

CeraCharge™

Application notes

Series/Type:**Ordering code:**

Date: 2019-03-06
Version: P1

Table of contents

1. Onboard coating
 - 1) Surface preparation
 - 2) Dam-filling
 - 3) Appearances
2. Basic usage
 - 1) Charging conditions
 - 2) Voltage / Capacity calculation in series / parallel
 - 3) Series / Parallel connection
3. Application guide
 - 1) Application for CeraCharge
 - 2) Use case
 - Low current output (RTC backup circuits)
 - High current output (Intermittently operating devices)
 - Voltage adjusting to system operating
 - Capacity calculation for driving time
4. Charging source
 - 1) From system power
 - 2) By energy harvesting
 - 3) With others, e.g. from WPT ("Wireless power transfer")

CeraCharge™

Application notes

1. Onboard coating

Onboard coating after soldering CeraCharge is recommended.

1) Surface preparation

The board surface CeraCharge is mounted should be free of dust, oil, grease or other dirt.

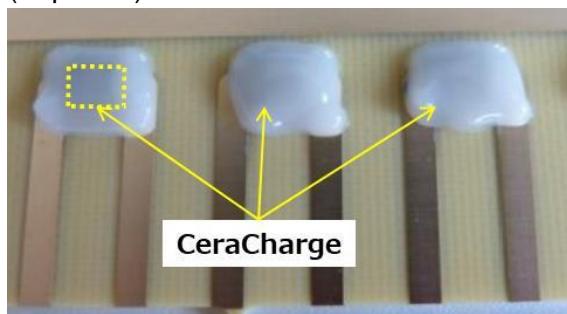
2) Dam-filling

Recommended coating material

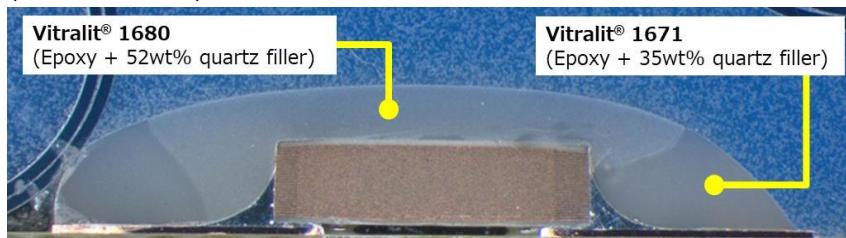
Dam material: Vitralit® 1671 (Panacol-Elosol GmbH)

Filling material: Vitralit® 1680 (Panacol-Elosol GmbH)

Thickness should be more than 0.5 mm from CeraCharge surface.


Curing conditions

1. 90sec with ca. 350mW/cm² UV - A


2. Drying 30min at 120°C

3) Appearances

(Top view)

(Cross section)

2. Basic usage

1) Charging conditions

3 variants of charging conditions can be applied for CeraCharge.

- Constant current (CC) charging: setting current in range 10 μ A up to 50 μ A with end voltage 1.6 V.
- Constant voltage (CV) charging: setting voltage to 1.6 V with limited current under 200 μ A, end current below 10 μ A.
- CC-CV charging: For constant current charge set current in range 10 μ A up to 50 μ A with end voltage 1.6 V; for constant voltage charge set voltage to 1.6 V with end current below 10 μ A.

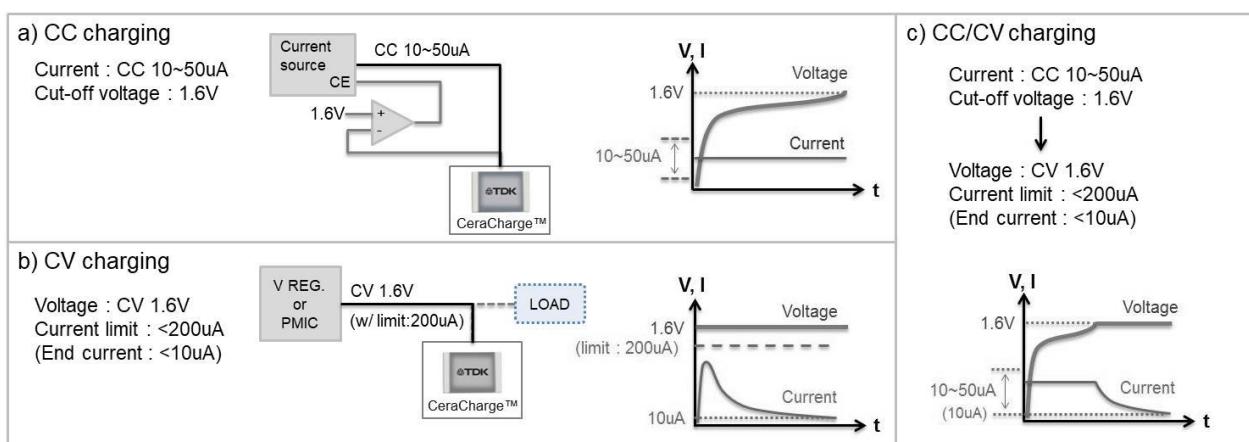
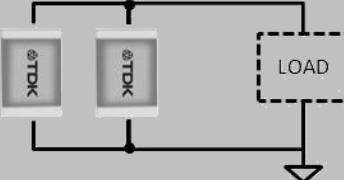
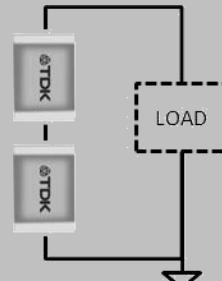


Figure 1
Charging conditions of CeraCharge

In the CC charging mode, a control circuit which has a function to stop charging by detecting the voltage to reach the upper control limit (Vucl) is needed.

In the CV charging mode, a control circuit which has a function to stop charging by detecting the charging current lower than 10 μ A is needed, or you can make the charging time a rough guide to judge the end of charging, but it is not a problem to continue CV charging even after the charging current falls below 10 μ A.



The CC-CV charging is the same method as general LiB batteries, a control circuit which has a function to switch to CV charging after detect reaching to the Vucl is needed.

The full charged in CV charging is based on the point that the charging current is below 10 μ A, the charging time what is from capacity empty state to the charging current below 10 μ A is around 3 hr. (Initial charging will take 5~6hr.)

The tendency that the charging capacity is bigger than discharging capacity (Low efficiency of discharging / charging) is observed during initial several cycles. It will be improved by repeating cycles.

2) Voltage / Capacity calculation in series / parallel

The following chart provides the information that how we can calculate the voltage / capacity / inner resistance in multiple connection of CeraCharge.

Series & Parallel	1 series & 2 parallel	2 series & 1 parallel
Circuit diagram		
Discharging Capacity	200 uAh	100 uAh
Output Voltage	1.6 V (max.)	3.2 V (max.)
Inner Resistance	100 Ohm	400 Ohm

If you connect CeraCharge components in parallel, the discharging capacity becomes a parallel number multiple, the apparent inner resistance becomes as fraction of parallel numbers, and the discharging voltage remains unchanged.

If you connect CeraCharge components in series, the discharging voltage becomes a series number multiple, the apparent inner resistance becomes a series number multiple, and the discharging capacity remains unchanged.

Voltage: Series number multiple

Capacity: Parallel number multiple

Inner resistance: Multiplied with series number and divided by parallel number

e.g. The CeraCharge unit with 2-series-3-parallel (2S3P) connection becomes,

Voltage of upper control limit: 3.2 V (1.6V * 2-series)

Discharging capacity: 300 μ Ah (100 μ Ah * 3-parallels)

Apparent inner resistance: 133 Ω (200 Ω * 2-series / 3-parallel)

3) Series / Parallel connection (Voltage balancing & current limitation)

To prevent voltage deviations of CeraCharge components connected in series, some controlling circuits are recommended to use.

In case of 2 in series connection, balancing resistor circuits are recommended.

The resistance value of the resistors should be considered with balancing current (balancing speed) and leakage (current consumption). It should be kept in mind that these are trade off relationship.

To align the maximum current between parallels, Current regulative diodes (CRD) can be used for CeraCharge parallel line. The power supply capacity of charging power line should be higher than the total current of every CRD in parallel.

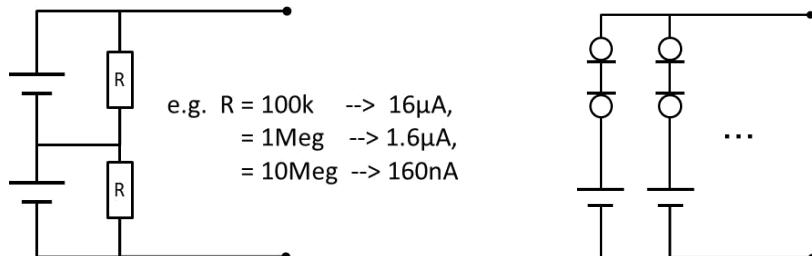


Figure 2
Balancing resistor circuit and current regulated circuit

In case of 3 in series or more, OPAMP circuits are also proposed in addition for balancing resistor circuits. It should be considered about leakage of resistors and current consumption of OPAMP.

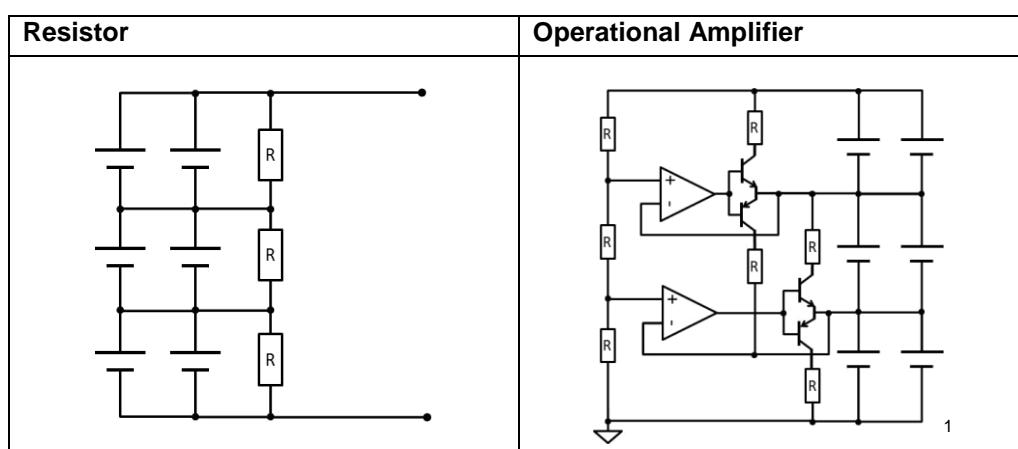


Figure 3
Balancing resistor (passive) circuit and Operational amplifier (active) circuit

¹ US 20050077875 A1

3. Application guide

1) Application for CeraCharge

Power backup	IoT (Energy harvesting)	Sub battery	Wearable, Health care
e.g. Real Time Clocks	e.g. Beacons Environment sensor	e.g. Battery life extender	e.g. Thermometer Hearing aid

2) Use case

Low current output (e.g. RTC backup battery)

CeraCharge is suitable for applications which require long time discharging with slight current.

Discharging with few current continuously like a backup battery of Real Time Clock (RTC) IC is one of most suitable usage. CeraCharge what has 100 μ Ah in its small 1812 case will contribute to reduce the mounting area of PCB surface with replacing coin-cell batteries.

Although leakage current of a backup battery also affects to the operating time of RTC-IC, CeraCharge can be reduced its leakage current with extending charging time. Compare with several hour charging, the leakage current after charging 100hr will decrease to 0.1 μ A.

(And in normally the upper control limit of charging voltage is 1.6V, increasing this voltage to 1.8V can reduce its leakage current. But this method will make its cycle performance degrade, it should be used only for the usage which does not need cycle performance.)

Connection image

Connecting variations are generally divided into 2 types as Figure 4.

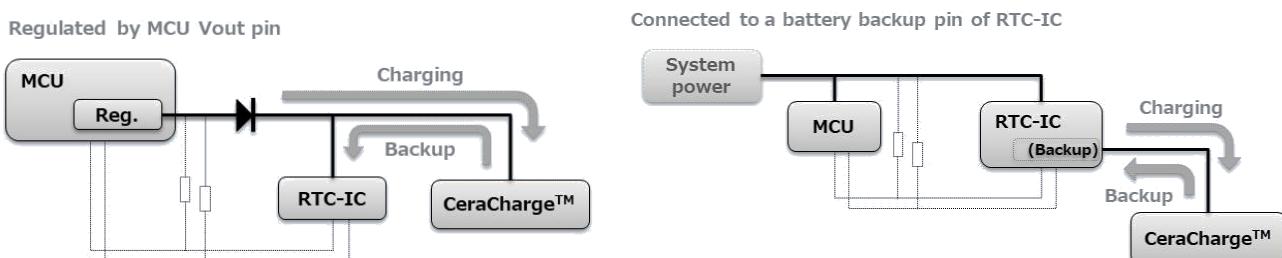


Figure 4

Block image of CeraCharge connection for RTC backup circuit

In some products of RTC-IC have battery backup mode and those IC are equipped with a pin for connecting a backup battery. CeraCharge can be connected to this pin.

The RTC-IC which does not have a backup mode can also be used with a CeraCharge backup circuit. In this case, CeraCharge should be connected to VDD pin in parallel with main power source, and to prevent a current backflow from CeraCharge to system power line when the system power shut down, a diode before the parallel point of RTC and CeraCharge on the system power line is recommended.

As in the above 2 points, when the CeraCharge is connected to RTC circuits as a backup battery with charging and discharging, CeraCharge will be connected to power line from MCU (system power) or backup pin of RTC-IC. And series number of CeraCharge (=charging voltage) will be decided with the supply voltage from MCU (system power) or a backup pin of RTC-IC.

Operating time calculation

Figure 5 is an example of measurement results of RTC backup circuit with CeraCharge.

RTC-IC: R2051S01 (RICOH Electronic Devices Co., Ltd.)

Current consumption: 0.4uA

Minimum Timekeeping Voltage: 0.75V Typ.

CeraCharge:

Charging: CV1.8V, 100hr → connected to the backup pin of RTC-IC as 1 cell

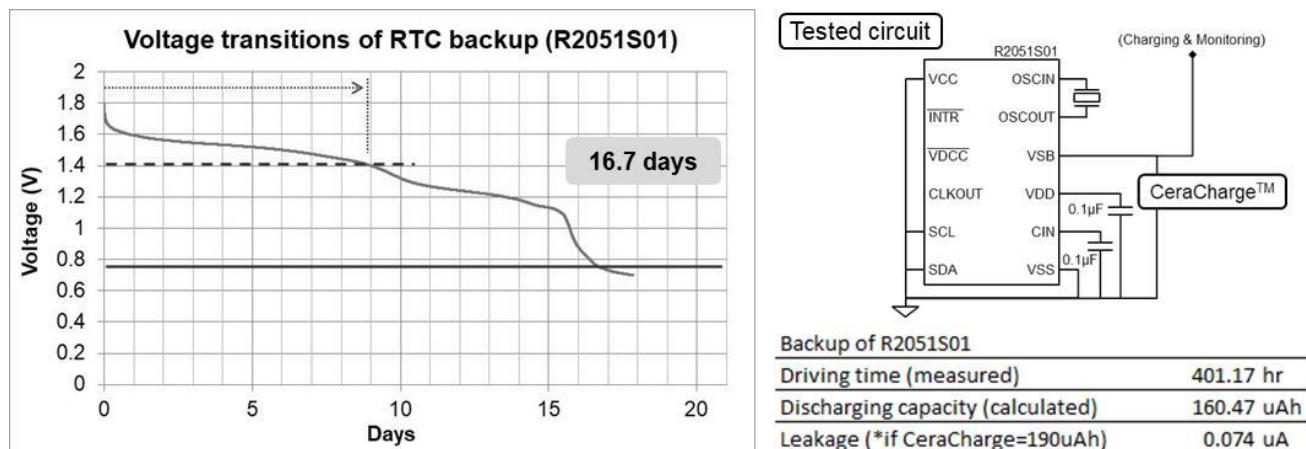


Figure 5
RTC (R2051S01) backup circuit test result

In this case, CeraCharge could backup 16.7days (400hr) from 1.8V to 0.75V. With considering the current consumption of this RTC-IC, CeraCharge supplied 160 uAh to RTC-IC until reach the minimum timekeeping voltage. And a full discharging capacity of CeraCharge charged to 1.8V is roughly 190 uAh, the leakage current during this operating can be calculated 0.074uA.

CeraCharge™

Application notes

Operating time calculation should be considered with current consumption of RTC-IC and leakage of CeraCharge as in the above. And in addition, the operating voltage range of RTC-IC is also should be considered to use CeraCharge capacity more efficiently. A solid line in the graph is the minimum timekeeping voltage of this RTC-IC (0.75V). But if its value is 1.4V as the dashed line, CeraCharge couldn't supply 50% of capacity to RTC-IC. In this case, CeraCharge can drive only around 200hr with its capacity cannot be fully demonstrated.

Figure 6 is a measurement result with another IC has lower current consumption than R2051S01. The actual driving time cannot be calculated with only a current consumption and capacity, leakage is also needed.

RTC-IC: R2221T (RICOH Electronic Devices Co., Ltd.)

Current consumption: 0.18uA

Minimum Timekeeping Voltage: 0.6V Typ.

CeraCharge:

Charging: CV1.8V, 100hr → connected to the backup pin of RTC-IC as 1 cell

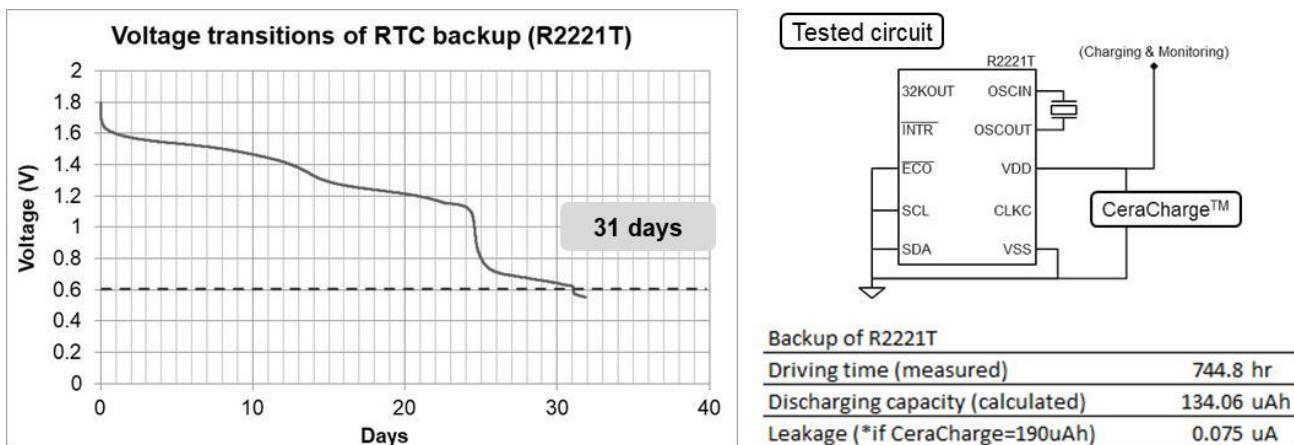


Figure 6
RTC (R2221T) backup circuit test result

CeraCharge™

Application notes

High C rate output (Intermittently operating RF devices, e.g. IoT sensors like Beacon)

CeraCharge is not suitable for continuously discharge in a range of mA current since its high inner resistance (e.g. driving LEDs, bright graphic displays, high quality speakers.). In the applications which need mA current consumption, the discharging voltage of CeraCharge may drop by its inner resistance and it could not supply power to a load enough.

But in some applications which requires mA current discharging can be supported by CeraCharge. Figure 7 “Typical pulse power” shows the potential of CeraCharge in “some applications”. If the usage of applications is some intermittently driving system like a RF beacon, its current consumption should be several mA pulse current with interval of several time (sec. ~ min.).

Typical pulse power in this sheet means, if an interval has 30s between each square pulse, CeraCharge can discharge maximum 1s of 3mA current square pulse.

Typical pulse power

($T_A = 25^\circ\text{C}$)

Current square pulse length	0.8 ms	1 s	60 s	> 2400 s
Interval	1 s	30 s	none (continuous)	none (continuous)

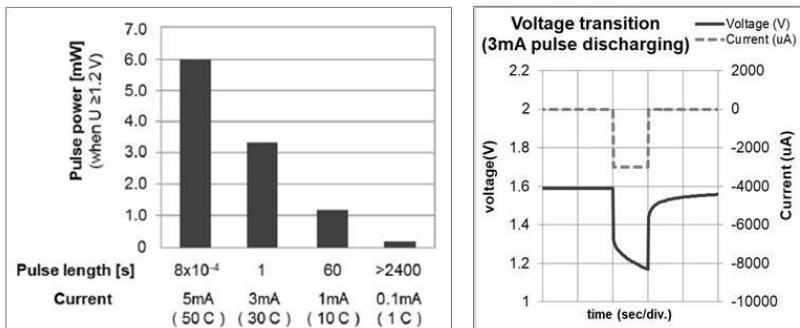


Figure 7

Typical pulse power and pulse discharging test result of CeraCharge

Connection image

In case for transmitting devices what is driving in intermittently operating mode with several mA pulse current, CeraCharge can prevent a voltage drop of power line with connecting low impedance capacitors in parallel. The capacitors supply the power needed for a transmitting one time, and then CeraCharge charges capacitors for next transmitting.

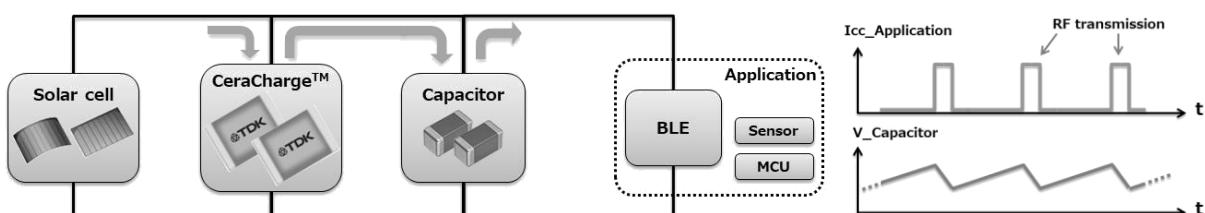


Figure 8

CeraCharge connection & operating image for intermittently operating RF devices

Energy calculation

If you want to know how long can your application drive with CeraCharge, you can calculate to convert power consumption of applications to capacitance of capacitors and capacity of batteries. (*This is an ideal value in a case if we can convert all energy of battery capacity to an electric energy with some voltage value.)

$$100\text{uAh} = 360000\text{uA*s} = 360000\text{uC} = 257142.86\text{uF*1.4V}$$

So, a 100 μ Ah of CeraCharge capacity is compatible to a 250mF of capacitance.

CeraCharge which has 100 μ Ah capacity in this 1812 case size contributes to miniaturization of beacon devices and environment sensing devices as a new power supply for IoT edge devices.

In addition, a transmitting power of RF devices can be calculated as follows for example. And the average power consumption should be calculated with this value and transmitting interval.

Energy consumption of an application

Voltage: 3.0V, Current: 10mA, Pulse width: 10ms (as 1 pulse for RF transmitting)

$$\text{Energy (uJ)} = 3.0\text{V} * 10\text{mA} * 10\text{ms} = 300\text{uJ}$$

Recommended circuit

For example, Energy harvesting RF sensor devices what has some intermittently driving system with CeraCharge and low impedance capacitors can be designed as Figure 9.

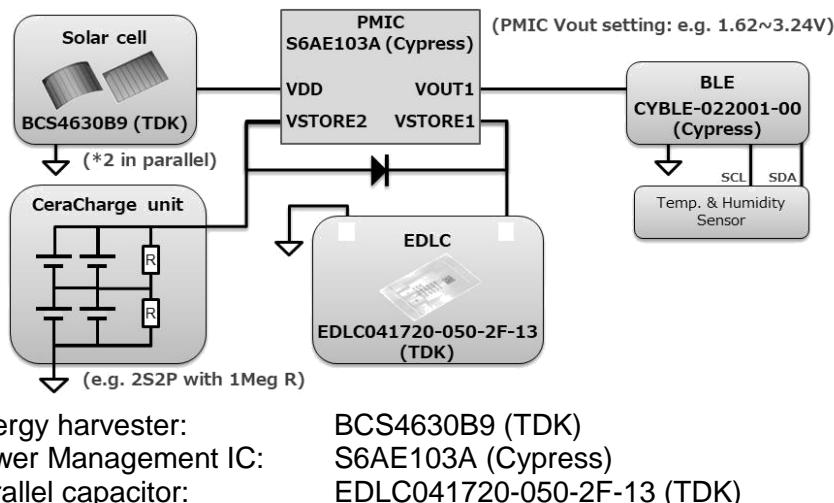


Figure 9
 Block diagram of Energy harvesting RF sensor devices with CeraCharge and capacitor

In this case, CeraCharge should be used as 2 in series for the operating voltage range (1.62~3.24V). The parallel number of CeraCharge and a capacitance of the EDLC will be defined with the energy harvester, BLE power consumption and environment (e.g. Duration of bright / dark for solar cells.).

CeraCharge™

Application notes

Voltage adjusting to system requirement

If you connect CeraCharge components in series, the output voltage becomes to (1.6V multiplied with series number) V, but to use CeraCharge capacity efficiently, the series number should be set with considering the operating voltage range of applications.

If the operating voltage range of an application is 2.7 to 3.6V, CeraCharge can be connected as 2 in series (Vucl: 3.2V) or 3 in series (Vucl: 4.8V). If you connect CeraCharge as 2 in series, the each CeraCharge components can be charged to 1.6V, and then it can discharge to 1.35V in each component. In this case, the application is operated in the range of 3.2 to 2.7V. If you connect CeraCharge as 3 in series, you can charge it to 3.6V (1.2V in each) and can discharge to 2.7V (0.9V in each). To make full use of the CeraCharge voltage range, you can charge to 4.8V (1.6V in each) with some regulating circuits to output 3.6V below for the voltage range of the application.

Capacity calculation for operating time of load

As we showed in the above section about RTC backup circuits, this voltage range also should be considered to calculate an operating time of applications.

The 100 μ Ah as nominal capacity of CeraCharge is a capacity in the measurement with 0.2C discharging rate to 0V condition. If the low limit voltage of the application is 1.4V, the actual discharging capacity value what can be used in this application is in the range from 1.6V to 1.4V.

It is recommended that charging and discharging voltage transition move in the "Efficient range" of each series number as follows.

Fig.11 is an example circuit of "3V output with back-boost DC/DC from 2 in series CeraCharge".

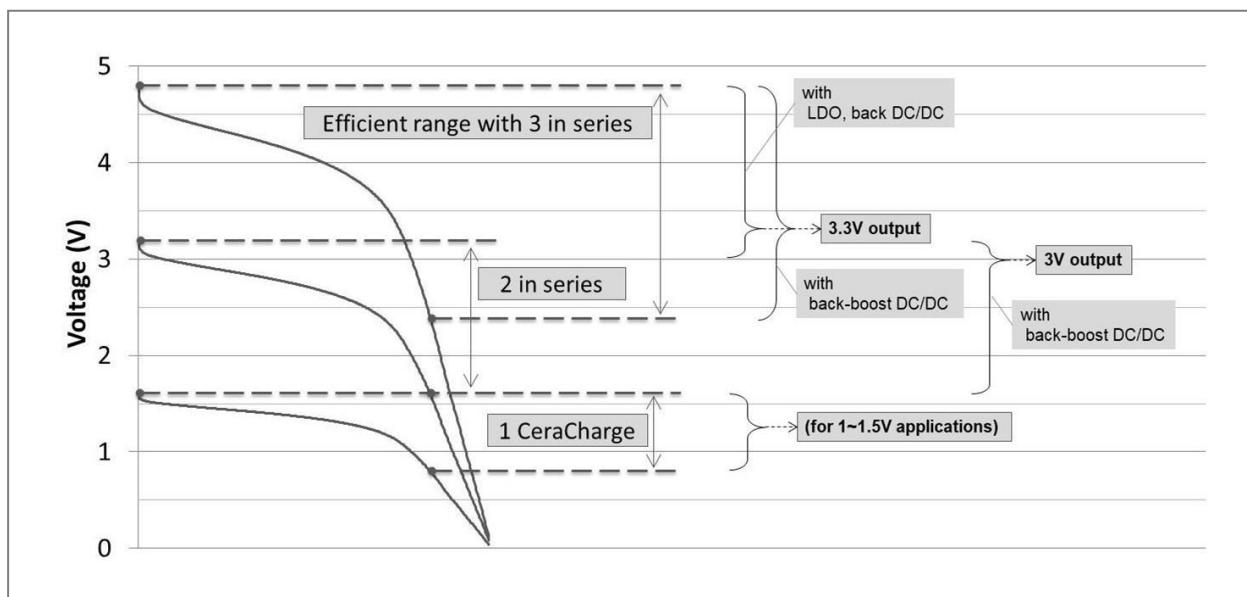


Figure 10
Efficient voltage range of CeraCharge and output example

CeraCharge™

Application notes

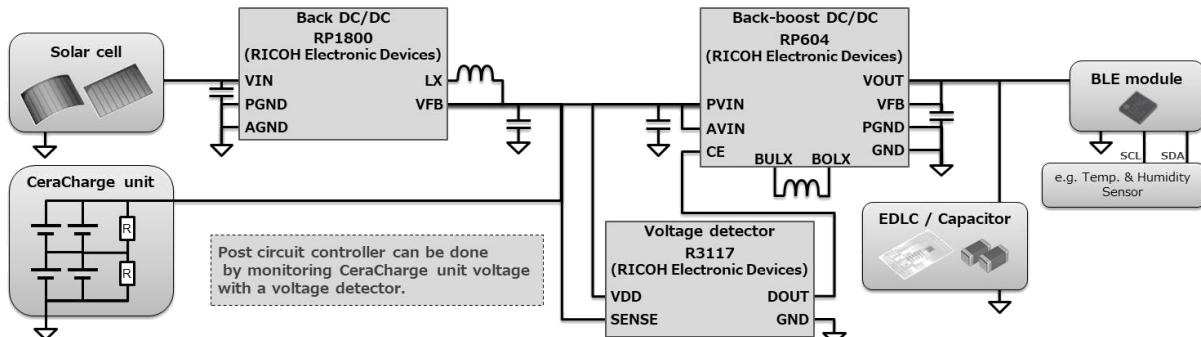


Figure 11
Block diagram of “3V output with back-boost DC/DC from 2 in series CeraCharge”

4. Charging source

1) From system power

In applications which has a power supply for normal operation like RTC-ICs, CeraCharge can be connected in parallel line with power supply and CeraCharge will start discharging to load when the power supply is shut off. It is necessary to consider the voltage range of the power supply and CeraCharge.

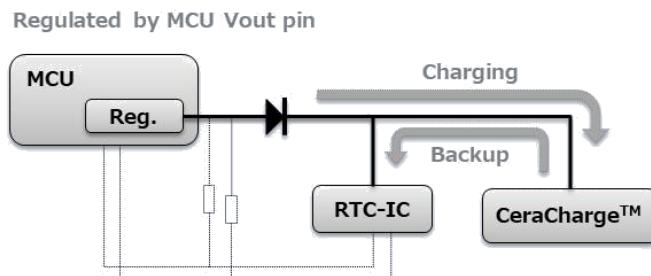


Figure 12
RTC backup circuit with parallel connecting on system power line

2) By energy harvesting

In a case to generate a power with solar cell or piezo or thermoelectric elements as energy harvesting devices in an environment where a generating power is not stable, it is recommended to stabilize the charging power with voltage regulators or Power management ICs.

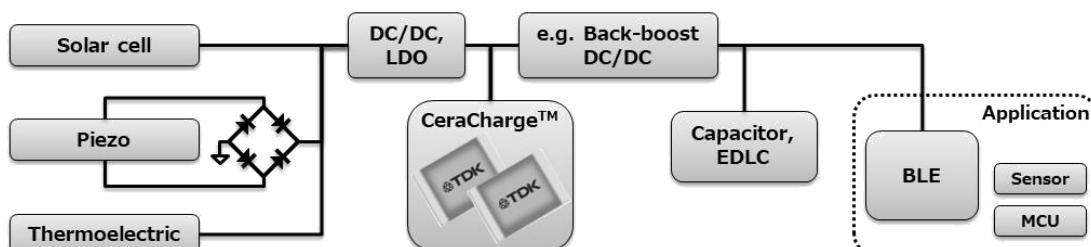


Figure 13
Energy harvesting RF device with PMIC (Power Management IC) control circuit

3) With others, e.g. from WPT ("Wireless Power transfer")

CeraCharge can be charged with a power from a wireless power supply coil like Qi, NFC... These power should be rectified to DC power by a rectifier circuit (e.g. with diodes and capacitors).

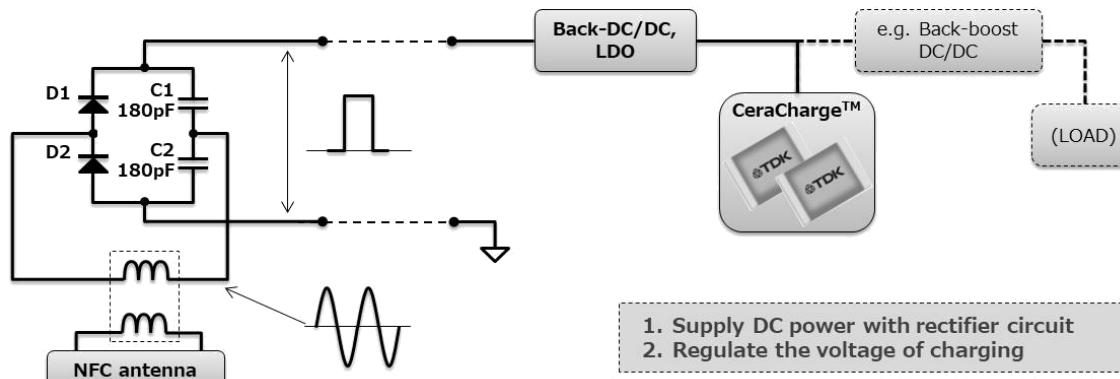


Figure 14

Rectifier circuit example for charging from NFC power

This listing does not claim to be complete, but merely reflects the experience of TDK Electronics AG.

Display of ordering codes for TDK Electronics products

The ordering code for one and the same product can be represented differently in data sheets, data books, other publications, on the company website, or in order-related documents such as shipping notes, order confirmations and product labels. **The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products.** Detailed information can be found on the Internet under www.tdk-electronics.tdk.com/orderingcodes.

Important notes

The following applies to all products named in this publication:

1. Some parts of this publication contain **statements about the suitability of our products for certain areas of application**. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that **such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application**. As a rule, we are either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether a product with the properties described in the product specification is suitable for use in a particular customer application.
2. We also point out that **in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified**. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
3. **The warnings, cautions and product-specific notes must be observed.**
4. In order to satisfy certain technical requirements, **some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous)**. Useful information on this will be found in our Material Data Sheets on the Internet (www.tdk-electronics.tdk.com/material). Should you have any more detailed questions, please contact our sales offices.
5. We constantly strive to improve our products. Consequently, **the products described in this publication may change from time to time**. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order.

We also **reserve the right to discontinue production and delivery of products**. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.

6. Unless otherwise agreed in individual contracts, **all orders are subject to our General Terms and Conditions of Supply**.
7. **Our manufacturing sites serving the automotive business apply the IATF 16949 standard**. The IATF certifications confirm our compliance with requirements regarding the quality management system in the automotive industry. Referring to customer requirements and customer specific requirements ("CSR") TDK always has and will continue to have the policy of respecting individual agreements. Even if IATF 16949 may appear to support the acceptance of unilateral requirements, we hereby like to emphasize that **only requirements mutually agreed upon can and will be implemented in our Quality Management System**. For clarification purposes we like to point out that obligations from IATF 16949 shall only become legally binding if individually agreed upon.

Important notes

8. The trade names EPCOS, CeraCharge, CeraDiode, CeraLink, CeraPad, CeraPlas, CSMP, CTVS, DeltaCap, DigiSiMic, ExoCore, FilterCap, FormFit, LeaXield, MiniBlue, MiniCell, MKD, MKK, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, PowerHap, PQSine, PQvar, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, ThermoFuse, WindCap are **trademarks registered or pending** in Europe and in other countries. Further information will be found on the Internet at www.tdk-electronics.tdk.com/trademarks.

Release 2018-10