - 8.2 = 1.08 \text{ (K}\Omega\text{)}$$

6.7 Output Ripple and Noise Measurement

The test set-up for noise and ripple measurements is shown in Figure9. A coaxial cable was used to prevent impedance mismatch reflections disturbing the noise readings at higher frequencies. Measurements are taken with output appropriately loaded and all ripple/noise specifications are from D.C. to 20MHz Band Width.

Note: C1: None

C2: 0.1uF Ceramic capacitor

Figure9 Output Voltage Ripple and Noise Measurement Set-Up

6.8 Output Capacitance

The EC7BW series converters provide unconditional stability with or without external capacitors. For good transient response low ESR output capacitors should be located close to the point of load. These series converters are designed to work with load capacitance to see technical specifications.

EC7BW 20W Isolated DC-DC Converters

Application Note V12 August 2019

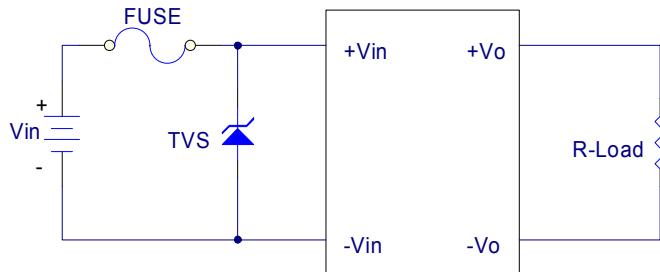


Figure10 Input Protection

7.2 EMC Considerations

EMI Test standard: EN55032 Class A and B Conducted Emission

Test Condition: Input Voltage: Nominal, Output Load: Full Load

(1) EMI and conducted noise meet EN55032 Class B:

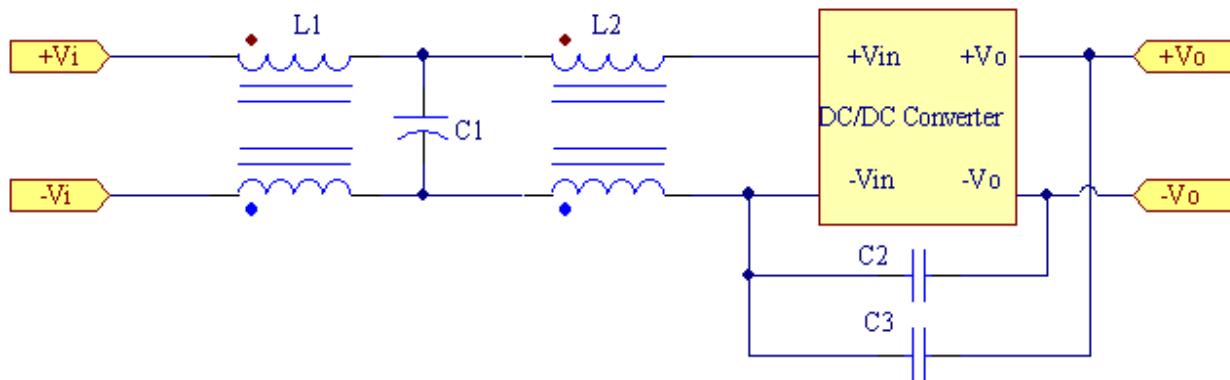
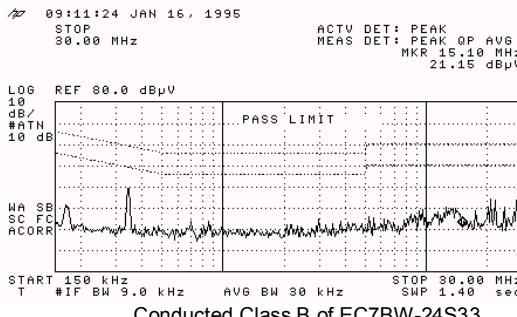


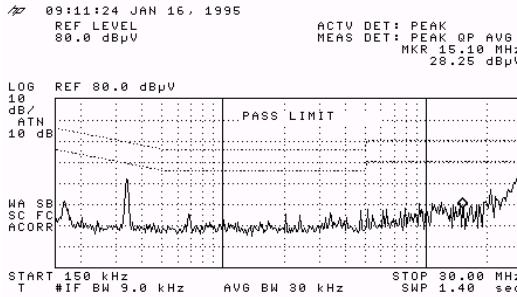
Figure11 Connection circuit for conducted EMI testing

Model No.	EN55032 Class B				
	C1	C2	C3	L1	L2
EC7BW-24S33	220uF/50V KY	1000pF/2KV	1000pF/2KV	Jump Wire	1.2mH
EC7BW-24S05	220uF/50V KY	1000pF/2KV	1000pF/2KV	Jump Wire	1.2mH
EC7BW-24S12	220uF/50V KY	1000pF/2KV	1000pF/2KV	Jump Wire	1.2mH
EC7BW-24S15	220uF/50V KY	1000pF/2KV	1000pF/2KV	Jump Wire	1.2mH
EC7BW-48S33	220uF/100V PW	1000pF/2KV	1000pF/2KV	0.15mH	1.2mH
EC7BW-48S05	220uF/100V PW	1000pF/2KV	1000pF/2KV	0.15mH	1.2mH
EC7BW-48S12	220uF/100V PW	1000pF/2KV	1000pF/2KV	0.15mH	1.2mH
EC7BW-48S15	220uF/100V PW	1000pF/2KV	1000pF/2KV	0.15mH	1.2mH

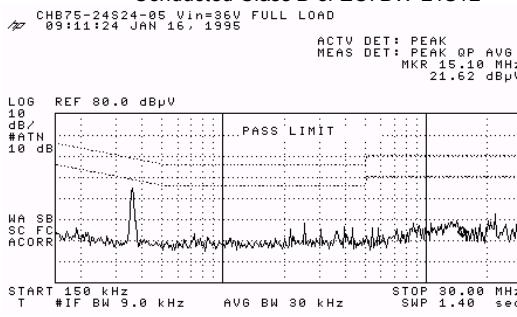
Note:

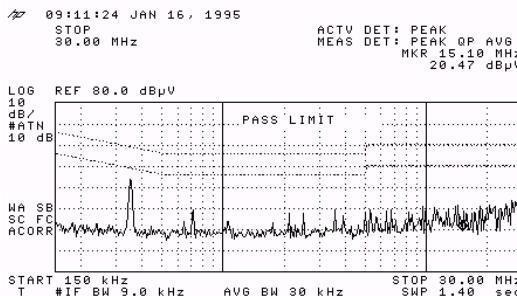

C1 is NIPPON-CHEMICON KY series or NICHICON PW series aluminum capacitor, C2, C3 are ceramic capacitors

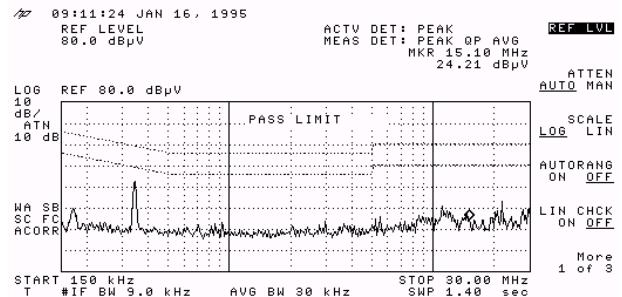
Jump Wire: 0.7mm min.

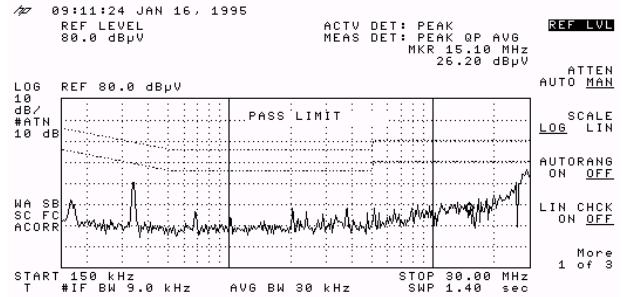


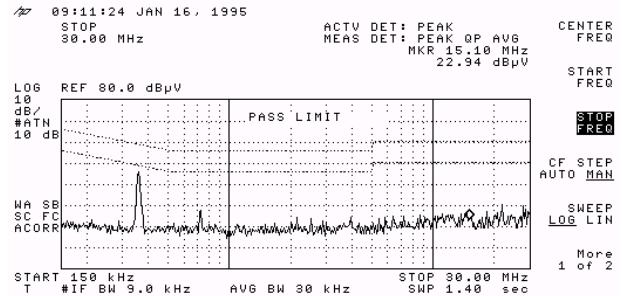
EC7BW 20W Isolated DC-DC Converters

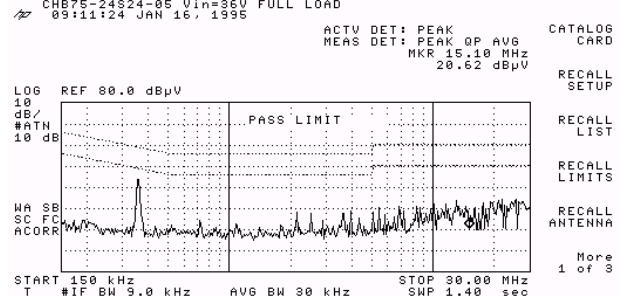

Application Note V12 August 2019


Conducted Class B of EC7BW-24S33


Conducted Class B of EC7BW-24S12


Conducted Class B of EC7BW-48S33


Conducted Class B of EC7BW-48S12


Conducted Class B of EC7BW-24S05

Conducted Class B EC7BW-24S15

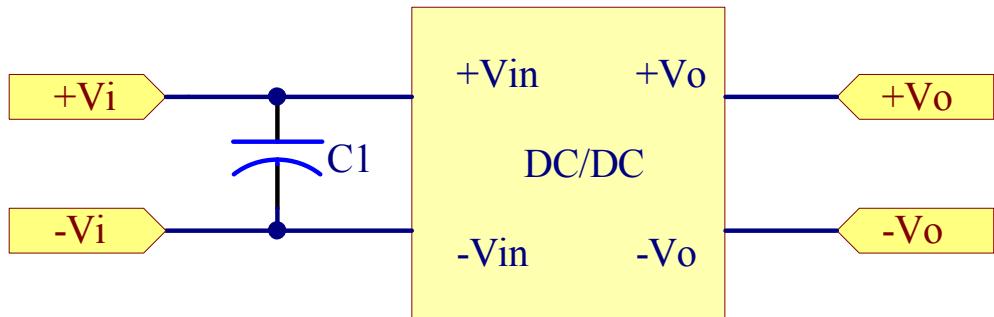
Conducted Class B of EC7BW-48S05

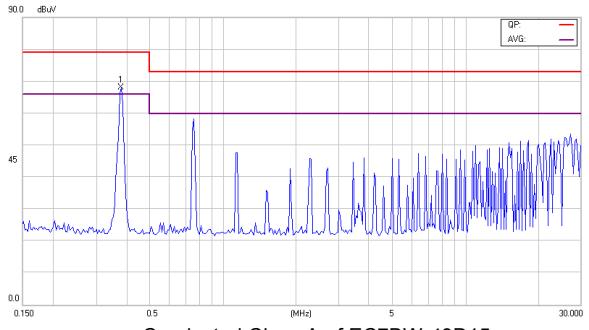
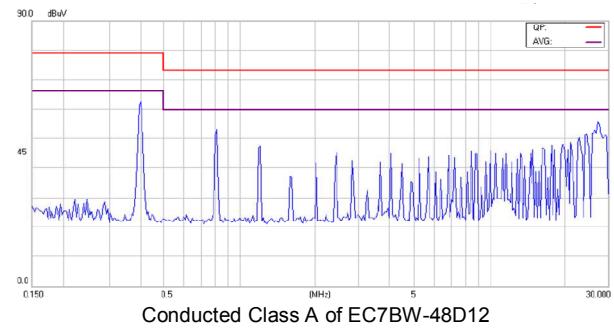
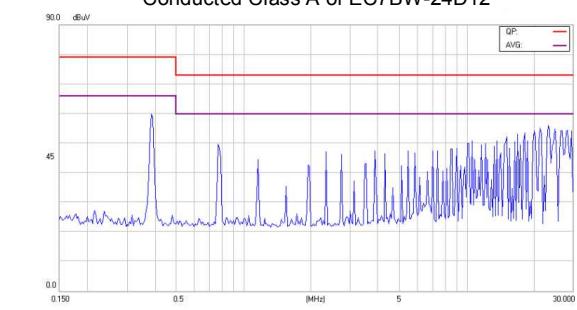
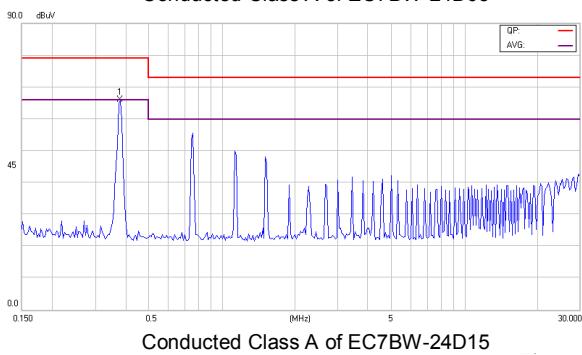
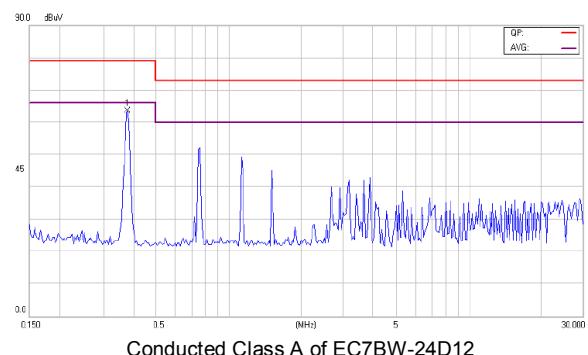
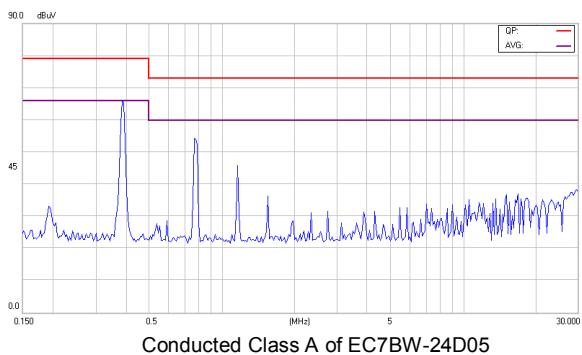
Conducted Class B of EC7BW-48S15

EC7BW 20W Isolated DC-DC Converters

Application Note V12 August 2019

(2) EMI and conducted noise meet EN55032 Class A:

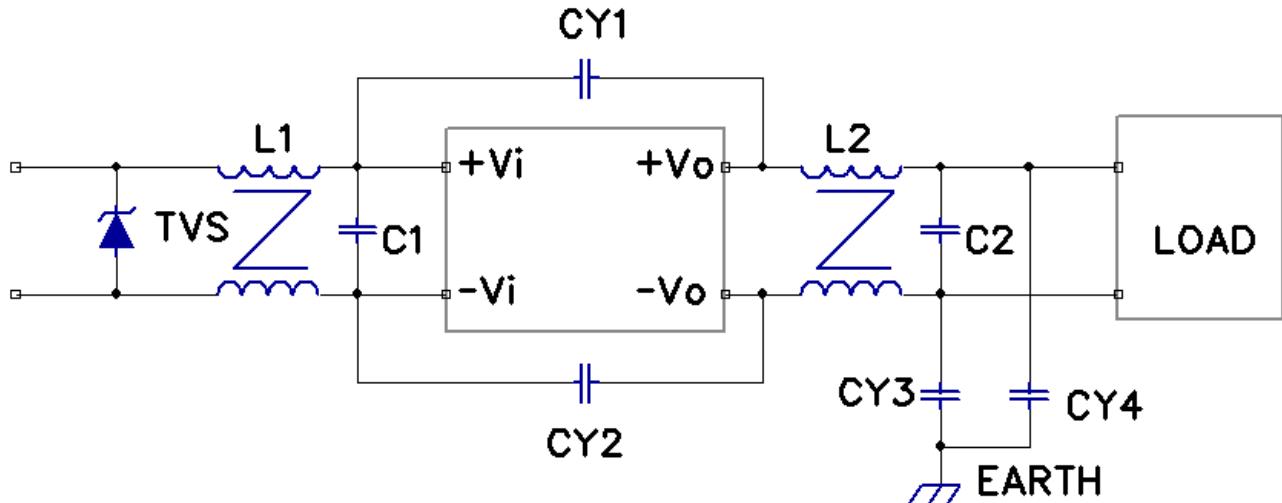








Figure12 Connection circuit for conducted EMI testing

Model No.	EN55032 Class A
	C1
EC7BW-24D05	10uF/50V/MLCC 1210
EC7BW-24D12	10uF/50V/MLCC 1210
EC7BW-24D15	10uF/50V/MLCC 1210
EC7BW-48D05	NC
EC7BW-48D12	NC
EC7BW-48D15	NC

EC7BW 20W Isolated DC-DC Converters

Application Note V12 August 2019



EC7BW 20W Isolated DC-DC Converters

Application Note V12 August 2019

(3) EMI Meet EN50121-3-2:2016

Figur13 Connection circuit for Single Output

MODULE	EN50121-3-2							
	TVS	C1	C2	CY1 & CY2	CY3	CY4	L1	L2
EC7BW-24S33	1.5KE47A	47uF/100V KY	2.2uF/50V MLCC	1500pF/2KV MLCC	4700pF Y1	4700pF Y1	1.37mH	0.4mH
EC7BW-24S05	1.5KE47A	47uF/100V KY	2.2uF/50V MLCC	1500pF/2KV MLCC	2200pF Y1	NC	Jump Wire	0.4mH
EC7BW-24S12	1.5KE47A	47uF/100V KY	2.2uF/50V MLCC	1500pF/2KV MLCC	4700pF Y1	4700pF Y1	1.37mH	0.4mH
EC7BW-24S15	1.5KE47A	47uF/100V KY	2.2uF/50V MLCC	1500pF/2KV MLCC	6800pF Y1	6800pF Y1	1.37mH	0.4mH
EC7BW-48S33	1.5KE91A	47uF/100V KY	2.2uF/50V MLCC	1500pF/2KV MLCC	4700pF Y1	4700pF Y1	1.37mH	0.4mH
EC7BW-48S05	1.5KE91A	47uF/100V KY	2.2uF/50V MLCC	1500pF/2KV MLCC	4700pF Y1	4700pF Y1	1.37mH	0.4mH
EC7BW-48S12	1.5KE91A	47uF/100V KY	2.2uF/50V MLCC	1500pF/2KV MLCC	6800pF Y1	6800pF Y1	1.37mH	0.4mH
EC7BW-48S15	1.5KE91A	47uF/100V KY	2.2uF/50V MLCC	1500pF/2KV MLCC	6800pF Y1	6800pF Y1	1.37mH	0.4mH

Note:

C1 is NIPPON-CHEMICON KY series or NICHICON PW series aluminum capacitor, C2, CY1, CY2 are ceramic capacitors. CY3, CY4: 2200pF (CD Series TDK) or equivalent, 4700pF (CD Series TDK) or equivalent, 6800pF (CD Series TDK) or equivalent.

L1: 1.37mH (VAC L2012 W902 12*8*4.5) or equivalent.

L2: 0.4mH (GREDMANN FCN0129 12*8*4.5) or equivalent.

Jump Wire: 0.7mm min.

EC7BW 20W Isolated DC-DC Converters

Application Note V12 August 2019

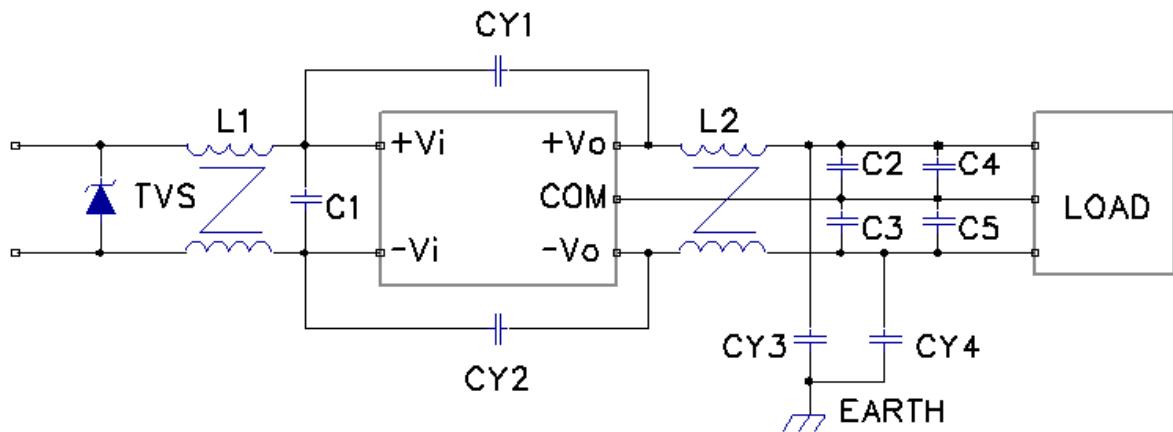


Figure14 Connection circuit for Dual Output

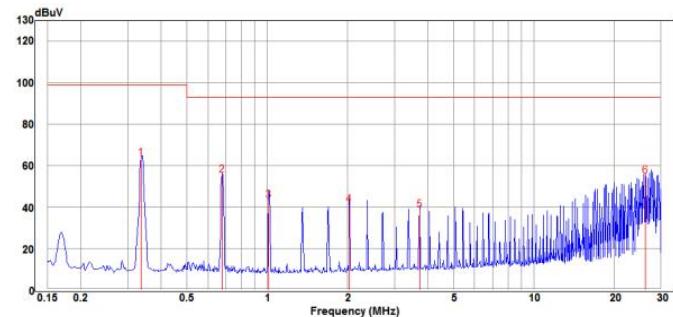
MODULE	EN50121-3-2						
	TVS	C1 & C4 & C5	C2 & C3	CY1 & CY2	CY3 & CY4	L1	L2
EC7BW-24DXX	1.5KE47A	47uF/100V KY	2.2uF/50V MLCC	1500pF/2KV MLCC	1500pF Y1	0.4mH	2.5mH
EC7BW-48DXX	1.5KE91A	47uF/100V KY	2.2uF/50V MLCC	1500pF/2KV MLCC	1500pF Y1	0.4mH	2.5mH

Note:

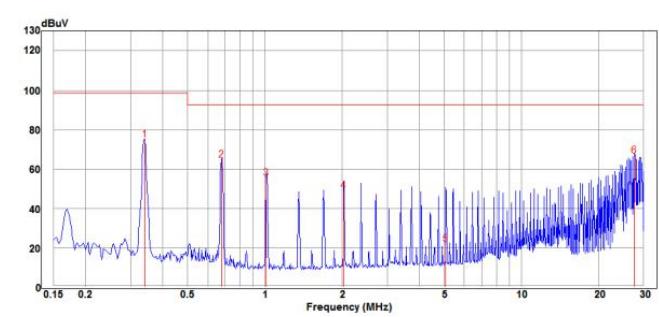
C1, C4, C5 are NIPPON-CHEMICON KY series or NICHICON PW series aluminum capacitor, C2, C3, CY1, CY2 are ceramic capacitors.

CY3, CY4 1500pF (CD Series TDK) or equivalent.

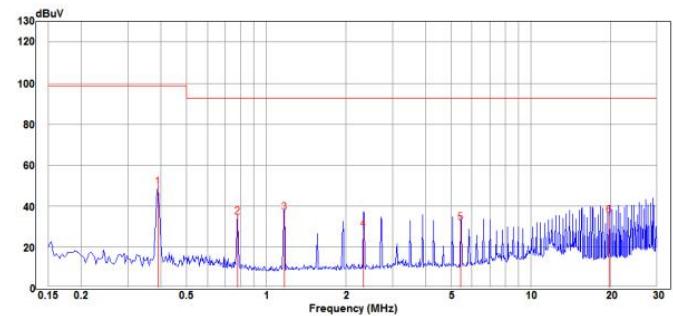
L1, L2: 0.4mH, 2.5mH (GREDMANN FCN0129 12*8*4.5) or equivalent.

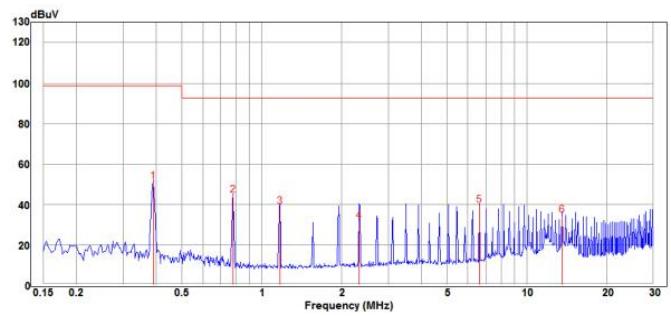


EC7BW 20W Isolated DC-DC Converters

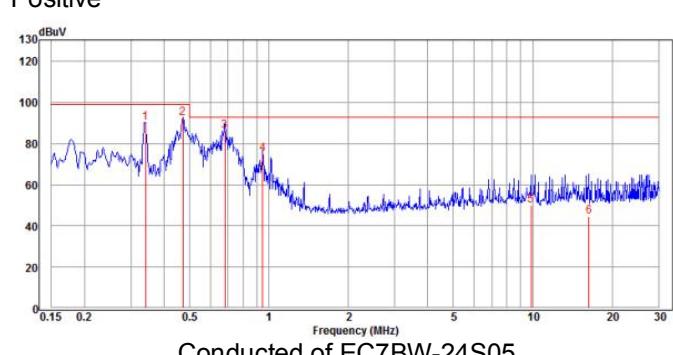

Application Note V12 August 2019

(4) Conducted Emission (Input):

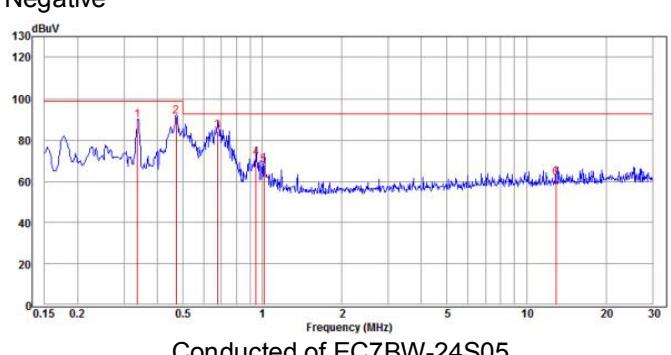

Line


Neutral

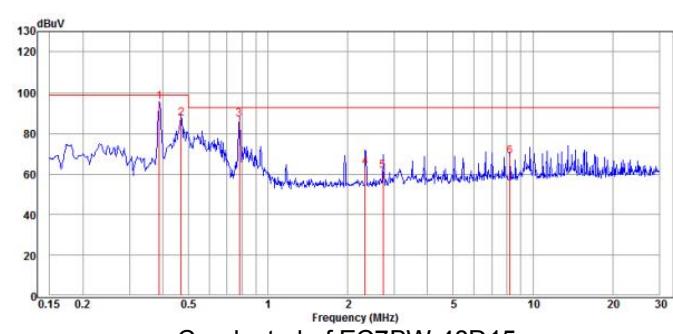
Line

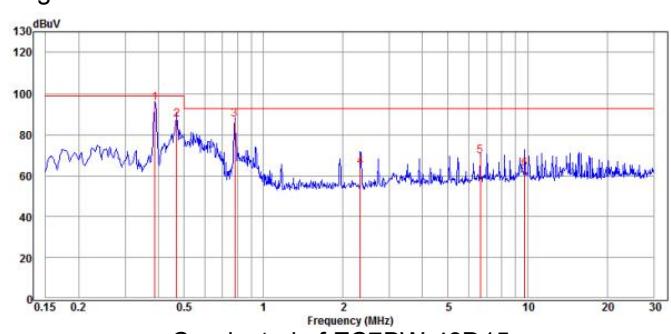


Neutral



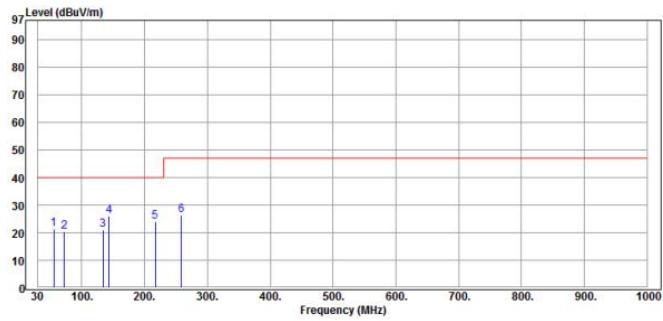
(5) Conducted Emission (Output):


Positive


Negative

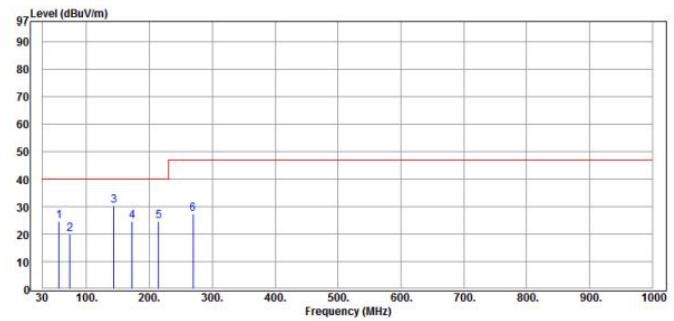
Positive

Negative

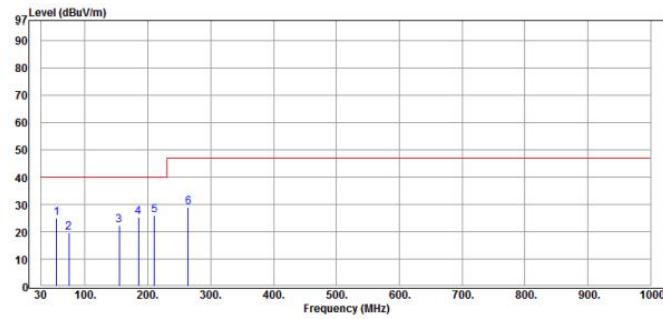


EC7BW 20W Isolated DC-DC Converters

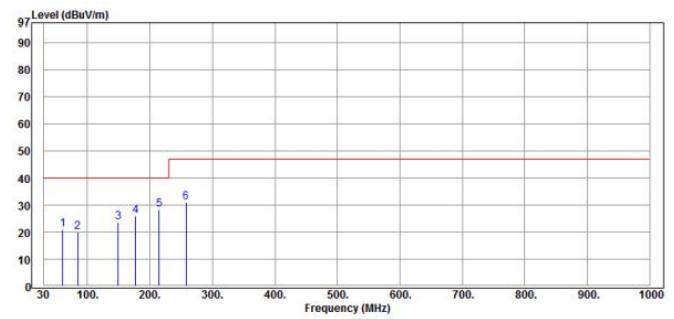
Application Note V12 August 2019


(6) Radiated Emission:

Horizontal


EC7BW-24S05

Vertical

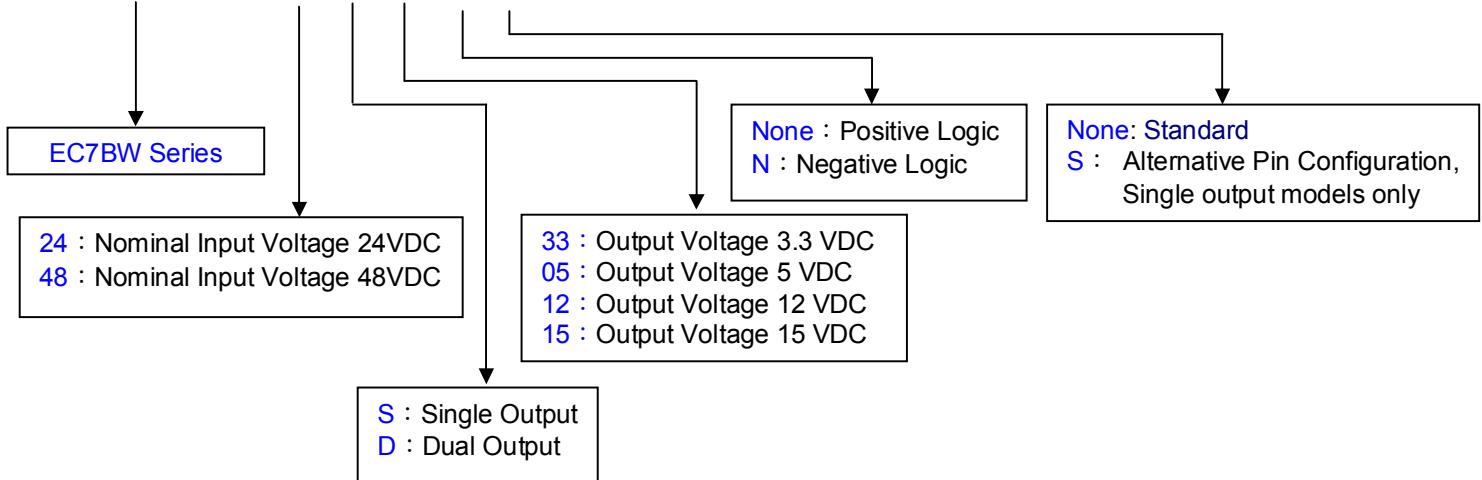

EC7BW-24S05

Horizontal

EC7BW-48D15

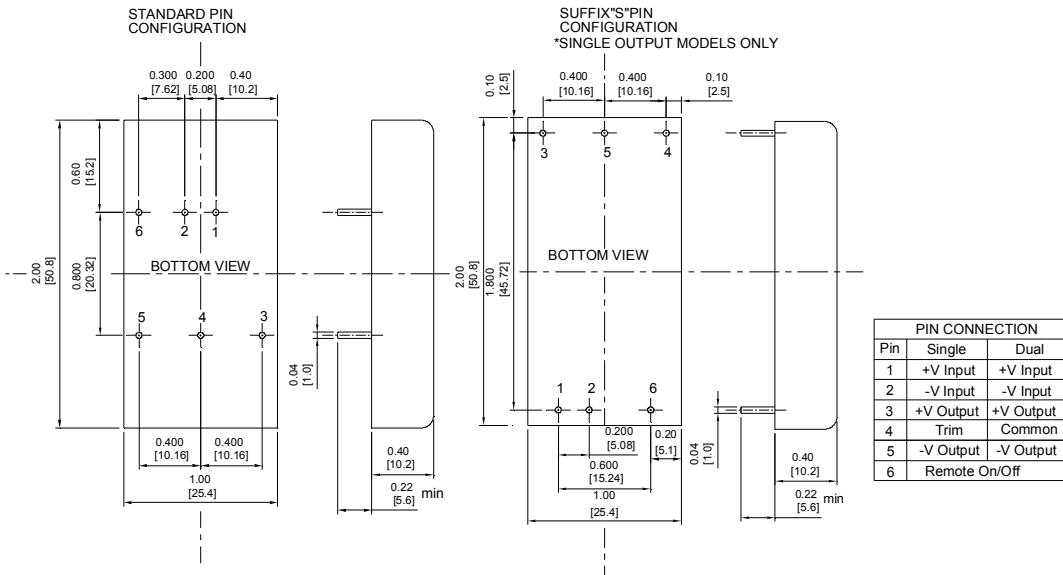
Vertical

EC7BW-48D15



EC7BW 20W Isolated DC-DC Converters

Application Note V12 August 2019


8. Part Number

EC7BW - XX X XX X X

9. Mechanical Specifications

All Dimensions In Inches (mm)
Tolerances Inches: X.XX= ± 0.04 , X.XXX= ± 0.010
Millimeters: X.X= ± 1.0 , X.XX= ± 0.25

CINCON ELECTRONICS CO., LTD.

Headquarter Office:

14F, No.306, Sec.4, Hsin Yi Rd.,
Taipei, Taiwan
Tel: 886-2-27086210
Fax: 886-2-27029852
E-mail: sales@cincon.com.tw
Web Site: <http://www.cincon.com>

Factory:

No. 8-1, Fu Kong Rd.,
Fu Hsing Industrial Park
Fu Hsing Hsiang, ChangHua Hsien,
Taiwan
Tel: 886-4-7690261
Fax: 886-4-7698031

Cincon American Office:

1655 Mesa Verde Ave, Ste 180,
Ventura, CA 93003
Tel: 805-639-3350
Fax: 805-639-4101
E-mail: info@cincon.com