RENESANS

Application Note

RA family

Capacitive Touch Software Filter Sample Program

Introduction

This application note describes software filters for capacitive touch systems.

Target Device
RA2L1 Group (R7FA2L1AB2DFP)

When applying the contents of this application note to other MCUs, please change them according to the

specifications of the MCUs and perform a thorough evaluation.

Contents

1. OVEIVIEW e
1.1 FOIAEr STIUCIUIE ...ooviiiiiiiiiieeeeeeeeeeeeee ettt ee e eeeeenennee
1.2 Operation Confirmation Conditions................cevviiiiiiiiiiiiiiiiiiiiieeeveeeeeeeeaeens
2. Software SpecifiCationsccoooiiiiiiiiiii
2.1 Software Configuration Diagram...........ccoeiiuuiiiiiiieieeieieeee e
2.2 File SITUCLUIES.ceeiiiiiieieeeeeeeeeeeee ettt aee s eneeseeeneeennennnes
2.3 Data List for Filter Configuration Definition..............ccooeiuviiiiiiiiiiiiiiee,
D Tt B 070 14 1= -1 o | £ PPN
2.3.2 GIobal Variables............couuiiiiiiiiiiiiiiiiiiiieiieieeeeeeeeeaeetaeee e
D T S (4§ (o1 11 YRR
2.4 SoOftware FIEr APloooiiiiiiiieeieeeeeeeeee ettt eeeeeeeereeneennees
2.5 Size and EXecution TiME.........cviiiiiiiiiiiiiiiiieiiiiieeieeieeieeeeeeeeeeeseeseeeeeeeeeennnes
3. FIR FIEIS e
3.1 SPeCIficationS........cccoiiiiiii
3.2 How to Use the Filter in This Sample Programcccccceviiiiiiiieneneeenn.
3.3 FIRFIEr AP ...t
3.4 Listof Datafor FIRFIltersccccoooiiiiiiii
341 Constantscoooeeiiiii
3.4.2 Global Variables...........cccccoiiiiiiiii
3.5 Filter Adjustment Procedure.............ccooii
3.5.1 Filter Processing Method..............ooooii
3.5.2 Filter CharacteristiCsccocoeiiiiiii
3.5.3 Coefficient Definition ...
3.5.4 FIR Filter Configuration Definition..............cccceiiiiiiiiiiie e,
4. Operation explanation of this sample projectcceeeeeeeeeee.

R30AN0427EJ0100 Rev.1.00
Jun.12.23 RENESAS

Page 1 of 32

RA family Capacitive Touch Software Filter Sample Program

e T ¥ [o2 T o SRR 20
I TS (0T (0 SRR 21
4.3 How to use This SamPIe PrOJECL.........coiiiiiiiiiee et e e e e e e beeeeeeeas 22
4.4 Procedure for Integration into an EXisting Projectc.uueiiiiiiiiiiiie e 23
4.5 Sample Application Configuration and OpPeration....................eeeeiir e 28
S TR T o] o Yo o SRR 31
REVISION HISTOIY ...ttt annnnnnnnnes 32
R30AN0427EJ0100 Rev.1.00 Page 2 of 32

Jun.12.23 RENESAS

RA family Capacitive Touch Software Filter Sample Program

1. Overview

This application note describes the operation of the software filter sample program and how to incorporate it
into an existing project.

For more information on software filters, refer to the Capacitive Sensor MCU Capacitive Touch Noise
Immunity Guide (R30AN0426).

Capacitive Sensor MCU Capacitive Touch Noise Immunity Guide (R30AN0426)

https://www.renesas.com/node/25428131

1.1 Folder Structure
The following shows the folder structure of this sample program.

This sample program consists of a storage folder (Touch_filter_sample_source) for the Capacitive Touch
Software Filter Sample Program and a sample project (ra2l1_rssk_filter_sample) to which the Software Filter
Sample Program is applied to RA2L1 Capacitive Touch Evaluation System Example Project (R20AN0595.

The RA2L1 Capacitive Touch Evaluation System Example Project is referred to as Example Project in the
following.

an-r01an0427ej0100-capacitive-touch

|— Touch_filter_sample _source « + - Filter sample storage folder

| L—touch_filter_fir - + « FIR Filter Sample Storage Folder
| L filter_sample - + « FIR filter sample program
L—ra2l1_rssk_filter_sample - + « Sample project

(RA2L1 Capacitive Touch Evaluation System)

R30AN0427EJ0100 Rev.1.00 Page 3 of 32
Jun.12.23 RENESAS

https://www.renesas.com/node/25428131

RA family

Capacitive Touch Software Filter Sample Program

1.2 Operation Confirmation Conditions
Table 1.1 shows the operation confirmation conditions of the sample program in this application note.

Table 1.1 Operation Confirmation Conditions

Item

Description

Microcontroller used

RA2L1 (R7FA2L1AB2DFP)

Operating frequency

High-speed on-chip oscillator 48MHz

Operating voltage

5V

Board Capacitive Touch Evaluation System with RA2L1
(Model: RTKOEG0022S01001BJ)
¢ RA2L1 CPU (Model: RTKOEG0018C01001BJ)
¢ Self-Capacitance Touch Button/Wheel/Slider Board
(Model: RTKOEG0019B01002BJ)
Integrated development environment e? studio Version 2023-01 (23.1.0)
C compiler GCC Arm Embedded 10.3-2021.10
FSP V4.3.0
Development Assistance Tool for Capacitive QE for Capacitive Touch V3.2.0
Touch Sensors

Emulator

Renesas E2 emulator Lite

Figure 1.1 shows the device connection diagram.

Power supply
H : USB

Y 'ﬁﬁﬁ\ﬂ\\ﬂ\b =\ (2

Debug IF

e? studio

(QE for Capacitive Touch) RTKOEG0018C01001BJ]

RTKOEG0019B01002BJ

Figure 1.1 Device Connection Diagram

R30AN0427EJ0100 Rev.1.00
Jun.12.23

Re Page 4 of 32
RENESAS

RA family Capacitive Touch Software Filter Sample Program

2. Software Specifications

This sample program operates as a software filter by applying a filter API to the data acquired by Touch API
and CTSU API. You manage the software filters you use in the filter configuration definition. Although the
filter configuration defined in this sample program is only filter A (FIR filter), several software filters can also
be applied. When multiple software filters are used, the application order is the order in which the filter
configuration definitions are defined.

In the future, plan to release multiple software filters, and plan to update them one by one.

2.1 Software Configuration Diagram
Figure 2.1 shows the configuration of this sample program.

Application
2 /g\ o
g S z
Lo) =
4 2
5 : g /" Filter
3 E g Configuration
@
2 Filter API
TOUCH API e - Number of
filters
© &
& e)
° . Filter A
\g/ (Filter A)< configuration
CTSU API C EmerB k . Fitr
;& Filter B "34 i configuration :
g, ST
;‘~ Filter N '34 : configuration |
_ J

Figure 2.1 Configuration of Sample Program

Figure 2.2 shows the flow of data processing for this sample program.

CTSU Driver (r_ctsu)] { Filter API] { Touch Middle (rm_touch)
Data Moving
. Filter | | Filter | | Filter Compare Chattering ' Touch
RAW Data Corrf1ct|on Avt-irzage J L A B N J L Threshold Remove Detection
*1: CCO correction, and N : Natural Number

Multi frequency measurement related
processing (CTSU2 only)

*2 : Set the average length to ‘1’ if user filter is applied

Figure 2.2 Data Processing Flow of Sample Program

R30AN0427EJ0100 Rev.1.00 Page 5 of 32
Jun.12.23 RENESAS

RA family

Capacitive Touch Software Filter Sample Program

Table 2.1 lists the components and versions. Refer to FSP Configuration for component settings.

Table 2.1 List of Components

Component Version
Board Support Packages Common Files v4.3.0
I/O Port v4.3.0
Arm CMSIS Version 5 — Core(M) v5.9.0+renesas.0.fsp.4.3.0
RA2L1-RSSK Board Support Files v4.3.0
Board support package for R7TFA2L1AB2DFP v4.3.0
Board support package for RA2L1 v4.3.0
Board support package for RA2L1 — FSP Data v4.3.0
Asynchronous General Purpose Timer v4.3.0
Capacitive Touch Sensing Unit v4.3.0
SCI UART v4.3.0
Touch v4.3.0

2.2 File Structures

Table 2.2 to Table 2.4 show the filter_sample file structure.

Table 2.2 Configuration of Filter API Files

File name

Description

r_ctsu_filter_sample.c

Filtering APl Sample Program

r_ctsu_filter_sample.h

Table 2.3 Filter Configuration Definition File Configuration

File name

Description

filter_config_sample.c

Filter configuration definition sample

filter_config_sample.h

fir_config_sample1.c

Sample Presets for FIR Filters

fir_config_sample2.c

fir_config_sample3.c

fir_config_sample4.c

Table 2.4 FIR Filter File Configuration

File name

Description

r_ctsu_fir_sample.c

FIR filter sample program

r_ctsu_fir_sample.h

R30AN0427EJ0100 Rev.1.00
Jun.12.23

RENESAS

Page 6 of 32

RA family

Capacitive Touch Software Filter Sample Program

2.3 Data List for Filter Configuration Definition

This section describes the constants, global variables, and structures that are provided in the software filter
sample program for defining the filter configuration.

2.3.1 Constants
Table 2.5 lists the constants.

Table 2.5 Constants for Filter Configuration Definition

Data

Value

Description

CTSU_FILTER_NUM

1

Number of series connections
of filters used

FILTER_ELEMENT_SIZE

CTSU_CFG_NUM_SELF_ELEMENTS +
(CTSU_CFG_NUM_MUTUAL_ELEMENTS
x 2)

Number of CTSU driver
measurement results
(Calculated from the touch
interface configuration
definition.)

FILTER_SIZE

CTSU_FILTER_NUM x
FILTER_ELEMENT_SIZE

Number for filter management
data

2.3.2 Global Variables

Table 2.6 lists the global variables.

Table 2.6 Global Variables for Filter Configuration Definitions

is defined.)

Data Data type Description
g_ctsu_filter_element_index uint16_t Index for assigning management data
g_ctsu_fir_ctrl[] fir_ctrl_t Management data for FIR filters

(The data size of the total number of filters to
be used x the number of measurement results

g_filter_buffer

uint16_t Data buffer for reading measurement result
data from R_CTSU_DataGet API and passing
it to the r_ctsu_filter_exec API

R30AN0427EJ0100 Rev.1.00

Jun.12.23

RENESAS

Page 7 of 32

RA family Capacitive Touch Software Filter Sample Program

2.3.3 Structures

Table 2.7 to Table 2.11 show the number of filters and the types of filters defined in the

filter_config_sample.c.

Table 2.7 Filter Configuration Definition

Definition content Data type Remarks

Definition for filter ctsu_filter_instance_t Prepare for each method of touch interface
management configuration.

Filter management data | filter_ctrl_t

Filter configuration filter_config_t To change the filter contents to be used for each
definition method in the Touch Interface configuration,
Filter content definition | filter_element_config_t prepare a definition for each filter content.

Table 2.8 Structures for Defining Filter Management

Member Data type Description

p_ctrl filter_ctrl_t * Filter management data pointer

p_cfg filter_config_t const * Filter configuration definition
pointer

p_pia filter_api_t const * Filtering API pointer

Table 2.9 Structures for Filter Management Data

Member Data type Description

element_num uint16_t Number of measurement results

p_cfg filter_config_t const * Filter configuration definition
pointer

p_fir_ctrl fir_ctrl_t* FIR filter configuration definition

pointer

Table 2.10 Structures for Defining Filter Configuration

Member Data type Description

filter_num uint8_t Number of connected filters in
series

p_filter_cfg filter_element_config_t Filter content definition pointer

Table 2.11 Structures for Defining Filter Contents

Member Data type Description

type filter_type_t Filter type

fir_cfg fir_config_t const * FIR filter configuration definition
pointer

R30AN0427EJ0100 Rev.1.00
Jun.12.23 RENESAS

Page 8 of 32

RA family Capacitive Touch Software Filter Sample Program

The following shows a sample description of a filter configuration definition.

® Description example of filter content definition (filter_element_config_t)
const filter element config t g ctsu filter element config[] =

{
{ : : ; :
.type = FILTER TYPE FIR Define the filter types you want to use in the order in
fir cfg = &fir cfg0l ’ which you want them to apply.

by
}

® Description example of filter configuration definition (filter_config_t)
Define the number of filters and filter type for each filter pattern to be applied.

const filter config t g ctsu filter config =
{
.filter num = CTSU FILTER NUM,
.p_filter cfg= g ctsu filter element config,

}i

® Description example of filter management definition (ctsu_filter_instance_t)

filter ctrl t g ctsu filter controlOl;
const ctsu filter instance t g ctsu filter instanceOl =

{

.p_ctrl= &g ctsu filter controlOl, Define the management data and filter
.p cfg = &g ctsu filter config, configuration to be used for each method
.p_api = &g _filter on ctsu, in the Touch Interface configuration.
}i
R30AN0427EJ0100 Rev.1.00 Page 9 of 32

Jun.12.23 RENESAS

RA family

Capacitive Touch Software Filter Sample Program

2.4 Software Filter API

Table 2.12 and Table 2.13 show the software filter APl implemented in this sample program. The software
filter APl executes the software filter specified in the file configuration definition.

Table 2.12 Filter Initialization API

API r_ctsu_filter_open(filter_ctrl_t * const p_ctrl, filter_config_t const * const p_cfg, ctsu_cfg_t
const * const p_ctsu_cfg)

Argument | filter_ctrl_t * const p_ctrl Filter management data pointer
filter_config_t const * const p_cfg Filter configuration definition pointer
ctsu_cfg_t const * const p_ctsu_cfg CTSU configuration-definition pointers

Description | Assigns management data for the specified filter configuration definition and initializes the

assigned management data.

When using multiple touch interface configurations, it is necessary to prepare the same
number of filter management data and configuration definitions and call this API.

(When executing the FIR filter initialization API (r_ctsu_fir_open) from this API during
mutual-capacitance measurement, the structure is such that the filter is initialized "number of
transmission terminals x number of reception terminals x 2" times.)

Table 2.13 Filter Execution API

API r_ctsu_filter_exec(filter_ctrl_t * const p_ctrl, uint16_t *p_data)

Argument | filter_ctrl_t * const p_ctrl Filter management data pointer
uint16_t *p_data Measurement result data pointer

Description | Applies the filter defined in the filter configuration to the measurement result data.
Since the result of applying the filter overwrites the contents of the measurement result data
pointer, if the measurement result data before applying the filter is used for other purposes, it
must be saved before executing this API.

R30AN0427EJ0100 Rev.1.00 Page 10 of 32

Jun.12.23

RENESAS

RA family

Capacitive Touch Software Filter Sample Program

2.5 Size and Execution Time

Table 2.14 and Table 2.15 show the data sizes and execution times of filtering for one touch interface
configuration (Button x 3, Slider x 1, Wheel x 1, and without shielded terminals) on a RA2L1 mounted

capacitive touch evaluation system.

Table 2.14 Filter Processing Data Size and Increments

Conditions Size [Bytes]

text data bss
Before adding filters 14728 16 2424
Filter management +240 +0 +16
FIR filters (Direct Type) (Note) +556 +0 +368
FIR filters (Transpose type) (Note) +548 +0 +584

Note: It varies depending on the filter order of FIR filter.

The values shown are when the maximum order is defined.

Table 2.15 Filter Processing Execution Time

Conditions Execution time (1ch)
FIR filters (Direct type) 13.206us
FIR filters (Transpose Type) 6.692us

Note: The execution time is shown in the case of the self-capacitance method. In the case of the mutual-
capacitance method, the execution time is approximately doubled because of two measurements.

R30AN0427EJ0100 Rev.1.00
Jun.12.23

RENESAS

Page 11 of 32

RA family Capacitive Touch Software Filter Sample Program

3. FIRfilters

FIR (Finite Impulse Response) filters are regularly used to reduce random and periodic noise.

For more information, refer to “Capacitive Sensor MCU Capacitive Touch Noise Immunity Guide
(R30AN0426).

3.1 Specifications
The calculation formulas for FIR filters are shown below.

r-1
OEDRIOERICEN)
i=0

nindicates the sample index, h (i) indicates the coefficient, x(n — i) indicates the input data of the i sample
delay, and y(n) indicates the output data.

Table 3.1 shows the specifications of FIR filters of this sample program.

Table 3.1 FIR Filters Specifications

Item Specifications Remarks
Input data type Unsigned 16bit Integer Type
Output Data Type Unsigned 16bit Integer Type
Coefficient data type Signed 15bit fixed point Internal operations are signed 32bit
(Integer part 16bit, decimal part 14bit)
Maximum coefficient 8 The number of taps is indicated by
"order + 1"
Filter processing method e Direct type Can be switched by conditional
e Transpose type compilation (Refer to chapter 3.5.1)
Output results up to filter Output Zero Filter stabilization time is number of
stabilization time taps (order + 1) x number of samples

Note: Coefficient: A set of constants to be applied to the constant multipliers that make up FIR filters.
Order: Number of elements in the coefficient.
Number of taps: Number of orders including zero order. (Indicates the order + 1 value)

3.2 How to Use the Filter in This Sample Program

This sample program allows you to specify filtering methods and filter characteristics by conditional
compilation.

Table 3.2 shows how to specify FIR filtering.

Direct type processing uses a smaller data size, and transpose type processing requires a shorter
processing time.

For details on the data size and processing time, see Table 2.14 and Table 2.15.

Table 3.2 Sample FIR filtering specification

File Definition name Description

r_ctsu_fir_sample.h FIR_FILTER_TYPE | Filter processing method
FIR_FILTER_TYPE_DIRECT = Direct type
FIR_FILTER_TYPE_TRANSPOSE = Transpose Type

R30AN0427EJ0100 Rev.1.00 Page 12 of 32
Jun.12.23 RENESAS

RA family

Capacitive Touch Software Filter Sample Program

3.3 FIRFilter API
Table 3.3 to Table 3.6 show FIR filter APl implemented by this sample program.

Table 3.3 FIR Filter Initialization API

API r_ctsu_fir_open

Argument fir_ctrl_t * const p_ctrl FIR filter management data pointer
fir_config_t const * const p_cfg FIR filter configuration definition pointer

Description Buffer assignment for one measurement result is performed.

Buffer allocation is performed in units of maximum order (8) + 1 regardless of the order of
the configuration definition.

When using this API for mutual-capacitance measurement, perform this API twice as there
are two measurements per measurement.

Table 3.4 FIR Filter API

API r_ctsu_fir_filter
Argument fir_ctrl_t * const p_ctrl FIR filter management data pointer
uint16_t *p_data Measurement result data pointer
Description Perform FIR filter operation.
The process to be performed depends on the conditional compilation FIR_FILTER_TYPE.

Table 3.5 Direct Type FIR Filter API

API r_ctsu_fir_direct_filter
Argument fir_ctrl_t * const p_ctrl FIR filter management data pointer
uint16_t *p_data Measurement result data pointer
X If the status is excessive (before inputting the order
number), O is returned.
Description Perform direct type FIR filter operation.

Before inputting the data for the order, the filter operation result is attenuated with respect
to the input. Therefore, the result is returned as 0 to prevent drift correction from
malfunctioning.

[Note] Calculations are performed using 16-bit unsigned integers for measurement values
and 15-bit signed fixed-point numbers for coefficients.

Table 3.6 Transpose Type FIR Filter API

API r_ctsu_fir_transpose _filter
Argument fir_ctrl_t * const p_ctrl FIR filter management data pointers
uint16_t *p_data Measurement result data pointer
X If the status is excessive (before inputting the order
number), O is returned.
Description Perform transpose type FIR filter operation.
Before inputting the data for the order, the filter operation result is attenuated with respect
to the input. Therefore, the result is returned as 0 to prevent drift correction from
malfunctioning.
[Note] Calculations are performed using 16-bit unsigned integers for measurement values
and 15-bit signed fixed-point numbers for coefficients.
R30AN0427EJ0100 Rev.1.00 Page 13 of 32

Jun.12.23

RENESAS

RA family Capacitive Touch Software Filter Sample Program

Figure 3.1 shows FIR filter process.

Direct type FIR filter
r_ctsu_fir_direct_fileter

v

Fill the buffer

Until the buffer for order is filled,

Buffer filled no—- The output result is lower than the input value
\ and drift correction malfunctions,
(Respond with 0) so 0 response is treated as no data.

yes

FIR filter calculation

(Res pond with filter results)

Transpose type FIR filter
r_ctsu_fir_transpose_filter

FIR filter calculation

Until the calculation for order is completed,

no The output result is lower than the input value
and drift correction malfunctions,

so 0 response is treated as no data.

Calculated
for filter order

yes

v
(Respond with filter results) (Respond with 0)

Figure 3.1 Flowchart of FIR Filter Process

R30AN0427EJ0100 Rev.1.00 Page 14 of 32
Jun.12.23 RENESAS

RA family

Capacitive Touch Software Filter Sample Program

3.4 List of Data for FIR Filters
This section explains the constants and global variables provided for FIR filter.

3.4.1 Constants
Table 3.7 lists the constants.

Table 3.7 Constants for FIR Filter

Data Value Description
TAP_SIZE_MAX 9 Maximum number of taps
FIR_CFG_DECIMAL_POINT | 14 Fixed-point number of digits
FIR_FILTER_SIZE FIR_FILTER_NUM x Buffer size for FIR filters
FILTER_ELEMENT_SIZE (Calculated from the number of taps and
the number of measurement results.)
MAX_COEFFICIENT_SUM | 0x8000 Maximum value of the coefficient sum
MAX_COEFFICIENT_PLUS | Ox3FFF Maximum value of the coefficient value
MIN_COEFFICIENT_MINUS | 0xC000 Minimum value of the coefficient value

3.4.2 Global Variables

Table 3.8 lists the global variables.

Table 3.8 Global Variables for FIR Filters

Data Data type Description
g_ctsu_fir_element_index uint16_t Buffer allocation management index
g_ctsu_fir_buffer]] uint16_t FIR filter buffers
16bit length for direct type, 32bit length for transpose
type
uint32_t

Buffer size is number of pins (number of self-
capacitance electrodes + number of mutual-capacitance
electrodes x 2) x maximum number of taps (9)

%¢Number of mutual-capacitance electrodes: Number of
transmitting electrodes x Number of receiving electrodes

R30AN0427EJ0100 Rev.1.00
Jun.12.23

Page 15 of 32

RENESAS

RA family Capacitive Touch Software Filter Sample Program

3.5 Filter Adjustment Procedure
You can change the coefficient definition of FIR filters and adjust the filter properties.

3.5.1 Filter Processing Method

Conditional compilation allows you to specify how FIR filters are handled. Direct type processing uses a
smaller data size, and transpose type processing requires a shorter processing execution time.

See Table 3.2 for how to set up conditional compilation.

For details on the data size and execution processing time, see Table 2.14 and Table 2.15.

Figure 3.2 shows a block diagram of FIR filter.

/Direct Type \
16bit
Input Input data Input data Input data
(measured value) 1 time before 2 times before M times before
a Coefficient 1 a Coefficient 2 @ Coefficient 3 5 Coefficient M-1 5 Coefficient M
31bit 31bit 31bit 31ht 31bit 16bit
Output

(Filtered result)

\ 1/14b|t /
16bit
Input -
(measured value)
\ 4
15
Coefficient M Coefficient M-1 Coefficient M-2 Coefficient 2 o Coefficient 1
31bit 31hit 31bit 31hit 31bit 16bit
_’ Output data ‘$ Output data é o é) Output data Output
Mtimebefore | ° M-1 time before 1 time before (Filtered result)
\ 1/14bit /
Figure 3.2 Block Diagram of FIR Filter
R30AN0427EJ0100 Rev.1.00 Page 16 of 32

Jun.12.23 RENESAS

RA family

3.5.2 Filter Characteristics
This sample program can handle filters of up to eight orders.

Capacitive Touch Software Filter Sample Program

Table 3.9 defines the characteristics of sample FIR filters. The filter characteristics can be changed by
specifying the coefficient and filter configuration definitions shown in Table 3.10.

Table 3.9 Sample FIR Filters Specification

File
filter_config_sample.h

Description
Sample preset specification for use with FIR filter

Definition name
FIR_PRESET _TYPE

Table 3.10 Sample FIR Filters Coefficient Definition

FIR_PRESET_TYPE
1

FIR_PRESET_TYPE
2

FIR_PRESET_TYPE
3

FIR_PRESET_TYPE
4

I_=IR moving-average fil;er I_=IR low-pass filter
Order 2 5 3 8
Coefficie | 0.33331298828125 0.1666259765625 0.1636962890625 -0.00604248046875

nt 0.33331298828125 0.1666259765625 0.3363037109375 -0.01336669921875
0.33331298828125 0.1666259765625 0.3363037109375 0.05047607421875
0.1666259765625 0.1636962890625 0.26800537109375

0.1666259765625 0.40185546875000

0.1666259765625 0.26800537109375

0.05047607421875
-0.01336669921875
-0.00604248046875

FIR_PRESET_TYPE_1 FIR_PRESET_TYPE_3

Normalized Frequency

FIR_PRESET_TYPE_2 FIR_PRESET_TYPE_4

d Frequency

Figure 3.3 Sample Preset Filters Characteristics

R30AN0427EJ0100 Rev.1.00
Jun.12.23

ReNES Page 17 of 32
| | IS

RA family

Capacitive Touch Software Filter Sample Program

3.5.3 Coefficient Definition
The coefficients of FIR filter configuration are defined in the form of signed fixed decimal with no integral part
and the lower 14bit as the decimal part and are treated as the coefficient value/16384.

The coefficient of the sample program should be designed with a value range of -1.0 to 1.0, and the value
obtained by multiplying the fractional coefficient by 16384(0x4000) should be set as the coefficient definition.
Small numbers less than 1LSB cannot be expressed, so operation errors occur.

Table 3.11 shows examples of decimal, hexadecimal, and decimal correspondence.

Table 3.11 Fixed Point Definition Example

Fractional number

Hex

Decimal

-0.00604248046875

-0.00604248046875 x0x4000 = FF9D

-0.00604248046875 x16384 = -99

-0.01336669921875

-0.01336669921875 x0x4000 = FF25

-0.01336669921875 x16384 = -219

0.05047607421875

0.05047607421875 x0x4000 = 033B

0.05047607421875 x16384 = 827

0.26800537109375

0.26800537109375 x0x4000 = 1127

0.26800537109375 x16384 = 4391

0.40185546875000

0.40185546875000 x0x4000 = 19B8

0.40185546875000 x16384 = 6584

0.26800537109375

0.26800537109375 x0x4000 = 1127

0.26800537109375 x16384 = 4391

0.05047607421875

0.05047607421875 x0x4000 = 033B

0.05047607421875 x16384 = 827

-0.01336669921875

-0.01336669921875 x0x4000 = FF25

-0.01336669921875 x16384 = -219

-0.00604248046875

-0.00604248046875 x0x4000 = FF9D

-0.00604248046875 x16384 = -99

R30AN0427EJ0100 Rev.1.00

Jun.12.23

RENESAS

Page 18 of 32

RA family Capacitive Touch Software Filter Sample Program

3.5.4 FIR Filter Configuration Definition
Define the number of taps / coefficients for FIR filters in the fir_config_t type data table.

The number of taps specifies the order of the FIR filter + 1, and the coefficient table describes the coefficient
values of the FIR filter in 15-bit signed fixed point in order from the Oth order.

The number of taps is 1 to 9, and the coefficient table can only be defined within the range of -2.0 to 2.0 for
the sum of the coefficient definitions.

Note: Define the coefficient table so that the sum of the coefficient definitions approaches 1.0.

If the sum of the coefficient tables exceeds 1.0, the measurement result is amplified. If it is less than
1.0, the measurement result is attenuated.

const fir config t fir cfg04 =
{ Specifies filter order + 1 as the number of FIR
.taps = 9, \\ filter taps.
.p_coefficient =
{

-99,
-219,

827, Defines the coefficient for the number of }

4391, taps in FIR filters.
6584,

4391,
827,
-219,
-99,
by
}i

R30AN0427EJ0100 Rev.1.00 Page 19 of 32
Jun.12.23 RENESAS

RA family Capacitive Touch Software Filter Sample Program

4. Operation explanation of this sample project

This section explains the operation of the sample project (ra2l1_rssk_filter_sample) that applies the software
filter sample program to RA2L1 Capacitive Touch Evaluation System Example Project.

4.1 Function
The functions are shown below.

® Applies a software filter to the measurement results of all touch electrodes on the self-capacitance
electrode board.

® When the touch electrodes of the self-capacitance electrode board are touched, the corresponding
LED lights.

® You can use the serial monitoring function of QE for Capacitive Touch to check the measurement
with the software filter applied.

R30AN0427EJ0100 Rev.1.00 Page 20 of 32
Jun.12.23 RENESAS

RA family Capacitive Touch Software Filter Sample Program

4.2 File Structure
This section explains the file structure of the sample project.

The project configuration file and FSP Configuration generation file of the development environment are
omitted.

Differences from Example Project are shown in bold. For more information on unchanged files, refer to
“RA2L1 Group Capacitive Touch Evaluation System Example Project” (R20AN0595).

ra2l1_rssk_filter_sample

FQE-Touch

| F ge_tuning20230221103059.log + + + QE Tuning Log

| L quickstart_rssk_ra2l1_ep.tifcfg + + + Touch Interface Configuration File
|

—qe_gen

| | ge_touch_config.c - -+ - Source for Touch Configuration

| | ge_touch_config.h -+ + Header for Touch Configuration

| | ge_touch_define.h -+ + Header for Touch Definition

| L qe_touch_sample.c + + « Touch Sample Application

|

| F hal_entry.c -+ - main Files

| |- r_rssk_switch led.c -+ + Source for Switch and LED processing

| | r_rssk_switch_led.h -+ « Header for Switch and LED processing

| |— r_rssk_touch_led.c - + + Source for Touch electrode LED processing
| Lr rssk_touch_led.h + + + Header for Touch electrode LED processing
|

L—filter_sample

|-fi|ter_config_samp|e.c + + + Source for Filter Configuration Definition

|-fi|ter_config_samp|e.h + + +« Header for Filter Configuration Definition

|-fir_config_samp|e1.c + + « Source for FIR Filter Sample Preset 1

|- fir_config_sample2.c + + + Source for FIR Filter Sample Preset 2

|-fir_config_sample3.c + + « Source for FIR Filter Sample Preset 3

|- fir_config_sampled.c + + « Source for FIR Filter Sample Preset 4

|- r_ctsu_filter_sample.c + + + Source for Filter processing

|- r_ctsu_filter_sample.h + + + Header for Filter processing

|- r_ctsu_fir_sample.c + + + Source for FIR filter processing

L r_ctsu_fir_sample.h + + +« Header for FIR Filter processing
R30AN0427EJ0100 Rev.1.00 Page 21 of 32

Jun.12.23 RENESAS

RA family Capacitive Touch Software Filter Sample Program

4.3 How to use This Sample Project

Import the "ra2l1_rssk_filter_sample" folder attached to this sample code into your workspace using the
e2studio import function.

Figure 4.1 shows how to import a sample project.

For operations after import, refer to “RA2L1 Group Capacitive Touch Evaluation System Quick Start Guide
(Q12QS0040).

Q ort O
Select \
Rename and Import and Existing C/C++ Project into the workspace E A E |

Select an import wizard:

| type filter text |

=% Existing Projects into Workspace ~
(=} File System
[T] Preferences
(e
Rename & Import Existing C/C++ Project into Workspace
A — L S
T Renesas CS+ Project for CATEKOR/CAT| O
& Renesas (S+ Project for CC-RX and CC
a# Renesas GitHub FreeRTOS (with |oT lib| Rer & Import Project o
" Sample Projects on Renesas Website P hame must be specified f r
= CC++ < |
= Code Generator
= Install B rame: |
& Oomph = default location
= Bun/Dehun
C¥lsers¥rikuno¥e2_studic¥workspace_fir_sample Browse..
Create Directory for Project
default
| @ < Back Next >
| Q/ o = (®) Select root directory: ~ Browse...
- o () Select archive file: Browse...
Projects:
Options
[] Keep build configuration output folders
@' < Back MNext > Finish Cancel

Figure 4.1 Importing the Sample Project

R30AN0427EJ0100 Rev.1.00 Page 22 of 32

Jun.12.23 RENESAS

RA family

Capacitive Touch Software Filter Sample Program

4.4 Procedure for Integration into an Existing Project

To incorporate FIR filters into an existing-capacitive touch application, proceed as follows:

1. Copy the filter_sample folder in Touch_filter_sample_source/touch_filter_fir folder to the target project.

2. Open "C/C++Project Settings" in the menu project and add the filter_sample folder to "Paths and Symbol
Include and Source Locations" in C/C++ General.

| I:-_.-pe filter text
» Resource
Builders
v C/C++ Build
Build Variables
| Environment
Logging
| Settings
Tool Chain Editor
| v C/C++ General
Code Analysis

Configuration:

Paths and Symbols

Debug [Active]

Symbols B Libraries (™ Library Paths (2 Source Location

~ | | Manage Configurations...

Languages
Assembly
GNUC

Include directories

Iy ${ProjName}/src
12 /${ProjName}/ra/fsp/inc

DDSC Builder
Documentation
File Types
Formatter
Indexer
Language Mappings
MISRA-C In-editor Check
Preprocessor Include Pat

Project Natures

Project References

Renesas QF

Run/Debug Settings

Task Tags

» Validation

(£ /3 {ProjName)/ra/fsp/inc/api
@B{PrﬂjNa me}/ra/fsp/inc/instances
©y ${ProjName}/ra/arm/CMSIS_5/CMSIS/Core/Include
=8t ProjName}/ra_gen

©y ${ProjName}/ra_cfg/fsp_cfg/bsp
£ /${ProjName}/ra_cfg/fsp_cfg

I '\ i5iDaaibl 3 g
r (= /${ProjName}/filter_sample

Source folders on build path:

(2 Includes # Symbols =4 Libraries (B Library Paths [E‘ Source Locatio

ences

Add Folder...

(= [ra2l1_fir_sample/filter_sample I

< = /ra2li_nir_sample/qe_gen
(= /ra2l1_fir_sample/ra
= fra2l1_fir_sample/ra_gen
(&= /ra2l1_fir_sample/src

Link Folder...

Edit Filter..

Delete

Figure 4.2 Embedding a Sample Program in an Existing Environment

R30AN0427EJ0100 Rev.1.00
Jun.12.23

RENESAS

Page 23 of 32

RA family Capacitive Touch Software Filter Sample Program

3. Add filter configuration definitions to match the number of methods in the touch interface configuration of
the embedded environment.
Check the ge_touch_config.c file, and add the data definition of the ctsu_filter_instance_t type and the
data of the filter_ctrl_t type of the filter_config_sample.c file so that the number is equal to the data
definition of the touch_instance _t type.

® e _touch_config.c

touch instance ctrl t g ge touch ctrl config0l; -\
const touch instance t g ge touch instance configOl

(Omitted)
touch instance ctrl t g ge touch ctrl config02;
const touch instance t g ge touch instance config02 =

(Omitted)

touch instance ctrl t g ge touch ctrl config03;
const touch instance t g ge touch instance config03

I
-

Match the number of
® Filter_config_sample.c configurations definitions

filter ctrl t g ctsu filter controlOl; ~\
const ctsu filter instance t g ctsu filter instanceOl =
{
.p_ctrl= &g ctsu filter controlOl,
.p_cfg = &g _ctsu filter config,
.p_api = &g _filter on ctsu,
b

filter ctrl t g ctsu filter control02;
const ctsu filter instance t g ctsu filter instance02 =
{

.p_ctrl= &g ctsu filter controlO2,

.p_cfg &g _ctsu filter config,

.p_api = &g _filter on ctsu,

b

filter ctrl t g ctsu filter control03;
const ctsu filter instance t g ctsu filter instance03 =
{
.p_ctrl= &g ctsu filter controlO3,
.p_cfg &g _ctsu filter config,
.p_api &g_filter on ctsu, -/

R30AN0427EJ0100 Rev.1.00 Page 24 of 32
Jun.12.23 RENESAS

RA family

Capacitive Touch Software Filter Sample Program

4. Modify the filter configuration definition in filter_config_sample.c according to your environment and
specify the filter to be applied. (See chapter 2.3.3.)
For FIR filter, you can specify filter characteristics from a 4-pattern sample preset in the conditional

compilation FIR_PRESET_TYPE.

® r_ctsu fir sample.h

#define FIR FILTER ENABLE

(1)

#define FIR FILTER TYPE DIRECT (0)
#define FIR FILTER TYPE TRANSPOSE (1)
#define FIR FILTER TYPEFIR FILTER TYPE DIRECT

#if (FIR_FILTER ENABLE ==
#define FIR PRESET TYPE 1

#define FIR PRESET TYPE 2
#define FIR PRESET TYPE 3
#define FIR PRESET TYPE 4

#define FIR PRESET TYPE
#define FIR FILTER NUM
#else

#define FIR PRESET TYPE
#endif

® Filter_config_sample.c

)

(3) i!

FIR PRESET TYPE 1
(1)

(0)

const filter element config t g ctsu filter element config[] =

{

#if (FIR_PRESET TYPE == FIR PRESET TYPE 1)

{

.type = FILTER TYPE FIR,

.fir cfg = &fir cfg01,
b

#endif
#1f (FIR _PRESET TYPE == FIR PRESET TYPE 2)
{
.type = FILTER TYPE FIR,

.fir cfg = &fir cfg02,
b

#endif
#if (FIR_PRESET_TYPE == FIR_PRESET_TYPE_3)
{
.type = FILTER TYPE FIR,

.fir cfg = &fir cfg03,
s

#endif
#if (FIR_PRESET TYPE == FIR PRESET TYPE_4)
{
.type = FILTER_TYPE_FIR,

.fir cfg = &fir cfg04,
}y
#endif
bi

R30AN0427EJ0100 Rev.1.00
Jun.12.23

Re Page 25 of 32
RENESAS

RA family Capacitive Touch Software Filter Sample Program

5. Include the filter_config_sample.h file in the qe_touch_sample.c file (or equivalent file) and add a
description of how to perform filtering (see Section 4.5).
[Note] 1. Note that data reading and data writing back for filtering are not touch API, but CTSU drivers.

2. Note that the description of performing the filtering is required for each method of the Touch
Interface configuration.

6. Change the num_moving_average setting of CTSU driver configuration definition (g_ge_ctsu_ctrl_XXX for
QE for Capacitive Touch generation) in the ge_touch_config.c file (or equivalent file) to 1 to disable the
default moving averaging. When FIR filters are applied, they do not work properly unless the averaging
process is disabled.

If there are multiple touch interface configuration methods, change the CTSU driver configuration
definition for all methods.

Const ctsu cfg t g ge ctsu cfg configl0l =
{

(Omitted) Change to 1
.num moving average = 1,

.tunning enable = true,
.p_callback = &ge touch callback,

(Omitted)
}i

Ctsu_instance ctrl t g ge ctsu ctrl configOl;

Const ctsu_instance t g ge ctsu instance config0l =
{

.p_ctrl = &g _ge ctsu ctrl configOl,

.p_cfg = &g ge ctsu cfg configl1l,

.p_api &g _ctsu on ctsu,

}i

R30AN0427EJ0100 Rev.1.00 Page 26 of 32
Jun.12.23 RENESAS

RA family Capacitive Touch Software Filter Sample Program

Const ctsu cfg t g ge ctsu cfg config02 =
{

(Omitted)
.num moving average = 1, Change to 1]

.tunning enable = true,
.p_callback = &ge touch callback,

(Omitted)
}i

Ctsu_instance ctrl t g ge ctsu ctrl config02;

Const ctsu instance t g ge ctsu instance config02 =
{
.p_ctrl = &g ge ctsu ctrl config02,
.p_cfg = &g ge ctsu cfg configl2,
.p_api = &g _ctsu on ctsu,
}i
Const ctsu cfg t g ge ctsu cfg config03 =
{

(Omitted)
.num _moving average = 1, Change to 1]

.tunning _enable = true,
.p_callback = &ge touch callback,

(Omitted)
}i

Ctsu_instance ctrl t g ge ctsu ctrl config03;

Const ctsu_instance t g ge ctsu instance config03 =
{

.p_ctrl = &g _ge ctsu ctrl config03,

.p_cfg = &g ge ctsu cfg config03,

.p_api = &g ctsu on ctsu,

}i

R30AN0427EJ0100 Rev.1.00 Page 27 of 32
Jun.12.23 RENESAS

RA family

Capacitive Touch Software Filter Sample Program

4.5 Sample Application Configuration and Operation

The flow chart for incorporating a filter sample program into the sample code (qe_touch_sample.c) outputted
by QE for Capacitive Touch is shown below. This example shows three touch interface configurations

(methods).

ge_touch_main

v

Dinitialize touch and filter module

MDinitialize touch and filter module

Initialize touch module(Mothod1)
RM_TOUCH_Open

v

@Touch measurement(Mothod1)

Initialize touch module(Mothod2)
RM_TOUCH_Open

v

v

@Apply filter(Mothod1)

Initialize touch module(Mothod3)
RM_TOUCH_Open

v

v

@Read touch Status(Mothod1)
RM_TOUCH_DataGet

Initialize filter module(Mothod1)
r_ctsu_filter_open

v

Initialize filter module(Mothod2)
r_ctsu_filter_open

@Touch measurement(Mothod2)

v

v

Initialize filter module(Mothod3)
r_ctsu_filter_open

®@Apply filter(Mothod2)

v

@Read touch Status(Mothod2)
RM_TOUCH_DataGet

®TOUCh measurement

@Touch measurement(Mothod3)

v

®@Apply filter(Mothod3)

Touch measurement start
RM_TOUCH_ScanStart

Measurement complete

v

@Read touch Status(Mothod3)
RM_TOUCH_DataGet

@Apply filter

Software wait
R_BSP_SoftwareDelay

Read mesured values
R_CTSU_DataGet

v

Apply filter
r_ctsu_filter_exec

v

Write back filtered data
R_CTSU_Datalnsert

Figure 4.3 Sample Application Flow

R30AN0427EJ0100 Rev.1.00

Jun.12.23

RENESAS

Page 28 of 32

RA family Capacitive Touch Software Filter Sample Program

This section describes the numbers in the figure in Figure 4.3.

The code that you add to the ge_touch_main in “qe_touch_sample.c” are shown in bold.

@D Initialize the touch functions and filter
Initializes the touch function and initializes the filter.

To initialize the filter, check the touch interface configuration and specify the corresponding CTSU driver
configuration definition for the respective method.

/* Open Touch middleware */
Err = RM TOUCH Open(g ge touch instance config0l.p ctrl, g ge touch instance config0l.p cfg);
If (FSP _SUCCESS != err)
{
While (true) {}
}
Err = RM TOUCH Open(g ge touch instance config02.p ctrl, g ge touch instance config02.p cfg);
If (FSP _SUCCESS != err)
{
While (true) {}
}
Err = RM TOUCH Open(g ge touch instance config03.p ctrl, g ge touch instance config03.p cfg);
If (FSP _SUCCESS != err)
{
While (true) {}
}

/* Open filter sample software */
Err = r ctsu filter open(g_ctsu_filter_instanceOl.p ctrl, g ctsu_filter_ instance(Ol.p_cfg,
g_ge_ctsu_instance_config0l.p cfg);
If (FSP_SUCCESS != err)
{
While (true) {}
}
Err = r ctsu filter open(g_ctsu_filter_instance02.p ctrl, g ctsu_filter_ instance02.p_cfg,
g_ge_ctsu_instance_config02.p_ cfg);
If (FSP_SUCCESS != err)
{
While (true) {}
}
Err = r ctsu filter open(g_ctsu_filter_instance03.p _ctrl, g ctsu_filter_ instance03.p_cfg,
g_ge_ctsu_instance_config03.p_cfg);
If (FSP_SUCCESS != err)
{
While (true) {}

}

R30AN0427EJ0100 Rev.1.00 Page 29 of 32
Jun.12.23 RENESAS

RA family Capacitive Touch Software Filter Sample Program

@ Touch measurement
Perform touch measurement and wait for measurement to be completed.
@ to @ should be executed consecutively for each method of the touch interface configuration.

@ Filter application

After completing the touch measurement, use the CTSU driver API to get the measurement result and
write it back to the CTSU driver after applying the filter.

To use the CTSU driver API, it is necessary to specify the CTSU driver configuration definition and set
management data specified at filter initialization. (The content is changed from .p_cfg in the CTSU driver
configuration definition to .p_ctrl)

The data buffer is required for data transfer between the CTSU driver and the filter function.
@ to @ should be executed consecutively for each method of the touch interface configuration.

For details of the CTSU driver API, refer to v4.3.0 or later of Renesas Flexible Software Package (FSP)
User's Manual (R11UM0155).

Static uintlé_t g filter buffer[CTSU_CFG_NUM SELF ELEMENTS];
Void ge touch main (void)

{
(Omitted)

/* Open filter sample software */

Err = r ctsu filter open(g_ctsu_filter_instanceOl.p ctrl, g ctsu_filter_ instance(Ol.p_cfg,
g_ge _ctsu_instance_config0l.p cfg);

(Omitted)

/* Use filter sample software */

Err = R CTSU DataGet(g_qge_ctsu_instance config0l.p ctrl, g filter buffer);
If (FSP_SUCCESS == err)

{
r_ctsu_filter exec(g_ctsu filter instanceOl.p ctrl, g filter buffer);
R CTSU _Datalnsert(g_ge ctsu instance_config0l.p ctrl, g_filter buffer);

@ Touch status acquisition
Get touch input information using filtered data.
@ to @ should be executed consecutively for each method of the touch interface configuration.

R30AN0427EJ0100 Rev.1.00 Page 30 of 32
Jun.12.23 RENESAS

RA family Capacitive Touch Software Filter Sample Program

5. Supports

See the following website for information on capacitive touch, downloading tools and documentation, and
technical support.

Capacitive Sensor MCU Capacitive Touch Noise Immunity Guide (R30AN0426)
https://www.renesas.com/node/25428131

Capacitive Touch Evaluation System for RA2L1 (RTKOEG0022S01001BJ)

https://www.renesas.com/rssk-touch-ra2l1

Renesas RA Family RA2L1 Group Capacitive Touch Evaluation System Quick Start Guide (Q12QS0040)

https://www.renesas.com/node/1403601

RA Family Using QE and FSP to Develop Capacitive Touch Applications (RO1AN4934)

https://www.renesas.com/node/1289806

QE for Capacitive Touch: Development Assistance Tool for Capacitive Touch Sensors

renesas.com/ge-capacitive-touch

Renesas support

renesas.com/support

R30AN0427EJ0100 Rev.1.00 Page 31 of 32
Jun.12.23 RENESAS

https://www.renesas.com/node/25428131
https://www.renesas.com/rssk-touch-ra2l1
https://www.renesas.com/node/1403601
https://www.renesas.com/node/1289806
https://www.renesas.com/qe-capacitive-touch
https://www.renesas.com/support

RA family

Capacitive Touch Software Filter Sample Program

Revision History

Description
Rev. Date Page Summary
1.00 Jun.12.23 - First edition issued
R30AN0427EJ0100 Rev.1.00 Page 32 of 32
Jun.12.23 RENESAS

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LS| are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or 1/0
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between Vi
(Max.) and Vi (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between Vi (Max.) and Vi (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSl is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

Notice

1.

10.

1.

12.

13.
14,

(Note1)

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quiality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2023 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Folder Structure
	1.2 Operation Confirmation Conditions

	2. Software Specifications
	2.1 Software Configuration Diagram
	2.2 File Structures
	2.3 Data List for Filter Configuration Definition
	2.3.1 Constants
	2.3.2 Global Variables
	2.3.3 Structures

	2.4 Software Filter API
	2.5 Size and Execution Time

	3. FIR filters
	3.1 Specifications
	3.2 How to Use the Filter in This Sample Program
	3.3 FIR Filter API
	3.4 List of Data for FIR Filters
	3.4.1 Constants
	3.4.2 Global Variables

	3.5 Filter Adjustment Procedure
	3.5.1 Filter Processing Method
	3.5.2 Filter Characteristics
	3.5.3 Coefficient Definition
	3.5.4 FIR Filter Configuration Definition

	4. Operation explanation of this sample project
	4.1 Function
	4.2 File Structure
	4.3 How to use This Sample Project
	4.4 Procedure for Integration into an Existing Project
	4.5 Sample Application Configuration and Operation

	5. Supports
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice
	Contact information
	Corporate Headquarters
	Trademarks

