Laird

CONNECTIVITY

User Guide

BL653 smartBASIC Extensions

Release 30.1.1.0

This guide pertains to BL653 specific smartBASIC functions and routines. For
information on functions and routines that apply to all smartBASIC modules, see
the smartBASIC Core Manual.

http://b7c114b8ac32968eb0a5-0034a95ea8a03cf459b9e4f7b28746f2.r86.cf3.rackcdn.com/home/brandworld/files/User%20Guide%20-%20smartBASIC%20Core%20Functionality.pdf

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

REVISION HISTORY

30.1.1.0 02 Apr 2020 Initial version Kieran Mackey Jonathan Kaye

Any information furnished by Laird Connectivity, its subsidiary companies and its agents (hereafter, “Laird Connectivity”) is believed to be
accurate and reliable. All specifications are subject to change without notice. Responsibility for the use and application of Laird Connectivity
materials rests with the end user, since Laird Connectivity and its agents cannot be aware of all potential uses. Laird Connectivity makes no
warranties as to the fitness, merchantability or suitability of any Laird Connectivity materials or products for any specific or general uses. Laird
Connectivity disclaims liability for incidental or consequential damages of any kind. All Laird Connectivity products are sold pursuant to the Laird
Connectivity Terms and Conditions of sale in effect at the time of sale. A current copy of the Laird Connectivity Terms and Conditions will be
furnished upon request. This document is © Copyright 2020, Laird Connectivity, Inc., all rights reserved. Laird Connectivity, the Laird Connectivity
Logo, and other marks are trademarks of Laird Connectivity. Other product or service names may be the property of third parties. Nothing herein
provides a license under any Laird Connectivity or any third-party intellectual property rights.

https://www.lairdconnect.com/ 2 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

CONTENTS

1 a1 o [Tot i o] o FA PP PPPPR TP 9
1.1 What DOES & BLE MOAUIE CONEAINT........ueiiiiiie ittt ettt ettt e e a bt e sttt e e aabe e e e s bt e e aa ket e e ambb e e e sttt e aabb e e e anbneeennbeeesbeeeennes 9

2 MOAUIE CONFIGUIBLION ...ttt et e ettt e e e a bt e e bbbt e o ket e oo bbbt e e h b et e ea b et e e b b et e e b bt e e sab et e e abe e e e nbb e e e sbeeeeasnees 10
3 = o] G 0o o [P U PP OPPUPPRTIN 10
3.1 = o] g @fo e [oo] (U] o B PP P PP PUPRPPPPIN 10
3.2 EFTOE COUE VIBWET ...ttt ettt oottt e e e 44 e ke et e e 244 4a s b bttt e e 244 nkbe bt e e e e 42 4a R R be e e e e e 24 n R beb e e e e e e e ambbbe e e e e e e e nnbbbeeaeeeeanbnbneeeas 11
3.3 ETOr €008 UPUALES.eiiiiiiiiitit ittt a ettt e e bt e e h bt e e ekt b e oo bbb e e s e b et e e bbb e e e bbb e e sab et e s bt e e e s bb e e e nab e e e sbeeee s 13

4 alc=T e To A oY ol ol @]y T 4 F= Vg To PSP PPU PP OPPPP 14
4.1.1 AT | or ATl or ATIX .14
4.1.2 F I 1 L C TSRS P U PPPUPPNE 15

4.1.3 FN I] = O PO PSP P PP PP PPPPNE 19

4.1.4 FN I = 1 1 5 ISP RPU PP PUPPNE 19

4.1.5 AT + MAC “12 hex digit Mac @0dreSS”oii ittt s bt e e e e e sbaee e 20

4.1.6 LN I =1 0 G OO PPUPRPUPPNE 20

4.1.7 F I SRS OU PP PPPPRNE 21

4.1.8 PN I ad = (O 1 I = O SRS PU PP PUPPRNE 21

4.1.9 FN I R { =TT @ U 0 OO P PP PRPUPRNE 22

5 Core Language Built-in Routines22
51 INFOIMALION ROULINES. ...cei ittt ettt e et e e e s et bttt e e e e e sasbte e e e e e e aan s be b et e e e e e aa s et et e e e e e e n s be b e e e e e e e s sbbeeeeaeeaanbsbeaaeeeesnnsbneeeas 22
5.1.1 SN] 1N T L PP OUPRRPPPN 22

5.1.2 S] 1N 0 SO SUPPTPPP 25

5.2 [0 AN g I 101 1= 1 - To T PP RP PP 26
5.2.1 (O = 14 (O] o =1 o HE TP PP P P PPPPPRPT 26

5.2.2 (U TGS T=l 1 = S TP PPTPPP 26

5.2.3 UBIBREAK ...ttt ettt ettt ettt e ettt e e o2 b bt e+ 1M ket 442k b e e e o2 b bt a4 1A ke 4o 4k bt e e oAk b e e e ARkt e e 4R b e oo oAb h et e eREe e e e ba e e e e nb e e e enbeeeeanteee s 26

5.3 Auxiliary UART (Universal ASynchronous RECEIVE TIANSIMIL).......oiuuiiiiiiiiiiiiie et e ittt ettt e st e et e et e et e e s b e e s sabeeeaneeee s 27
531 Auxilliary UART Events .27

5.3.2 P18)@ o1 o T OO TP PP PR PPPPRNE 28

5.3.3 P28)@ [1] PO U PSP PRPUPPNE 30

5.3.4 AUXCIOSEEX ...ttt ettt e ettt e e e oottt e e+ e e s ettt e e e e e amne et e et e e e s e ntete e e e e e e 4 s sbeeeeeeeeeamEsbe e e e e e e e nnEeeeeeeeeeannnbeeeeeeeaantateeeeeeeannnne 30

5.3.5 P18 D131 {o T PRSP PUPRPUPPNE 31

5.3.6 P28 DL (1 (OO PU PR PUPPNE 31

5.3.7 P28 D3 L= To SRS PROU PP PPPPRNE 32

5.3.8 P2 8 DR L= Lo | SO R PP PPPUPPNE 32

5.3.9 P 8 DR EC T Lo Y = Lo o OO TTRUUPRPUPPNE 33

5.3.10 AUXFlush....
5.3.11 AUXGetCTS
5.3.12 AUXSetRTS

5.3.13 P U =] (=T 1 TP PPRPUPN
5.4 12C — TWO WITE INTEITACE (TWWI) ..eitiieiiiiie ettt ettt ettt ettt e e bttt oo skt e 4kt e e okt e e 4Rkt e a4 b bt e e e a b bt e e am b e e e e abb e e e e nnbe e e nnbbeeeanbeeann 35
5.5 INPUL/OULPUL INTEIMTACE ROULINESetiieiieie ettt ettt e ettt e e bttt e e s ket e ek bt e e e bt e e e ombe e e e b bt e e e b bt e e amb e e e ettt e e enbbeeennbbeeeanbeeann 35

55.1 EVENES BN MESSAGES ... tteeiieeeeiittteit e e et ettt e e e e e sttt e eeeeaa e eeeeeeaeeeaasste e eeeeeaasnteseeaaeeeamsebeeeeeeeaannbebeeeeeaeanssbeeeeeeeaasnssbeeeeeeenannnes 37

5.5.2 (€] 010 S T=] (TP OPPPTPPP

5.5.3 GpioSetFuncEx
5.5.4 GpioConfigPwm

5.5.5 (€] 0110] 2 =T To [PPSR SUPRTPPPN
5.5.6 (€1 o101V) (PP SUPPTUPPPN
5.5.7 GPIOBINAEVENT/GPRIOASSIGNEVENLciiiiiiiiitii ettt e e bt e ea et e bttt e e bt e e ea et e e e e e e bttt e nabeeeaeneee s 46
5.5.8 GpioUnbindEVENY/GPIOUNASSIGNEVENT.cco.utiieiiiiie ettt ettt ettt e ettt e e sttt e e atee e e e bbeeeamte e e e atbeeeebaeeeanbbeeaanbeaeaanbeeeanbeeaaaneeaeas 48
5.6 MISCEIIANEOUS ROULINESeiiiiiiieeittie ettt ettt ettt et e e e e tbee e ea et e ottt e e ea b beeees bt e e e s bt e e e s b b e e e embe e e e b be e e e s b beeeambeeeeanbeeeenbeeeenbbeeaanneaans
5.6.1 ASSERTBLES53 ...ttt a ettt e ket 4 ekt e e h b oo h e oA L £ e eh b oo eh et e oAb e £ 4o hh et e e b et e e b et e e e et e e nn e et eeeane
5.6.2 ERASEFILESY STEM. ... iiiiieitiie ettt ettt ettt ettt e ettt e e et et e e e s bt e a4kt e e e o hbe e e aste e a4 E bt e e aasbe e e ambe e e o b bt e e embbee e anbeeeeabbeaeennbeeeanbeaesneeaaanes
6 BLE Extensions Built-in Routines
6.1 LE Privacycccccvveenunnen.
6.1.1 BleSetAddressTypeEx
https://www.lairdconnect.com/ 3 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940

All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide La"'d 2» CONNECTIVITY

6.2 EVENES BNO IMESSAGES ..ottt ittt ettt bt e a et e e bbbt e e bt e e e bbbt ook b e e oo b b e e e e e b et ook et e e e bbbt e eab et e e bbb e e e ab e e e st e e e s bne e s 52
6.2.1 EVBLE_ADV_TIMEOUT ..ottt s e s b e e e s b e e e e s b b e e s sa b e e s s b e e e s e b b e e s sab e e s s naeeeenes 52
6.2.2 EVBLE_CONN_TIMEOUT53
6.2.3 EVBLE_ADV_REPORT ..o e e s e e e e s b b e e s s e e e e s b e e e s s bbb e e a e 53
6.2.4 EVBLE _FAST_PAGEDooiiiii e bbb s b e e e s s b e s s b e e s s b e e e s s 53
6.2.5 EVBLE_SCAN_TIMEOUT ..ottt e e b b e e e e e e s s s bbb e e e e e s s s b e b e e e e e s s s bbb e e e e e s s s bbb b e s e e e s s sabares 53
6.2.6 EVBLEMSG ... e e e e e 53
6.2.7 EVDISCON ...t e b e e oo b e e e h e e e s b e e e e b e e e b e e e e e e e e e ra e e 56
6.2.8 EVCHARVAL ..o e oo e e s e b b e e e e e s oo bbb oo e e e e e s bbb e e e e e e s s b e e e e e e e e e bbb e e e e e s s s e b e e e e e 57
6.2.9 EVCHARVALUE ...t e e e s b e e e e s b b e e s s e e s s be e e s s a b e e s sab e e s s bae e e ene 57
6.2.10 EVCHARHVC ... e et e s e e s s e e e s b e e e s b e e e s s e e e e s et e s a e e e

6.2.11 EVCHARCCCD
6.2.12 EVCHARSCCD
6.2.13 EVCHARDESC

6.2.14 EVAUTHY AL . ..o oo oo oo oo a e aaaas
6.2.15 EVAUTHWVALEX ...ttt ettt a ettt e h e e st e E et et e 1Rt e et e e et e ARt e e R e e b et e m e e aer e e b e e e nneennneeneeerneennee e
6.2.16 EVAUTHECCECD ...ttt r ettt s ettt e st e et e b e e Rt e 1Rt e e e e e et e ARt e a R e e e b et e m e e eer e e e e e nneenneesreenreeenee e
6.2.17 EVAUTHSECCD ...t e oot e oo oo oo oo oo oo e oo e e e e e et aeas
6.2.18 EVAUTHDESC......cctie ittt ettt e et e oot e Rt e et ekt e Rt e 1Rt e R et e s et e ARt e s R e e b et e et e ne e e e e e nn e e nneesreenreeenee e
6.2.19 EVV SPRX .ttt etttk E Rt R Rt R R R et Rt ARt e e e R et e Rt e nR e e e e e n e nne e a e e nnee e
6.2.20 EVVSPTXEMPTY ...
6.2.21 EVCONNRSSI ...ttt ettt e et e oo Rt e st e E et e Rt e e Rt oot e st e ARt e e e Rt e R e e nR e e R e e e nne e s e e e neena
6.2.22 EVINOTIFYBUR ...ttt ettt e ettt et s e e et ekt e st e 1R st e R et e e et e eR et e e R e e e b et e et e eer e e e e e sn e e nneesnreenreeenee e
6.2.23 EVCONNPARAMBREQ ...ttt a e eas
6.2.24 EVBLE_EXTADVDROPPEDcoiittiitiatiiiti ettt sttt sme ettt e s e se e et et e st enb et e e e et et e neeser e e ne e e nneenneesneenrneennee e
6.2.25 EVBLE_EXTADVNOMEMottt sttt ettt nse et s ket e h e se e e e e e st ens et e ne e et et e s e e ae e e r e e nsneennneeneennneennee e
6.2.26 EVBLE_SCAN_ABORTED.ottt
6.2.27 EVBLE_EXTADV_ENDoeiiitiiiiiit ettt sttt sttt sae s e e s he e e bt e 1ot e e e e st eam e e e e Re e e b et e e e e ner e e r e e e neensneereearneennee e
6.2.28 EVBLE _EXTADY _RPT .ttt ettt sttt sa et e e et e s a e et e s bt e st e 1o st e R et e s et e aR et e a R e e b et e e e e ner e et e e e neennn e e reeerneennee e
6.2.29 EVBLE_EXTSCN_RPTcccovviiiiiien.
6.2.30 EVBLE_EXTADV_RPT_INCOMPLETE

6.3 MiISCEIIANEOUS FUNCHIONS. ... ittt ettt ettt ettt sa ettt s e e h e e et ekt e bt e e Rt et e bt e bt e sa e e b et e st ene e e ne e een e e nne e s e enes
6.3.1 BIETXPOWEISEL ...ttt a et e oo ekttt e 42kttt e e ettt e oa bt e o4kttt e e s bttt e ee et e e et e e et e e e e e n e e e e nne
6.3.2 BIETXPWIWWIIEPAIITNGttt ettt ettt ettt ettt e e a et e o2 kbt e e e s b bt e e eR ket a4 a b bt e e asbb e e e ambe e e eabe e e e enbbeeesnbeeesnbeaeanes
6.3.3 2] =T 0] 01 1o | 1 {4 o Tod PSP PPUPPPRN
6.3.4 [211=T @00 o1 {To | L] I o PSR PSSP PSRRIt
6.3.5 2] LT Eo T Y1V T o J SO UPPPTPPPRN

6.4 ACVETTISING FUNCLIONS ...ttt ettt ettt ettt e oottt e ekttt e o et et e e eab et e e kbt e e 4a b et a2 ea b b e e e am b e e e 4a b b e e e e a bt e e e ambe e e e bbb e e e nbeeennbaeeaaneeeean

6.4.1 BleAdvertStart
6.4.2 BleAdvertStop

6.4.3 2] =Y ANe 1V T4 (o]0 1o [PR ROUPPUOPPRN
6.4.4 1212720 1Y = o1) PSR PSSP PURPRPNt
6.4.5 LIS Y oo T = o[1 PSPPSR OPPPUPPPRN
6.4.6 2] LY ANe 1V oo (1] 6T o F- (ot PP PPUPPPRN
6.4.7 BIEEXIAUVRPIGEISPACE ...ttt e et e et e ekttt e e ettt e ea b et ookttt e e s bt e e ea b et e et e e e e ettt e n et e n e e e eae
6.4.8 2]V aNe AV = o1 7AYo (o (8101 o kI PP OUPPUPPPRN
6.4.9 2] =Y aNe 1V = o 7AYo [0 [0 o k2 F PP PPUPPPRN

6.4.10 BleAdvRptAppendAD.....
6.4.11 BleExtAdvRptAppendAD

6.4.12 2]V ANe 1V = o 6 @0 141111 S PP OUPPUPPPRN
6.5 e =T o LYo Ao V=T S W g Tod 11) o PP EERR:
6.5.1 2 LYo LYY= (O (=T (Y PR SS PP PPURRROOt
6.5.2 1211y o 1YY= N =Y I - SRS RSR
6.5.3 1211y 0 1YY= 1] = o SRR PUPPEPR
6.5.4 2] YAt VA= 15 (o] o F PP PPUPPP
6.5.5 LR o= T IS = L SRR PUPPRPUN

6.5.6 BleExtRptMetadata

https://www.lairdconnect.com/ 4 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide La"'d 2» CONNECTIVITY

6.5.7 BIECONNECIEXIENUEA.o 106
6.5.8 2] 7Yoo 7Y o] o 1= g Lo /Y B PP PPUPP PP PPRPPP 107
6.5.9 BleExtAdvRptAddUuid16...108
6.5.10 BIEEXIAAVRPIAGAUUIAL2S.........eieiiiie ittt ettt h e a ket hb et e o b bt e o1 e ket e 4k et e e e abb et e as b et e e bb e e e e nbb e e e anbeeeenbeeeas 108
6.5.11 2] Ao Y B o (1= 5] o - Lo S PP SPUPPUTPPTRPPPR 109
6.6 SCANNING FUNCHIONS ...ttt b e e et e et b et e bbb e e e a ket e e b b et e e oh bt e e sa ket e e bbbt e e bbbt e sab e e e e e sbe e e e nab e e e sabeeeeaaes
6.6.1 LYoo 1S 7= Ly O PP PPPUPPRPPP
6.6.2 LYoo T IS 1= L 1 = O ST UUPPPPPPR
6.6.3 BIESCANADOI
6.6.4 2 LYot T 1S (o] o O PP PP PPRPPP
6.6.5 BIESCANFIUSI ...ttt e b et a ke e o h bt e o kbt e oo R ket e e b et e oo hb et e eR et e b b e e e b b e e anbe e e tbeee s
6.6.6 BleScanConfig
6.6.7 BleScanGetAdvReport
6.6.8 BleSCANGEIAUVREPOIMEXcoiuttiiiiiiiie ittt e h e e o skt e 4k b et oo kb et e e s ket e ok bt e e e abb et e aabe e e e bb e e e e ab e e e anbeeeeanbeee s 119
6.6.9 BlEGEIADDYINUEX. ...ttt ettt bbbt e e e e e bt e e e b b e et e e b e e e e e a e e e ta e s 121
6.6.10] T ToT ZAN B)V - To [PP PPTPPP 122
6.6.11 BlESCANGEIPAGEIATANeeeitiie ettt ettt ettt e e hb et e ek bt e oMbt e e 4 bb e e e e ab e e e oa ket e o bb e e e e b bt e e aREe e e e bb et e e nb e e e anbeeeeanreee s 124
6.7 [Ofe] g T=Tox 1 To] AT =V gTex ({01 SRR
6.7.1 Events and Messages
6.7.2 12 LY@ o] o o= ot SRR EPRRRS
6.7.3 BleConnectExtended.. .
6.7.4 2] [T @0 o 0 T=Tot (@F= g Vo =Y RSP RSRRS
6.7.5 2] T o] gl g =Tt (@] 4 il PP UUPPTPPP
6.7.6 (2111 EoTo] o [=To! USRS PUPTPTRPP
6.7.7 BleSetCurConnParms
6.7.8 BlEGEICUIC ONNPAIIIS. ttiieeeeeiettteee e e e e s et eeeeesasateaeeeeeaasasteeeeeeeaasateseeaeeaessssteseeeee s sseeseeeeeaasnsaseseaee s s sseeeeeaeeaesnsnbaneeeessnnre 136
6.7.9 BlECONNMNGIUDACTY ...ttt ettt ekt e ettt e ettt e e bbbt e e b bt e e ee et e e kbt e e bt e e st e e e e ebeeee s 136
6.7.10 BleGetConNHANAIEFTOMAGAI..........ueiiiiee e e e e e e e e e e e e e e e e e e sttt et e eee e s sataseeeeeaassssaeseaeessasntsseeaeesasntasaneeeessanres 137
6.7.11 BleGetAddrFrOMCONNHANGIE.............oeiieiiiieee e e e e e e e e e et e e e e e e et a e et e e e s asstabeeeaeeesassasseeeeeaasntaraeeeeessanres 139

6.7.12 BleConnRssiStart
6.7.13 BleConnRssiStop

6.8 Whitelist MAnNAgEMENT FUNCHIONSciiiuiiieiiiie ettt ettt e e e bt e e sa et e ettt e e e b b et e ambe e e e bb e e e e abb e e e ambe e e e bbeeeenbeeesnbeeeeannees 143
6.8.1 BIEWIEIISICIEALE.o 143
6.8.2 BIEVVITEIISIDESIIOY ... uttieeiiitee ettt ettt ettt ettt ettt e ettt e e o2 bt e e oa ket e 4 b bt e e o2 ab e e oo a ket a4 b bt e e e s kbt e e ambe e e e bbb e e e anbeeeanbneeenneeeean 146
6.8.3 L LN Y1 (=T I (A L= RS PUPPRPRRIRS 147
6.8.4 BIEWIItEIISESEIFILETo 147
6.8.5 L LAYV 1 (=TT VN [0 X o TR PUPPRSURORt 148
6.8.6 BIEWIItEIISTAGGINGEX ... ettt e et e e e e e et e e e e e s e ta e e e e e e e st abeaeeee e s sataseeeeeaesassbeseaeessassseseeaeeaessnbaneeeesannres 148
6.8.7 BleWhitelistinfo

6.9 GATT Server Functions
6.9.1 EVENES BNO IMESSAGES ... eeeeiitiee ettt ettt ettt ettt e ettt e e b bt e e ea b et e e kbt e e ek bt e e am ket a4 b b e e e o sb e e e aa ke e e o b bt e e e abb e e e ambe e e e bbb e e e nbeeesnbeeeaanbeaean 156
6.9.2 121 LT @ 1o 1 Vo] 1 g1 PR PUPPEPURN 156
6.9.3 BIEGEIDEVICENAIMES.........eiiiiie it e e e ettt e e e e ettt e e e e e et eeeee e e sa s tea et eeeeesatabeeeeee e s sstaseeeeeaessssbeseeee s s ssteseeaeesassabaneeeesaanres 158
6.9.4 L Yo B =T L [o PRSP RUUPPTPPP 159
6.9.5 BIEHANAIEUUIALG ... e e e e e e 160
6.9.6 BIEHANAIEUUIAL2Seeiiiiiee et e et e e ettt e e e e e et e e e e e e sa s ta e e e e e e e e saeabeaeeee e e sataaeeeeeaesatsbeseaeesanssssseeaeeanssnbaneeeesaanres 161
6.9.7 2] o g Lo [T W W o K5y o] T o O PSPPSR 162
6.9.8 BleServiceNew........

6.9.9 BleServiceCommit

6.9.10 BIESVCAAUINCIUAESVC ...ttt e ettt e e e e e et e e e e e e e st et e aeeeeeeesstaaeeeeeaesatabeseaeessnsstssaeaeesesbataneeeesaaares 165
6.9.11 121y 1Y 1= = Vo £ L RS SURRSUN 167
6.9.12 BIECNAINEBW e ettt e ettt oo e ettt e e e e e ettt e e e e e e e e sateeeeeeeeaasataseeeeeeesatabeseeeee e sabaeeeeeeaeanbabeeeaeeeaanabeteeeeeaaatareeeaeeeaanres 170
6.9.13 BIECNAIDESCUSEIDESCuveieeeeiiiiiieteeeeeetteeeeeeeaestteeaeeeeaesseateeeaeeeaasataseeaeeassnssbeaeeee e s nsteseeeeeaannssteeeaeee s ssteseaaeeaesnsnsaneaeeesnnnre 171
6.9.14 1Y@ T T =Yoo (3 1 0| USRS RSRN 172
6.9.15 BIECNAIDESCAU.ccc ittt e ettt e e ettt e e e et e e e e e e e ettt e e e eeeesaataeeeeeeaesstabeseeeeeaassbaseeeeeaaasbabeseaeeeaanbeseeeeeaeaatabaeeaeeeaaares
6.9.16 121 L=T @ T T @0 3o o T P PPRPRN

6.9.17 BleCharValueRead

https://www.lairdconnect.com/ 5 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

6.9.18 BIECRAIVAIUBWIILEo 181
6.9.19 LY@ T 10T 1 1= SRS 182
6.9.20 BleCharValueNotify.... ... 183
6.9.21 2 LY@ T 11T g Vo o L= SRS 185
6.9.22 [LY@ T 1= Yo = Y- o RSP RSRS 187
6.9.23 BIEAULNOTIZECNAN 189
6.9.24 oYU LT =T 1= Yo SRS 190
6.9.25 BleSErvICECNANGEANLTYeiiiiii ettt e bt a bt e e hb e e e o b bt oo sttt e e b et e e e bttt e eR b et e b b e e e e b e e e et e e e e neeee s 190
6.10 [T B IO 1T | a0 a Tox 10 oL 191
6.10.1 EVENES BNO IMESSAGESeeeeiuteie ettt ettt ettt ettt oo bttt oo ettt e e bttt e e b b et e oa ket o4 kbt e e o2 sb e e e oa ket e oAb et e e ea bttt e an b et e e bb e e e e ab e e e anbeeeebbeee s 193

6.10.2 BleGattcOpen
6.10.3 BleGattcClose
6.10.4 BleDiscServiceFirst / BleDiscServiceNext

6.10.5 BleDiSCCharFirst / BlEDISCCNAINEXL.ciuuveiieeeeiiiietet e e e e e ettt e e e e ss e e e e s e s e abeaeeeesaantaeeeaeeaasssateseaeeesnsstnseeeeesasnsnraeeeeessnnnre
6.10.6 BleDiSCDESCFIrst /BIEDISCDESCNEXLcccce e e e
6.10.7 [LY@ La (o] T Vo [- PSPPSR
6.10.8 LY@ La (o] T Vo | DT oSS RSURRS
6.10.9 BleGattcRead/BleGattCREAUIDALAccceeiiiie e
6.10.10 BlEG A CWVIIEE. ... ettt e e ettt e e e ettt e e e e e sttt e e e e e e s sata e e e eeeeeastateeeeeeesenteteeeeeeeaRaEee et eeeaeantareeeaeeeaanrrreeeeeeeaannraeees
6.10.11 1LY L1 (od Y41 =T 1 4o USSR
6.10.12 BleGattcWritePrepare.
6.10.13 BlEG A CWVIIEEEXECeee e e ettt e e e ettt e e e e ettt e e e e e ettt e e e e e e aastaaeeeeeeesasateeeeeeesanteaeeaaeeesassteseeeeesaantssaeeaeesannntsaneaeeeesnneneeeas
6.10.14 BIEGAICNOLITYREAMccuetieiiiie ettt ettt e e h et oo sttt e o be e e e e s b bt e e aa bt e e 4abb e e e eabb e e e am bt e e aabb e e e antbeeennbeeesbbeeeanns
6.11 ALtribUte ENCOAING FUNCHIONSiiiiiiiiiiii ettt e et e e et e ettt e e b bt e e st e e e sttt e e e e e e st et e e aene s
6.11.1 [1= g oo T oY PSPPSR
6.11.2 [1= g oo o L= RSP EPRRS
6.11.3 BIEENCOUE24
6.11.4 [1= g oo T LT RSP EPRROS
6.11.5 [1= g ToTo T =1 I 7N SRS PPRPRRS
6.11.6 BleEncodeSFLOATEX .. .
6.11.7 [L= g oo o LTS I A PSPPSRt
6.11.8 BleEncodeTIMESTAMP
6.11.9 BIEENCOUESTRING ... e e e e e e e e e

6.11.10 2] =] g Tt e T = S PP PP UUPTPPPPRN
6.12 ALHIDULE DECOTING FUNCHIONS ...ttt ettt oottt ettt e ettt e e ettt e e ea bt e e ettt e e e b bt e e am ket a4 b bt e e e abb e e e ambe e e e bbe e e e anbeeesnbeeeeannees
6.12.1 1212 BT oo o [PRSP EPUR

6.12.2 21T DYoo o [0 1 PRSP RSOt
6.12.3 BleDecodeS16
6.12.4 BleDecodeU16
6.12.5 BleDecodeS24

6.12.6 BIEDECOUBU2A ...ttt h ettt et eh et e h e e R et E et e Rt R et enE e e s
6.12.7 BIEDECOUESBZ ...ttt h a4 h et e bt e e bttt bt e et e e ber e s
6.12.8 2] (=TT o oo (=] o @ L T PRSPPSO PRR PSPPI
6.12.9 BlEDECOUESFLOAT ...ttt ettt ettt ettt h e e bt e et ettt e bt e ek st et et e et e e bt eR e e Rt et e e Rt e e e Rt R e et e st
6.12.10 BIEDECOUETIMESTAMP......eeeeeiee ettt e e ettt e e e e e ettt e e e e e ste e et eae e e s s abeeeeeeeaantebeeeee e e s s ebeseeeeeaeantsbeeeaeeeannntsseaaeeeesnnnneeeens
6.12.11 BIEDECOUESTRING ...ttt ettt ettt ettt ekt bt e s et e e e e s et e e bt e e R e e ket e bt e aes e e e e e b et e nae e een e e e be e e beeneneenneeannees
6.12.12 2] (D= oo o (=] =] S T T PSP P PP ST P PR URPOTRTIN
6.13 Bonding and Bonding Database Functions . .
6.13.1 210]aTo [T lo l U TgTox 1 (o] PRSPPI
6.13.2 Bonding Table TYpes: ROING & PEISIST.........cuiiiiiiiiiiie ettt et et bt e e e bt e e e aabe e e e e nbe e e e enbeeeanbeeeaaneeaeas
6.13.3 T oL g [o Lol - U T [O OO PO PP PU PP PRPPPPP
6.13.4 2] T 2 Te g To [To IS £= LR PPTPPP
6.13.5 BIEBONUINGPEISISTKEY ...ttt bttt h e a ke ekttt e ottt e e ettt ookt ee ekttt e ea et e et bt e e e b e e e st e e e nane e s
6.13.6] L] =Te gl g Lo K TS (=T H OO O PP U PSP OO PPPRPUPN
6.13.7 BIEBONUINGETASEKEYetiieiitiieeitiii ettt ettt ettt e ettt e e ettt e e ea bt e e ek bt e e e s bt e e oa ket a4 Rb e e e e sb e e e ombe e e e b be e e e bbe e e ambe e e e bbb e e e nbeeeanbaeaaanneaeas
6.13.8 BIEBONGINGETASEAIL ...ttt e et e a et ookt e oo a et oo et e 4k et e ekttt e aa et e ekt e e e bt e e et e et e s

6.13.9 BleBondMngrGetinfo

https://www.lairdconnect.com/ 6 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

6.14 SECUItY MANAGET FUNCHIONSiiiiiiiiii ittt h et s bt e e e hb et e e eh et e ettt e e hb et e e bbbt e st et e e esbb e e e sabe e e sbeeeeaans 268
6.14.1 EVENES BNO IMESSAGESeeeeiuteee ettt ettt ettt ettt e bttt e e ettt e o bttt e o b et e 1a ket o4k et e oo ab e e oo e ket e oAb e e e e e abb et e aa bt e e e abb e e e e ab e e e anbeeeebbeee s 269
6.14.2 BleSecMngrLescPairingPref.......... .. 271
6.14.3 2] =T Ul PSPPI 271
6.14.4 2 LY=ol 1Y o To g (oL O T B PSP UUPPTRPUP 275
6.14.5 BlEACCEPEPAINING ...ttt ettt b et e b bt e e bbb e et b et e e bbbt s b e e e e et e e ia e s 276
6.14.6 BlEPAINNGSTALICPASSKEYceiuttiiiiiiiie ittt ettt ettt e e b et oo a ket e o hb e e oo ab et e oa ket e ot bt e e e abb et e anbe e e ettt e e e bb e e e aabeeeennbeee s 276
6.14.7 BlESECMNGIPASSKEY ...ttt b e a bt e e bt oo bt e 4a ket e 4 kbt e oo b bt e e oa ke e e oAb et e e e b bt e e eR bt e e R b et e e b e e e et e e e e nneee s 277
6.14.8 BleSecMNgrLesCKeYPreSSENADIEooiiiiiiiie ettt 279
6.14.9 BleSECMNGILESCKEYPIESSINOLITYiiiiiiieiiiie ettt a et b e e e a bt e e e ettt e e bt e e e bb et e aa bt e e e bt e e e enbb e e e anbeeeennbeeen 279
6.14.10 BlESECMNGIOOBPTES ...ttt ettt ekt a et e e bttt e o2 b b et e oh bt e e ea b et e e e s bb et e an bt e e et bt e e en b et e nab et e e bneeeane 281
6.14.11 BleSecMngrOOBKey (Legacy Pairing)281
6.14.12 BleSecMNgrLeSCOWNOODDAIAGELcciiuiieiiiieeiiiee ettt e e et e e e b bt e e sabe e e s bb e e e esbb e e e aabe e e ettt e e annb e e e aabeeesbneeeanns 283
6.14.13 BleSecMNQrLeSCPEEIOODDAASELciiiiiiiiiiiee ettt e et e e ra et e e bt e e e be e e e aa b et e e b bt e e e nb et e nb e e e e bneeeane 283
6.14.14 BIESECMNGIKEYSIZES ...ttt et e bt e e et e e a et e e e et e e et et e e e et e e e e 286
6.14.15 (2] LS T=Tol Y g o |4 7o g To 2= o [PP PU R UTRRPPPPRN 286
6.14.16 2] =] =g 1ot 4V o1 (@] a T g =T 1 o) o IO PP PP PU R OTPRPPPRRN 287

6.15 Virtual Serial POrt SENVICE — MANAGEMc.uuiiiiiiiiiitii ettt e et se bt e kbt e e e bt e e sa et e s bb et e e b e e st e e aaaes 289
6.15.1 ST S 01140 U=\] PP OUPRRPP 291
6.15.2 Command and Bridge MOOE OPEIALIONueiiiiiieiiiieeeittie ettt ettt ettt e e e etb e e e e aab e e e e be e e e bbe e e e st e e e ambeeeeanbeee s anbeeesabbeeaannns 296
6.15.3 VSP (Virtual Serial Port) Events298
6.15.4 LAY ST o 1@ o1 o PP PPPPP 299
6.15.5 LAY ST o [@ o 1T o]t PP PPTPPP 301
6.15.6 BIEV/ SPCIOSE ...ttt b h e h oo bt e e b et et b e e e ettt tn e 302
6.15.7 2] oAV o1 1 {o PP P R PTRPPT 304
6.15.8 2] oAV o1 PP PR TR PP 305
6.15.9 2] oA S o] 2 =T Uo IO SRR PRSP 306
6.15.10 121 LAY AST o 18 = T 1 =4 To [0 [T PO PU R OTPRPPPPRIN 309
6.15.11 12 AT ST o] U= o TP PRI 311

6.16 Data Packet Length Extension.313
6.16.1 (@ =T YT SR O PP R OPR PRSPPI 313
6.16.2 (O R Y o] a1 o U = 1o o RO TSP PPROP 314
6.16.3 EVENES BN MESSAGES ... tteieeeeeititiiee e e e ettt ee e e e ettt eeeee e e st ettt eeeeeaasateeeeaaeeeamssbeeeeee e e nnbeeeeeeeaaanssbeeeaee e s nsbeseeaeeaesnsnbeeeaeeenannnes 315
6.16.4 BleGattCAINDULEMIUREOUESTouteie ittt ettt e bt e e e e ket e e bt e e e e st e e e aabe e e o bb e e e e bt e e e ambeeeaabbeeeanbbeeeanbeeeaanneaean 315
6.16.5 BIEMAXPACKEILENGINSEL ...ttt ettt ettt e e e ab et e e e bt e e e bb e e e e bb e e e aa bt e e e bb e e e e nb e e e anbee e e neeae s 317
6.16.6 BIEMAXPACKEILENGNGEL ...ttt ettt e ettt et e bt e et 317

6.17 [o TR P PR PR PR PRSPPI 318
6.17.1 OVEBIVIBWW ...ttt ettt ekttt h e e et ekt e bt e ek st et e oo £ e bt 4R Rt e ko4 oAbt e 4R s e e R e e e ae £ e ehe e e e R e e R et e Rt e ee e e e et enae e e e e e nnee e 318
6.17.2 Events and Messages... ... 318
6.17.3 BlEPINGAUINTIMEOUL. ...ttt ettt e e h e e e e sttt e ekt e e e e b bt e e oa ket e 4R bt e e o2 eb e e e am ket e e bb e e e e s kb e e e ambe e e e bbb e e e nbeeesnbeeeanbeaean 318

6.18 LE 2M PHY @N0 CODED PHY ...ttt sttt ettt she et e bt eee e e bt e et ena e e e ekt ebe e sen e et e e et e e s e e neeanne s 320
6.18.1 EVENES BN MESSAGES ... teeieeeeeiitiietee e e e ettt ee e e e ettt eeeee e e st ete e eeeeeaaateeeeaeeeeamsabeeeeee e e nnbeeeeeeeaaamtsbeeeeeee s nsbeseeaeeaesnsnbaeeaeeesnnnnes 320
6.18.2 2] 31T ST PP PPTOPPR 321

7 Other EXtENSION BUII-IN ROULINES........coiuiiiiiiiie ettt sa et h et e bt e sa e e e e e et e nae e s e e be e e bt e naneenneeesneennee e 323

7.1 Near Field CommUNICALIONS (INFC)coiiiiiiiiiieitet ettt et h et ea et e e bttt e ekt e e et e ettt e e e aab e e e st e e e e eaens 323
7.1.1 (@ =T YT TSP TSP P RO PRPPRPTROPI 323
7.1.2 NDEF IMESSAGES ... tteeeiutttetee e et ettt et e e e e ettt et e e e e e htt b et e e o4 e aa e b ettt e e e 24 s s be e et e e 24 e a bbb e et e e a4 4a R R b e et e e e o4 e R b b be e e e e e e e nnbe e e e e e e eeanbnbeeeaeeeannnne 324
7.1.3 Arduino Based NFC Reader325
7.1.4 ST 100 o] S0 Y o o] (oF= i o o 1 PSP UPPRTOP 325
7.1.5 ST 100 o Sl Y o o] (oF= i o] o 12 TSP UPPPT PP 328
7.1.6 WAKE-ON-NFC ...ttt e e et e e a e e e oo e et e s et e s et e e R e e e e e e e sae e et e e s be e e smeesan e e n e e e e e e nneeaneeenneas 332
7.1.7 EVENES BNO IMESSAGES ... eeeeiuitie ettt ettt ettt e e ettt e ettt e e e ab e e e aate e e ek bt e e e s bt e e oaEe e e ek b e e e e sb e e e ambe e e e b bt e e e s kb e e e ambe e e e bbb e e e nbeeeanbbeaaaneeaeas 332
7.1.8 NFCHAITAWAIESTALE ...ttt r e st e e e s ae e e r e e s s e e e me e e e e se e e e nn e e s e e eneeeenees 332
7.1.9 N (e @] o =T o OO O O O PP U PP PP OUPPPRPUPN
7.1.10 INFCCIOSE ..ttt ettt a e bt oot ekt e btk bt ek et oo e £ £ b e e 4o R e ekt e b e oo Rt e e e Rt e Rt et e b et et nan e b
7.1.11 NFCRIEIASENSE ...ttt et h e et e et e e e s et e e R e e e bt e e e me e et enr e e sne e e n e

7.1.12 NfcNdefMsgNew

https://www.lairdconnect.com/ 7 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

7.1.13 NFCNAEIMSGDEIBLE ...ttt e e bt e bt e s bbbt e e b bt e e sa et e e bt e e e e sbb e e e sbe e e eabeeee s
7.1.14 N (N o1 Lo {4 L) o F O PP PPUUPPPRPPP
7.1.15 NfcNdefMsgReset......
7.1.16 NfcNdefRecAddLeOob
7.1.17 L (ol [e =3 2T=T oy Ao [0 (€= o= o U O PP PR 339
7.1.18 NFCENAEIMSGCOMMIL ...ttt ettt e e bbb e e e bt e e e et et e s bbb e e e b bt e e sa et e s bbb e e e nbb e e e sb e e e eabeeee s 340
7.2 System CONFIGUIALION ROULINES.outiiiiiiie ittt a et e et e e e h b et e e eh bt e e sa ket e e asbb e e e s bt e e aabe e e e asbneeennbeeeabneeeanns 341
7.2.1 S SEMISTALESELeeeeeieee ittt oot e e e sk e e et e e e e s e e et e e e e o e e e et e e e R e e et e e e e e et e e e e e E e e et e e e e e e e e e e e e e ae e e s 341
7.3 CryptographiC ROULINESviiiiiiiiiiiie ettt b e e et et e e b b et e e eh b et e st et e e ebb et e e bbbt e st b b e e e sab e e e nabeeesbeeeeaans 341
7.3.1 ECCGENEIALEPUDPIVIKEYS ...ttt etttk a btk e oo kbt e e skt e ok bt e e e bttt e aabe e e e bb e e e e nbb e e e nabeeeebbeeean 341
7.3.2 oo O o2 T= =T K=o (=1 PP 342
7.3.3 EccHmacSha256343
7.4 VAV (e g o oo N T4 1= PP PP PP PPPROP 344
74.1 LAY 185 =4 OO PP PP 344
7.4.2 o102 LT T OO PP O TP P VROPRPPIN 345
7.4.3 VYo LR R LN o a1 o E PP PUPR PP 345
MISCEIIANEOUS ROULINES ... ettt ettt ettt e ettt e ekttt e o2 be e e o2ttt e ekttt e 42 be e e e eabs e e e o a ket e 42k b e e e 42 b bt e e 1m ket a4 Eb e e e ek bt e e ambe e e e bbb e e e bbeeeaabeeeeannns 346
7.4.4 REAAPWISUPPIYIMV ...ttt h e ekt e ket oo bt e et e ekt e e e e bb et e ee et e ekt e e e e bb e e e st et e e bneee s 346
7.4.5 SEtPWISUPPIYTRIESNIMV ...ttt ekttt e e hb et e ek bt e e o sttt e e bbb e e ek bt e e ambe e e e bt e e e e enb e e e snbbeeeannns 346
7.4.6 CRC16Generate
7.4.7 CRC32Generate -
8 T 3= T Lo Y =T To PO PPPUPPRPPPRIN
9 LTt = TaTTo UL P PP PUPPRPPPRN
9.1 BIUETOOTN RESUIL COUESeiieiiiie ettt e ettt e ettt e e e e e sttt e e e e e e sa bbbt e eae e e s s b beee e e e e e e ambabe e e e e e e e s sbabeeeaeeeansabeeeaaeeaannbbbeeeaeeennnnres 349
O Yol (g 010 =Yoo =104 1T £ SO OP PR RROPPPO 351
10.1 P 3 Tt 5/ o] 110] [P PPPUPTPPPUUPPTROP 351
10.1.1 [ToT=T gL I =T T ST PP RT P PUPPPPTRO 351
10.1.2 (D 1ol =111 1) SO PP PPTRPPP 351
10.2 IMICTO-ECC ...ttt e et et h et ekt e st oo Rt e et oo e e e AR e e e R e e Rt e Rt e AR e e Rt e ARt e Rt R et e R e et e nn e re e s 352
10.2.1 License Terms352
10.2.2 (D 1ol =110 1) SO PP PP 352
R |1 = TP PRSP P PR OPR PPN 353
https://www.lairdconnect.com/ 8 Americas: +1-800-492-2320

© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird 2> CONNECTIVITY

User Guide

1 INTRODUCTION

This user guide provides detailed information on BL653-specific smartBASIC extensions which provide a high-level managed
interface to the underlying Bluetooth stack in order to manage the following:

= Perform GAP functionality such as scanning, advertising, and connections
= Perform GATT server functionality

= Perform GATT client functionality

= Perform pairing, bonding, and security manager functions

= Manage Tx power functionality

= Attribute encoding and decoding

= Perform NFC related functionality

= Events related to the above

1.1 What Does a BLE Module Contain?

Our smartBASIC-based BLE modules are designed to provide a complete wireless processing solution. Each contains the
following:

= A highly-integrated radio with an integrated antenna (external antenna options are also available)
= BLE Physical and Link layer

= Higher level stack

* Multiple SIO and ADC

= Wired communication interfaces such as UART, 12C, and SPI

= A smartBASIC run-time engine

= Program accessible flash memory — Contains a robust flash file system exposing a conventional file system and a
database for storing user configuration data

For simple end devices, these modules can replace an embedded processing system.

The following block diagram (Figure 1) illustrates the structure of the BLE smartBASIC module from a hardware perspective on
the left and a firmware/software perspective on the right.

L:14.8mm W:10mm H:2.1mm. (Pad pitch: 0.8mm)
65 connection pads |
|UART||GPIO|| ADC || 12¢ || SPI || NFe || usB |
[
Example App
smartBASIC
PRINT "Laird Programmable Module" Apps ARM Cortex M4
WAITEVENT with Floating Point Optional External
(oawz]
smartBASIC Non-Volatile I
i i Data ‘ [] Serial (SPI) Flash
run-time engine &
(provides safe access to hardware) @ 802.15.4 Radio BLE Radio (v5) Proprietary Radio
(E.g. Thread) 1MPHY + 2MPHY + LE-CODED (2.4GHz ISM Band)
[I]
Bluetooth Low Energy Stack \
NFC Stack T i Internal
Figure 1: Bluetooth smartBASIC module block diagram
https://www.lairdconnect.com/ 9 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940

All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions La rd‘."

. CONNECTIVITY
User Guide ‘)

2 MODULE CONFIGURATION

There are many features of the module that cannot be modified programmatically which relate to interactive mode operation or
alter the behaviour of the smartBASIC runtime engine. These configuration objects are stored in non-volatile flash and are
retained until the flash file system is erased via AT&F* or AT&F 1.

To write to these objects, which are identified by a positive integer number, the module must be in interactive mode and you
must use the AT+CFG command. To read current values of these objects, use the AT+CFG command, described here.

Predefined configuration objects are as listed under details of the AT+CFG command.

3 ERROR CODES

This section provides instructions on how to get error code information using UwTerminalX. UwTerminalX is always
maintained with the latest values.

3.1 Error Code Lookup

To look up specific error codes using the UwTerminalX Terminal tab, follow these steps:

1. From the Terminal tab of UwTerminalX, highlight the applicable error code.

Note: If the applicable error code is not displayed on the screen, manually type it out and then select it.

2. Right-click and select Lookup Selected Error-Code. Note both the hex and decimal options (Figure 2).

JRL=TEY

Tetminal I Config I Speed Test I Update I About I Logs I Editor I
c1sCy osRi Dy peo() RIC) RTs @ DR W ErEsk T Localecho W LineMode 0 Clear | Cipen Part |

[Port not open] [Download Tx Left: [0 [T I] I R I] I Last Rt I 1 I Cancel |

*Compile

¥Compile + Load
¥Compile + Load + Run
Load

Load + Run

Selected Erre

L_] o STo L

Enable Loopback (Rx-=Tx)
Figure 2: Lookup Selected Error-Code

The resulting error code definition displays as shown in Figure 3.

Ioix

Terminal | Config I Speed Test I Update I About I Lags I Editar I

15ty osR_) peo () RIC) r1s @ DR W BREsk T LocalEcho W0 Linetode 0 Clear | Cipen Part |
[Port not open] [Dawnload Tx Left: [1] [Tx: I 1] I R I 1] I Lask R I QI [Cancel |

too long and only a portion of it

Figure 3: Error code definition

https://www.lairdconnect.com/ 10 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

3.2 Error Code Viewer

UwTerminalX provides an error coder viewer which enables you to search for and view specific error codes.
To use this feature, follow these steps:

1. From the Config tab, click Error Code Viewer (Figure 4).
ol

Terminal Config | Speed Test | Update | about | Lo I Editor I

ok I ik | Duplicate Etrar Code Yiewer | BLES USE Dongle - Exit autorun I

—Pork Settings —Terminal —Misc
DevicelBL&Sx 'l ED: —||®cr CLF [~ Runprogrsm 8 Before © After ¥Compile
C CRLF C LFeR This allovws you to run a programbstchbsash file befores
Refresh | Auto | AT+FWRH Line Size: Isn after & smartBASIC file is HCompiledidownloaded, 61 wil
Port I ,l T G s dlearing Szcrteeplaced with the: shitnue file when the execution takes
Baudrate I 115200 jv o Eikp ol ety I™ Run program even if #Compils Fails

: lﬁ v Show application Filesize
fatitaiore = IPre,l'Post-XCompiIe Execution |

Iv Check license on download

Stop Bits |1 'l |
_ r Escape CRYLF|Tab Local ¥Compilers v orline ®Compile Cloud XCompilers
Data Bits I8 jv Iv shift+enter line seperator

By enskling ©Online XCompilation support, if & local

Handshaking ICTS,I'RTS 'l [Enable 55L ¥Compiler is not found, the source code will be uploaded
S Device Confi i | v weekly update check and compiled remotely on a Laird server. Uploaded file data
Save Device Configuration

iz not storedd by Laivd but P sddresses are stored in
access logs which are used for security purposes only.

[Latest firmware checking

Lag file: |UwTerminal. log ||_ Enstle Logging [Append to Loy

Figure 4: Error Code Viewer

2. From the Error Code Lookup window, you can do one of the following three options:
= Code Lookup Tab — Enter the hex-version of the error code (Figure 5).

[E Error Code Lookup 5'

g Type your 4-character error code: || =l

k]

| Search | Eulllist

lInvaIid. Copy I

Error code file version 1,07 Y/

Figure 5: Code Lookup tab

https://www.lairdconnect.com/ 11 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions La r

) CONNECTIVITY
User Guide _)

= Full List — Select the applicable error code from the full list of errors (Figure 6).

Error Code Lookup |

ED' 0z00: GENERIC_FAIL: There is a generic error whilst att & |
= 0zZ01: MALLOC FATL: An error occured whilst trying to al_
E NULL DOINTED: & mull pointer returned
S' 0z03: TIMEOUT: A timeout has ococured.
0z04: CODE_TOEE_WRITTEN: This function has not yet been
= 0z05: RESOURCE_FULL:
2 0z0&: RESOUBRCE_EMPTY:
EI 0z07: RESOURCE_DELETED:
|| 0&02: ACCEZE DENIED:
= 0z0%: INCORRECT_MODE: The mode of the device does not a
[0Z0A: EOF:
B |0z0B: OPEN_FAIL:
— |0Z0C: THWALTD HAWDLE: Ain inwalid handle was prowided to
0Z00: IGHNORED:
OZ0E: PAPAM CLIPPED: A parameter supplied was too long
0Z0F: MOT IMPLEMENTED: The function being used is not i
I'I?i'll'l- TTJ":F;T.TT) T'RV ATZE- _ILI
4 3

|D2D2: MULL_POIMTER: & null pointer was returned, there will be a problem whil:: Copy |

Error code file version 1,07 A

Figure 6: Full list of error codes

= Search — Use the Search feature to locate the applicable error code (Figure 7).

x
o
% IBIuetu:u:uth
=]
= £701: BTC_ALRBEADY THOUIRING: & classic Bluetooth indgquir &
SI E70&8: BTC_INV_MAC ADDRESE: The specified Eluetooth addr
—— | 5700: ETC_INV PIN: The prowvided pin for a classic Eluet
. L70F: BTC_EEY NOT_THM TARLE: There is no entry for the p
f 5710: BTC_LINE EEYT MISSTING: There is no link key for th
1 |5717: BTC_UNENOWM_LINE,_KEY TYPE: The provided classic E
E7159: BTC_INV_NAME LENGTH: The prowided classic Eluetoo
= 5714 BTC_NOT_PAIRAELE: The dewvice camneot pair using cl
% 571E: BTC_THW_PATR OFTION: The prowvided classic Eluetoo
L?ﬁ“ E71C: BTC_INVALID MODE: The prowided classic Elustooth
— | 571D BTC_TINVALID LIMITED TIMOUT: The prowvided classic
£800: BTS_TEEE MACADDD MISSING: There is neo IEEE Blueto
c01E: BLE TNV MAC ADDEESS: The BLE EBluetooth address is
601C: ELE_TIHNV _MAC ADDRESS TYFPE: The BLE Eluetooth addre _
<] _>I_I
IInvaIid. Copy |
Errar code file wersion 1,07 5

Figure 7: Error code search

https://www.lairdconnect.com/ 12 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions La

) CONNECTIVITY
User Guide _)

3.3 Error Code Updates

From the Update tab, you can check for error code updates as well as update to the latest error code database version
(Figure 8).

_laix]

Terminal I Canfig I Speed Test Update | About I Logs I Editor I

—Error Codes L Terminalis —Applications & Firmware

vhen an error iz encountered in an| [UwTerminalx iz an open =source| |Laird Connectivity provides sample
application and printed to the UART, if the | |application developed by Lsird | | applications for itz Bluetooth modules, all of
error code iz highlighted then you can| |Connectivity, the source code is| |wvhich iz freely available on Gihub wwehich
right click and zelect the 'Lookup Error| | available for dosvnloadmodification | | can be opened belowy. Additional information
Code' option, wwhich il display &l | from the Gihub project page linked| | can alzo be found on the Laird Connectivity

description of the error code. helowe. modules wwebsie,

Az mare errar codes get added, newer | | You can alsa use the button below to IBLE'54 ;I M

releazes of the errar code lookup file will| | check if there iz a newwer wersion of| |The currert firmware wersion of Laied

be made available which can be updated | | DwTerminaly available. Connectivity modules can be retrieved

from within UwTerminals using the below. UwFlashi is & new cross-platform

Check For Updates | : o

buttons belowy. P firmwyare updrade utility for Laird

e lfor Upd sl | Visit Github Project Page | Connectivity modules, information can be

found by selecting 'UwFlash' shove.

Mo updates available.

Update error codes | Latest Firmware

Mo updates available. Click the button below to
check faor the latest firmware

Check latest firmware |

Figure 8: Error code updates

https://www.lairdconnect.com/ 13 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

4 INTERACTIVE MODE COMMANDS

Below are some BL653-specific AT commands.

411 AT Il or ATl or ATIX
COMMAND

Provides compatibility with the AT command set of Laird’s standard Bluetooth modules.

Note: ATIX results in any integer values being displayed in hexadecimal.

AT | num

Returns \n10\tMM\tIinformation\r
\nOO\r

Where

\n = linefeed character Ox0A

\t = horizontal tab character 0x09

MM = a number (see below)

Information = string consisting of information requested associated with MM
\r = carriage return character 0x0OD

Arguments

num Integer Constant
A number in the range of 0 to 65,535. Currently defined numbers are:

0 Device Name
1 BLE Stack Build Number
2 Device Variant. For example, BL653
8 Version number of module firmware
4 Bluetooth Address
5 Chipset ID
6 File System Flash Segment Statistics
14 Static Random BLE address
16 NvRecords Flash Segment Statistics
24 If AT+MAC used to set IEEE address, then that mac address
26 BLE Bonding database segment
33 smartBASIC core version number
36 Config Keys Flash Serment Statistics
44 Current random BLE address

2080 Module startup time

2081 Get time in milliseconds since reset (overflows as 32-bit counter)

Get High Voltage mode as follows:
2083 0: Normal mode
1: High Voltage Mode
7001 Toolchain used to build firmware
0x8000+n Read the content of the FICR register whose address is 0x10000000+n
0x9000+n Read the content of the UICR register whose address is 0x10001000+n
O0xCOFE Displays the licence
0xC12C CRC of most recent file downloaded since reset - volatile
Interactive
Yes
Command
https://www.lairdconnect.com/ 14 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940

All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

This is an Interactive mode command and must be terminated by a carriage return for it to be processed.

‘Example:

AT i 3

10 3 30.1.1.0

00

AT I 4

10 4 01 D31A%20731BO

41.2 AT+CFG

COMMAND

AT+CFG is used to set a non-volatile configuration key. Configuration keys are comparable to S registers in modems. Their
values are kept over a power cycle but are deleted if the AT&F* command is used to clear the file system.

Unless otherwise stated, if a config key value is changed then a reset is required for it to take effect.

The “num value” syntax is used to set a new value and the “num ?” syntax is used to query the current value. When the value
is read the syntax of the response is:

27 Oxhhhhhhhh (dddd)
...where Oxhhhhhhhh is an eight hexdigit number which is 0 padded at the left and dddd is the decimal signed value.

AT+CFG num value or AT+CFG num ?

Returns If the config key is successfully updated or read, the response is \nOO\r.

Arguments:

Integer Constant

num The ID of the required configuration key. All of the configuration keys are stored as an array of 16-bit words.

Integer_constant
value This is the new value for the configuration key and the syntax allows decimal, octal, hexadecimal, or binary
values.

This is an Interactive mode command and must be terminated by a carriage return for it to be processed.
The following Configuration Key IDs are defined.

40 Maximum size of local simple variables

41 Maximum size of local complex variables

42 Maximum depth of nested user-defined functions and subroutines
43 The size of stack for storing user functions’ simple variables

44 The size of stack for storing user functions’ complex variables

45 The size of the message argument queue length

100 Enable/Disable Virtual Serial Port Service when in interactive mode. Valid values are:
0x0000 | Disable
0x0001 | Enable
0x81nn Enable ONLY if Signal Pin nn on module is HIGH
0xClnn | Enable ONLY if Signal Pin nn on module is LOW
ELSE Disable
101 In Virtual Serial Port Service, select either to use INDICATE or NOTIFY to send data to client.
0 Prefer Notify

https://www.lairdconnect.com/ 15 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

ELSE Prefer Indicate

This is a preference and the actual value is forced by the property of the TX characteristic of the service.

102 Advert interval in milliseconds when advertising for connections in interactive mode and AT Parse mode.
Valid values: 20 to 10240 milliseconds

103 Advert timeout in milliseconds when advertising for connections in interactive mode and AT Parse mode.
Valid values: 0 to 16383 seconds, where 0 means forever.

104 Data transfer is managed in the Virtual Serial Port service manager.
When sending data using NOTIFIES, the underlying stack uses transmission buffers of which there is a finite
number. This specifies the number of transmissons to leave unused when sending a lot of data and allows other
services to send notifies without having to wait for them.
The total number of transmission buffers can be determined by calling SYSINFO(2014) or in interactive mode
submitting the command ATi 2014

105 When in interactive mode and connected for virtual serial port services, this is the minimum connection interval in
milliseconds to be negotiated with the master.
Valid values: 0 to 4000 ms.
If a value of less than 8 is specified, then the minimum value of 7.5 is selected.

106 When in interactive mode and connected for virtual serial port services, this is the maximum connection interval
in milliseconds to be negotiated with the master.
Valid values: 0 to 4000 ms.

Note: If a value of less the minimum specified in 105, then it is forced to the value in
105 plus 2 milliseconds.

107 When in interactive mode and connected for virtual serial port services, this is the connection supervision timeout
in milliseconds to be negotiated with the master.

Valid range: 0 to 32000.
Note: If the value is less than the value in 106, then a value double the one in 106 is used.

108 When in interactive mode and connected for virtual serial port services, this is the slave latency to be negotiated
with the master. An adjusted value is used if this value times the value in 106 is greater than the supervision
timeout in 107

109 When in interactive mode and connected for virtual serial port services, this is the Tx power used for adverts and
connections. The main reason for setting a low value is to ensure that in production, if smartBASIC applications
are downloaded over the air, limited range allows many stations to be used to program devices.

110 If Virtual Serial Port Service is enabled in interactive mode (see 100), this specifies the size of the transmit ring
buffer in the managed layer sitting above the service characteristic FIFO register.
Valid range: 32 to 256

111 If Virtual Serial Port Service is enabled in interactive mode (see 100), this specifies the size of the receive ring
buffer in the managed layer sitting above the service characteristic fifo register.
Valid range: 32 to 256

112 If set to 1, then the service UUID for the virtual serial port is as per Nordic’s implementation and any other value
is per Laird’s modified service.
See more details of the service definition here.
VSP can also be configured using a $autorun$ application which does not have a waitevent statement so will exit
as soon as the VSP is configured.

113 This is the advert interval in milliseconds when advertising for connections in interactive mode and UART bridge
mode.
VSP can also be configured using a $autorun$ application which does not have a waitevent statement so will exit
as soon as the VSP is configured.

https://www.lairdconnect.com/ 16 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

Valid values: 0 to 16383 seconds, where 0 means forever.

114 This is the advert timeout in milliseconds when advertising for connections in interactive mode and UART bridge
mode.

VSP can also be configured using a $autorun$ application which does not have a waitevent statement so will exit
as soon as the VSP is configured.

Valid values: 0 to 16383 seconds. 0 disables the timer (makes it continuous)

115 This is used to specify the UART baudrate when Virtual Serial Mode Service is active and UART bridge mode is
enabled.

VSP can also be configured using a $autorun$ application which does not have a waitevent statement so will exit
as soon as the VSP is configured.

Valid values: 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 76800, 115200, 230400,
250000, 460800, 921600, 1000000.

Note: If aninvalid value is entered, then the default value of 9600 is used.

116 In VSP/UART bridge mode, this value specifies the latency in milliseconds for data arriving via the UART and
transfering to VSP and then onward on-air. This mechanism ensures that the underlying bridging algorithm waits
for up to this amount of time before deciding that no more data is going to arrive to fill a BLE packet and so
flushes the data onwards.

Note: Given that the largest packet size takes 20 bytes, if more than 20 bytes arrive then the latency timer is
overridden and the data is immediately sent.

120 Check if implemented on this platform and if implemented:-
This contains a bitmask. Bits 0 to 7 specify a gpio number in the range 0 to 255 and Bit 8 signifies the assert
level for Autorun app to be launched on startup.
For example, if you want sio pin number 40, when high, to allow $autorun$ app to be launched on startup, then
set the value of this config key to 0x128.

200 Maximum number of 128-bit, Vendor Specific UUID bases to allocate

204 Gatt Table : Attribute table size in bytes. The size must be a multiple of 4

205 Max number of connections acting as a peripheral (Can be up to 1)

206 Max number of connections acting as a central (Can be up to 16)

Note: In order to configure the device to be able to have eight connections as central, CFG 205 should be set
to 0, otherwise the device auto-adjusts to have seven connections as central and one as peripheral.

207 Max number of SMP instances for all connections acting as a central. We recommend that this is left to 1 as the
stack reserves memory for its use which is only used occasionally

208 Include the Service Changed characteristic in the Attribute Table (default is included)

209 Security manager is placed in debug mode to use the SIG defined debug key for LE Secure Connections pairing

210 Low Frequency Clock Configuration
The BL653 module does not have an onboard 32.768Khz low frequency crystal and that clock is derived from an
RC oscillator which is calibrated against the high frequency 32MHz crystal on a periodic basis. However, the user
has access to the relevant pins (SIO0 and SIO1) to fit the 32K crystal externally.

This register is used to configure the LF clock source to be either one or the other or even for autodetection.

Note: Autodetection means there is a startup delay from reset of up to half a second as opposed to about 1 to
2 milliseconds. This should be factored into any battery life calculations.

https://www.lairdconnect.com/ 17 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

This configuration register is a bitmask consisting of :

0..7 (8) Calibration Time Interval in 1/4 second units
8..15 (8) How often (in number of calibration intervals) the RC oscillator shall be calibrated
if the temperature hasn't changed.
16..26 (10) Crystal accuracy in ppm (0..1024ppm)
27..29 (3) Reserved for future use (set to 0)
30..31 (2) LF Clock Source : 00 - Autodetect
01 - RC Oscillator with Calibration against HF Clock
10 - Crystal
11 - Synthesized from HF Clock (Very power inefficient)

Note: If bits 30-31 is 10 then bits 0-15 are ignored,; likewise, if 30-31 is 01 then bits 16..26 are ignored.

The command AT | 2082 or from an application SYSINFO(2082) returns the actual parameters installed at the
instance. For example, if autodection is specified (bits 31..31 == 00) then the value returned is either 01, 10, or
11. And similarly for the other parameters, if invalid values where entered.

211 Maximum ATT_MTU size. Possible values are 23 — 247 Bytes.

212 Maximum Attribute data length. Possible values are 20 — 244 Bytes.

213 Use EVCHARVALUE and EVATTRNOTIFYEX instead of the default EVCHARVAL and EVATTRNOTIFY
respectively. These former events include all parameters in the event, including the string data, and therefore
provide improved throughputs. For more information, see EVCHARVALUE and EVATTRNOTIFYEX.

214 0 — Medium bandwidth (three packets per connection interval) is used on all connections.

1 — High bandwidth (six packets per connection interval) is used on the FIRST connection. Other connections
have medium bandwidth.

Note: When high bandwidth is used, the maximum number of connections that a device can have are reduced
from eight to six.

216 Maximum packet length a module can use (this is not the same as the current packet length). Possible values
are 27-251. By default this is set to 251.

518 The default UART TX ring buffer length.
519 The default UART RX ring buffer length.

520 The baudrate to use for command mode on power up. This setting is inherited by the $autorun$ application if a
print happens before an explicit uartopen inside that application.

Note: These values revert to factory default values if the flash file system is deleted using the
AT & F * interactive command.

https://www.lairdconnect.com/ 18 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

413 AT+CFGEX

COMMAND

AT+CFGEX is used to set a hon-volatile string configuration key. Configuration keys are comparable to S registers in modems.
Their values are kept over a power cycle but are deleted if the AT&F* command is used to clear the file system.

Unless otherwise stated, if a config key value is changed, a reset is required for it to take effect.

The num value syntax is used to set a new value and the num ? syntax is used to query the current value. When the value is
read, the syntax of the response is:

27 string
...where string is the current value of the configuration key.

AT+CFGEX num value or AT+CFGEX num ?

Returns If the config key is successfully updated or read, the response is \n0OO\r.
Arguments:
num Integer Constant
The ID of the required configuration key. All of the configuration keys are stored as an array of 16-bit words.
String_constant
value

This is the new string value for the configuration key.

This is an Interactive mode command and must be terminated by a carriage return for it to be processed.

The following Configuration Key IDs are defined.

117 VSP advertisement name, the name of the device which will be seen by scanning devices when the module is in
VSP mode (can be between 1-31 bytes in length).

Default value is: LAIRD BL653

Note: These values revert to factory default values if the flash file system is deleted using the AT & F * interactive
command.

414 AT+BTD *

COMMAND

Deletes the bonded device database from the flash.
AT+BTD*

Returns \nOO\r

Arguments None

This is an Interactive Mode command and must be terminated by a carriage return for it to be processed.

Note: The module self-reboots so that the bonding manager context is also reset.

Example:

AT+BTD*

https://www.lairdconnect.com/ 19 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

415 AT + MAC “12 hex digit mac address”

COMMAND

This is a command that is successful one time as it writes an IEEE MAC address to non-volatile memory. This address is
then used instead of the random static MAC address that comes preprogrammed in the module.

Notes: If the module has an invalid licence, then this address is not visible.
If the address 000000000000 is written then it is treated as invalid and prevents a new address from being
entered.

AT + MAC “12 hex digits”

Returns \nOO\r

or

\n01 192A\r

Where the error code 192A is NVO_NVWORM_EXISTS. This means that an IEEE MAC address already
exists; this can be read using the command AT | 24

Arguments | A string delimited by “” which shall be a valid 12 hex digit MAC address that is written to non-volatile
memory.

This is an interactive mode command and MUST be terminated by a carriage return for it to be processed.

Note: The module self-reboots if the write is successful. Subsequent invocations of this command generate an error.

Interactive Command: YES

‘Examples:

AT+MAC “008098010203”

416 AT+BLX
COMMAND

This command is used to stop all radio activity (adverts or connections) when in interactive mode. It is particularly useful when
the virtual serial port is enabled while in interactive mode.

AT+BLX

Returns \nOO\r

Arguments: None

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

Example

AT+BLX

https://www.lairdconnect.com/ 20 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide La"'d 2» CONNECTIVITY

417 AT&F
COMMAND

AT&F provides facilities for erasing various portions of the module’s non-volatile memory.

AT&F integermask

Returns OK if flash is successfully erased
Arguments

Integermask Integer corresponding to a bit mask or the * character

The mask is an additive integer mask with the following acceptable values:

0x0000xxxX Also see core user guide
1 Erases flash file system
0x100 Erase the system config keys’ flash segment (AT+CFG)
0x10000 Erase the BLE bonding manager
0x10 or 0x40000 Erase the NvRecords flash segment
* Erases all data segments
Else Not applicable to current modules

If an asterisk is used in place of a number, then the module is configured back to the factory default state by erasing all flash
file segments.

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

AT&F 1 ‘delete the file system
AT&F 16 ‘delete the user config keys
AT&F * ‘delete all data segments

418 AT+PROTECT
COMMAND

This command is used to enable readback protection of the flash. For this command to be issued correctly, the readback
protection flag should first be enabled using AT+PROTECT “E” followed by setting the protection using AT+PROTECT “S”.

WARNING: Enabling readback protection is a one time only command. Exiting this mode completely erases the firmware
and requires the use of an nrfjprog command to be issued through the JTAG interface. Once erased, a new
license for the module is needed. While this mode is enabled, firmware upgrade can only be carried out over
UART. Do not enable readback protection unless absolutely necessary.

Note: To make note of the license, keep a copy of the response to the command AT | 14 and AT | OxCOFE.

AT+PROTECT “Char”
Returns 00 for successful execution.

Arguments:

A character which could be one of the following values:
«Char” E — Enable the readback protection flag.
ar D — Disable the readback protection flag.

S — Set readback protection on the module. This is an irreversible command.

This is an Interactive mode command and must be terminated by a carriage return for it to be processed.

https://www.lairdconnect.com/ 21 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

419 AT+REGOUTO

COMMAND

This command is used to enable external circuitry to be supplied from the VDD pin and set the external output/supply voltage
value. This command can only be performed once and the module must be reset (using SIO_18, ATZ, reset(0), or UART
BREAK) for the new value to take effect.

AT+REGOUTO nValue

Returns 00 for successful execution.

Arguments:
0:1.8v
1:2.1v
2:2.4v
3:2.7v
4:3.0v
5:3.3v

nValue

This is an Interactive mode command and must be terminated by a carriage return for it to be processed.

5 CORE LANGUAGE BUILT-IN ROUTINES

Core language built-in routines are present in every implementation of smartBASIC. These routines provide the basic
programming functionality. They are augmented with target-specific routines for different platforms which are described in the
extension manual for each target platform.

All the core functionality is described in the Laird smartBASIC Core Functionality Guide. This document is available from the
BL653 product page on the Laird website. Additional information is also available from our Laird Embedded Wireless Solutions
Support Center at https://www.lairdconnect.com/resources/support.

Some functions have small behavioral differences from the core functionality. These are listed in the sections below.

5.1 Information Routines
511 SYSINFO

FUNCTION
Returns an informational integer value depending on the value of varld argument.

SYSINFO (varld)

Returns INTEGER. Value of information corresponding to integer ID requested.

= Local Stack Frame Underflow

Exceptions = Local Stack Frame Overflow
Arguments:
byVal varld AS INTEGER
An integer ID which is used to determine which information is to be returned as described below.
0 Device ID. Each platform type has a unique identifier.
Module firmware version number
varld Example:
W.X.Y.Z is returned as a 32-bit value made up as follows:
3 (W<<24) + (X<<18) + (Y<<6) + (2)
where W is the platform and will always be 30 for the BL653 and X is changed whenever 3
party libraries are changed. In this case the Nordic Softdevice and Y is the build number and Z
is the sub-build number.
https://www.lairdconnect.com/ 22 Americas: +1-800-492-2320

© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

https://www.lairdconnect.com/wireless-modules/bluetooth-modules/bluetooth-5-modules/bl653-series-bluetooth-51-802154-nfc-module
https://www.lairdconnect.com/resources/support

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

Note you can check the Softdevice build number in command mode by submitting the
command AT | 1
BASIC core version number
Example:
33 A.B is returned as a 32 bit value made up as follows:
(A<<8) + (B)
and note the string “A.B” is returned via command mode command AT | 33
601 Flash File System: Data Segment: Total Space
602 Flash File System: Data Segment: Free Space
603 Flash File System: Data Segment: Deleted Space
611 Flash File System: FAT Segment: Total Space
612 Flash File System: FAT Segment: Free Space
613 Flash File System: FAT Segment: Deleted Space
631 NvRecord Memory Store Segment: Total Space
632 NvRecord Memory Store Segment: Free Space
633 NvRecord Memory Store Segment: Deleted Space
1000 BASIC compiler HASH value as a 32 bit decimal value
1001 How RAND() generates values: 0 for PRNG and 1 for hardware assist
1002 Minimum baudrate
1003 Maximum baudrate
1004 Maximum STRING size
1005 Is 1 for run-time only implementation, 3 for compiler included
1010 Module Type
Reset Reason
= 8 : Self-Reset due to Flash Erase
= 9:ATZ
= 10: Self-Reset due to smart BASIC app invoking function RESET()
Cause of last reset. This is a bit mask where the bits are defined as follows:
Bit 0: Reset from pin-reset
Bit 1: Reset from watchdog
2001 Bit 2: Reset from soft reset
Bit 3: Reset from CPU lockup
Bit 16: Reset due to wake up from System OFF mode when wakeup is triggered from GPIO
Bit 19: Reset due to wake up from System OFF mode by NFC field detect
2002 Timer resolution in microseconds
2003 Number of timers available in a smart BASIC Application
2004 Tick timer resolution in microseconds
2005 LMP Version number for BT 4.0 spec
2006 LMP Sub Version number
2007 Chipset Company ID allocated by BT SIG
2008 Returns the current TX power setting (see also 2018)
2009 Number of devices in trusted device database
2010 Number of devices in trusted device database with IRK
2011 Number of devices in trusted device database with CSRK
2012 Max number of devices that can be stored in trusted device database
2013 Maximum length of a GATT Table attribute in this implementation
Radio activity of the baseband and the BT allocation is as follows:-
0 — advertising
1 — connected as slave
2 — Initiating a connection
3 — scanning for adverts
4 — connected as master

2018 Returns the TX power while pairing in progress (see also 2008)

2000

2016

https://www.lairdconnect.com/ 23 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide

La i rd“ 2» CONNECTIVITY

2021

Stack tide mark in percent. Values near 100 are not good.

2022

Stack size

2023

Initial Heap size

2024

The chipset temperature in tenth of a centigrade. For example, 23.4 is returned as 234

2025

Current used heap memory.

Note: This is the total of all used blocks. It is entirely possible to get a MALLOC_FAIL even
though this indicates there is enough memory for your need because there may not
be a block large enough to accommodate the request.

Although smartBASIC does not directly expose malloc/free, they are used extensively in
STRING variable operations.

2026

Supply voltage in millivolts

2040

Max number of devices that can be stored in trusted device database

2041

Number of devices in trusted device database

2042

Number of devices in the rolling device database

2043

Maximum number of devices that can be stored in the rolling device
Database

2044

Returns a 16 bit hash of the current state of the Gatt Table Schema

2050

Will be 0 if NFC pins are disabled and 1 if enabled

2051

Maximum number of NDEF messages that can be created simultaneously

2052

Maximum size of an NDEF message in bytes

2060

Bootloader variant
0: Legacy
1: Secure Bootloader

2080

The startup time from reset to just before the autorun application is launched in milliseconds

2081

The current tick count in milliseconds

2082

This is a bitmask value
The actual Low Frequency Clock configuration submitted to the softdevice. See AT+CFG 210
description for details about the 4 bit fields in the 32 bits

2083

Get High Voltage Mode as follows:-
0: Normal mode

1: High Voltage Mode

2100

Connect Scan Interval used when connecting, in milliseconds

2101

Connect Scan Window used when connecting, in milliseconds

2102

Connect Slave Latency default value in connection requests

2105

Connect Multi-Link Connection Interval periodicity in milliseconds

2150

Scan Interval used when scanning in milliseconds

2151

Scan Window used when scanning in milliseconds

2152

Scan Type Active or Passive (O=Passive, 1=Active)

2203

Advert Channel Mask

0x8000

Ox87FF

Content of FICR register in the Nordic nrf52833 chipset. In the nrf52833 datasheet, in the
FICR section, all the FICR registers are listed in a table with each register identified by an
offset, so for example, to read the Code memory page size which is at offset 0x010, call
SYSINFO(0x8010) or in interactive mode use AT | 0x8010.

0x9000

0x9800

Content of UICR register in the Nordic nrf52 chipset. In the nrf52833 datasheet, in the UICR
section, all the UICR registers are listed in a table with each register identified by an offset, so
for example, to read the NFC pins functionality which is at offset 0x20C, call
SYSINFO(0x920C) or in interactive mode use AT | 0x920C.

https://www.lairdconnect.com/

24 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

) Lall“d J» CONNECTIVITY
User Guide

Example:

// Example :: SysInfo.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

PRINT "\nSysInfo 601 = ";SYSINFO (601) // Flash File System: Total Space (Data Segment)
PRINT "\nSysInfo 2102 = ";SYSINFO(2102) // Default connect slave latency
PRINT "\nSysInfo 1002 = ";SYSINFO(1002) // Minimum UART baud rate

Expected Output:

SysInfo 601 = 49152
SysInfo 2102 =0
SysInfo 1002 = 1200

5.1.2 SYSINFO$
FUNCTION

Returns an informational string value depending on the value of varld argument.

SYSINFOS$ (varld)

Returns STRING. Value of information corresponding to integer ID requested.

Exceptions = Local Stack Frame Underflow
= Local Stack Frame Overflow

Arguments:
varld byVal varld AS INTEGER
An integer ID which is used to determine which information is to be returned as described below.
The Bluetooth address of the module.

4 It is seven bytes long. First byte is 00 for IEEE public address and 01 for random public address.
Next six bytes are the address.

A random public address unique to this module. May be the same value as in 4 above unless an
IEEE Bluetooth address is set.

14
It is seven bytes long. First byte is 00 for IEEE public address and 01 for random public address.
Next six bytes are the address.
Example:
// Example :: SysInfo$.sb

// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM s$

s$= SYSINFOS (4)

PRINT "\nSysInfo$ (4)
s$= SYSINFOS (14)
PRINT "\nSysInfo$ (14)
s$= SYSINFOS (0)

PRINT "\nSysInfo$ (0)

"; STRHEXIZES (s$) // address of module

";SYSINFOS (s$) // public random address

"; SYSINFOS$ (s$)

Expected Output:

SysInfo$ (4) = 000016A4B75403
SysInfo$ (14) = 01E2B56986B2E6
SysInfos$ (0)
https://www.lairdconnect.com/ 25 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940

All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

5.2 UART Interface

5.2.1 UartOpen
FUNCTION

This function is used to open the main default UART peripheral using the parameters specified.

See core manual for further details.

UARTOPEN (baudrate, txbuflen, rxbuflen, stOptions)

byVal stOptions AS STRING
This string (can be a constant) MUST be a minimum five characters long where each character is used to
specify further comms parameters as follows.

Character Offset:
DTE/DCE role request:
0 = T-DTE
= C-DCE
Parity:

= N-None
= O-0dd (NotAvailable)
= E - Even (Not Available)

2 Databits: 8
] 3 Stopbits: 1
stOption Flow Control:
S = N-None
= H-CTS/RTS hardware
= X — Xon/Xof (Not Available)

SIO pin for RTS (\FF for default pin)

SIO pin for TX (\FF for default pin)

SIO pin for CTS (\FF for default pin)

SIO pin for RX (\FF for default pin)

Behaviour when detected a UART_BREAK

O0=Enter Deep Sleep

1=No Action

2= Send EVUARTBREAK event to smartBASIC application

0 = The event EVUARTCTS is not sent to the smartBASIC application
10 = The event EVUARTCTS is sent to the smartBASIC application

(e R NR o REé]

10

The following baud rates are supported: 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 76800, 115200, 230400,
250000, 460800, 921600 and 1000000 baud.

5.2.2 UartSetRTS

The BL63 module does not offer the capability to control the RTS pin as the underlying hardware does not allow it.

5.2.3 UartBREAK

The BL653 module does not offer the capability to send a BREAK signal.

https://www.lairdconnect.com/ 26 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

5.3 Auxiliary UART (Universal Asynchronous Receive Transmit)

This section describes all the events and routines used to interact with the Auxilliary UART peripheral available on the module.
Depending on the platform, at a minimum, the UART consists of a transmit, a receive, a CTS (Clear To Send) and RTS (Ready
to Send) line. The CTS and RTS lines are used for hardware handshaking to ensure that buffers do not overrun.

If there is a need for the following low bandwidth status and control lines found on many peripherals, then the user is able to
create those using the GPIO lines of the module and interface with those control/status lines using smartBASIC code.

Output DTR Data Terminal Ready
Input DSR Data Set Ready
Output/Input DCD Data Carrier Detect
Output/Input RI Ring Indicate

The lines DCD and RI are marked as Output or Input because it is possible, unlike a device like a PC where they are always
inputs and modems where they are always outputs, to configure the pins to be either so that the device can adopt a DTE (Data
Terminal Equipment) or DCE (Data Communications Equipment) role.

Note: DCD and RI have to be BOTH outputs or BOTH inputs; one cannot be an output and the other an input.

5.3.1 Auxilliary UART Events

In addition to the routines for manipulating the Auxilliary UART interface, when data arrives via the receive line it is stored locally
in an underlying ring buffer and then an event is generated.

Similarly, when the transmit buffer is emptied, events are thrown from the underlying drivers so that user smartBASIC code in
handlers can perform user defined actions.

The following is a detailed list of all events generated by the UART subsystem which can be handled by user code.

This event is generated when one or more new characters have arrived and have been

EVAUXRX . .
v stored in the local ring buffer.

EVAUXTXEMPTY This event is generated when the last character is transferred from the local transmit ring
buffer to the hardware shift register.

EVAUXCTS This event , when enabled, reports CTS changes. Use AuxInfo(7) to determine the
current state of the CTS input line. See AuxInfo() for more details

// Example :: EVAUXRX.sb

DIM rc

FUNCTION HndlrAuxRx ()
PRINT "\nData has arrived\r"
ENDFUNC 1 //remain blocked in WAITEVENT

FUNCTION BtnOPressed()
ENDFUNC 0

rc = GPIOBindEvent (0,16,1)
PRINT "\nPress Button 0 to exit this application \n"

ONEVENT EVAUXRX CALL HndlrAuxRx
ONEVENT EVGPIOCHANO CALL BtnOPressed

WAITEVENT //wait for rx, tx and modem status events
PRINT "Exiting..."

https://www.lairdconnect.com/ 27 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

Expected Output:

Press Button 0O to exit this application

Note: If you type unknown commands, an EQ07 error displays in UwTerminal.

// Example :: EVAUXTXEMPTY.sb
FUNCTION HndlrUartTxEty ()
PRINT "\nTx buffer is empty"
ENDFUNC 0
ONEVENT EVAUXTXEMPTY CALL HndlrAuxTxEty

PRINT "\nSend this via uart"

WAITEVENT

Expected Output:

Send this via uart

Tx buffer is empty

5.3.2 AUXOpen

Note: If communicating with a Mac OS X device, the baud rate cannot be set above 230400 due to Mac having no
support for these baud rates.

FUNCTION
This function is used to open the Auxilliary UART peripheral using the parameters specified.
If the UART is already open, then this function fails. To prevent this, call AuxClose() or AuxCloseEx() before calling this function.

If this function is used to alter the communications parameters, like say the baudrate and the application exits to interactive
mode, then those settings are inherited by the interactive mode parser. Hence this is the only way to alter the communications
parameters for Interactive mode.

While the Auxilliary UART is open, if a BREAK is sent to the module, then by default it forces the module into deep sleep mode
as long as BREAK is asserted. As soon as BREAK is deasserted, the module wakes up through a reset as if it had been power
cycled. See byte 9 of the stOptions parameter to change the behaviour.

https://www.lairdconnect.com/ 28 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

AUXOPEN (baudrate,txbuflen,rxbuflen,stOptions)

INTEGER Indicates success of command:
0 Opened successfully
0x5208 Invalid baudrate
0x5209 Invalid parity
0x520A Invalid databits
0x520B Invalid stopbits

Returns: 0x520C Cannot be DTE (because DCD and RI cannot be inputs)
0x520D Cannot be DCE (because DCD and RI cannot be outputs)
0x520E Invalid flow control request
0x520F Invalid DTE/DCE role request
0x5210 Invalid length of stOptions parameter (must be five characters)

0x5211 Invalid Tx buffer length
0x5212 Invalid Rx buffer length

= Local Stack Frame Underflow
= | ocal Stack Frame Overflow

Exceptions

Arguments:

byVal baudrate ASINTEGER

The baudrate for the UART. Note that, the higher the baudrate, the more power is drawn from the
baudrate supply pins.

AT 11002 or SYSINFO(1002) returns the minimum valid baudrate

AT 11003 or SYSINFO(1003) returns the maximum valid baudrate

byVal txbuflen AS INTEGER
txbuflen Set the transmit ring buffer size to this value. If set to 0 then a default value is used by the
underlying driver

byVal rxbuflen AS INTEGER
Rxbuflen Set the receive ring buffer size to this value. If set to O then a default value is used by the
underlying driver

byVal stOptions AS STRING
This string (can be a constant) MUST be a minimum of five characters long where each character
is used to specify further comms parameters as follows.

Character Offset:
DTE/DCE role request:
0 » T-DTE
= C-DCE
Parity:
1 L N — None
stOptions = O-0dd

= E — Even
2 Databits: 5, 6, 7, 8, or 9

3 Stopbits: 1 or 2

Flow Control:

= N-None
= H-CTS/RTS hardware
= X - Xon/Xof (may not be available, see extension manual)

5 SIO pin to use for RTS

https://www.lairdconnect.com/ 29 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

6 SIO pin to use for TX
7 SIO pin to use for CTS
8 SIO pin to use for RX

Behaviour when detected a AUX_BREAK

O=Enter Deep Sleep

9 1=No Action

2= Send EVAUXTBREAK event to smartBASIC application

0 = The event EVAUXCTS is not sent to the smartBASIC application

10
10 = The event EVAUXCTS is sent to the smartBASIC application

Interactive

N
Command ©

Note: There are further restrictions on the options based on the hardware as for example a PC implementation cannot be
configured as a DCE role. Likewise, many microcontroller UART peripherals are not capable of 5 bits per character
—butaPCis.

Note: In DTE equipment DCD and RI are inputs, while in DCE they are outputs.

5.3.3 AUXClose

FUNCTION
This subroutine is used to close the auxilliary UART port which had been opened with AUXOPEN.

When this subroutine is invoked, the receive and transmit buffers are both flushed. If there is any data in either of these
buffers when the UART is closed, it will be lost. This is because the execution of AUXCLOSE takes a very short amount of
time, while the transfer of data from the buffers takes much longer.

AUXCLOSE()

Local Stack Frame Underflow
= Local Stack Frame Overflow

Arguments None

Exceptions

5.3.4 AUXCloseEx

FUNCTION

This function is used to close the Auxilluary UART port which had been opened with AUXOPEN depending on the flag mask in
the input parameter.

Please see UartClose() for more details.
AUXCLOSEEX(nFlags)

INTEGER
Returns An integer result code. The most typical value is 0x0000, which indicates a successful operation.
If 0x5231 is returned it implies one of the buffers was not empty so not closed.
= Local Stack Frame Underflow

Exceptions = Local Stack Frame Overflow
Arguments
byVal nFlags AS INTEGER
If Bit O is set, then only close if both rx and tx buffers are empty. Setting this bit to 0 has the same
nFlags .
effect as UartClose() routine.
Bits 1 to 31 are for future use and must be set to 0.
https://www.lairdconnect.com/ 30 Americas: +1-800-492-2320

© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

5.3.5 AUXInfo
FUNCTION

This function is used to query information about the Auxilliary UART, such as buffer lengths, whether the port is already open
or how many bytes are waiting in the receive buffer to be read.

AUXINFO (infold)

Returns INTEGER The value associated with the type of uart information requested
Local Stack Frame Underflow

Exceptions = Local Stack Frame Overflow
Arguments
byval infold AS INTEGER
This specifies the type of UART information requested as follows if the UART is open:
0 1 - The port is open
0 — The port is closed
The following specify the type of uart information when the port is open:
1 Receive ring buffer capacity
_ 2 Transmit ring buffer capacity
infold 3 Number of bytes waiting to be read from receive ring buffer
4 Free space available in transmit ring buffer
5 Number of bytes still waiting to be sent in transmit buffer
6 Total number of bytes waiting in rx and tx buffer
7 Get status of CTS input
8 Count of how many times CTS has changed. Value from 0 to OxFFFF and the
count wraps to 0 after OxFFFF

If the AUX interface is closed, 0 is always returned regardless of the value of infold.
Note: AUXINFO(0) always returns the open/close state of the AUX interface.

5.3.6 AUXWrite

FUNCTION

This function is used to transmit a string of characters from the auxilliary uart interface
AUXWRITE (strMsg)

INTEGER
0 to N : Actual number of bytes successfully written to the local transmit ring buffer
= Local Stack Frame Underflow
Exceptions = Local Stack Frame Overflow
= UART has not been opened using UARTOPEN (or auto-opened with PRINT statement)

Returns

Arguments

byRef strMsg AS STRING

The array of bytes to be sent. STRLEN(strMsg) bytes are written to the local transmit ring buffer. If
STRLEN(strMsg) and the return value are not the same, this implies the transmit buffer did not have
enough space to accommodate the data. If the return value does not match the length of the original
string, then use STRSHIFTLEFT function to drop the data from the string, so that subsequent calls to
this function only retries with data which was not placed in the output ring buffer.

strMsg

https://www.lairdconnect.com/ 31 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

Interactive

Command NO

Note: strMsg cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first
save it to a temp string variable and then pass it to the function.

5.3.7 AUXRead

FUNCTION

This function is used to read the content of the receive buffer of the Auxilliary uart port and append it to the string variable
supplied.

AUXREAD(strMsg)

INTEGER 0to N : The total length of the string variable — not just what got appended. This
Returns means the caller does not need to call strlen() function to determine how many bytes in the string
that need to be processed.
= Local Stack Frame Underflow

Exceptions = Local Stack Frame Overflow
= Uart has not been opened using UARTOPENXxxx

Arguments
StrMs byRef strMsg AS STRING
9 The content of the receive buffer is appended to this string.
Interactive
NO
Command
Note: strMsg cannot be a string constant (e.g. “the cat”); they must be a string variable. If you must use a const string,

first save it to a temp string variable and then pass it to the function.

5.3.8 AUXReadN

FUNCTION

This function is used to read the content of the receive buffer of the Auxilliary uart port and append it to the string variable
supplied but it ensures that the string is not longer than nMaxLen.

AUXREADN(strMsg, nMaxLen)

INTEGER 0to N : The total length of the string variable — not just what got appended. This
Returns means the caller does not need to call strlen() function to determine how many bytes in the string
that need to be processed.
= Local Stack Frame Underflow

Exceptions = Local Stack Frame Overflow
= Uart has not been opened using UARTOPENXxxx

Arguments
strMs byRef strMsg AS STRING
9 The content of the receive buffer is appended to this string.

byval nMaxLen AS INTEGER

AMaxLen The output string strMsg is never longer than this value unless on entry the string was already
longer. If a value less than 1 is specified, it is clipped to 1 and if > that OxFFFF it is clipped to
OXFFFF.

Interactive

Command NO

https://www.lairdconnect.com/ 32 Americas: +1-800-492-2320

© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

Note: strMsg cannot be a string constant (e.g. “the cat”); they must be a string variable. If you must use a const string,
first save it to a temp string variable and then pass it to the function.

5.3.9 AUXReadMatch

FUNCTION

This function is used to read the content of the underlying receive ring buffer of the Auxilliary uart port and append it to the
string variable supplied, up to and including the first instance of the specified matching characters (up to a sequence of 3
characters) OR the end of the ring buffer.

This function is very useful when interfacing with a peer which sends messages terminated by a constant character such as a
carriage return (0x0D) or the dual character sequence (0xOD OxOA). In that case, in the handler, if the return value is greater
than 0, it implies a terminated message arrived and so can be processed further.

AUXREADMATCH(strMsg , chr)

INTEGER Indicates the presence of the match character in strMsg as follows:

0 — Data may have been appended to the string, but no matching character.

1 to N — The total length of the string variable up to and including the match chr.

Note: When 0 is returned you can use STRLEN(strMsg) to determine the length of data stored
in the string. On some platforms with low amount of RAM resources, the underlying code
may decide to leave the data in the receive buffer rather than transfer it to the string.

= Local Stack Frame Underflow

Exceptions *= Local Stack Frame Overflow
= Uart has not been opened using UARTOPEN

Returns

Arguments
byRef strMsg AS STRING

strMsg The content of the receive buffer gets appended to this string up to and including the match
character.
byVal chrs ASINTEGER
The characters to match in the receive buffer; for example, the carriage returns character 0x0D, or
0x0AOQD.

Chrs For 0XOAOD, it will mean the string <CR><LF> because an integer constant is specified in little
endien format.
The most significant byte MUST be 0x00 as it is taken as the NULL terminator for the string that is
cast from this 4 byte integer value.

Interactive
NO

Command

Note: strMsg cannot be a string constant (e.g. “the cat”); they must be a string variable. If you must use a const string,

first save it to a temp string variable and then pass it to the function.

https://www.lairdconnect.com/ 33 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

5.3.10 AUXFlush

SUBROUTINE
This subroutine is used to flush either or both receive and transmit ring buffers of the Auxilliary uart port.

This is useful when, for example, you have a character terminated messaging system and the peer sends a very long
message and the input buffer fills up. In that case, there is no more space for an incoming termination character and the RTS
handshaking line would have been asserted so the message system stalls. A flush of the receive buffer is the best approach
to recover from that situation.

Note: Execution of AUXFLUSH is much quicker than the time taken to transmit data to/from the
buffers

AUXFLUSH(bitMask)

= Local Stack Frame Underflow
Exceptions = Local Stack Frame Overflow
= Uart has not been opened using UARTOPEN

Arguments
byVal bitMask AS INTEGER
This bit mask is used to choose which ring buffer to flush.
. Bit Description
bitMask 0 Set to flush the Rx buffer
1 Set to flush the Tx buffer
e o

5311 AUXGetCTS

FUNCTION

This function is used to read the current state of the CTS status input line of the Auxilliary Uart port

If the device does not expose a CTS input line, then this function returns a value that signifies an asserted line.
AUXGETCTS()

INTEGER Indicates the status of the CTS line:
Returns 0 : CTSlineis NOT asserted
1 : CTSlineis asserted
= Local Stack Frame Underflow

Exceptions *= Local Stack Frame Overflow
= Uart has not been opened using UARTOPEN
Arguments None
Interactive
NO

Command

https://www.lairdconnect.com/ 34 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940

All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

5.3.12 AUXSetRTS

The BL653 module does not offer the capability to control the RTS pin as the underlying hardware does not allow it.

5.3.13 AUXBreak

The BL653 module does not offer the capability to send a BREAK signal from the Auxilliary uart port

5.4 12C - Two Wire Interface (TWI)

The BL653 can be only be configured as an 12C master if it is the only master on the bus and only 7-bit slave addressing is
supported. Refer to the core user guide for API details.

When the 12C interface is opened using 12cOpen() or 12cOpenEx(), it takes a frequency parameter for the clock
line. Valid values are 100KHz, 250KHz and 400KHz.

Note: 12COpenEXx() allows for SCL and SDA to be routed to other gpio pins.

5.5 Input/Output Interface Routines

1/0 and interface commands allow access to the physical interface pins and ports of the smartBASIC modules. Most of these
commands are applicable to the entire range of modules. However, some are dependent on the actual I/O availability of each
module.

There are 42 SIO (Special 1/0) pins available for use on the BL653. All of these pins can be configured to provide additional
types of functionality. However, some of the pins have set functionality that should never be changed.

Note: All of the pins can be configured as digital inputs or outputs, therefore these are not listed in the table below.

Exception: SIO 19, 22, 23, 33, 37 and 43 are No Connection (NC) so are not available for use

Table 1: SIO ﬁin functionaliti

0 XTAL1

1 XTAL2

2 Adc00, Vsp

3 Adc01

4 Adc02/SPIM MISO

5 UART_RTS/Adc03

6 UART_TX

7 UART_CTS

8 UART_RX

9 NFC1

10 NFC2

11 No alternate functionality

12 No alternate functionality

13 No alternate functionality

14 No alternate functionality
https://www.lairdconnect.com/ 35 Americas: +1-800-492-2320

© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

15 No alternate functionality
16 No alternate functionality
17 No alternate functionality
18 Reset (Cannot be used as an SIO pin)
19 NC

20 No alternate functionality
21 No alternate functionality
22 NC

23 NC

24 No alternate functionality
25 No alternate functionality
26 12cData

27 12cClock

28 Adc04

29 Adc05

30 Adc06

31 Adc07

32 No alternate functionality
33 NC

34 No alternate functionality
35 Autorun

36 No alternate functionality
37 NC

38 No alternate functionality
39 No alternate functionality
40 SPIM MOSI

41 SPIM CLK

42 No alternate functionality
43 NC

44 SPIM CS

45 No alternate functionality
46 No alternate functionality
47 No alternate functionality

Notes: Where Autorun or Vsp functionality is required, that pin can only be used for that function and cannot be changed.
Pwm option outputs a fully configurable waveform; Freq option outputs a 50:50 mark space ratio waveform.

SPIM refers to SPI Master peripheral.

https://www.lairdconnect.com/ 36 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

5.5.1 Events and Messages

EVGPIOCHANN Here n is from 0 to N where N is platform dependent and an event is generated when a
preconfigured digital input transition occurs. The number of digital inputs that can auto-generate is
hardware dependent. For the BL653. N can be 0, 1, 2, or 3.

Use GpioBindEvent() to generate these events. See example for GpioBindEvent().

EVDETECTCHANNn Here nis from 0 to N where N is platform dependent and an event is generated when a
preconfigured digital input transition occurs. The number of digital inputs that can auto-generate is
hardware dependent. For the BL653, N can only be 0.

Use GpioAssignEvent() to generate these events.

5.5.2 GpioSetFunc
FUNCTION

This routine sets the function of the SIO pin identified by the nSigNum argument.

The module datasheet contains a pinout table which denotes SIO pins. The number designated for that special 1/0 pin
corresponds to the nSigNum argument.

The nFunction argument denotes the required functionality. Use only supported values from Table 1.
The bSubFunc argument defines the configuration of the requested function.
GPIOSETFUNC (nSigNum, nFunction, nSubFunc)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nSigNum byVal nSigNum AS INTEGER.
The signal number as stated in the pinout table of the module..

nFunction byVal nFunction AS INTEGER.
Specifies the configuration of the SIO pin as follows:
1 =DIGITAL_IN
2 = DIGITAL_OUT
3 =ANALOG_IN

nSubFunc byVal nSubFunc INTEGER
Configures the pin as follows:
If nFunction == DIGITAL_IN
Bits 0..3

0x01 Pull down resistor (weak)

0x02 Pull up resistor (weak)

0x03 Pull down resistor (strong)

0x04 Pull up resistor (strong)

Else No pull resistors
Bits 4,5
0x10 When in deep sleep mode, awake when this pin is LOW

0x20 When in deep sleep mode, awake when this pin is HIGH

Else No effect in deep sleep mode

https://www.lairdconnect.com/ 37 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

Bits 8..31
Must be 0s

If nNFuncType == DIGITAL_OUT
Values:

0 Initial output to LOW
1 Initial output to HIGH

Output is PWM (Pulse Width Modulated Output). See function GpioConfigPW() for more
configuration. The duty cycle is set using function GpioWrite().

Output is FREQUENCY. The frequency is set using function GpioWrite() where 0 switches off the
3 output; any value in range 1..4000000 generates an output signal with 50% duty cycle with that
frequency.

Bits 4..6 (output drive capacity)

0 = Standard; 1 = Standard
0 = High; 1 = Standard

0 = Standard; 1 = High

0 = High; 1 = High

0 = Disconnect; 1 = Standard

0 = Disconnect; 1 = High

o o b~ |wW|N |-, | O

0 = Standard; 1 = Disconnect

7 0=High; 1 = Disconnect
If nFuncType == ANALOG_IN
0 := Use Default for system.

0 Use the system default: 10-bit ADC, 1/6 scaling
0x16 10-bit ADC, 1/6 scaling

0x15 10-bit ADC, 1/5 scaling

0x14 10-bit ADC, 1/4 scaling

0x13 10-bit ADC, 1/3 scaling

0x12 10-bit ADC, 1/2 scaling

0x11 10-bit ADC, 1/1 scaling (Unity)

0x21 10-bit ADC, 2/1 scaling

0x41 10-bit ADC, 4/1 scaling

Note: The internal reference voltage is the same as the module Vcc value with +/- 1.5% accuracy.

Example:
// Example :: GpioSetFunc.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples
PRINT GpioSetFunc(15,1,2) //Digital In SIO 15, strong pull up resistor
PRINT GpioSetFunc(3,3,0) //RAnalog In SIO 3 (Temperature Sensor), default settings
PRINT GpioSetFunc(17,2,1) //SIO017 (LEDO) digital out, initial output high
https://www.lairdconnect.com/ 38 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940

All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

Expected Output:

000

5.5.3 GpioSetFuncEx

FUNCTION

This routine sets the function of the SIO pin identified by the nSigNum argument and provides for more enhanced
configurability compared to the legacy function GpioSetFunc().

The module datasheet contains a pinout table which denotes SIO pins. The number designated for that special I/0 pin
corresponds to the nSigNum argument.

The nFunction argument denotes the required functionality. Use only supported values from Table 1.
The bSubFunc argument defines the configuration of the requested function.

GPIOSETFUNCEX (nSigNum, nFunction, subFunc$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:

byVal nSigNum AS INTEGER.
nSigNum The signal number as stated in the pinout table of the module.

byVal nFunction AS INTEGER.

Specifies the configuration of the SIO pin as follows:
nEunction 1= D|G|TAL_|N

2 = DIGITAL_OUT

3=ANALOG_IN

byVal nSubFunc$ INTEGER

If nFunction == DIGITAL_IN

subFunc$ will be a string that has the following form:- “\Digital_In_Bitmask”, where Digital_In_Bitmask bits
can be as follows:

Bits 0..3

0x01 Pull down resistor (weak)

0x02 Pull up resistor (weak)

0x03 Pull down resistor (strong)

subFunc$ 0x04 Pull up resistor (strong)

Else No pull resistors
Bits 4, 5
0x10 When in deep sleep mode, awake when this pin is LOW

0x20 When in deep sleep mode, awake when this pin is HIGH

Else No effect in deep sleep mode
Bits 8..31

Must be Os
If nFuncType == DIGITAL_OUT

subFunc$ is a string that has the following form: \Digital_Out, where Digital_Out consists of the following:

https://www.lairdconnect.com/ 39 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

= Bits 0-3: Values

= Bits 4-6: Drive Capacity (Only for LOW and HIGH configuration. For PWM and FREQUENCY this is
always set to 0=Standard; 1=Standard)

Values:
0 Initial output to LOW

1 Initial output to HIGH

Output is PWM (Pulse Width Modulated Output). See function GpioConfigPW() for more
configuration. The duty cycle is set using function GpioWrite().

Output is FREQUENCY. The frequency is set using function GpioWrite() where 0 switches off
3 the output; any value in range 1..4000000 generates an output signal with 50% duty cycle with

that frequency.

Bits 4..6 (output drive capacity)

0 = Standard; 1 = Standard

0 = High; 1 = Standard

0 = Standard; 1 = High

0 = High; 1 = High

0 = Disconnect; 1 = Standard

0 = Disconnect; 1 = High

0 = Standard; 1 = Disconnect
0 = High; 1 = Disconnect

N o g wWwN PO

If nFuncType == ANALOG_IN
The reference voltage for the analog to digital converter is 0.6 volts.
subFunc$ is a string that has the following form: \Gain_hex\Resolution_hex\Acquisition_hex

If the string is empty, then default values are used. Otherwise, the values can be as follows:

Gain_hex
0 Use the system default: 10-bit ADC, 1/6 scaling
0x16 1/6 scaling
0x15 1/5 scaling
0x14 1/4 scaling
0x13 1/3 scaling
0x12 1/2 scaling
0x11 1/1 scaling (Unity)
0x21 2/1 scaling
0x41 4/1 scaling

For example, if you have a maximum analog voltage of 1.7 volts, then select a gain of 1/3 so that the
maximum voltage into the convertor is 1.7 * 1/3 = 0.57. This means it is not bigger than the reference
voltage of 0.6v and it is specified in subFunc$ so that the first byte in the string is \13
Resolution_hex
0 Use the system default: 10-bit ADC

0x08 8-bit ADC resolution

OxOA 10-bit ADC resolution

0x0C 12-bit ADC resolution

https://www.lairdconnect.com/ 40 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

Acquisition_hex
0 Use the system default: 10 microseconds

0x03 3 microseconds

0x05 5 microseconds

Ox0A 10 microseconds

OxO0F 15 microseconds

0x14 20 microseconds

0x28 40 microseconds

Any other value results in this function being rejected.

For example, selecting 1/5" scaling, 12-bit resolution, and acquisition time of 20 microseconds requires that
the variable subFunc$ be initialised as \15\0C\14.

Note: The internal reference voltage is the same as the module Vcc value with +/- 1.5% accuracy.

Example:

// Example :: GpioSetFuncEx.sb
// https://github.com/Laird CP/BL6532-Applications/tree/master/UserGuideExamples

//Digital In SIO 15, strong pull up resistor

PRINT GpioSetFuncEx (15,1,"\02")

//BAnalog In SIO 3 (Temperature Sensor), default settings

PRINT GpioSetFuncEx(3,3,"")

//Analog In SIO 23, 1/6 scaling, 12-bit resolution, 3us acquisition time
PRINT GpioSetFuncEx (23,3,"\16\0C\03")

//SI017 (LEDO) digital out, initial output high

PRINT GpioSetFuncEx (17,2,"\01")

//SI026 digital out, PWM

PRINT GpioSetFuncEx (26,2,"\02")

Expected Output:

00000

5.5.4 GpioConfigPwm

FUNCTION

This routine configures the PWM (Pulse Width Modulation) of all output pins when they are set as a PWM output using
GpioSetFunc() function described above.

Note: This is a ‘sticky’ configuration; calling it affects all PWM outputs already configured. We recommend that this is
called once at the beginning of your application and not changed again within the application unless all PWM
outputs are deconfigured and then re-enabled after this function is called.

The PWM output is generated using 32-bit hardware timers. The timers are clocked by a 1-MHz clock source.

A PWM signal has a frequency and a duty cycle property; the frequency is set using this function and is defined by the
nMaxResolution parameter. For a given nMaxResolution value, given that the timer is clocked using a 1-MHz source, the
frequency of the generated signal is 1000000 divided by nMaxResolution. Hence, if nMinFreqHz is more than the
1000000/nMaxResolution, this function will fail with a non-zero value.

https://www.lairdconnect.com/ 41 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

https://github.com/LairdCP/BL6542-Applications/tree/master/UserGuideExamples

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

The nMaxResolution can also be viewed as defining the resolution of the PWM output in the sense that the duty cycle can be
varied from 0 to nMaxResolution. The duty cycle of the PWM signal is modified using the GpioWrite() command.

For example, a period of 1000 generates an output frequency of 1KHz, a period of 500, and a frequency of 2Khz etc.

On exit, the function returns with the actual frequency in the nMinFreqHz parameter.

GPIOCONFIGPWM (nMinFreqHz, nMaxResolution)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byRef nMinFregHz AS INTEGER.

MinFregH)
AVINFETEARZ - 1he nominal frequency of the waveform.

byVal nMaxResolution AS INTEGER.

nMaxResolution .
Set to same value as nMinFreqHz.

Example:

// Example :: GpioConfigPwm.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

dim retval

dim 1

dim nFreq

dim nResolution

dim res[5] as integer

FUNCTION HandlerTimerl ()
dim TmpVal
i=i+1
if i==5 then
i=0
endif
TmpVal = (res[i]*100/ nResolution)
PRINT "\nTimer event! PWM changed to "; TmpVal; "% duty cycle."
GpioWrite (13, res[i])
ENDFUNC 1

1i=0

nFreqg=1024
nResolution=2048
res[0]=nResolution/2
res[l]=nResolution/4
res[2]=nResolution/8

res[3]1=0

res[4]=nResolution

ONEVENT EVTMR1 CALL HandlerTimerl

//Configure PWM
retval = GpioConfigPWM (nFreq,nResolution)
retval = GpioSetFunc (13,2,2)

//Write the first value to the PWM out
GpioWrite (13, res[i])
PRINT "\nTimer started. PWM on 50% duty cycle."

//start a 5000 millisecond (5 second) recurring timer
TimerStart (1,5000,1)

WAITEVENT

https://www.lairdconnect.com/ 42 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

Expected Output:

Timer started. PWM on 50% duty cycle.

Timer event! PWM changed to 25% duty cycle.
Timer event! PWM changed to 12% duty cycle.
Timer event! PWM changed to 0% duty cycle.
Timer event! PWM changed to 100% duty cycle.

5.5.5 GpioRead
FUNCTION

This routine reads the value from a SIO pin.

The module datasheet contains a pinout table which mentions SIO (Special I/O) pins and the number designated for that SIO
pin corresponds to the nSigNum argument.

Note: For ADC readings, the value read has an error percentage of +/-3% for 1/6 and 1/4 gains, and +/-4% for 1/2 and 1
gains.

GPIOREAD (nSigNum)

Returns INTEGER, the value from the signal.
If the signal number is invalid, then it returns a value of 0.
For digital pins, the value is 0 or 1. For ADC pins it is a value in the range 0 to M where M is the maximum
value based on the bit resolution of the analogue to digital converter.

Arguments:

byVal nSigNum INTEGER.

nSighum The signal number as stated in the pinout table of the module.

Refer to the example for GpioBindEvent.

Example:

// Example: GpioRead.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

//This example reads from temperature sensor, for it to work, a jumper needs to be placed on
J6 between SIO 3 and TEMP SENS
#define GPIO TEMP SENS 3

dim rc, adc

//Start timer to read temperature sensor
TimerStart (0,1000,1)

//Remove resistor
rc = GpioSetFunc (GPIO TEMP SENS, 1, 2)

//Analogue in
rc = GpioSetFunc (GPIO TEMP SENS, 3, 0)

FUNCTION HandlerTimerO ()

//Read the ADC

adc = GpioRead (GPIO TEMP SENS)

PRINT "\nRaw Temperature Sensor Reading: ";adc
ENDFUNC 1

OnEvent EVTMRO call HandlerTimerO

WAITEVENT

https://www.lairdconnect.com/ 43 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

Expected output:

Raw Temperature Sensor Reading: 1943
Raw Temperature Sensor Reading: 1943

5.5.6 GpioWrite

FUNCTION
This function writes a new value to the SIO pin. If the pin number is invalid, nothing happens.

If the SIO pin is configured as a PWM output then the nNewValue specifies a value in the range 0 to N where N is the
nMinFreqHz set in the GpioConfigPwm command. The write value controls the mark space ratio of the output waveform. A
value of 0 outputs a low, a value of nMinFreqHz outputs a high, and a value in varies the mark space ratio. The higher the
value, the longer the mark period.

As with the GpioConfigPwm function, the nNewValue is used to calculate a hardware register value. This value must be less
than the register value calculated from the GpioConfigPwm function that is used to set the PWM output frequency. Again, be
careful to avoid non-integer results or the output waveform will not be accurate.

As an indication, if you divide the PWM output frequency by the value of the register calculated in the GpioConfigPwm function
above, that result is the minimum nNewValue you can enter to get a mark:space ratio. Other valid mark:space ratios are
provided by integer multiples of this minimum value.

For example, with a system frequency of 40 MHz and an output PWM frequency of 5 MHz, the register value to provide the
output frequency is 8. So the minimum value of nNewValue is 0.625 MHz and the remaining obtainable values are 4.375,
3.75, 3.125, 2.5, 1.875, and 1.25 MHz. Any other nNewValue entered rounds down to one of these values.

GPIOWRITE (nSigNum, nNewValue)

Returns

Arguments:

byVal nSigNum INTEGER.

nSighum The signal number as stated in the pinout table of the module.

byVal nNewValue INTEGER.
The value to be written to the port.
nNewValue If the pin is configured as digital, then O clears the pin and a non-zero value sets it.
If the pin is configured as a PWM then this value sets the duty cycle.
If the pin is configured as a FREQUENCY then this value sets the frequency.

Example:

// Example :: GpioWrite.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

dim rc, i1, i2

i2 =1

il =1

[= e S e e S EE S C eSS S o=

// For debugging

// --- rc = result code

// —-- 1n = line number

[= e S e e S E S C e S TS o=
https://www.lairdconnect.com/ 44 Americas: +1-800-492-2320

© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

Sub AssertRC (rc, 1n)
if rc!=0 then
print "\nFail :";integer.h' rc;" at tag ";ln

endif
EndSub

rc=GpioSetFunc(17,2,1)
AssertRC (rc, 20)

rc=GpioSetFunc(19,2,1)
AssertRC (rc, 23)

function HandlerTmrO ()
i1=11i1
GpioWrite (19,1i1l)
AssertRC (rc, 30)

endfunc 1

function HandlerTmrl ()
12=112
GpioWrite (17,1i2)
AssertRC (rc,42)

endfunc 1

function HandlerUartRx ()
endfunc 0

TimerStart (0,500,1)
TimerStart (1,1000,1)

onevent evuartrx call HandlerUartRx
onevent evtmr0 call HandlerTmrO
onevent evtmrl call HandlerTmrl

print "\n\nPress any key to exit"

waitevent

print "\nExiting...

Expected Output:

Press any key to exit
Exiting...

https://www.lairdconnect.com/ 45 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

5.5.7 GpioBindEvent/GpioAssignEvent

FUNCTION

This routine binds an event to a level transition on a specified SIO line configured as a digital input so that changes in the input
line can invoke a handler in smartBASIC user code.

When this function is called on the BL653, the SIO pin specified by nSigNum is set up as a digital input in the underlying
firmware so GpioSetFunc() does not need to be called beforehand.

If this function is used in your smartBASIC application, we recommend that you unbind all bound events by calling
GpioUnbindEvent() at the end of the application. Likewise for all assigned events, GpioUnassignEvent should be called.

Note: In the BL653 module, an SIO pin can only be bound to one event at a time.

GPIOBINDEVENT (nEventNum, nSigNum, nPolarity)

GPIOASSIGNEVENT (nEventNum, nSigNum, nPolarity)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal nEventNum INTEGER.
nEventNum The SIO event number (in the range of 0 - N) which results in the event EVGPIOCHANN being thrown to
the smartBASIC runtime engine.

byVal nSigNum INTEGER.

nSigNum . . .
The signal number as stated in the pinout table of the module.
byVal nPolarity INTEGER.
States the transition as follows:
0 Low to high transition
nPolarity

1 High to low transition

2 (GpioBindEvent Only) Either a low to high or high to low transition

Note: Using GpioBindEvent provides the capability to detect any transition. However, it results in slightly higher power
consumption. If power is of importance, GpioAssignEvent() should be used instead as it uses other resources to
expedite an event.

https://www.lairdconnect.com/ 46 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

Example:

// Example :: GpioBindEvent.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

dim rc

function HandlerBtnO ()

dim i : i = GpioRead(l1l)

'//if button 0 was pressed
if i==0 then

print "\nButton 0 Pressed"

'//if button 0 was released
elseif i==1 then

print "\nButton 0 Released"
endif

endfunc 1

function HandlerUartRx ()

endfunc 0

rc= GpioBindEvent (0,11,2) //Bind event 0 to high or low transition on SIO1l (button
1)

if rc==0 then
onevent evgpiochan0 call HandlerBtnO //When event 0 happens, call BtnOPress
print "\nSIOll - Button 0 is bound to event 0. Press button 0"

else
print "\nGpioBindEvent Err: ";integer.h'rc

endif

onevent evuartrx call HandlerUartRx

print "\n\nPress any key to exit"

wailtevent
rc=GpioUnbindEvent (0)
if rc==0 then
print "\n\nEvent 0 unbound\nExiting..."

endif

https://www.lairdconnect.com/ a7 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

Expected Output:

SIO11l - Button 0 is bound to event 0. Press button 0

Press any key to exit
Button 0 Pressed
Button 0 Released
Button 0 Pressed
Button 0 Released

Event 0 unbound
Exiting...
00

5.5.8 GpioUnbindEvent/GpioUnAssignEvent

FUNCTION

This routine unbinds the runtime engine event from a level transition bound using GpioBindEvent().
GPIOUNBINDEVENT (nEventNum)

GPIOUNASSIGNEVENT (nEventNum)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:
byVal nEventNum INTEGER.
nEventNum The SIO event number (in the range of 0 - N) which is disabled so that it no longer generates run-time
events in smartBASIC.

See example for GpioBindEvent.

5.6 Miscellaneous Routines

This section describes all miscellaneous functions and subroutines.

5.6.1 ASSERTBL653

SUBROUTINE

This function’s main use case is during smartBASIC source compilation and the presence of at least one instance of this
statement ensures that the smartBASIC application only fully compiles without errors on a BL653 module. This ensures that
apps for other modules are not mistakenly loaded into the BL653.

AssertBL653 ()

Returns Not acceptable as it is a subroutine

Arguments: None

Example:

AssertBL653 () //Ensure loading on BL653 only

https://www.lairdconnect.com/ 48 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird 2> CONNECTIVITY

User Guide

5.6.2 ERASEFILESYSTEM

FUNCTION

This function is used to erase the flash file system which contains the application that invoked this function, if and only if, the
SI02 input pin is held high.

Given that SIO2 is high, after erasing the file system, the module resets and reboots into command mode with the virtual serial
port service enabled; the module advertises for a few seconds. See the virtual serial port service section for more details.

This facility allows the current $autorun$ application to be replaced with a new one.

WARNING
If this function is called from within $autorun$ and the SIO2 input is high, it is erased and a fresh download of the application
is required which can be facilitated over the air.

ERASEFILESYSTEM (nArg)

Returns INTEGER Indicates success of command:

0 Successful erasure. The module reboots.

<>0 Failure.

Exceptions = Local Stack Frame Underflow
= Local Stack Frame Overflow

Arguments

nArg byVal nArg AS INTEGER
This is for future use and MUST always be set to 1. Any other value will result in a failure.

Example:

DIM rc
rc = EraseFileSystem(1234)
IF rc!=0 THEN
PRINT "\nFailed to erase file system because incorrect parameter"
ENDIF
//Input SIO2 is low
rc = EraseFileSystem(1l)
IF rc!=0 THEN
PRINT "\nFailed to erase file system because SIO19 is low"
ENDIF

Expected Output:

Failed to erase file system because incorrect parameter
Failed to erase file system because SIO19 is low
00

https://www.lairdconnect.com/ 49 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6 BLE EXTENSIONS BUILT-IN ROUTINES
6.1 LE Privacy

To address privacy concerns, there are four types of Bluetooth addresses in a BLE device which can change as often as
required. For example, an iPhone regularly changes its BLE Bluetooth address and it always exposes only its resolvable
random address.This feature is known as LE privacy. It allows the Bluetooth address within advertising packets to be replaced
with a random value that can change at different time intervals. Malicious devices are not able to track your device as it
actually looks like a series of different devices.

To manage this, the usual six-octet Bluetooth address is qualified on-air by a single bit which qualifies the Bluetooth address
as public or random:

= Public — The format is as defined by the IEEE organisation.

= Random - The format can be up to three types and this qualification is done using the upper two bits of the most
significant byte of the random Bluetooth address.

Address types:

00 | Public

01 Random Static

02 Random Private Resolvable

03 Random Private Non-Resolvable

All other values are illegal

On the BL653, the address type can be set using the function BleSetAddressTypeEx(). On the other hand, Sysinfo$(4) can be
used to retrieve the Bluetooth address if it is public or random static. Due to LE privacy 1.2, if the address type is random
resolvable or random non-resolvable, it cannot be retrieved by the application layer since it is fully controlled by the baseband
layer.

Note: The Bluetooth address portion in smartBASIC is always in big endian format. If you sniff on-air packets, the same
six packets appear in little endian format, hence reverse order — and you do not see seven bytes, but a bit in the
packet somewhere which specifies it to be public or random.

6.1.1 BleSetAddressTypeEx

FUNCTION

This functions sets the current address type to be used by the LE radio scan/advert/connection requests. Type 2 and Type 3
can be set to be refreshed periodically.

BLESETADDRESSTYPEEX (nAddrType, nPeriodMS)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:
byVal nAddrType AS INTEGER.
Specifies the type of the LE address as follows:

0 Public address, same as Classic.

nAddrType 1 Random static address, generated first boot.
2 Random address, resolvable with IRK, generated on call.
3 Random address, non resolvable, generation on call

The time period for changing resolvable and non-resolvable addresses in milliseconds. If the nAddrType is
nPeriodMS | 0 or 1, this parameter is ignored. Negative values result in an error being returned. A value of 0 means the
address will not change.

https://www.lairdconnect.com/ 50 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

Example:

// Example: BleSetAddressTypeEx.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc, addr$

// Set the address to pulic, nPeriodMS is ignored
rc = BleSetAddressTypeEx (0,0)

addr$ = SysInfo$ (4)

PRINT "\nBluetooth Address - "; StrHexize$ (addr$)

// Set the address to random static, nPeriodMS is ignored
rc = BleSetAddressTypeEx(1,0)

addr$ = SysInfo$ (4)

PRINT "\nBluetooth Address - "; StrHexize$ (addr$)

// Set the address to be random resolvable that changes every 30 seconds
rc = BleSetAddressTypeEx (2,30000)

addr$ = SysInfos$ (4)

PRINT "\nCurrent Address - "; StrHexize$ (addr$)

// Set the address to be random non-resolvable that changes every 1 seconds
rc = BleSetAddressTypeEx (3,1000)

addr$ = SysInfos$ (4)

PRINT "\nBluetooth Address - "; StrHexize$ (addr$)

Expected Output:

Bluetooth Address - 000016A4B75201
Bluetooth Address — 01D3B61EE3F699
Bluetooth Address 01D3B61EE3F699
Bluetooth Address 01D3B61EE3F699

Note: Even though Sysinfo$(4) returns the random static address after setting address types 2 and 3, the actual address
used by the radio packets are the random resolvable and the random non-resolvable addresses respectively. The
reason for this is that private addresses are only known to the baseband.

https://www.lairdconnect.com/ 51 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.2 Events and Messages
6.2.1 EVBLE_ADV_TIMEOUT

This event is thrown when adverts that are started using BleAdvertStart() time out.

Example:

// Example :: EvBle Adv Timeout.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM peerAddrs$

//handler to service an advert timeout
FUNCTION HndlrBleAdvTimOut ()

PRINT "\nAdvert stopped via timeout"

//DbgMsg ("\n - could use SystemStateSet (0) to switch off")
e
// Switch off the system - requires a power cycle to recover
e

ENDFUNC O

//start adverts

//rc = BleAdvertStart(0,"",100,5000,0)

IF BleAdvertStart (0, peerAddrs$,100,2000,0)==0 THEN
PRINT "\n Advert Started"

ELSE
PRINT "\n\nAdvert not successful"

ENDIF

ONEVENT EVBLE ADV TIMEOUT CALL HndlrBleAdvTimOut

WAITEVENT

Expected Output:

Advert Started
Advert stopped via timeout

https://www.lairdconnect.com/ 52 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.2.2 EVBLE_CONN_TIMEOUT

This event is thrown when a BLE connection attempt initiated by the BleConnect() function times out.

See example for BleConnect.

6.2.3 EVBLE_ADV_REPORT

This event is thrown when an advert report is received whether successfully cached or not.

See example for BleScanGetAdvReport.

6.2.4 EVBLE_FAST_PAGED

This event is thrown when an advert report is received which is of type ADV_DIRECT_IND and the advert had a target
address (InitA in the spec) which matches the address of this module.

See example for BleScanGetPagerAddr.

6.2.5 EVBLE_SCAN_TIMEOUT

This event is thrown when a BLE scanning procedure initiated by the BleScanStart() function times out.

See example for BLESCANSTART.

6.2.6 EVBLEMSG

The BLE subsystem is capable of informing a smartBASIC application when a significant BLE-related event has occurred. It
does so by throwing this message (as opposed to an EVENTTable 20, which is akin to an interrupt and has no context or
queue associated with it).

The message contains two parameters:

= msglD - Identifies what event was triggered
= msgCtx — Conveys some context data associated with that event.

The smartBASIC application must register a handler function which takes two integer arguments to be able to receive and
process this message.

Note: The messaging subsystem, unlike the event subsystem, has a queue associated with it and, unless that queue is
full, pends all messages until they are handled. Only messages that have handlers associated with them are
inserted into the queue. This prevents messages that will not get handled from filling that queue. The following
table lists the triggers and associated context parameters.

A BLE connection is established and msgCtx is the connection handle.

0
1 A BLE disconnection event and msgCtx identifies the handle.

4 A BLE Service Error. The second parameter contains the error code.
9 Pairing in progress and displayed Passkey supplied in msgCtx.

10 A new bond has been successfully created.
11 Pairing in progress and authentication key requested. msgCtx is key type.
14 Connection parameters update and msgCtx is the conn handle.
15 Connection parameters update fail and msgCtx is the conn handle.
16 Connected to a bonded master and msgCtx is the conn handle.
17 A new pairing has replaced old key for the connection handle specified.
18 The connection is now encrypted and msgCtx is the conn handle.
https://www.lairdconnect.com/ 53 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940

All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

20 The connection is no longer encrypted and msgCitx is the conn handle

21 The device name characteristic in the GAP service of the local GATT table has been written by the remote
GATT client.

22 Attempt to add a new bonding to the bonding database failed

23 On a BLE connection to a bonded device, if the current GATT table schema does not match what existed at the
last connection, then a GATT Service Change Indication is automatically sent and the app is informed via this
event

24 On a BLE connection to a bonded device, if the current gatt table schema does not match what existed at the

last connection, then a GATT Service Change Indication is automatically sent and the app is informed when the
client acknowledges that indication

25 OOB availability is requested (for future use and not thrown in current firmware)

26 Authentication has failed

27 Informational to indicate that encryption was LESC based

28 LESC pairing in progress and address+hash+random OOB data is required for remote device by security
manager

Note: Message ID 13 is reserved for future use.

Example:

// Example :: EvBleMsg.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM addr$: addrs$=""

DIM rc

//

// This handler is called when there is a BLE message
//

FUNCTION HndlrBleMsg (BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER)
SELECT nMsgId
CASE O
PRINT "\nBLE Connection ";nCtx
CASE 1
PRINT "\nDisconnected ";nCtx;"\n"
CASE 18
PRINT "\nConnection ";nCtx;" is now encrypted"
CASE 16
PRINT "\nConnected to a bonded master"
CASE 17
PRINT "\nA new pairing has replaced the old key";
CASE ELSE

https://www.lairdconnect.com/ 54 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

PRINT "\nUnknown Ble Msg"
ENDSELECT
ENDFUNC 1

FUNCTION HndlrBlrAdvTimOut ()
PRINT "\nAdvert stopped via timeout"
PRINT "\nExiting..."

ENDFUNC 0

FUNCTION HndlrUartRx ()
rc=BleAdvertStop ()
PRINT "\nExiting..."

ENDFUNC 0

ONEVENT EVBLEMSG CALL HndlrBleMsg
ONEVENT EVBLE ADV TIMEOUT CALL HndlrBlrAdvTimOut
ONEVENT EVUARTRX CALL HndlrUartRx

// start adverts

IF BleAdvertStart (0,addr$,100,10000,0)==0 THEN
PRINT "\nAdverts Started"
PRINT "\nPress any key to exit\n"

ELSE
PRINT "\n\nAdvertisement not successful"

ENDIF

WAITEVENT

Expected Output (When connection made with the module):

Adverts Started
Press any key to exit

BLE Connection 3634

Connected to a bonded master
Connection 3634 is now encrypted

A new pairing has replaced the old key
Disconnected 3634

Exiting...

Expected Output (When no connection made):

Adverts Started
Press any key to exit

Advert stopped via timeout
Exiting...

https://www.lairdconnect.com/ 55 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

6.2.7 EVDISCON

This event is thrown when there is a BLE disconnection. It comes with two parameters:

= Connection handle
= The reason for the disconnection

The reason, for example, can be 0x08 which signifies a link connection supervision timeout which is used in the Proximity
Profile.

A full list of Bluetooth HCI result codes for the reason of disconnection is provided in this document here.

Example:

// Example :: EvDiscon.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM addr$: addr$=""

FUNCTION HndlrBleMsg (BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER)
IF nMsgID==0 THEN
PRINT "\nNew Connection ";nCtx
ENDIF
ENDFUNC 1

FUNCTION BtnOPress ()
PRINT "\nExiting..."

ENDFUNC O

FUNCTION HndlrDiscon (BYVAL hConn AS INTEGER, BYVAL nRsn AS INTEGER) AS INTEGER

PRINT "\nConnection ";hConn;" Closed: 0x";nRsn

ENDFUNC O
ONEVENT EVBLEMSG CALL HndlrBleMsg
ONEVENT EVDISCON CALL HndlrDiscon

// start adverts

IF BleAdvertStart (0,addr$,100,10000,0)==0 THEN
PRINT "\nAdverts Started\n"

ELSE
PRINT "\n\nAdvertisement not successful"

ENDIF

WAITEVENT

Expected Output:

Adverts Started

New Connection 2915
Connection 2915 Closed: 0x19

https://www.lairdconnect.com/ 56 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

6.2.8 EVCHARVAL

This event is thrown when a characteristic is written to by a remote GATT client. It comes with three parameters:
= Char Handle — Characteristic handle that was returned when the characteristic was registered using the function
BleCharCommit()
= Offset — Offset
= Length — Length of the data from the characteristic value

6.2.9 EVCHARVALUE

This event is thrown when the remote device writes to a characteristic value. It differs from EVCHARVAL in that the event
contains the parameters including the connection handle and the string data. If the write operation is performed on a
characteristic that requires authorisation, then EVAUTHVAL is thrown instead and the user should then authorize and read the
value.

If the event is thrown with an empty string but the length has a non-zero value, then this indicates that there was not enough
memory to allocate to the event.

The event comes with the following parameters:

= Connection Handle — The handle of the connection that wrote to the characteristic value.

= Char Handle — Characteristic handle that was returned when the characteristic was registered using the function
BleCharCommit()

= Offset — The offset at which the characteristic data was written.

= Length — The length of the data that was written. This should be equal to StrLen$(Data$), and can be used to detect if
there was any data loss.

» Data$ - The string data that was written to the characteristic.

Example:

// Example :: EvCharVal.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM hMyChar,rc,at$,conHndl

//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup ()

DIM rc, hSvc, attr$, adRpt$, addr$, scRpt$: attr$="Hi"

//commit service

rc=BleServiceNew (1, BleHandleUuidlé6 (0x18EE), hSvc)

//initialise char, write/read enabled, accept signed writes
rc=BleCharNew (0x0A,BleHandleUuidl6 (1) ,BleAttrMetabata(1,1,20,0,rc),0,0)
//commit char initialised above, with initial value "hi" to service 'hSvc'
rc=BleCharCommit (hSvc,attr$, hMyChar)

//commit changes to service

rc=BleServiceCommit (hSvc)

rc=BleScanRptInit (scRpt$)

//Add 1 service handle to scan report

//rc=BleAdvRptAddUuidl6 (scRpt$,0x18EE,-1,-1,-1,-1,-1)

//commit reports to GATT table - adRpt$ is empty
rc=BleAdvRptsCommit (adRpt$, scRptS$)

rc=BleAdvertStart (0,addr$,20,300000,0)

ENDFUNC rc
//
// Close connections so that we can run another app without problems
//
https://www.lairdconnect.com/ 57 Americas: +1-800-492-2320

© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

SUB CloseConnections ()
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()

ENDSUB

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
conHndl=nCtx
IF nMsgID==1 THEN

PRINT "\n\n--- Disconnected from client"
EXITFUNC O
ELSEIF nMsgID==0 THEN
PRINT "\n--- Connected to client"
ENDIF
ENDFUNC 1
//
// New char value handler - Thrown when AT+CFG 213=0
//
FUNCTION HandlerCharVal (BYVAL charHandle, BYVAL offset, BYVAL len)
DIM s$
IF charHandle == hMyChar THEN
PRINT "\n";len;" byte(s) have been written to char value attribute from offset
";offset
rc=BleCharValueRead (hMyChar, s$)
PRINT "\nNew Char Value: ";s$
ENDIF
CloseConnections ()
ENDFUNC 1
//
// New char value handler - Thrown when AT+CFG 213=1
//

FUNCTION HandlerCharValue (BYVAL nConnHandle, BYVAL charHandle, BYVAL offset, BYVAL len,
BYVAL Data$)

DIM s$
IF charHandle == hMyChar THEN
PRINT "\n";len;" byte(s) have been written to char value attribute from offset
";offset
PRINT "\nData written is :";Data$ PRINT "\nData written is :";Data$;" - Connection
Handle=";integer.h' nConnHandle

rc=BleCharValueRead (hMyChar, s$)

PRINT "\nNew Char Value: ";s$
ENDIF
CloseConnections ()
ENDFUNC 1
ONEVENT EVCHARVAL CALL HandlerCharVal // This event is thrown if AT+CFG 213 = 0
ONEVENT EVCHARVALUE CALL HandlerCharValue // This event is thrown if AT+CFG 213 = 1
ONEVENT EVBLEMSG CALL HndlrBleMsg
IF OnStartup ()==0 THEN
rc = BleCharValueRead (hMyChar,at$)
PRINT "\nThe characteristic's value is ";at$
PRINT "\nWrite a new value to the characteristic\n"
ELSE
https://www.lairdconnect.com/ 58 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940

All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide La"'d 2» CONNECTIVITY

PRINT "\nFailure OnStartup"
ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output (AT+CFG 213=0):

The characteristic’s value is Hi
Write a new value to the characteristic

--- Connected to client
5 byte(s) have been written to char value attribute from offset 0
New Char Value: Hello

——— Disconnected from client
Exiting...

Expected Output (AT+CFG 213=1):

The characteristic’s value is Hi
Write a new value to the characteristic

--— Connected to client

5 byte(s) have been written to char value attribute from offset 0
Data written is :hello - Connection Handle=0001FFO00

New Char Value: Hello

—-—— Disconnected from client
Exiting...

6.2.10 EVCHARHVC

This event is thrown when a value sent via an indication to a client gets acknowledged. It comes with one parameter:
= The characteristic handle that was returned when the characteristic was registered using the function BleCharCommit()

Example:

// Example :: EVCHARHVC charHandle

// See example that is provided for EVCHARCCCD

6.2.11 EVCHARCCCD

This event is thrown when the client writes to the CCCD descriptor of a characteristic. It comes with two parameters:

= The characteristic handle returned when the characteristic was registered with BleCharCommit()
= The new 16-bit value in the updated CCCD attribute

Example:

// Example :: EvCharCccd.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM hMyChar, rc,at$, conHndl

//

https://www.lairdconnect.com/ 59 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

// Initialise and instantiate service, characteristic, start adverts

//
FUNCTION OnStartup ()

DIM rc, hSvc, metaSuccess, at$, attr$, adRpt$, addr$S, scRpt$

attr$="Hi"

DIM svcUuid : svcUuid=0x18EE

DIM charUuid : charUuid = BleHandleUuidl6 (1)

DIM charMet : charMet = BleAttrMetaData (0,0,20,1,metaSuccess)

DIM hSvcUuid : hSvcUuid = BleHandleUuidl6 (svcUuid)

DIM mdCccd : mdCccd = BleAttrMetadata(l,1,2,0,rc) //CCCD metadata for char

//Create service

rc=BleServiceNew (1, hSvcUuid, hSvc)

//initialise char, write/read enabled, accept signed writes, indicatable

rc=BleCharNew (0x20, charUuid, charMet, mdCccd, 0)

//commit char initialised above, with initial value "hi" to service 'hMyChar'

rc=BleCharCommit (hSvc,attr$, hMyChar)

//commit service to GATT table

rc=BleServiceCommit (hSvc)

rc=BleAdvertStart (0,addr$,20,300000,0)

ENDFUNC rc

//

// Close connections so that we can run another app without problems

//

SUB CloseConnections ()

rc=BleDisconnect (conHndl)

rc=BleAdvertStop ()

rc=GpioUnbindEvent (1)
ENDSUB

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)

conHndl=nCtx

https://www.lairdconnect.com/ 60 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

IF nMsgID==1 THEN
PRINT "\n\n--- Disconnected from client"
EXITFUNC O
ELSEIF nMsgID==0 THEN
PRINT "\n--- Connected to client"
ENDIF
ENDFUNC 1

//

// Indication acknowledgement from client handler
//
FUNCTION HndlrCharHvc (BYVAL charHandle AS INTEGER) AS INTEGER

IF charHandle == hMyChar THEN
PRINT "\nGot confirmation of recent indication"
ELSE
PRINT "\nGot confirmation of some other indication: ";charHandle
ENDIF
ENDFUNC 1

//
// Called when data received via the UART
//
FUNCTION HndlrUartRx () AS INTEGER

ENDFUNC O

//
// CCCD descriptor written handler
//
FUNCTION HndlrCharCccd (BYVAL charHandle, BYVAL nVal) AS INTEGER

DIM value$
IF charHandle==hMyChar THEN
IF nVal & 0x02 THEN
PRINT "\nIndications have been enabled by client"
value$="hello"
IF BleCharValueIndicate (hMyChar,value$) !=0 THEN
PRINT "\nFailed to indicate new value"
ENDIF
ELSE
PRINT "\nIndications have been disabled by client"
ENDIF

https://www.lairdconnect.com/ 61 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird ‘

) CONNECTIVITY
User Guide _)

ELSE
PRINT "\nThis is for some other characteristic"
ENDIF
ENDFUNC 1

ONEVENT EVBLEMSG CALL HndlrBleMsg
ONEVENT EVCHARHVC CALL HndlrCharHvc
ONEVENT EVCHARCCCD CALL HndlrCharCccd

ONEVENT EVUARTRX CALL HndlrUartRx

IF OnStartup()==0 THEN
rc = BleCharValueRead (hMyChar, at$)
PRINT "\nValue of the characteristic ";hMyChar;" is: ";at$
PRINT "\nYou can write to the CCCD characteristic."
PRINT "\nThe BL653 will then indicate a new characteristic value\n"
PRINT "\n--- Press any key to exit"
ELSE
PRINT "\nFailure OnStartup"
ENDIF

WAITEVENT

CloseConnections ()

PRINT "\nExiting..."

Expected Output:

Value of the characteristic 1346437121 is: Hi
You can write to the CCCD characteristic.
The BL653 will then indicate a new characteristic value

--- Press any key to exit

--- Connected to client

Indications have been enabled by client
Got confirmation of recent indication
Exiting...

https://www.lairdconnect.com/ 62 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

6.2.12 EVCHARSCCD

This event is thrown when the client writes to the SCCD descriptor of a characteristic. It comes with two parameters:

= The characteristic handle that is returned when the characteristic is registered using the function BleCharCommit()
= The new 16-bit value in the updated SCCD attribute

The SCCD is used to manage broadcasts of characteristic values.

Example:

// Example :: EvCharSccd.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM hMyChar, rc,chval$, conHndl

//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup ()

DIM rc, hSvc, attr$, adRpt$, addr$, scRpt$,rc2
attr$="Hi"

DIM charMet : charMet = BleAttrMetaData(l,1,20,1,rc)

//Create service

rc=BleServiceNew (1,BleHandleUuidl6 (0x18EE) , hSvc)

//initialise broadcast capable, readable, writeable

rc=BleCharNew (0x0B,BleHandleUuidl6 (1) ,charMet, 0,BleAttrMetadata(1,1,1,0,rc2))

//commit char initialised above, with initial value "hi" to service 'hMyChar'

rc=BleCharCommit (hSvc,attr$, hMyChar)

//commit service to GATT table

rc=BleServiceCommit (hSvc)

rc=BleAdvertStart (0,addr$,20,300000,0)

ENDFUNC rc

//
// Close connections so that we can run another app without problems
//

SUB CloseConnections ()

rc=BleDisconnect (conHndl)

https://www.lairdconnect.com/ 63 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions
User Guide

Laird 2» CONNECTIVITY

rc=BleAdvertStop ()
rc=GpioUnbindEvent (1)

ENDSUB

//

// Broadcast characterstic value

//

FUNCTION PrepAdvReport ()

dim adRpt$, scRpt$, svcDta$

//initialise new advert report

rc=BleAdvRptinit (adRpt$, 2, 0, 0)

//encode service UUID into service data string

rc=BleEncodel6 (svcDta$, O0x18EE, 0)

//append characteristic value

svcDta$ = svcDta$ + chval$

//append service data to advert report

rc=BleAdvRptAppendAD (adRpt$, 0x16, svcDtas$)
//commit new advert report, and empty scan report
rc=BleAdvRptsCommit (adRpt$, scRpt$)

ENDFUNC rc

//

// Reset advert report
//

FUNCTION ResetAdvReport ()
dim adRpt$, scRpt$

//initialise new advert report

rc=BleAdvRptinit (adRpt$, 2, 0, 20)

//commit new advert report, and empty scan report
rc=BleAdvRptsCommit (adRpt$, scRpt$)

ENDFUNC rc

https://www.lairdconnect.com/ 64
© Copyright 2020 Laird Connectivity, Inc.
All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird :

) CONNECTIVITY
User Guide _)

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)

conHndl=nCtx

IF nMsgID==1 THEN
PRINT "\n\n--- Disconnected from client"
dim addr$
rc=BleAdvertStart (0,addr$,20,300000,0)
IF rc==0 THEN

PRINT "\nYou should now see the new characteristic value in the advertisment

data"
ENDIF
ELSEIF nMsgID==0 THEN
PRINT "\n--- Connected to client"
ENDIF
ENDFUNC 1
//
// Called when data arrives via UART
//
FUNCTION HndlrUartRx ()
ENDFUNC 0
//
// CCCD descriptor written handler
//

FUNCTION HndlrCharSccd (BYVAL charHandle, BYVAL nVal) AS INTEGER
DIM value$
IF charHandle==hMyChar THEN
IF nVal & 0x01 THEN
PRINT "\nBroadcasts have been enabled by client"
IF PrepAdvReport ()==0 THEN
rc=BleDisconnect (conHndl)

PRINT "\nDisconnecting..."

ELSE
PRINT "\nError Committing advert reports: ";integer.h'rc
ENDIF
ELSE
https://www.lairdconnect.com/ 65 Americas: +1-800-492-2320

© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

PRINT "\nBroadcasts have been disabled by client"
IF ResetAdvReport ()==0 THEN
PRINT "\nAdvert reports reset"
ELSE
PRINT "\nError Resetting advert reports: ";integer.h'rc
ENDIF
ENDIF
ELSE

PRINT "\nThis is for some other characteristic"

ENDIF

ENDFUNC 1

//

// New char value handler

//

FUNCTION HndlrCharVal (BYVAL charHandle, BYVAL offset, BYVAL len)
DIM s$
IF charHandle == hMyChar THEN

rc=BleCharValueRead (hMyChar,chval$)
PRINT "\nNew Char Value: ";chvals$
ENDIF
ENDFUNC 1

//
// Called after a disconnection

//

FUNCTION HndlrDiscon (hConn, nRsn)

dim addr$
rc=BleAdvertStart (0,addr$,20,300000,0)
ENDFUNC 1

ONEVENT EVBLEMSG CALL HndlrBleMsg
ONEVENT EVCHARSCCD CALL HndlrCharSccd
ONEVENT EVUARTRX CALL HndlrUartRx
ONEVENT EVCHARVAL CALL HndlrCharVal
ONEVENT EVDISCON CALL HndlrDiscon

IF OnStartup ()==0 THEN
rc = BleCharValueRead (hMyChar,chval$)

https://www.lairdconnect.com/ 66 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

PRINT "\nCharacteristic Value: ";chvals$

PRINT "\nWrite a new value to the characteristic, then enable broadcasting.\nThe
module will then disconnect and broadcast the new characteristic value."

PRINT "\n--- Press any key to exit\n"
ELSE
PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

CloseConnections ()

PRINT "\nExiting..."

Expected Output:

Characteristic Value: Hi

Write a new value to the characteristic, then enable broadcasting.

The module will then disconnect and broadcast the new characteristic value.
--- Press any key to exit

--- Connected to client

New Char Value: hello

Broadcasts have been enabled by client
Disconnecting...

——— Disconnected from client
You should now see the new characteristic value in the advertisment data
Exiting...

6.2.13 EVCHARDESC

This event is thrown when the client writes to a writable descriptor of a characteristic which is not a CCCD or SCCD (they are
catered for with their own dedicated messages). It comes with two parameters:

= Thee characteristic handle that was returned when the characteristic was registered using the function BleCharCommit()

= Anindex into an opaque array of handles managed inside the characteristic handle. Both parameters are supplied as-is
as the first two parameters to the function BleCharDescRead().

Example:

// Example :: EvCharDesc.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM hMyChar, rc,at$,conHndl, hOtherDescr

//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartups ()

DIM rc, hSvc, at$, adRpt$, addr$, scRpt$, hOtherDscr,attr$, attr2$, rc2

https://www.lairdconnect.com/ 67 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

attr$="Hi"
DIM charMet : charMet = BleAttrMetaData(l1,0,20,0,rc)

//Commit svc with handle 'hSvcUuid'
rc=BleServiceNew (1,BleHandleUuidl6 (0x18EE) ,hSvc)
//initialise characteristic - readable

rc=BleCharNew (0x02,BleHandleUuidl6 (1) ,charMet, 0,0)

//Add user descriptor - variable length
attr$="my char desc"

rc=BleCharDescUserDesc (attr$,BleAttrMetadata(1,1,20,1,rc2))

//commit char initialised above, with initial value "char value" to service 'hSvc'
attr2$="char value"

rc=BleCharCommit (hSvc,attr2$,hMyChar)

//commit service to GATT table

rc=BleServiceCommit (hSvc)

rc=BleAdvertStart (0,addr$, 20, 300000, 0)
ENDFUNC attr$

//
// Close connections so that we can run another app without problems
//

SUB CloseConnections ()

rc=BleDisconnect (conHndl)

rc=BleAdvertStop ()

rc=GpioUnbindEvent (1)
ENDSUB

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)

conHndl=nCtx

IF nMsgID==1 THEN
PRINT "\n\n--- Disconnected from client"
EXITFUNC O

ELSEIF nMsgID==0 THEN

PRINT "\n--- Connected to client"
ENDIF
ENDFUNC 1
https://www.lairdconnect.com/ 68 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940

All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

//
// Called when data arrives via UART
//
FUNCTION HndlrUartRx ()

ENDFUNC 0

//
// Client has written to writeable descriptor

//
FUNCTION HndlrCharDesc (BYVAL hChar AS INTEGER, BYVAL hDesc AS INTEGER) AS INTEGER

dim duid, a$, rc

IF hChar == hMyChar THEN
rc = BleCharDescRead (hChar, hDesc,0,20,duid, a$)
IF rc ==0 THEN

PRINT "\nNew value for desriptor ";hDesc;" with uuid ";integer.h'duid;" is

";as
ELSE
PRINT "\nCould not read the descriptor value"
ENDIF
ELSE
PRINT "\nThis is for some other characteristic"
ENDIF
ENDFUNC 1
ONEVENT EVBLEMSG CALL HndlrBleMsg

ONEVENT EVCHARDESC CALL HndlrCharDesc
ONEVENT EVUARTRX CALL HndlrUartRx

PRINT "\nOther Descriptor Value: ";OnStartup$ ()

PRINT "\nWrite a new value \n--- Press any key to exit\n"

WAITEVENT

CloseConnections ()

PRINT "\nExiting..."

Expected Output:

Other Descriptor Value: my char desc
Write a new value
--- Press any key to exit

--- Connected to client
New value for desriptor 0 with uuid FE012901 is hello

https://www.lairdconnect.com/ 69 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

) Lall“d J» CONNECTIVITY
User Guide

6.2.14 EVAUTHVAL

This event is thrown instead of EVCHARVAL when a characteristic with read and/or write authorisation is being read or
written to by a remote GATT client. It comes with three parameters:
= Connection handle — The connection handle of the GATT client

= Char handle —The characteristic handle that was returned when the characteristic was registered using the function
BleCharCommit()

= ReadWrite —Will be 0x00000000 when this is a read attempt and 0x00010000 when write attempt
Call BleAuthorizeChar() to either grant or deny access.

If this a write attempt and access is granted then as soon as the function BleAuthoriseChar() returns the new value is ready to
be read using BleCharValueRead().

Note: When a characteristic requires authentication and the remote device reads from it or writes to it using the
WRITE_CMD (write without response), the event EVAUTHVALEX is thrown instead. The user should therefore have
both EVAUTHVAL and EVAUTHVALEX events in their app and service the events appropriately. See the example
below for more information.

6.2.15 EVAUTHVALEX

This event is thrown when the remote device writes to a characteristic value that requires authentication using the
WRITE_CMD (write without response) command. You should then write the data using BleCharValueWriteEx at the app layer,
otherwise the value is not updated. If the event is thrown with an empty string but the length has a non-zero value, this
indicates that there was not enough memory to allocate to the event. The event comes with the following parameters:

= Connection handle — The connection handle of the GATT client

= Char handle —The characteristic handle that was returned when the characteristic was registered using the function
BleCharCommit()

= Offset — The offset of the characteristic at which the remote is attempting to write.

= Length — The length of the data that the remote is attempting to write. This should be equal to StrLen$(Data$) and can
be used to verify that no data loss has occurred.

= Data$ - The string data that the remote device is attempting to write.

Note: When a characteristic requires authentication and the remote device reads from it or writes to it using a noramal
WRITE, the event EVAUTHVAL is thrown instead. You should therefore have both EVAUTHVAL and
EVAUTHVALEX events in their app and service the events appropriately. See the example below for more
information.

Example:

// Example :: EvAuthval.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM hMyChar, rc,at$, conHndl

// Initialise and instantiate service, characteristic, start adverts

FUNCTION OnStartup ()
DIM rc, hSvc, attr$, adRpt$, addr$, scRpt$: attr$S="Hi"

//Commit service

rc=BleServiceNew (1,BleHandleUuidl6 (0x18EE) , hSvc)

//Initialise char, write/read enabled, accept signed writes

rc=BleCharNew (0x0A, BleHandleUuidl6 (1) ,BleAttrMetaDataex(1,1,20,8,rc),0,0)
//Commit char initialised above, with initial value "hi" to service 'hSvc'

https://www.lairdconnect.com/ 70 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

rc=BleCharCommit (hSvc,attr$, hMyChar)
//Commit changes to the service
rc=BleServiceCommit (hSvc)
rc=BleScanRptInit (scRpt$)
//Commit reports to GATT table - adRpt$ is empty
rc=BleAdvRptsCommit (adRpt$, scRpt$)
rc=BleAdvertStart (0,addr$,20,300000,0)

ENDFUNC rc

SUB CloseConnections ()
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()

ENDSUB

FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
conHndl=nCtx
IF nMsgID==1 THEN

PRINT "\n\n--- Disconnected from client"
EXITFUNC O
ELSEIF nMsgID==0 THEN
PRINT "\n--- Connected to client"
ENDIF
ENDFUNC 1

// AUTHVAL - The remote has written to the characteristic using WRITE (write with response)

FUNCTION HndlrAuthVal (BYVAL connHandle, BYVAL charHandle, BYVAL readWrite)

DIM s$
IF charHandle == hMyChar THEN
IF readWrite!=0 THEN
rc=BleAuthorizeChar (connHandle, charHandle, 3) //Grant access
rc=BleCharValueRead (hMyChar, s$)
PRINT "\nAuthenticated char written using Write with response."
PRINT "\nNew Char Value: ";s$
ENDIF
ENDIF
ENDFUNC 1
e
// AUTHVALEX - The remote has written to the characteristic using WRITE CMD (write without
response)
/= m

FUNCTION HndlrAuthValEx (BYVAL connHandle, BYVAL charHandle, BYVAL offset, BYVAL length,
BYVAL data$ AS STRING)
DIM s$
IF charHandle == hMyChar THEN
// We are OK with this connection handle, so write the characteristic
rc = BleCharValueWriteEx (charHandle, offset, data$)
rc=BleCharValueRead (hMyChar, s$)
PRINT "\nAuthenticated char written using Write without response."
PRINT "\nNew Char Value: ";s$
ENDIF
ENDFUNC 1

https://www.lairdconnect.com/ 71 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird : CONNECTIVITY

User Guide

// Enable synchronous event handlers

[[e e e e e e e e e e e e e e e e 5 0 5 0 5 0 5 0 5 0 5 5 5 5 0 5 D 0 D S D D D S e S e D e
ONEVENT EVBLEMSG CALL HndlrBleMsg
ONEVENT EVAUTHVAL CALL HndlrAuthVal
ONEVENT EVAUTHVALEX CALL HndlrAuthValEx
IF OnStartup ()==0 THEN
rc = BleCharValueRead (hMyChar, at$)
PRINT "\nThe characteristic's value is ";at$
PRINT "\nWrite a new value to the characteristic\n"
ELSE
PRINT "\nFailure OnStartup"
ENDIF
WAITEVENT

Expected Output:

The characteristic's value is Hi

Write a new value to the characteristic

-—-— Connected to client

Authenticated char written using Write with response.
New Char Value: "Test"

Authenticated char written using Write without response.
New Char Value: "Test"

6.2.16 EVAUTHCCCD

This event is thrown instead of EVCHARCCCD when a CCCD descriptor of a characterisic with read and/or write
authorisation is being read or written to by a remote GATT client. It comes with following three parameters:

= The connection handle of the Gatt client
= The characteristic handle returned when the characteristic was registered with BleCharCommit()

= |s 0x00000000 when this is a read attempt and 0OxO001HHHH when write attempt where the new 16-bit value to be
written is OXHHHH

Call BleAuthorizeDesc() to either grant or deny access.

If this is a write attempt and access is granted, as soon as the function BleAuthoriseDesc() returns, the new value OxHHHH is
assumed to be written to the descriptor.

Example:

// Example :: EvAuthCccd.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM hMyChar,rc,at$,conHndl

//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup ()

DIM rc, hSvc, metaSuccess, at$, attr$, adRpt$, addr$, scRpt$

attr$="Hi"

DIM svcUuid : svcUuid=0x18EE

DIM charUuid : charUuid = BleHandleUuidl6 (1)

DIM charMet : charMet = BleAttrMetaDataex (1,1,20,0,metaSuccess)

DIM hSvcUuid : hSvcUuid = BleHandleUuidl6 (svcUuid)

https://www.lairdconnect.com/ 72 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

DIM mdCccd : mdCccd = BleAttrMetadataex(1l,1,2,8,rc) //CCCD metadata for char, write
auth

//Commit svc with handle 'hSvcUuid'

rc=BleServiceNew (1, BleHandleUuidl6 (svcUuid), hSvc)

//Initialise char, write/read enabled, accept signed writes, indicatable
rc=BleCharNew (0x6A, charUuid, charMet, mdCccd, 0)

//Commit char initialised above, with initial value "hi" to service 'hMyChar'
rc=BleCharCommit (hSvc,attr$, hMyChar)

rc=BleServiceCommit (hSvc)

rc=BleScanRptInit (scRpt$)

//Add 1 service handle to scan report

rc=BleAdvRptAddUuidl6 (scRpt$,hSve,-1,-1,-1,-1,-1)

//Commit reports to GATT table - adRpt$ is empty
rc=BleAdvRptsCommit (adRpt$, SCRpt$S)
rc=BleAdvertStart (0, addr$,20,300000,0)

rc=GpioBindEvent (1,16,1) //Channel 1, bind to low transition on GPIO pin 16
ENDFUNC rc
//
// Close connections so that we can run another app without problems
//

SUB CloseConnections ()
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()
rc=GpioUnbindEvent (1)

ENDSUB

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
conHndl=nCtx
IF nMsgID==1 THEN

PRINT "\n\n--- Disconnected from client"
EXITFUNC O
ELSEIF nMsgID==0 THEN
PRINT "\n--- Connected to client"
ENDIF
ENDFUNC 1
//
// Indication acknowledgement from client handler
//
FUNCTION HndlrCharHvc (BYVAL charHandle AS INTEGER) AS INTEGER
IF charHandle == hMyChar THEN
PRINT "\nGot confirmation of recent indication"
ELSE
PRINT "\nGot confirmation of some other indication: ";charHandle
ENDIF
ENDFUNC 1
//
// Handler to service button 0 pressed
//
FUNCTION HndlrBtnOPr () AS INTEGER
CloseConnections ()
ENDFUNC 1
//
// CCCD descriptor authorisation
//
https://www.lairdconnect.com/ 73 Americas: +1-800-492-2320

© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird ‘

) CONNECTIVITY
User Guide _)

FUNCTION HndlrAuthCccd (BYVAL connHandle,BYVAL charHandle, BYVAL readWrite) AS INTEGER
DIM value$

IF charHandle==hMyChar THEN
IF readWrite != 0x0 THEN

rc=BleAuthorizeDesc (connHandle, charHandle, -1 ,3) //grant access
IF readWrite == 0x10002 THEN
PRINT "\nSending indication..."
value$="hello"
IF BleCharValueIndicate (hMyChar,value$) !=0 THEN
PRINT "\nFailed to indicate new value"

ENDIF
ELSE
PRINT "\nIndications were disabled"
ENDIF
ENDIF
ELSE
PRINT "\nThis is for some other characteristic"
ENDIF
ENDFUNC 1

ONEVENT EVBLEMSG CALL HndlrBleMsg
ONEVENT EVCHARHVC CALL HndlrCharHvc
ONEVENT EVAUTHCCCD CALL HndlrAuthCccd
ONEVENT EVGPIOCHAN1 CALL HndlrBtnOPr

IF OnStartup ()==0 THEN
rc = BleCharValueRead (hMyChar, at$)
PRINT "\nValue of the characteristic ";hMyChar;" is: ";at$
PRINT "\nYou can write to the CCCD characteristic."
PRINT "\nThe BL653 will then indicate a new characteristic value\n"

PRINT "\n--- Press button 0 to exit"
ELSE

PRINT "\nFailure OnStartup"
ENDIF
WAITEVENT

PRINT "\nExiting..."

Expected Output:

Value of the characteristic 1818531328 is: Hi
You can write to the CCCD characteristic.
The BL653 will then indicate a new characteristic value

-—— Press button 0 to exit

--- Connected to client

Sending indication...

Got confirmation of recent indication

https://www.lairdconnect.com/ 74 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

6.2.17 EVAUTHSCCD

This event is thrown instead of EVCHARSCCD when a SCCD descriptor of a characterisic with read and/or write
authorisation is being read or written to by a remote GATT client. It comes with the following three paramenters

= The connection handle of the Gatt client
= The characteristic handle returned when the characteristic was registered with BleCharCommit()

= s 0x00000000 when this is a read attempt and 0Ox0001HHHH when it's a write attempt where the new 16-bit value to be
written is OXHHHH

Call BleAuthorizeDesc() to either grant or deny access.

If this a write attempt and access is granted then as soon as the function BleAuthoriseDesc() returns the new value OxHHHH is
assumed to be written to the descriptor.

The SCCD is used to manage broadcasts of characteristic values.

Example:

// Example :: EvAuthSccd.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM hMyChar,rc,at$,conHndl

//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup ()

DIM rc, hSvc, at$, attr$, adRpt$, addr$, scRpt$, rc2

attr$="Hi"

DIM charMet : charMet = BleAttrMetaDataex(1,1,20,0,rc)

//Commit svc with handle 'hSvcUuid'

rc=BleServiceNew (1,BleHandleUuidl6 (0x18EE), hSvc)

//Initialise char, read enabled, accept signed writes, broadcast capable
rc=BleCharNew (0x4B,BleHandleUuidl6 (1) ,charMet, 0,BleAttrMetadataex(1,1,2,8,rc2))
//Commit char initialised above, with initial value "hi" to service 'hMyChar'
rc=BleCharCommit (hSvc,attr$, hMyChar)

//Commit svc

rc=BleServiceCommit (hSvc)

rc=BleAdvRptInit (adRpt$, 0x02,0,20)

//Add 'hSvc' and 'hMyChar' to the advert report

rc=BleAdvRptAddUuidlé6 (adRpt$,hSvc,hMyChar,-1,-1,-1,-1)

//Commit reports to GATT table - adRpt$ is empty

rc=BleAdvRptsCommit (adRpt$, scRpt$S)

rc=BleAdvertStart (0,addr$,20,300000,0)

rc=GpioBindEvent (1,16,1) //Channel 1, bind to low transition on GPIO pin 16
ENDFUNC rc

//
// Close connections so that we can run another app without problems
//
SUB CloseConnections ()
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()
rc=GpioUnbindEvent (1)
ENDSUB

//

// Ble event handler

//

FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
conHndl=nCtx

https://www.lairdconnect.com/ 75 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

IF nMsgID==1 THEN
PRINT "\n\n--- Disconnected from client"
EXITFUNC O
ELSEIF nMsgID==0 THEN
PRINT "\n--- Connected to client"
ENDIF
ENDFUNC 1

//

//handler to service button 0 pressed

//

FUNCTION HndlrBtnOPr () AS INTEGER
CloseConnections ()

ENDFUNC 1

//

// CCCD descriptor written handler

//

FUNCTION HndlrAuthSccd (BYVAL connHandle,BYVAL charHandle, BYVAL readWrite) AS INTEGER
DIM value$

IF charHandle==hMyChar THEN
IF readWrite != 0x0 THEN
rc=BleAuthorizeDesc (connHandle, charHandle, -2 ,3) //grant access
if readWrite == 0x10000 then
PRINT "\nBroadcasts have been disabled by client"
ELSE
PRINT "\nBroadcasts have been enabled by client"
endif
ENDIF
ELSE
PRINT "\nThis is for some other characteristic"
ENDIF
ENDFUNC 1

ONEVENT EVBLEMSG CALL HndlrBleMsg
ONEVENT EVAUTHSCCD CALL HndlrAuthSccd
ONEVENT EVGPIOCHAN1 CALL HndlrBtnOPr

IF OnStartup ()==0 THEN
rc = BleCharValueRead (hMyChar, at$)
PRINT "\nCharacteristic Value: ";at$
PRINT "\nYou can write to the SCCD attribute."
PRINT "\nThe BL653 will then indicate a new characteristic value"
PRINT "\n--- Press button 0 to exit\n"
ELSE
PRINT "\nFailure OnStartup"
ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

Characteristic Value: Hi

You can write to the SCCD attribute.

The BL653 will then indicate a new characteristic value
--- Press button 0 to exit

--- Connected to client
Broadcasts have been enabled by client

https://www.lairdconnect.com/ 76 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

6.2.18 EVAUTHDESC

This event is thrown instead of EVCHARDESC when a writable descriptor of a characteristic with read and/or write
authorisation is being read or written by a remote GATT client. It comes with the following parameters:

= The connection handle of the Gatt client

= The characteristic handle that is returned when the characteristic is registered using the function BleCharCommit()
= The descriptor Handle Index

= |5 0x00000000 when this is a read attempt and 0x00010000 when it is a write attempt

Call BleAuthorizeChar() to either grant or deny access.
The first three parameters in the event are supplied as-is as the first three parameters to the function BleAuthizeChar().

If this event is for a write, as soon as the function BleAuthorizeDesc() returns, the descriptor contains the value and so the
function BleCharDescRead() can be called to read it.

Example:

// Example :: EvAuthDesc.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM hMyChar,rc,at$,conHndl, hOtherDescr

//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup$ ()

DIM rc, hSvc, at$, adRpt$, addr$, scRpt$, hOtherDscr,attr$, attr2s

attr$="Hi"

DIM charMet : charMet = BleAttrMetaData(l,1,20,0,rc)

//Commit svc with handle 'hSvcUuid'

rc=BleServiceNew (1,BleHandleUuidl6 (0x18EE), hSvc)
//Initialise char, read/write enabled, accept signed writes
rc=BleCharNew (0x4A,BleHandleUuidl6 (1), charMet,0,0)

//Add another descriptor

attr$="descr value"
rc=BleCharDescAdd (0x2905,attr$, BleAttrMetadataex (1,1,20,9,rc))

//Commit char initialised above, with initial value "hi" to service 'hMyChar'
attr2$="char value"

rc=BleCharCommit (hSvc,attr2$,hMyChar)

rc=BleServiceCommit (hSvc)

rc=BleAdvRptInit (adRpt$, 0x02,0,20)

rc=BleScanRptInit (scRpt$)

//Get UUID handle for other descriptor

hOtherDscr=BleHandleUuidl6 (0x2905)

//Add 'hSvc', 'hMyChar' and the other descriptor to the advert report

rc=BleAdvRptAddUuidlé (adRpt$, hSvc, hOtherDscr,-1,-1,-1,-1)

rc=BleAdvRptAddUuidlé6 (scRpt$, hOtherDscr,-1,-1,-1,-1,-1)

//Commit reports to GATT table - adRpt$ is empty

rc=BleAdvRptsCommit (adRpt$, sScRpt$S)

rc=BleAdvertStart (0,addr$,20,300000,0)

rc=GpioBindEvent (1,16,1) //Channel 1, bind to low transition on GPIO pin 16
ENDFUNC attr$

//
// Close connections so that we can run another app without problems
//
SUB CloseConnections ()
rc=BleDisconnect (conHndl)

https://www.lairdconnect.com/ 77 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

rc=BleAdvertStop ()
rc=GpioUnbindEvent (1)
ENDSUB

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
conHndl=nCtx
IF nMsgID==1 THEN

PRINT "\n\n--- Disconnected from client"
EXITFUNC O
ELSEIF nMsgID==0 THEN
PRINT "\n--- Connected to client"
ENDIF
ENDFUNC 1
//
// Handler to service button 0 pressed
//
FUNCTION HndlrBtnOPr () AS INTEGER
CloseConnections ()
ENDFUNC 1
//
// Client has written to writeable descriptor
//

FUNCTION HndlrAuthDesc (BYVAL hConn AS INTEGER, BYVAL hChar AS INTEGER, BYVAL hDesc AS
INTEGER, BYVAL rw) AS INTEGER
dim duid, a$, rc
IF hChar == hMyChar THEN
rc = BleAuthorizeDesc (hConn, hChar, hDesc, 3)
rc = BleCharDescRead (hChar, hDesc,0,512,duid, a$)
IF rc ==0 THEN
PRINT "\nNew value for desriptor ";hDesc;" is ";a$

ELSE
PRINT "\nCould not access the uuid"
ENDIF
ELSE
PRINT "\nThis is for some other characteristic"
ENDIF
ENDFUNC 1
ONEVENT EVBLEMSG CALL HndlrBleMsg

ONEVENT EVAUTHDESC CALL HndlrAuthDesc
ONEVENT EVGPIOCHAN1 CALL HndlrBtnOPr

PRINT "\nOther Descriptor Value: ";OnStartup$ ()
PRINT "\nWrite a new value \n--- Press button 0 to exit\n"
WAITEVENT

PRINT "\nExiting..."

Expected Output:

Other Descriptor Value: descr value
Write a new value
--- Press button 0 to exit

--- Connected to client
New value for desriptor 0 is cC

https://www.lairdconnect.com/ 78 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.2.19 EVVSPRX

This event is thrown when the Virtual Serial Port service is open and data has arrived from the peer.

6.2.20 EVVSPTXEMPTY

This event is thrown when the Virtual Serial Port service is open and the last block of data in the transmit buffer is sent via a
notify or indicate. See VSP (Virtual Serial Port) Events

6.2.21 EVCONNRSSI

This event message is thrown when rssi reporting is enabled for specific connections using the function BleConnRssiStart()
which takes the connection handle.

It consists of a two integers payload with the following values:

= Integer 1 — The connection handle for which the rssi is being reported
= Integer 2 — The signed RSSI value in units of dBm.

6.2.22 EVNOTIFYBUF

When in a connection and attribute data is sent to the GATT client using a notify procedure (such as the function
BleCharValueNotify()) or when a Write_with_no_response is sent by the GATT client to a remote server, they are stored in
temporary buffers in the underlying stack. There is a finite number of these temporary buffers. If they are exhausted, the notify
function or the write_with_no_resp command fails with a result code of 0x6803 (BLE_NO_TX_BUFFERS). Once the attribute
data is transmitted over the air, if there are no acknowledges for Notify messages, the buffer is freed to be reused.

This event is thrown when at least one buffer has been freed. Because of this, the smartBASIC application can handle this
event to retrigger the data pump for sending data using notifies or writes_with_no_resp commands.

Note: When sending data using Indications, this event is not thrown. Those messages must be confirmed by the client
which results in a EVCHARHVC message to the smartBASIC application. Likewise, writes which are acknowledged
do not consume these buffers.

Example:

// Example :: EvNotifyBuf.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM hMyChar, rc,at$, conHndl,ntfyEnabled

//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup ()

DIM rc, hSvc, at$, attr$, adRpt$, addr$, scRpt$s
attr$="Hi"
DIM mdCccd : mdCccd = BleAttrMetadata(l,1,2,0,rc) //CCCD metadata for char

//Commit svc with handle 'hSvc'

rc=BleServiceNew (1, BleHandleUuidl6 (0x18EE), hSvc)

https://www.lairdconnect.com/ 79 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

//initialise char, write/read enabled, accept signed writes, notifiable
rc=BleCharNew (0x12,BleHandleUuidl6 (1) ,BleAttrMetabData(1,0,20,0,rc),mdCccd, 0)
//commit char initialised above, with initial value "hi" to service 'hMyChar'
rc=BleCharCommit (hSvc,attr$, hMyChar)

//commit changes to service

rc=BleServiceCommit (hSvc)

rc=BleScanRptInit (scRpt$)

//Add 1 service handle to scan report
rc=BleAdvRptAddUuidl6 (scRpt$, 0x18EE,-1,-1,-1,-1,-1)

//commit reports to GATT table - adRpt$ is empty
rc=BleAdvRptsCommit (adRpt$, scRptS)

rc=BleAdvertStart (0,addr$,50,0,0)

ENDFUNC rc

//

// Close connections so that we can run another app without problems
//

SUB CloseConnections ()
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()

ENDSUB

SUB SendData ()
DIM tx$, count
IF ntfyEnabled then
PRINT "\n--- Notifying"
DO
tx$="SomeData"
rc=BleCharValueNotify (hMyChar, tx$)
count=count+1
UNTIL rc!=0
PRINT "\n--- Buffer full"
PRINT "\nNotified ";count;" times"
ENDIF
ENDSUB

//
// Ble event handler
//

https://www.lairdconnect.com/ 80 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird : CONNECTIVITY

User Guide

FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
conHndl=nCtx
IF nMsgID==0 THEN
PRINT "\n--- Connected to client"

ELSEIF nMsgID THEN

PRINT "\n--- Disconnected from client"
EXITFUNC O
ENDIF
ENDFUNC 1
!/
// Tx Buffer free handler
//
FUNCTION HndlrNtfyBuf ()
SendData ()
ENDFUNC O
//
// CCCD descriptor written handler
//

FUNCTION HndlrCharCccd (BYVAL charHandle, BYVAL nVal) AS INTEGER
DIM value$, tx$
IF charHandle==hMyChar THEN
IF nVal THEN
PRINT " : Notifications have been enabled by client"
ntfyEnabled=1
tx$="Hello"
rc=BleCharValueNotify (hMyChar, tx$)
ELSE
PRINT "\nNotifications have been disabled by client"
ntfyEnabled=0
ENDIF
ELSE
PRINT "\nThis is for some other characteristic"
ENDIF
ENDFUNC 1

ONEVENT EVNOTIFYBUF CALL HndlrNtfyBuf
ONEVENT EVBLEMSG CALL HndlrBleMsg

https://www.lairdconnect.com/ 81 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

ONEVENT EVCHARCCCD CALL HndlrCharCccd

IF OnStartup ()==0 THEN
rc = BleCharValueRead (hMyChar, at$)
PRINT "\nYou can connect and write to the CCCD characteristic."
PRINT "\nThe BL653 will then send you data until buffer is full\n"
ELSE
PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT
CloseConnections ()

PRINT "\nExiting..."

Expected Output:

You can connect and write to the CCCD characteristic.
The BL653 will then send you data until buffer is full

--- Connected to client

Notifications have been disabled by client : Notifications have been enabled by client
--- Notifying

-—— Buffer full

Notified 1818505336 times

Exiting...

6.2.23 EVCONNPARAMREQ

This event is only thrown for a central role connection when a peripheral requests an update to the connection parameters via
BleSetCurConnParams(). The user must turn manual parameter control to receive this message by using
BleConnectConfig(8,1). In this case, auto accept is disabled and full control is given to the user.

The event contains the following integer values:

nConnHandle — The handle of the connection where the peripheral is requesting a change.
nMinIntUs — The minimum acceptable connection interval in microseconds.

nMaxIntUs — The maximum acceptable connection interval in microseconds.
nSuprToutUs — The link supervision timeout for the connection in microseconds.
nSlavelLatency — The number of connection interval polls that may be ignored.

Example:

//Example :: EvConnParamReq.sb

// In order to get the expected output, this application should be run against
// a peripheral device. The peripheral device should request new connection

// parameters upon connection, which in turn will trigger EVCONNPARAMREQ on

// this device.

// This is the target Bluetooth device to connect to, 7 bytes in hex
#define BTAddr "000016A4B75202"

// BLE EVENT MSG IDs

#define BLE EVBLEMSGID CONNECT 0 // msgCtx = connection handle

#define BLE EVBLEMSGID DISCONNECT 1 // msgCtx = connection handle

https://www.lairdconnect.com/ 82 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940

All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

#define BLE EVBLEMSGID CONN PARMS UPDATE 14 //nCtx = connection handle
#define BLE EVBLEMSGID CONN_PARMS UPDATE FAIL 15 //nCtx = connection handle

DIM rc

//
// This handler is called when there is a BLE message
//
FUNCTION HndlrBleMsg (BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER)
SELECT nMsgId
CASE BLE EVBLEMSGID CONNECT
PRINT "\nBLE Connection ";integer.h' nCtx;"\n"
CASE BLE EVBLEMSGID DISCONNECT
PRINT "\nDisconnected ";nCtx;"\n"
CASE BLE EVBLEMSGID CONN PARMS UPDATE
// The connection parameter has been updated. Read connection parameters
dim intrvl, sprvto,slat
rc= BleGetCurConnParms (nCtx,intrvl, sprvto,slat)

print "--- Param Updated \n"
print "- interval:";intrvl;" supervision timeout:";sprvto;" latency:";slat;"\n"
CASE BLE EVBLEMSGID CONN PARMS UPDATE FAIL
print "--- Param Update Failed\n"
print "- interval:";intrvl;" supervision timeout:";sprvto;" latency:";slat;"\n"
CASE ELSE
PRINT "\nUnknown Ble Msg"
ENDSELECT
ENDEUNC 1
//
// This handler is called when peripheral requests new parameter
//

function HandlerParamReq (BYVAL hConn AS INTEGER, BYVAL intrvlmin AS INTEGER, BYVAL intrvlmax
AS INTEGER, BYVAL sprvto AS INTEGER, BYVAL slat AS INTEGER)

print "--- Param Request \n"

print "- intervalmin:";intrvlmin;" intervalmax:";intrvlmax;" supervision
timeout:";sprvto;" latency:";slat;"\n"

// Accept the peripheral's request by changing the connection's conn parameters

rc = BleSetCurConnParms (hConn, intrvlmin, intrvlmax, sprvto, slat)

endfunc 1

// Program starts here

// Disable auto accept so that we get an event when peripheral requests
// new connection parameteres. Set to 0 to re-enable auto accept

rc = BleConnectConfig(8,1)

// Connect to peripheral

DIM addr$: addr$ = BTAddr

addr$ = StrDehexize$ (addr$)

rc = BleConnect (addr$, 5000, 7500, 7700, 500000)

/=
// Enable synchronous event handlers

/= m e e

ONEVENT EVBLEMSG CALL HndlrBleMsg

ONEVENT EVCONNPARAMREQ CALL HandlerParamReq

WAITEVENT

https://www.lairdconnect.com/ 83 Americas: +1-800-492-2320

© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

Expected Output:

BLE Connection 0001FFO0O0

—-—-- Param Request

- intervalmin:45000 intervalmax:50000 supervision timeout:6000000 latency:0
--- Param Updated

- interval:50000 supervision timeout:6000000 latency:0

6.2.24 EVBLE_EXTADVDROPPED

This event message is thrown when too many extended advert reports or scan responses have been received and the
message queue does not have enough space to accommodate them. To mitigate this, call NVCFGKEYSET(45,n) to increase
the size of the message. This configuration change will only come into effect after a reset, so call RESET() to make the
change effective.

6.2.25 EVBLE_EXTADVNOMEM

This event message is thrown when an extended advert report has been received and there is no heap space to allow for it to
be packaged into a STRING variable to be thrown to the smartBASIC user application in an event. The lack of space can also
apply when there is available memory but it is in smaller fragments in the free space managed by the heap.

6.2.26 EVBLE_SCAN_ABORTED

This event message is thrown when a scanning is in progress and an outgoing connection is started. Given a connection
attempt requires a scanning, then any existing scanning has to be aborted for that connection phase to work.
This event is to let the app know that it has been aborted so that it can be restarted when the connection fails or is successful.

6.2.27 EVBLE_EXTADV_END

This event message is thrown when an extended advert identified by the set_id parameter in the message has terminated and
will also provide the reason for the termination.

It consists of a two integers payload with the following values:

= Integer 1 - Setid
= Integer 2 — Reason for termination. O for timeout and for positive values specifies how many adverts were sent.

6.2.28 EVBLE_EXTADV_RPT

This event message is thrown when an extended advert report is to be conveyed to the application
It consists of 3 string and 1 integer in the following order :

= String 1 — Address of the device that send the advert

= String 2 — Payload of the advert consisting of many concatenated AD elements

= Integer 1 — RSSI of the receiced advert

= String 3 — Metadata of the associated advert. Use BleExtRptMetadata() to extract fields

6.2.29 EVBLE_EXTSCN_RPT

This event message is thrown when an extended advert scan response is to be conveyed to the application
It consists of 3 string and 1 integer in the following order :

= String 1 — Address of the device that send the scan response

= String 2 — Payload of the advert consisting of many concatenated AD elements

= Integer 1 — RSSI of the receiced scan response

= String 3 — Metadata of the scan response. Use BleExtRptMetadata() to extract fields

https://www.lairdconnect.com/ 84 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

6.2.30 EVBLE_EXTADV_RPT_INCOMPLETE

This event message is thrown when an extended advert or scan response is to be conveyed to the application which has
incomplete data. Use String 3 and function BleExtRptMetadata(metadata$,8) to determine if it was an advert report or a scan
response.

In addition, BleExtRptMetadata(metadata$,7,) will return the status field which will detail the reason why it is incomplete.

See the description for BleExtRptMetadata() for more details.

It consists of 3 string and 1 integer in the following order :

= String 1 — Address of the device that send the scan response

= String 2 — Payload of the advert consisting of many concatenated AD elements

= Integer 1 — RSSI of the receiced scan response

= String 3 — Metadata of the scan response. Use BleExtRptMetadata() to extract fields

6.3 Miscellaneous Functions

This section describes all BLE-related functions that are not related to advertising, connection, security manager, or GATT.

6.3.1 BleTxPowerSet

FUNCTION
This function sets the power of all packets that are transmitted subsequently.

Although this function can accept any value, the actual transmit power is determined by the internal power table which
depends on the variant of the module

The standard BL653 supports -40, -20, -16, -12, -8, -4, 0, 2, 4, 5, 6, 7, and 8 dBm.
When a value is set, the highest transmit power that is less than or equal to the desired power is used.
SYSINFO(2008) and AT | 2008 can be used to return the actual power level set.

BLETXPOWERSET (nTxPower)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:
byVal nTxPower AS INTEGER.
nTxPower Specifies the new transmit power in dBm units to be used for all subsequent tx packets.
The actual value is determined by the radios internal power table.

Example:

// Example :: BleTxPowerSet.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc,dp

dp=1000 : rc = BleTxPowerSet (dp)

PRINT "\nrc = ";rc

PRINT "\nTx power : desired= ";dp," actual= "; SysInfo (2008)
dp=8 : rc = BleTxPowerSet (dp)

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo(2008)
dp=2 : rc = BleTxPowerSet (dp)

https://www.lairdconnect.com/ 85 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird 2> CONNECTIVITY

User Guide

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo (2008)
dp=-10 : rc = BleTxPowerSet (dp)

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo (2008)
dp=-25 : rc = BleTxPowerSet (dp)

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo(2008)
dp=-45 : rc = BleTxPowerSet (dp)

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo (2008)
dp=-1000 : rc = BleTxPowerSet (dp)

PRINT "\nTx power : desired= ";dp," actual= "; SysInfo (2008)

Expected Output:

rc =0

Tx power : desired= 1000 actual= 4
Tx power : desired= 8 actual= 4
Tx power : desired= 2 actual= 0
Tx power : desired= -10 actual= -12
Tx power : desired= -25 actual= -40
Tx power : desired= -45 actual= -40
Tx power : desired= -1000 actual= -40

6.3.2 BleTxPwrWhilePairing

FUNCTION

This function sets the transmit power of all packets that are transmitted while a pairing is in progress. This mode of pairing is
referred to as Whisper Mode Pairing. The actual value is clipped to the transmit power for normal operation which is set using
BleTxPowerSet() function.

At any time SYSINFO(2018) returns the actual transmit power setting. Or when in command mode, uses the command AT |
2018.

Although this function can accept any value, the actual transmit power is determined by the internal power table which
supports -40, -20, -16, -12, -8, -4, 0, 2, 4, 5, 6, 7, and 8 dBm, when a value is set the highest transmit power that is less than or
equal to the desired power is used. SYSINFO(2008) and AT | 2008 returns the power level set and does not reflect the
transmit power level of the radio itself.

BLETXPWRWHILEPAIRING (nTxPower)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:
byVal nTxPower AS INTEGER.
Specifies the new transmit power in dBm units to be used for all subsequent Tx packets while the
pairing is in progress and normal power is resumed when the transaction is complete. The actual
nTxPower Value is determined by the radios internal power table.

Please note that the tx power will be reduced to nTxPower for ALL connections, even on
connections that there is no pairing in progress.

https://www.lairdconnect.com/ 86 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

Example:

// Example :: BleTxPwrWhilePairing.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc,dp

dp=1000 : rc = BleTxPwrWhilePairing (dp)

PRINT "\nrc = ";rc

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018)
dp=8 : rc = BleTxPwrWhilePairing (dp)

PRINT "\nTx power while pairing: desired= ";dp," "," actual= "; SysInfo(2018)
dp=2 : rc = BleTxPwrWhilePairing (dp)

PRINT "\nTx power while pairing: desired= ";dp," "," actual= "; SysInfo(2018)
dp=-10 : rc = BleTxPwrWhilePairing (dp)

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018)
dp=-25 : rc = BleTxPwrWhilePairing (dp)

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo (2018)
dp=-45 : rc = BleTxPwrWhilePairing (dp)

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018)
dp=-1000 : rc = BleTxPwrWhilePairing (dp)

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018)

Expected Output:

rc =0

Tx power while pairing: desired= 1000 actual= 10
Tx power while pairing: desired= 8 actual= 8
Tx power while pairing: desired= 2 actual= 2
Tx power while pairing: desired= -10 actual= -10

Tx power while pairing: desired= -25 actual= -20
Tx power while pairing: desired= -45 actual= -20
Tx power while pairing: desired= -1000 actual= -20

6.3.3 BleConfigHfClock

SUBROUTINE

This routine is used to configure the source of the high frequency clock (HFCLK) to be either the internal RC oscillator or an
external 32MHz crystal. Enabling the 32MHz crystal increases current consumption but at extreme temperatures useful when
the uart is in operation otherwise the baudrate will vary outside the limit and prevent proper communication.

BLECONFIGHFCLOCK(nClkSrc)

Returns | None

Arguments

nClkSrc | byVal nClkSrc AS INTEGER.
Source of the High Frerquency Clock as follows:

0 Internal RC Oscillator
1 External 32MHz Crystal
Other Values External 32MHz Crystal (but not recommended as in future it can change)
https://www.lairdconnect.com/ 87 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940

All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

6.3.4 BleConfigDhcDc

SUBROUTINE
This routine is used to configure the DC to DC converter to one of two states: ENABLED or DISABLED.

BLECONFIGDCDC (nNewState)

Returns None

Arguments

nNewState | byVal nNewState AS INTEGER.
Configure the internal DC to DC converter as follows:

0 Disabled
All other values Enabled

BleConfigDcDc (2) //Set for automatic operation

6.3.5 BleChannelMap
FUNCTION

This function is used to enable or disable data channel usage when in a connection. Applies to data channels 0 to 36 only.

BLECHANNELMAP (chanMap$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal chanMap$ AS STRING.

This must be a string which is exactly 5 bytes long where a bit set means enable that channel to be
used and a 0 means to disable.

The mapping between bits in the 5 bytes to data channels in BLE are as follows:-
Bit O of byte index O : BLE channel 0

Bit 7 of byte index 0 : BLE channel 7

Bit O of byte index 1 : BLE channel 8

chanMap$ | Bit 7 of byte index 1 : BLE channel 15

Bit O of byte index 2 : BLE channel 16

Bit 7 of byte index 2 : BLE channel 23

Bit O of byte index 3 : BLE channel 24

Bit 7 of byte index 3 : BLE channel 31

Bit O of byte index 4 : BLE channel 32

Bit 4 of byte index 4 : BLE channel 36

Bit 5 to 7 of byte index 4 are ignored.

6.4 Advertising Functions

This section describes all the advertising-related routines.

An advertisement consists of a packet of information with a header identifying it as one of four types along with an optional
payload that consists of multiple advertising records, referred to as AD in the rest of this manual.

Each AD record consists of up to three fields:

= Field 1 — One octet in length and indicates the number of octets that follow it that belong to that record.

= Field 2 — One octet in length and is a tag value which identifies the type of payload that starts at the next octet. Hence the
payload data is ‘length — 1°.

= Field 3 — A special NULL AD record that consists of one field (the length field) when it contains only the 00 value.

https://www.lairdconnect.com/ 88 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide

La i rd“ 2» CONNECTIVITY

The specification also allows custom AD records to be created using the Manufacturer Specific Data AD record.

Refer to the Supplement to the Bluetooth Core Specification, Version 1, Part A which contains the latest list of all AD records.
You must register as at least an adopter, which is free, to gain access to this information. It is available at
https://www.Bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=245130

6.4.1

FUNCTION

BleAdvertStart

This function causes a BLE advertisement event as per the Bluetooth specification. An advertisement event consists of an
advertising packet in each of the three advertising channels.

The type of advertisement packet is determined by the nAdvType argument and the data in the packet is initialised, created,
and submitted by the BLEADVRPTINIT, BLEADVRPTADDxxx, and BLEADVRPTCOMMIT functions respectively.

If the Advert packet type (nAdvType) is specified as 1 (ADV_DIRECT_IND), then the peerAddr$ string must not be empty and
should be a valid address. When advertising with this packet type, the timeout is automatically set to 1280 ms.

When filter policy is enabled, the whitelist consisting of all bonded masters is submitted to the underlying stack so that only

those bonded masters result in scan and connection requests being serviced.

Note: nAdvTimeout is rounded up to the nearest 1000 msec.

In order to advertise over CODED PHY (long range), BleAdvertConfig() should be called beforehand to set the

advertising primary and secondary channels to CODED PHY. See BleAdvertConfig() for more details. Furthermore,
the advertising type should be set to ADV_EXT_CONN_NONSCAN_DIRECTED. Finally, high bandwidth should be
enabled using “AT+CFG 214 1” followed by “ATZ".

Extended advertising types (6-11) are only supported as experimental features in this release.

BLEADVERTSTART (nAdvType, peerAddr$, nAdvinterval, nAdvTimeout, nFilterPolicy)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
If a OX6A01 resultcode is received, it implies a whitelist has been enabled but the Flags AD in the
advertising report is set for Limited and/or General Discoverability. The solution is to resubmit a new advert
report which is made up so that the nFlags argument to BleAdvRptlnit() function is 0.
The BT 4.0 spec disallows discoverability when a whitelist is enabled during advertisement. See Volume 3,
Sections 9.2.3.2 and 9.2.4.2.
Arguments:
byVal nAdvType AS INTEGER.
Specifies the advertisement type as follows:
0 | ADV_IND Invites connection requests
Invites connection from addressed device.
nAdvertTimeout imust be <= 1280ms
because nAdvinterval is ignored and will
1 ADV._DIRECT_IND adyertise ata rgte of every 3.75mi|liseconds
nAdvType whlgh means t!’1l§ type of advertlls not power
efficient and will impact battery life.
See ADV_DIRECT_LOW_DUTYCYCLE_IND
for a more power efficient alternative.
2 ADV_SCAN_IND Invites scan request for more advert data
3 ADV_NONCONN_IND Does not accept connections/active scans
Invites connection from addressed device.
4 ADV_DIRECT_LOW_DUTYCYCLE_IND No limit on nAdvertTimeout as the advertising
interval is as per nAdvinterval, like a normal

https://www.lairdconnect.com/

89

© Copyright 2020 Laird Connectivity, Inc.

All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=245130

BL653 smartBASIC Extensions

User Guide

La i rd“ 2» CONNECTIVITY

advert but with the payload being the target
address.
See ADV_DIRECT_IND for an alternative.

5 Unused

Invites connection requests over the
secondary advertising channel. This
advertising type can be used for CODED
PHY connections.

Invites connection from addressed devices
over the secondary advertising channel. This
advertising type can be used for CODED
PHY connections.

Invites scan requests over the secondary
advertising channel.

Invites scan requests from addressed devices
over the secondary advertising channel.
Undirected nonconnecatable nonscannable
10 | ADV_EXT_NONCONN_NONSCAN advertising using extended advertising
packets.

Directed nonconnecatable nonscannable

11 | ADV_EXT_NONCONN_NONSCAN_DIRECTED | advertising using extended advertising
packets.

6 | ADV_EXT_CONN_NONSCAN

7 | ADV_EXT_CONN_NONSCAN_DIRECTED

8 | ADV_EXT_NONCONN_SCAN

9 ADV_EXT_NONCONN_SCAN_DIRECTED

peerAddr$

byRef peerAddr$ AS STRING

It can be an empty string that is omitted if the advertisement type is not ADV_DIRECT_IND.

This is only required when nAdvType == 1. When not empty, a valid address string is exactly seven octets
long (for example: \00\11\22\33\44\55\66) where the first octet is the address type and the rest of the six
octets is the usual Bluetooth address in big endian format (so the most significant octet of the address is at
offset 1), whether public or random.

0 Public

1 Random Static

2 Random Private Resolvable

3 Random Private Non-Resolvable

All other values are illegal.

nAdvinterval

byVal nAdvinterval AS INTEGER.
The interval between two advertisement events (in milliseconds).

An advertisement event consists of a total of three packets being transmitted in the three advertising
channels.

Valid range is between 20 and 10240 milliseconds.

nAdvTimeout

byVal nAdvTimeout AS INTEGER.
The time after which the module stops advertising (in milliseconds). The range of this value is between 0
and 16383000 milliseconds and is rounded up to the nearest 1 seconds (1000ms).

A value of 0 means disable the timeout, but note that if limited advert modes was specified in
BleAdvRptinit() then this function fails. When the advert type specified is ADV_DIRECT_IND , the timeout
is automatically set to 1280 ms as per the Bluetooth Specification.

WARNING: To save power, do not mistakenly set this to e.g. 100ms.

byVal nFilterPolicy AS INTEGER.
Specifies the filter policy for the whitelist as follows:

nFilterPolicy
0 Disable whitelist
1 Filter Policy — Filter scan request; allow connection request from any
https://www.lairdconnect.com/ 90 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940

All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

2 Filter Policy — Filter connection request; allow scan request from any
3 Filter scan request and connection request
hhh A whitelist handle (for more details see section “Whitelist Management
Functions)

If the filter policy is not 0, but 1,2 or 3 the whitelist is enabled and filled with first 8 addresses and 8 identity
resolving keys of devices in the trusted device database. Given the database can accommodate more
devices please note that if more than 8 devices exist than a partial whitelist is activated.

To cater for that limitation, a whitelist can be manually created using the API described in the section
“Whitelist Management Functions” and the handle returned from a manually created list can be supplied
for this parameter

Example:

// Example :: BleAdvertStart.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM addr$: addr$=""

FUNCTION HndlrBlrAdvTimOut ()
PRINT "\nAdvert stopped via timeout"
PRINT "\nExiting..."

ENDFUNC 0

//The advertising interval is set to 25 milliseconds. The module will stop
//advertising after 60000 ms (1 minute)
IF BleAdvertStart (0,addr$,25,60000,0)==0 THEN

PRINT "\nAdverts Started"

PRINT "\nIf you search for Bluetooth devices on your device, you should see 'Laird
BL653""

ELSE
PRINT "\n\nAdvertisement not successful"

ENDIF

ONEVENT EVBLE ADV TIMEOUT CALL HndlrBlrAdvTimOut

WAITEVENT

Expected Output:

Adverts Started
If you search for Bluetooth devices on your device, you should see 'Laird BL653'

Advert stopped via timeout
Exiting...

https://www.lairdconnect.com/ 91 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.4.2 BleAdvertStop
FUNCTION
This function causes the BLE module to stop advertising.

BLEADVERTSTOP ()

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments | None

Example:

// Example :: BleAdvertStop.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM addr$: addr$=""
DIM rc

FUNCTION HndlrBlrAdvTimOut ()
PRINT "\nAdvert stopped via timeout"
PRINT "\nExiting..."

ENDFUNC 0

FUNCTION BtnOPress ()

IF BleAdvertStop ()==0 THEN

PRINT "\nAdvertising Stopped"
ELSE

PRINT "\n\nAdvertising failed to stop"
ENDIF

PRINT "\nExiting..."
ENDEUNC O

IF BleAdvertStart (0,addr$,25,60000,0)==0 THEN
PRINT "\nAdverts Started. Press button 0 to stop.\n"

ELSE

PRINT "\n\nAdvertisement not successful"
ENDIF
rc = GpioSetFunc(1l1l,1,2)

rc GpioBindEvent (0,11,1)

ONEVENT EVBLE ADV TIMEOUT CALL HndlrBlrAdvTimOut
ONEVENT EVGPIOCHANO CALL BtnOPress

WAITEVENT

Expected Output:

Adverts Started. Press button 0 to stop.

Advertising Stopped
Exiting...

https://www.lairdconnect.com/ 92 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.4.3 BleAdvertConfig
FUNCTION

This function is used to modify the default parameters that are used when initiating an advertise operation using
BleAdvertStart().

The following lists the default values for the parameters:

Advert Channel Mask Bit field detailing the channels to advertise on.
Note: Set channel mask Bit 0 to enable advert channel 0, Bit 1 to enable advert channel 1, and Bit 2 to enable advert
channel 2.

BLEADVERTCONFIG (configID, configValue)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal configiD AS INTEGER.
This identifies the value to update as follows:

0 Unused

1 Unused

2 Unused

3 Advert Channel Mask. Set t 0 to enable channel 37, bit 1 to enable channel 38, and bit 2
to enable channel 39

configlD Primary PHY to advertise on. Possible values are:-

1- 1IMPHY

4 | 4-CODED PHY
All other values are invalid
Secondary PHY to advertisie on. Possible values are:-
1- 1IMPHY

5 | 4-CODED PHY

All other values are invalid

For all other configID values the function returns an error.

byVal configValue AS INTEGER.
This contains the new value to set in the parameters indentified by configID.

configValue

https://www.lairdconnect.com/ 93 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.4.4 BleAdvRptInit

FUNCTION

This function is used to create and initialise an advert report with a minimal set of ADs (advertising records) and store it the
string specified. It is not advertised until BLEADVRPTSCOMMIT is called.

This report is for use with advertisement packets.

BLEADVRPTINIT (advRpt$, nFlagsAD, nAdvAppearance, nMaxDevName)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments:

byRef advRpt$ AS STRING.
This contains an advertisement report.

byVal nFlagsAD AS INTEGER.

advRpt$

nFlagsAD | Specifies the flags AD bits where bit 0 is set for limited discoverability and bit 1 is set
for general discoverability. Bit 2 will be forced to 1 and bits 3 & 4 will be forced to 0.
Bits 3 to 7 are reserved for future use by the BT SIG and must be set to 0.

byVal nAdvAppearance AS INTEGER.

Determines whether the appearance advert should be added or omitted as follows:
nAdvAppearance 0 Omit appearance advert

Add appearance advert as specified in the GAP service which is supplied via
the BleGapSvclinit() function

byVal nMaxDevName AS INTEGER.

1

nMaxDevName | The n |eftmost characters of the device name specified in the GAP service. If this
value is set to zero (0) then the device name is not included.

Example:

// Example :: BleAdvRptInit.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM advRpt$: advRptS$S=""
DIM discovMode : discovMode=0
DIM advAppearance : advAppearance = 1

DIM maxDevName : maxDevName = 10

IF BleAdvRptInit (advRpt$, discovMode, advAppearance, maxDevName)==0 THEN
PRINT "\nAdvert report initialised"

ENDIF

Expected Output:

Advert report initialised

https://www.lairdconnect.com/ 94 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

6.4.5 BleScanRptInit
FUNCTION

This function is used to create and initialise a scan report which will be sent in a SCAN_RSP message. It will not be used until
BLEADVRPTSCOMMIT is called.

This report is for use with SCAN_RESPONSE packets.

BLESCANRPTINIT (scanRpt)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
byRef scanRpt ASSTRING.
scanRpt . .
This contains a scan report.
Example:
// Example :: BleScanRptInit.sb

// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples
DIM scnRpt$: scnRpt$=""

IF BleScanRptInit (scnRpt$)==0 THEN
PRINT "\nScan report initialised"
ENDIF

Expected Output:

| Scan report initialised

6.4.6 BleAdvRptGetSpace
FUNCTION

This function returns the free space in the advert advRpt$.

BLEADVRPTGETSPACE(advRpt)

Returns | INTEGER, the free space in bytes.
Arguments:
Ref Rpt$ AS STRING.
advRpts by_ e adv_ pt$ AS S G
This contains an advert/scan report.
Example:
// Example :: BleAdvRptGetSpace.sb

// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples
dim rc, s$, dn$

rc=BleScanRptInit (s$)

dn$ = BleGetDeviceName$ ()

//Add device name to scan report
rc=BleAdvRptAppendAD (s$, 0x09,dns$)

print "\nFree space in scan report: "; BleAdvRptGetSpace (s$); " bytes"

Expected Output:

Free space in scan report: 18 bytes

https://www.lairdconnect.com/ 95 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.4.7 BleExtAdvRptGetSpace

See description in section “Extended Adverts Functions” here.

6.4.8 BleAdvRptAddUuid16

FUNCTION

This function is used to add a 16 bit UUID service list AD (Advertising record) to the advert report. This consists of all the 16 bit
service UUIDs that the device supports as a server. Up to 6 16 bit UUIDs can be added.

BLEADVRPTADDUUID16 (advRptS, nUuid1, nUuid2, nUuid3, nUuid4, nUuid5, nUuid6)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byRef AdvRpt AS STRING.

The advert report onto which the 16-bit uuids AD record is added.

byVal uuid1l AS INTEGER

nUuidl | UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to -1 to
have it ignored and then all further UUID arguments will also be ignored.

byVal uuid2 AS INTEGER

nUuid2 | UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to -1 to
have it ignored and then all further UUID arguments will also be ignored.

byVal uuid3 AS INTEGER

nUuid3 | UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to -1 to
have it ignored and then all further UUID arguments will also be ignored.

byVal uuid4 AS INTEGER

nUuid4 | UUID in the range O to FFFF; if the value is outside that range, it is ignored. Set the value to -1 to
have it ignored and then all further UUID arguments will also be ignored.

byVal uuid5 AS INTEGER

nUuid5 | UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to -1 to
have it ignored and then all further UUID arguments will also be ignored.

byVal uuid6 AS INTEGER

nUuid6 | UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to -1 to
have it ignored and then all further UUID arguments will also be ignored.

AdVRpt$

Example:

// Example :: BleAdvAddUuidlé6.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM advRpt$, rc
DIM discovMode : discovMode=0
DIM advAppearance : advAppearance = 1

DIM maxDevName : maxDevName = 10

rc = BleAdvRptInit (advRpt$, discovMode, advAppearance, maxDevName)

//BatteryService = 0x180F

//DeviceInfoService = 0x180A

https://www.lairdconnect.com/ 96 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

IF BleAdvRptAddUuidlé (advRpt$,0x180F,0x180A, -1, -1, -1, -1)==0 THEN
PRINT "\nUUID Service List AD added"
ENDIF

//0Only the battery and device information services are included in the advert report

Expected Output:

|UUID Service List AD added

6.4.9 BleAdvRptAddUuidl28
FUNCTION

This function is used to add a 128 bit UUID service list AD (Advertising record) to the advert report specified. Given that an
advert can have a maximum of only 31 bytes, it is not possible to have a full UUID list unless there is only one to advertise.

BLEADVRPTADDUUID128 (advRpt, nUuidHandle)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:

byRef AdvRpt AS STRING.
The advert report into which the 128-bit UUID AD record is to be added.
byVal nUuidHandle AS INTEGER

nUuidHandle | This is handle to a 128-bit UUID which was obtained using a function such as
BleHandleUuid128() or some other function which returns one.

advRpt

Example:

// Example :: BleAdvAddUuidl28.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM uuid$, hUuidCustom
DIM tx$,scRpt$,adRpt$,addr$, hndl
SCRpt$=""

PRINT BleScanRptInit (scRpt$)

//create a custom uuid for my ble widget

uuids

"ced9d91366924a1287d56f2764762b2a"
uuid$ = StrDehexize$ (uuid$)

hUuidCustom = BleHandleUuidl28 (uuid$)

//Advertise the 128 bit uuid in a scan report
PRINT BleAdvRptAddUuidl28 (scRpt$, hUuidCustom)
adRpt$=H"

PRINT BleAdvRptsCommit (adRpt$, scRpt$)

https://www.lairdconnect.com/ 97 Americas: +1-800-492-2320

© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide La"'d 2» CONNECTIVITY

addr$="" //because we are not doing a DIRECT advert

PRINT BleAdvertStart (0,addr$,20,30000,0)

Expected Output:

[00000

6.4.10 BleAdvRptAppendAD
FUNCTION

This function adds an arbitrary AD (Advertising record) field to the advert report. An AD element consists of a LEN:TAG:DATA
construct where TAG can be any value from 0 to 255 and DATA is a sequence of octets.

BLEADVRPTAPPENDAD (advRpt, nTag, stData$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byRef AdvRpt AS STRING.

The advert report onto which the AD record is to be appended.

byVal nTag AS INTEGER

nTag should be in the range 0 to FF and is the TAG field for the record.
byRef stData$ AS STRING

stData$ | This is an octet string which can be 0 bytes long. The maximum length is governed by the space
available in AdvRpt, a maximum of 31 bytes long.

AdvRpt

nTag

Example:

// Example :: BleAdvRptAppendAD.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM scnRpt$, ad$
ads="\01\02\03\04"

PRINT BleScanRptInit (scnRpt$)

IF BleAdvRptAppendAD (scnRpt$, 0x31,ad$)==0 THEN //6 bytes will be used up in the report
PRINT "\nAD with data '";ad$;"' was appended to the advert report"
ENDIF

Expected Output:

0
AD with data '\01\02\03\04' was appended to the advert report

https://www.lairdconnect.com/ 98 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.4.11 BleExtAdvRptAppendAD

See description in section “Extended Adverts Functions” here.

6.4.12 BleAdvRptsCommit

FUNCTION

This function is used to commit one or both advert reports. If the string is empty then that report type is not updated. Both
strings can be empty. In that case, this call will have no effect.

The advertisements will not happen until they are started using BleAdvertStart() function.

BLEADVRPTSCOMMIT (advRpt, scanRpt)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
byRef advRpt AS STRING.
advRpt The most recent advert report.
scanRot byRef scanRpt AS STRING.
PY1 The most recent scan report.
Note: If any one of the two strings is not valid then the call will be aborted without updating the other report even if this

other report is valid.

Tip: You can commit advert reports to update your advertisement data while advertising.
Example:
// Example :: BleAdvRptsCommit.sb

// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM advRpt$: advRpt$=""

DIM scRpt$: scRpts$=""

Il
o

DIM discovMode : discovMode

DIM advApprnce : advApprnce = 1

Il
—
o

DIM maxDevName : maxDevName
PRINT BleAdvRptInit (advRpt$, discovMode, advApprnce, maxDevName)
PRINT BleAdvRptAddUuidlé6 (advRpt$, 0x180F,0x180A, -1, -1, -1, -1)

PRINT BleAdvRptsCommit (advRpt$, scRpt$)

// Only the advert report will be updated.

Expected Output:

| 000

https://www.lairdconnect.com/ 99 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions La rd

) CONNECTIVITY
User Guide _)

6.5 Extended Adverts Functions

This section describes all the extended adverts related routines, including ones for scanning and connecting which is an
enhancement that was introduced in the v5.0 specification.

This enhancement allows for the advertising payload to be greater than 31 and in addition the use of all 40 channels and
PHYs of 1M, 2M and LE_CODED.

As a recap, the specification labels the 40 channels from 0 to 39 and in the 4.x specification channels 37,38 and 39 were
dedicated as adverisement channels and they were always sent at 1M PHY as that was the only one possible.

In v5.0, advertisment channels 37,38 and 39 are now qualified as ‘Primary Advertising Channels’ and channels 0 to 36 which
were used exclusively for data in connections, they are now qualified as ‘Secondary Advertising Channels’.

In extended adverts, the adverts sent in the primary channels are still limited to a payload of not more than 31 bytes and only
those on secondary channels can have larger than 31 bytes.

Each advert packet sent on a secondary channel can now have up to 255 bytes of payload (concatenated AD elements) and
the specification allows for chaining up to 6 of those 255 byte packets so that up to 1650 bytes as a single object can be
broadcast. However, field experience has shown that relibility of receiving all those chained packets is not 100% and so many
stack vendors do not offer the chaining capability and so each advert can only have up to 255 bytes of payload. On that basis,
the Laird module also limits it to 255 bytes.

When extended adverts are sent, a newly created primary channel advert, called ADV_EXT_IND, is used with a special
payload that has a pointer to the advert that is subsequently sent on the secondary channel. That pointer object contains the
following information:-

= Time offset to the start of the packet in one of the secondary channels.
= The PHY that the advert will be sent out on, which will be one of 1M, 2M or LE_CODED
= Then channel number which will be in the range 0 to 36

Also note that for earlier specifications, the adverts on channels 37,38,39 were always sent on 1M PHY because that was the
only PHY available. Given that v5.x has introduced new PHYSs, it is now possible to send the ADV_EXT_IND (which only go
out on primary channels) on LE_CODED, and that is to allow long range connections to be established. That is logical
because when the two peers are far apart, normal 1M PHY adverts are not going to reach the master device for it to initiate
connections.

An advert or scan response payload consists of multiple advertising records, referred to as AD in the rest of this manual.
Each AD record consists of up to three fields:

= Field 1 — One octet in length and indicates the number of octets that follow it that belong to that record.

= Field 2 — One octet in length and is a tag value which identifies the type of payload that starts at the next octet. Hence the
payload data is ‘length — 1°.

= Field 3 — A special NULL AD record that consists of one field (the length field) when it contains only the 00 value.

The specification also allows custom AD records to be created using the Manufacturer Specific Data AD record.

Refer to the Supplement to the Bluetooth Core Specification, Version 1, Part A which contains the latest list of all AD records.
You must register as at least an adopter, which is free, to gain access to this information. It is available at
https://www.Bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=245130

In the ‘legacy’ adverts smartBASIC api functions have been provided that allow AD elements to be appended to the advert or
scan response payload. Those functions are BleAdvRptlnit(), BleScanRptinit(), BleAdvRptAddUuid16(),
BleAdvRptAddUuid128() and BleAdvRptAppendAD() and they can still be used for extended adverts. However, if the report
will exceed 31 bytes then it will fail. Once that happens a new function called BleExtAdvRptAppendAD() has been added that
will allow any AD element to appended to an advert string and that new function will fail when the total length will exceed 255
bytes.

The rest of this section will describe the new functions that have been added to facilitate extended adverts. In addition the
following events have been added which are are described in an earlier section and can be naviagted to by clicking them.

EVBLE_EXTADVDROPPED
EVBLE_EXTADVNOMEM
EVBLE_SCAN_ABORTED
EVBLE_EXTADV_END
EVBLE_EXTADV_RPT

agrODE

https://www.lairdconnect.com/ 100 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=245130

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

6. EVBLE_EXTSCN_RPT
7. EVBLE_EXTADV_RPT_INCOMPLETE

To summarise, to start extended adverts the smartBASIC application will make the following function calls in the sequence
specified:

1. BleAdvSetCreate()
2. BleAdvSetNewData()
3. BleAdvSetStart()

and once adverts are started BleAdvSetNewData() can be called as often as required to change the data that is currently
being advertised.

To stop adverts, call the following:
1. BleAdvSetStop()

To scan for adverts, call the following, to stop use the existing function to do so and to preocess advert reports or scan
responses that are received register handlers for events EVBLE_EXTADV_RPT, EVBLE_EXTSCN_RPT and
EVBLE_EXTADV_RPT_INCOMPLETE. This scanning will also result in ‘legacy’ adverts being received which are processed
in the same way that has always existed, that is, be registering for the event EVBLE_ADV_REPORT.

1. BleScanStartEx()

To make connections, use the following function which will allow for making a long range connections. In fact it is recommened
that this new function should always be used as the existing function BleConnect() may be deprecated:-

2. BleConnectExtended()

6.5.1 BleAdvSetCreate

FUNCTION

This function is used to create a new advertising set identified by the nSetld parameter which is a value in the range 0 to N
where N is function of the firmware build. The set identified by nSetID value of 0 is always available and at runtime use
NvCfgKeyGet(217) to obtain the maximum sets that can be created.

Think of a set as the definition of an advertising object and when multiple are defined they can all be advertised simultaneously
in an interleaved manner so that it facilitates the transmission of say iBeacons and Eddystone beacons. Note that at the time
when this was written the underlying stack only allows up to 1 set to be created and resused as often as desired.

If the nAdvProperties argument is specified with bit 2 set (directed), then the peerAddr$ string must not be empty and should
be a valid address.

When filter policy is enabled, the whitelist consisting of all bonded masters is submitted to the underlying stack so that only
those bonded masters result in scan and connection requests being serviced.

BLEADVSETCREATE (nSetld, nAdvProperties, nPriSecPhy, nFilterPolicy, peerAddr$, chanMask$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nSetld | byVal nSetld AS INTEGER.
A value in the range 0 to N where N is the value returned by command AT+CFG 127?

byVal nAdvProperties AS INTEGER.
Specifies a bitmask as follows:

Bit Description

Set for Connectable, clear for Unconnectable

Set for Scannable, clear for Unscannable.
Note when extended bit 3 is set, bits 0 and 1 cannot both be 1

nAdvProperties

0

1

2 Set for Directed and clear for Undirected
3 Set for Extended and clear for 4.x adverts

4.7 Reserved for future use, set to 0

https://www.lairdconnect.com/ 101 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

Set for High latency and clear for low latency when the directed bit 2 is set and will be
ignored if extended bit 3 is set
9 Set to omit adverisers address from all extended advert pdus so that it is anonymous
Set to include the TX_POWER info field in the CEAP payload of extended adverts.
See specification for more details
11..31 | Reserved for future use, set to 0
byVal nPriSecPhy AS INTEGER.
Bitmask to set Primary and Secondary PHYs
bit 0 : Primary Phy
- Clear for IMPHY and Set for LE_CODED
- When set, Bit 3 (Extended) in nAdvProperties overriden as always set
bit 123 : Secondary Phy

10

nPriSecPhy

321
- 000 == Same Phy as Primary Phy
- 001 == 1IMPHY
- 010 == 2MPHY

- 011 == LECODED

- 100 to 111 is reserved for future use
byVal nFilterPolicy AS INTEGER.
nFilterPolicy | A handle that will have been created using BleWhiteListCreate() that specifies the peer addresses that
will be whitelisted.
byRef peerAddr$ AS STRING
It can be an empty string that is omitted if the advertisement type is not ADV_DIRECT_IND.
This is only required when nAdvType == 1. When not empty, a valid address string is exactly seven
octets long (for example: \00\11\22\33\44\55\66) where the first octet is the address type and the rest of
the six octets is the usual Bluetooth address in big endian format (so the most significant octet of the
peerAddr$ | address is at offset 1), whether public or random.

0 Public

1 Random Static

2 Random Private Resolvable

3 Random Private Non-Resolvable

All other values are illegal.
byVal chanMask$ AS STRING
This is a string that will be exactly 0 or 5 bytes long that has 40 bits that map to the 40 channels
available in BLE. If a bit is 1 then the corresponding channel is not allowed.

chanMask .) . . .
$ Bit 0 of the first byte is channel 0 and bit 7 of the 5 byte is channel 39.
At least one but corresponding to channels 37,38 and 39 must be clear.
See specification v5.0, Vol 6, Part B, Section 1.4.1
https://www.lairdconnect.com/ 102 Americas: +1-800-492-2320

© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.5.2 BleAdvSetNewData

FUNCTION

This function is used to attach advert and/or scan response data to the data set specified. If adverts are currently being
transmitted for the set specified they need to be stopped and the data will automatically be updated in the next adverts sent.

This function assumes that the set specified has already been created using BleAdvSetCreate() and if not will return an
appropriate error code.

BLEADVSETNEWDATA (nSetld, advData$, scanData$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nSetld | byVal nSetld AS INTEGER.
A value in the range 0 to N where N is the value returned by command AT+CFG 127?

byRef advData$ AS STRING.

Contains concatenated AD elements to be transmitted. The string will have been created with either
BleAdvRptlnit() or BleScanRptlnit(). The latter when the advert is unconnectable so that it is created
with no AD elements. Depending on the type of advert, the length of the advert cannot be greater than
31 or 238 or 255.

31 limit when nAdvProperties bit 3 is clear

238 limit when nAdvProperties bit 0 is set and bit 3 is set

255 limit when nAdvProperties bit 0 is clear and bit 3 is set

advData$

byRef scanData$ AS STRING.

Contains concatenated AD elements to be transmitted. The string will have been created with either
BleScanRptlnit(). Depending on the type of advert, the length of the advert cannot be greater than 0, 31
scanData$ | or 255.

0 when nAdvProperties bit 1 is clear

31 limit when nAdvProperties bit 3 is clear

255 limit when nAdvProperties bit 3

6.5.3 BleAdvSetStart

FUNCTION
This function is used to start adverts for the advertising set specified using interval and duration parameters specified.

If the nAdvMaxCount is non-zero then when that many adverts are sent, advertising will be automatically stopped regardless
of the value of the nAdvDuration parameter.

If nAdvMaxCount is zero and nAdvDuration is also 0 then advertising will not autoamtically stopped until either
BleAdvSetStop() with the same nSetID or BleAdvertStop() is called.

BLEADVSETSTART (nSetld, nAdvinterval, nAdvDuration, nAdvMaxCount, nAuxOffset)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

If a 0X6A01 resultcode is received, it implies a whitelist has been enabled but the Flags AD in the
advertising report is set for Limited and/or General Discoverability. The solution is to resubmit a new
advert report which is made up so that the nFlags argument to BleAdvRptInit() function is 0.

The BT spec disallows discoverability when a whitelist is enabled during advertisement.

Arguments:

nSetld | byVal nSetld AS INTEGER.
A value in the range 0 to N where N is the value returned by command AT+CFG 1277

nAdvinterval | byVal nAdvinterval AS INTEGER.

https://www.lairdconnect.com/ 103 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

The interval between two advertisement events (in milliseconds).

Valid range is between 20 and 10240 milliseconds.

byVal nAdvTimeout AS INTEGER.

The time after which the module stops advertising (in milliseconds). The range of this value is between
0 and 16383000 milliseconds and is rounded up to the nearest 1 seconds (1000ms).

A value of 0 means disable the timeout

byVal nAdvMaxCount AS INTEGER.

This is a value in the range 0 to 255

When non-zero, then advertising will automatically stop when this many adverts are sent. The event
EVBLE_EXTADV_END will be received with the reason set to the number of adverts sent.

byVal nAuxOffset AS INTEGER.

This is reserved for future use and must always be set to O which signifies the use of stack default value
which is around 4 milliseconds. No assumptions should be made on this value as the default value is
subject to change by the stack vendor.

nAdvDuration

nAdvMaxCount

nAuxOffset

6.5.4 BleAdvSetStop

FUNCTION

This function is used to stop adverts for the advertising set specified.

BLEADVSETSTOP (nSetld)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nSetld | byVal nSetld AS INTEGER.
A value in the range 0 to N where N is the value returned by command AT+CFG 127?

6.5.5 BleScanStartEx

FUNCTION

This function is used to start a scan for adverts which may result in at least one of the following events being thrown:

EVBLE_SCAN_TIMEOUT End of scanning

EVBLE_ADV_REPORT Advert report received

EVBLE_FAST_PAGED Peripheral inviting a connection to this module

EVBLE_EXTADVDROPPED Event message queue full and extended advert arrived

EVBLE_EXTADVNOMEM Extended advert or scan response arrived and malloc failed
EVBLE_EXTADV_RPT Received an extended advert report

EVBLE_EXTSCN_RPT Received an extended scan response

EVBLE_EXTADV_RPT_INCOMPLETE E;;i:gd and extended advert report or scan response which has incomplete data

= EVBLE_ADV_REPORT — Received when an advert has been successfully cached in a ring buffer. The handler should
call the function BleScanGetAdvReport() repeatedly to read all the advert reports that have been cached until the cache
is empty, otherwise there is a risk that advert reports will be discarded. The output parameter nDiscarded returns the
number of discarded reports, if any.

= EVBLE_FAST_PAGED - Received when a peripheral has sent an advert with the address of this module. The handler
should stop scanning using BleScanStop() and then initiate a connection using BleConnect().

= EVBLE_EXTADV_RPT_INCOMPLETE is received when an advert report or scan response is received when the data is
incomplete. This can happened for example when a advertiser has sent an advert or scan response which is greater than
255 by sending chained packets. The underlying code in this buffer does not provide a buffer larger than 255 bytes for
the data to be stored in and so it has to be reported as incomplete.

https://www.lairdconnect.com/ 104 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

There are two parameters used when initiating a scan that are configurable using BleScanConfig(), otherwise default values
are used:

= Scan Interval — Specify the duty cycle for listening for adverts. Default value: 80 milliseconds.
= Scan Window — Specify the duty cycle for listening for adverts. Default value: 40 milliseconds.

The values for these default parameters can be changed prior to invoking this function by calling the function BleScanConfig()
appropriately.

Scanning can be stopped at any time by called BleScanStop() or by starting a connection.

Note: Be aware that scanning is a memory intensive operation and so heap memory is used to manage a cache for
legacy adverts. If the heap is fragmented, it is likely this function will fail with an appropriate resultcode returned. If
that happens, call reset() and then attempt the scan start again. The memory that is allocated to manage this scan
process is NOT released when the scanning times out. To force release of that memory, we recommend that you
start the scan and then immediately call BleScanStop().

BLESCANSTARTEX(scanTimeoutMs, nPriPhyScan, chanMask$, nFilterHandle)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVAL scanTimeoutMs AS INTEGER.
The length of time in milliseconds the scan for adverts lasts. If the timer times out then the event
scanTimeoutMs | EVBLE_SCAN_TIMEOUT is thrown to the smartBASIC application.
Valid range is 0 to 65535000 milliseconds (about 18 hours). If 0 is supplied, a timer is not started and
scanning can only be stopped by calling either BleScanAbort() or Ble ScanStop().
byVAL nPriPhyScan AS INTEGER
Bit Mask to specify the PHY to scan on in the primary channels and whether passive or active scanning
as follows
Note: At least one bit MUST be set.
Bit 0: Scan on IMPHY
nPriPhyScan Bit 1: Scan on LE_CODED
Bit 2: Set for Extended Scanning (If Bit 1 set, then this is overriden and always set)
Bit 3: Set for Passive Scanning and clear for Active Scanning

Note when Bit 2 is clear and bit 1 is not set, then the scanning is as per legacy scanning which would if
BleScanStart() was called.

byVal chanMask$ AS STRING

This is a string that will be exactly 0 or 5 bytes long that hass 40 bits that map to the 40 channels
available in BLE. If a bit is 1 then the corresponding channel is not allowed.

Bit 0 of the first byte is channel 0 and bit 7 of the 5" byte is channel 39.

At least one but corresponding to channels 37,38 and 39 must be clear.

See specification v5.0, Vol 6, Part B, Section 1.4.1

byVal nFilterPolicy AS INTEGER.

nFilterHandle | A handle that will have been created using BleWhiteListCreate() that specifies the peer addresses that
will be whitelisted.

chanMask$

https://www.lairdconnect.com/ 105 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.5.6 BleExtRptMetadata

FUNCTION

This function is used to extract information from the metaData$ string parameter that is sent in the following events:-

EVBLE_EXTADV_RPT Received an extended advert report

EVBLE_EXTSCN_RPT Received an extended scan response

Received and extended advert report or scan response which has

EVBLE _EXTADV_RPT_INCOMPLETE | .
- - - incomplete data payload

BLEEXTRPTMETADATA (metaData$, ninfold)

Returns INTEGER, the value of the information field.
It will be 0x80000000 if the metaData$ string is of the wrong length.
It will be 0x80000001 if the metaData$ string is invalid due to not having correct magic header.

Arguments:

metaData$ | byRef metaData$ as STRING
The metadata$ string that arrived in one of the events listed above.

ninfold | byVal ninfold AS INTEGER.

The information extracted is as per the list below.

: Set_id

: data_id

: primary phy

: secondary phy

: channel_index

: tx_power (This field is set to 127 if the report does not contain the TxPower field)

: Status (0=Complete
1=INCOMPLETE_MORE_DATA - More data to be received
2=INCOMPLETE_TRUNCATED - Buffer size insufficient to receive more
3=INCOMPLETE_MISSED - Failed to receive the remaining data

8 : Packet type: 0 for Advert Report and 1 for Scan Response

~No b~ WN PR

All other id values will return 0.

6.5.7 BleConnectExtended

FUNCTION

This function is used to make normal or long range connections to a device in peripheral mode which is actively advertising
using filtering.

When the connection is complete, a EVBLEMSG message with msgld = 0 and context containing the handle are thrown to the
smartBASIC runtime engine.

If the connection times out, then the event EVBLE_CONN_TIMEOUT is thrown to the smartBASIC application.

When a connection is attempted, there are other parameters that are used and the default values for those are assumed; for
example, scan window, scan interval, and periodicity. The default values for those can be changed using the
BleConnectConfig() function. At any time, the current settings can be obtained via the SYSINFO() command.

BLECONNECTEXTENDED(peerAddr$, connTimeoutMs, minConnIntUs, maxConnIntUs, nSuprToutUs, nLongRange,hFilter)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.
Arguments:
https://www.lairdconnect.com/ 106 Americas: +1-800-492-2320

© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

byRef peerAddr$ AS STRING

peerAddr$ | The Bluetooth address of the device to connect to which MUST be properly formatted and is
exactly seven bytes long.

byVal connTimeoutMs AS INTEGER.

connTimeoutMs | The length of time in milliseconds that the connection attempt lasts. If the timer times out then
the event EVBLE_CONN_TIMEOUT is thrown to the smartBASIC application.

byVal minConnintUs AS INTEGER.

minConnintUs | The minimum connection interval in microseconds. Valid range is between 7500 and 4000000
microseconds.

byVal maxConnIntUs AS INTEGER.

maxConnintUs | The maximum connection interval in microseconds. Valid range is between 7500 and 4000000
microseconds

byVal nSuprToutUs AS INTEGER.

The link supervision timeout for the connection in microseconds.

byVal nLongRange AS INTEGER.

nLongRange | Setto 0 for normal IMPHY connections and 1 for long ragne connections off LE_CODED
adverts sent by the peer

byVal nFilter AS INTEGER.

hFilter | A handle that will have been created using BleWhiteListCreate() that specifies the peer
addresses that will be whitelisted.

nSuprToutUs

6.5.8 BleExtAdvRptAppendAD

FUNCTION

This function adds an arbitrary AD (Advertising record) field to the advert or scan report. An AD element consists of a
LEN:TAG:DATA construct where TAG can be any value from 0 to 255 and DATA is a sequence of octets.

This function is the only one that is able to add an AD element to a report when adding it will extend the report beyond 31
bytes. It will not succeed of the report will result in it being over 255 bytes long.

Use function BleExtAdvGetSpace() to determine current available space in advRpt$ string.

BLEEXTADVRPTAPPENDAD (advRpt$, nTag, stData$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
byRef AdvRpt$ AS STRING.
AdvRpt$ y pts

The advert report onto which the AD record is to be appended.

byVal nTag AS INTEGER

nTag should be in the range 0 to FF and is the TAG field for the record.
byRef stData$ AS STRING

stData$ | This is an octet string which can be 0 bytes long. The maximum length is governed by the space
available in AdvRpt, a maximum of 255 bytes long.

nTag

https://www.lairdconnect.com/ 107 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.5.9 BleExtAdvRptAddUuidi6

FUNCTION

This function is used to add a 16 bit UUID service list AD (Advertising record) to the extended advert report. This consists of all
the 16 bit service UUIDs that the device supports as a server. Up to six 16 bit UUIDs can be added.

BLEEXTADVRPTADDUUID16 (advRpt$, nUuidl, nUuid2, nUuid3, nUuid4, nUuid5, nUuid6)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
AdVRptS byRef AdvRpt AS STRING. o _
The advert report onto which the 16-bit uuids AD record is added.
. byVal uuidl AS INTEGER
nUuidl

UUID in the range 0 to FFFF; if the value is outside that range, it is ignored.

byVal uuid2 AS INTEGER

nUuid2 | UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to -1 to
have it ignored and then all further UUID arguments will also be ignored.

byVal uuid3 AS INTEGER

nUuid3 | UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to -1 to
have it ignored and then all further UUID arguments will also be ignored.

byVal uuid4 AS INTEGER

nUuid4 | UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to -1 to
have it ignored and then all further UUID arguments will also be ignored.

byVal uuid5 AS INTEGER

nUuid5 | UUID in the range O to FFFF; if the value is outside that range, it is ignored. Set the value to -1 to
have it ignored and then all further UUID arguments will also be ignored.

byVal uuidé AS INTEGER

nUuid6 | UUID in the range O to FFFF; if the value is outside that range, it is ignored. Set the value to -1 to
have it ignored and then all further UUID arguments will also be ignored.

6.5.10 BleExtAdvRptAddUuid128

FUNCTION

This function is used to add a 128 bit UUID service list AD (Advertising record) to the extended advert report. This consists of
all the 128 bit service UUIDs that the device supports as a server. Up to six 128 bit UUIDs can be added. If there isn’t enough
space to add an element with all the UUID’s specified then the AD element tag will be the incomplte list variant which has the
value 0x06 instead of 0x07 which denotes the fact that all UUIDs fitted.

The function takes UUID handles that will have been obtained using functions like BleHandleUuid128() and
BleHandleUuidSibling().

BLEEXTADVRPTADDUUID128 (advRpt$, hUuid1, hUuid2, hUuid3, hUuid4, hUuid5, hUuid6)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byRef AdvRpt AS STRING.

AdVRpt$ The advert report onto which the 128-bit uuids AD record is added.
hUuid1 byVal hUuid1l AS INTEGER
UUID handle that will have been obtained using BleHandleUuid128() or BleHandleUuidSibling().
byVal hUuid2 AS INTEGER
hUuid?2 UUID handle that will have been obtained using BleHandleUuid128() or BleHandleUuidSibling().

Set the value to 0 to have it ignored and then all further UUID handle arguments will also be
ignored.
hUuid3 | byVal hUuid3 AS INTEGER

https://www.lairdconnect.com/ 108 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

UUID handle that will have been obtained using BleHandleUuid128() or BleHandleUuidSibling().
Set the value to 0 to have it ignored and then all further UUID handle arguments will also be
ignored.

byVal hUuid4 AS INTEGER

UUID handle that will have been obtained using BleHandleUuid128() or BleHandleUuidSibling().
Set the value to 0 to have it ignored and then all further UUID handle arguments will also be
ignored.

byVal hUuid5 AS INTEGER

UUID handle that will have been obtained using BleHandleUuid128() or BleHandleUuidSibling().
Set the value to 0 to have it ignored and then all further UUID handle arguments will also be
ignored.

byVal hUuid6 AS INTEGER

UUID handle that will have been obtained using BleHandleUuid128() or BleHandleUuidSibling().
Set the value to 0 to have it ignored and then all further UUID handle arguments will also be
ignored.

hUuid4

hUuid5

hUuid6

6.5.11 BleExtAdvRptGetSpace

FUNCTION
This function returns the free space in the extended advert advRpt$.

BLEEXTADVRPTGETSPACE(advRpt)

Returns INTEGER, the free space in bytes.

Arguments:

byRef advRpt$ AS STRING.

advRpt . .
Pt This contains an advert/scan report.

6.6 Scanning Functions

When a peripheral advertises, the advert packet consists type of advert, address, RSSI, and some user data information.
A central role device enters scanning mode to receive these advert packets from any device that is advertising.

For each advert that is received, the data is cached in a ring buffer, if space exists, and the EVBLE_ADV_REPORT event is
thrown to the smartBASIC application so that it can invoke the function BleScanGetAdvReport() to read it.

The scan procedure ends when it times out (timeout parameter is supplied when scanning is initiated) or when explicity
instructed to abort or stop.

Note: While scanning for a long period of time, it is possible that a peripheral device is advertising for a connection to it
using the ADV_DIRECT_IND advert type. When this happens, it is good practice for the central device to stop
scanning and initiate the connection. To cater for this specific scenario, which would normally require the central
device to look out for that advert type and the self address, the EVBLE_FAST_PAGED event is thrown to the
application. This means that all the user app needs to do is to install a handler for that event which stops the scan
procedure and immediately starts a connection procedure.

For more information about adverts see the section Advertising Functions.

https://www.lairdconnect.com/ 109 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.6.1 BleScanStart

FUNCTION

This function is used to start a scan for adverts which may result in at least one of the following events being thrown:

EVBLE_SCAN_TIMEOUT | End of scanning

EVBLE_ADV_REPORT Advert report received
EVBLE_FAST_PAGED Peripheral inviting a connection to this module

= EVBLE_ADV_REPORT - Received when an advert has been successfully cached in a ring buffer. The handler should
call the function BleScanGetAdvReport() repeatedly to read all the advert reports that have been cached until the cache
is empty, otherwise there is a risk that advert reports will be discarded. The output parameter nDiscarded returns the
number of discarded reports, if any.
= EVBLE_FAST_PAGED - Received when a peripheral has sent an advert with the address of this module. The handler
should stop scanning using BleScanStop() and then initiate a connection using BleConnect().
There are three parameters used when initiating a scan that are configurable using BleScanConfig(), otherwise default values
are used:
= Scan Interval — Specify the duty cycle for listening for adverts. Default value: 80 milliseconds.
= Scan Window — Specify the duty cycle for listening for adverts. Default value: 40 milliseconds.
= Scan Type — Default scan type: Active
Active scanning means that for each advert received (if it is ADV_IND or ADV_DISCOVER_IND) a SCAN_REQ is sent to

the advertising device so that the data in the scan response can be appended to the data that has already been received
for the advert.

The values for these default parameters can be changed prior to invoking this function by calling the function BleScanConfig()
appropriately.

Note: Be aware that scanning is a memory intensive operation and so heap memory is used to manage a cache. If the
heap is fragmented, it is likely this function will fail with an appropriate resultcode returned. If that happens, call
reset() and then attempt the scan start again. The memory that is allocated to manage this scan process is NOT
released when the scanning times out. To force release of that memory, we recommend that you start the scan and
then immediately call BleScanStop().

Connections may not be established during a scan operation. If a continued scan is required, stop the scan or let it
timeout, connect, then restart the scan.

In order to scan for devices over the CODED PHY medium (long range), BleScanConfig() should be called
beforehand to configure the device with this capability. See BleScanConfig() for more information. Furthermore,
high bandwidth should be enabled using “AT+CFG 214 1” followed by “ATZ".

BLESCANSTART (scanTimeoutMs, nFilterHandle)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVAL scanTimeoutMs AS INTEGER.

The length of time in milliseconds the scan for adverts lasts. If the timer times out then the
scanTimeoutMs | event EVBLE_SCAN_TIMEOUT is thrown to the smartBASIC application.

Valid range is 0 to 65535000 milliseconds (about 18 hours). If 0 is supplied, a timer is not
started and scanning can only be stopped by calling either BleScanAbort() or Ble ScanStop().
byVAL nFilterHandle AS INTEGER

nFilterHandle | This must be zero (0) to specify no filtering of adverts.

Note: In this current firmware version, this is only a placeholder.

https://www.lairdconnect.com/ 110 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird 2> CONNECTIVITY

User Guide

Example:

// Example :: BleScanStart.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc

'//Scan for 20 seconds with no filtering
rc = BleScanStart (20000, 0)

IF rc==0 THEN

PRINT "\nScanning"
ELSE

PRINT "\nError: "; INTEGER.H'rc
ENDIF

'//This handler will be called when scanning times out
FUNCTION HndlrScanTO ()
PRINT "\nScan timeout"
ENDFUNC 0
ONEVENT EVBLE SCAN TIMEOUT CALL HndlrScanTO

WAITEVENT

Expected Output:

Scanning
Scan timeout

6.6.2 BleScanStartEx

See description in section “Extended Adverts Functions” here.

6.6.3 BleScanAbort

FUNCTION

This function is used to cancel an ongoing scan for adverts which has not timed out. It takes no parameters as there can only
be one scan in progress.

Use the value returned by SYSINFO(2016) to determine if there is an ongoing scan operation in progress. The value is a bit
mask where:

= bit Ois set if advertising is in progress

= bit 1is set if there is already a connection in a peripheral role

= bit 2 is set if there is a current ongoing connection attempt

= bit 3 is set when scanning

= bit 4 is set if there is already a connection to a peripheral

There is also BleScanStop() which cancels an ongoing scan. The difference is that, by calling BleScanAbort(), the memory
that was allocated from heap by BleScanStart() is not released back to the heap. The scan manager retains it for the next scan
operation.

BLESCANABORT ()

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments | None

https://www.lairdconnect.com/ 111 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

Example:

// Example :: BleScanAbort.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc, startTick

'//Scan for 20 seconds with no filtering

rc = BleScanStart (20000, 0)

IF rc==0 THEN
PRINT "\nScanning"
ELSE
PRINT "\nError: "; INTEGER.H'rc

ENDIF

'//Wait 2 seconds before aborting scan
startTick = GetTickCount ()

WHILE GetTickSince (startTick) < 2000
ENDWHILE

'//1f scan in progress, abort
IF SysInfo(2016) == 0x08 THEN
PRINT "\nAborting scan"
rc = BleScanAbort ()
IF SysInfo(2016) == 0 THEN
PRINT "\nScan aborted"
ENDIF
ENDIF

Expected Output:

Scanning
Aborting scan
Scan aborted

6.6.4 BleScanStop

FUNCTION

This function is used to cancel an ongoing scan for adverts which has not timed out. It takes no parameters, as there can only
be one scan in progress.

Use the value returned by SYSINFO(2016) to determine if there is an ongoing scan operation in progress. The value is a bit
mask where:

= bit Ois set if advertising is in progress

= bit 1is setif there is already a connection in a peripheral role

= bit 2 is set if there is a current ongoing connection attempt

= bit 3 is set when scanning

112 Americas: +1-800-492-2320

© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

https://www.lairdconnect.com/

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

= bit 4 is set if there is already a connection to a peripheral

There is also BleScanAbort() which cancels an ongoing scan. The difference is that, by calling BleScanStop(), the memory
that was allocated from heap by BleScanStart() is released back to the heap. The scan manager must reallocate the memory if
BleScanStart() is called again.

BLESCANSTOP ()

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments | None

Example:

// Example :: BleScanStop.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc, startTick

'//Scan for 20 seconds with no filtering

rc = BleScanStart (20000, 0)

IF rc==0 THEN

PRINT "\nScanning"
ELSE

PRINT "\nError: "; INTEGER.H'rc
ENDIF

'//Wait 2 seconds before aborting scan
startTick = GetTickCount ()

WHILE GetTickSince (startTick) < 2000
ENDWHILE

'//If scan in progress, abort
IF SysInfo(2016) == 0x08 THEN
PRINT "\nStop scanning. Freeing up allocated memory"
rc = BleScanStop ()
IF SysInfo(2016) == 0 THEN
PRINT "\nScan stopped"
ENDIF
ENDIF

Expected Output:

Scanning
Stop scanning. Freeing up allocated memory
Scan stopped

https://www.lairdconnect.com/ 113 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.6.5 BleScanFlush

FUNCTION
This function is used to flush the ring buffer which stores incoming adverts which are later read.

BLESCANFLUSH ()

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments | None

Example:

// Example :: BleScanFlush.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc, startTick

'//Scan for 20 seconds with no filtering

rc = BleScanStart (20000, 0)

IF rc==0 THEN
PRINT "\nScanning"
ELSE
PRINT "\nError: "; INTEGER.H'rc

ENDIF

'//Wait 2 seconds before aborting scan
startTick = GetTickCount ()
WHILE GetTickSince (startTick) < 2000

ENDWHILE

'//I1If scan in progress, abort
IF SysInfo(2016) == 0x08 THEN
PRINT "\nAborting scan"
rc = BleScanAbort ()
IF SysInfo(2016) == 0 THEN
PRINT "\nScan aborted"

ENDIF

'//Free up memory
rc = BleScanFlush ()
IF (rc == 0) THEN
PRINT "\nScan results flushed."
ENDIF
ENDIF

https://www.lairdconnect.com/ 114 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

Expected Output:

Scanning

Aborting scan

Scan aborted

Scan results flushed.

6.6.6 BleScanConfig
FUNCTION

This function is used to modify the default parameters that are used when initiating a scan operation using BleScanStart().

The following are the default values for the parameters:

Scan Interval 80 milliseconds
Scan Window 40 milliseconds
Scan Type (Active/Passive) Active
Minimum Reports in Cache 4
Note: The default Scan Window and Interval give a 50% duty cycle. The 50% duty cycle attempts to ensure that

connection events for existing connections are missed as infrequently as possible.

BLESCANCONFIG (configID, configValue)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal configiD AS INTEGER.

This identifies the value to update as follows:
0 Scan Interval in milliseconds (range 0..10240)
1 Scan Window in milliseconds (range 0..10240)

2 Scan Type (0O=Passive, 1=Active)

3 Advert Report Cache Slze

Scan PHYs. Possible values are:-

1-1MPHY

All other values are invalid

DEPRACATED DO NOT USE, use BleScanStartEx()

Extended advertising. Possible values are:-

0 - Only return legacy advertising packets

5 1 - Return both legacy and extended advertisithg packets (required for CODED adverts)

DEPRACATED DO NOT USE, use BleScanStartEx()

For all other configID values the function returns an error.
byVal configValue AS INTEGER.

configValue - .
9 This contains the new value to set in the parameters indentified by configID.
Example:
// Example :: BleScanConfig.sb

// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc, startTick

https://www.lairdconnect.com/ 115 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird ‘

) CONNECTIVITY
User Guide _)

PRINT "\nScan Interval: "; SysInfo(2150) //get current scan interval
PRINT "\nScan Window: "; SysInfo(2151) //get current scan window
PRINT "\nScan Type: ";
IF SysInfo(2152)==0 THEN //get current scan type

PRINT "Passive"
ELSE

PRINT "Active"
ENDIF

PRINT "\nReport Cache Size: "; SysInfo(2153) //get report cache size

PRINT "\n\nSetting new parameters..."

rc = BleScanConfig (0, 100) //set scan interval to 100

rc = BleScanConfig(l, 50) //set scan window to 50

rc = BleScanConfig (2, 0) //set scan type to passive

rc = BleScanConfig (3, 3) //set report cache size

PRINT "\n\n--- New Parameters:"

PRINT "\nScan Interval: "; SysInfo(2150) //get current scan interval
PRINT "\nScan Window: "; SysInfo(2151) //get current scan window

PRINT "\nScan Type: ";

IF SysInfo(2152)==0 THEN //get current scan type
PRINT "Passive"

ELSE
PRINT "Active"

ENDIF

PRINT "\nReport Cache Size: "; SysInfo(2153) //get report cache size

Expected Output:

Scan Interval: 80
Scan Window: 40

Scan Type: Active
Report Cache Size: 4

Setting new parameters..

—--—- New Parameters:
Scan Interval: 100
Scan Window: 50

Scan Type: Passive
Report Cache Size: 3

https://www.lairdconnect.com/ 116 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.6.7 BleScanGetAdvReport

FUNCTION

When a scan is in progress after having called BleScanStart() for each advert report, the information is cached in a queue
buffer and an EVBLE_ADV_REPORT event is thrown to the smartBASIC application.

This function is used by the smartBASIC application to extract it from the queue for further processing in the handler for the
EVBLE_ADV_REPORT event.

The retrieved information consists of the address of the peripheral that sent the advert, the data payload, the number of
adverts (all, not just from that peripheral) that have been discarded since the last time this function was called and the RSSI
value for that packet.

Note: The RSSI can be used to determine the closest device. However, due to fading and reflections, it is possible that a
device further away could result in a higher RSSI value.

BLESCANGETADVREPORT (periphAddr$, advData$, nDiscarded, nRssi)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byREF periphAddr$ AS STRING
On return, this parameter is updated with the address of the peripheral that sent the advert.

byREF advData$ AS STRING

advData$ | On return, this parameter is updated with the data payload of the advert which consists of multiple AD
elements.

byREF nDiscarded AS INTEGER

nDiscarded | On return, this parameter is updated with the number of adverts that were discarded because there
was no space in the internal queue.

byREF nRssi AS INTEGER

On return, this parameter is updated with the RSSI as reported by the stack for that advert.

periphAddr$

nRssi
Note: Thisis NOT a value that is sent by the peripheral but a value that is calculated by the receiver
in this module.
Note: This code snippet was tested with another BL653 running the iBeacon app (see in smartBASIC_Sample_Apps

folder) on peripheral firmware.

Example:

// Example :: BleScanGetAdvReport.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc

'//Scan for 20 seconds with no filtering

rc = BleScanStart (5000, O0)

IF rc==0 THEN
PRINT "\nScanning"

ELSE

https://www.lairdconnect.com/ 117 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

PRINT "\nError: "; INTEGER.H'rc

ENDIF

'//This handler will be called when scanning times out
FUNCTION HndlrScanTO ()
PRINT "\nScan timeout"

ENDFUNC O

'//This handler will be called when an advert is received
FUNCTION HndlrAdvRpt ()

DIM periphAddr$, advData$, nDiscarded, nRssi

'//Read all cached advert reports
rc=BleScanGetAdvReport (periphAddr$, advData$, nDiscarded, nRssi)
WHILE (rc == 0)

PRINT "\n\nPeer Address: "; StrHexize$ (periphAddr$)

PRINT "\nAdvert Data: ";StrHexize$ (advData$)

PRINT "\nNo. Discarded Adverts: ";nDiscarded

PRINT "\nRSSI: ";nRssi

rc=BleScanGetAdvReport (periphAddr$, advData$, nDiscarded, nRssi)

ENDWHILE
PRINT "\n\n --- No more adverts in cache"
ENDFUNC 1

ONEVENT EVBLE SCAN TIMEOUT CALL HndlrScanTO
ONEVENT EVBLE ADV REPORT CALL HndlrAdvRpt
WAITEVENT

Expected Output:

Scanning

Peer Address: 01D8CFCF14498D

Advert Data: 0201061AFF4C000215E2C56DB5DFFB48D2B060D0OF5A71096E012345678C4
No. Discarded Adverts: 0

RSSI: -97

Peer Address: 01D8CFCF14498D

Advert Data: 0201061AFF4C000215E2C56DB5DFFB48D2B060D0OF5A71096E012345678C4
No. Discarded Adverts: 0

RSSI: -97

--- No more adverts in cache

Peer Address: 01D8CFCF14498D

https://www.lairdconnect.com/ 118 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

Advert Data: 0201061AFF4C000215E2C56DB5DFFB48D2B060D0OF5A71096E012345678C4
No. Discarded Adverts: O
RSSI: -92

Peer Address: 01D8CFCF14498D

Advert Data: 0201061AFF4C000215E2C56DB5DFFB48D2B060D0OF5A71096E012345678C4
No. Discarded Adverts: 0

RSSI: -92

-—— No more adverts in cache
Scan timeout

6.6.8 BleScanGetAdvReportEx

When a scan is in progress after having called BleScanStart() for each advert report, the information is cached in a queue
buffer and an EVBLE_ADV_REPORT event is thrown to the smartBASIC application.

This function is used by the smartBASIC application to extract it from the queue for further processing in the handler for the
EVBLE_ADV_REPORT event.

The retrieved information consists of the address of the peripheral that sent the advert, the data payload, the number of
adverts (all, not just from that peripheral) that have been discarded since the last time this function was called and the RSSI
value for that packet, in addition to the advert type and the channel number on which the advert was received.

BLESCANGETADVREPORTEX (nAdvertType, periphAddr$, advData$, nDiscarded, nRssi, nChannel)

Returns ‘ INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byREF nAdvertType AS STRING
On return, this parameter will contain the type of the advert that was read. Possible values are as follows:-

nAdvertTyp 0 ADV_IND Invites connection requests
€ 1 ADV_DIRECT_IND Invites connection from addressed device
2 ADV_SCAN_IND Invites scan request for more advert data
3 ADV_NONCONN_IND Does not accept connections/active scans

byREF periphAddr$ AS STRING

On return, this parameter is updated with the address of the peripheral that sent the advert.

byREF advData $ AS STRING

advData$ | On return, this parameter is updated with the data payload of the advert which consists of multiple AD
elements.

byREF nDiscarded AS INTEGER

nDiscarded | On return, this parameter is updated with the number of adverts that were discarded because there was
no space in the internal queue.

byREF nRssi AS INTEGER

On return, this parameter is updated with the RSSI as reported by the stack for that advert.

Note: This is NOT a value that is sent by the peripheral but a value that is calculated by the receiver in
this module.

byREF nChannel AS INTEGER

nChannel | On return, this parameter is set to the channel on which the advert has arrived. Valid values are

periphAddr$

nRssi

0, 1, or 2 corresponding to channels 37,38 and 39 respectively.

//Example :: BleScanGetAdvReportEx.sb
DIM rc
i '//Scan for 5 seconds with no filtering

i rc = BleScanStart (5000, 0)

https://www.lairdconnect.com/ 119 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird : CONNECTIVITY

User Guide

IF rc==0 THEN

PRINT "\nScanning"
ELSE

PRINT "\nError: "; INTEGER.H'rc
ENDIF

'//This handler will be called when scanning times out
FUNCTION HndlrScanTO ()

PRINT "\nScan timeout"
ENDFUNC O

'//This handler will be called when an advert is received
FUNCTION HndlrAdvRpt ()
DIM nAdvType, periphAddr$, advData$, nDiscarded, nRssi, nChannel

'//Read all cached advert reports
rc=BleScanGetAdvReportEx (nAdvType, periphAddr$, advData$, nDiscarded, nRssi, nChannel)

WHILE (rc == 0)
PRINT "\n\nAdvert Type: "; nAdvType
PRINT "\nPeer Address: "; StrHexize$ (periphAddrs$)
PRINT "\nAdvert Data: ";StrHexize$ (advData$)
PRINT "\nNo. Discarded Adverts: ";nDiscarded
PRINT "\nRSSI: ";nRssi
PRINT "\nChannel: ";nChannel
rc=BleScanGetAdvReportEx (nAdvType, periphAddr$, advData$, nDiscarded, nRssi, nChannel)

ENDWHILE

PRINT "\n\n --- No more adverts in cache"

ENDFUNC 1

ONEVENT EVBLE SCAN TIMEOUT CALL HndlrScanTO
ONEVENT EVBLE ADV REPORT CALL HndlrAdvRpt

WAITEVENT

Scanning

Advert Type: 2

Peer Address: 01CDBD40C5A79A

Advert Data: 0201061AFF4C000215E2C56DB5DFFB48D2B060D0F5A71096E012345678C40409526F6E
No. Discarded Adverts: 0

RSSI: -81

Channel: 1

--- No more adverts in cache
Scan timeout
00

https://www.lairdconnect.com/ 120 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.6.9 BleGetADbylndex

FUNCTION

This function is used to extract a copy of the nth (zero based) advertising data (AD) element from a string which is assumed to
contain the data portion of an advert report, incoming or outgoing.

Note: If the last AD element is malformed then it is treated as not existing. For example, it is malformed if the length byte
for that AD element suggests that more data bytes are required than actually exist in the report string.

BLEGETADBYINDEX (nindex, rptData$, nADtag, ADval$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVAL nindex AS INTEGER

This is a zero-based index of the AD element that is copied into the output data parameter ADval$.
byREF rptData$ AS STRING.

rptData$ | This parameter is a string that contains concatenated AD elements which were either constructed
for an outgoing advert or were received in a scan.

byREF nADTag AS INTEGER

nADTag | When the nth index is found, the single byte tag value for that AD element is returned in this
parameter.

byREF ADval$ AS STRING

ADval$ | When the nth index is found, the data excluding single byte the tag value for that AD element is
returned in this parameter.

nindex

Example:

// Example :: BleGetADbyIndex.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc, adl$, ad2$, fullADS$, nADTag, ADvals$

'//AD with length = 6 bytes, tag = 0xDD
adl$="\06\DD\11\22\33\44\55"

'//AD with length = 7 bytes, tag 0xDA

ad2$="\07\EE\AA\BB\CC\DD\EE\FE"

fullADS = adl$ + ad2s
PRINT "\n\n"; Strhexize$ (fullADS);"\n"

rc=BleGetADbyIndex (0, fullAD$, nADTag, ADval$)
IF rc==0 THEN
PRINT "\nFirst AD element with tag Ox"; INTEGER.H'nADTag ;" is ";StrHexize$ (ADval$)

ELSE

https://www.lairdconnect.com/ 121 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

PRINT "\nError reading AD: " ;INTEGER.H'rc

ENDIF

rc=BleGetADbyIndex (1, fullADS$, nADTag, ADval$)
IF rc==0 THEN

PRINT "\nSecond AD element with tag 0x"; INTEGER.H'nADTag ;" is ";StrHexize$ (ADvals$)
ELSE

PRINT "\nError reading AD: "; INTEGER.H'rc

ENDIF

'//Will fail because there are only 2 AD elements
rc=BleGetADbyIndex (2, fullADS$, nADTag, ADval$)
IF rc==0 THEN
PRINT "\nThird AD element with tag Ox"; INTEGER.H'nADTag ;" is ";StrHexize$ (ADval$)
ELSE
PRINT "\nError reading AD: "; INTEGER.H'rc

ENDIF

Expected Output:

06DD112233445507EEAABBCCDDEEFF

First AD element with tag 0x000000DD is 1122334455
Second AD element with tag Ox000000EE is AABBCCDDEEFF
Error reading AD: 00006060

6.6.10 BleGetADbyTag

FUNCTION

This function is used to extract a copy of the first advertising data (AD) element that has the tag byte specified from a string
which is assumed to contain the data portion of an advert report, incoming or outgoing. If multiple instances of that AD tag type
are suspected, then use the function BleGetADbyIndex to extract.

Note: If the last AD element is malformed, then it is treated as nonexistent. For example, it is malformed if the length byte
for that AD element suggests that more data bytes are required than actually exist in the report string.

BLEGETADBYTAG (rptData$, nADtag, ADval$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byREF rptData$ AS STRING.

rptData$ | This parameter is a string that contains concatenated AD elements which were either constructed
for an outgoing advert or were received in a scan.

byVAL nADTag AS INTEGER

This parameter specifies the single byte tag value for the AD element that is to returned in the

nADTa
: ADval$ parameter. Only the first instance can be catered for. If multiple instances are suspected,
then use BleAdvADbylndex() to extract it.
https://www.lairdconnect.com/ 122 Americas: +1-800-492-2320

© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions
User Guide

La i rd“ 2» CONNECTIVITY

byREF ADval$ AS STRING

ADval$ | When the nth index is found, the data excluding single byte the tag value for that AT element is
returned in this parameter.
Example:
// Example BleGetADbyTag.sb

ELSE
PRINT "\nError reading AD: "

ENDIF

nADTag 0xEE

rc=BleGetADbyTag (fullAD$, nADTag,
IF rc==0 THEN

PRINT "\nAD element with tag 0x";
ELSE

PRINT "\nError reading AD: ";

// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc, adl$, ad2$, fullADS, nADTag, ADval$
'//AD with length = 6 bytes, tag = 0xDD
adl$="\06\DD\11\22\33\44\55"
'//AD with length = 7 bytes, tag = 0xDA
ad2$="\07\EE\AA\BB\CC\DD\EE\FF"
fullADS = adl$ + ad2$
PRINT "\n\n"; Strhexize$ (fullADS);"\n"
nADTag = 0xDD
rc=BleGetADbyTag (fullADS$S , nADTag, ADval$)
IF rc==0 THEN

PRINT "\nAD element with tag 0x"; INTEGER.H'nADTag ;" is ";StrHexize$ (ADval$)

; INTEGER.H'rc

ADval$)

INTEGER.H'rc

ENDIF
nADTAG = OxFF
'//Will fail because no AD exists in 'fullADS$' with the tag 'FF'
rc=BleGetADbyTag (fullADS , nADTag, ADvals$)
IF rc==0 THEN
PRINT "\nAD element with tag 0x"; INTEGER.H'nADTag ;" is ";StrHexize$ (ADval$)

INTEGER.H'nADTag ;" is ";StrHexize$ (ADvals$)

https://www.lairdconnect.com/

© Copyright 2020 Laird Connectivity, Inc.
All Rights Reserved

123 Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

ELSE
PRINT "\nError reading AD: "; INTEGER.H'rc

ENDIF

Expected Output:

06DD112233445507EEAABBCCDDEEFF

AD element with tag 0x000000DD is 1122334455
AD element with tag 0x000000EE is AABBCCDDEEFF
Error reading AD: 00006060

6.6.11 BleScanGetPagerAddr

FUNCTION

When a scan is in progress after calling BleScanStart(), an EVBLE_FAST_PAGED event is thrown whenever an
ADV_DIRECT_IND advert is received with the address of this module, requesting a connection to it.

This function returns the address of the peripheral requesting a connection and the RSSI. It should be used in the handler of
the EVBLE_FAST_PAGED event to get the peripheral’s address. Scanning should then be stopped using either
BleScanAbort() or BleScanStop(). You can then use the address supplied by this function to connect to the peripheral using
BleConnect() if that is the desired use case. The Bluetooth specification does NOT mandate a connection.

BLESCANGETPAGERADDR (periphAddr$, nRssi)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byREF periphAddr$ AS STRING
On return, this parameter is updated with the address of the peripheral that sent the advert.

byREF nRssi AS INTEGER
On return, this parameter is updated with the RSSI as reported by the stack for that advert.

periphAddr$

nRssi Note: This is NOT a value that is sent by the peripheral but a value that is calculated by the
receiver in this module.
Example:
// Example :: BleScanGetPagerAddr.sb

// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc

'//Scan for 20 seconds with no filtering

rc = BleScanStart (10000, 0)

IF rc==0 THEN
PRINT "\nScanning"
ELSE

PRINT "\nError: "; INTEGER.H'rc

https://www.lairdconnect.com/ 124 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

ENDIF

'//This handler will be called when scanning times out
FUNCTION HndlrScanTO ()
PRINT "\nScan timeout"

ENDFUNC 0

'//This handler will be called when an advert is received requesting a connection to
this module

FUNCTION HndlrFastPaged ()
DIM periphAddr$, nRssi
rc = BleScanGetPagerAddr (periphAddr$, nRssi)

PRINT "\nAdvert received from peripheral "; StrHexize$ (periphAddr$); " with RSSI
";nRssi

PRINT "\nrequesting a connection to this module"
rc = BleScanStop ()
ENDFUNC 0

ONEVENT EVBLE SCAN TIMEOUT CALL HndlrScanTO
ONEVENT EVBLE FAST PAGED CALL HndlrFastPaged

WAITEVENT

Expected Output:

Scanning
Advert received from peripheral 01D8CFCF14498D with RSSI -96
requesting a connection to this module

6.7 Connection Functions

This section describes all the connection manager-related routines.

The Bluetooth specification stipulates that a peripheral cannot initiate a connection but can perform disconnections. Only
Central Role devices are allowed to connect when an appropriate advertising packet is received from a peripheral.

6.7.1 Events and Messages

See also Events and Messages for BLE-related messages that are thrown to the application when there is a connection or
disconnection. The relevant message IDs are (0), (1), (14), (15), (16), (17), (18) and (20):

0 There is a connection and the context parameter contains the connection handle.
1 There is a disconnection and the context parameter contains the connection handle.
14 New connection parameters for connection associated with connection handle.
15 Request for new connection parameters failed for connection handle supplied.
https://www.lairdconnect.com/ 125 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940

All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

16 The connection is to a bonded master

17 The bonding has been updated with a new long term key
18 The connection is encrypted

20 The connection is no longer encrypted

6.7.2 BleConnect

FUNCTION

This function is used to make a connection to a device in peripheral mode which is actively advertising.

Note: The peripheral device MUST be advertising with either ADV_IND or ADV_DIRECT_IND type of advert to be able to
successfully connect.

In the case of multiple connections, it is recommended that this function is not called in quick succession so that
the underlying stack is given time to complete the setup of the new connection before moving on to establish a new
connection. Calling this function in quick succession may cause newly established connections to be dropped.

In order to perform connections over CODED PHY (long range), BleConnectConfig() should be called beforehand
to set the connection PHYs to CODED PHY and enable extended connection. See BleConnectConfig() for more
details. Furthermore, high bandwidth should be enabled using “AT+CFG 214 1” followed by “ATZ".

When the connection is complete, a EVBLEMSG message with msgld = 0 and context containing the handle are thrown to the
smartBASIC runtime engine.

If the connection times out, then the event EVBLE_CONN_TIMEOUT is thrown to the smartBASIC application.

When a connection is attempted, there are other parameters that are used and the default values for those are assumed; for
example, scan window, scan interval, and periodicity. The default values for those can be changed using the
BleConnectConfig() function. At any time, the current settings can be obtained via the SYSINFO() command.

BLECONNECT (periphAddr$, connTimeoutMs, minConnIntUs, maxConnlIntUs, nSuprToutUs)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

byRef periphAddr$ AS STRING

periphAddr$ | The Bluetooth address of the device to connect to which MUST be properly formatted and is
exactly seven bytes long.

byVal connTimeoutMs AS INTEGER.

connTimeoutMs | The length of time in milliseconds that the connection attempt lasts. If the timer times out then
the event EVBLE_CONN_TIMEOUT is thrown to the smartBASIC application.

byVal minConnintUs AS INTEGER.

minConnintUs | The minimum connection interval in microseconds. Valid range is between 7500 and 4000000
microseconds.

byVal maxConnintUs AS INTEGER.

maxConnintUs | The maximum connection interval in microseconds. Valid range is between 7500 and 4000000
microseconds

byVal nSuprToutUs AS INTEGER.

The link supervision timeout for the connection in microseconds.

nSuprToutUs

https://www.lairdconnect.com/ 126 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

Example:

// Example :: BleConnect.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc, periphAddr$

'//Scan indefinitely

rc=BleScanStart (0, 0)

IF rc==0 THEN
PRINT "\nScanning"
ELSE
PRINT "\nError: "; INTEGER.H'rc

ENDIF

'//This handler will be called when an advert is received
FUNCTION HndlrAdvRpt ()

DIM advData$, nDiscarded, nRssi

'//Read an advert report and connect to the sender
rc=BleScanGetAdvReport (periphAddr$, advData$, nDiscarded, nRssi)

rc=BleScanStop ()

'//Connect to device with Bluetooth address obtained above with 5s connection
timeout,

'//20ms min connection interval, 75 max, 5 second supervision timeout.
rc=BleConnect (periphAddr$, 5000, 20000, 75000, 5000000)

IF rc==0 THEN

PRINT "\n--- Connecting"
ELSE
PRINT "\nError: "; INTEGER.H'rc
ENDIF
ENDFUNC 1

'//This handler will be called in the event of a connection timeout
FUNCTION HndlrConnTO ()

PRINT "\n--- Connection timeout"

rc=BleScanStart (0, 0)

ENDFUNC 1

https://www.lairdconnect.com/ 127 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

'//This handler will be called when there is a BLE message
FUNCTION HndlrBleMsg (nMsgId, nCtx)
IF nMsgId == 0 THEN

PRINT "\n--- Connected to device with Bluetooth address ";
StrHexize$ (periphAddr$)

PRINT "\n--- Disconnecting now"
rc=BleDisconnect (nCtx)
ENDIF

ENDFUNC 1

'//This handler will be called when a disconnection happens

FUNCTION HndlrDiscon (nCtx, nRsn)

ENDFUNC O
ONEVENT EVBLEMSG CALL HndlrBleMsg
ONEVENT EVDISCON CALL HndlrDiscon

ONEVENT EVBLE ADV_ REPORT CALL HndlrAdvRpt
ONEVENT EVBLE CONN TIMEOUT CALL HndlrConnTO

WAITEVENT

Expected Output:

Scanning

--- Connecting

--- Connected to device with Bluetooth address 01D8CFCF14498D
--- Disconnecting now

6.7.3 BleConnectExtended

See description in section “Extended Adverts Functions” here.

6.7.4 BleConnectCancel

FUNCTION

This function is used to cancel an ongoing connection attempt which has not timed out. It takes no parameters as there can
only be one attempt in progress.

Use the value returned by SYSINFO(2016) to determine if there is an ongoing scan operation in progress. The value is a bit
mask where:

= bit Ois set if advertising is in progress

= bit 1is setif there is already a connection in a peripheral role

= bit 2 is setif there is a current ongoing connection attempt

= bit 3 is set when scanning

= bit 4is setif there is already a connection to a peripheral

https://www.lairdconnect.com/ 128 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

BLECONNECTCANCEL ()

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments | None

Example:

// Example :: BleConnectCancel.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc, periphAddr$

'//Scan indefinitely

rc=BleScanStart (0, 0)

IF rc==0 THEN
PRINT "\nScanning"
ELSE
PRINT "\nError: "; INTEGER.H'rc

ENDIF

'//This handler will be called when an advert is received
FUNCTION HndlrAdvRpt ()

DIM advData$, nDiscarded, nRssi

'//Read an advert report and connect to the sender
rc=BleScanGetAdvReport (periphAddr$, advData$, nDiscarded, nRssi)

rc=BleScanStop ()

'//Wait until module stops scanning
WHILE SysInfo(2016)==
ENDWHILE

'//Connect to device with Bluetooth address obtained above with 5s connection
timeout,

'//20ms min connection interval, 75 max, 5 second supervision timeout.
rc=BleConnect (periphAddrs$, 5000, 20000, 75000, 5000000)
IF rc==0 THEN
PRINT "\n--- Connecting \nCancel"
ELSE
PRINT "\nError: "; INTEGER.H'rc

ENDIF

https://www.lairdconnect.com/ 129 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

'//Cancel current connection attempt

rc=BleConnectCancel ()

PRINT "\n--- Connection attempt cancelled"
ENDFUNC O
ONEVENT EVBLE ADV REPORT CALL HndlrAdvRpt
WAITEVENT

Expected Output:

Scanning

--- Connecting

Cancel

--- Connection attempt cancelled

6.7.5 BleConnectConfig

FUNCTION

This function is used to modify the default parameters that are used when attempting a connection using BleConnect(). At any
time they can be read by adding the configID to 2100 and then passing that value to SYSINFO().

When connecting, the central device must scan for adverts and then, when the particular peer address is encountered, it can
send the connection message to that peripheral.

Therefore, a connection attempt requires the underlying stack API to be supplied with a scan interval and scan window. In
addition, when multiple connections are in place, the radio has to be shared as efficiently as possible; one potential scheme is
to have all connection parmeters being integer multiples of a ‘base’ value. For the purpose of this documentation, this
parameter is referred to as multi-link connection interval periodicity.

The following are the default settings for these parameters:

Multi-link Connection Interval Periodicity 20 milliseconds
Scan Interval 80 milliseconds
Scan Window 40 milliseconds
Slave Latency 0

Notes: The Scan Window and Interval are multiple integers of the periodicity (although not required to be). The scanning
has a 50% duty cycle. The 50% duty cycle attempts to ensure that connection events for existing connections
are missed as infrequently as possible.

The Scan Window and Interval are internally stored in units of 0.625 milliseconds slots so reading back via
SYSINFO() does not accurately return the value you set.

BLECONNECTCONFIG (configID, configValue)

Returns ‘ INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal configiD AS INTEGER.
configlD | The following are the values to update:
0 Scan interval in milliseconds (range 0..10240)

https://www.lairdconnect.com/ 130 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

) Lall“d J» CONNECTIVITY
User Guide

Scan Window in milliseconds (range 0..10240)

Slave Latency (0..1000)

Multi-Link Connection Interval Periodicity (20..200)

Turn manual control for connection parameter update. See EvConnParamReq for
more details.

Action to take when a PHY change request is received from remote device as
follows:-

0: Automatically ccept incoming PHY change request from remote device. This is
9 the default operation.

1: Throw an event to the smartBASIC app to allow the user to accept or reject
incoming PHY change request. The event thrown is EVBLE_PHY_REQUEST. See
LE 2M PHY for more information.

BLE PHY to perform the connection on. Possible values are:-

1 - 1IMPHY

4 - CODED PHY

All other values are invalid

Extended Connection. Possible values are:-

11 | 0 - Connect to device sending out legacy adverts

1 - Connect to device sending out legacy or extended adverts

c |01 N |-

10

For all other configID values, the function returns an error.
byVal configValue AS INTEGER.

configValue . .) . o)
9 This contains the new value to set in the parameters indentified by configID.
Example:
// Example :: BleConnectConfig.sb

// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc, startTick

SUB GetParms ()
//get default scan interval for connecting
PRINT "\nConn Scan Interval: "; SysInfo(2100);"ms"
//get default scan window for connecting
PRINT "\nConn Scan Window: "; SysInfo(2101);"ms”
//get default slave latency for connecting
PRINT "\nConn slave latency: "; SysInfo(2102)
//get current multi-link connection interval periodicity
PRINT "\nML Conn Interval Periodicity: "; SysInfo(2105);"ms"

ENDSUB

PRINT "\n\n--- Current Parameters:"

GetParms ()

PRINT "\n\nSetting new parameters..."

rc = BleConnectConfig (0, 60) //set scan interval to 60
https://www.lairdconnect.com/ 131 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940

All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

rc = BleConnectConfig(l, 13) //set scan window to 13 (will round to 12)
rc = BleConnectConfig (2, 3) //set slave latency to 1
rc = BleConnectConfig (5, 30) //set ML connection interval periodicity to 30

PRINT "\n"; integer.h'rc

PRINT "\n\n--- New Parameters:"

GetParms ()

Expected Output:

—-—-- Current Parameters:

Conn Scan Interval: 80ms

Conn Scan Window: 40ms

Conn slave latency: 0

ML Conn Interval Periodicity: 20ms

Setting new parameters...

--—- New Parameters:

Conn Scan Interval: 60ms

Conn Scan Window: 12ms

Conn slave latency: 3

ML Conn Interval Periodicity: 30ms

6.7.6 BleDisconnect

FUNCTION
This function causes an existing connection identified by a handle to be disconnected from the peer.

When the disconnection is complete, a EVBLEMSG message with msgld = 1 and context containing the handle is thrown to
the smartBASIC runtime engine.

BLEDISCONNECT (nConnHandle)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation

Arguments:

byVal nConnHandle AS INTEGER.

nConnHandl o . .
co andle Specifies the handle of the connection that must be disconnected.

Example:

// Example :: BleDisconnect.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM addr$: addr$=""

DIM rc

FUNCTION HndlrBleMsg (BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER)
SELECT nMsgId
CASE 0

PRINT "\nNew Connection ";nCtx

https://www.lairdconnect.com/ 132 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

rc = BleAuthenticate (nCtx)
PRINT BleDisconnect (nCtx)
CASE 1
PRINT "\nDisconnected ";nCtx;"\n"
EXITEFUNC O
ENDSELECT
ENDFUNC 1

ONEVENT EVBLEMSG CALL HndlrBleMsg

IF BleAdvertStart (0,addr$,100,30000,0)==0 THEN
PRINT "\nAdverts Started\n"

ELSE
PRINT "\n\nAdvertisement not successful"

ENDIF

WAITEVENT

Expected Output:

Adverts Started

New Connection 35800
Disconnected 3580

6.7.7 BleSetCurConnParms

FUNCTION

This function triggers an existing connection identified by a handle to have new connection parameters. For example: interval,
slave latency, and link supervision timeout.

When the request is complete, a EVBLEMSG message with msgld = 14 and context containing the handle are thrown to the
smartBASIC runtime engine if it is successful. If the request to change the connection parameters fails, an EVBLEMSG
message with msgid = 15 is thrown to the smartBASIC runtime engine.

BLESETCURCONNPARMS (nConnHandle, nMinIntUs, nMaxIntUs, nSuprToutUs, nSlaveLatency)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal nConnHandle AS INTEGER.

nConnHandle o . .
Specifies the handle of the connection that must have the connection parameters changed.

. byVal nMiniIntUs AS INTEGER.
nMinintUs . Lo P
The minimum acceptable connection interval in microseconds.
byVal nMaxIntUs AS INTEGER.
nMaxIntUs . L R
The maximum acceptable connection interval in microseconds.
byVal nSuprToutUs AS INTEGER.

nSuprToutUs | The link supervision timeout for the connection in microseconds. It should be greater than the slave
latency times that granted the connection interval.

byVal nSlaveLatency AS INTEGER.

nSlavelLatency | The number of connection interval polls that the peripheral may ignore. This times the connection
interval shall not be greater than the link supervision timeout.

https://www.lairdconnect.com/ 133 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

Note: Slave latency is a mechanism that reduces power usage in a peripheral device and maintains short latency.
Generally, a slave reduces power usage by setting the largest connection interval possible. This means the latency
is equivalent to that connection interval. To mitigate this, the peripheral can greatly reduce the connection interval
and then have a non-zero slave latency.

For example, a keyboard could set the connection interval to 1000 msec and slave latency to 0. In this case, key
presses are reported to the central device once per second, a poor user experience. Instead, the connection
interval can be set to 50 msec, for example, and slave latency to 19. If there are no key presses, the power use is
the same as before because ((19+1) * 50) equals 1000. When a key is pressed, the peripheral knows that the
central device will poll within 50 msec, so it can send that keypress with a latency of 50 msec. A connection interval
of 50 and slave latency of 19 means the slave is allowed to NOT acknowledge a poll for up to 19 poll messages
from the central device.

Example:

// Example :: BleSetCurConnParms.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc

DIM addr$: addr$=""

FUNCTION HandlerBleMsg (BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER) AS INTEGER

DIM intrvl, sprvTo,slLat

SELECT nMsgId
CASE 0 //BLE_EVBLEMSGID CONNECT
PRINT "\n --- New Connection : ","",nCtx
rc=BleGetCurconnParms (nCtx, intrvl, sprvto, slat)
IF rc==0 THEN
PRINT "\nConn Interval","","",intrvl
PRINT "\nConn Supervision Timeout", sprvto
PRINT "\nConn Slave Latency","",slat
PRINT "\n\nRequest new parameters"
//request connection interval in range 50ms to 75ms and link
//supervision timeout of 4seconds with a slave latency of 19
rc = BleSetCurconnParms (nCtx, 50000,75000,4000000,19)
ENDIF
CASE 1 //BLE EVBLEMSGID DISCONNECT
PRINT "\n --- Disconnected : ",nCtx
EXITFUNC O
CASE 14 //BLE_EVBLEMSGID_CONN_PARMS_UPDATE
rc=BleGetCurconnParms (nCtx, intrvl, sprvto, slat)
IF rc==0 THEN

PRINT "\n\nConn Interval",intrvl

https://www.lairdconnect.com/ 134 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird ‘

) CONNECTIVITY
User Guide _)

PRINT "\nConn Supervision Timeout", sprvto
PRINT "\nConn Slave Latency",slat
ENDIF
CASE 15 //BLE_EVBLEMSGID_CONN_PARMS_UPDATE_FAIL
PRINT "\n ??? Conn Parm Negotiation FAILED"
CASE ELSE
PRINT "\nBle Msg",nMsgId
ENDSELECT
ENDFUNC 1

ONEVENT EVBLEMSG CALL HandlerBleMsg

IF BleAdvertStart (0,addr$,25,60000,0)==0 THEN
PRINT "\nAdverts Started\n"
PRINT "\nMake a connection to the BL653"
ELSE

PRINT "\n\nAdvertisement not successful"

ENDIF

WAITEVENT

Expected Output (Unsuccessful Negotiation):
Adverts Started

Make a connection to the BL653

--- New Connection : 1352
Conn Interval 7500
Conn Supervision Timeout 7000000
Conn Slave Latency 0

Request new parameters
??? Conn Parm Negotiation FAILED
--- Disconnected : 1352

Expected Output (Successful Negotiation):
Adverts Started

Make a connection to the BL653
--- New Connection : 134

Conn Interval 30000
Conn Supervision Timeout 720000
Conn Slave Latency 0

Request new parameters

New conn Interval 75000
New conn Supervision Timeout 4000000
New conn Slave Latency 19

--- Disconnected : 134

Note: The first set of parameters differ depending on your central device.

https://www.lairdconnect.com/ 135 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.7.8 BleGetCurConnParms

FUNCTION

This function gets the current connection parameters for the connection identified by the connection handle. Given there are 3
connection parameters, the function takes three variables by reference so that the function can return the values in those
variables.

BLEGETCURCONNPARMS (nConnHandle, nintervalUs, nSuprToutUs, nSlavelatency)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal nConnHandle AS INTEGER.

Specifies the handle of the connection to read the connection parameters of

byRef nintervalUs AS INTEGER.

The current connection interval in microseconds

byRef nSuprToutUs AS INTEGER.

The current link supervision timeout in microseconds for the connection.

byRef nSlaveLatency AS INTEGER.

The current number of connection interval polls that the peripheral may ignore. This value
multiplied by the connection interval will not be greater than the link supervision timeout.

nConnHandle

nintervalUs

nSuprToutUs

nSlavelLatency

Note: See Note on Slave Latency.

See previous example.

6.7.9 BleConnMngrUpdCfg

FUNCTION

This function is used to initialise the connection manager for slave/peripheral role.

BLECONNMNGRUPDCFG (nConnUpdateFirstDelay, nConnUpdateNextDelay, nConnUpdateMaxRetry)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments:

byVal nConnUpdateFirstDelay AS INTEGER.

In milliseconds 100 to 32000

BYVAL nConnUpdateNextDelay AS INTEGER
In milliseconds 100 to 32000

BYVAL nConnUpdateMaxRetry AS INTEGER

In number of retries

nConnUpdateFirstDelay

nConnUpdateNextDelay

nConnUpdateMaxRetry

Example:

dim rc

#define CONN UPD FIRST DELAY 500
#define CONN_UPD NEXT DELAY 800
#define CONN UPD MAX RETRY 800

rc=BleConnMngrUpdCfg (CONN_UPD FIRST DELAY, CONN UPD NEXT DELAY, CONN UPD MAX RETRY)

https://www.lairdconnect.com/ 136 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

if rc == 0 then

print "\nConnection manager successfully initialised"
else

print "\nError: ";integer.h'rc

endif

Expected Output:

|Connection manager successfully initialised

6.7.10 BleGetConnHandleFromAddr
FUNCTION

This function is used to get the connection handle from a specified Bluetooth address.

BLEGETCONNHANDLEFROMADDR (BtAddrBES, nConnHandle)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byRef BtAddrBE$ AS STRING.

The Bluetooth address of the connected remote device.
byRef nConnHandle AS INTEGER.

Returned connection handle.

BtAddrBE$

nConnHandle

Example:

// Example :: BleGetConnHandleFromAddr.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc, periphAddr$

'//Scan indefinitely
rc=BleScanStart (0, 0)

IF rc==0 THEN

PRINT "\nScanning"
ELSE

PRINT "\nError: "; INTEGER.H'rc
ENDIF

'//This handler will be called when an advert is received
FUNCTION HndlrAdvRpt ()

DIM advData$, nDiscarded, nRssi

'//Read an advert report and connect to the sender
rc=BleScanGetAdvReport (periphAddr$, advData$, nDiscarded, nRssi)
rc=BleScanStop ()

https://www.lairdconnect.com/ 137 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

'//Connect to device with MAC address obtained above with 5s connection timeout,
'//20ms min connection interval, 75 max, 5 second supervision timeout.
rc=BleConnect (periphAddr$, 5000, 20000, 75000, 5000000)

IF rc==0 THEN

PRINT "\n--- Connecting"
ELSE
PRINT "\nError: "; INTEGER.H'rc
ENDIF
ENDFUNC 1

'//This handler will be called in the event of a connection timeout
FUNCTION HndlrConnTO ()

PRINT "\n--- Connection timeout"

rc=BleScanStart (0, 0)
ENDFUNC 1

'//This handler will be called when there is a BLE message
FUNCTION HndlrBleMsg (nMsgId, nCtx)
IF nMsgId == 0 THEN
dim h
rc=BleGetConnHandleFromAddr (periphAddr$, h)

PRINT "\n--- Connected to device with MAC address "; StrHexize$ (periphAddrs$) ;"
Handle: ";h
PRINT "\n--- Disconnecting now"

rc=BleDisconnect (nCtx)
ENDIF
ENDFUNC 1

'//This handler will be called when a disconnection happens

FUNCTION HndlrDiscon (nCtx, nRsn)

ENDFUNC O
ONEVENT EVBLEMSG CALL HndlrBleMsg
ONEVENT EVDISCON CALL HndlrDiscon

ONEVENT EVBLE ADV_REPORT CALL HndlrAdvRpt
ONEVENT EVBLE CONN TIMEOUT CALL HndlrConnTO

WAITEVENT

Expected Output:

Scanning

--- Connecting

--- Connected to device with MAC address 000016A4093A64 Handle: 261888
--- Disconnecting now

00

https://www.lairdconnect.com/ 138 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.7.11 BleGetAddrFromConnHandle

FUNCTION
This function is used to get the Bluetooth address of a device from a connection handle.

BLEGETADDRFROMCONNHANDLE (nConnHandle, BtAddrBES)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byRef nConnHandle AS INTEGER.
Connection handle from which to get Bluetooth address
byRef BtAddrBE$ AS STRING.

nConnHandle

BtAddrBE
$ Returned Bluetooth address.
Example:

// Example :: BleGetAddrFromConnHandle.sb

// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc, periphAddr$

'//Scan indefinitely
rc=BleScanStart (0, 0)

IF rc==0 THEN
PRINT "\nScanning"
ELSE
PRINT "\nError: "; INTEGER.H'rc

ENDIF

'//This handler will be called when an advert is received
FUNCTION HndlrAdvRpt ()

DIM advData$, nDiscarded, nRssi

'//Read an advert report and connect to the sender
rc=BleScanGetAdvReport (periphAddr$, advData$, nDiscarded, nRssi)

rc=BleScanStop ()

'//Connect to device with MAC address obtained above with 5s connection timeout,
'//20ms min connection interval, 75 max, 5 second supervision timeout.
rc=BleConnect (periphAddr$, 5000, 20000, 75000, 5000000)
IF rc==0 THEN

PRINT "\n--- Connecting"
ELSE

PRINT "\nError: "; INTEGER.H'rc

https://www.lairdconnect.com/ 139 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

ENDIF
ENDFUNC 1

'//This handler will be called in the event of a connection timeout
FUNCTION HndlrConnTO ()

PRINT "\n--- Connection timeout"

rc=BleScanStart (0, O0)
ENDFUNC 1

'//This handler will be called when there is a BLE message
FUNCTION HndlrBleMsg (nMsgId, nCtx)
IF nMsgId == 0 THEN
dim addr$
rc=BleGetAddrFromConnHandle (nCtx, addr$)
PRINT "\n--- Connected to device with MAC address "; StrHexize$ (addr$)
PRINT "\n--- Disconnecting now"
rc=BleDisconnect (nCtx)
ENDIF
ENDFUNC 1

'//This handler will be called when a disconnection happens

FUNCTION HndlrDiscon (nCtx, nRsn)

ENDFUNC 0
ONEVENT EVBLEMSG CALL HndlrBleMsg
ONEVENT EVDISCON CALL HndlrDiscon

ONEVENT EVBLE ADV REPORT CALL HndlrAdvRpt

ONEVENT EVBLE CONN TIMEOUT CALL HndlrConnTO

WAITEVENT

Expected Output:

Scanning

--- Connecting

--- Connected to device with MAC address 000016A4093A64
--- Disconnecting now

00

https://www.lairdconnect.com/ 140 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.7.12 BleConnRssiStart

FUNCTION

This function is used to enable RSSI reporting for a particular connection. Given an RSSI value is generated for every
connection event, this can result in a flood of events which will result in increased power consumption as the CPU will need to
be in active mode for longer to process them. To mitigate this, this function also takes a threshold dBm value and a skipcount
to reduce and manage these events.

The threshold dBm parameter ensures that a report is only generated if the change in detected RSSI value is greater or less
than the most reported value by this amount and the skipcount is how many times this condition has to occur for the event to
be thrown to the application.

BLECONNRSSISTART (nConnHandle, nThresholdDbm, nSkipCount)

INTEGER, a result code.

Returns . - .
Typical value: 0x0000 (indicates a successful operation)

Arguments

byVal nConnHandle AS INTEGER.
Specifies the handle of the connection for which rssi reporting is to be enabled

byVal nThresholdDbm AS INTEGER.
The minimum change in dBm before triggering the EVCONNRSSI event
byRef nSkipCount AS INTEGER.

nSkipCount | The number of RSSI samples with a change of nThresholdDbm or more before triggering
the EVCONNRSSI event

nConnHandle

nThresholdDbm

Example:

// Example :: BleConnRssiStart.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc,conHndl

DIM addr$: addr$=""
//
// Initialise
//
FUNCTION OnStartup ()

rc=BleAdvertStart (0,addr$,50,0,0)

ENDEFUNC rc

//

// Ble event handler
//

FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
conHndl=nCtx
IF nMsgID==1 THEN
PRINT "\n\n--- Disconnected from client"
EXITFUNC O
ELSEIF nMsgID==0 THEN

https://www.lairdconnect.com/ 141 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

PRINT "\n--- Connected to client"
rc=BleConnRssiStart (conHndl, 4,10)
ENDIF
ENDFUNC 1
//
// Connection related RSSI events
//

FUNCTION HndlrConnRssi (BYVAL charHandle, BYVAL rssi) AS INTEGER

PRINT "\nRSSI=";rssi;" for connection "; integer.h' charHandle
IF rssi < -80 then
//too far away so stop monitoring the rssi (this is just an example)
//in reality use some other reason to stop
rc=BleConnRssiStop (conHndl)
ENDIF
ENDFUNC 1
//
//
ONEVENT EVBLEMSG CALL HndlrBleMsg

ONEVENT EVCONNRSSI CALL HndlrConnRssi

IF OnStartup () !=0 THEN
PRINT "\nFailure OnStartup"

ENDIF

//Wait for events

WAITEVENT

6.7.13 BleConnRssiStop
FUNCTION

This function is used to disable RSSI reporting for a particular connection which was enabled using the function
BleConnRssiStart described above.

On disconnection, reporting will automatically stop.

BLECONNRSSISTOP (nConnHandle)

INTEGER, a result code.
Typical value: 0x0000 (indicates a successful operation)

Returns

Arguments

byVal nConnHandle AS INTEGER.

nConnHandle Specifies the handle of the connection for which rssi reporting is to be enabled

For example, see description of BleConnRssiStart() above.

https://www.lairdconnect.com/ 142 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.8 Whitelist Management Functions

This section describes routines which are used to manage whitelists.

A whitelist is a list of Bluetooth addresses and Identity Resolving Keys (IRKs) which the baseband radio will use to gate
incoming packets upwards to the stack as they are received.

If the whitelist is active, then any radio packet whose source Bluetooth address is not in the list will be rejected. However, note
that in BLE for privacy reasons, resolvable Bluetooth addresses can be used and so the address will not match with one in the
list and so for that type of address the list of Indentity Resolving Keys in the whitelist is also consulted to see if the resolvable
address is a trusted device.

A trusted device by definition will have supplied its IRK key when the pairing and bonding happened in the past.
Hence treat this group of functions as a means of creating, maintaining and destroying that list of addresses and IRKs.

The operation that enables whitelisting is the function that starts advertising, scanning. And extended connection So refer to
the functions BleAdvertStart(), BleScanStart() and BleConnectExtended()

6.8.1 BleWhitelistCreate

FUNCTION

This function is used to create a new whitelist to which addresses and identity resolving keys can be added using
BleWhitelistAddAddr() or BleWhitelistAddIndex().

BLEWHITELISTCREATE (hWIlist, nMaxAddrs, nMaxirks, nPktFilterMask)

INTEGER, a result code.

Typical value:

0x0000 indicates a successful operation

0x605E indicates too many whitelists already created.

Returns

Arguments

byRef hWlist AS INTEGER.
hWilist | If an empty whitelist is successfully created then this will be updated with a valid handle. If not
then this will contain -1 (OXFFFFFFFF)
byVal nMaxAddrs AS INTEGER.
Maximum addresses that will be stored in this whitelist
byVal nMaxIrks AS INTEGER.
Maximum ldentity Resolving Keys (IRKs) that will be stored in this whitelist
byVal nPktFilterMask AS INTEGER.
This is a bit mask which specifies what type of incoming packets this list will apply to, as
follows:

= Bit0 : Setto 1 for Scan Request packets

Bit 1 : Set to 1 for Connection Request packets

= Bit2 : Setto 1 for Advert Report Packets
= Bits 3to 31 : reserved for future use

nMaxAddrs

nMaxlIrks

nPktFilterMask

Note: If all bits are 0, then a default mask of 7 is used for the BL653.

https://www.lairdconnect.com/ 143 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

Example:

// Example :: BleWhitelist.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc,conHndl,hWlist, wval

DIM addr$: addrs$=""

/ /===

sub AssertRC (byval tag as integer)

if rc!=0 then
print "\nFailed with ";integer.h' rc;" at tag ";tag
endif

endsub

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)

conHndl=nCtx

IF nMsgID==1 THEN
PRINT "\n\n--- Disconnected from client"
EXITFUNC O

ELSEIF nMsgID==0 THEN

PRINT "\n--- Connected to client"
ENDIF
ENDFUNC 1
//
// This handler is called when there is an advert report waiting to be read
//

function HandlerAdvRpt () as integer
dim ad$,dta$,ndisc, rsi
rc = BleScanGetAdvReport (ad$,dta$,ndisc, rsi)
while rc==
print "\nADV:";strhexize$ (ad$);" ";strhexize$ (dta$);" ";ndisc;" ";rsi
rc = BleScanGetAdvReport (ad$,dta$,ndisc, rsi)
endwhile

endfunc 1

https://www.lairdconnect.com/ 144 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird : CONNECTIVITY

User Guide

1/

// This handler is called when there is an advert report waiting to be read
//

sub WhiteListInit ()

//set invalid whitelist handle

hWwlist=-1

//now check maximum whitelists that can be defined and for that valid handle
//is not required

rc=BleWhiteListInfo (hWwlist, 0, wval) //get max number of whitelists allowes
AssertRC (100)

print "\n Max allowed whitelists = "; wval

//create a whitelist
rc=BleWhitelistCreate (hWlist, 8,8,0)
IF rc==0 THEN
//Add address we want to specifically look for
addr$="000016A40B1623"
rc=BleWhitelistAddAddr (hWlist, addr$)
AssertRC (110)
//Made a mistake so clear it
rc=BleWhitelistClear (hWlist)
AssertRC (120)
//now add the correct address
addrs$="000016A40B1642"
rc=BleWhitelistAddAddr (hWlist, addr$)
AssertRC (130)
//now add first one in the trusted database
rc=BleWhitelistAddIndex (hWlist,0)
AssertRC (140)
//Change the filter property from default used in the create function
//so that connection requests are disallowed
rc=BleWhitelistSetFilter (hWlist, 1)
AssertRC (150)
//now check the whitelist by interogating the whitelist handle
rc=BleWhiteListInfo (hWlist,101, wval) //get current number of mac addresses

AssertRC (160)

print "\n Current number of addresses = "; val
ENDIF
https://www.lairdconnect.com/ 145 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940

All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

endsub

//

//

ONEVENT EVBLEMSG CALL HndlrBleMsg
OnEvent EVBLE ADV REPORT CALL HandlerAdvRpt

//Initiliase a whitelist

WhiteListInit ()

//start adverts with whitelisting
addrs=""
rc=BleAdvertStart (0,addr$,50,0,hWlist)

AssertRC (910)

//Wait for events

WAITEVENT

//destroy the whitelist
BleWhitelistDestroy (hWlist)

6.8.2 BleWhitelistDestroy

FUNCTION

This function is used to destroy an existing whitelist identified by a valid handle previously returned from BleWhitelistCreate()
so that new addresses and Identity Resolving Keys (IRKs) can be added. This function completely destroys the whitelist of the
given handle, and a new one will need to be created if necessary (using BleWhitelistCreate).

BLEWHITELISTDESTROY (hWIlist)

INTEGER, a result code.

Returns . - .
Typical value: 0x0000 (indicates a successful operation)

Arguments

byRef hWlist AS INTEGER.

This is the handle of the whitelist and is passed as a reference so that on exit it will have an
invalid handle value so cannot be used inadvertently. The handle will have been returned by
BleWhitelistCreate()

hWilist

For example, see description of BleWhitelistCreate() above.

https://www.lairdconnect.com/ 146 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.8.3 BleWhitelistClear

FUNCTION

This function is used to clear an existing whitelist identified by a valid handle previously returned from BleWhitelistCreate() so
that new addresses and Identity Resolving Keys (IRKs) can be added. The handle of the whitelist is still valid so data can be
added to the whitelist without having to call BleWhitelistCreate again.

BLEWHITELISTCLEAR (hWIlist)

INTEGER, a result code.

Returns . - .
Typical value: 0x0000 (indicates a successful operation)

Arguments

byVal hWlist AS INTEGER.
hWilist | This is the handle of the whitelist to clear and will have been returned by
BleWhitelistCreate()

For example, see description of BleWhitelistCreate() above.

6.8.4 BleWhitelistSetFilter

FUNCTION
This function is used to change the filter policy mask associated with the whitelist object identified by the handle.

BLEWHITELISTSETFILTER (hWIlist, nPktFilterMask)

INTEGER, a result code.

R . - .
eturns Typical value: 0x0000 (indicates a successful operation)

Arguments

byRef hWlist AS INTEGER.
This is the handle of the whitelist and will have been returned by BleWhitelistCreate()
byVal nPktFilterMask AS INTEGER.
This is a bit mask which specifies what type of incoming packets this list will apply to, as
follows:
= Bit0 : Setto 1 for Scan Request packets
nPktFilterMask | = Bitl : Setto 1 for Connection Request packets
= Bit2 : Setto 1 for Advert Report Packets
= Bits 3 to 31 : reserved for future use

hWilist

Note: If all bits are 0, then a default mask of 7 is used for the BL653.

For example, see description of BleWhitelistCreate() above.

https://www.lairdconnect.com/ 147 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.8.5 BleWhitelistAddAddr

FUNCTION

This function is used to add a 7 byte BT address to the whitelist identified by the handle supplied. The function will
automatically check if the BT address is trusted by interrogating the trusted device database and if it is, then the address
stored there along with the IRK is added instead of the address supplied. This means that in smartphones with Android and
iOS (which make heavy use of resolvable addresses) there is seemless and hassle free integration.

BLEWHITELISTADDADDR (hWIist, addr$)

INTEGER, a result code.

R . - .
eturns Typical value: 0x0000 (indicates a successful operation)

Arguments

byVal hWlist AS INTEGER.

hwii o - . oo
Ist This is the handle of the whitelist and will have been returned by BleWhitelistCreate()
byRef addr$ AS STRING.
addr$ This is the address that is to be added to the whitelist. It will be checked for presence in

trusted device database and if trusted, the IRK will also be added automatically to the
whitelist

For example, see description of BleWhitelistCreate() above.

6.8.6 BleWhitelistAddIndex

FUNCTION
This function is used to add the Nth indexed device in the trusted device database to the whitelist identified by the handle

supplied. If that Nth record exists in the database then the Identity Resolving Key will also be added automatically.

BLEWHITELISTADDINDEX (hWIlist, nindex)

INTEGER, a result code.

R . - .
eturns Typical value: 0x0000 (indicates a successful operation)

Arguments

byVal hWilist AS INTEGER.

hwiist This is the handle of the whitelist and will have been returned by BleWhitelistCreate()
byVal nindex AS INTEGER.
nindex This is the Nth index (zero based) of the record in the trusted device database to add to the

whitelist. The IRK will also be added automatically to the whitelist.
The index is the same entity per the function BleBondMngrGetinfo()

For example, see description of BleWhitelistCreate() above.

https://www.lairdconnect.com/ 148 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird“' CONNECTIVITY

User Guide

6.8.7 BleWhitelistinfo

FUNCTION

This function is used to return information about the whitelist provided. This may be invalid for certain ninfolD values, as that is
information about the whitelist manager in general.

BLEWHITELISTINFO (hWIlist, ninfolD, nValue)

INTEGER, a result code.

Returns Typical value: 0x0000 (indicates a successful operation)

Arguments

byVal hWlist AS INTEGER.
This is the handle of the whitelist and will have been returned by BleWhitelistCreate()
byVal ninfolD AS INTEGER.
This is ID of the information to be returned as follows:
= 0 :maximum number of whitelists (hWiIist is ignored)
= 1 :maximum number of Bluetooth addresses (hWilist is ignored)
ninfolD | = 2 :maximum number of IRKs (hWlist is ignored)
= 101 : current number of addresses added
= 102 : current number of IRKs added

hWilist

Note: For 101 and 102, the values will be cleared to 0 if BleWhitelistClear() is called.

byRef nValue AS INTEGER.

nValue
The information value is returned in this variable

For example, see description of BleWhitelistCreate() above.

6.9 GATT Server Functions

This section describes all functions related to creating and managing services that collectively define a GATT table from a
GATT server role perspective. These functions allow the developer to create any service that has is described and adopted by
the Bluetooth SIG or any custom service that implements some custom unique functionality, within resource constraints such
as the limited RAM and FLASH memory that is exist in the module.

A GATT table is a collection of adopted or custom services which, in turn, are a collection of adopted or custom
characteristics. By definition, an adopted service cannot contain custom characteristics but the reverse is possible where a
custom service can include both adopted and custom characteristics.

Descriptions of services and characteristics are available in the Bluetooth Specification v4.0 or newer. Because these
descriptions are concise and difficult to understand, the following section attempts to familiarise you with these concepts using
the smartBASIC programming environment perspective.

To help understand service and characteristic better, think of a characteristic as a container (or a pot) of data where the pot
comes with space to store the data and a set of properties that are officially called Descriptors in the BT spec. In the pot
analogy, think of a descriptor as the color of the pot, whether it has a lid, whether the lid has a lock, whether it has a handle or
a spout, etc. For a full list of these descriptors online, see
http://developer.Bluetooth.org/GATT/descriptors/Pages/DescriptorsHomePage.aspx . These descriptors are assigned 16-bit
UUIDs (value 0x29xx) and are referenced in some of the smartBASIC API functions if you decide to add those to your
characteristic definition.

You can consider a service as a carrier bag to hold a group of related characterisics together where the printing on the carrier
bag is a UUID. From a smartBASIC developer’s perspective, a set of characteristics is what you need to manage and the
concept of service is only required at GATT table creation time.

A GATT table can have many services, each containing one or more characteristics. The difference between services and
characteristics is expedited using an identification number called a UUID (Universally Unique Identifier) which is a 128-bit (16-
byte) number. Adopted services or characteristics have a 16-bit (2-byte) shorthand identifier (which is an offset plus a base
128-bit UUID defined and reserved by the Bluetooth SIG); custom service or characteristics have the full 128-bit UUID. The
logic behind this is that a 16-bit UUID implies that a specification has been published by the Bluetooth SIG whereas using a
128-bit UUID does NOT require any central authority to maintain a register of those UUIDs or specifications describing them.

https://www.lairdconnect.com/ 149 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

http://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorsHomePage.aspx

BL653 smartBASIC Extensions La rd CONNECTIVITY

User Guide

The lack of the requirement for a central register is important to understand in the sense that, if a custom service or
characteristic must be created, the developer can use any publicly available UUID (sometimes also known as GUID)
generation utility.

These utilities use entropy from the real world to generate a 128-bit random number that has an extremely low probability to be
the same as that generated by someone else at the same time or in the past or future.

As an example, at the time of writing this document, the following website http://www.guidgenerator.com/online-guid-
generator.aspx offers an immediate UUID generation service, although it uses the term GUID. From the GUID Generator
website:

How unique is a GUID?
128-bits is big enough and the generation algorithm is unique enough that if 1,000,000,000 GUIDs per second

were generated for 1 year the probability of a duplicate would be only 50%. Or if every human on Earth
generated 600,000,000 GUIDs there would only be a 50% probability of a duplicate.

This extremely low probability of generating the same UUID is why there is no need for a central register maintained by the
Bluetooth SIG for custom UUIDs.

Please note that Laird does not guarantee that the UUID generated by this website or any other utility is unique. It is left to the
judgement of the developer whether to use it or not.

Note: If the developer intends to create custom services and/or characteristics then it is recommended that a single UUID
is generated and used from then on as a 128-bit (16 byte) company/developer unique base along with a 16-bit (2-
byte) offset, in the same manner as the Bluetooth SIG.

This allows up to 65536 custom services and characteristics to be created, with the added advantage that it is
easier to maintain a list of 16-bit integers.

The main reason for avoiding more than one long UUID is to keep RAM usage down given that 16 bytes of RAM is
used to store a long UUID. smart BASIC functions have been provided to manage these custom 2-byte UUIDs
along with their 16-byte base UUIDs.

In this document, when a service or characteristic is described as adopted, it implies that the Bluetooth SIG published a
specification which defines that service or characteristic and there is a requirement that any device claiming to support them
has proof that the functionality has been tested and verified to behave as per that specification.

Currently there is no requirement for custom service and/or characteristics to have any approval. By definition, interoperability
is restricted to the provider and implementer.

A service is an abstraction of some collectivised functionality which, if broken down further, would cease to provide the
intended behaviour. Two examples in the BLE domain that have been adopted by the Bluetooth SIG are Blood Pressure
Service and Heart Rate Service. Each have sub-components that map to characteristics.

Blood pressure is defined by a collection of data entities such as Systolic Pressure, Diastolic Pressure, and Pulse Rate.
Likewise, a Heart Rate service has a collection which includes entities such as the Pulse Rate and Body Sensor Location.

A list of all the adopted services is at: http:/developer.Bluetooth.org/GATT/services/Pages/ServicesHome.aspx. Laird
recommends that, if you decide to create a custom service, it should be defined and described in a similar fashion; your goal
should be to get the Bluetooth SIG to adopt it for everyone to use in an interoperable manner.

These services are also assigned 16-bit UUIDs (value 0x18xx) and are referenced in some of the smart BASIC API functions
described in this section.

Services, as described above, are a collection of one or more characteristics. A list of all adopted characteristics is found at:
http://developer.Bluetooth.org/GATT/characteristics/Pages/CharacteristicsHome.aspx. You should note that these descriptors
are also assigned 16-bit UUIDs (value 0x2Axx) and are referenced in some of the API functions described in this section.
Custom characteristics have 128-bit (16-byte) UUIDs and API functions are provided to handle those.

Note: If you intend to create a custom service or characteristic and adopt the recommendation of a single 16-byte base
UUID so that the service can be identified using a 2-byte UUID, then allocate a 16-bit value which is not going to
coincide with any adopted values to minimise confusion. Selecting a similar value is possible and legal given that
the base UUID is different.

https://www.lairdconnect.com/ 150 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

http://www.guidgenerator.com/online-guid-generator.aspx
http://www.guidgenerator.com/online-guid-generator.aspx
http://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx
http://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicsHome.aspx

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

The remainder of this introduction focuses on the specifics of how to create and manage a GATT table from a perspective of
the smart BASIC API functions in the module.

Recall that a service was described as a carrier bag that groups related characteristics together and a characteristic is a data
container (pot). Therefore, a remote GATT client looking at the server which is presented in your GATT table, sees multiple
carrier bags each containing one or more pots of data.

The GATT client (remote end of the wireless connection) msut see those carrier bags to determine the groupings and, once it
has identified the pots, it only needs to keep a list of references to the pots it is interested in. Once that list is made at the client
end, it can ‘throw away the carrier bag’.

https://www.lairdconnect.com/ 151 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions
User Guide

La 2» CONNECTIVITY

Similarly in the module, once the GATT table is
created and after each service is fully populated
with one or more characteristics, there is no
need to keep that ‘carrier bag’. However, as each
characterstic is ‘placed in the carrier bag’ using
the appropriate smartBASIC API function, a
receipt is returned and is referred to as a
char_handle. The developer must then keep
those handles to be able to interact with that
characteristic. The handle does not care whether
the characteristic is adopted or custom because,
from then on the firmware managing it behind the
scenes in smartBASIC does not care.

From the smartBASIC application developer’'s
logical perspective, a GATT table looks nothing
like the table that is presented in most BLE
literature. Instead, the GATT table is simply a
collection of char_handles that reference the
characteristics (data containers) which have
been registered with the underlying GATT table
in the BLE stack.

A particular char_handle is used to make
something happen to the referenced
characteristic (data container) using a smart
BASIC function and conversely, if data is written
into that characteristic (data container) by a
remote GATT client, then an event is thrown in
the form of a message, into the smart BASIC
runtime engine which is processed if and only if
a handler function has been registered by the
apps developer using the ONEVENT statement.

With this simple model in mind, an overview of
how the smart BASIC functions are used to
register services and characteristics is illustrated
in the flowchart on the right and sample code
follows on the next page.

https://www.lairdconnect.com/

[Create a UUID Handle for Service (16/128) |
BleHandleUuid () |

Commit a PRIMARY or SECONDARY
service which returns a service handle
BleSvcCommit ()

I Create a UUID Handle for Characterisitic (16/128) I
| BleHandleUuid () |

Create a metadata object which
defines the permissions for the
characteristic value attribute
BleAttrMetadata()

Notifiable OR
Indicatable

Create a metadata object which
defines the permissions for the
characteristic CCCD attribute

BleAttrMetadata ()

Broadcastable Yes

Create a metadata object which
defines the permissions for the
characteristic SCCD attribute

BleAttrMetadata()

Btart the definition of a new characteristic
hich will be later commited to the GATT|
table in a single transaction
BleCharNew ()

User Desc
Descriptor?

Create a metadata object which
defines the permissions for the
User Desc Descriptor

BleAttrMetadata ()

Add parameters for creation of
User Desc Descriptor

BleCharDescUserDesc ()

res'tion Formai

Add parameters for creation of
Presentation Format Descriptor

Descriptor?

BleCharDescPrstnFrmt ()

Add parameters for creation of
other Descriptor

BleCharDescAdd ()

Add other
Descriptor?

Create a metadata object which
defines the permissions for the
other Descriptor

BleAttrMetadata()

Commit the Characteristic to the
Gatt ServerTable in single transaction
BleCharCommit () ~.

More

Services?

© Copyright 2020 Laird Connectivity, Inc.

All Rights Reserved

Save the handle
thatis returned
asitis used to

interact with the
characteristic

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

Example:

// Example :: ServicesAndCharacteristics.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

!/
//Register two Services in the GATT Table. Service 1 with 2 Characteristics and
//Service 2 with 1 characteristic. This implies a total of 3 characteristics to
//manage.

//The characteristic 2 in Service 1 will not be readable or writable but only
//indicatable

//The characteristic 1 in Service 2 will not be readable or writable but only
//notifyable

//

DIM rc //result code
DIM hSvc //service handle
DIM mdAttr

DIM mdCccd

DIM mdSccd

DIM chProp

DIM attr$

DIM hCharll // handles for characteristic 1 of Service 1
DIM hChar2l // handles for characteristic 2 of Service 1

DIM hCharl2 // handles for characteristic 1 of Service 2

DIM hUuidsl // handles for uuid of Service 1
DIM hUuidS2 // handles for uuid of Service 2
DIM hUuidCll // handles for uuid of characteristic 1 in Service 1
DIM hUuidCl2 // handles for uuid of characteristic 2 in Service 1

DIM hUuidC21 // handles for uuid of characteristic 1 in Service 2

//---Register Service 1
hUuidS1l = BleHandleUuidl6 (0x180D)

rc = BleServiceNew (BLE SERVICE PRIMARY, hUuidS1l, hSvc)

//---Register Characteristic 1 in Service 1

mdAttr = BleAttrMetadata (BLE ATTR ACCESS OPEN,BLE_ATTR ACCESS OPEN, 10,0, rc)

mdCccd = BLE CHAR METADATA ATTR NOT PRESENT

https://www.lairdconnect.com/ 153 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

mdSccd = BLE CHAR METADATA ATTR NOT PRESENT

chProp = BLE CHAR PROPERTIES READ + BLE CHAR PROPERTIES WRITE
hUuidCll = BleHandleUuidlé6 (0x2A37)

rc = BleCharNew (chProp, hUuidCll,mdAttr,mdCccd,mdSccd)

rc = BleCharCommit (shHrs,hrs$,hCharll)

//---Register Characteristic 2 in Service 1

mdAttr = BleAttrMetadata (BLE ATTR ACCESS OPEN,BLE_ATTR ACCESS OPEN, 10,0, rc)

mdCccd BleAttrMetadata (BLE ATTR ACCESS OPEN,BLE ATTR ACCESS OPEN,2,0,rc)
mdSccd = BLE CHAR METADATA ATTR NOT PRESENT

chProp = BLE CHAR PROPERTIES INDICATE

hUuidCl2 = BleHandleUuidlé6 (0x2A39)

rc = BleCharNew (chProp, hUuidCl12,mdAttr,mdCccd,mdSccd)

attrs$="\00\00"

rc = BleCharCommit (hSvc,attr$, hChar2l)

rc BleServiceCommit (hSvc)
//-—-Register Service 2 (can now reuse the service handle)
hUuidS2 = BleHandleUuidl6 (0x1856)

rc = BleServiceNew (BLE SERVICE PRIMARY, hUuidS2, hsSvc)

//---Register Characteristic 1 in Service 2

mdAttr

BleAttrMetadata (BLE ATTR ACCESS NONE,BLE ATTR ACCESS NONE, 10,0, rc)
mdCccd = BleAttrMetadata (BLE_ATTR ACCESS OPEN,BLE ATTR ACCESS OPEN, 2,0,rc)
mdSccd

BLE CHAR METADATA ATTR NOT PRESENT

chProp = BLE CHAR PROPERTIES NOTIFY

hUuidC21 = BleHandleUuidl6 (0x2A54)

rc = BleCharNew (chProp, hUuidC21l,mdAttr,mdCccd,mdSccd)
attr$="\00\00\00\00"

rc = BleCharCommit (hSvc,attr$, hCharl2)

rc BleServiceCommit (hSvc)
//===The 2 services are now visible in the gatt table

Writes into a characteristic from a remote client are detected and processed as follows:

// To deal with writes from a GATT client into characteristic 1 of Service 1

// which has the handle hCharll

// This handler is called when there is a EVCHARVAL message

https://www.lairdconnect.com/ 154 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

FUNCTION HandlerCharVal (BYVAL hChar AS INTEGER) AS INTEGER
DIM attrs$
IF hChar == hCharll THEN
rc = BleCharValueRead (hCharll,attr$)

print "Svcl/Charl has been writen with = ";attr$

ENDIF
ENDFUNC 1

//enable characteristic value write handler

OnEvent EVCHARVAL call HandlerCharVal

WAITEVENT

Assuming there is a connection and notify has been enabled, a value notification is expedited as follows:

attr$="somevalue"
rc = BleCharValueNotify (hCharl2,attr$)

Assuming there is a connection and indicate has been enabled, a value indication is expedited as follows:

// indicate a value for characteristic 2 in service 1

// This handler is called when there is a EVCHARHVC message
FUNCTION HandlerCharHvc (BYVAL hChar AS INTEGER) AS INTEGER
IF hChar == hCharl2 THEN
PRINT "Svcl/Char2 indicate has been confirmed"
ENDIF
ENDFUNC 1

//enable characteristic value indication confirm handler

OnEvent EVCHARHVC CALL HandlerCharHvc

attr$="somevalue"

rc = BleCharValuelIndicate (hCharl2,attr$)

The rest of this section details all the smartBASIC functions that help create that framework.

https://www.lairdconnect.com/ 155 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.9.1 Events and Messages

See also Events and Messages for the messages that are thrown to the application which are related to the generic
characteristics API. The relevant messages are those that start with EVCHARXXxX.

6.9.2 BleGapSvcinit

FUNCTION

This function updates the GAP service, which is mandatory for all approved devices to expose, with the information provided.
If it is not called before adverts are started, default values are exposed. Given this is a mandatory service, unlike other
services which must be registered, this one must only be initialised as the underlying BLE stack unconditionally registers it
when starting up.

The GAP service contains five characteristics as listed at the following site:
http://developer.Bluetooth.org/GATT/services/Pages/ServiceViewer.aspx?u=org.Bluetooth.service.generic_access.xml

BLEGAPSVCINIT (deviceName, nameWritable, nAppearance, nMinConnlinterval, nMaxConninterval, nSupervisionTout, nSlaveLatency)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation

Arguments:

byRef deviceName AS STRING
The name of the device (such as Laird_Thermometer) to store in the Device Name
characteristic of the GAP service.

Note: When an advert report is created using BLEADVRPTINIT(), this field is read from
the service and an attempt is made to append it in the Device Name AD. If the
name is too long, that function fails to initialise the advert report and a default
name is transmitted. We recommend that the device name submitted in this call
be as short as possible.

deviceName

byVal nameWritable AS INTEGER

nameWritable | If non-zero, the peer device is allowed to write the device name. Some profiles allow this to
be made optional.

byVal nAppearance AS INTEGER

nAppearance | Field lists the external appearance of the device and updates the Appearance characteristic
of the GAP service. Possible values: org.Bluetooth.characteristic.gap.appearance

byVal nMinConninterval AS INTEGER

The preferred minimum connection interval, updates the ‘Peripheral Preferred Connection
nMinConnlinterval | Parameters’ characteristic of the GAP service.

Range is between 7500 and 4000000 microseconds (rounded to the nearest 1250
microseconds). This must be smaller than nMaxConninterval.

byVal nMaxConninterval AS INTEGER

The preferred maximum connection interval, updates the ‘Peripheral Preferred Connection
nMaxConnlinterval | Parameters’ characteristic of the GAP service.

Range is between 7500 and 4000000 microseconds (rounded to the nearest 1250
microseconds). This must be larger than nMinConninterval.

https://www.lairdconnect.com/ 156 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.generic_access.xml
https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.gap.appearance.xml

BL653 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

byVal nSupervisionTimeout AS INTEGER

The preferred link supervision timeout and updates the ‘Peripheral Preferred Connection
nSupervisionTimeout | Parameters’ characteristic of the GAP service.

Range is between 100000 to 32000000 microseconds (rounded to the nearest 10000
microseconds).

byVal nSlaveLatency AS INTEGER

The preferred slave latency is the number of communication intervals that a slave may
ignore without losing the connection and updates the ‘Peripheral Preferred Connection
Parameters’ characteristic of the GAP service.

This value must be smaller than (nSupervisionTimeout/ nMaxConninterval) -1. i.e.
nSlavelLatency < (nSupervisionTimeout / nMaxConninterval) -1

nSlavelLatency

Example:

// Example :: BleGapSvcInit.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc,dvcNme$,nmeWrtble, apprnce,MinConnInt,MaxConnInt, ConnSupTO, sL, s$

dvcNmeS$= "Laird TS"

nmeWrtble = 0 //Device name will not be writable by peer

apprnce = 768 //The device will appear as a Generic Thermometer
MinConnInt = 500000 //Minimum acceptable connection interval is 0.5 seconds
MaxConnInt = 1000000 //Maximum acceptable connection interval is 1 second
ConnSupTO = 4000000 //Connection supervisory timeout is 4 seconds

sL = 0 //Slave latency--number of conn events that can be missed

rc=BleGapSvcInit (dvcNme$, nmeWrtble, apprnce,MinConnInt,MaxConnInt,ConnSupTO, sL)

IF !rc THEN
PRINT "\nSuccess"
ELSE
PRINT "\nFailed Ox"; INTEGER.H'rc //Print result code as 4 hex digits

ENDIF

Expected Output:

Success

https://www.lairdconnect.com/ 157 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide La"'d 2» CONNECTIVITY

6.9.3 BleGetDeviceName$

FUNCTION

This function reads the device name characteristic value from the local GATT table. This value is the same as that supplied in
BleGapSvclnit() if the ‘nameWritable’ parameter was 0, otherwise it may be different.

EVBLEMSG event is thrown with ‘msgid’ == 21 when the GATT client writes a new value and is the best time to call this
function.

BLEGETDEVICENAMES ()
Returns STRING, the current device name in the local GATT table. It is the same as that supplied in
BleGapSvclnit() if the ‘nameWritable’ parameter was 0, otherwise it can be different.
EVBLEMSG event is thrown with ‘msgid’ == 21 when the GATT client writes a new value.
Arguments None
Example:
// Example :: BleGetDeviceName$.sb

// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc,dvcNme$,nmeWrtble, apprnce,MinConnInt,MaxConnInt, ConnSupTO, sL

PRINT "\n —--- DevName : "; BleGetDeviceName$ ()

// Changing device name manually
dvcNme$= "My BL653"

nmeWrtble = 0

apprnce = 768

MinConnInt = 500000

MaxConnInt = 1000000
ConnSupTO = 4000000
sL = 0

rc = BleGapSvcInit (dvcNme$, nmeWrtble, apprnce,MinConnInt,MaxConnInt, ConnSupTO, sL)

PRINT "\n --- New DevName : "; BleGetDeviceNames$ ()

Expected Output:

--— DevName : LAIRD BL653
—--- New DevName : My BL653

https://www.lairdconnect.com/ 158 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.9.4 BleSvcRegDevinfo

FUNCTION

This function is used to register the Device Information service with the GATT server. The Device Information service contains
nine characteristics as listed at the following website:
http://developer.Bluetooth.org/GATT/services/Pages/ServiceViewer.aspx?u=org.Bluetooth.service.device_information.xml

The firmware revision string is always set to BL653:vW.X.Y.Z where W,X,Y,Z are as per the revision information which is
returned to the command AT | 4.

BLESVCREGDEVINFO (manfName$, modelNum$, serialNum$, hwRev$, swRev$, sysld$, regDatalist$, pnpld$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
manfNames byVval manfName$ AS STRING
The device manufacturer. Can be set empty to omit submission.
byVal modeINum$ AS STRING
modelNum$. . o
The device model number. Can be set empty to omit submission.
. byVal serialNum$ AS STRING
serialNum$) . : .
The device serial number. Can be set empty to omit submission.
byVal hwRev$ AS STRING
hwRev$. -) . o
The device hardware revision string. Can be set empty to omit submission.
byVal swRev$ AS STRING
swRev$. .) . o
The device software revision string. Can be set empty to omit submission.
byVal sysld$ AS STRING
The device system ID as defined in the specifications. Can be set empty to omit submission.
Otherwise it shall be a string exactly eight octets long, where:
sysld$ Byte 0..4 := Manufacturer Identifier

Byte 5..7 := Organisationally Unique Identifier
If the string is one character long and contains @, the system ID is created from the Bluetooth address if
(and only if) an IEEE public address is set. If the address is the random static variety, this characteristic
is omitted.

byVal regDataList$ AS STRING

regDatalist$ | The device’s regulatory certification data list as defined in the specification. It can be set as an empty
string to omit submission.

byVal pnpld$ AS STRING

The device’s plug and play ID as defined in the specification. Can be set empty to omit submission.
Otherwise, it shall be exactly 7 octets long, where:

pnpld$ | = Byte 0 :=Vendor ld Source

= Byte 1,2 := Vendor Id (Byte 1 is LSB)

= Byte 3,4 := Product Id (Byte 3 is LSB)

= Byte 5,6 := Product Version (Byte 5 is LSB)

https://www.lairdconnect.com/ 159 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.device_information.xml

BL653 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

Example:

// Example :: BleSvcRegDevInfo.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc,manfNme$,mdlNum$, sr1Num$, hwRev$, swRev$, sysId$, regDtalst$, pnpId$

manfNme$ = "Laird Technologies"

mdlNum$ = "BL653"

srlNum$ = "" //empty to omit submission
hwRev$ = "1.0"

swRev$ = "1.0"

sysIds = "" //empty to omit submission
regDtaLst$ = "" //empty to omit submission
pnpIds = "" //empty to omit submission

rc=BleSvcRegDevInfo (manfNme$, md1Num$, sr1Num$, hwRev$, swRev$, sysId$, regDtalst$, pnpId$)

IF !rc THEN
PRINT "\nSuccess"
ELSE
PRINT "\nFailed 0Ox"; INTEGER.H'rc

ENDIF

Expected Output:

|Success

6.9.5 BleHandleUuidl16
FUNCTION

This function takes an integer in the range 0 to 65535 and converts it into a 32-bit integer handle that associates the integer as
an offset into the Bluetooth SIG 128-bit (16-byte) base UUID which is used for all adopted services, characteristics, and
descriptors.

If the input value is not in the valid range, then an invalid handle (0) is returned.
The returned handle is treated by the developer as an opaque entity and no further logic is based on the bit content, apart from
all zeros which represent an invalid UUID handle.

BLEHANDLEUUID16 (nUuid16)

Returns INTEGER, a nonzero handle shorthand for the UUID. Zero is an invalid UUID handle

Arguments:

byVal nUuid16 AS INTEGER
nUuid16 | nUuid16 is first bitwise ANDed with OXFFFF and the result is treated as an offset into the Bluetooth SIG
128 bit base UUID

https://www.lairdconnect.com/ 160 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

Example:

// Example :: BleHandleUuidlé6.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM uuid

DIM hUuidHRS

uuid = 0x180D //this is UUID for Heart Rate Service
hUuidHRS = BleHandleUuidl6 (uuid)
IF hUuidHRS == 0 THEN
PRINT "\nFailed to create a handle"
ELSE
PRINT "Handle for HRS Uuid is "; integer.h' hUuidHRS;" (";hUuidHRS;")"
ENDIF

Expected Output:

| Handle for HRS Uuid is FE01180D (-33482739)

6.9.6 BleHandleUuid128

FUNCTION

This function takes a 16-byte string and converts it into a 32-bit integer handle. The handle consists of a 16-bit (2-byte) offset
into a new 128-bit base UUID.

The base UUID is created by taking the 16-byte input string and setting bytes 12 and 13 to zero after extracting those bytes
and storing them in the handle object. The handle also contains an index into an array of these 16-byte base UUIDs which are
managed opaquely in the underlying stack.

The returned handle shall be treated by the developer as an opaque entity and no further logic shall be based on the bit
content. However, note that a string of zeroes represents an invalid UUID handle.

Note: Ensure that you use a 16-byte UUID that has been generated using a random number generator with sufficient
entropy to minimise duplication and that the first byte of the array is the most significant byte of the UUID.

BLEHANDLEUUID128 (stUuid$)

Returns INTEGER, A handle representing the shorthand UUID.
If zero, which is an invalid UUID handle, there is either no spare RAM memory to save the 16-byte base or
more than 253 custom base UUIDs have been registered.

Arguments:

byRef stUuid$ AS STRING
stUuid$ | Any 16-byte string that was generated using a UUID generation utility that has enough entropy to ensure
that it is random. The first byte of the string is the MSB of the UUID (big endian format).

Example:

//Example :: BleHandleUuidl28.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

https://www.lairdconnect.com/ 161 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

DIM uuid$, hUuidCustom

//create a custom uuid for my ble widget
uuid$ = "ced9d91366924a1287d56£2764762b2a"
uuid$ = StrDehexize$ (uuid$)
hUuidCustom = BleHandleUuidl28 (uuid$)
IF hUuidCustom == 0 THEN
PRINT "\nFailed to create a handle"
ELSE
PRINT "Handle for custom Uuid is ";integer.h’ hUuidCustom; " (";hUuidCustom;")"
ENDIF
// hUuidCustom now references an object which points to
// a base uuid = ced9d91366924a1287d56£2747622b2a (note 0's in byte position 2/3)

// and an offset = 0xd913

Expected Output:

| Handle for custom Uuid is FC03D913 (-66856685)

6.9.7 BleHandleUuidSibling

FUNCTION

This function takes an integer in the range 0 to 65535 along with a UUID handle which had been previously created using
BleHandleUuid16() or BleHandleUuid128() to create a new UUID handle. This handle references the same 128 base UUID as
the one referenced by the UUID handle supplied as the input parameter.

The returned handle shall be treated by the developer as an opaque entity and no further logic shall be based on the bit
content, apart from all zeroes (which represents an invalid UUID handle).

BLEHANDLEUUIDSIBLING (nUuidHandle, nUuid16)

Returns INTEGER, a handle representing the shorthand UUID and can be zero which is an invalid UUID handle,
if nUuidHandle is an invalid handle in the first place.
Arguments:
nUuidHandle byVal nUuidHandle AS INTEGER

A handle that was previously created using either BleHandleUui16() or BleHandleUuid128().

byVal nUuid16 AS INTEGER
nUuid16 | A UUID value in the range 0 t0 65535 which is treated as an offset into the 128-bit base UUID
referenced by nUuidHandle.

Example:

// Example :: BleHandleUuidSibling.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM uuid$,hUuidl, hUuid2 //hUuid2 will have the same base uuid as hUuidl

//create a custom uuid for my ble widget

uuid$ = "ced9d91366924a1287d56£2764762b2a"
https://www.lairdconnect.com/ 162 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940

All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

uuid$ = StrDehexize$ (uuid$)
hUuidl = BleHandleUuidl28 (uuid$)
IF hUuidl == 0 THEN
PRINT "\nFailed to create a handle"
ELSE
PRINT "Handle for custom Uuid is ";integer.h' hUuidl;" (";hUuidl;")"
ENDIF
// hUuidl now references an object which points to
// a base uuid = ced9000066924a1287d56f2747622b2a (note 0's in byte position 2/3)
// and an offset = 0xd913

hUuid2 = BleHandleUuidSibling (hUuidl, 0x1234)
IF hUuid2 == 0 THEN
PRINT "\nFailed to create a handle"
ELSE
PRINT "\nHandle for custom sibling Uuid is ";integer.h'hUuid2;" (";hUuid2;")"
ENDIF
// hUuid2 now references an object which also points to
// the base uuid = ced9000066924a1287d56f2700004762 (note 0's in byte position 2/3)
// and has the offset = 0x1234

Expected Output:

Handle for custom Uuid is FC03D913 (-66856685)
Handle for custom sibling Uuid is FC031234 (-66907596)

6.9.8 BleServiceNew
FUNCTION

As explained in GATT Server Functions, a service in the context of a GATT table is a collection of related characteristics. This
function is used to inform the underlying GATT table manager that one or more related characteristics are going to be created
and installed in the GATT table and that, until the next call of this function, they will be associated with the service handle that
it provides upon return of this call.

Under the hood, this call results in a single attribute being installed in the GATT table with a type signifying a PRIMARY or a
SECONDARY service. The value for this attribute is the UUID that identifies this service and in turn have been precreated
using one of the functions: BleHandleUuid16(), BleHandleUuid128(), or BleHandleUuidSibling().

Note: When a GATT client queries a GATT server for services over a BLE connection, it only receives a list of PRIMARY
services. SECONDARY services are a mechanism for multiple PRIMARY services to reference single instances of
shared characteristics that are collected in a SECONDARY service. This referencing is expedited within the
definition of a service using the concept of INCLUDED SERVICE which is an attribute that is grouped with the
PRIMARY service definition. An Included Service is expedited using the function BleSvcAddincludeSvc() which is
described immediately after this function.

This function now replaces BleSvcCom() and marks the beginning of a service definition in the GATT server table. When the
last descriptor of the last characteristic has been registered the service definition should be terminated by calling
BleServiceCommit().

https://www.lairdconnect.com/ 163 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

BLESERVICENEW (nSvcType, nUuidHandle, hService)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal nSvcType AS INTEGER
nSvcType | This is zero for a SECONDARY service and 1 for a PRIMARY service. All other values are reserved
for future use and result in this function failing with an appropriate result code.

byVal nUuidHandle AS INTEGER

This is a handle to a 16-bit or 128-bit UUID that identifies the type of service function provided by all
the characteristics collected under it. It has been pre-created using one of the three functions:
BleHandleUuid16(), BleHandleUuid128(), or BleHandleUuidSibling().

byRef hService AS INTEGER

If the service attribute is created in the GATT table, then this contains a composite handle which
hService | references the actual attribute handle. This is then subsequently used when adding characteristics to
the GATT table. If the function fails to install the service attribute for any reason, this variable will
contain 0 and the returned result code will be non-zero.

nUuidHandle

Example:

// Example :: BleServiceNew.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

#DEFINE BLE SERVICE SECONDARY 0
#DEFINE BLE SERVICE PRIMARY 1
e

DIM hHtsSvc //composite handle for hts primary service

DIM hUuidHT : hUuidHT = BleHandleUuidl6 (0x1809) //HT Svc UUID Handle

IF BleServiceNew (BLE SERVICE PRIMARY,hUuidHT, hHtsSvc)==0 THEN
PRINT "\nHealth Thermometer Service attribute written to GATT table"
PRINT "\nUUID Handle value: ";hUuidHT
PRINT "\nService Attribute Handle value: ";hHtsSvc
ELSE
PRINT "\nService Commit Failed"

ENDIF

DIM hBatSvc //composite handle for battery primary service

//or we could have reused nHtsSvc

DIM hUuidBatt : hUuidBatt = BleHandleUuidl6 (0x180F) //Batt Svc UUID Handle
https://www.lairdconnect.com/ 164 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940

All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

IF BleServiceNew (BLE SERVICE PRIMARY, hUuidBatt,hBatSvc)==0 THEN
PRINT "\n\nBattery Service attribute written to GATT table"
PRINT "\nUUID Handle value: ";hUuidBatt
PRINT "\nService Attribute Handle value: ";hBatSvc

ELSE
PRINT "\nService Commit Failed"

ENDIF

Expected Output:

Health Thermometer Service attribute written to GATT table
UUID Handle value: -33482743
Service Attribute Handle value: 16

Battery Service attribute written to GATT table
UUID Handle value: -33482737
Service Attribute Handle value: 17

6.9.9 BleServiceCommit

This function in the BL653 is used to commit a defined service using BleServiceNew() to the GATT table and should be called
after the last characteristic/description has been created/commited for that service.

BLESERVICECOMMIT (hService)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal hService AS INTEGER

hService This handle is returned from BleServiceNew().

See example for BleCharCommit().

6.9.10 BleSvcAddIncludeSvc
FUNCTION

Note: This function is currently not available for use on this module

This function is used to add a reference to a service within another service. This is usually, but not necessarily, a
SECONDARY service which is virtually identical to a PRIMARY service from the GATT server perspective. The only difference
is that, when a GATT client queries a device for all services, it does not receive mention of SECONDARY services.

When a GATT client encounters an INCLUDED SERVICE object when querying a particular service it performs a sub-
procedure to get handles to all the characteristics that are part of that INCLUDED service.

This mechanism is provided to allow for a single set of characteristics to be shared by multiple primary services. This is most
relevant if a characteristic is defined so that it can have only one instance in a GATT table but needs to be offered in multiple
PRIMARY services. A typical implementation, where a characteristic is part of many PRIMARY services, installs that
characteristic in a SECONDARY service (see BleSvcCommit()) and then uses the function defined in this section to add it to
all the PRIMARY services that want to have that characteristic as part of their group.

It is possible to include a service which is also a PRIMARY or SECONDARY service, which in turn can include further
PRIMARY or SECONDARY services. The only restriction to nested includes is that there cannot be recursion.

https://www.lairdconnect.com/ 165 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

Note: If a service has INCLUDED services, then they is installed in the GATT table immediately after a service is created
using BleSvcCommit() and before BleCharCommit(). The BT 4.0 specification mandates that any ‘included service’
attribute be present before any characteristic attributes within a particular service group declaration.

BleSvcAddincludeSvc (hService)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation
Arguments:
hService byVal hService AS INTEGER
This argument contains a handle that was previously created using the function BleSvcCommit().
Example:

// Example :: BleSvcAddIncludeSvc.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

#define BLE SERVICE SECONDARY 0

#define BLE SERVICE PRIMARY 1

A

dim hBatSvc //composite handle for batteru primary service

dim rc //or we could have reused nHtsSvc

dim metaSuccess

DIM charMet : charMet = BleAttrMetaData(l,1,10,1,metaSuccess)

DIM s$: s$ = "Hello" //initial value of char in Battery Service

DIM hBatChar

rc = BleServiceNew (BLE SERVICE SECONDARY, BleHandleUuidl6 (0x180F), hBatSvc)

rc BleCharNew (3,BleHandleUuidl6 (0x2A1C) , charMet,0,0)

rc = BleCharCommit (hBatSvec, s$,hBatChar)

rc BleServiceCommit (hBatSvc)

DIM hHtsSvc //composite handle for hts primary service

rc BleServiceNew (BLE SERVICE PRIMARY, BleHandleUuidl6 (0x1809), hHtsSvc)

rc = BleServiceCommit (hHtsSvc)

//Have to add includes before any characteristics are committed

PRINT INTEGER.h'BleSvcAddIncludeSvc (hBatSvc)

https://www.lairdconnect.com/ 166 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird“' CONNECTIVITY

User Guide

6.9.11 BleAttrMetadataEx

FUNCTION

A GATT Table is an array of attributes which are grouped into Characteristics which in turn are further grouped into Services.
Each attribute consists of a data value which can be anything from 1 to 512 bytes long according to the specification and
properties such as read and write permissions, authentication and security properties. When Services and Characteristics are
added to a GATT server table, multiple attributes with appropriate data and properties get added.

This function allows a 32 bit integer to be created, which is an opaque object, which defines those properties and is then
submitted along with other information to add the attribute to the GATT table.

When adding a Service attribute (not the whole service, in this present context), the properties are defined in the BT
specification so that it is open for reads without any security requirements but cannot be written and always has the same data
content structure. This implies that a metadata object does NOT need to be created.

However, when adding Characteristics, which consists of a minimum of 2 attributes, one similar in function as the
aforementioned Service attribute and the other the actual data container, then properties for the value attribute must be
specified. Here, ‘properties’ refers to properties for the attribute, not properties for the Characteristic container as a whole.
These also exist and must be specified, but that is done in a different manner as explained later.

For example, the value attribute must be specified for read/write permission and whether it needs security and authentication
to be accessed.

If the Characteristic is capable of notification and indication, the client implicitly must be able to enable or disable that. This is
done through a Characteristic Descriptor which is also another attribute. The attribute will also need to have a metadata
supplied when the Characteristic is created and registered in the GATT table. This attribute, if it exists, is called a Client
Characteristic Configuration Descriptor or CCCD for short. A CCCD always has two bytes of data and currently only two bits
are used as on/off settings for notification and indication.

A Characteristic can also optionally be capable of broadcasting its value data in advertisements. For the GATT client to be
able to control this, there is yet another type of Characteristic Descriptor which also needs a metadata object to be supplied
when the Characteristic is created and registered in the GATT table. This attribute, if it exists, is called a Server Characteristic
Configuration Descriptor or SCCD for short. A SCCD always has two bytes of data and currently only one bit is used as on/off
settings for broadcasts.

Finally if the Characteristic has other Descriptors to qualify its behaviour, a separate API function is also supplied to add that to
the GATT table and when setting up a metadata object will also need to be supplied.

In a nutshell, think of a metadata object as a note to define how an attribute will behave and the GATT table manager will need
that before it is added. Some attributes have those ‘notes’ specified by the BT specification and so the GATT table manager
will not need to be provided with any, but the rest require it.

This function helps write that metadata.

BLEATTRMETADATAEX (nReadRights, nWriteRights, nMaxDatalen, nFlags, resCode)

Returns INTEGER, a 32-bit opaque data object to be used in subsequent calls when adding
Characteristics to a GATT table.

Arguments:

byVal nReadRights AS INTEGER
This specifies the read rights and shall have one of the following values:

0 No access
1 (0]
nReadRights pen - - -
2 Encrypted with No Man-In-The-Middle (MITM) protection
3 Encrypted with Man-In-The-Middle (MITM) protection
4 Signed with No Man-In-The-Middle (MITM) protection (not available)
5 Signed with Man-In-The-Middle (MITM) protection (not available)
https://www.lairdconnect.com/ 167 Americas: +1-800-492-2320

© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

byVal nWriteRights AS INTEGER
This specifies the write rights and shall have one of the following values:

0 No access

Open

Encrypted with No Man-In-The-Middle (MITM) protection

Encrypted with Man-In-The-Middle (MITM) protection

Signed with No Man-In-The-Middle (MITM) protection (not available)
5 Signed with Man-In-The-Middle (MITM) protection (not available)

byVal nMaxDataLen AS INTEGER

This specifies the maximum data length of the VALUE attribute.

Range is from 1 to 512 bytes according to the BT specification; the stack implemented in the
module may limit it for early versions.
byVal nFlags AS INTEGER

nWriteRights

AW IN |

nMaxDatalen

This is a bit mask where the bits are defined as follows:

= Bit 0: Set this to 1 only if you want the attribute to automatically shorten it’s length
according to the number of bytes written by the client. For example, if the initial length is 2
and the client writes only 1 byte, then if this is 0, then only the first byte gets updated and
the rest remain unchanged. If this parameter is set to 1, then when a single byte is written
the attribute will shorten it's length to accommodate. If the client tries to write more bytes
than the initial maximum length, then the client will get an error response.

= Bit 1: Set this to 1 to ensure that the memory for the attribute is allocated from User space
(and hence less memory available for smartBASIC) so that a larger gatt table can be

nFlags created. This bit is ignored for all attributes other than for characteristic value.

= Bit 2: Set this to 1 to require authorisation for reads. When an attempt to read is made by
the client then one of the events EVAUTHVAL, EVAUTHCCCD, EVAUTHSCCD or
EVAUTHDESC is thrown to the app and in the handler for that event, either
BleAuthorizeChar() or BleAuthorizeDesc() is called with appropriate parameters to grant or
deny access.

= Bit 3: Set this to 1 to require authorisation for writes. When an attempt to write is made by
the client then one of the events EVAUTHVAL, EVAUTHCCCD, EVAUTHSCCD or
EVAUTHDESC is thrown to the app and in the handler for that event, either
BleAuthorizeChar() or BleAuthorizeDesc() is called with appropriate parameters to grant or
deny access.

byRef resCode AS INTEGER

resCode | This variable is updated with a result code which is 0 if a metadata object was successfully
returned by this call. Any other value implies a metadata object did not get created.

Example:

// Example :: BleAttrMetadata.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM mdVal //metadata for value attribute of Characteristic
DIM mdCccd //metadata for CCCD attribute of Characteristic
DIM mdSccd //metadata for SCCD attribute of Characteristic

DIM rc

https://www.lairdconnect.com/ 168 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird : CONNECTIVITY

User Guide

[/ ++++
// Create the metadata for the value attribute in the characteristic
// and Heart Rate attribute has variable length

[/ ++++

//There is always a Value attribute in a characteristic
mdVal=BleAttrMetadatakEx (17,0,20,0,rc)

//There is a CCCD and SCCD in this characteristic
mdCccd=BleAttrMetadatakx (1,2,2,0,rc)

mdSccd=BleAttrMetadatakEx (0,0,2,0, rc)

//Create the Characteristic object

IF BleCharNew (3,BleHandleUuidl6 (0x2A1C), mdVal,mdCccd, mdSccd)==0 THEN
PRINT "\nSuccess"

ELSE
PRINT "\nFailed"

ENDIF

Expected Output:

Success

https://www.lairdconnect.com/ 169 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.9.12 BleCharNew

FUNCTION

When a characteristic is to be added to a GATT table, multiple attribute objects must be precreated. After they are created
successfully, they are committed to the GATT table in a single atomic transaction.

This function is the first function that is called to start the process of creating those multiple attribute objects. It is used to select
the characteristic properties (which are distinct and different from attribute properties), the UUID to be allocated for it and then
up to three metadata objects for the value attribute, and CCCD/SCCD Descriptors respectively.

BLECHARNEW (nCharProps, nUuidHandle, mdVal, mdCccd, mdSccd)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal nCharProps AS INTEGER
This variable contains a bit mask to specify the following high level properties for the
characteristic that is added to the GATT table:

Broadcast capable (SCCD descriptor must be present)

Can be read by the client

nCharProps Can be written by the client without a response

Can be written

Can be notifiable (CCCD descriptor must be present)

Can be indicatable (CCCD descriptor must be present)

o ||~ | W | N | |O

Can accept signed writes

7 Reliable writes

byVal nUuidHandle AS INTEGER

This specifies the UUID that is allocated to the characteristic, either 16 or 128 bits. This variable
is a handle, pre-created using one of the following functions:

BleHandleUuid16(), BleHandleUuid128(), BleHandleUuidSibling().

byVal mdVal AS INTEGER

mdVal | This is the mandatory metadata used to define the properties of the Value attribute that is
created in the characteristic and is pre-created with help from function BleAttrMetadata().

byVal mdCccd AS INTEGER

This is an optional metadata that is used to define the properties of the CCCD descriptor
attribute that is created in the characteristic and is pre-created using the help of the function

nUuidHandle

mdCecd BleAttrMetadata() or set to 0 if CCCD is not to be created.
If nCharProps specifies that the characteristic is notifiable or indicatable and this value contains
0, this function will treat the descriptor so that read and write access is open.
byVal mdSccd AS INTEGER
This is an optional metadata that is used to define the properties of the SCCD descriptor

mdSced attribute that is created in the.characte_‘ristic and is pre-created using the help of the function
BleAttrMetadata() or set to O if SCCD is not to be created.
If nCharProps specifies that the characteristic is broadcastable and this value contains 0, this
function will treat the descriptor so that read and write access is open.

https://www.lairdconnect.com/ 170 Americas: +1-800-492-2320

© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

Example:

// Example :: BleCharNew.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc

DIM charUuid : charUuid = BleHandleUuidl6 (2) //Characteristic's UUID

DIM mdvVal : mdvVal = BleAttrMetadataEx(1,0,20,0,rc) //Metadata for value attribute
DIM mdCccd : mdCccd = BleAttrMetadataEx(1l,1,2,0,rc) //Metadata for CCCD attribute of
Characteristic

!/

// Create a new char:

// —--—- Indicatable, not Broadcastable (so mdCccd is included, but not mdSccd)

// —--- Can be read, not written (shown in mdVal as well)

//

IF BleCharNew (0x22, charUuid, mdvVal,mdCccd, 0)==0 THEN
PRINT "\nNew Characteristic created"

ELSE
PRINT "\nFailed"

ENDIF

Expected Output:

|New Characteristic created

6.9.13 BleCharDescUserDesc

FUNCTION

This function adds an optional User Description Descriptor to a Characteristic and can only be called after BleCharNew() starts
the process of describing a new characteristic.

The BT 4.0 specification describes the User Description Descriptor as “.. a UTF-8 string of variable size that is a textual
description of the characteristic value.” It further stipulates that this attribute is optionally writable and so a metadata argument
exists to configure it as such. The metadata automatically updates the Writable Auxilliaries properties flag for the
characteristic. This is why that flag bit is NOT specified for the nCharProps argument to the BleCharNew() function.

BLECHARDESCUSERDESC (userDescS, mdUser)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byRef userDesc$ AS STRING

userDesc$ | The user description string with which to initiliase the descriptor. If the length of the string exceeds the
maximum length of an attribute then this function aborts with an error result code.

byVal mdUser AS INTEGER

This is a mandatory metadata that defines the properties of the User Description Descriptor attribute
mdUser | created in the characteristic and pre-created using the help of BleAttrMetadata(). If the write rights are set
to 1 or greater, the attribute is marked as writable and the client is able to provide a user description that
overwrites the one provided in this call.

https://www.lairdconnect.com/ 171 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

Example:

// Example :: BleCharDescUserDesc.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc, metaSuccess,usrDesc$: usrDesc$="A description"

DIM charUuid : charUuid = BleHandleUuidlo6 (1)

DIM charMet : charMet = BleAttrMetaData(l,1,20,0,metaSuccess)
DIM mdUsrDsc : mdUsrDsc = BleAttrMetaData(l,1,20,0,metaSuccess)

DIM mdSccd : mdScced = BleAttrMetadata(l,1,2,0,rc) //CCCD metadata for char

//initialise char, write/read enabled, accept signed writes, indicatable
rc=BleCharNew (0x4B, charUuid, charMet, 0, mdSccd)

rc=BleCharDescUserDesc (usrDesc$,mdUsrDsc)

IF rc==0 THEN

PRINT "\nChar created and User Description '";usrDesc$;"' added"
ELSE

PRINT "\nFailed"
ENDIF

Expected Output:

|Char created and User Description 'A description' added

6.9.14 BleCharDescPrstnFrmt

FUNCTION

This function adds an optional Presentation Format Descriptor to a characteristic and can only be called after BleCharNew()
has started the process of describing a new characteristic. It adds the descriptor to the GATT table with open read permission
and no write access, which means a metadata parameter is not required.

The BT 4.0 specification states that one or more presentation format descriptors can occur in a characteristic and that if more
than one, then an Aggregate Format description is also included.

The book Bluetooth Low Energy: The Developer's Handbook by Robin Heydon, says the following on the subject of the
Presentation Format Descriptor:

“One of the goals for the Generic Attribute Profile was to enable generic clients. A generic client is defined as a
device that can read the values of a characteristic and display them to the user without understanding what they
mean.

The most important aspect that denotes if a characteristic can be used by a generic client is the Characteristic
Presentation Format descriptor. If this exists, it's possible for the generic client to display its value, and it is safe to
read this value.”

https://www.lairdconnect.com/ 172 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide

La i rdT J» CONNECTIVITY

BLECHARDESCPRSTNFRMT (nFormat, nExponent, nUnit, nNameSpace, nNSdesc)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
byVal nFormat AS INTEGER
Valid range 0 to 255.
The format specifies how the data in the Value attribute is structured. A list of valid values for this
argument is found at http://developer.Bluetooth.org/GATT/Pages/FormatTypes.aspx and the
enumeration is described in the BT 4.0 spec, section 3.3.3.5.2.
The following is the enumeration list at the time of writing:
0x00 RFU 0x01 boolean
0x02 2bit 0x03 nibble
0x04 unit8 0x05 uint12
0x06 uint16 0x07 uint24
nFormat 0x08 uint32 0x09 uint48
O0x0A uint64 0x0B uint128
0x0C sint8 0x0D sint12
O0xO0E sint16 OXOF sint24
0x10 sint32 0x11 sint48
0x12 sint64 0x13 sint128
0x14 float32 0x15 float64
0x16 SFLOAT 0x17 FLOAT
0x18 duint16 0x19 utf8s
Ox1A utf16s 0x1B struct
0x1C-OxFF RFU
byVal nExponent AS INTEGER
This value is used with integer data types given by the enumeration in nFormat to further qualify the
nExponent | value so that the actual value is:
actual value = Characteristic Value * 10 to the power of nExponent.
Valid range -128 to 127
byVal nUnit AS INTEGER
This value is a 16-bit UUID used as an enumeration to specify the units which are listed in the Assigned
nUnit | Numbers document published by the Bluetooth SIG, found at:
http://developer.Bluetooth.org/GATT/units/Pages/default.aspx
Valid range 0 to 65535.
byVal nNameSpace AS INTEGER
The value identifies the organization, defined in the Assigned Numbers document published by the
nNameSpace | Bluetooth SIG, found at:
https://developer.Bluetooth.org/GATT/Pages/GATTNamespaceDescriptors.aspx
Valid range 0 to 255.
byVal nNSdesc AS INTEGER
nNSdesc | This value is a description of the organisation specified by nNameSpace.
Valid range 0 to 65535.
Example:
// Example :: BleCharDescPrstnFrmt.sb

DIM rc,

metaSuccess, usrDesc$

DIM charUuid :

// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

: usrDesc$="A description"

charUuid = BleHandleUuidl6 (1)

https://www.lairdconnect.com/ 173

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

© Copyright 2020 Laird Connectivity, Inc.
All Rights Reserved

http://developer.bluetooth.org/gatt/Pages/FormatTypes.aspx
http://developer.bluetooth.org/gatt/units/Pages/default.aspx
https://developer.bluetooth.org/gatt/Pages/GattNamespaceDescriptors.aspx

BL653 smartBASIC Extensions Laird ‘

) CONNECTIVITY
User Guide _)

DIM charMet : charMet = BleAttrMetaData(l,1,20,0,metaSuccess)
DIM mdUsrDsc : mdUsrDsc = BleAttrMetaData(l,1,20,0,metaSuccess)

DIM mdSccd : mdSccd = BleAttrMetadata(l,1,2,0,rc) //CCCD metadata for char

//initialise char, write/read enabled, accept signed writes, indicatable
rc=BleCharNew (0x4B, charUuid, charMet, 0, mdSccd)

rc=BleCharDescUserDesc (usrDesc$, mdUsrDsc)

IF rc==0 THEN

PRINT "\nChar created and User Description '";usrDesc$;"' added"
ELSE

PRINT "\nFailed"

ENDIF

1) =~ =~ =
// other optional descriptors

/]~~~

// 16 bit signed integer = 0x0E

// exponent = 2

// unit = 0x271A (amount concentration (mole per cubic metre))

// namespace = 0x01 == Bluetooth SIG

// description = 0x0000 == unknown

IF BleCharDescPrstnFrmt (0x0E, 2, 0x271A,0x01,0x0000)==0 THEN
PRINT "\nPresentation Format Descriptor added"

ELSE
PRINT "\nPresentation Format Descriptor not added"

ENDIF

Expected Output:

Char created and User Description 'A description' added
Presentation Format Descriptor added

https://www.lairdconnect.com/ 174 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.9.15 BleCharDescAdd

FUNCTION

This function is used to add any Characteristic Descriptor as long as its UUID is not in the range 0x2900 to 0x2904 inclusive,
as they are treated specially using dedicated API functions. For example, 0x2904 is the Presentation Format Descriptor and it
is catered for by the API function BleCharDescPrstnFrmt().

Since this function allows existing /future defined Descriptors to be added that may or may not have write access or require
security requirements, a metadata object must be supplied allowing that to be configured.

BLECHARDESCADD (nUuid16, attr$, mdDesc)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal nUuid16 AS INTEGER
This is a value in the range 0x2905 to 0x2999
Note: This is the actual UUID value, NOT the handle.

nUuid16
The highest value at the time of writing is 0x290E, defined for the Report Reference Descriptor.
See http://developer.Bluetooth.org/GATT/descriptors/Pages/DescriptorsHomePage.aspx for a list of
Descriptors defined and adopted by the Bluetooth SIG.
attrs byRef attr$ AS STRING

This is the data that is saved in the Descriptor’s attribute

byVal n AS INTEGER

This is mandatory metadata that is used to define the properties of the Descriptor attribute that is
mdDesc | created in the Characteristic and was pre-created using the help of the function BleAttrMetadata(). If the
write rights are set to 1 or greater, then the attribute is marked as writable and the client is able to
modify the attribute value.

Example:

// Example :: BleCharDescAdd.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc, metaSuccess,usrDesc$: usrDesc$="A description"

DIM charUuid : charUuid = BleHandleUuidl6 (1)

DIM charMet : charMet = BleAttrMetaData(l,1,20,0,metaSuccess)
DIM mdUsrDsc : mdUsrDsc = charMet

DIM mdSccd : mdSccd = charMet

//initialise char, write/read enabled, accept signed writes, indicatable
rc=BleCharNew (0x4B, charUuid, charMet, 0, mdSccd)
rc=BleCharDescUserDesc (usrDesc$,mdUsrDsc)

rc=BleCharDescPrstnFrmt (0x0E, 2,0x271A,0x01, 0x0000)

7l =~ =~ =
// other descriptors

/]~~~

https://www.lairdconnect.com/ 175 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

http://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorsHomePage.aspx

BL653 smartBASIC Extensions Laird“' CONNECTIVITY

User Guide

[/ ++++

//Add the other Descriptor 0x29XX -- first one

[/ ++++

DIM mdChrDsc : mdChrDsc = BleAttrMetadata(1l,0,20,0,metaSuccess)
DIM attr$: attr$="some valuel"

rc=BleCharDescAdd (0x2905,attr$, mdChrDsc)

[/ ++++

//Add the other Descriptor 0x29XX -- second one
[/ ++++

attr$="some valuel"

rc=rc+BleCharDescAdd (0x2906, attr$, mdChrDsc)

[/ ++++

//Add the other Descriptor 0x29XX -- last one
[/ ++++

attr$="some value3"

rc=rc+BleCharDescAdd (0x2907, attr$, mdChrDsc)

IF rc==0 THEN

PRINT "\nOther descriptors added successfully"
ELSE

PRINT "\nFailed"

ENDIF

Expected Output:

|Other descriptors added successfully

6.9.16 BleCharCommit

FUNCTION

This function commits a characteristic which was prepared by calling BleCharNew() and optionally
BleCharDescUserDesc(),BleCharDescPrstnFrmt() or BleCharDescAdd().

It is an instruction to the GATT table manager that all relevant attributes that make up the characteristic should appear in the
GATT table in a single atomic transaction. If it successfully created, a single composite characteristic handle is returned which
should not be confused with GATT table attribute handles. If the Characteristic was not accepted then this function returns a
non-zero result code which conveys the reason and the handle argument that is returned has a special invalid handle of 0.

The characteristic handle that is returned references an internal opaque object that is a linked list of all the attribute handles in
the characteristic which by definition implies that there is a minimum of 1 (for the characteristic value attribute) and more as
appropriate. For example, if the characteristic’s property specified is notifiable then a single CCCD attribute also exists.

Note: In the GATT table, when a characteristic is registered, there are actually a minimum of two attribute handles, one
for the Characteristic Declaration and the other for the Value. However there is no need for the smart BASIC apps

https://www.lairdconnect.com/ 176 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

developer to access it, so it is not exposed. Access is not required because the characteristic was created by the
application developer and so shall already know its content — which never changes once created.

BLECHARCOMMIT (hService, attr$, charHandle)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal hService AS INTEGER
hService | This is the handle of the service to which the characteristic belongs, which in turn was created using the
function BleSvcCommit().

byRef attr$ AS STRING
attr$ | This string contains the initial value of the value attribute in the characteristic. The content of this string is
copied into the GATT table and the variable can be reused after this function returns.

byRef charHandle AS INTEGER

The composite handle for the newly created characteristic is returned in this argument. It is zero if the
function fails with a non-zero result code. This handle is then used as an argument in subsequent
function calls to perform read/write actions, so it is must be placed in a global smartBASIC variable.
charHandle | When a significant event occurs as a result of action by a remote client, an event message is sent to the
application which can be serviced using a handler. That message contains a handle field corresponding
to this composite characteristic handle. Standard procedure is to select on that value to determine for
which characteristic the message is intended.

See event messages: EVCHARHVC, EVCHARVAL, EVCHARCCCD, EVCHARSCCD, EVCHARDESC.

Example:

// Example :: BleCharCommit.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

#DEFINE BLE SERVICE SECONDARY 0
#DEFINE BLE SERVICE PRIMARY 1
DIM rc

DIM attr$,usrDesc$: usrDescS$="A description"

DIM hHtsSvc //composite handle for hts primary service
DIM mdCharVal : mdCharVal = BleAttrMetaData(l,1,20,0,rc)
DIM mdCccd : mdCccd = BleAttrMetadata(l,1,2,0,rc)

DIM mdUsrDsc : mdUsrDsc = BleAttrMetaData(l,1,20,0,zrc)

DIM hHtsMeas //composite handle for htsMeas characteristic

[[m=mmmee e e e e s e e S e e e e S S e e S S e e S e S S S S S S C S S S oo a o as o=
//Create a Health Thermometer PRIMARY service attribute which has a uuid of 0x1809
A

rc=BleServiceNew (BLE SERVICE PRIMARY, BleHandleUuidl6 (0x1809), hHtsSvc)

https://www.lairdconnect.com/ 177 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

//Create the Measurement Characteristic object, add user description descriptor

rc=BleCharNew (0x2A,BleHandleUuidl6 (0x2A1C) ,mdCharVal, mdCccd, 0)

rc=BleCharDescUserDesc (usrDesc$, mdUsrDsc)

attr$="hello\0Oworl\64"

IF BleCharCommit (hHtsSvc,attr$, hHtsMeas)==0 THEN
PRINT "\nCharacteristic Commited"

ELSE
PRINT "\nFailed"

ENDIF

rc=BleServiceCommit (hHtsSvc)

//the characteristic will now be visible in the GATT table

//and is refrenced by ‘hHtsMeas’for subsequent calls

Expected Output:

| Characteristic Commited

6.9.17 BleCharValueRead
FUNCTION

This function reads the current content of a characteristic identified by a composite handle that was previously returned by the
function BleCharCommit().

In most cases a read will be performed when a GATT client writes to a characteristic value attribute. The write event is
presented asynchronously to the smart BASIC application in the form of EVCHARVAL event. This function will most often be
accessed from the handler that services that event.

BLECHARVALUEREAD (charHandle, attr$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:
byVal charHandle AS INTEGER

charHandle | Thjs is the handle to the characteristic whose value must be read which was returned when
BleCharCommit() was called.
attrs byRef attr$ AS STRING
This string variable contains the new value from the characteristic.
https://www.lairdconnect.com/ 178 Americas: +1-800-492-2320

© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

Example:

// Example :: BleCharValueRead.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM hMyChar,rc, conHndl

//
// Initialise and instantiate service, characteristic,
//
FUNCTION OnStartup ()

DIM rc, hSvc, scRpt$, adRpt$, addr$, attr$: attr$S="Hi"

//commit service

rc=BleServiceNew (1, BleHandleUuidl6 (0x18EE), hSvc)

//initialise char, write/read enabled, accept signed writes
rc=BleCharNew (0x0A,BleHandleUuidlo6 (1) ,BleAttrMetabData(1,1,20,0,rc),0,0)
//commit char initialised above, with initial value "hi" to service 'hSvc'
rc=BleCharCommit (hSvc,attr$, hMyChar)

//commit changes to service

rc=BleServiceCommit (hSvc)

//initialise scan report

rc=BleScanRptInit (scRpt$)

//Add 1 service handle to scan report
rc=BleAdvRptAddUuidl6 (scRpt$, 0x18EE,-1,-1,-1,-1,-1)

//commit reports to GATT table - adRpt$ is empty
rc=BleAdvRptsCommit (adRpt$, scRpt$S)

rc=BleAdvertStart (0,addr$,150,0,0)

ENDFUNC rc

//
// New char value handler
//
FUNCTION HndlrChar (BYVAL chrHndl, BYVAL offset, BYVAL len)

dim s$
IF chrHndl == hMyChar THEN

PRINT "\n";len;" byte(s) have been written to char value attribute from offset
";offset

rc=BleCharValueRead (hMyChar, s$)

https://www.lairdconnect.com/ 179 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide La"'d 2» CONNECTIVITY

PRINT "\nNew Char Value: ";s$
ENDIF
rc=BleAdvertStop ()

rc=BleDisconnect (conHndl)

ENDFUNC 0

//

// Get the connnection handle
//

FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtn)
conHndl=nCtn
ENDFUNC 1

IF OnStartup ()==0 THEN
DIM at$: rc = BleCharValueRead (hMyChar, at$)

PRINT "\nCharacteristic value attribute: ";at$;"\nConnect to BL653 and send a new
value\n"

ELSE
PRINT "\nFailure OnStartup"
ENDIF

ONEVENT EVCHARVAL CALL HndlrChar
ONEVENT EVBLEMSG CALL HndlrBleMsg

WAITEVENT

PRINT "\nExiting..."

Expected Output:

Characteristic value attribute: Hi
Connect to BL653 and send a new value

New characteristic value: Laird
Exiting...

https://www.lairdconnect.com/ 180 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

6.9.18 BleCharValueWrite
FUNCTION

This function writes new data into the VALUE attribute of a Characteristic, which is in turn identified by a composite handle
returned by the function BleCharCommit().

BLECHARVALUEWRITE (charHandle, attr$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal charHandle AS INTEGER
charHandle | This is the handle to the characteristic whose value must be updated which was returned when
BleCharCommit() was called.

byRef attr$ AS STRING
String variable, contains new value to write to the characteristic.

attr$

Example:

// Example :: BleCharValueWrite.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM hMyChar, rc

//
// Initialise and instantiate service, characteristic,
//
FUNCTION OnStartup ()

DIM rc, hSvc, attr$: attrS$="Hi"

//commit service
rc = BleServiceNew(l, BleHandleUuidl6 (0x18EE), hSvc)
//initialise char, write/read enabled, accept signed writes
rc=BleCharNew (0x4A,BleHandleUuidl6 (1) ,BleAttrMetabata(1,1,20,0,rc),0,0)
//commit char initialised above, with initial value "hi" to service 'hSvc'
rc=BleCharCommit (hSvc,attr$, hMyChar)
//commit changes to service
rc = BleServiceCommit (hSvc)
ENDFUNC rc

//
// Uart Rx handler - write input to characteristic
//
FUNCTION HndlrUartRx ()

TimerStart (0,10,0)
ENDFUNC 1

//
// Timer0 timeout handler
//
FUNCTION HndlrTmrO ()

DIM t$: rc=UartRead(t$)

rc = BleCharValueWrite (hMyChar, t$)

IF rc==0 THEN

PRINT "\nNew characteristic value: ";t$
ELSE
PRINT "\nFailed to write new characteristic value ";integer.h'rc;"\n"
ENDIF
ENDFUNC O
IF OnStartup ()==0 THEN
https://www.lairdconnect.com/ 181 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940

All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

DIM at$: rc = BleCharValueRead (hMyChar,at$)
PRINT "\nCharacteristic value attribute: ";at$;"\nType a new value\n"

ELSE

PRINT "\nFailure OnStartup"
ENDIF
ONEVENT EVUARTRX CALL HndlrUartRx
ONEVENT EVTMRO CALL HndlrTmrO
WAITEVENT

PRINT "\nExiting..."

Expected Output:

Characteristic value attribute: Hi
Send a new value
Laird

New characteristic value: Laird
Exiting...

6.9.19 BleCharValueWriteEx

FUNCTION

This function writes new data into the VALUE attribute of a Characteristic, which is in turn identified by a composite handle
returned by the function BleCharCommit(). It differs from the original BleCharValueWrite in that the offset at which to write the
data can now be specified.

BLECHARVALUEWRITEEX (charHandle, offset, attr$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal charHandle AS INTEGER

charHandle | This is the handle to the characteristic whose value must be updated which was returned when
BleCharCommit() was called.

byVal charHandle AS INTEGER

This is the offset at which to write the characteristic value.

byRef attr$ AS STRING
String variable, contains new value to write to the characteristic.

See example for EVAUTHVALEX

offset

attr$

https://www.lairdconnect.com/ 182 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

6.9.20 BleCharValueNotify
FUNCTION

If there is BLE connection, this function writes new data into the VALUE attribute of a characteristic so that it can be sent as a
notification to the GATT client. The characteristic is identified by a composite handle that is returned by the function
BleCharCommit().

A notification does not result in an acknowledgement from the client.

BLECHARVALUENOTIFY (charHandle, attrS)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal charHandle AS INTEGER

charHandle | This is the handle to the characteristic whose value must be updated which is returned when
BleCharCommit() is called.

byRef attr$ AS STRING

attr$ | String variable containing new value to write to the characteristic and then send as a natification to the
client. If there is no connection, this function fails with an appropriate result code.

Example:

// Example :: BleCharValueNotify.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM hMyChar,rc,at$, conHndl
//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup ()

DIM rc, hSvc, at$, attr$, adRpt$, addr$, scRpt$

attr$="Hi"

DIM mdCccd : mdCccd = BleAttrMetadata(l,1,2,0,rc) //CCCD metadata for char

//Commit svc with handle 'hSvcUuid'
rc=BleServiceNew (1, BleHandleUuidl6 (0x18EE), hSvc)
//initialise char, write/read enabled, accept signed writes, notifiable
rc=BleCharNew (0x12,BleHandleUuidl6 (1) ,BleAttrMetabData(1,0,20,0,rc),mdCccd, 0)
//commit char initialised above, with initial value "hi" to service 'hMyChar'
rc=BleCharCommit (hSvc,attr$, hMyChar)
//commit changes to service
rc=BleServiceCommit (hSvc)
rc=BleScanRptInit (scRpt$)
//Add 1 service handle to scan report
rc=BleAdvRptAddUuidl6 (scRpt$, 0x18EE,-1,-1,-1,-1,-1)
//commit reports to GATT table - adRpt$ is empty
rc=BleAdvRptsCommit (adRpt$, scRptS)
rc=BleAdvertStart (0, addr$,50,0,0)

ENDFUNC rc

//

// Close connections so that we can run another app without problems

//

SUB CloseConnections ()
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()

ENDSUB

//
// Ble event handler

https://www.lairdconnect.com/ 183 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
conHndl=nCtx
IF nMsgID==1 THEN
PRINT "\n\n--- Disconnected from client"
EXITFUNC O
ELSEIF nMsgID==0 THEN
PRINT "\n--- Connected to client"
ENDIF
ENDFUNC 1
//
// CCCD descriptor written handler
//
FUNCTION HndlrCharCccd (BYVAL charHandle, BYVAL nVal) AS INTEGER
DIM value$
IF charHandle==hMyChar THEN
PRINT "\nCCCD Val: ";nVal
IF nVal THEN
PRINT " : Notifications have been enabled by client"
value$="hello"
IF BleCharValueNotify (hMyChar,value$) !=0 THEN
PRINT "\nFailed to notify new value :";INTEGER.H'rc
ELSE
PRINT "\nSuccessful notification of new value"
EXITFUNC O
ENDIF
ELSE
PRINT " : Notifications have been disabled by client"
ENDIF
ELSE
PRINT "\nThis is for some other characteristic"
ENDIF
ENDFUNC 1
ONEVENT EVBLEMSG CALL HndlrBleMsg
ONEVENT EVCHARCCCD CALL HndlrCharCccd
IF OnStartup ()==0 THEN
rc = BleCharValueRead (hMyChar, at$)
PRINT "\nCharacteristic Value: ";at$
PRINT "\nYou can connect and write to the CCCD characteristic."
PRINT "\nThe BL653 will then notify your device of a new characteristic value\n"
ELSE
PRINT "\nFailure OnStartup"
ENDIF
WAITEVENT
CloseConnections ()
PRINT "\nExiting..."

Expected Output:

Characteristic Value: Hi
You can connect and write to the CCCD characteristic.
The BL653 will then notify your device of a new characteristic value

--- Connected to client

CCCD Val: 0 : Notifications have been disabled by client
CCCD Val: 1 : Notifications have been enabled by client
Successful notification of new value

Exiting...

https://www.lairdconnect.com/ 184 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

6.9.21 BleCharValuelndicate
FUNCTION

If there is BLE connection, this function is used to write new data into the VALUE attribute of a characteristic so that it can be
sent as an indication to the GATT client. The characteristic is identified by a composite handle returned by the function
BleCharCommit().

An indication results in an acknowledgement from the client and that is presented to the smartBASIC application as the
EVCHARHVC event.

BLECHARVALUEINDICATE (charHandle, attr$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal charHandle AS INTEGER

charHandle | This is the handle to the characteristic whose value must be updated which is returned when
BleCharCommit() was called.

byRef attr$ AS STRING

attr$ | String variable containing new value to write to the characteristic and then to send as a notification to the
client. If there is no connection, this function fails with an appropriate result code.

Example:

// Example :: BleCharValueIndicate.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples
DIM hMyChar, rc,at$, conHndl

//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup ()

DIM rc, hSvc, at$, attr$, adRpt$, addr$, scRpt$

attrS="Hi"

DIM mdCccd : mdCccd = BleAttrMetadata(l,1,2,0,rc) //CCCD metadata for char

//Commit svc with handle 'hSvcUuid'

rc=BleServiceNew (1, BleHandleUuidl6 (0x18EE), hSvc)

//initialise char, write/read enabled, accept signed writes, notifiable
rc=BleCharNew (0x22,BleHandleUuidl6 (1) ,BleAttrMetabData(1,0,20,0,rc),mdCccd, 0)
//commit char initialised above, with initial value "hi" to service 'hMyChar'
rc=BleCharCommit (hSvc,attr$, hMyChar)

//commit changes to service

rc=BleServiceCommit (hSvc)

rc=BleScanRptInit (scRpt$)

//Add 1 service handle to scan report
rc=BleAdvRptAddUuidl6 (scRpt$, 0x18EE,-1,-1,-1,-1,-1)

//commit reports to GATT table - adRpt$ is empty
rc=BleAdvRptsCommit (adRpt$, scRptS)

rc=BleAdvertStart (0, addr$,50,0,0)

ENDFUNC rc

//

// Ble event handler
//

FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
conHndl=nCtx
IF nMsgID==1 THEN
PRINT "\n\n--- Disconnected from client"
EXITFUNC O
ELSEIF nMsgID==0 THEN

https://www.lairdconnect.com/ 185 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

PRINT "\n--- Connected to client"
ENDIF
ENDFUNC 1

//
// CCCD descriptor written handler
//
FUNCTION HndlrCharCccd (BYVAL charHandle, BYVAL nVal)
DIM value$
IF charHandle==hMyChar THEN
PRINT "\nCCCD Val: ";nVal
IF nvVal THEN
PRINT " : Indications have been enabled by client"
value$="hello"
rc=BleCharValueIndicate (hMyChar,value$)
IF rc!=0 THEN
PRINT "\nFailed to indicate new value :";INTEGER.H'rc
ELSE
PRINT "\nSuccessful indication of new value"
EXITFUNC 1
ENDIF
ELSE
PRINT " : Indications have been disabled by client"
ENDIF
ELSE
PRINT "\nThis is for some other characteristic"
ENDIF
ENDFUNC 1

//
// Indication Acknowledgement Handler
//
FUNCTION HndlrChrHvc (BYVAL charHandle)
IF charHandle == hMyChar THEN
PRINT "\n\nGot confirmation of recent indication"
ELSE
PRINT "\n\nGot confirmation of some other indication: ";charHandle
ENDIF
ENDFUNC 0

ONEVENT EVBLEMSG CALL HndlrBleMsg
ONEVENT EVCHARCCCD CALL HndlrCharCccd
ONEVENT EVCHARHVC CALL HndlrChrHvc

IF OnStartup ()==0 THEN
rc = BleCharValueRead (hMyChar, at$)
PRINT "\nCharacteristic Value: ";at$
PRINT "\nYou can connect and write to the CCCD characteristic."
PRINT "\nThe BL653 will then indicate a new characteristic value\n"
ELSE
PRINT "\nFailure OnStartup"
ENDIF

WAITEVENT
rc=BleDisconnect (conHndl)

rc=BleAdvertStop ()
PRINT "\nExiting..."

https://www.lairdconnect.com/ 186 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

Expected Output:

Characteristic Value: Hi
You can connect and write to the CCCD characteristic.
The BL653 will then indicate a new characteristic value

--- Connected to client

CCCD Val: 0 : Indications have been disabled by client
CCCD Val: 2 : Indications have been enabled by client
Successful indication of new value

Got confirmation of recent indication
Exiting...

6.9.22 BleCharDescRead

FUNCTION

This function reads the current content of a writable Characteristic Descriptor identified by the two parameters supplied in the
EVCHARDESC event message after a GATT client writes to it.

In most cases a local read is performed when a GATT client writes to a characteristic descriptor attribute. The write event is
presented asynchronously to the smartBASIC application in the form of an EVCHARDESC event and so this function is most
often accessed from the handler that services that event.

BLECHARDESCREAD (charHandle, nDescHandle, nOffset, nLength, nDescUuidHandle, attr$)

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

Arguments:

byVal charHandle AS INTEGER
charHandle | This is the handle to the characteristic whose descriptor must be read which is returned when
BleCharCommit() is called and is been supplied in the EVCHARDESC event message.

byVal nDescHandle AS INTEGER
nDescHandle | This is an index into an opaque array of descriptor handles inside the charHandle and is supplied
as the second parameter in the EVCHARDESC event message.

byVal nOffset AS INTEGER
nOffset | This is the offset into the descriptor attribute from which the data shoud be read and copied into
attr$.

byVal nLength AS INTEGER
nLength | This is the number of bytes to read from the descriptor attribute from offset nOffset and copied into
attrs.

byRef nDescUuidHandle AS INTEGER
On exit, this is updated with the uuid handle of the descriptor that got updated.

byRef attr$ AS STRING
On exit, this string variable contains the new value from the characteristic descriptor.

nDescUuidHandle

attr$

Example:

// Example :: BleCharDescRead.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples
DIM rc,conHndl, hMyChar

SUB OnStartup ()
DIM hSvc,attr$, scRpt$, adRpt$,addrs$

https://www.lairdconnect.com/ 187 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

rc = BleServiceNew (1, BleHandleUuidl6 (0x18FF), hSvc)
//Add one or more characteristics
rc = BleCharNew (0x0a,BleHandleUuidl6 (0x2AFF),BleAttrMetadata(1,1,20,1,rc),0,0)

//Add a user description
DIM s$: sS$="You can change this"
rc=BleCharDescUserDesc (s$,BleAttrMetadata(l,1,20,0,rc))

attr$="\00" //no initial alert
rc = BleCharCommit (hSvc,attr$, hMyChar)
//Commit the service
rc = BleServiceCommit (hSvc)
rc=BleScanRptInit (scRpt$)
//Add 1 char handle to scan report
rc=BleAdvRptAddUuidl6 (scRpt$, 0x2AFF,-1,-1,-1,-1,-1)
//commit reports to GATT table - adRpt$ is empty
rc=BleAdvRptsCommit (adRpt$, scRpt$)
rc=BleAdvertStart (0,addr$,200,0,0)

ENDSUB

//

// Close connections so that we can run another app without problems

//

SUB CloseConnections ()
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()

ENDSUB

//

// Ble event handler - Just to get the connection handle

//

FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
conHndl=nCtx

ENDFUNC 1

//

// Handler to service writes to descriptors by a GATT client

//

FUNCTION HandlerCharDesc (BYVAL hChar AS INTEGER, BYVAL hDesc AS INTEGER)
DIM instnc,nUuid,a$, offset,duid

IF hChar == hMyChar THEN
rc = BleCharDescRead (hChar,hDesc,0,20,duid, a$)
IF rc==0 THEN
PRINT "\nRead 20 bytes from index ";offset;" in new char value."

PRINT "\n ::New Descriptor Data: ";StrHexize$ (a$):;
PRINT "\n ::Length=";StrLen (a$)
PRINT "\n ::Descriptor UUID ";integer.h' duid
EXITFUNC O
ELSE
PRINT "\nCould not access the uuid"
ENDIF
ELSE
PRINT "\nThis is for some other characteristic"
ENDIF
ENDFUNC 1

//install a handler for writes to characteristic values
ONEVENT EVCHARDESC CALL HandlerCharDesc
ONEVENT EVBLEMSG CALL HndlrBleMsg

https://www.lairdconnect.com/ 188 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

OnStartup ()
PRINT "\nWrite to the User Descriptor with UUID 0x2999"

//wait for events and messages
WAITEVENT

CloseConnections ()
PRINT "\nExiting..."

Expected Output:

Write to the User Descriptor with UUID 0x2999

Read 20 bytes from index 0 in new char value.
::New Descriptor Data: 4C61697264
::Length=5
::Descriptor UUID FE012999

Exiting...

6.9.23 BleAuthorizeChar

FUNCTION

This function is used to grant or deny a read or write access of characteristic and is called in the handler for the event
EVAUTHVAL. When the function returns and if write access was requested and granted then the characteristic value is
deemed to be updated and so function BleCharValueRead() can be used to get the new value.

BLEAUTHORIZECHAR (connHandle, charHandle, readWrite)

INTEGER, aresult code.
Typical value: 0x0000 (indicates a successful operation)

Returns

Arguments

byVal connHandle AS INTEGER

connHandle | This is the connection handle of the gatt client requesting the read or write access and will
have been supplied in the EVAUTHVAL message.

byVal charHandle AS INTEGER

This is the handle to the characteristic whose value must be read which was returned when

charHandle) ’ T

BleCharCommit() was called and will have been supplied in the EVAUTHVAL event
message.
byVal readWrite AS INTEGER
This will be to

readWrite | © 0todeny read access
e 1to allow read access
e 2 to deny write access
e 3to allow write access

//Example :: See description for EVAUTHVAL
https://www.lairdconnect.com/ 189 Americas: +1-800-492-2320

© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide La"'d 2» CONNECTIVITY

6.9.24 BleAuthorizeDesc

FUNCTION

This function is used to grant or deny a read or write access of characteristic descriptor and is called in the handler for the
three events EVAUTHCCCD, EVAUTHSCCD and EVAUTHDESC. When the function returns and if write access was
requested and granted then the characteristic descriptor value is deemed to be updated and so function BleCharDescRead()
can be used to get the new value of the descriptor when the event is EVAUTHDESC. For events EVAUTHCCCD and
EVAUTHSCCD the event itself will have supplied the new value.

BLEAUTHORIZEDESC (connHandle, charHandle, nDescType, readWrite)

INTEGER, a result code.

Returns . - .
Typical value: 0x0000 (indicates a successful operation)

Arguments

byVal connHandle AS INTEGER

connHandle | This is the connection handle of the gatt client requesting the read or write access and will
have been supplied in the EVAUTHVAL message.

byVal charHandle AS INTEGER

This is the handle to the characteristic whose descriptor must be read which was returned
when BleCharCommit() was called and will have been supplied in the EVAUTHVAL event
message.

byVal nDescType AS INTEGER

This is as was supplied in the EVAUTHDESC event

byVal readWrite AS INTEGER
This will be to

readWrite | ¢ 0 todeny read access

e 1to allow read access

e 2to deny write access

e 3to allow write access

charHandle

nDescType

//Example :: See description for EVAUTHCCCD, EVAUTHSCCD or EVAUTHDESC

6.9.25 BleServiceChangedNtfy

FUNCTION

This function causes an indication of the Service Changed Characteristic of the GATT Service and specifies a start attribute
handle and an end attribute handle, which the client shall mark as changed so that it can update it's cache if need be.

The EVBLEMSG event will be thown with subevent ID set to BLE_EVBLEMSGID_SRVCCHNG_IND_CNF when other
indications can be sent.

Note that if on connection to a bonded device the CCCD CRC does not match with the current GATT table then a Service
Change Indication is automatically sent to the client. Additionally, the local application is sent the event
BLE_EVBLEMSGID_SRVCCHNG_IND_SENT.

BLESERVICECHANGEDNTFY (nConnHandle, nStartHandle, nEndHandle)

INTEGER, a result code.

Returns . - .
Typical value: 0x0000 (indicates a successful operation)
Arguments
https://www.lairdconnect.com/ 190 Americas: +1-800-492-2320

© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

byVal nConnHandle AS INTEGER.
Specifies the handle of the connection that must be disconnected.

byVal nStartHandle AS INTEGER.
nStartHandle | Specifies the start attribute handle of GATT table that has changed. Set to 0 to mark the entire
table as changed.

byVal nEndHandle AS INTEGER.
nEndHandle | Specifies the end attribute handle of GATT table that has changed. Set to 0 to mark the entire
table as changed.

nConnHandle

6.10 GATT Client Functions

This section describes all functions related to GATT client capability which enables interaction with GATT servers of a
connected BLE device. The Bluetooth Specification 4.0 and newer allows for a device to be a GATT server and/or GATT client
simultaneously; the fact that a peripheral mode device accepts a connection and has a GATT server table does not preclude it
from interacting with a GATT table in the central role device with which it is connected.

These GATT client functions allow the developer to discover services, characteristics and descriptors, read and write to
characteristics and descriptors, and handle either notifications or indications.

To interact with a remote GATT server, it is important to have a good understanding of how it is constructed. It is best to see it
as a table consisting of many rows and three visible columns (handle, type, value) and at least one more invisible column
whose content affects access to the data column.

16 bit Handle Type (16 or 128 bit) Value (1 to 512 bytes) Permissions

These rows are grouped into collections called services and characteristics. The grouping is achieved by creating a row with
Type = 0x2800 or 0x2801 for services (primary and secondary respectively) and 0x2803 for characteristics.

A table should be scanned from top to bottom; the specification stipulates that the 16-bit handle field contains values in the
range 1 to 65535 and SHALL be in ascending order. Gaps are allowed.

When scanning, if a row is encountered with the value 0x2800 or 0x2801 in the Type column, then it is understood as the start
of a primary or secondary service which in turn contains at least one charactestic or one ‘included service’ which have
Type=0x2803 and 0x2802 respectively.

When a row with Type = 0x2803 (a characteristic) is encountered, then the next row contains the value for that characteristic;
afterwards, there may be zero or more descriptors.

This means each characteristic consists of at least two rows in the table; and if descriptors exist for that characteristic, then a
single row per descriptor.

0x0001 0x2800 UUID of the Service Primary Service 1 Start

0x0002 0x2803 Properties, Value Handle, Value UUID1 Characteristic 1 Start

0x0003 Value UUID1 Value : 1 to 512 bytes Actual data

0x0004 0x2803 Properties, Value Handle, Value UUID2 Characteristic 2 Start

0x0005 Value UUID2 Value : 1 to 512 bytes Actual data

0x0006 0x2902 Value Descriptor 1(CCCD)

0x0007 0x2903 Value Descriptor 2 (SCCD)

0x0008 0x2800 UUID of the Service Primary Service 2 Start

0x0009 0x2803 Properties, Value Handle, Value UUID3 Characteristic 1 Start
https://www.lairdconnect.com/ 191 Americas: +1-800-492-2320

© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940

All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

0x000A Value UUID3 Value : 1 to 512 bytes Actual data

0x000B 0x2800 UUID of the Service Primary Service 3 Start
0x000C 0x2803 Properties, Value Handle, Value UUID3 Characteristic 3 Start
0x000D Value UUID3 Value : 1 to 512 bytes Actual data

0x000E 0x2902 Value Descriptor 1(CCCD)
0x000F 0x2903 Value Descriptor 2 (SCCD)
0x0010 0x2904 Value (presentation format data) Descriptor 3

0x00111 0x2906 Value (valid range) Descriptor 4 (Range)

A colour highlighted example of a GATT server table is shown above. There are three services (at handles 0x0001,0x0008
and 0x000B) because there are three rows where the Type = 0x2800. All rows up to the next instance of a row with
Type=0x2800 or 2801 belong to that service.

In each group of rows for a service, there is one or more characteristics where Type=0x2803. For example the service
beginning at handle 0x0008 has one characteristic which contains two rows identified by handles 0x0009 and 0x000A and the
actual value for the characteristic starting at 0x0009 is in the row identified by 0x000A.

Likewise, each characteristic starts with a row with Type=0x2803 and all rows following it (up to a row with type =
0x2800/2801/2803) are considered belonging to that characteristic. For example, the characteristic at row with handle =
0x0004 has the mandatory value row and then two descriptors.

The Bluetooth specification allows for multiple instances of the same service or characteristics or descriptors and they are
differentiated by the unique handle. This ensures no ambiguity.

Each GATT server table allocates the handle numbers, the only stipulation being that they be in ascending order (gaps are
allowed). This is important to understand because two devices containing the same services and characteristic and in
EXACTLY the same order may NOT allocate the same handle values, especially if one device increments handles by 1 and
another with some other arbitrary random value. The specification does stipulate that once the handle values are allocated,
they are fixed for all subsequent connections unless the device exposes a GATT service which allows for indications to the
client that the handle order has changed and thus force it to flush its cache and rescan the GATT table.

When a connection is first established, there is no prior knowledge as to which services exist or their handles. Therefore, the
GATT protocol which is used to interact with GATT servers, provides procedures that allow for the GATT table to be scanned
so that the client can ascertain which services are offered. This section describes smartBASIC functions which encapsulate
and manage those procedures to enable a smartBASIC application to map the table.

These helper functions have been written to help gather the handles of all the rows which contain the value type for
appropriate characteristics as those are the ones that will be read or written to. The smartBASIC internal engine also maintains
data objects so that it is possible to interact with descriptors associated with the characteristic.

Basically, the table scanning process reveals characteristic handles (as handles of handles) which are used in other GATT
client related smartBASIC functions to interact with the table to, for example, read/write or accept and process incoming
notifications and indications.

This approach ensures that the least amount of RAM resource is required to implement a GATT client and, given that these
procedures operate at speeds many orders of magnitude slower compared to the speed of the CPU and energy consumption
is to be kept as low as possible, the response to a command is delivered asynchronously as an event for which a handler must
be specified in the user smartBASIC application.

The rest of this chapter details all GATT client commands, responses, and events along with example code demonstrating
usage and expected output.

https://www.lairdconnect.com/ 192 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

6.10.1 Events and Messages

The nature of GATT client operation consists of multiple queries and acting on the responses. Because the connection
intervals are slower than the CPU speed, responses can arrive many tens of milliseconds after the procudure is triggered;
these are delivered to an application using an event or message. Since these event/messages are tightly coupled with the
appropriate commands, all but one is described when the command that triggers them is described.

The event EVGATTCTOUT is applicable for all GATT client-related functions which result in transactions over the air. The
Bluetooth specification states that if an operation is initiated and is not completed within 30 seconds then the connection is
dropped as no further GATT client transaction can be initiated.

6.10.1.1 EVGATTCTOUT
This event message is thrown if a GATT client transaction takes longer than 30 seconds. It contains one INTEGER parameter:
= Connection Handle

Example:

// Example :: EVGATTCTOUT.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc,conHndl

//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup ()
DIM rc, adRpt$, addr$, scRpt$
rc=BleAdvRptInit (adRpt$, 2, 0, 10)

IF rc==0 THEN : rc=BleScanRptInit (scRpt$) : ENDIF
IF rc==0 THEN : rc=BleAdvRptsCommit (adRpt$,scRpt$) : ENDIF
IF rc==0 THEN : rc=BleAdvertStart (0,addr$,50,0,0) : ENDIF

//open the GATT client with default notify/indicate ring buffer size
IF rc==0 THEN : rc = BleGATTcOpen(0,0) : ENDIF
ENDFUNC rc

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
conHndl=nCtx
IF nMsgID==1 THEN
PRINT "\n\n- Disconnected"
EXITFUNC O
ELSEIF nMsgID==0 THEN
PRINT "\n- Connected"
ENDIF
ENDEFUNC 1

'//
'/
FUNCTION HandlerGATTcTout (cHndl) AS INTEGER

PRINT "\nEVGATTCTOUT connHandle=";cHndl

ENDFUNC 1

//

// Main () equivalent

//

ONEVENT EVBLEMSG CALL HndlrBleMsg
OnEvent EVGATTCTOUT call HandlerGATTcTout

rc = OnStartup ()

https://www.lairdconnect.com/ 193 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

WAITEVENT

Expected Output:

EVGATTCTOUT connHandle=123

6.10.1.2 EVDISCPRIMSVC

This event message is thrown if either BleDiscServiceFirst() or BleDiscServiceNext() returns a success. The message
contains the following four INTEGER parameters:

= Connection Handle

= Service UUID Handle

= Start Handle of the service in the GATT table

= End Handle for the service

If no additional services were discovered because the end of the table was reached, then all parameters contain zero apart
from the Connection Handle.

6.10.1.3 EVDISCCHAR

This event message is thrown if either BleDiscCharFirst() or BleDiscCharNext() returns a success. The message contains the
following INTEGER parameters:

= Connection Handle

= Characteristic UUID Handle

= Characteristic properties

= Handle for the value attribute of the characteristic

* Included Service UUID Handle

If no more characteristics were discovered because the end of the table was reached, then all parameters contain zero apart
from the Connection Handle.

‘Characteristic Uuid Handle’ contains the UUID of the characteristic and supplied as a handle.

‘Characteristic Properties’ contains the properties of the characteristic and is a bit mask as follows:

Bit0 Setif BROADCAST is enabled

Bit1 Setif READ is enabled

Bit 2 Set if WRITE_WITHOUT_RESPONSE is enabled
Bit3 Setif WRITE is enabled

Bit4 Setif NOTIFY is enabled

Bit5 Setif INDICATE is enabled

Bit6 Setif AUTHENTICATED_SIGNED_WRITE is enabled
Bit7 Setif RELIABLE_WRITE is enabled

‘Handle for the Value Attribute of the Characteristic’ is the handle for the value attribute and is the value to store to keep
track of important characteristics in a GATT server for later read/write operations.

‘Included Service Uuid Handle’ is for future use and is always O.

https://www.lairdconnect.com/ 194 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.10.1.4 EVDISCDESC

This event message is thrown if either BleDissDescFirst() or BleDiscDescNext() returns a success. The message contains the
following INTEGER parameters:

= Connection Handle
= Descriptor Uuid Handle
= Handle for the Descriptor in the remote GATT Table

If no more descriptors were discovered because the end of the table was reached, then all parameters contain zero apart from
the Connection Handle.

‘Descriptor Uuid Handle’ contains the UUID of the descriptor and is supplied as a handle.

‘Handle for the Descriptor in the remote GATT Table’ is the handle for the descriptor as well as the value to store to keep
track of important characteristics in a GATT server for later read/write operations.

6.10.1.5 EVFINDCHAR

This event message is thrown if BleGATTcFindChar() returns a success. The message contains the following INTEGER
parameters:

= Connection Handle

= Characteristic Properties

= Handle for the Value Attribute of the Characteristic
= Included Service Uuid Handle

If the specified instance of the service/characteristic is not present in the remote GATT server table, then all parameters
contain zero apart from the Connection Handle.

‘Characteristic Properties’ contains the properties of the characteristic and is a bit mask as follows:

Set if BROADCAST is enabled

Set if READ is enabled

Set if WRITE_WITHOUT_RESPONSE is enabled

Set if WRITE is enabled

Set if NOTIFY is enabled

Set if INDICATE is enabled

Set if AUTHENTICATED_SIGNED_WRITE is enabled
Set if RELIABLE_WRITE is enabled

Set if the characteristic has extended properties

N o g WM PO

IRy
(&)

‘Handle for the Value Attribute of the Characteristic’ is the handle for the value attribute and is the value to store to keep
track of important characteristics in a GATT server for later read/write operations.

‘Included Service Uuid Handle’ is for future use and is always 0.

6.10.1.6 EVFINDDESC

This event message is thrown if BleGATTcFindDesc() returned a success. The message contains the following INTEGER
parameters:

= Connection Handle
= Handle of the Descriptor

If the specified instance of the service/characteristic/descriptor is not present in the remote GATT server table, then all
parameters contain zero apart from the Connection Handle.

‘Handle of the Descriptor’ is the handle for the descriptor and is the value to store to keep track of important descriptors in a
GATT server for later read/write operations — for example, CCCDs to enable notifications and/or indications.

https://www.lairdconnect.com/ 195 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

6.710.1.7 EVATTRREAD

This event message is thrown if BleGattcRead() returns a success. The message contains the following INTEGER
parameters:

= Connection Handle

= Handle of the Attribute

= GATT status of the read operation

‘GATT status of the read operation’ is one of the following values, where 0 implies the read was successfully expedited and
the data can be obtained by calling BlePubGattClientReadData().

Hex Dec Description
0x0000 O Success
0x0001 1 Unknown or not applicable status

0x0100 256 ATT Error: Invalid Error Code
0x0101 257 ATT Error: Invalid Attribute Handle
0x0102 258 ATT Error: Read not permitted
0x0103 259 ATT Error: Write not permitted
0x0104 260 ATT Error: Used in ATT as Invalid PDU
0x0105 261 ATT Error: Authenticated link required
0x0106 262 ATT Error: Used in ATT as Request Not Supported
0x0107 263 ATT Error: Offset specified was past the end of the attribute
0x0108 264 ATT Error: Used in ATT as Insufficient Authorisation
0x0109 265 ATT Error: Used in ATT as Prepare Queue Full
0x010A 266 ATT Error: Used in ATT as Attribute not found
0x010B 267 ATT Error: Attribute cannot be read or written using read/write blob
requests
0x010C 268 ATT Error: Encryption key size used is insufficient
0x010D 269 ATT Error: Invalid value size
0x010E 270 ATT Error: Very unlikely error
0x010F 271 ATT Error: Encrypted link required
0x0110 272 ATT Error: Attribute type is not a supported grouping attribute
0x0111 273 ATT Error: Encrypted link required
0x0112 274 ATT Error: Reserved for Future Use range #1 begin
0x017F 383 ATT Error: Reserved for Future Use range #1 end
0x0180 384 ATT Error: Application range begin
0x019F 415 ATT Error: Application range end
0x01A0 416 ATT Error: Reserved for Future Use range #2 begin
0x01DF 479 ATT Error: Reserved for Future Use range #2 end
0x01E0 480 ATT Error: Reserved for Future Use range #3 begin
0x01FC 508 ATT Error: Reserved for Future Use range #3 end
0x01FD 509 ATT Common Profile and Service Error: Client Characteristic Config
Descriptor
(CCCD) improperly configured
0x01lFE 510 ATT Common Profile and Service Error:Procedure Already in Progress
0x01FF 511 ATT Common Profile and Service Error: Out Of Range

6.10.1.8 EVATTRWRITE

This event message is thrown if BleGattcWrite() returns a success. The message contains the following INTEGER
parameters:

= Connection Handle
= Handle of the Attribute
= GATT status of the write operation

‘GATT status of the write operation’ is one of the following values, where 0 implies the write was successfully expedited.

Hex Dec Description
0x0000 O Success
0x0001 1 Unknown or not applicable status

https://www.lairdconnect.com/ 196 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions La rd

) CONNECTIVITY
User Guide _)

0x0100 256 ATT Error: Invalid Error Code
0x0101 257 ATT Error: Invalid Attribute Handle
0x0102 258 ATT Error: Read not permitted
0x0103 259 ATT Error: Write not permitted
0x0104 260 ATT Error: Used in ATT as Invalid PDU
0x0105 261 ATT Error: Authenticated link required
0x0106 262 ATT Error: Used in ATT as Request Not Supported
0x0107 263 ATT Error: Offset specified was past the end of the attribute
0x0108 264 ATT Error: Used in ATT as Insufficient Authorisation
0x0109 265 ATT Error: Used in ATT as Prepare Queue Full
0x010A 266 ATT Error: Used in ATT as Attribute not found
0x010B 267 ATT Error: Attribute cannot be read or written using read/write blob
requests
0x010C 268 ATT Error: Encryption key size used is insufficient
0x010D 269 ATT Error: Invalid value size
0x010E 270 ATT Error: Very unlikely error
0x010F 271 ATT Error: Encrypted link required
0x0110 272 ATT Error: Attribute type is not a supported grouping attribute
0x0111 273 ATT Error: Encrypted link required
0x0112 274 ATT Error: Reserved for Future Use range #1 begin
0x017F 383 ATT Error: Reserved for Future Use range #1 end
0x0180 384 ATT Error: Application range begin
0x019F 415 ATT Error: Application range end
0x01A0 416 ATT Error: Reserved for Future Use range #2 begin
0x01DF 479 ATT Error: Reserved for Future Use range #2 end
0x01E0 480 ATT Error: Reserved for Future Use range #3 begin
0x01FC 508 ATT Error: Reserved for Future Use range #3 end
0x01FD 509 ATT Common Profile and Service Error: Client Characteristic Config
Descriptor
(CCCD) improperly configured
0x01lFE 510 ATT Common Profile and Service Error:Procedure Already in Progress
0x01lFF 511 ATT Common Profile and Service Error: Out Of Range

6.10.1.9 EVNOTIFYBUF

This event message is thrown if BleGattcWriteCmd() returned a success. The message contains no parameters.

6.70.1.10 EVATTRNOTIFY

This event is thrown when an natification or an indication arrives from a GATT server. The event contains no parameters.
Please note that if one notification/indication arrives or many, like in the case of UART events, the same event mask bit is
asserted. The smartBASIC application is informed that it must go and service the ring buffer using the function
BleGattcNotifyRead. This event is only thrown if at+cfg 213=0. See BleGattcNotifyRead for usage.

6.10.1.11EVATTRNOTIFYEX

This message from the underlying BLE manager informs the app that the remote has sent characteristic
notifications/indications. The difference between this event and EVATTRNOTIFY is that this event contains the paramers such
as the connection handle and the notification data. Data_length and strLen(Data$) should be of equal length. This event is
only thrown if at+cfg 213=1. See BleGattcNotifyRead for usage.

The event comes with the following parameters:

= Connection Handle — The handle of the connection that wrote to the characteristic value.

= Char Handle — Characteristic handle for which the value is being notified.

= Type - 0: Invalid, 1: Notification, 2: Indication.

= Data_Length — The length of the data that was notified. If negative, then this value indicates the amount of data lost.
= Data$ - The string data that was notified from the attribute.

https://www.lairdconnect.com/ 197 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.10.2 BleGattcOpen

FUNCTION

This function is used to initialise the GATT client functionality for immediate use so that appropriate buffers for caching GATT
responses are created in the heap memory. About 300 bytes of RAM is required by the GATT client manager; given that a
majority of BL653 use cases do not use it, the sacrifice of 300 bytes is not worth the permament allocation of memory.

There are various buffers that are needed for scanning a remote GATT table which are of fixed size. The ring buffer can be
configured by the smartBASIC apps developer; this buffer is used to store incoming notifiable and indicatable characteristics.
At the time of writing this user guide, the default minimum size is 64 unless a bigger one is desired; in that case, the input
parameter to this function specifies that size. A maximum of 2048 bytes is allowed, but this can result in unreliable operation
as the smartBASIC runtime engine is quickly starved of memory.

Use SYSINFO(2019) to obtain the actual default size and SYSINFO(2020) to obtain the maximum allowed. The same
information can be obtained in interactive mode using the commands AT | 2019 and 2020 respectively.

Note: When the ring buffer for the notifiable and indicatable characteristics is full, then any new messages are discarded.
Depending on the flags parameter, the indicates are or are not confirmed.

This function is safe to call when the GATT client manager is already open. However, in that case, the parameters are ignored
and existing values are retained. Existing GATT client operations are not interrupted.

It is recommended that this function NOT be called when in a connection.

BLEGATTCOPEN (nNotifyBufLen, nFlags)

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

Arguments:

byVal nNotifyBufLen AS INTEGER

nNotifyBufLen | This is the size of the ring buffer used for incoming notifiable and indicatable characteristic data. Set
to 0 to use the default size.

byVal nFlags AS INTEGER

Bit 0 — Set to 1 to disable automatic indication confirmations. If the buffer is full then the Handle

nFl) L . . .
895 | value Confirmation is only sent when BleGattcNotifyRead() is called to read the ring buffer.
Bit 1..31 — Reserved for future use and must be set to 0Os.
Example:
// Example :: BleGattcOpen.sb

// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples
DIM rc

//open the GATT client with default notify/indicate ring buffer size

rc = BleGATTcOpen (0,0)

IF rc == 0 THEN
PRINT "\nGATT Client is now open"
ENDIF

//open the client with default notify/indicate ring buffer size - again
rc = BleGattcOpen (128,1)

IF rc == 0 THEN
PRINT "\nGATT Client is still open, because already open"
ENDIF

Expected Output:

GATT Client is now open
GATT Client is still open, because already open

https://www.lairdconnect.com/ 198 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.10.3 BleGattcClose

SUBROUTINE
This function is used to close the GATT client manager and is safe to call if it is already closed.

It is recommended that this function NOT be called when in a connection.

BLEGATTCCLOSE ()

Returns

Arguments None
Example:

// Example :: BleGattcClose.sb

// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc
//open the GATT client with default notify/indicate ring buffer size
rc = BleGattcOpen (0,0)
IF rc == 0 THEN
PRINT "\nGATT Client is now open"
ENDIF
BleGattcClose ()
PRINT "\nGATT Client is now closed"
BleGattcClose ()
PRINT "\nGATT Client is closed - was safe to call when already closed"

Expected Output:

GATT Client is now open
GATT Client is now closed
GATT Client is closed - was safe to call when already closed

6.10.4 BleDiscServiceFirst / BleDiscServiceNext

FUNCTIONS

This pair of functions is used to scan the remote GATT server for all primary services with the help of the EVDISCPRIMSVC
message event. When called, a handler for the event message must be registered as the discovered primary service
information is passed back in that message.

A generic or UUID-based scan can be initiated. The former scans for all primary services and the latter scans for a primary
service with a particular UUID, the handle of which must be supplied and is generated by using either BleHandleUuid16() or
BleHandleUuid128().

While the scan is in progress and waiting for the next piece of data from a GATT server, the module enters low power state as
the WAITEVENT statement is used as normal to wait for events and messages.

Depending on the size of the remote GATT server table and the connection interval, the scan of all primary may take many
hundreds of milliseconds. While this is in progress, it is safe to do other non-GATT-related operations such as servicing
sensors and displays or any of the onboard peripherals.

BLEDISCSERVICEFIRST (connHandle, startAttrHandle, uuidHandle)

A typical pseudo code for discovering primary services involves first calling BleDiscServiceFirst(), then waiting for the
EVDISCPRIMSVC event message and depending on the information returned in that message calling BleDiscServiceNext(),
which in turn will result in another EVDISCPRIMSVC event message and typically is as follows:

Register a handler for the EVDISCPRIMSVC event message

On EVDISCPRIMSVC event message

If Start/End Handle == 0 then scan is complete
https://www.lairdconnect.com/ 199 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940

All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

Else Process information then
call BleDiscServiceNext ()
if BleDiscServiceNext () not OK then scan complete

Call BleDiscServiceFirst ()
If BleDiscServiceFirst () ok then Wait for EVDISCPRIMSVC

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful operation. This means
an EVDISCPRIMSVC event message is thrown by the smartBASIC runtime engine containing the
results. A non-zero return value implies an EVDISCPRIMSVC message is NOT thrown.

Arguments:

byVal nConnHandle AS INTEGER

This is the connection handle as returned in the on-connect event for the connection on which the
remote GATT server can be accessed. This is returned in the EVBLEMSG event message with
msgld == 0 and msgCtx is the connection handle.

byVal startAttrHandle AS INTEGER
startAttrHandle | This is the attribute handle from where the scan for primary services will be started and you can
typically set it to O to ensure that the entire remote GATT Server is scanned

byVal uuidHandle AS INTEGER
uuidHandle | Set this to O if you want to scan for any service, otherwise this value will have been generated either
by BleHandleUuid16() or BleHandleUuid128() or BleHandleUuidSibling().

connHandle

BLEDISCSERVICENEXT (connHandle)

Calling this assumes that BleDiscServiceFirst() was called at least once to set up the internal primary services scanning state
machine.

Returns INTEGER, aresult code.

The typical value is 0x0000, indicating a successful operation and it means an EVDISCPRIMSVC event
message is thrown by the smartBASIC runtime engine containing the results. A non-zero return value
implies an EVDISCPRIMSVC message is not thrown.

Arguments:
byVal nConnHandle AS INTEGER
connHandle This is the connection handle as returned in the on-connect event for the connection on which the remote
GATT server can be accessed. This is returned in the EVBLEMSG event message with msgld == 0 and
msgCtx is the connection handle
Example:
// Example :: BleDiscServiceFirst.Next.sb

// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

//

//Remote server has 5 prim services with 16 bit uuid and 3 with 128 bit uuids
// 3 of the 16 bit uuid are the same value O0xDEAD and

// 2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF
//

// Server created using BleGATTcTblDiscPrimSvc.sub invoked in _OpenMcp.scr
// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl, uuid$

//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup ()
https://www.lairdconnect.com/ 200 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940

All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

DIM rc, adRpt$, addr$, scRpt$
rc=BleAdvRptInit (adRpt$, 2, 0, 10)

IF rc==0 THEN : rc=BleScanRptInit (scRpt$) : ENDIF

IF rc==0 THEN : rc=BleAdvRptsCommit (adRpt$,scRpt$) : ENDIF

IF rc==0 THEN : rc=BleAdvertStart (0,addr$,50,0,0) : ENDIF

//open the GATT client with default notify/indicate ring buffer size
IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//

// Close connections so that we can run another app without problems

//

SUB CloseConnections ()
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()

ENDSUB

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
DIM uu$
conHndl=nCtx
IF nMsgID==1 THEN
PRINT "\n\n- Disconnected"
EXITFUNC O
ELSEIF nMsgID==0 THEN

PRINT "\n- Connected, so scan remote GATT Table for ALL services"
rc = BleDiscServiceFirst (conHndl,0,0)
IF rc==0 THEN
//HandlerPrimSvc () will exit with O when operation is complete
WAITEVENT

PRINT "\nScan for service with uuid = O0xDEAD"

uHndl = BleHandleUuidl6 (OxDEAD)

rc = BleDiscServiceFirst (conHndl, 0, uHndl)

IF rc==0 THEN
//HandlerPrimSvc () will exit with 0 when operation is complete
WAITEVENT

uu$ = "112233445566778899AABBCCDDEEFF00"
PRINT "\nScan for service with custom uuid ";uu$
uu$ = StrDehexize$ (uu$)
uHndl = BleHandleUuidl28 (uu$)
rc = BleDiscServiceFirst (conHndl, 0, uHndl)
IF rc==0 THEN
//HandlerPrimSvc () will exit with 0 when operation is complete
WAITEVENT
ENDIF
ENDIF
ENDIF
CloseConnections ()
ENDIF
ENDFUNC 1

//
// EVDISCPRIMSVC event handler
//
FUNCTION HandlerPrimSvc (cHndl, svcUuid, sHndl,eHndl) AS INTEGER
PRINT "\nEVDISCPRIMSVC :"
PRINT " cHndl=";cHndl

https://www.lairdconnect.com/ 201 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

PRINT " svcUuid=";integer.h' svcUuid
PRINT " sHndl=";sHndl
PRINT " eHndl=";eHndl
IF sHndl == 0 THEN
PRINT "\nScan complete"

EXITFUNC O
ELSE
rc = BleDiscServiceNext (cHndl)
IF rc != 0 THEN
PRINT "\nScan abort"

EXITFUNC O
ENDIF
ENDIF
endfunc 1

//
// Main () equivalent
//
ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVDISCPRIMSVC call HandlerPrimSvc

//Register base uuids with the underlying stack, otherwise the services with the
//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN
uuid$ = "112233445566778899AABBCCDDEEFFO0O"

uuid$ = StrDehexize$ (uuid$)

uHndl = BleHandleUuidl28 (uuid$)

uuid$ = "1122DEAD5566778899AABBCCDDBEEF0Q"
uuid$ = StrDehexize$ (uuid$)
uHndl = BleHandleUuidl28 (uuid$)

IF OnStartup ()==0 THEN
PRINT "\nAdvertising, and GATT Client is open\n"
ELSE
PRINT "\nFailure OnStartup"
ENDIF
WAITEVENT

PRINT "\nExiting..."

Expected Output:

Advertising, and GATT Client is open

- Connected, so scan remote GATT Table for ALL services
EVDISCPRIMSVC : cHndl=2804 svcUuid=FEO1FEO1l sHndl=1 eHndl=3
EVDISCPRIMSVC : cHndl=2804 svcUuid=FC033344 sHndl=4 eHndl=6
EVDISCPRIMSVC : cHndl=2804 svcUuid=FEO1DEAD sHndl=7 eHndl=9
EVDISCPRIMSVC : cHndl=2804 svcUuid=FBO4BEEF sHndl=10 eHndl=12
EVDISCPRIMSVC : cHndl=2804 svcUuid=FC033344 sHndl=13 eHndl=15
EVDISCPRIMSVC : cHndl=2804 svcUuid=FEO1DEAD sHndl=16 eHndl=18
EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01FEO3 sHndl=19 eHndl=21
EVDISCPRIMSVC : cHndl=2804 svcUuid=FEO1DEAD sHndl=22 eHndl=24
EVDISCPRIMSVC : cHndl=2804 svcUuid=00000000 sHndl=0 eHndl=0
Scan complete

Scan for service with uuid = 0xDEAD

EVDISCPRIMSVC : cHndl=2804 svcUuid=FEO1DEAD sHndl=7 eHndl=9
EVDISCPRIMSVC : cHndl=2804 svcUuid=FEO1DEAD sHndl=16 eHndl=18
EVDISCPRIMSVC : cHndl=2804 svcUuid=FEO1DEAD sHndl=22 eHndl=65535
Scan abort

https://www.lairdconnect.com/ 202 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

Scan for service with custom uuid 112233445566778899AABBCCDDEEFF00
EVDISCPRIMSVC : cHndl=2804 svcUuid=FC033344 sHndl=4 eHndl=6
EVDISCPRIMSVC : cHndl=2804 svcUuid=FC033344 sHndl=13 eHndl=15
EVDISCPRIMSVC : cHndl=2804 svcUuid=00000000 sHndl=0 eHndl=0

Scan complete

- Disconnected
Exiting...

6.10.5 BleDiscCharFirst / BleDiscCharNext

FUNCTIONS

These pair of functions are used to scan the remote GATT server for characteristics in a service with the help of the
EVDISCCHAR message event. When called, a handler for the event message must be registered because the discovered
characteristics information is passed back in that message.

A generic or UUID based scan can be initiated. The generic version scans for all characteristics; the UUID version scans for a
characteristic with a particular UUID, the handle of which must be supplied and is generated by using either
BleHandleUuid16() or BleHandleUuid128().

If a GATT table has a specific service and a specific characteristic, then it is more efficient to locate details of that
characteristic by using the function BleGATTcFindChar(). This function is described later.

While the scan is in progress and waiting for the next piece of data from a GATT server, the module enters low power state as
the WAITEVENT statement is used as normal to wait for events and messages.

Depending on the size of the remote GATT server table and the connection interval, the scan of all characteristics may take
many hundreds of milliseconds. While this is in progress, it is safe to do other non- GATT-related operations such as servicing
sensors and displays or any of the onboard peripherals.

Note: It is not currently possible to scan for characteristics in included services. This is planned for a future release.

BLEDISCCHARFIRST (connHandle, charUuidHandle, startAttrHandle, endAttrHandle)

A typical pseudo code for discovering characteristic involves first calling BleDiscCharFirst() with information obtained from a
primary services scan, waiting for the EVDISCCHAR event message, and (depending on the information returned in that
message) calling BleDiscCharNext(). This in turn results in another EVDISCCHAR event message and typically is as follows:

Register a handler for the EVDISCCHAR event message

On EVDISCCHAR event message
If Char Value Handle == 0 then scan is complete
Else Process information then
call BleDiscCharNext()
if BleDiscCharNext() not OK then scan complete

Call BleDiscCharFirst(--information from EVDISCPRIMSVC)
If BleDiscCharFirst() ok then Wait for EVDISCCHAR

Returns INTEGER, a result code.

The typical value is 0x0000, indicating a successful operation and it means an EVDISCCHAR event
message is thrown by the smartBASIC runtime engine containing the results. A non-zero return
value implies an EVDISCCHAR message is not thrown.

Arguments:
byVal nConnHandle AS INTEGER
connHandle This is the connection handle as returned in the on-connect event for the connection on which the
remote GATT server can be accessed. This is returned in the EVBLEMSG event message with
msgld == 0 and msgCtx is the connection handle.
https://www.lairdconnect.com/ 203 Americas: +1-800-492-2320

© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

byVal charUuidHandle AS INTEGER

charUuidHandle | Set this to 0 if you want to scan for any characteristic in the service, otherwise this value is
generated either by BleHandleUuid16() or BleHandleUuid128() or BleHandleUuidSibling().

byVal startAttrHandle AS INTEGER

startAttrHandle | This is the attribute handle from where the scan for characteristic is started and is acquired by doing
a primary services scan, which returns the start and end handles of services.

byVal endAttrHandle AS INTEGER

endAttrHandle | This is the end attribute handle for the scan and is acquired by doing a primary services scan, which
returns the start and end handles of services.

BLEDISCCHARNEXT (connHandle)

Calling this assumes that BleDiscCharFirst() has been called at least once to set up the internal characteristics scanning state
machine. It scans for the next characteristic.

Returns INTEGER, a result code.

The typical value is 0x0000, indicating a successful operation. It means an EVDISCCHAR event
message is thrown by the smartBASIC runtime engine containing the results. A non-zero return value
implies an EVDISCCHAR message is not thrown.

Arguments:
byVal nConnHandle AS INTEGER
connHandle This is the connection handle as returned i.n Fhe on-conr?ect event for the connection on which the
remote GATT server can be accessed. This is returned in the EVBLEMSG event message with msgld ==
0 and msgCitx is the connection handle.
Example:
// Example :: BleDiscCharFirst.Next.sb

// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

//

//Remote server has 1 prim service with 16 bit uuid and 8 characteristics where
// 5 uuids are 16 bit and 3 are 128 bit

// 3 of the 16 bit uuid are the same value OxDEAD and

// 2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF

//

// Server created using BleGATTcTblDiscChar.sub invoked in OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl, uHndl,uuid$, sAttr, eAttr

//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup ()
DIM rc, adRpt$, addr$, scRpt$
rc=BleAdvRptInit (adRpt$, 2, 0, 10)

IF rc==0 THEN : rc=BleScanRptInit (scRpt$) : ENDIF
IF rc==0 THEN : rc=BleAdvRptsCommit (adRpt$,scRpt$) : ENDIF
IF rc==0 THEN : rc=BleAdvertStart (0,addr$,50,0,0) : ENDIF

//open the GATT client with default notify/indicate ring buffer size
IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF
ENDFUNC rc

//
// Close connections so that we can run another app without problems
//
SUB CloseConnections ()
rc=BleDisconnect (conHndl)

https://www.lairdconnect.com/ 204 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

rc=BleAdvertStop ()
ENDSUB

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
DIM uu$
conHndl=nCtx
IF nMsgID==1 THEN
PRINT "\n\n- Disconnected"
EXITFUNC O
ELSEIF nMsgID==0 THEN
PRINT "\n- Connected, so scan remote GATT Table for first service"
PRINT "\n- and a characeristic scan will be initiated in the event"
rc = BleDiscServiceFirst (conHndl, 0,0)
IF rc==0 THEN
//wait for start and end handles for first primary service
WAITEVENT
PRINT "\n\nScan for characteristic with uuid = OxDEAD"
uHndl = BleHandleUuidl6 (OxDEAD)
rc = BleDiscCharFirst (conHndl, uHndl, sAttr,eAttr)
IF rc == 0 THEN
//HandlerCharDisc () will exit with O when operation is complete
WAITEVENT
uu$ = "112233445566778899AABBCCDDEEFF00"
PRINT "\n\nScan for service with custom uuid ";uu$
uu$ = StrDehexize$ (uu$)
uHndl = BleHandleUuidl28 (uu$)
rc = BleDiscCharFirst (conHndl,uHndl, sAttr,eAttr)
IF rc==0 THEN
//HandlerCharDisc () will exit with 0 when operation is complete
WAITEVENT
ENDIF
ENDIF
ENDIF
CloseConnections ()
ENDIF
ENDFUNC 1

//
// EVDISCPRIMSVC event handler
//
FUNCTION HandlerPrimSvc (cHndl, svcUuid, sHndl, eHndl) AS INTEGER

PRINT "\nEVDISCPRIMSVC :"

PRINT " cHndl=";cHndl

PRINT " svcUuid=";integer.h' svcUuid

PRINT " sHndl=";sHndl

PRINT " eHndl=";eHndl

IF sHndl == 0 THEN
PRINT "\nPrimary Service Scan complete"
EXITFUNC O

ELSE

PRINT "\nGot first primary service so scan for ALL characteristics"
sAttr = sHndl

eAttr = eHndl

rc = BleDiscCharFirst (conHndl, 0, sAttr,eAttr)

IF rc != 0 THEN
PRINT "\nScan characteristics failed"
EXITFUNC O
ENDIF
ENDIF
https://www.lairdconnect.com/ 205 Americas: +1-800-492-2320

© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

endfunc 1

'//
// EVDISCCHAR event handler
'//
function HandlerCharDisc (cHndl, cUuid, cProp,hVal,isUuid) as integer
print "\nEVDISCCHAR :"
print " cHndl=";cHndl
print " chUuid=";integer.h' cUuid
print " Props=";cProp
print " valHndl=";hVal
print " ISvcUuid=";isUuid
IF hval == 0 THEN
PRINT "\nCharacteristic Scan complete"
EXITFUNC O
ELSE
rc = BleDiscCharNext (conHndl)
IF rc != 0 THEN
PRINT "\nCharacteristics scan abort"
EXITFUNC O
ENDIF
ENDIF
endfunc 1

//

// Main () equivalent

//

ONEVENT EVBLEMSG CALL HndlrBleMsg
OnEvent EVDISCPRIMSVC call HandlerPrimSvc
OnEvent EVDISCCHAR call HandlerCharDisc

//Register base uuids with the underlying stack, otherwise the services with the
//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN
uuid$ = "112233445566778899AABBCCDDEEFF0OQ"

uuid$ = StrDehexize$ (uuids)

uHndl = BleHandleUuidl28 (uuid$)
uuid$ = "1122DEAD5566778899AABBCCDDBEEFO00"
uuid$ = StrDehexize$ (uuid$)

uHndl = BleHandleUuidl28 (uuid$)

IF OnStartup ()==0 THEN
PRINT "\nAdvertising, and GATT Client is open\n"
ELSE
PRINT "\nFailure OnStartup"
ENDIF
WAITEVENT

PRINT "\nExiting..."

Expected Output:

Advertising, and GATT Client is open

- Connected, so scan remote GATT Table for first service

- and a characeristic scan will be initiated in the event
EVDISCPRIMSVC : cHndl=3549 svcUuid=FEO1lFEO2 sHndl=1 eHndl=17

Got first prlmary service so scan for ALL characteristics

EVDISCCHAR : cHndl=3549 chUuid=FEOlFC21 Props=2 valHndl=3 ISvcUuid=0
EVDISCCHAR : cHndl=3549 chUuid=FC033344 Props=2 valHndl=5 ISvcUuid=0
EVDISCCHAR : cHndl=3549 chUuid=FEO1DEAD Props=2 valHndl=7 ISvcUuid=0
EVDISCCHAR : cHndl=3549 chUuid=FBO04BEEF Props=2 valHndl=9 ISvcUuid=0
EVDISCCHAR : cHndl=3549 chUuid=FC033344 Props=2 valHndl=11 ISvcUuid=0
EVDISCCHAR : cHndl=3549 chUuid=FEQ0lFC23 Props=2 valHndl=13 ISvcUuid=0
EVDISCCHAR : cHndl=3549 chUuid=FEO1DEAD Props=2 valHndl=15 ISvcUuid=0

https://www.lairdconnect.com/ 206 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

EVDISCCHAR : cHndl=3549 chUuid=FEO1DEAD Props=2 valHndl=17 ISvcUuid=0
EVDISCCHAR : cHndl=3549 chUuid=00000000 Props=0 valHndl=0 ISvcUuid=0
Characteristic Scan complete

Scan for characteristic with uuid = OxDEAD

EVDISCCHAR : cHndl=3549 chUuid=FEQO1DEAD Props=2 valHndl=7 ISvcUuid=0
EVDISCCHAR : cHndl=3549 chUuid=FEO1DEAD Props=2 valHndl=15 ISvcUuid=0
EVDISCCHAR : cHndl=3549 chUuid=FEO1DEAD Props=2 valHndl=17 ISvcUuid=0
EVDISCCHAR : cHndl=3549 chUuid=00000000 Props=0 valHndl=0 ISvcUuid=0
Characteristic Scan complete

Scan for service with custom uuid 112233445566778899AABBCCDDEEFFO00
EVDISCCHAR : cHndl=3549 chUuid=FC033344 Props=2 valHndl=5 ISvcUuid=0
EVDISCCHAR : cHndl=3549 chUuid=FC033344 Props=2 valHndl=11 ISvcUuid=0
EVDISCCHAR : cHndl=3549 chUuid=00000000 Props=0 valHndl=0 ISvcUuid=0
Characteristic Scan complete

- Disconnected
Exiting...

6.10.6 BleDiscDescFirst /BleDiscDescNext

FUNCTIONS

This pair of functions is used to scan the remote GATT server for descriptors in a characteristic with the help of the
EVDISCDESC message event. When called, a handler for the event message must be registered because the discovered
descriptor information is passed back in that message.

A generic or UUID-based scan can be initiated. The generic version scans for all descriptors; The UUID version scans for a
descriptor with a particular UUID, the handle of which must be supplied and is generated by using either BleHandleUuid16() or
BleHandleUuid128().

If a GATT table has a specific service, characteristic, and a specific descriptor, then it is more efficient to locate the
characteristic’s details by using the function BleGATTcFindDesc(). This is described later.

While the scan is in progress and waiting for the next piece of data from a GATT server, the module enters low power state as
the WAITEVENT statement is used as normal to wait for events and messages.

Depending on the size of the remote GATT server table and the connection interval, the scan of all descriptors may take many
hundreds of milliseconds. While this is in progress, it is safe to do other non-GATT-related operations such as servicing
sensors and displays or any of the onboard peripherals.

BLEDISCDESCFIRST (connHandle, descUuidHandle, charValHandle)

A typical pseudo code for discovering descriptors involves first calling BleDiscDescFirst() with information obtained from a
characteristics scan and then waiting for the EVDISCDESC event message. Depending on the information returned in that
message, calling BleDiscDescNext() results in another EVDISCDESC event message and typically is as follows:

Register a handler for the EVDISCDESC event message

On EVDISCDESC event message
If Descriptor Handle == 0 then scan is complete
Else Process information then
call BleDiscDescNext ()
if BleDiscDescNext () not OK then scan complete

Call BleDiscDescFirst(—--information from EVDISCCHAR)
If BleDiscDescFirst () ok then Wait for EVDISCDESC

Returns INTEGER, a result code.

https://www.lairdconnect.com/ 207 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

The typical value is 0x0000, indicating a successful operation and it means an EVDISCDESC
event message is thrown by the smartBASIC runtime engine containing the results. A non-
zero return value implies an EVDISCDESC message is not thrown.

Arguments:

byVal nConnHandle AS INTEGER

This is the connection handle as returned in the on-connect event for the connection on which
the remote GATT server can be accessed. This is returned in the EVBLEMSG event message
with msgld == 0 and msgCitx is the connection handle.

byVal descUuidHandle AS INTEGER
descUuidHandle | Set this to O if you want to scan for any descriptor in the characteristic, otherwise this value is
generated either by BleHandleUuid16() or BleHandleUuid128() or BleHandleUuidSibling().

byVal charValHandle AS INTEGER
charValHandle | This is the value attribute handle of the characteristic on which the descriptor scan is to be
performed. It will have been acquired from an EVDISCCHAR event.

connHandle

BLEDISCDESCNEXT (connHandle)

Calling this assumes that BleDiscCharFirst() has been called at least once to set up the internal characteristics scanning state
machine and that BleDiscDescFirst() has been called at least once to start the descriptor discovery process.

Returns INTEGER, a result code.

The typical value is 0x0000, indicating a successful operation and it means an EVDISCDESC
event message is thrown by the smartBASIC runtime engine containing the results. A non-zero
return value implies an EVDISCDESC message is not thrown.

Arguments:
byVal nConnHandle AS INTEGER
connHandle This is the connection handle as returned in the on-connect event for the connection on which the
remote GATT server can be accessed. This is returned in the EVBLEMSG event message with
msgld == 0 and msgCitx is the connection handle.
Example:
// Example :: BleDiscDescFirst.Next.sb

// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

//

//Remote server has 1 prim service with 16 bit uuid and 1 characteristics
// which contains 8 descriptors, that are

// 5 uuids are 16 bit and 3 are 128 bit

// 3 of the 16 bit uuid are the same value OxDEAD and

// 2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF
//

// Server created using BleGATTcTblDiscDesc.sub invoked in OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,uuid$, sAttr,eAttr, cValAttr

//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup ()

DIM rc, adRpt$, addr$, scRpt$

rc=BleAdvRptInit (adRpt$, 2, 0, 10)

IF rc==0 THEN : rc=BleScanRptInit (scRpt$) : ENDIF

IF rc==0 THEN : rc=BleAdvRptsCommit (adRpt$,scRpt$) : ENDIF

https://www.lairdconnect.com/ 208 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

IF rc==0 THEN : rc=BleAdvertStart (0,addr$,50,0,0) : ENDIF
//open the GATT client with default notify/indicate ring buffer size
IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF
ENDFUNC rc
//
// Close connections so that we can run another app without problems
//
SUB CloseConnections ()
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()
ENDSUB

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
DIM uu$
conHndl=nCtx
IF nMsgID==1 THEN
PRINT "\n\n- Disconnected"
EXITFUNC O
ELSEIF nMsgID==0 THEN
PRINT "\n- Connected, so scan remote GATT Table for first service"
PRINT "\n- and a characeristic scan will be initiated in the event"
rc = BleDiscServiceFirst (conHndl,0,0)
IF rc==0 THEN
//wait for start and end handles for first primary service
WAITEVENT
PRINT "\n\nScan for descritors with uuid = OxDEAD"
uHndl = BleHandleUuidl6 (OxDEAD)
rc = BleDiscDescFirst (conHndl,uHndl, cValAttr)

IF rc == 0 THEN
//HandlerDescDisc () will exit with O when operation is complete
WAITEVENT
uu$ = "112233445566778899AABBCCDDEEFF00"

PRINT "\n\nScan for service with custom uuid ";uu$
uu$ = StrDehexize$ (uu$)
uHndl = BleHandleUuidl28 (uu$)
rc = BleDiscDescFirst (conHndl, uHndl, cValAttr)
IF rc==0 THEN
//HandlerDescDisc () will exit with O when operation is complete
WAITEVENT
ENDIF
ENDIF
ENDIF
CloseConnections ()
ENDIF
ENDFUNC 1

//
// EVDISCPRIMSVC event handler
//
FUNCTION HandlerPrimSvc (cHndl, svcUuid, sHndl,eHndl) AS INTEGER

PRINT "\nEVDISCPRIMSVC :"

PRINT " cHndl=";cHndl

PRINT " svcUuid=";integer.h' svcUuid

PRINT " sHndl=";sHndl

PRINT " eHndl=";eHndl

IF sHndl == 0 THEN
PRINT "\nPrimary Service Scan complete"
EXITFUNC O
ELSE
https://www.lairdconnect.com/ 209 Americas: +1-800-492-2320

© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

PRINT "\nGot first primary service so scan for ALL characteristics"
sAttr = sHndl
eAttr = eHndl
rc = BleDiscCharFirst (conHndl, 0, sAttr,eAttr)
IF rc != 0 THEN
PRINT "\nScan characteristics failed"
EXITFUNC O
ENDIF
ENDIF
endfunc 1

'/
// EVDISCCHAR event handler
'/
function HandlerCharDisc (cHndl, cUuid, cProp,hVal,isUuid) as integer

print "\nEVDISCCHAR :"

print " cHndl=";cHndl

print " chUuid=";integer.h' cUuid

print " Props=";cProp

print " valHndl=";hVal

print " ISvcUuid=";isUuid

IF hval == 0 THEN
PRINT "\nCharacteristic Scan complete"
EXITFUNC O

ELSE

PRINT "\nGot first characteristic service at handle ";hVal
PRINT "\nScan for ALL Descs"
cValAttr = hVal
rc = BleDiscDescFirst (conHndl, 0, cValAttr)
IF rc != 0 THEN
PRINT "\nScan descriptors failed"
EXITFUNC O
ENDIF
ENDIF
endfunc 1

"/
// EVDISCDESC event handler
"/
function HandlerDescDisc (cHndl,cUuid, hndl) as integer
print "\nEVDISCDESC"
print " cHndl=";cHndl
print " dscUuid=";integer.h' cUuid
print " dscHndl=";hndl
IF hndl == 0 THEN
PRINT "\nDescriptor Scan complete"
EXITFUNC O
ELSE
rc = BleDiscDescNext (cHndl)
IF rc !'= 0 THEN
PRINT "\nDescriptor scan abort"
EXITFUNC 0
ENDIF
ENDIF
endfunc 1

//
// Main () equivalent
//
ONEVENT EVBLEMSG CALL HndlrBleMsg
OnEvent EVDISCPRIMSVC call HandlerPrimSvc
OnEvent EVDISCCHAR call HandlerCharDisc
https://www.lairdconnect.com/ 210 Americas: +1-800-492-2320

© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions
User Guide

Laird l 2» CONNECTIVITY

OnEvent EVDISCDESC call HandlerDescDisc

//Register base uuids with the underlying stack, otherwise the services with the
//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN
uuid$ = "112233445566778899AABBCCDDEEFF0OQ"

uuid$ = StrDehexize$ (uuid$)

uHndl = BleHandleUuidl28 (uuid$)

uuid$ = "1122DEAD5566778899AABBCCDDBEEF00"

uuid$ = StrDehexize$ (uuid$)

uHndl = BleHandleUuidl28 (uuid$)

IF OnStartup ()==0 THEN
PRINT "\nAdvertising,
ELSE
PRINT "\nFailure OnStartup"
ENDIF

and GATT Client is open\n"

WAITEVENT
PRINT "\nExiting..."

Expected Output:

Advertising, and GATT Client is open

- Connected, so scan remote GATT Table for first service

- and a characeristic scan will be initiated in the event
EVDISCPRIMSVC cHnd1=3790 svcUuid=FEO1FE02 sHndl=1 eHndl=11

Got first primary service so scan for ALL characteristics
EVDISCCHAR cHnd1=3790 chUuid=FE01FC21 Props=2 valHndl=3 ISvcUuid=0
Got first characteristic service at handle 3

Scan for ALL Descs

EVDISCDESC
EVDISCDESC
EVDISCDESC
EVDISCDESC
EVDISCDESC
EVDISCDESC
EVDISCDESC
EVDISCDESC
EVDISCDESC
Descriptor

Scan for descritors with uuid =

EVDISCDESC
EVDISCDESC
EVDISCDESC
EVDISCDESC
Descriptor

cHnd1=3790
cHnd1=3790
cHnd1=3790
cHnd1=3790
cHnd1=3790
cHnd1=3790
cHnd1=3790

dscUuid=FEO1FD21
dscUuid=FC033344
dscUuid=FEO1DEAD
dscUuid=FBO4BEEF
dscUuid=FC033344
dscUuid=FEQO1FD23
dscUuid=FEO1DEAD
cHndl1=3790 dscUuid=FEO1DEAD
cHnd1=3790 dscUuid=00000000
Scan complete

0xDEAD
cHnd1=3790 dscUuid=FEO01DEAD
cHnd1=3790 dscUuid=FEQ1DEAD
cHnd1=3790 dscUuid=FEO01DEAD

dscHndl=4
dscHndl=5
dscHndl=6
dscHnd1l=7
dscHnd1=8
dscHnd1l=9
dscHnd1l=10
dscHndl=11
dscHnd1=0

dscHndl=6
dscHnd1l=10
dscHndl=11

cHnd1=3790 dscUuid=00000000
Scan complete

dscHnd1l=0

Scan for service with custom uuid 112233445566778899AABBCCDDEEFF00

EVDISCDESC
EVDISCDESC
EVDISCDESC
Descriptor

cHnd1=3790 dscUuid=FC033344 dscHndl=5
cHnd1=3790 dscUuid=FC033344 dscHndl=8
cHndl1=3790 dscUuid=00000000 dscHndl=0
Scan complete

- Disconnected

Exiting...

https://www.lairdconnect.com/

211

© Copyright 2020 Laird Connectivity, Inc.

All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

6.10.7 BleGattcFindChar

FUNCTION

This function facilitates an efficient way of locating the details of a characteristic if the UUID is known along with the UUID of
the service containing it. The results are delived in an EVFINDCHAR event message. If the GATT server table has multiple
instances of the same service/characteristic combination then this function works because, in addition to the UUID handles to
be searched for, it also accepts instance parameters which are indexed from 0. This means the fourth instance of a
characteristic with the same UUID in the third instance of a service with the same UUID is located with index values 3 and 2
respectively.

Given that the results are returned in an event message, a handler must be registered for the EVFINDCHAR event.

Depending on the size of the remote GATT server table and the connection interval, the search of the characteristic may take
many hundreds of milliseconds. While this is in progress, it is safe to do other non-GATT-related operations such as servicing
sensors and displays or any of the onboard peripherals.

Note: It is not currently possible to scan for characteristics in included services. This is a future enhancement.

BLEGATTCFINDCHAR (connHandle, svcUuidHndl, svcindex, charUuidHndI, charindex)

A typical pseudo code for finding a characteristic involves calling BleGATTcFindChar() which in turn will result in the
EVFINDCHAR event message and typically is as follows:

Register a handler for the EVFINDCHAR event message

On EVFINDCHAR event message
If Char Value Handle == 0 then
Characteristic not found
Else
Characteristic has been found

Call BleGATTcFindChar ()
If B1leGATTcFindChar () ok then Wait for EVFINDCHAR

Returns INTEGER, a result code.

The typical value is 0x0000, indicating a successful operation and it means an EVFINDCHAR
event message is thrown by the smartBASIC runtime engine containing the results. A non-zero
return value implies an EVFINDCHAR message is not thrown.

Arguments:

byVal nConnHandle AS INTEGER

This is the connection handle as returned in the on-connect event for the connection on which
the remote GATT server can be accessed. This is returned in the EVBLEMSG event message
with msgld == 0 and msgCitx is the connection handle.

byVal svcUuidHndl AS INTEGER

svcUuidHndl | Set this to the service UUID handle which is generated either by BleHandleUuid16() or
BleHandleUuid128() or BleHandleUuidSibling().

byVal svcindex AS INTEGER

svcindex | This is the instance of the service to look for with the UUID handle svcUuidHndl, where 0 is the
first instance, 1 is the second, and so on.

byVal charUuidHndl AS INTEGER

charUuidHndl | Set this to the characteristic UUID handle which is generated either by BleHandleUuid16() or
BleHandleUuid128() or BleHandleUuidSibling().

byVal charindex AS INTEGER

charindex | This is the instance of the characteristic to look for with the UUID handle charUuidHndl, where O
is the first instance, 1 is the second, and so on.

connHandle

https://www.lairdconnect.com/ 212 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

Example:

// Example :: BleGATTcFindChar.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

//

//Remote server has 5 prim services with 16 bit uuid and 3 with 128 bit uuids
// 3 of the 16 bit uuid are the same value OxDEAD and

// 2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF
//

// Server created using BleGATTcTblFindChar.sub invoked in OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl, uuid$, sIdx, cIdx

//
// Initialise and instantiate service, characteristic, start adverts

//
FUNCTION OnStartup ()

DIM rc, adRpt$, addr$, scRpt$
rc=BleAdvRptInit (adRpt$, 2, 0, 10)

IF rc==0 THEN : rc=BleScanRptInit (scRpt$) : ENDIF
IF rc==0 THEN : rc=BleAdvRptsCommit (adRpt$,scRpt$) : ENDIF
IF rc==0 THEN : rc=BleAdvertStart (0,addr$,50,0,0) : ENDIF

//open the GATT client with default notify/indicate ring buffer size

IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF
ENDFUNC rc
//
// Close connections so that we can run another app without problems
//

SUB CloseConnections ()
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()

ENDSUB

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)

DIM uu$, uHndS, uHndC

https://www.lairdconnect.com/ 213 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

conHndl=nCtx
IF nMsgID==1 THEN
PRINT "\n\n- Disconnected"
EXITFUNC O
ELSEIF nMsgID==0 THEN
PRINT "\n- Connected, so scan remote GATT Table for an instance of char"

uHndS = BleHandleUuidl6 (0xDEAD)

uus$ "112233445566778899AABBCCDDEEFF00"

uu$ StrDehexize$ (uu$)
uHndC = BleHandleUuidl28 (uu$)

sIdx 2

cIdx = 1 //valHandle will be 32
rc = BleGattcFindChar (conHndl,uHndS, sIdx, uHndC, cIdx)
IF rc==0 THEN
//BleDiscCharFirst () will exit with 0 when operation is complete
WAITEVENT
ENDIF
sIdx = 1
cIdx = 3 //does not exist
rc = BleGattcFindChar (conHndl, uHndS, sIdx, uHndC, cIdx)
IF rc==0 THEN
//BleDiscCharFirst () will exit with 0 when operation is complete
WAITEVENT
ENDIF
CloseConnections ()
ENDIF
ENDFUNC 1

'/
'/

function HandlerFindChar (cHndl, cProp,hVal, isUuid) as integer

print "\nEVFINDCHAR "
print " cHndl=";cHndl
print " Props=";cProp
print " valHndl=";hval
print " ISvcUuid=";isUuid
IF hVal == 0 THEN
PRINT "\nDid NOT find the characteristic"

ELSE

https://www.lairdconnect.com/ 214 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird ‘

) CONNECTIVITY
User Guide _)

PRINT "\nFound the characteristic at handle ";hvVal
PRINT "\nSvc Idx=";sIdx;" Char Idx=";cIdx
ENDIF

endfunc 0

//

// Main () equivalent

//

ONEVENT EVBLEMSG CALL HndlrBleMsg
OnEvent EVFINDCHAR call HandlerFindChar

//Register base uuids with the underlying stack, otherwise the services with the
//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN
uuid$ = "112233445566778899AABBCCDDEEFF0O0"

uuid$ = StrDehexize$ (uuid$)

uHndl = BleHandleUuidl128 (uuid$)

uuid$ = "1122DEAD5566778899AABBCCDDBEEF00"

uuid$ = StrDehexize$ (uuid$)

uHndl = BleHandleUuidl28 (uuid$)

IF OnStartup()==0 THEN

PRINT "\nAdvertising, and GATT Client is open\n"
ELSE

PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

Advertising, and GATT Client is open

- Connected, so scan remote GATT Table for an instance of char
EVFINDCHAR cHndl=866 Props=2 valHndl=32 ISvcUuid=0

Found the characteristic at handle 32

Svc Idx=2 Char Idx=1

EVFINDCHAR cHndl=866 Props=0 valHndl=0 ISvcUuid=0

Did NOT find the characteristic

- Disconnected
Exiting...

https://www.lairdconnect.com/ 215 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.10.8 BleGattcFindDesc

FUNCTION

This function facilitates an efficient way of locating the details of a descriptor if the UUID is known along with the UUID of the
service and the UUID of the characteristic containing it. The results are delivered in a EVFINDDESC event message. If the
GATT server table has multiple instances of the same service/characteristic/descriptor combination then this function works
because, in addition to the UUID handles to be searched for, it accepts instance parameters which are indexed from 0. This
means that the second instance of a descriptor in the fourth instance of a characteristic with the same UUID in the third
instance of a service with the same UUID is located with index values 1, 3, and 2 respectively.

Given that the results are returned in an event message, a handler must be registered for the EVFINDDESC event.

Depending on the size of the remote GATT server table and the connection interval, the search of the characteristic may take
many hundreds of milliseconds. While this is in progress, it is safe to do other non-GATT-related operations such as servicing
sensors and displays or any of the onboard peripherals.

Note: It is not currently possible to scan for characteristics in included services. This planned for a future release.

BLEGATTCFINDDESC (connHndl, svcUuHndlI, svcldx, charUuHndl, charldx,descUuHndI, descldx)

A typical pseudo code for finding a descrirptor involves calling BleGATTcFindDesc() which in turn results in the EVFINDDESC
event message and typically is as follows:

Register a handler for the EVFINDDESC event message

On EVFINDDESC event message
If Descriptor Handle == 0 then
Descriptor not found
Else
Descriptor has been found

Call BleGATTcFindDesc ()
If BleGATTcFindDesc () ok then Wait for EVFINDDESC

Returns INTEGER, a result code.

The typical value is 0x0000, indicating a successful operation and it means an EVFINDDESC event
message is thrown by the smartBASIC runtime engine containing the results. A non-zero return value
implies an EVFINDDESC message is not thrown

Arguments:

byVal connHndl AS INTEGER

This is the connection handle as returned in the on-connect event for the connection on which the remote
GATT server can be accessed. This is returned in the EVBLEMSG event message with msgld == 0 and
msgCtx is the connection handle.

byVal svcUuHndl AS INTEGER

svcUuHndl | Set this to the service UUID handle which is generated either by BleHandleUuid16() or
BleHandleUuid128() or BleHandleUuidSibling().

byVal svcldx AS INTEGER
svcldx | This is the instance of the service to look for with the UUID handle svcUuidHndI, where 0 is the first
instance, 1 is the second, and so on.

byVal charUuHndl AS INTEGER
charUuHndI | Set this to the characteristic UUID handle which is generated either by BleHandleUuid16() or
BleHandleUuid128() or BleHandleUuidSibling().

connHndl

https://www.lairdconnect.com/ 216 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

byVal charldx AS INTEGER
charldx | This is the instance of the characteristic to look for with the UUID handle charUuidHndl, where 0 is the first
instance, 1 is the second, and so on.

byVal descUuHndl AS INTEGER
descUuHndl | Set this to the descriptor uuid handle which is generated either by BleHandleUuid16() or
BleHandleUuid128() or BleHandleUuidSibling().

byVal descldx AS INTEGER
descldx | This is the instance of the descriptor to look for with the UUID handle charUuidHndl, where 0 is the first
instance, 1 is the second, and so on.

Example:

// Example :: BleGATTcFindDesc.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

//

//Remote server has 5 prim services with 16 bit uuid and 3 with 128 bit uuids
// 3 of the 16 bit uuid are the same value OxDEAD and

// 2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF
//

// Server created using BleGATTcTblFindDesc.sub invoked in OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl, uHndl,uuid$, sIdx, cIdx,dIdx

//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup ()

DIM rc, adRpt$, addr$, scRpt$

rc=BleAdvRptInit (adRpt$, 2, 0, 10)

IF rc==0 THEN : rc=BleScanRptInit (scRpt$) : ENDIF

IF rc==0 THEN : rc=BleAdvRptsCommit (adRpt$,scRpt$) : ENDIF

IF rc==0 THEN : rc=BleAdvertStart (0,addr$,50,0,0) : ENDIF

//open the GATT client with default notify/indicate ring buffer size

IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//

// Close connections so that we can run another app without problems
//

SUB CloseConnections ()

https://www.lairdconnect.com/ 217 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()

ENDSUB

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)

DIM uu$,uHndS, uHndC, uHndD

conHndl=nCtx

IF nMsgID==1 THEN
PRINT "\n\n- Disconnected"
EXITFUNC O

ELSEIF nMsgID==0 THEN
PRINT "\n- Connected, so scan remote GATT Table for ALL services"
uHndS = BleHandleUuidl6 (0xXDEAD)
uu$ = "112233445566778899AABBCCDDEEFF00"
uu$ = StrDehexize$ (uu$)
uHndC = BleHandleUuidl28 (uu$)
uu$ = "1122CODE5566778899AABBCCDDEEFF0O0"
uu$ = StrDehexize$ (uu$)

uHndD = BleHandleUuidl28 (uu$)

sIdx = 2
cldx = 1
dIdx = 1 // handle will be 37

rc = BleGattcFindDesc (conHndl, uHndS, sIdx, uHndC, cIdx, uHndD, dIdx)
IF rc==0 THEN

//BleDiscCharFirst () will exit with 0 when operation is complete

WAITEVENT
ENDIF
sIdx = 1
cIdx = 3
dIdx = 4 //does not exist

rc = BleGattcFindDesc (conHndl, ulHndS, sIdx, uHndC, cIdx, uHndD, dIdx)

IF rc==0 THEN
//BleDiscCharFirst () will exit with 0 when operation is complete
WAITEVENT

ENDIF

CloseConnections ()

https://www.lairdconnect.com/ 218 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

ENDIF
ENDFUNC 1

'/
"/

function HandlerFindDesc (cHndl,hndl) as integer

print "\nEVFINDDESC "
print " cHndl=";cHndl
print " dscHndl=";hndl
IF hndl == 0 THEN
PRINT "\nDid NOT find the descriptor"
ELSE
PRINT "\nFound the descriptor at handle ";hndl
PRINT "\nSvc Idx=";sIdx;" Char Idx=";cIdx;" desc Idx=";dIdx
ENDIF

endfunc 0

//

// Main () equivalent

//

ONEVENT EVBLEMSG CALL HndlrBleMsg
OnEvent EVFINDDESC call HandlerFindDesc

//Register base uuids with the underlying stack, otherwise the services with the
//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN
uuid$ = "112233445566778899AABBCCDDEEFFO0"

uuid$ = StrDehexize$ (uuid$)

uHndl = BleHandleUuidl28 (uuid$)

uuid$ = "1122DEAD5566778899AABBCCDDBEEF00"

uuid$ = StrDehexize$ (uuid$)

uHndl = BleHandleUuidl28 (uuid$)

IF OnStartup ()==0 THEN

PRINT "\nAdvertising, and GATT Client is open\n"
ELSE

PRINT "\nFailure OnStartup"

ENDIF

https://www.lairdconnect.com/ 219 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

WAITEVENT

PRINT "\nExiting..."

Expected Output:

Advertising, and GATT Client is open

- Connected, so scan remote GATT Table for ALL services
EVFINDDESC c¢cHndl=1106 dscHndl=37

Found the descriptor at handle 37

Svc Idx=2 Char Idx=1 desc Idx=1

EVFINDDESC cHndl=1106 dscHndl=0

Did NOT find the descriptor

- Disconnected
Exiting...

6.10.9 BleGattcRead/BleGattcReadData
FUNCTIONS

If the handle for an attribute is known, then these functions are used to read the content of that attribute from a specified offset
in the array of octets in that attribute value.

Given that the success or failure of this read operation is returned in an event message, a handler must be registered for the
EVATTRREAD event.

Depending on the connection interval, the read of the attribute may take many hundreds of milliseconds. While this is in
progress, it is safe to do other non-GATT-related operations such as servicing sensors and displays or any of the onboard
peripherals.

BleGATTcRead is used to trigger the procedure and BleGattcReadData is used to read the data from the underlying cache
when the EVATTRREAD event message is received with a success status.
BLEGATTCREAD (connHndl, attrHndl, offset)

A typical pseudo code for reading the content of an attribute calling BleGattcRead() which in turn results in the EVATTRREAD
event message and typically is as follows:

Register a handler for the EVATTRREAD event message

On EVATTRREAD event message
If GATT Status == 0 then
BleGattcReadData () //to actually get the data
Else
Attribute could not be read

Call BleGattcRead ()
If BleGattcRead () ok then Wait for EVATTRREAD

Returns INTEGER, a result code.

The typical value is 0x0000, indicating a successful operation and it means an EVATTRREAD event
message is thrown by the smartBASIC runtime engine containing the results. A non-zero return value
implies an EVATTRREAD message is not thrown.

Arguments:
byVal connHndl AS INTEGER
connHndl This is the connection handle as returned in the on-connect event for the connection on which the remote
GATT server can be accessed. This is returned in the EVBLEMSG event message with msgld == 0 and
msgCtx is the connection handle.
https://www.lairdconnect.com/ 220 Americas: +1-800-492-2320

© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

attrHndl byVal attrHndl AS INTEGER
Set to the handle of the attribute to read. It is a value in the range 1 to 65535.
offset byVal offset AS INTEGER
This is the offset from which the data in the attribute is to be read.

BLEGATTCREADDATA (connHndl, attrHndl, offset, attrData$)

This function is used to collect the data from the underlying cache when the EVATTRREAD event message has a success
GATT status code.

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful read.

Arguments:

byVal connHndl AS INTEGER

This is the connection handle as returned in the on-connect event for the connection on which the
remote GATT server can be accessed. This is returned in the EVBLEMSG event message with
msgld == 0 and msgCtx is the connection handle.

byRef attrHndl AS INTEGER
attrHndl | The handle for the attribute that was read is returned in this variable. It is the same as the one
supplied in BleGATTcRead, but supplied here so that the code can be stateless.

byRef offset AS INTEGER
offset | The offset into the attribute data that was read is returned in this variable. It is the same as the one
supplied in BleGATTcRead, but supplied here so that the code can be stateless.

byRef attrData$ AS STRING

connHndl

attrData . . . e
$ The attribute data which was read is supplied in this parameter.
Example:
// Example :: BleGATTcRead.sb

// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

//
//Remote server has 3 prim services with 16 bit uuid. First service has one
//characteristic whose value attribute is at handle 3 and has read/write props

//
// Server created using BleGattcTblRead.sub invoked in OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl, uHndl, nOff, atHndl

//

// Initialise and instantiate service, characteristic, start adverts

//
FUNCTION OnStartup ()

DIM rc, adRpt$, addr$, scRpt$
rc=BleAdvRptInit (adRpt$, 2, 0, 10)
IF rc==0 THEN : rc=BleScanRptInit (scRpt$) : ENDIF

https://www.lairdconnect.com/ 221 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

IF rc==0 THEN : rc=BleAdvRptsCommit (adRpt$,scRpt$) : ENDIF

IF rc==0 THEN : rc=BleAdvertStart (0,addr$,50,0,0) : ENDIF

//open the GATT client with default notify/indicate ring buffer size
IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//
// Close connections so that we can run another app without problems
//

SUB CloseConnections ()

rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()

ENDSUB

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)

DIM uHndA
conHndl=nCtx
IF nMsgID==1 THEN
PRINT "\n\n- Disconnected"
EXITFUNC O
ELSEIF nMsgID==0 THEN
PRINT "\n- Connected, so read attibute handle 3"
atHndl = 3
nOff = 0
rc=BleGattcRead (conHndl, atHndl, nOff)
IF rc==0 THEN
WAITEVENT
ENDIF
PRINT "\nread attibute handle 300 which does not exist"
atHndl = 300
nOff = 0
rc=BleGattcRead (conHndl, atHndl, nOff)
IF rc==0 THEN
WAITEVENT
ENDIF

CloseConnections ()

https://www.lairdconnect.com/ 222 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

ENDIF
ENDFUNC 1

'/
'//
function HandlerAttrRead (cHndl,aHndl,nSts) as integer

dim nOfst,nAhndl,at$
print "\nEVATTRREAD "
print " cHndl=";cHndl
print " attrHndl=";aHndl
print " status=";integer.h' nSts
if nSts == 0 then
print "\nAttribute read OK"

rc = BleGattcReadData (cHndl, nAhndl, nOfst,at$)

print "\nData = ";StrHexize$ (at$)
print " Offset= ";nOfst
print " Len=";strlen (at$)
print "\nhandle = ";nAhndl
else

print "\nFailed to read attribute"
endif

endfunc 0

//
// Main () equivalent
//
ONEVENT EVBLEMSG CALL HndlrBleMsg
OnEvent EVATTRREAD call HandlerAttrRead
IF OnStartup()==0 THEN

PRINT "\nAdvertising, and GATT Client is open\n"
ELSE

PRINT "\nFailure OnStartup"
ENDIF
WAITEVENT

PRINT "\nExiting..."

https://www.lairdconnect.com/ 223 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide La"'d 2» CONNECTIVITY

Expected Output:

Advertising, and GATT Client is open

- Connected, so read attibute handle 3

EVATTRREAD cHndl=2960 attrHndl=3 status=00000000
Attribute read OK

Data = 00000000 Offset= 0 Len=4

handle = 3

read attibute handle 300 which does not exist
EVATTRREAD cHndl=2960 attrHndl=300 status=00000101
Failed to read attribute

- Disconnected
Exiting...

6.10.10 BleGattcWrite

FUNCTION

If the handle for an attribute is known then this function is used to write into an attribute starting at offset 0. The
acknowledgement is returned via a EVATTRWRITE event message.

Given that the success or failure of this write operation is returned in an event message, a handler must be registered for the
EVATTRWRITE event.

Depending on the connection interval, the write to the attribute may take many hundreds of milliseconds. While this is in
progress, it is safe to do other non GATT related operations such as servicing sensors and displays or any of the onboard
peripherals.

BLEGATTCWRITE (connHndl, attrHndl, attrData$)

A typical pseudo code for writing to an attribute which results in the EVATTRWRITE event message and typically is as follows:

Register a handler for the EVATTRWRITE event message

On EVATTWRITE event message
If GATT Status == 0 then
Attribute was written successfully
Else
Attribute could not be written

Call BleGattcWrite ()
If BleGattcWrite () ok then Wait for EVATTRWRITE

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful read.
Arguments:
byVal connHndl AS INTEGER
connHnd This is the connection handle as returned in the on-connect event for the connection on which the remote
GATT server can be accessed. This is returned in the EVBLEMSG event message with msgld == 0 and
msgCtx is the connection handle.
byVal attrHndl AS INTEGER
attrHndl . . .
The handle for the attribute that is to be written to.
byRef attrData$ AS STRING
attrData$ The attribute data to write.
https://www.lairdconnect.com/ 224 Americas: +1-800-492-2320

© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

Example:

// Example :: BleGATTcWrite.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

//

//Remote server has 3 prim services with 16 bit uuid. First service has one
//characteristic whose value attribute is at handle 3 and has read/write props
//

// Server created using BleGATTcTblWrite.sub invoked in OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl, uHndl, atHndl

//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup ()

DIM rc, adRpt$, addr$, scRpt$
rc=BleAdvRptInit (adRpt$, 2, 0, 10)

IF rc==0 THEN : rc=BleScanRptInit (scRpt$) : ENDIF
IF rc==0 THEN : rc=BleAdvRptsCommit (adRpt$,scRpt$) : ENDIF
IF rc==0 THEN : rc=BleAdvertStart (0,addr$,50,0,0) : ENDIF

//open the GATT client with default notify/indicate ring buffer size
IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//
// Close connections so that we can run another app without problems
//

SUB CloseConnections ()

rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()
ENDSUB

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)

https://www.lairdconnect.com/ 225 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

DIM uHndA

conHndl=nCtx

IF nMsgID==1 THEN
PRINT "\n\n- Disconnected"
EXITFUNC O

ELSEIF nMsgID==0 THEN
PRINT "\n- Connected, so write to attibute handle 3"
atHndl = 3
at$="\01\02\03\04"
rc=BleGattcWrite (conHndl, atHndl, at$)
IF rc==0 THEN

WAITEVENT
ENDIF
PRINT "\nwrite to attibute handle 300 which does not exist"
atHndl = 300
rc=BleGattcWrite (conHndl,atHndl, at$)
IF rc==0 THEN
WAITEVENT

ENDIF
CloseConnections ()

ENDIF

ENDFUNC 1

"//
'/

function HandlerAttrWrite (cHndl,aHndl,nSts) as integer
dim nOfst,nAhndl, at$
print "\nEVATTRWRITE "
print " cHndl=";cHndl
print " attrHndl=";aHndl
print " status=";integer.h' nSts
if nSts == 0 then
print "\nAttribute write OK"
else
print "\nFailed to write attribute"
endif

endfunc 0

//

https://www.lairdconnect.com/ 226 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions
User Guide

La i rd 2» CONNECTIVITY

// Main () equivalent

//

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVATTRWRITE call HandlerAttrWrite

IF OnStartup ()==0 THEN

PRINT "\nAdvertising, and GATT Client is open\n"
ELSE

PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT
PRINT "\nExiting..."

Expected Output:

Advertising, and GATT Client is open

- Connected, so read attibute handle 3

EVATTRWRITE cHndl=2687 attrHndl=3 status=00000000
Attribute write OK

Write to attibute handle 300 which does not exist
EVATTRWRITE cHndl=2687 attrHndl=300 status=00000101
Failed to write attribute

- Disconnected
Exiting...

6.10.11 BleGattcWriteCmd

FUNCTION

If the handle for an attribute is known, then this function is used to write into an attribute at offset 0 when no acknowledgment
response is expected. The signal that the command has actually been transmitted and that the remote link layer has

acknowledged is by the EVNOTIFYBUF event.

Note: The acknowledgement received for the BleGattcWrite() command is from the higher level GATT layer. Do not

confuse this with the link layer ACK .

All packets are acknowledged at link layer level. If a packet fails to get through, then that condition manifests as a

connection drop due to the link supervision timeout.

Given that the transmission and link layer ACK of this write operation is indicated in an event message, a handler must be

registered for the EVNOTIBUF event.

Depending on the connection interval, the write to the attribute may take many hundreds of milliseconds. While this is in
progress, it is safe to do other non-GATT-related operations such as servicing sensors and displays or any of the onboard

peripherals.

https://www.lairdconnect.com/ 227
© Copyright 2020 Laird Connectivity, Inc.
All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

BLEGATTCWRITECMD (connHndl, attrHndl, attrData$)

The following is a typical pseudo code for writing to an attribute which results in the EVNOTIFYBUF event:

Register a handler for the EVNOTIFYBUF event message

On EVNOTIFYBUF event message
Can now send another write command

Call BleGattcWriteCmd ()
If BleGattcWrite () ok then Wait for EVNOTIFYBUF

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful read.
Arguments:
byVal connHndl AS INTEGER
connHnd This is the connection handle as returned in the on-connect event for the connection on which the
remote GATT Server can be accessed. This is returned in the EVBLEMSG event message with
msgld == 0 and msgCtx is the connection handle.
attrHndl byVal attrHndl AS INTEGER
The handle for the attribute that is to be written to.
byRef attrData$ AS STRING
attrData The attribute data to write.
Example:
// Example :: BleGATTcWriteCmd.sb

// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

//

//Remote server has 3 prim services with 16 bit uuid. First service has one
//characteristic whose value attribute is at handle 3 and has read/write props
//

// Server created using BleGATTcTblWriteCmd.sub invoked in OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl, uHndl, atHndl

//

// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup ()

DIM rc, adRpt$, addr$, scRpt$

rc=BleAdvRptInit (adRpt$, 2, 0, 10)

IF rc==0 THEN : rc=BleScanRptInit (scRpt$) : ENDIF

IF rc==0 THEN : rc=BleAdvRptsCommit (adRpt$,scRpt$) : ENDIF
IF rc==0 THEN : rc=BleAdvertStart (0,addr$,50,0,0) : ENDIF

https://www.lairdconnect.com/ 228 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

//open the GATT client with default notify/indicate ring buffer size
IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//

// Close connections so that we can run another app without problems
//

SUB CloseConnections ()

rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()

ENDSUB

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)

DIM uHndA
conHndl=nCtx
IF nMsgID==1 THEN
PRINT "\n\n- Disconnected"
EXITFUNC O
ELSEIF nMsgID==0 THEN
PRINT "\n- Connected, so write to attribute handle 3"
atHndl = 3
at$="\01\02\03\04"
rc=BleGattcWriteCmd (conHndl,atHndl,at$)
IF rc==0 THEN
WAITEVENT
ENDIF
PRINT "\n- write again to attribute handle 3"
atHndl = 3
at$="\05\06\07\08"
rc=BleGattcWriteCmd (conHndl, atHndl, at$)
IF rc==0 THEN
WAITEVENT
ENDIF
PRINT "\n- write again to attribute handle 3"
atHndl = 3
at$="\09\0A\0B\OC"

https://www.lairdconnect.com/ 229 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

rc=BleGattcWriteCmd (conHndl, atHndl, at$)
IF rc==0 THEN
WAITEVENT
ENDIF
PRINT "\nwrite to attribute handle 300 which does not exist"
atHndl = 300
rc=BleGattcWriteCmd (conHndl, atHndl, at$)
IF rc==0 THEN
PRINT "\nEven when the attribute does not exist an event will occur"
WAITEVENT
ENDIF
CloseConnections ()
ENDIF
ENDFUNC 1

'/
'/

function HandlerNotifyBuf () as integer
print "\nEVNOTIFYBUF Event"

endfunc 0 '//need to progress the WAITEVENT

//
// Main () equivalent
//
ONEVENT EVBLEMSG CALL HndlrBleMsg
OnEvent EVNOTIFYBUF call HandlerNotifyBuf
IF OnStartup ()==0 THEN

PRINT "\nAdvertising, and GATT Client is open\n"
ELSE

PRINT "\nFailure OnStartup"
ENDIF
WAITEVENT

PRINT "\nExiting..."

https://www.lairdconnect.com/ 230 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

) Lall'd J» CONNECTIVITY
User Guide

Expected Output:

Advertising, and GATT Client is open

- Connected, so write to attribute handle 3

EVNOTIFYBUF Event

- write again to attribute handle 3

EVNOTIFYBUF Event

- write again to attribute handle 3

EVNOTIFYBUF Event

write to attribute handle 300 which does not exist

Even when the attribute does not exist an event will occur
EVNOTIFYBUF Event

- Disconnected
Exiting...

6.10.12 BleGattcWritePrepare
FUNCTION

The Write Prepare and Write Execute functions are used to perform the Long Write procedure. Long Writes are used when the
value handle is known, but the length of the characteristic value is longer than can be sent in a single Write Request message.

BleGattcWritePrepare requests that the GATT server prepares to write the attribute value. This function can be used multiple
times as long as a BleGattcWriteExec function is used at the end to perform the full Long Write.

BLEGATTCWRITEPREPARE (connHndl, attrHndl, offset, attrData$)

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful read.
Arguments:
byVal connHndl AS INTEGER
connHnd This is the connection handle as returned in the on-connect event for the connection on which the
remote GATT Server can be accessed. This is returned in the EVBLEMSG event message with
msgld == 0 and msgCtx is the connection handle.
attrHndl byVal attrHndl AS INTEGER
The handle for the attribute that is to be written to.
fset byVal attrHndl AS INTEGER
offse
This is the offset at which the data in the attribute is to be written.
byRef attrData$ AS STRING
attrData$ The attribute data to write.
https://www.lairdconnect.com/ 231 Americas: +1-800-492-2320

© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.10.13 BleGattcWriteExec

FUNCTION

The BleGattcWriteExecute function is used by the GATT client to request the server to write or cancel the write of all the
values that have been prepare with the BleGattcWritePrepare function. It is used as the final step in a long write operation.

BLEGATTCWRITEEXEC (connHndl, Flags)

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful read.

Arguments:

byVal connHndl AS INTEGER
This is the connection handle as returned in the on-connect event for the connection on which the

connHnd| remote GATT Server can be accessed. This is returned in the EVBLEMSG event message with
msgld == 0 and msgCtx is the connection handle.
byVal Flags AS INTEGER
Flags

Cancel all prepared writes
1 Immediately write all pending prepared values

6.10.14 BleGattcNotifyRead

FUNCTION

A GATT server has the ability to notify or indicate the value attribute of a characteristic when enabled via the Client
Characeristic Configuration Descriptor (CCCD). This means data arrives from a GATT server at any time and must be
managed so that it can synchronised with the smartBASIC runtime engine.

Data arriving via a notification does not require GATT acknowledgements, however indications require them. This GATT client
manager saves data arriving via a notification in the same ring buffer for later extraction using the command
BleGattcNotifyRead(); for indications, an automatic GATT acknowledgement is sent when the data is saved in the ring buffer.
This acknowledgment happens even if the data is discarded because the ring buffer is full. If the data must not be
acknowledged when it is discarded on a full buffer, set the flags parameter in the BleGattcOpen() function where the GATT
client manager is opened.

In the case when an ACK is NOT sent on data discard, the GATT server is throttled and no further data is notified or indicated
by it until BleGattNotifyRead() is called to extract data from the ring buffer to create space and it triggers a delayed
acknowledgement.

When the GATT client manager is opened using BleGattcOpen(), it is possible to specify the size of the ring buffer. If a value
of 0 is supplied, then a default size is created. SYSINFO(2019) in a smartBASIC application or the interactive mode command
AT | 2019 returns the default size. Likewise SYSINFO(2020) or the command AT | 2020 returns the maximum size.

Data that arrives via notifications or indications get stored in the ring buffer. At the same time, a EVATTRNOTIFY event is
thrown to the smartBASIC runtime engine. This is an event, in the same way an incoming UART receive character generates
an event; that is, no data payload is attached to the event.

BLEGATTCNOTIFYREAD (connHndl, attrHndl, attrData$, discardCount)

The following is a typical pseudo code for handling and accessing natification/indication data:

Register a handler for the EVATTRNOTIFY event message
On EVATTRNOTIFY event
BleGattcNotifyRead () //to actually get the data

Process the data

Enable notifications and/or indications via CCCD descriptors

https://www.lairdconnect.com/ 232 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

Returns INTEGER, a result code. The typical value is 0x0000, indicating data was successful read.
Arguments:
connHndl byRef connHndl AS INTEGER
On exit, this is the connection handle of the GATT server that sent the notification or indication.
byRef attrHndl AS INTEGER
attrHndl

On exit, this is the handle of the characteristic value attribute in the notification or indication.

byRef attrData$ AS STRING
attrData$ | On exit, this is the data of the characteristic value attribute in the notification or indication. It is
always from offset O of the source attribute.

byRef discardedCount AS INTEGER

On exit, this should contain 0. It signifies the total number of notifications or indications that got
discardedCount | discared because the ring buffer in the GATT client manager was full.

If non-zero values are encountered, it is recommended that the ring buffer size be increased
by using BleGattcClose() when the GATT client was opened using BleGattcOpen().

Example:
// Example :: BleGATTcNotifyRead.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples
//
// Charactersitic at handle 15 has notify (16==cccd)

// Charactersitic at handle 18 has indicate (19==cccd)

DIM rc,at$,conHndl, uHndl, atHndl

//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup ()
DIM rc, adRpt$, addr$, scRpt$
rc=BleAdvRptInit (adRpt$, 2, 0, 10)

IF rc==0 THEN : rc=BleScanRptInit (scRpt$) : ENDIF
IF rc==0 THEN : rc=BleAdvRptsCommit (adRpt$,scRpt$) : ENDIF
IF rc==0 THEN : rc=BleAdvertStart (0,addr$,50,0,0) : ENDIF

//open the gatt client with default notify/indicate ring buffer size
IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF
ENDFUNC rc

//

// Close connections so that we can run another app without problems

//

SUB CloseConnections ()
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()

ENDSUB

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
conHndl=nCtx
IF nMsgID==1 THEN
PRINT "\n\n- Disconnected"
EXITFUNC O
ELSEIF nMsgID==0 THEN

https://www.lairdconnect.com/ 233 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

PRINT "\n- Connected, so enable notification for char with cccd at 16"
atHndl = 16
at$="\01\00"
rc=BleGattcWrite (conHndl,atHndl, at$)
IF rc==0 THEN
WAITEVENT
ENDIF
PRINT "\n- enable indication for char with cccd at 19"
atHndl = 19
at$="\02\00"
rc=BleGattcWrite (conHndl,atHndl, at$)
IF rc==0 THEN
WAITEVENT
ENDIF
ENDIF
ENDFUNC 1

'/
'//
function HandlerAttrWrite (cHndl,aHndl,nSts) as integer

dim nOfst,nAhndl, at$

print "\nEVATTRWRITE "

print " cHndl=";cHndl

print " attrHndl=";aHndl

print " status=";integer.h' nSts
if nSts == 0 then
print "\nAttribute write OK"
else
print "\nFailed to write attribute"
endif

endfunc 0

'//
'// Thrown when AT+CFG 213 = 0
'//
function HandlerAttrNotify () as integer
dim chndl, aHndl, att$,dscd
print "\nEVATTRNOTIFY Event \n"
rc=BleGattcNotifyRead (cHndl, aHndl,att$,dscd)
print "\n BleGattcNotifyRead()"
if rc==0 then
print " Connection Handle=";cHndl
print " Characteristic Handle=";aHndl
print " Data=";StrHexize$ (att$)
print " Discarded=";dscd
else
print " failed with ";integer.h' rc
endif
endfunc 1

'//
'// Thrown when AT+CFG 213 = 1
'//
function HandlerAttrNotifyEx (BYVAL hConn, BYVAL hChar, BYVAL nType, BYVAL nLen, BYVAL
Data$) as integer

print "\nEVATTRNOTIFYEX Event :: "

if nType == 1 then
print "Notification\n"
elseif nType == 2 then
print "Indication\n"
endif
https://www.lairdconnect.com/ 234 Americas: +1-800-492-2320

© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

print " Connection Handle=";hConn
print " Characteristic Handle=";hChar
print " Data=";Data$
endfunc 1
//
// Main () equivalent
//
ONEVENT EVBLEMSG CALL HndlrBleMsg
OnEvent EVATTRWRITE call HandlerAttrWrite
OnEvent EVATTRNOTIFY call HandlerAttrNotify // Thrown when AT+CFG 213 = 0
OnEvent EVATTRNOTIFYEX call HandlerAttrNotifyEx // Thrown when AT+CFG 213 = 1
IF OnStartup ()==0 THEN
PRINT "\nAdvertising, and Gatt Client is open\n"
ELSE
PRINT "\nFailure OnStartup"
ENDIF
WAITEVENT
PRINT "\nExiting..."

Expected Output:

Advertising, and GATT Client is open

- Connected, so enable notification for char with cccd at 16
EVATTRWRITE cHndl=877 attrHndl=16 status=00000000
Attribute write OK
- enable indication for char with cccd at 19
EVATTRWRITE cHndl=877 attrHndl=19 status=00000000
Attribute write OK
EVATTRNOTIFY Event

BleGATTcNotifyRead () cHndl=877 attrHndl=15 data=BAADCODE discarded=0
EVATTRNOTIFY Event

BleGATTcNotifyRead () cHndl=877 attrHndl=18 data=DEADBEEF discarded=0
EVATTRNOTIFY Event

BleGATTcNotifyRead () cHndl=877 attrHndl=15 data=BAADCODE discarded=0
EVATTRNOTIFY Event

BleGATTcNotifyRead () cHndl=877 attrHndl=18 data=DEADBEEF discarded=0

6.11 Attribute Encoding Functions

Data for characteristics are stored in value attributes, arrays of bytes. Multibyte Characteristic Descriptors content is stored
similarly. Those bytes are manipulated in smartBASIC applications using STRING variables.

The Bluetooth specification stipulates that multibyte data entities are stored in little endian format and so all data manipulation
is done similarly. Little endian means that a multibyte data entity is stored so that lowest significant byte is positioned at the
lowest memory address and likewise, when transported, the lowest byte is on the wire first.

This section describes all the encoding functions which allow those strings to be written in smaller bytewise subfields in a more
efficient manner compared to the generic STRXXXX functions that are made available in smartBASIC.

Note: CCCD and SCCD descriptors are special cases; they have two bytes which are treated as 16-bit integers. This is
reflected in smartBASIC applications so that INTEGER variables are used to manipulate those values instead of
STRINGS.

https://www.lairdconnect.com/ 235 Americas: +1-800-492-2320

© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940

All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

6.11.1 BleEncode8

FUNCTION

This function overwrites a single byte in a string at a specified offset. If the string is not long enough, then it is extended with
the new extended block uninitialized and then the byte specified is overwritten.

If the nindex is such that the new string length exceeds the maximum attribute length, this function fails. The maximum
attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth specification allows a length
between 1 and 512.

BLEENCODES (attr$, nData, nindex)

Returns ‘ INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:
byRef attr$ AS STRING

attr$. . . L .
This argument is the string that is written to an attribute.
nData byVal nData AS INTEGER
The least significant byte of this integer is saved. The rest is ignored.
byVal nindex AS INTEGER
This is the zero-based index into the string attr$ where the new data fragment is written to. If the string attr$
nindex | .) . .
is not long enough to fit the index plus the length of the fragment, it is extended. If the extended length
exceeds the maximum allowable length of an attribute (see SYSINFO(2013)), this function fails.
Example:
// Example :: BleEncode8.sb

// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc
DIM attr$

attr$="Laird"

PRINT "\nattr$=";attr$

//Remember: - 4 bytes are used to store an integer on the BL653
//write 'C' to index 2 -- '111' will be ignored
rc=BleEncode8 (attr$,0x11143,2)

//write 'A' to index O
rc=BleEncodeS8 (attr$, 0x41,0)

//write 'B' to index 1
rc=BleEncodeS8 (attr$, 0x42,1)

//write 'D' to index 3
rc=BleEncodeS8 (attr$, 0x44, 3)

//write 'y' to index 7 -- attr$ will be extended
rc=BleEncode8 (attr$, 0x67, 7)

PRINT "\nattr$ now = ";attr$

Expected Output:

attr$=Laird
attr$ now = ABCDA\00\00g

https://www.lairdconnect.com/ 236 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

6.11.2 BleEncodel6b

FUNCTION

This function overwrites two bytes in a string at a specified offset. If the string is not long enough, then it is extended with the
new extended block uninitialized and then the bytes specified are overwritten.

If the nindex is such that the new string length exceeds the maximum attribute length, this function fails. The maximum
attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth specification allows a length
between 1 and 512.

BLEENCODE16 (attr$, nData, nindex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
attr$ byRef attr$ AS STRING
This argument is the string that is written to an attribute.
nData byVal nData AS INTEGER

The two least significant bytes of this integer is saved. The rest is ignored.

byVal nindex AS INTEGER

This is the zero based index into the string attr$ where the new fragment of data is written. If the
nindex | string attr$ is not long enough to accommodate the index plus the length of the fragment, it is
extended. If the extended length exceeds the maximum allowable length of an attribute (see
SYSINFO(2013)), this function fails.

Example:

// Example :: BleEncodel6.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc, attrs$
attr$="Laird"

PRINT "\nattr$=";attr$

//write 'CD' to index 2

rc=BleEncodel6 (attr$, 0x4443,2)

//write 'AB' to index 0 - '2222' will be ignored
rc=BleEncodel6 (attr$, 0x22224241,0)

//write 'EF' to index 3

rc=BleEncodel6 (attr$, 0x4645,4)

PRINT "\nattr$ now = ";attr$

Expected Output:

attr$=Laird
attr$ now = ABCDEF

https://www.lairdconnect.com/ 237 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

6.11.3 BleEncode24

FUNCTION

This function overwrites three bytes in a string at a specified offset. If the string is not long enough, then it is extended with the
new extended block uninitialized and then the bytes specified are overwritten.

If the nindex is such that the new string length exceeds the maximum attribute length, this function fails. The maximum
attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth specification allows a length
between 1 and 512.

BLEENCODE?24 (attr$, nData, nindex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
attrs byRef attr$ AS STRIN_G o .
This argument is the string that is written to an attribute.
byVal nData AS INTEGER
nData

The three least significant bytes of this integer is saved. The rest is ignored.

byVal nindex AS INTEGER

This is the zero based index into the string attr$ where the new fragment of data is written. If the string
nindex | attr$ is not long enough to accommodate the index plus the length of the fragment, it is extended. If the
extended length exceeds the maximum allowable length of an attribute (see SYSINFO(2013)), this
function fails.

Example:

// Example :: BleEncode24.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc
DIM attr$: attr$="Laird"

//write 'BCD' to index 1
rc=BleEncode24 (attr$, 0x444342,1)
//write 'A' to index O
rc=BleEncode8 (attr$,0x41,0)
//write 'EF'to index 4

rc=BleEncodel6 (attr$, 0x4645,4)

PRINT "attr$=";attr$

Expected Output:

| attr$=ABCDEF

https://www.lairdconnect.com/ 238 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide La"'d 2» CONNECTIVITY

6.11.4 BleEncode32

FUNCTION

This function overwrites four bytes in a string at a specified offset. If the string is not long enough, then it is extended with the
new extended block uninitialized and then the bytes specified are overwritten.

If the nindex is such that the new string length exceeds the maximum attribute length, this function fails. The maximum
attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth specification allows a length
between 1 and 512.

BLEENCODE32(attr$,nData, nindex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
attr$ byRef attr$ A_S STRINQ o .
This argument is the string that is written to an attribute.
byVal nData AS INTEGER
nData

The four bytes of this integer is saved. The rest is ignored.

byVal nindex AS INTEGER

This is the zero based index into the string attr$ where the new fragment of data is written. If the
nindex | string attr$ is not long enough to accommodate the index plus the length of the fragment, it is
extended. If the extended length exceeds the maximum allowable length of an attribute (see
SYSINFO(2013)), this function fails.

Example:

// Example :: BleEncode32.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc
DIM attr$: attr$="Laird"

//write 'BCDE' to index 1
rc=BleEncode32 (attr$, 0x45444342,1)
//write 'A' to index 0

rc=BleEncode8 (attr$, 0x41,0)

PRINT "attr$=";attr$

Expected Output:

attr$=ABCDE

https://www.lairdconnect.com/ 239 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.11.5 BleEncodeFLOAT

FUNCTION

This function overwrites four bytes in a string at a specified offset. If the string is not long enough, it is extended with the new
extended block uninitialized and then the byte specified is overwritten.

If the nindex is such that the new string length exceeds the maximum attribute length, this function fails. The maximum
attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth specification allows a length
between 1 and 512.

BLEENCODEFLOAT (attr$, nMatissa, nExponent, nindex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byRef attr$ AS STRING

This argument is the string that is written to an attribute.

byVal nMantissa AS INTEGER

This value must be in the range -8388600 to +8388600 or the function fails. The data is written in little
endian so that the least significant byte is at the lower memory address.

attr$

Note: The range is not +/- 2048 because after encoding the following 2 byte values have special

) meaning:
nMatissa

0x007FFFFF NaN (Not a Number)

0x00800000 NRes (Not at this resolution)

0x007FFFFE + INFINITY

0x00800002 - INFINITY

0x00800001 Reserved for future use
byVal nExponent AS INTEGER
This value must be in the range -128 to 127 or the function fails.
byVal nindex AS INTEGER
This is the zero based index into the string attr$ where the new fragment of data is written. If the string
nindex | attr$ is not long enough to accommodate the index plus the length of the fragment, it is extended. If the
extended length exceeds the maximum allowable length of an attribute (see SYSINFO(2013)), this
function fails.

nExponent

Example:

// Example :: BleEncodeFloat.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc

DIM attr$: attrs$=""

//write 1234567 x 10"-54 as FLOAT to index 2
PRINT BleEncodeFLOAT (attr$,123456,-54,0)

//write 1234567 x 1071000 as FLOAT to index 2 and it will fail
//because the exponent is too large, it has to be < 127
IF BleEncodeFLOAT (attr$,1234567,1000,2) !=0 THEN

PRINT "\nFailed to encode to FLOAT"

ENDIF

https://www.lairdconnect.com/ 240 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

//write 10000000 x 10”0 as FLOAT to index 2 and it will fail
//because the mantissa is too large, it has to be < 8388600
IF BleEncodeFLOAT (attr$,10000000,0,2) !=0 THEN

PRINT "\nFailed to encode to FLOAT"

ENDIF

Expected Output:

0
Failed to encode to FLOAT
Failed to encode to FLOAT

6.11.6 BleEncodeSFLOATEX

FUNCTION

This function overwrites two bytes in a string at a specified offset as short 16-bit float value. If the string is not long enough, it is
extended with the extended block uninitialized. Then the bytes are overwritten.

If the nindex is such that the new string length exceeds the maximum attribute length, this function fails. The maximum
attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth specification allows a length
between 1 and 512.

BLEENCODESFLOATEX (attr$, nData, nindex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
Ref AS STRIN
attrs byRef attr$ AS S G

This argument is the string that is written to an attribute

byVal nData AS INTEGER

The 32 bit value is converted into a 2-byte IEEE-11073 16-bit SFLOAT consisting of a 12-bit signed
mantissa and a 4-bit signed exponent. This means a signed 32-bit value always fits in such a FLOAT
enitity, but there is a loss in significance to 12 from 32.

byVal nindex AS INTEGER

This is the zero-based index into the string attr$ where the new fragment of data is written. If the string

nindex | attr$ is not long enough to accommodate the index plus the length of the fragment, it is extended. If the
new length exceeds the maximum allowable length of an attribute (see SYSINFO(2013)), this function

fails.

nData

Example:

// Example :: BleEncodeSFloatEx.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc, mantissa, exp

DIM attr$: attrs$=""

//write 2,147,483,647 as SFLOAT to index 0
rc=BleEncodeSFloatEX (attr$,2147483647,0)

rc=BleDecodeSFloat (attr$,mantissa, exp,0)

https://www.lairdconnect.com/ 241 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

PRINT "\nThe number stored is ";mantissa;" x 10"";exp

Expected Output:

| The number stored is 214 x 1077

6.11.7 BleEncodeSFLOAT

FUNCTION

This function overwrites two bytes in a string at a specified offset as short 16-bit float value. If the string is not long enough, it is
extended with the new block uninitialized. Then the byte specified is overwritten.

If the nindex is such that the new string length exceeds the maximum attribute length, this function fails. The maximum
attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth specification allows a length
between 1 and 512.

BLEENCODESFLOAT (attr$, nMatissa, nExponent, nindex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byRef attr$ AS STRING
This argument is the string that is written to an attribute.

byVal nMantissa AS INTEGER
This must be in the range -2046 to +2046 or the function fails. The data is written in little endian so the
least significant byte is at the lower memory address.

Note: The range is not +/- 2048 because after encoding, the following 2-byte values have special

attr$

meaning:
nMatissa 0x007FF NaN (Not a Number)
0x00800 NRes (Not at this resolution)
0x007FE + INFINITY
0x00802 - INFINITY
0x00801 Reserved for future use

byVal nExponent AS INTEGER
This value must be in the range -8 to 7 or the function fails.

byVal nindex AS INTEGER

This is the zero based index into the string attr$ where the new fragment of data is written. If the string
nindex | attr$ is not long enough to accommodate the index plus the length of the fragment, it is extended. If the
new length exceeds the maximum allowable length of an attribute (see SYSINFO(2013)), this function
fails.

nExponent

Example:

// Example :: BleEncodeSFloat.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc

DIM attr$: attrs$=""

https://www.lairdconnect.com/ 242 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

SUB Encode (BYVAL mantissa, BYVAL exp)
IF BleEncodeSFloat (attr$,mantissa,exp,2) !=0 THEN
PRINT "\nFailed to encode to SFLOAT"
ELSE

PRINT "\nSuccess"

ENDIF
ENDSUB
Encode (1234, -4) //1234 x 10"-4
Encode (1234,10) //1234 x 10710 will fail because exponent too large
Encode (10000, 0) //10000 x 1070 will fail because mantissa too large

Expected Output:

Success
Failed to encode to SFLOAT
Failed to encode to SFLOAT

6.11.8 BleEncodeTIMESTAMP

FUNCTION

This function overwrites a 7-byte string into the string at a specified offset. If the string is not long enough, it is extended with
the new extended block uninitialized and then the byte specified is overwritten.

The 7-byte string consists of a byte each for century, year, month, day, hour, minute and second. If (year * month) is zero, it is
taken as “not noted” year and all the other fields are set zero (not noted).

For example, 5 May 2013 10:31:24 is represented as \14\0D\05\05\0A\1F\18.

If the nindex is such that the new string length exceeds the maximum attribute length, this function fails. The maximum length
of an attribute as implemented can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth specification
allows a length between 1 and 512.

Note: When the attr$ string variable is updated, the two byte year field is converted into a 16-bit integer. Hence \14\0D
gets converted to \DD\07

BLEENCODETIMESTAMP (attr$, timestamp$, nindex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byRef attr$ AS STRING

attr
$ This argument is the string that is written to an attribute.

byRef timestamp$ AS STRING
timestamp$ | This is a 7-byte string as described above. For example 5 May 2013 10:31:24 is entered
\14\0D\05\05\0A\1F\18.

byVal nindex AS INTEGER
This is the zero based index into the string attr$ where the new fragment of data is written. If the string attr$

nindex | . . L
is not long enough to accommodate the index plus the length of the fragment it is extended. If the new
length exceeds the maximum allowable length of an attribute (see SYSINFO(2013)), this function fails.
https://www.lairdconnect.com/ 243 Americas: +1-800-492-2320

© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

Example:

// Example :: BleEncodeTimestamp.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc, ts$

DIM attr$: attrs$=""

//write the timestamp <5 May 2013 10:31:24>

ts$="\14\0D\05\05\0A\1F\18"

PRINT BleEncodeTimestamp (attr$,ts$,0)

Expected Output:
I

6.11.9 BleEncodeSTRING

FUNCTION
This function overwrites a substring at a specified offset with data from another substring of a string. If the destination string is
not long enough, it is extended with the new block uninitialized. Then the byte is overwritten.

If the nindex is such that the new string length exceeds the maximum attribute length, this function fails. The maximum length
of an attribute as implemented can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth specification
allows a length between 1 and 512.

BleEncodeSTRING (attr$, nindex1 str$, nindex2, nLen)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byRef attr$ AS STRING

This argument is the string is written to an attribute

byVal nindexl AS INTEGER

This is the zero based index into the string attr$ where the new fragment of data is written If the string
nindex1 | attr$ is not long enough to accommodate the index plus the length of the fragment it is extended. If the
new length exceeds the maximum allowable length of an attribute (see SYSINFO(2013)), this function
fails.

byRef str$ AS STRING

This contains the source data which is qualified by the nindex2 and nLen arguments that follow.

byVal nindex2 AS INTEGER

nindex2 | This is the zero based index into the string str$ from which data is copied. No data is copied if this is
negative or greater than the string.

byVal nLen AS INTEGER

nLen | This specifies the number of bytes from offset nindex2 to be copied into the destination string. It is clipped
to the number of bytes left to copy after the index.

attr$

str$

Example:

// Example :: BleEncodeString.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc, attr$, ts$: ts$="Hello World"
//write "Wor" from "Hello World" to the attribute at index 2

rc=BleEncodeString (attr$,2,ts$, 6,3)

https://www.lairdconnect.com/ 244 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

PRINT attrs

Expected Output:

|\OO\OOWor

6.11.10 BleEncodeBITS

FUNCTION

This function overwrites some bits of a string at a specified bit offset with data from an integer which is treated as a bit array of
length 32. If the destination string is not long enough, it is extended with the new extended block uninitialized. Then the bits
specified are overwritten.

If the nindex is such that the new string length exceeds the maximum attribute length, this function fails. The maximum length
of an attribute as implemented can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth specification
allows a length between 1 and 512; hence the (nDstldx + nBitLen) cannot be greater than the maximum attribute length times
eight.

BleEncodeBITS (attr$, nDstldx, srcBitArr , nSrcldx, nBitLen)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byRef attr$ AS STRING

This is the string written to an attribute. It is treated as a bit array.

byVal nDstldx AS INTEGER

This is the zero based bit index into the string attr$, treated as a bit array, where the new fragment of
nDstldx | data bits is written. If the string attr$ is not long enough to accommodate the index plus the length of the
fragment it is extended. If the new length exceeds the maximum allowable length of an attribute (see
SYSINFO(2013)), this function fails.

byVal srcBitArr AS INTEGER

This contains the source data bits which is qualified by the nSrcldx and nBitLen arguments that follow.
byVal nSrcldx AS INTEGER

nSrcldx | This is the zero-based bit index into the bit array contained in srcBitArr from where the data bits is
copied. No data is copied if this index is negative or greater than 32.

byVal nBitLen AS INTEGER

nBitLen | This specifies the number of bits from offset nSrcldx to be copied into the destination bit array
represented by the string attr$. It is clipped to the number of bits left to copy after the index nSrcldx.

attr$

srcBitArr

Example:

// Example :: BleEncodeBits.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM attr$, rc, bA: bA=b'1110100001111
rc=BleEncodeBits (attr$,20,bA,7,5) : PRINT attr$ //copy 5 bits from index 7 to attrs$

Expected Output:
[\00\00\2A0\01

https://www.lairdconnect.com/ 245 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.12 Attribute Decoding Functions

Data in a characteristic is stored in a value attribute, a byte array. Multibyte characteristic descriptors content is stored
similarly. Those bytes are manipulated in smartBASIC applications using STRING variables.

Attibute data is stored in little endian format.

This section describes decoding functions that allow attribute strings to be read from smaller bytewise subfields more
efficiently than the generic STRXXXX functions that are made available in smart BASIC.

Note: CCCD and SCCD descriptors are special cases as they are defined as having two bytes which are treated as 16-
bit integers mapped to INTEGER variables in smartBASIC.

6.12.1 BleDecodeS8

FUNCTION

This function reads a single byte in a string at a specified offset into a 32-bit integer variable with sign extension. If the offset
points beyond the end of the string, then this function fails and returns zero.

BLEDECODESS (attr$, nData, nindex)

INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if the

Returns nindex parameter is positioned towards the end of the string.
Arguments:
attr$ byRef attr$ AS STRING
This references the attribute string from which the function reads.
nData byRef nData AS INTEGER

This references an integer to be updated with the 8-bit data from attr$, after sign extension.

byVal nindex AS INTEGER
nindex | This is the zero based index into the string attr$ from which the data is read. If the string attr$ is not long
enough to accommodate the index plus the number of bytes to read, this function fails.

Example:

// Example :: BleDecodeS8.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM chrHandle,vl, svcHandle, rc

DIM mdVal : mdVal = BleAttrMetadata(l,1,50,0,rc)
DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"
DIM uuid : uuid = 0x1853

//create random service just for this example

rc=BleServiceNew (1, BleHandleUuidl6 (uuid), svcHandle)

//create char and commit as part of service commited above
rc=BleCharNew (0x07,BleHandleUuidl6 (0x2A1C) ,mdval, 0,0)

rc=BleCharCommit (svcHandle, attr$, chrHandle)

rc=BleServiceCommit (svcHandle)

https://www.lairdconnect.com/ 246 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird 2> CONNECTIVITY

User Guide

rc=BleCharValueRead (chrHandle, attr$)

//read signed byte from index 2
rc=BleDecodeS8 (attr$,vl, 2)
PRINT "\ndata in Hex = 0x"; INTEGER.H'vl

PRINT "\ndata in Decimal = "; v1;"\n"

//read signed byte from index 6 - two's complement of -122
rc=BleDecodeS8 (attr$,vl, 6)
PRINT "\ndata in Hex = 0x"; INTEGER.H'vl

PRINT "\ndata in Decimal = "; vl;"\n"

Expected Output:

data in Hex = 0x00000002
data in Decimal = 2

data in Hex = OxXFFFFFF86
data in Decimal = -122

6.12.2 BleDecodeUS8

FUNCTION

This function reads a single byte in a string at a specified offset into a 32-bit integer variable without sign extension. If the
offset points beyond the end of the string, this function fails.

BLEDECODEUS (attr$, nData, nindex)

INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if

R
eturns the nindex parameter is positioned towards the end of the string.
Arguments:
attr$ byRef attr$ AS STRING
This references the attribute string from which the function reads.
byRef nData AS INTEGER
nData

This references an integer to be updated with the 8-bit data from attr$, without sign extension.

byVal nindex AS INTEGER
nindex | This is the zero based index into the string attr$ from which data is read. If the string attr$ is not long
enough to accommodate the index plus the number of bytes to read, this function fails.

Example:

// Example :: BleDecodeU8.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM chrHandle,vl, svcHandle, rc
DIM mdVal : mdVal = BleAttrMetadata(l,1,50,0,rc)
DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

https://www.lairdconnect.com/ 247 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

DIM uuid : uuid = 0x1853

rc=BleServiceNew (1, BleHandleUuidl6 (uuid), svcHandle)

rc=BleCharNew (0x07,BleHandleUuidl6 (0x2A1C),mdval, 0,0)

rc=BleCharCommit (svcHandle, attr$, chrHandle)

rc=BleServiceCommit (svcHandle)

rc=BleCharValueRead (chrHandle, attr$)

//read unsigned byte from index 2
rc=BleDecodeUS8 (attr$,vl, 2)
PRINT "\ndata in Hex = 0x"; INTEGER.H'vl

PRINT "\ndata in Decimal = "; v1;"\n"

//read unsigned byte from index 6
rc=BleDecodeUS8 (attr$,vl, 6)
PRINT "\ndata in Hex = 0x"; INTEGER.H'vl

PRINT "\ndata in Decimal = "; vl;"\n"

Expected Output:

data in Hex = 0x00000002
data in Decimal = 2

data in Hex = 0x00000086
data in Decimal = 134

6.12.3 BleDecodeS16

FUNCTION

This function reads two bytes in a string at a specified offset into a 32-bit integer variable with sign extension. If the offset
points beyond the end of the string then this function fails.

BLEDECODES16 (attr$, nData, nindex)

INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if

Returns the nindex parameter is positioned towards the end of the string.
Arguments:
attr$ byRef attr$ AS STRING
This references the attribute string from which the function reads.
byRef nData AS INTEGER
nData

This references an integer to be updated with the 2-byte data from attr$, after sign extension.

byVal nindex AS INTEGER
nindex | This is the zero based index into the string attr$ from which data is read. If the string attr$ is not long
enough to accommodate the index plus the number of bytes to read, this function fails.

https://www.lairdconnect.com/ 248 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide La"'d 2» CONNECTIVITY

Example:

// Example :: BleDecodeS16.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM chrHandle,vl, svcHandle, rc

DIM mdVal : mdVal = BleAttrMetadata(l,1,50,0,rc)
DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"
DIM uuid : uuid = 0x1853

rc=BleServiceNew (1, BleHandleUuidl6 (uuid), svcHandle)

rc=BleCharNew (0x07,BleHandleUuidl6 (0x2A1C),mdval, 0,0)

rc=BleCharCommit (svcHandle,attr$, chrHandle)

rc=BleServiceCommit (svcHandle)

rc=BleCharValueRead (chrHandle, attr$)

//read 2 signed bytes from index 2
rc=BleDecodeS16 (attrs$,vl,2)
PRINT "\ndata in Hex = 0x"; INTEGER.H'vl

PRINT "\ndata in Decimal = "; vl;"\n"

//read 2 signed bytes from index 6
rc=BleDecodeSl6 (attr$,vl, 6)
PRINT "\ndata in Hex = 0x"; INTEGER.H'vl

PRINT "\ndata in Decimal = "; v1;"\n"

Expected Output:

data in Hex = 0x00000302
data in Decimal = 770

data in Hex = OxFFFF8786
data in Decimal = -30842

https://www.lairdconnect.com/ 249 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.12.4 BleDecodeU1l16

This function reads two bytes from a string at a specified offset into a 32-bit integer variable without sign extension. If the
offset points beyond the end of the string, then this function fails.

BLEDECODEU16 (attr$, nData, nindex)

Returns INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if
the nindex parameter is positioned towards the end of the string.

Arguments:
attrs byBef attr$ AS STRIN_G _ _ _
This references the attribute string from which the function reads.
nData byRef nData AS INTEGER

This references an integer to be updated with the 2-byte data from attr$, without sign extension.
byVal nindex AS INTEGER

nindex | This is the zero based index into the string attr$ from which data is read. If the string attr$ is not long
enough to accommodate the index plus the number of bytes to read, this function fails.

Example:

// Example :: BleDecodeUlé6.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM chrHandle,vl,svcHandle, rc

DIM mdVal : mdVal = BleAttrMetadata(l,1,50,0,rc)
DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"
DIM uuid : uuid = 0x1853

rc=BleServiceNew (1, BleHandleUuidl6 (uuid), svcHandle)

rc=BleCharNew (0x07,BleHandleUuidl6 (0x2A1C),mdval, 0,0)

rc=BleCharCommit (svcHandle,attr$, chrHandle)

rc=BleServiceCommit (svcHandle)

rc=BleCharValueRead (chrHandle, attr$)

//read 2 unsigned bytes from index 2
rc=BleDecodeUl6 (attr$,vl, 2)
PRINT "\ndata in Hex = 0x"; INTEGER.H'vl

PRINT "\ndata in Decimal = "; v1;"\n"

//read 2 unsigned bytes from index 6
rc=BleDecodeUl6 (attr$,vl, 6)
PRINT "\ndata in Hex = 0x"; INTEGER.H'vl

PRINT "\ndata in Decimal = "; v1;"\n"

https://www.lairdconnect.com/ 250 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

Expected Output:

data in Hex = 0x00000302
data in Decimal = 770

data in Hex = 0x00008786
data in Decimal = 34694

6.12.5 BleDecodeS24

FUNCTION

This function reads three bytes in a string at a specified offset into a 32-bit integer variable with sign extension. If the offset
points beyond the end of the string, this function fails.

BLEDECODES24 (attr$, nData, nindex)

Returns INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if
the nindex parameter is positioned towards the end of the string.
Arguments:
attr$ byRef attr$ AS STRING
This references the attribute string from which the function reads.
nData byRef nData AS INTEGER

This references an integer to be updated with the 3-byte data from attr$, with sign extension.

byVal nindex AS INTEGER
nindex | This is the zero based index into the string attr$ from which data is read. If the string attr$ is not long
enough to accommodate the index plus the number of bytes to read, this function fails.

Example:

// Example :: BleDecodeS24.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM chrHandle,vl, svcHandle, rc

DIM mdVal : mdvVal = BleAttrMetadata(l,1,50,0,rc)
DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"
DIM uuid : uuid = 0x1853

rc=BleServiceNew (1, BleHandleUuidlé6 (uuid), svcHandle)

rc=BleCharNew (0x07,BleHandleUuidl6 (0x2A1C) ,mdval, 0,0)

rc=BleCharCommit (svcHandle, attr$, chrHandle)

rc=BleServiceCommit (svcHandle)

rc=BleCharValueRead (chrHandle, attr$)

//read 3 signed bytes from index 2

https://www.lairdconnect.com/

251
© Copyright 2020 Laird Connectivity, Inc.
All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird 2> CONNECTIVITY

User Guide

rc=BleDecodeS24 (attr$,vl, 2)
PRINT "\ndata in Hex = 0x"; INTEGER.H'vl

PRINT "\ndata in Decimal = "; vl;"\n"

//read 3 signed bytes from index 6
rc=BleDecodeS24 (attr$,vl, 6)
PRINT "\ndata in Hex = 0x"; INTEGER.H'vl

PRINT "\ndata in Decimal = "; vl;"\n"

Expected Output:

data in Hex = 0x00040302
data in Decimal = 262914

data in Hex = OxFF888786
data in Decimal = -7829626

6.12.6 BleDecodeU24

FUNCTION

This function reads three bytes from a string at a specified offset into a 32-bit integer variable without sign extension. If the
offset points beyond the end of the string, then this function fails.

BLEDECODEU24 (attr$, nData, nindex)

Returns INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if
the nindex parameter is positioned towards the end of the string.
Arguments:
attr$ byRef attr$ AS STRING
This references the attribute string from which the function reads.
nData byRef nData AS INTEGER

This references an integer to be updated with the 3-byte data from attr$, without sign extension.

byVal nindex AS INTEGER
nindex | This is the zero based index into the string attr$ from which data is read. If the string attr$ is not long
enough to accommodate the index plus the number of bytes to read, this function fails.

Example:

// Example :: BleDecodeU24.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM chrHandle,vl, svcHandle, rc

DIM mdVal : mdVal = BleAttrMetadata(l,1,50,0,rc)
DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"
DIM uuid : uuid = 0x1853

rc=BleServiceNew (1, BleHandleUuidl6 (uuid), svcHandle)

https://www.lairdconnect.com/ 252 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird 2> CONNECTIVITY

User Guide

rc=BleCharNew (0x07,BleHandleUuidl6 (0x2A1C),mdval, 0,0)

rc=BleCharCommit (svcHandle,attr$, chrHandle)

rc=BleServiceCommit (svcHandle)

rc=BleCharValueRead (chrHandle, attr$)

//read 3 unsigned bytes from index 2
rc=BleDecodeU24 (attr$,vl, 2)
PRINT "\ndata in Hex = 0x"; INTEGER.H'vl

PRINT "\ndata in Decimal = "; v1;"\n"

//read 3 unsigned bytes from index 6
rc=BleDecodeU24 (attr$,vl, 6)
PRINT "\ndata in Hex = 0x"; INTEGER.H'vl

PRINT "\ndata in Decimal = "; vl;"\n"

Expected Output:

data in Hex = 0x00040302
data in Decimal = 262914

data in Hex = 0x00888786
data in Decimal = 8947590

6.12.7 BleDecode32

FUNCTION

This function reads four bytes in a string at a specified offset into a 32-bit integer variable. If the offset points beyond the end of
the string, this function fails.

BLEDECODE32 (attr$, nData, nindex)

Returns INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if the
nindex parameter is positioned towards the end of the string.
Arguments:
attr$ byRef attr$ AS STRING
This references the attribute string from which the function reads.
byRef nData AS INTEGER
nData

This references an integer to be updated with the 3-byte data from attr$, after sign extension.

byVal nindex AS INTEGER
nindex | This is the zero based index into the string attr$ from which data is read. If the string attr$ is not long
enough to accommodate the index plus the number of bytes to read, this function fails.

https://www.lairdconnect.com/ 253 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

Example:

// Example :: BleDecode32.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM chrHandle,vl, svcHandle, rc

DIM mdvVal : mdVal = BleAttrMetadata(l,1,50,0,rc)
DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"
DIM uuid : uuid = 0x1853

rc=BleServiceNew (1, BleHandleUuidl6 (uuid), svcHandle)

rc=BleCharNew (0x07,BleHandleUuidl6 (0x2A1C) ,mdval, 0,0)

rc=BleCharCommit (svcHandle,attr$, chrHandle)

rc=BleServiceCommit (svcHandle)

rc=BleCharValueRead (chrHandle, attr$)

//read 4 signed bytes from index 2
rc=BleDecode32 (attr$,vl, 2)
PRINT "\ndata in Hex = 0x"; INTEGER.H'vl

PRINT "\ndata in Decimal = "; vl1;"\n"

//read 4 signed bytes from index 6
rc=BleDecode32 (attr$,vl, 6)
PRINT "\ndata in Hex = 0x"; INTEGER.H'vl

PRINT "\ndata in Decimal = "; vl;"\n"

Expected Output:

data in Hex = 0x85040302
data in Decimal = -2063334654

data in Hex = 0x89888786
data in Decimal = -1987541114

https://www.lairdconnect.com/ 254 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.12.8 BleDecodeFLOAT

FUNCTION

This function reads four bytes in a string at a specified offset into a couple of 32-bit integer variables. The decoding results in
two variables, the 24-bit signed mantissa and the 8-bit signed exponent. If the offset points beyond the end of the string, this
function fails.

BLEDECODEFLOAT (attrS$, nMatissa, nExponent, nindex)

Returns INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if
the nindex parameter is positioned towards the end of the string.
Arguments:
attr$ byRef attr$ AS STRING
This references the attribute string from which the function reads.
byRef nMantissa AS INTEGER
This is updated with the 24 bit mantissa from the 4-byte object.
If nExponent is 0, you must check for the following special values:
0x007FFFFF NaN (Not a Number)
nMantissa 0x00800000 NRes (Not at this resolution)
Ox007FFFFE + INFINITY
0x00800002 - INFINITY
0x00800001 Reserved for future use
nExponent byRef nExponent AS INTEGER
P This is updated with the 8-bit mantissa. If it is zero, check nMantissa for special cases as stated above.
byVal nindex AS INTEGER
nindex | This is the zero based index into the string attr$ from which data is read. If the string attr$ is not long
enough to accommodate the index plus the number of bytes to read, this function fails.

Example:

// Example :: BleDecodeFloat.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM chrHandle,vl,svcHandle,rc, mantissa, exp

DIM mdVal : mdvVal = BleAttrMetadata(l,1,50,0,rc)
DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"
DIM uuid : uuid = 0x1853

rc=BleServiceNew (1, BleHandleUuidl6 (uuid), svcHandle)
rc=BleCharNew (0x07,BleHandleUuidl6 (0x2A1C),mdval, 0,0)
rc=BleCharCommit (svcHandle,attr$, chrHandle)

rc=BleServiceCommit (svcHandle)

rc=BleCharValueRead (chrHandle, attr$)

https://www.lairdconnect.com/ 255 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

//read 4 bytes FLOAT from index 2 in the string
rc=BleDecodeFloat (attr$,mantissa, exp, 2)

PRINT "\nThe number read is ";mantissa;" x 10"";exp

//read 4 bytes FLOAT from index 6 in the string
rc=BleDecodeFloat (attr$,mantissa,exp, 6)

PRINT "\nThe number read is ";mantissa;"x 10"";exp

Expected Output:

The number read is 262914*107-123
The number read is -7829626*107-119

6.12.9 BleDecodeSFLOAT

FUNCTION

This function reads two bytes in a string at a specified offset into a couple of 32-bit integer variables. The decoding results in
two variables, the 12-bit signed mantissa and the 4-bit signed exponent. If the offset points beyond the end of the string then
this function fails.

BLEDECODESFLOAT (attr$, nMantissa, nExponent, nindex)

Returns INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if
the nindex parameter is positioned towards the end of the string.
Arguments:
attr$ byBef attr$ AS STRING . . .
This references the attribute string from which the function reads.
byRef nMantissa AS INTEGER
This is updated with the 12-bit mantissa from the two byte object.
If the nExponent is 0, you must check for the following special values:
) 0x007FFFFF NaN (Not a Number)
nMantissa 0x00800000 NRes (Not at this resolution)
0x007FFFFE + INFINITY
0x00800002 - INFINITY
0x00800001 Reserved for future use
byRef nExponent AS INTEGER
nExponent | This is updated with the 4-bit mantissa. If it is zero, check the nMantissa for special cases as stated
above.
byVal nindex AS INTEGER
nindex | This is the zero based index into the string attr$ from which data is read. If the string attr$ is not long
enough to accommodate the index plus the number of bytes to read, this function fails.

Example:

// Example :: BleDecodeSFloat.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM chrHandle,vl,svcHandle,rc, mantissa, exp

DIM mdVal : mdVal = BleAttrMetadata(l,1,50,0,rc)

https://www.lairdconnect.com/ 256 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"
DIM uuid : uuid = 0x1853

rc=BleServiceNew (1, BleHandleUuidl6 (uuid), svcHandle)

rc=BleCharNew (0x07,BleHandleUuidl6 (0x2A1C),mdval, 0,0)

rc=BleCharCommit (svcHandle,attr$, chrHandle)

rc=BleServiceCommit (svcHandle)

rc=BleCharValueRead (chrHandle, attr$)

//read 2 bytes FLOAT from index 2 in the string

rc=BleDecodeSFloat (attr$,mantissa,exp,2)

PRINT "\nThe number read is ";mantissa;" x 10"";exp

//read 2 bytes FLOAT from index 6 in the string

rc=BleDecodeSFloat (attr$,mantissa, exp, 6)

PRINT "\nThe number read is ";mantissa;"x 10"";exp

Expected Output:

The number read is 770 x 1070
The number read is 1926x 107-8

6.12.10 BleDecodeTIMESTAMP

FUNCTION

This function reads seven bytes from string an offset into an attribute string. If the offset plus seven bytes points beyond the
end of the string then this function fails.

The seven byte string consists of a byte each for century, year, month, day, hour, minute and second. If (year * month) is zero,
it is taken as “not noted” year and all the other fields are set zero (not noted).

For example: 5 May 2013 10:31:24 is represented in the source as \DD\07\05\05\0A\1F\18 and the year is be translated into a
century and year so that the destination string is \14\0D\0O5\05\0A\1F\18.

BLEDECODETIMESTAMP (attr$, timestamp$, nindex)

Returns INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if
the nindex parameter is positioned towards the end of the string.

Arguments:

attrs byRef attr$ AS STRING

This references the attribute string from which the function reads.
byRef timestamp$ AS STRING

timestamp$ | On exit this is an exact 7-byte string as described above.

For example: 5 May 2013 10:31:24 is stored as \14\0D\05\05\0A\1F\18

https://www.lairdconnect.com/ 257 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide La"'d 2» CONNECTIVITY

byVal nindex AS INTEGER
nindex This is the zero based index into the string attr$ from which data is read. If the string attr$ is not long
enough to accommodate the index plus the number of bytes to read, this function fails.

Example:

// Example :: BleDecodeTimestamp.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM chrHandle,vl, svcHandle,rc, ts$

DIM mdvVal : mdVal = BleAttrMetadata(l,1,50,0,rc)
//5th May 2013, 10:31:24

DIM attr$: attr$="\00\01\02\DD\07\05\05\0A\1F\18"
DIM uuid : uuid = 0x1853

rc=BleServiceNew (1, BleHandleUuidl6 (uuid), svcHandle)

rc=BleCharNew (0x07,BleHandleUuidl6 (0x2A1C),mdval, 0,0)

rc=BleCharCommit (svcHandle,attr$, chrHandle)

rc=BleServiceCommit (svcHandle)

rc=BleCharValueRead (chrHandle, attr$)

//read 7 byte timestamp from the index 3 in the string

rc=BleDecodeTimestamp (attr$, ts$, 3)

PRINT "\nTimestamp = "; StrHexize$ (ts$)

Expected Output:

Timestamp = 140D05050A1F18

https://www.lairdconnect.com/ 258 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.12.11 BleDecodeSTRING

FUNCTION

This function reads a maximum number of bytes from an attribute string at a specified offset into a destination string. Because
the output string can handle truncated bit blocks, this function does not fail.

BLEDECODESTRING (attr$, nindex, dst$, nMaxBytes)

Returns INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if
the nindex parameter is positioned towards the end of the string.
Arguments:
attr$ byRef attr$ AS STRING
This references the attribute string from which the function reads.
byVal nindex AS INTEGER
nindex

This is the zero based index into string attr$ from which data is read.

byRef dst$ AS STRING
dst$ | This argument is a reference to a string that is updated with up to nMaxBytes of data from the index
specified. A shorter string is returned if there are not enough bytes beyond the index.

byVal nMaxBytes AS INTEGER

nMaxBytes . o .
y This specifies the maximum number of bytes to read from attr$.
Example:
// Example :: BleDecodeString.sb

// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM chrHandle,vl, svcHandle,rc, ts$,decStr$

DIM mdVal : mdvVal = BleAttrMetadata(l,1,50,0,rc)
//"ABCDEFGHIJ"

DIM attr$: attr$="41\42\43\44\45\46\47\48\49\4A"
DIM uuid : uuid = 0x1853

rc=BleServiceNew (1, BleHandleUuidl6 (uuid), svcHandle)

rc=BleCharNew (0x07,BleHandleUuidl6 (0x2A1C) ,mdval, 0,0)

rc=BleCharCommit (svcHandle, attr$, chrHandle)

rc=BleServiceCommit (svcHandle)

rc=BleCharValueRead (chrHandle, attr$)

//read max 4 bytes from index 3 in the string

rc=BleDecodeSTRING (attr$, 3,decStr$, 4)
PRINT "\nd$=";decStrs$

https://www.lairdconnect.com/ 259 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

//read max 20 bytes from index 3 in the string - will be truncated
rc=BleDecodeSTRING (attr$, 3,decStr$, 20)
PRINT "\nd$=";decStr$

//read max 4 bytes from index 14 in the string - nothing at index 14
rc=BleDecodeSTRING (attr$,14,decStr$, 4)
PRINT "\nd$=";decStr$

Expected Output:

d$=CDEF
d$=CDEFGHIJ
ds=

6.12.12 BleDecodeBITS

FUNCTION

This function reads bits from an attribute string at a specified offset (treated as a bit array) into a destination integer object
(treated as a bit array of fixed size of 32). This implies a maximum of 32 bits can be read. Because the output bit array can
handle truncated bit blocks, this function does not fail.

BLEDECODEBITS (attr$, nSrcldx, dstBitArr, nDstldx, nMaxBits)

Returns INTEGER, the number of bits extracted from the attribute string. Can be less than the size expected if the
nSrcldx parameter is positioned towards the end of the source string or if nDstldx will not allow more to be
copied.

Arguments:

byRef attr$ AS STRING
attr$ | This references the attribute string from which to read, treated as a bit array. Hence a string of 10 bytes is
an array of 80 bits.

byVal nSrcldx AS INTEGER
nSrcldx | This is the zero based bit index into the string attr$ from which data is read. For example, the third bit in the
second byte is index number 10.

byRef dstBitArr AS INTEGER
dstBitArr | This argument references an integer treated as an array of 32 bits into which data is copied. Only the
written bits are modified.

byVal nDstldx AS INTEGER
This is the zero based bit index into the bit array dstBitArr to where the data is written.

byVal nMaxBits AS INTEGER
nMaxBits | This argument specifies the maximum number of bits to read from attr$. Due to the destination being an
integer variable, it cannot be greater than 32. Negative values are treated as zero.

nDstldx

Example:

// Example :: BleDecodeBits.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM chrHandle,vl, svcHandle,rc, ts$,decStrs$

DIM ba : ba=0

https://www.lairdconnect.com/ 260 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions
User Guide

La i rdT J» CONNECTIVITY

DIM mdvVal : mdVal = BleAttrMetadata(l,1,50,0,rc)
//"ABCDEFGHIJ"

DIM attr$: attr$="41\42\43\44\45\46\47\48\49\4A"
DIM uuid : uuid = 0x1853

rc=BleServiceNew (1, BleHandleUuidl6 (uuid), svcHandle)

rc=BleCharNew (0x07,BleHandleUuidl6 (0x2A1C) ,mdVval, 0,0)

rc=BleCharCommit (svcHandle,attr$, chrHandle)

rc=BleServiceCommit (svcHandle)

rc=BleCharValueRead (chrHandle, attr$)

//read max 14 bits from index 20 in the string to index 10
rc=BleDecodeBITS (attr$,20,ba,10,14)
PRINT "\nbit array = ", INTEGER.B' ba

//read max 14 bits from index 20 in the string to index 10
ba=0x12345678
PRINT "\n\nbit array = ", INTEGER.B' ba

rc=BleDecodeBITS (attr$,14000,ba,0,14)
PRINT "\nbit array now = ", INTEGER.B' ba
//ba will not have been modified because index 14000

//doesn't exist in attr$

Expected Output:

bit array = 00000000000100001101000000000000

bit array = 00010010001101000101011001111000
bit array now = 00010010001101000101011001111000

https://www.lairdconnect.com/ 261
© Copyright 2020 Laird Connectivity, Inc.
All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

6.13 Bonding and Bonding Database Functions

6.13.1 Bonding Functions

This section describes all functions related to the pairing and bonding manager which manages trusted devices. The database
stores information like the address of the trusted device along with the security keys. At the time of writing this manual a
maximum of 16 devices can be stored in the database and the command AT | 2012 or at runtime SYSINFO(2012) returns the
maximum number of devices that can be saved in the database

The type of information that can be stored for a trusted device is:

= The Bluetooth address of the trusted device (and it will be the non-resolvable address if the connection was originally
established by the central device using its resolvable key — like iOS devices).

= A 16 byte key, eDIV and eRAND for the long term key, called LTK. Up to 2 instances of this LTK can be stored. One
which is supplied by the central device and the other is the one supplied by the peripheral. This means in a connection,
the device will check which role (peripheral or central) it is connected as and pick the appropriate key for subsequent
encryption requests.

= The size of the long term key.

= Aflag to indictate if the LTK is authenticated — Man-In-The-Middle (MITM) protection.

= A 16 byte Indentity Resolving Key (IRK).

= A 16 byte Connection Signature Resolving Key (CSRK)

6.13.2 Bonding Table Types: Rolling & Persist

The bonding database contains two tables of bonds where both tables have the same structure in terms of what each record
can store and from a BLE perspective are equal in meaning.

For the purpose of clarity both in this manual and in smartBASIC, one table is called the ‘Rolling’ table and the other is called
‘Persistent’ table.

When a new bonding occurs the information is ALWAYS guaranteed to be saved in the ‘Rolling’ table, and if it is full, then the
oldest ‘Rolling’ bond is automatically deleted to make space for the new one.

The ‘Persistent’ table can only be populated by transferring a bond from the ‘Rolling’ table using the function
BleBondingPersistKey.

Use the function BleBondingEraseKey to delete a key and the function will look for it in both tables and when found delete it.
There is no need to know which table it belongs to when deleting. The database manager ensures there is only one instance
of a bond and so a device cannot occur in both.

The total number of bonds in the ‘Rolling’ and ‘Persistent’ tables will always be less than or equal to the capacity of the
database which is returned as explained above using AT | 2012 or SYSINFO(2012).

The number of ‘Rolling’ or ‘Persistent’ bonds (or maximum capacity) at any time can be obtained by calling the function
BleBondingStats. The ‘Persistent’ total is the difference between the ‘total’ and ‘rolling’ variables returned by that routine.

At any time, the capacity of the ‘Rolling’ table is the difference between the absolute total capacity and the number of bonds in
the ‘Persistent’ table. See the function BleBondingStats which returns information that can be used to determine this.

Bonds in the ‘Rolling’ table can be transferred to ‘Persistent’ unless the ‘Persist’ table is full. The capacity of the ‘Persistent’
table is returned by AT | 2043 or SYSINFO(2043) and at the time of writing this manual it is 12, which corresponds to 75% of
the total capacity.

If a bond exists and it happens to be in the ‘Persistent’ table and new bonding provides new information then the record is
updated.

If a bond exists and it happens to be in the ‘Rolling’ table and new bonding provides new information then the record is
updated and in addition, the age list is updated to that the device is marked the ‘youngest’ in the age list.

It is expected that a smartBASIC application wanting to manage trusted device will use a combination of the functions :
BleBondMngrGetinfo, BleBondinglsTrusted, BleBondingPersistKey and BleBondingEraseKey.

https://www.lairdconnect.com/ 262 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.13.3 Whisper Mode Pairing

BLE provides for simple secure pairing with or without man-in-the-middle attack protection. To enhance security while a pairing
is in progress the specification has provided for Out-of-Band pairing where the shared secret information is exchanged by
means other than the Bluetooth connection. That mode of pairing is currently not exposed.

Laird have provided an additional mechanism for bonding using the standard inbuilt simple secure pairing which is called
Whisper Mode pairing. In this mode, when a pairing is detected to be in progress, the transmit power is automatically reduced
so that the ‘bubble’ of influence is reduced and thus a proximity based enhanced security is achieved.

To take advantage of this pairing mechanism, use the function BleTxPwrWhilePairing() to reduce the transmit power for the
short duration that the pairing is in progress.
6.13.3.1 Events and Messages

The following bonding manager messages are thrown to the run-time engine using the EVBLEMSG message with the
following msgIDs:

10 A new bond has been successfully created

16 The device has successfully connected to a bonded master
17 The bonding information in the bonding database have been updated
22 Adding the paired device and its information to the bonding database has failed

6.13.4 BleBondingStats

FUNCTION

This function retrieves statistics of the bonding manager which consists of the total capacity as the return value and the rolling
and total bonds via the arguments. By implication, the number of persistent bonds is the difference between nTotal and
nRolling.

BLEBONDINGSTATS (nRolling, nPersistent)

Returns \ The total capacity of the database
Arguments:

byREF nRolling AS INTEGER

On return, this integer contains the total number of bonds in the rolling database.
byREF nPersistent AS INTEGER

On return, this integer contains the total number of bonds in the persistent database.

nRolling

nPersistent

Example:

// Example :: BleBondingStats.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

dim rc, nRoll, nPers

print "\n:Bonding Manager Database Statistics:"

print "\nCapacity: ","", BleBondingStats (nRoll, nPers)
print "\nRolling: ","",nRoll

print "\nPersistent: ",nPers

https://www.lairdconnect.com/ 263 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird 2> CONNECTIVITY

User Guide

Expected Output:

:Bonding Manager Database Statistics:

Capacity: 16
Rolling: 2
Persistent: 0

BLEBONDINGSTATS is a built-in function.

6.13.5 BleBondingPersistKey

FUNCTION

This function is used to make a bonding link key persistent. Its entry is moved from the rolling database to the persistent
database so that it is never automatically overwritten.

BLEBONDINGPERSISTKEY (bdAddrsS)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.
Arguments:
bdAddrs byREF bdAddr$ AS STRING
Bluetooth address in big endian. Must be exactly seven bytes long.
Example:
// Example :: BleBondingPersistKey.sb

// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

dim rc, i, j, k, adr$, inf

'//Loop through the bonding manager. Make all entries persistent
for i=0 to BleBondingStats (j, k)
rc=BleBondMngrGetInfo (i,adr$,inf)
if rc==0 then
rc=BleBondingPersistKey (adr$)
print "\n(";i;") : ";StrHexize$ (adr$);" Now Persistent"
endif

next

Expected Output:

(0) : 01lF63627A60BEA Now Persistent
(1) : O01DBCFCF14498D Now Persistent

BLEBONDINGPERSISTKEY is a built-in function.

https://www.lairdconnect.com/ 264 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.13.6 BleBondinglsTrusted

FUNCTION

This function is used to check if a device identified by the address is a trusted device which means it exists in the bonding
database.

BLEBONDINGISTRUSTED (addrS, fAsCentral, keylnfo, rollingAge, rollingCount)

Returns INTEGER: Is 0 if not trusted, otherwise it is the length of the long term key (LTK)
Arguments

byRef addr$ AS STRING
This is the address of the device for which the bonding information is to be checked.
If this a resolvable address and the device is trusted, then on exit this variable is replaced with the
static address that was supplied at pairing time.
fAsCentral | Setto O if the device is to be trusted as a peripheral and non-zero if to be trusted as central.
This is a bit mask with bit meanings as follows:
This specifies the write rights and shall have one of the following values:

Bit O Set if MITM is authenticated

Bit 1 Set if it is a rolling bond and can be automatically deleted if the database is full and a new
keylInfo bonding occurs

Bit 2 Set if an IRK (identity resolving key) exists

Bit 3 Set if a CSRK (connection signing resolving key) exists

Bit 4 Set if LTK as slave exists

Bit 5 Set if LTK as master exists
If the value is <= 0, this is not a rolling device.

addr$

rollingAge S L
979 1 implies it is the newest bond, 2 implies it is the second newest bond, and so on.
. On exit this will contain the total number of rolling bonds. This provides some context with regards to
rollingCount . . ; .
how old this device is compared to other bonds in the rolling group.
Example:
// Example :: BleBondingIsTrusted.sb

// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples
DIM rc, addr$, realaddr$, Central, KeyInfo, Age, Count

addr$ = "000016A4123456"
realaddr$ = strdehexize$ (addr$)

print "Address: ";addr$;"\n"
rc = BleBondingIsTrusted (realaddr$, Central, KeyInfo, Age, Count)
print "Is Trusted: ";rc;"\n"

if (rc != 0) then
//Output details
if (Central == 0) then
print "Peripheral"
elseif (Central == 1) then
print "Central"
endif
print " device, keyinfo: ";integer.b'KeyInfo
print " Age: ";Age;" Count: ";count;"\n"

endif

https://www.lairdconnect.com/ 265 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

Expected Output: (if bond is present)

Address: 000016RA4123456
Is Trusted: 16
Peripheral device, keyinfo: 00000000000000000000000000110110 Age: 1 Count: 1

Expected Output: (if there is no bond)

Address: 000016RA4123456

Is Trusted: 0

BLEBONDINGISTRUSTED is a built-in function.

6.13.7 BleBondingEraseKey

FUNCTION

This function is used to erase a link key from the database for the address specified.

BLEBONDINGERASEKEY (bdAddrs$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

bdAddr$ | byREF bdAddr$ AS STRING
Bluetooth address in big endian. Must be exactly seven bytes long.

Example:

// Example :: BleBondingEraseKey.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

dim rc, i, adr$, inf

//delete link key at index 0
rc=BleBondMngrGetInfo (0,adr$, inf) //get the BT address
rc=BleBondingEraseKey (adr$)
if rc==0 then

print "\nLink key for device ";StrHexize$ (adr$);" erased"
ellse

print "\nError erasing link key ";integer.h'rc

endif

Expected Output:

Link key for device 01FA84D748D903 erased

BLEBONDINGERASEKEY is a built-in function.

https://www.lairdconnect.com/ 266 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide La"'d 2» CONNECTIVITY

6.13.8 BleBondingEraseAll
FUNCTION

This function is used to erase all bondings in the database.

Note: Calling this function when the connection supervision timeout is 100ms may cause a disconnection. The reason for
this is that calling this function may prevent the radio sending ACK packets to the remote device within the
supervision timeout. The supervision timeout is set at BleConnect or at BleSetCurConnParams.

BLEBONDINGERASEALL ()

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Example:
// Example :: BleBondingEraseAll.sb

// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

dim rc

//Erase all bondings in database
rc=BleBondingEraseAll ()
if rc==0 then

print "\nBonding database cleared"

endif

Expected Output:

| Bonding database cleared

BLEBONDINGERASEALL is a built-in function.

6.13.9 BleBondMngrGetinfo
FUNCTION

This function retrieves the Bluetooth address and other information from the trusted device database via an index.

Note: Do not rely on a device in the database mapping to a static index. New bondings change the position in the
database.

BLEBONDMNGRGETINFO (nindex, addr$, nExtralnfo)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nindex | byVal nindex AS INTEGER
This is an index into the database, less than the value returned by SYSINFO(2012).
addr$ | byRef addr$ AS STRING
On exit, if nindex points to a valid entry in the database, this variable contains a Bluetooth address exactly
seven bytes long. The first byte identifies public or private random address. The next six bytes are the
address.

https://www.lairdconnect.com/ 267 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

nExtralnfo byRef nExtralnfo AS INTEGER

On exit, if nindex points to a valid entry in the database, this variable contains a composite integer value
where the lower 16 bits are for internal use and should be treated as opaque data. Bit 17 is set if the IRK
(Identity Resolving Key) exists for the trusted device and bit 18 is set if the CSRK (Connection Signing
Resolving Key) exists for the trusted device.

Example:

// Example :: BleBondMngrGetInfo.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

#define BLE_INV_ INDEX 24619
DIM rc, addr$, exInfo

rc = BleBondMngrGetInfo (0,addr$,exInfo) //Extract info of device at index 0

IF rc==0 THEN
PRINT "\nBluetooth address: ";addr$
PRINT "\nInfo: ";exInfo

ELSEIF rc==BLE INV INDEX THEN
PRINT "\nInvalid index"

ENDIF

Expected Output when valid entry present in database:

Bluetooth address: \00\BC\B1\F3x3\AB
Info: 97457

Expected Output with invalid index:

| Invalid index

6.14 Security Manager Functions

The following is a high level overview of Bluetooth Low Energy pairing/authentication and it is encouraged that the reader
access resources on the internet which give further details, like for example
https://developer.bluetooth.org/TechnologyOverview/Pages/LE-Security.aspxhttp://www.nfc.cc/technology/nfc/

Pairing is the process of exchanging security keys between two connected devices to establish trust and authenticate the
connection between the two devices. The exchanged keys can be used to encrypt the connection to safeguard against
passive eavesdropping. Pairing in versions 4.0 and 4.1 of the Buetooth core specification is exposed through Secure Simple
Pairing, which is now referred to as Legacy pairing. Security is now greatly enhanced with the release of the 4.2 specification
due to the introduction of the LE Secure Connections pairing model. In this model, Elliptic Curve Diffie-Hellman (ECDH)
algorithm is used for the key exchange process where the two parties can compute a shared secret without exchanging it over
the BLEIink.

This section describes routines which manage all aspects of BLE security such as 10 capabilities, Passkey exchange, OOB
data, and bonding requirements.

https://www.lairdconnect.com/ 268 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

https://developer.bluetooth.org/TechnologyOverview/Pages/LE-Security.aspx
http://www.nfc.cc/technology/nfc/

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

6.14.1 Events and Messages
6.14.1.1 EVBLEMSG

The following security manager messages are thrown to the run-time engine using the EVBLEMSG message with the
following msgIDs:

9 Pairing in progress and display Passkey supplied in msgCtx.

10 A new bond has been successfully created

11 Pairing in progress and authentication key requested. Type of key is in msgCtx.
msgCtx is 1 for passkey_type which is a number in the range 0 to 999999 and 2 for OOB key which is a
16 byte key.

18 The connection has been successfully encrypted

20 The connection has been unencrypted

26 Authentication/pairing has failed

27 LE Secure Connections pairing has been successfully established

28 OOB data has been requested by the peer device during LE Secure Connections pairing

To submit a passkey, use the function BLESECMNGRPASSKEY.

6.14.1.2 EVLESCKEYPRESS
This event message is thrown when the BL653 receives notifications that the peer device is performing keypresses during
passkey entry in an LE Secure Connections pairing. This event comes with two parameters:

= Connection handle

= Keypress type

0 Passkey entry started

1 Passkey digit entered

2 Passkey digit erased

3 Passkey cleared

4 Passkey entry completed

See example for BleSecMngrLescKeypressNotify.

6.14.1.3 EVBLE PASSKEY
This event is thrown when there is BLE pairing in progress that requires the entry/acceptance of a passkey. The event
includes the following parameters:-

= Connection handle

= The passkey that is thrown by the stack, which should then be accepted or entered by the remote device.

= Flags parameter that is reserved for future use.

Example:

//Example :: BleSecMngrPasskey.sb

// Definitions

#define BLE EVBLEMSGID CONNECT 0 // nCtx = connection handle

#define BLE EVBLEMSGID DISCONNECT 1 // nCtx = connection handle

#define BLE EVBLEMSGID NEW_ BOND 10 // nCtx = connection handle

#define BLE EVBLEMSGID UPDATED BOND 17 // nCtx = connection handle

#define BLE EVBLEMSGID ENCRYPTED 18 // nCtx = connection handle

#define BLE EVBLEMSGID AUTHENTICATION FAILED 26 // nCtx = connection handle

https://www.lairdconnect.com/ 269 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940

All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

#define BLE EVBLEMSGID LESC PAIRING 27 // nCtx = connection handle

// Variable Declaration
DIM rc, connHandle
DIM addr$: addrs$=""

FUNCTION HandlerBleMsg (BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER) AS INTEGER
SELECT nMsgId
CASE BLE EVBLEMSGID CONNECT
connHandle = nCtx
PRINT "## Ble Connection :: Handle=";integer.h' nCtx;"\n"

CASE BLE EVBLEMSGID DISCONNECT
PRINT "## Disconnected :: Handle=";integer.h' nCtx;"\n"
EXITFUNC O

CASE BLE EVBLEMSGID ENCRYPTED

PRINT "## Encrypted Connection :: Handle=";integer.h' nCtx;"\n"
CASE BLE EVBLEMSGID NEW BOND

PRINT "## New Bond :: Handle=";integer.h' nCtx;"\n"
CASE BLE EVBLEMSGID LESC PAIRING

PRINT "## LESC Pairing :: Handle=";integer.h' nCtx;"\n"
CASE BLE EVBLEMSGID AUTHENTICATION FAILED
PRINT "## Pairing Failed :: Handle=";integer.h' nCtx;"\n"
CASE ELSE
// Do nothing
ENDSELECT
ENDFUNC 1
e
// Pairing attempt in progress - Passkey needs to be displayed
s

Function HandlerBlePasskey (BYVAL nConnHandle, BYVAL nPasskey, BYVAL nFlags)
// The following passkey should be entered by remote

print "## Pairing Attempt :: Handle=";integer.h' nConnHandle;"\n"

print "## Please enter the following passkey: ";nPasskey;"\n"
Endfunc 1
A R
// Enable synchronous event handlers
A e i St
ONEVENT EVBLEMSG CALL HandlerBleMsg

ONEVENT EVBLE PASSKEY CALL HandlerBlePasskey

// Set pairing IO capability to Display.
// Remote pairing IO capability should be keyboard
rc = BleSecMngrIoCap (3)

// Start advertising

IF BleAdvertStart (0,addr$, 25, 60000,0)==0 THEN
PRINT "## Adverts Started\n"
PRINT "## Make a connection to the BL653\n"

ELSE
PRINT "## Advertisement not successfull\n"
ENDIF
WAITEVENT
https://www.lairdconnect.com/ 270 Americas: +1-800-492-2320

© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

Expected Output:

Adverts Started
Make a connection to the BL653

Ble Connection :: Handle=0001FFO00

Pairing Attempt :: Handle=0001FFO00

Please enter the following passkey: 242652
Encrypted Connection :: Handle=0001FF00
LESC Pairing :: Handle=0001FF00

New Bond :: Handle=0001FF00

6.14.2 BleSecMngrlLescPairingPref
FUNCTION

This function is used to set LE Secure connections to be the preferred pairing model. Both devices must support LE Secure
Connections in order for it to be used during pairing.

BLESECMNGRLESCPAIRINGPREF (nLescPairingPref)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments:

byVal nJustWorksConf AS INTEGER.

If set to 0, legacy pairing is used. If set to 1, LE Secure Connections with diffie-hellman
key exchange is used as the pairing model. The default pairing model is LE Secure
Connections pairing.

nLescPairingPref

See example for BlePair().

6.14.3 BlePair

FUNCTION

This routine is used to induce the module to pair with the peer and to specify whether to bond with the peer by storing pairing
information in the bonding manager. This function is likely to be used if a write attempt to an attribute fails with a status code
such as 0x105. See EvAttrWrite and EvAttrRead.

BLEPAIR (hConn, nSave)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byRef hConn AS INTEGER.

hConn | This is the connection handle provided in the EVBLEMSG(0) message which informs the stack
that a connection had been established.

byVal nSave AS INTEGER

This flag sets whether or not to bond.

nSave Value Description
0 Do not store pairing information (don’t bond)
1 Store pairing information (bond)
Example:
// Example :: BlePair.sb

// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

https://www.lairdconnect.com/ 271 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

dim rc, pr$, hC, hDesc

dim s$: s$ = "\02\00" //value to write to cccd to enable indications

//This example app was tested with a BL653 running the health thermometer sensor sample
app which requires bonding.

//It connects, tries to read from the temperature characteristic and then initiates a
bonding procedure when it fails.

#define GATT SERVER ADDRESS "\0I\F6\36\27\A6\0B\EA"

#define AUTHENTICATION REQUIRED 0x0105

#define SERVICE UUID 0x1809

#define CHAR UUID Ox2alc

#define DESC_UUID 0x2902

L

'// For debugging

'// ——- rc = result code
'// -—- 1n = line number
l// __

Sub AssertRC (rc, 1n)

if rc!=0 then

print "\nFail :";integer.h' rc;" at tag ";1ln
endif
EndSub
L A —
'// This handler is called when there is a significant BLE event
L A —

function HndlrBleMsg (byval nMsgId as integer, byval nCtx as integer)
select nMsgId
case 0
hC = nCtx
print "\nConnected, Finding Temp Measurement Char"

rc=BleGattcFindDesc (nCtx, BleHandleUuidl6 (SERVICE UUID), O,
BleHandleUuidl6 (CHAR UUID), 0, BleHandleUuidl6 (DESC UUID), 0)

AssertRC (rc, 35)

case 1
print "\n\n --- Disconnected"
case 10
https://www.lairdconnect.com/ 272 Americas: +1-800-492-2320

© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

print "\nNew bond created"
print "\n\nAttempting to enable indications again"
rc=BleGattcWrite (hC, hDesc, s$)
AssertRC (rc, 58)
case 11
print "\nPair request: Accepting"
rc=BleAcceptPairing (hC,1)
AssertRC (rc, 52)
print "\nPairing in progress"
case 17
print "\nNew pairing/bond has replaced old key"
case 18
print "\nConnection now encrypted"
case else
endselect

endfunc 1

function HndlrFindDesc (hConn, hD)
if hD==0 then

print "\nCCCD not found"
exitfunc 0

endif

hDesc = hD

print "\nTemp Measurement Char CCCD Found. Attempting to enable indications"
rc=BleGattcWrite (hConn, hDesc, s$)

AssertRC (rc, 58)

endfunc 1

function HndlrAttrWriteExit (hConn, hAttr, nSts)

endfunc 0

https://www.lairdconnect.com/ 273 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

'// Called after BleGattcRead returns success

function HndlrAttrWrite (hConn, hAttr, nSts)
if nSts == 0 then
print "\nIndications enabled"
print "\nDisabling indications"
s$ = "\00\0OO"
rc=BleGattcWrite (hC, hDesc, s$)
onevent evattrwrite call HndlrAttrWriteExit

exitfunc 1

elseif nSts == AUTHENTICATION REQUIRED then
print "\n\nAuthentication required."
'//bond with the peer
rc=BlePair (hConn, 1)
AssertRC (rc, 75)
print " Bonding..."

endif

endfunc 1

//**

// Equivalent to main() in C

//**

rc=BlelLescPairingPref (1) //set the pairing model to be LE Secire Connections
pairing
rc=BleSecMngrIoCap (1) //set io capability to Yes/No

rc=BleGattcOpen (0,0)
pr$ = GATT SERVER ADDRESS
rc=BleConnect (pr$, 10000, 25, 100, 30000000)

AssertRC (rc, 91)

onevent evblemsg call HndlrBleMsg
onevent evfinddesc call HndlrFindDesc

onevent evattrwrite call HndlrAttrWrite

waitevent

https://www.lairdconnect.com/ 274 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

i print "\nExiting..."

Expected Output:

Connected, Finding Temp Measurement Char
Temp Measurement Char CCCD Found. Attempting to enable indications

Authentication required. Bonding...
Pair request: Accepting

Pairing in progress

Connection now encrypted

New bond created

Attempting to enable indications again
Indications enabled

Disabling indications

Exiting...

6.14.4 BleSecMngrloCap

FUNCTION

This function sets the user I/O capability for subsequent pairings and is used to determine if the pairing is authenticated. This
is described in the following whitepapers:

https://www.Bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=86174
https://www.Bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=86173

In addition, the Security Manager Specification in the core 4.2 specification Part H provides a full description. You must be
registered with the Bluetooth SIG (www.Bluetooth.org) to get access to all these documents.

An authenticated pairing is deemed to be one with less than 1 in a million probability that the pairing was compromised by a
MITM (Man-in-the-middle) security attack.

The valid user 1/O capabilities are as described below.

BLESECMNGRIOCAP (nloCap)

Returns \ INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:

byVal nloCap AS INTEGER.
The user /O capability for all subsequent pairings.

0 None; also known as Just Works (unauthenticated pairing)
nloCap 1 Display with Yes/No input capability (authenticated pairing)
2 Keyboard Only (authenticated pairing)
3 Display Only (authenticated pairing — if other end has input cap)
4 Keyboard and Display (authenticated pairing)
Example:
// Example :: BleSecMngrIoCap.sb

// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

PRINT BleSecMngrIoCap (1)

Expected Output:

0

See also examples for BleSecMngrPasskey() and BlePair().

https://www.lairdconnect.com/ 275 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=86174
https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=86173
http://www.bluetooth.org/

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.14.5 BleAcceptPairing

FUNCTION

In legacy pairing the device can choose from Just Works, Passkey Entry, and OOB as the method of pairing depending on the
input/output capabilities of the device. With Bluetooth v4.2, LE Secure connections adds the numeric comparison method to
the other three. This function is used to accept or decline numeric comparison pairing.

BLEACCEPTPAIRING (nConnHandle, nAccept)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal nConnHandle AS INTEGER.
The handle of the connection for which you are accepting or rejecting a pairing request.

byVal nAccept AS INTEGER.
Set to 0 to reject the numeric comparison pairing request, set to 1 to accept the pairing request.

nConnHandle

nAccept

See example for BlePair().

6.14.6 BlePairingStaticPasskey

FUNCTION

This function pre-registers a static 6 digit passkey to the underlying stack during a pairing procedure in a future connection. It
allows for a use case similar to what PIN codes provided in classic bluetooth before simple secure pairing was introduced in
v2.1.

Note that the pairing still uses LESC Diffie-Hellman based exchanges but the only diffrence is that instead of a random number
this statis value is used.

Note: Repeated pairing attempts using the same preprogrammed passkey makes pairing vulnerable to MITM attacks.

Also see BleSecMngrPasskey()

BLEPAIRINGSTATICPASSKEY (passKey$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal passKey$ AS STRING.
The passkey to pre-register to the stack. This string shall be either empty which means use a random

assKey$ L e . . o . oy
P y passkey (as specified in the specification) or a six character string consisting of only decimal digits ‘0’ to
‘9
https://www.lairdconnect.com/ 276 Americas: +1-800-492-2320

© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.14.7 BleSecMngrPasskey

FUNCTION

This function submits a passkey to the underlying stack during a pairing procedure when prompted by the EVBLEMSG with
msgld set to 11. See Events and Messages.

Also see BlePairingStaticPasskey()

BLESECMNGRPASSKEY (connHandle, nPassKey)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:
byVal connHandle AS INTEGER.

connHandle
The connection handle as received via the EVBLEMSG event with msgld set to 0.

nPassKe byVal nPassKey AS INTEGER.
y The passkey to submit to the stack. Submit a value outside the range 0 to 999999 to reject the pairing.
Example:
// Example :: BleSecMngrPasskey.sb

// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc, connHandle
DIM addr$: addr$=""

DIM i, pin$

'// Called when data arrives through the UART - PIN
FUNCTION HandlerUartRxPIN ()
i = UartReadMatch (pin$,13)
if i !=0 then
pin$ = StrSplitLeft$ (pin$,i-1)
if strcmp (pin$, "quit")==0 || strcmp(pin$,"exit")==0 then
rc=BleDisconnect (connHandle)

exitfunc 0

elseif BleSecMngrPassKey (connHandle, StrValDec (pin$))==0 then
print "\nPasskey: ";pin$
OnEvent EVUARTRX disable
endif
pin$=""
endif

ENDFUNC 1

FUNCTION HandlerBleMsg (BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER) AS INTEGER

SELECT nMsgId

https://www.lairdconnect.com/ 277 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird ‘

) CONNECTIVITY
User Guide _)

CASE O

connHandle = nCtx

PRINT "\n--- Ble Connection, ",nCtx
CASE 1
PRINT "\n--- Disconnected ";nCtx;"\n"
EXITEFUNC O
CASE 10
PRINT "\n--- New bond"
CASE 11

PRINT "\n +++ Auth Key Request, type=";nCtx
PRINT "\nEnter the pass key and Press Enter:\n"
onevent evuartrx call HandlerUartRxPIN

CASE 17
print "\nNew pairing/bond has replaced old key"

CASE ELSE

ENDSELECT
ENDFUNC 1

ONEVENT EVBLEMSG CALL HandlerBleMsg

rc=BleSecMngrIoCap (2) //Set i/o capability - Keyboard Only (authenticated pairing)
IF BleAdvertStart (0,addr$,25,0,0)==0 THEN

PRINT "\nAdverts Started\n"

PRINT "\nPair with the module"
ELSE

PRINT "\n\nAdvertisement not successful"

ENDIF

WAITEVENT

Expected Output:

Adverts Started

Pair with the module

-—— Ble Connection, 2782

+++ Auth Key Request, type=1l
Enter the pass key and Press Enter:
904096

Passkey: 904096
-—— New bond
--- Disconnected 2782

https://www.lairdconnect.com/ 278 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.14.8 BleSecMngrlLescKeypressEnable

FUNCTION

This function is used to enable keypress notifications so that during LE secure connections, when keys are entered during
passkey entry pairing, notifications can be sent or received to or from the peer device therefore enhancing protection against
man in the middle attacks.

BLESECMNGRLESCKEYPRESSENABLE (nEnable)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
nEnable byVaI. nEnable AS INTE.G.ER'. o
0 to disable keypress notifications, 1 to enable keypress notifications
Example:
// Example :: BleSecMngrlLescKeypressNotify.sb

// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

// Enable keypress notifications
rc = BLESECMNGRLESCKEYPRESSENABLE (1)
if rc == 0 THEN
PRINT "Keypress notifications enabled\n"

Endif

6.14.9 BleSecMngrLescKeypressNotify

FUNCTION
This function is used to send keypress notifications to the peer device during passkey entry in LE Secure Connections pairing.

BLESECMNGRLESCKEYPRESSNOTIFY (connHandle, nKeypressType)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
connHandle byVal connHandle AS INTEGER.
This is the handle of the connection on which pairing is being perfermed
byRef nKeypressType AS STRING.
This is the type of the keypress, and can be one of the following values:
0 Passkey entry started
nKeypressType | 1 Passkey digit entered
2 Passkey digit erased
3 Passkey digit cleared
4 Passkey entry completed
Example:
// Example :: BleSecMngrlescKeypressNotify.sb

// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

// Keypress Types

#define BLE GAP KP NOT TYPE PASSKEY START 0x00 // Passkey entry started.
https://www.lairdconnect.com/ 279 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940

All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird ‘

) CONNECTIVITY
User Guide _)

#define BLE GAP_KP _NOT TYPE PASSKEY DIGIT IN 0x01 // Passkey digit entered.
#define BLE GAP KP NOT TYPE PASSKEY DIGIT OUT 0x02 // Passkey digit erased.
#define BLE GAP_KP NOT TYPE PASSKEY CLEAR 0x03 // Passkey cleared.

#define BLE GAP KP NOT TYPE PASSKEY END 0x04 // Passkey entry completed.

// Global variable
dim rc // Result Code
dim ghConn // Global connection handle

//

// This handler is called when data has arrived at the serial port

//

function HandlerUartRxCmd () as integer

dim StrKey$ // key entered

// Now read a single character from the UART buffer
rc = UartReadN (StrKey$, 1)

if (strcmp (StrKey$,"\r")==0) THEN
// Let the user know that we are done with keypresses, then send passkey
rc = BleSecMngrLescKeypressNotify (ghConn,BLE GAP KP NOT TYPE PASSKEY END)
endif

endfunc 1

'//**

'// Equivalent to main() in C
'//**

s
// Enable synchronous event handlers

=
OnEvent EVUARTRX call HandlerUartRxCmd

// Enable keypress notifications

rc = BLESECMNGRLESCKEYPRESSENABLE (1)

// Set LE Secure Connections to be the preffered pairing model
rc = BLESECMNGRLESCPAIRINGPREF (1)

// Set IO capability to 2: Keyboard only

rc = BLESECMNGRIOCAP (2)

WaitEvent

https://www.lairdconnect.com/ 280 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.14.10 BleSecMngrOOBPref

FUNCTION
This function is used to set a flag to indicate to the peer during a pairing that OOB pairing is preferred.

BLESECMNGROOBPREF(nOobPreferred)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
nOobPreferred byVal connHandle AS INTEGER.
If set to 0, OOB pairing will not have preference. If set to 1, OOB pairing will be preferred.
Example:
// Example :: BleSecMngrOobPref.sb

// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

dim rc
rc = BleSecMngrOobPref (1)
IF (rc == 0) THEN
PRINT "OOB Pairing preference has been set."
ENDIF

Expected Output:

OOB Pairing preference has been set.

6.14.11 BleSecMngrOOBKey (Legacy Pairing)

FUNCTION

This function submits an OOB (Out Of Band) key to the underlying stack during a legacy pairing procedure when prompted by
the EVBLEMSG with msgld set to 11 and the key type nCtx is 2, OOB. See Events & Messages.

BLESECMNGROOBKEY (connHandle, oobKey$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal connHandle AS INTEGER.

This is the connection handle as received via the EVBLEMSG event with msgld set to 0.

byRef oobKey$ AS STRING.

oobKey$ | This is the OOB key to submit to the stack. Submit a 16 byte string, or a string of a different length
to reject the request.

connHandle

Example:

// Example :: BleSecMngrOOBKey.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc, connHandle
DIM addr$: addr$=""
DIM oob$: oob$ = "\11\22\33\44\55\66\77\88\99\00\aa\cc\bb\dd\ee\ff"

https://www.lairdconnect.com/ 281 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

#define OOB_KEY 2

FUNCTION HandlerBleMsg (BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER) AS INTEGER
SELECT nMsgId
CASE O
connHandle = nCtx
PRINT "\nBle Connection ",nCtx
CASE 1

PRINT "\nDisconnected ";nCtx;"\n"

EXITEFUNC O
CASE 10

PRINT "\n--- New bond"
CASE 11

PRINT "\n +++ Auth Key Request, type=",nCtx
if nCtx == OOB KEY then

rc=BleSecMngrOobKey (connHandle, oob$)

print "\nOOB Key ";StrHexize$ (oob$);" was used"
endif

CASE ELSE
PRINT "\nUnknown Ble Msg"
ENDSELECT
ENDFUNC 1

ONEVENT EVBLEMSG CALL HandlerBleMsg

IF BleAdvertStart (0,addr$,25,60000,0)==0 THEN
PRINT "\nAdverts Started\n"
PRINT "\nMake a connection to the BL653"
ELSE
PRINT "\n\nAdvertisement not successful"

ENDIF

WAITEVENT

Expected Output:

Adverts Started

Make a connection to the BL653
Ble Connection, 1655
+++ Auth Key Request, type=2
OOB Key 11223344556677889911AACCBBDDEEFF was used
-—— New bond
Disconnected 1655

https://www.lairdconnect.com/ 282 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.14.12 BleSecMngrLescOwnOobDataGet

FUNCTION

This function retrieves local OOB data from the local security manager so that it can be given to the peer device over a
secure out-of-band link — like for example NFC or a uart interface.

The peer device will then use this as the remote OOB data during LE Secure Connections pairing and if the peer device
happens to be another Laird smartBASIC module that it will use function BleSecMngrLescPeerOobDataSet() to present that
data to its security manager.

Please note that the OOB data (hash & rand) are regenerated everytime this function is called.

BLESECMNGRLESCOWNOOBDATAGET (addr$ oobHash$, oobRand$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
byRef addr$ AS INTEGER.
ddrs The Bluetooth address of the local device that should be used by the remote device during LE
addrs | gecure Connections pairing
On entry, the value is ignored and will be replaced on exit.
byRef oobHash$ AS STRING.
The OOB hash of the local device that should be used by the remote device during LE Secure
oobHash$. L
Connections pairing
On entry, the value is ignored and will be replaced on exit.
byRef oobRand$ AS STRING.
The OOB randomiser of the local device that should be used by the remote device during LE
oobRand$ - -
Secure Connections pairing
On entry, the value is ignored and will be replaced on exit.

6.14.13 BleSecMngrLescPeerOobDataSet

FUNCTION

This function is used during the pairing process to present the remote OOB data, which was recevied out-of-band, to the
pairing manager in the local security manager.

It is presented only when the smartBASIC event EVBLEMSG s received with ID 28.

BLESECMNGRLESCPEEROOBDATASET (addr$ oobHash$, oobRand$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
addrs byRef addr$ AS INTEGER.
The Bluetooth address of the remote device that was given out of band.
byRef oobHash$ AS STRING.
oobHash$. .
The OOB hash of the remote device that was given out of band.
byRef oobRand$ AS STRING.
oobRand$. . .
The OOB randomiser of the remote device that was given out of band.
Example:
// Example :: BleSecMngrlLescPeerOobDataSet.sb
https://www.lairdconnect.com/ 283 Americas: +1-800-492-2320

© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

// In this example, the OOB data is exchanged over the UART in the form
// OOB_ADDRESS OOB_HASH OOB RAND\r

// e.g. 000016A4B75201 63F6E834009C368612724FBC3253DDE2
8311CD946F30C785DD7EA83038A5221D\r

//BLE EVENT MSG IDs

#define BLE EVBLEMSGID CONNECT 0 // msgCtx = connection handle
#define BLE EVBLEMSGID DISCONNECT 1 // msgCtx = connection handle
13

#define BLE EVBLEMSGID ENCRYPTED 18 // msgCtx = connection handle
#define BLE EVBLEMSGID AUTHENTICATION FAILED 26 // msgCtx = connection handle
#define BLE EVBLEMSGID LESC PAIRING 27 // msgCtx = connection handle
#define BLE EVBLEMSGID LESC OOB REQUEST 28 // msgCtx = connection handle

//Global defines

DIM rc, stRsp$

//
// This subroutine is called when Out of Band LESC pairing is in progress

//
sub HandleOobReq ()

DIM OobData$, OobAddr$, OobHash$, OobRand$

// Get our local OOB data

rc = BleSecMngrLescOwnOobDataGet (OobAddr$, OobHash$, OobRand$)
// Hexize the data

OobAddr$ = StrHexize$ (OobAddr$S)

OobHash$ = StrHexize$ (OobHash$)

OobRands$ StrHexize$ (OobRand$)

// Construct a string of the retreived data

OobData$ = OobAddr$ + " " + OobHash$ + " " + OobRand$ + "\r"
// Finally send the OOB data over UART

rc = UartWrite (OobData$)

print "Local OOB data sent over UART\n"

endsub

//

// This handler is called when there is a BLE message

//

function HandlerBleMsg (BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER) as integer
dim hz

select nMsgId
case BLE EVBLEMSGID CONNECT
print " --- Connect: (";integer.h' nCtx;")\n"

case BLE EVBLEMSGID DISCONNECT
print " --- Disconnect: (";integer.h' nCtx;")\n"

case BLE EVBLEMSGID ENCRYPTED
print " +++ Encrypted Connection: (";integer.h' nCtx;")\n"

case BLE EVBLEMSGID LESC PAIRING

print " +++ LESC pairing: (";integer.h' nCtx;")\n"
https://www.lairdconnect.com/ 284 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940

All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

case BLE EVBLEMSGID LESC_OOB REQUEST
print " +++ LESC OOB Request: (";integer.h' nCtx;")\n"
HandleOobReq ()

case BLE EVBLEMSGID AUTHENTICATION FATLED
print " +++ Auth Failed: (";integer.h' nCtx;"\n"

case else

endselect
endfunc 1

//
// This handler is called when data has arrived at the serial port
//

function HandlerUartRx () as integer

dim nMatch
dim OobData$, OobAddr$, OobHash$, OobRand$
// read UART data until carriage return and save it into stRsp$
nMatch=UartReadMatch (stRsp$, 13)
if nMatch!=0 then
// Get the hash and randomiser from the input string
OobData$ = strsplitleft$ (stRsp$, nMatch)
rc = ExtractStrToken (OobData$, OobAddr$)
rc = ExtractStrToken (OobData$, OobHash$)
rc ExtractStrToken (OobData$, OobRands$)

// Dehexize the data first
OobAddr$ = StrDeHexize$ (OobAddr$)
OobHash$ StrDeHexize$ (OobHash$)
OobRand$ = StrDeHexize$ (OobRand$)
// Now Send the remote OOB data over the BLE link
rc = BleSecMngrLescPeerOobDataSet (OobAddr$, OobHash$, OobRand$)
if rc==0 THEN
print "Remote OOB data received from UART and submitted to local stack\n"
endif
endif

endfunc 1

[[mmmmmme e e s e s e e e s s e e e e e e e e e e e S S S S S S S S S S E e TS S e S e See
// Enable synchronous event handlers

[[mmmmmme e e s e s e e e s s e e e e e e e e e e e S S S S S S S S S S E e TS S e S e See
OnEvent EVBLEMSG call HandlerBleMsg

OnEvent EVUARTRX call HandlerUartRx

// Initialise LE adverts

dim addr$

rc = BleAdvertStart (0,addr$,100,30000,0)
// Enable LESC pairing

rc = BleSecMngrLescPairingPref (1)

// Wait for a synchronous event.
// An application can have multiple <WaitEvent> statements

WaitEvent

https://www.lairdconnect.com/ 285 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

Expected Output:

—-—— Connect: (0001FF00)

+++ LESC OOB Request: (0001FF00)

Local OOB data sent over UART

Remote OOB data received from UART and submitted to local stack
+++ Encrypted Connection: (0001FFO00)

+++ LESC pairing: (0001FFO00)

6.14.14 BleSecMngrKeySizes

FUNCTION
This function sets minimum and maximum long term encryption key size requirements for subsequent pairings.

If this function is not called, default values are 7 and 16 respectively. To ship your end product to a country with an export
restriction, reduce nMaxKeySize to an appropriate value and ensure it is not modifiable.

BLESECMNGRKEYSIZES (nMinKeysize, nMaxKeysize)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal nMinKeysiz AS INTEGER.
The minimum key size. The range of this value is from 7 to 16.

byVal nMaxKeysize AS INTEGER.
The maximum key size. The range of this value is from nMinKeysize to 16.

nMinKeysiz

nMaxKeysize

Example:

// Example :: BleSecMngrKeySizes.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

PRINT BleSecMngrKeySizes (8,15)

Expected Output:

B

6.14.15 BleSecMngrBondReq
FUNCTION

This function is used to enable or disable bonding when pairing. If enabled, and if your application requires pairing, a peer
device only needs to pair with this module once. If disabled, the device needs to pair every time it connects to the module.

BLESECMNGRBONDREQ (nBondReq)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal nBondReq AS INTEGER.
nBondReq | 0 — Disable
1 - Enable

Example:

// Example :: BleSecMngrBondReq.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

https://www.lairdconnect.com/ 286 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

IF BleSecMngrBondReq (0)==0 THEN
PRINT "\nBonding disabled"
ENDIF

Expected Output:

| Bonding disabled

6.14.16 BleEncryptConnection
FUNCTION
This function is used to encrypt a BLE connection with a device that the module has previously bonded with (the device is

present in the bonding manager). The function can only be issued by the central device (i.e. the device that has initiated the
connection request).

BLEENCRYPTCONNECTION (nConnHandle, nLtkMinSize, nMitmRequired)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:

byVal nConnHandle AS INTEGER.
nConnHandle | The handle of the connection which is obtained from an EVBLEMSG message with ID 0
indicating that a connection had been established.

byVal nLtkMinSize AS INTEGER.
The minimum long term key size which must be in the range 7-16.

byVal nMitmRequired AS INTEGER.
Set to 1 if MITM protection is required, 0 if not required.

nLtkMinSize

nMitmRequired

Example:

dim rc, pr$, hC, hDesc

#define GATT SERVER ADDRESS "\O01\F6\36\27\A6\0B\EA"

//This example app was tested with a BL653 running the health thermometer sensor sample
app

//which the module had previously bonded with.

L ———
'// For debugging

'// --- rc = result code

'// --- 1n = line number
L —

Sub AssertRC (rc, 1n)
if rc!=0 then
print "\nFail :";integer.h' rc;" at tag ";1ln

endif

https://www.lairdconnect.com/ 287 Americas: +1-800-492-2320

© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

EndSub

function HndlrBleMsg (byval nMsgId as integer, byval nCtx as integer)
select nMsgId
case 0
hC = nCtx
print "\nConnected"
rc=BleEncryptConnection (hC, 16, 0)
if rc==0 then
print "\nEncrypting connection"
elge
AssertRC (rc, 28)
endif
case 1
print "\n\n --- Disconnected"
exitfunc 0
case 10

print "\nNew bond created"

case 11
print "\nPair request: Accepting"
rc=BleAcceptPairing (hC, 1)
AssertRC (rc, 52)
print "\nPairing in progress"

case 17
print "\nNew pairing/bond has replaced old key"

case 18
print "\nConnection now encrypted"
rc=BleDisconnect (hC)

case else

endselect

endfunc 1

rc=BleSecMngrIoCap (0) //set 1o capability to just works

pr$ = GATT SERVER ADDRESS

https://www.lairdconnect.com/ 288 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

rc=BleConnect (pr$, 10000, 25, 100, 30000000)
AssertRC (rc, 91)

onevent evblemsg call HndlrBleMsg

waitevent

print "\nExiting..."

Expected Output:

Connected
Encrypting connection
Connection now encrypted

-—- Disconnected
Exiting...

6.15 Virtual Serial Port Service - Managed

This section describes all the events and routines used to interact with a managed virtual serial port service.

“Managed” means there is a driver consisting of transmit and receive ring buffers that isolate the BLE service from the
smartBASIC application. This in turn provides easy to use API functions.

Note: The driver makes the same assumption that the driver in a PC makes: If the on-air connection equates to the serial
cable, there is no assumption that the cable is from the same source as prior to the disconnection. This is
analogous to the way that a PC cannot detect such in similar cases.

The module can present a serial port service in the local GATT Table consisting of two mandatory characteristics and two
optional characteristics. One mandatory characteristic is the TX FIFO and the other is the RX FIFO, both consisting of an
attribute taking up to 20 bytes. Of the optional characteristics, one is the ModemIn which consists of a single byte and only bit
O is used as a CTS type function. The other is ModemOut, also a single byte, which is notifiable only and is used to convey an
RTS flag to the client.

By default, (configurable via AT+CFG 112), Laird’s serial port service is exposed with UUID’s as follows:

= The UUID of the service is: 569a1101-b87f-490c-92cb-11bab5eab5167¢c
= The UUID of the rx fifo characteristic is: 569a2001-b87f-490c-92cb-11ba5ea5167c
= The UUID of the tx fifo characteristic is: 569a2000-b87f-490c-92cb-11ba5ea5167c
= The UUID of the Modemin characteristic is: 569a2003-b87f-490c-92cb-11bab5eab5167¢c
= The UUID of the ModemOut characteristic is: 569a2002-b87f-490c-92cb-11bab5eab5167¢c
Note: Laird’s Base 128bit UUID is 569aXXXX-b87£f-490c-92cb-11babea5167c where XXXX is a 16 bit offset. We

recommend, to save RAM, that you create a 128 bit UUID of your own and manage the 16 bit space accordingly,
akin to what the Bluetooth SIG does with their 16 bit UUIDs.

If command AT+CFG 112 1 is used to change the value of the config key 112 to 1 then Nordic’s serial port service is exposed
with UUID’s as follows:

= The UUID of the service is: 6e400001-b5a3-£393-e0a%9-e50e24dccale

= The UUID of the rx fifo characteristic is: 6e400002-b5a3-£393-e0a9-e50e24dccale

= The UUID of the tx fifo characteristic is: 6e400003-b5a3-£393-e0a9-e50e24dccade

Note: The first byte in the UUID’s above is the most significant byte of the UUID.

https://www.lairdconnect.com/ 289 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

The ‘rx fifo characteristic’ is for data that comes to the module and the ‘tx fifo characteristic’ is for data that goes out from the
module. This means a GATT Client using this service will send data by writing into the ‘rx fifo characteristic’ and will get data
from the module via a value notification.

The ‘rx fifo characteristic’ is defined with no authentication or encryption requirements, a maximum of 20 bytes value attribute.
The following properties are enabled:

= WRITE
* WRITE_NO_RESPONSE

The ‘tx fifo characteristic’ value attribute is with no authentication or encryption requirements, a maximum of 20 bytes value
attribute. The following properties are enabled:

= NOTIFY (The CCCD descriptor also requires no authentication/encryption)

The ‘Modemln characteristic’ is defined with no authentication or encryption requirements, a single byte attribute. The following
properties are enabled:

= WRITE
* WRITE_NO_RESPONSE

The ‘ModemOut characteristic’ value attribute is with no authentication or encryption requirements, a single byte attribute. The
following properties are enabled:

= NOTIFY (The CCCD descriptor also requires no authentication/encryption)

For Modemln, only bit zero is used, which is set by 1 when the client can accept data and 0 when it cannot (inverse logic of
CTS in UART functionality). Bits 1 to 7 are for future use and should be set to 0.

For ModemOut, only bit zero is used which is set by 1 when the client can send data and 0 when it cannot (inverse logic of
RTS in UART functionality). Bits 1 to 7 are for future use and should be set to 0.

Note: Both flags in ModemIn and ModemOut are suggestions to the peer, just as in a UART scenario. If the peer decides
to ignore the suggestion and data is kept flowing, the only coping mechanism is to drop new data as soon as
internal ring buffers are full.

Given that the outgoing data is notified to the client, the ‘tx fifo characteristic’ has a Client Configuration Characteristic
(CCCD) which must be set to 0x0001 to allow the module to send any data waiting to be sent in the transmit ring buffer. While
the CCCD value is not set for notifications, writes by the smart BASIC application result in data being buffered. If the buffer is
full the appropriate write routine indicates how many bytes actually got absorbed by the driver. In the background, the transmit
ring buffer is emptied with one or more indicate or notify messages to the client. When the last bytes from the ring buffer are
sent, EVVSPTXEMPTY is thrown to the smart BASIC application so that it can write more data if it chooses.

When GATT Client sends data to the module by writing into the ‘rx fifo characteristic’ the managing driver will immediately
save the data in the receive ring buffer if there is any space. If there is no space in the ring buffer, data is discarded. After the
ring buffer is updated, event EVVSPRX is thrown to the smart BASIC runtime engine so that an application can read and
process the data.

Similarly, given that ModemOut is notified to the client, the ModemOut characteristic has a Client Configuration Characteristic
(CCCD) which must be set to 0x0001. By default, in a connection the RTS bit in ModemOut is set to 1 so that the VSP driver
assumes there is buffer space in the peer to send data. The RTS flag is affected by the thresholds of 80 and 120 which means
the when opening the VSP port the rxbuffer cannot be less than 128 bytes.

It is intended that in a future release it will be possible to register a ‘custom’ service and bind that with the virtual service
manager to allow that service to function in the managed environment. This allows the application developer to interact with
any GATT client implementing a serial port service, whether one currently deployed or one that the Bluetooth SIG adopts.

https://www.lairdconnect.com/ 290 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Lairdw CONNECTIVITY

User Guide

6.15.1 VSP Configuration

Given that VSP operation can happen in command mode the ability to configure it and save the new configuration in non-
volatile memory is available. For example, in bridge mode, the baudrate of the uart can be specified to something other than
the default 115200. Configuration is done using the AT+CFG command and refer to the section describing that command for
further details. The configuration id pertinent to VSP are 100 to 116 inclusive. Additionally, the device name advertised by the
VSP service can be configured using the AT+CFGEX command, by default the VSP name is “LAIRD BL653".

It is also possible to configure the command mode VSP by providing a $autorun$ application which launchs after reset
automatically. In this application the baudrate, GAP service, VSP Service and advertising can be configured and adverts
started. Once done, given the autorun application does not have a WAITEVENT statement it falls into command mode and
that VSP configuration will be operational.

A sample autorun application is as follows:

//**

// Laird (c) 2015

//

// This application is meant to autorun on power up and so is named apprpriately.
// It PURPOSELY does not have a WAITEVENT statement at the end and so will exit
// to command mode, where the VSP fucntionality will continue to operate.

//

A o e o o e I o R I B o o B R o R i S S R
// When UwTerminal downloads the app it will store it as S$Sautorun$

A e E

//

//**

//**

// Debugging

//**

#set Scmpif, OXFFFFFFEF //set to 0 to disable all debugging

//**

// Definitions

//**

A

// UART config

A R

#define UARTBAUD 9600

#define UARTBUFLENRX 0 //default

#define UARTBUFLENTX 0 //default

https://www.lairdconnect.com/ 291 Americas: +1-800-492-2320

© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

#define UARTOPTIONS "CN81H"

//DeviceName

#define GAPDEVNAME "autoVSP"
//DeviceName Writeable in Gap Service

#define GAPNAME WRITEABLE 0
//RAppearance in Gap Service (see BT Spec for adopted values) 512=Custom
#define GAPAPPEARANCE 512
//Minimum Connection Interval in microseconds
#define GAPMINCONNINTus 7500
//Maximum Connection Interval in microseconds
#define GAPMAXCONNINTus 50000
//Link Supervision Timeout in microseconds
#define GAPLINKSUPRVSNTOUTus 2000000

//Slave Latency

#define GAPSLAVELATENCY 0

e e

// VSP Service

f mm e e

#define VSPSECURITY 1 //1=Open, 2=NO MITM, 3=WITH MITM

#define VSPUUIDSERVICE "EADE1101B87f490C92CB11BASEASEFBE"

#define VSPUUIDRX 0x7001 //uses base of VSPUUIDSERVICE

#define VSPUUIDTX 0x7002 //uses base of VSPUUIDSERVICE

#define VSPUUIDMDMIN 0x7003 //uses base of VSPUUIDSERVICE

#define VSPUUIDMDMOUT 0x7004 //uses base of VSPUUIDSERVICE

#define VSPBUFLENRX 0 //default

#define VSPBUFLENTX 0 //default

=

// Adverts

=

#define ADVDISCOVERYFLAGS 2 //l=Limited, 2=General, 3=Both (0 do not define)

#define ADVMAXDEVICENAMELEN 10

https://www.lairdconnect.com/ 292 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940

All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions La

) CONNECTIVITY
User Guide _)

#define ADVINTERVALmS 100
#define ADVTIMEOUTmS 0 //0 means infinity
#define ADVFILTERPOLICY 0

//**

// Library Import

//**

//**

// Global Variable Declarations

//**

[[m=mmme e e s e e e e e e e e e e S e e S S e e e e e e e e S e S S S S S S S S o=

// Misc variables

[[m=mmmm e s e e e e e e e e S e e e e e S e S S S S DS S S C eSS oo==

dim rc //result code

dim hVspUuidSvc //Contains the uuid handle of the VSP service so that it
//can be used to create an AD element in adverts

dim baud //the configured baudrate

//**

// Function and Subroutine definitions

//**

//

// For debugging :: will inspect the global 'rc' variable

// --- 1ln = line number

//

#cmpif Ox01 : sub DbgAssertRC (ln as integer)

#cmpif 0x01 : if rc!=0 then

#cmpif O0x01 : print "\nFail :";integer.h' rc;" at tag ";1ln
#cmpif 0x01 : endif

#cmpif 0x01 : endsub

//
//
sub OpenUART ()

baud=UARTBAUD

https://www.lairdconnect.com/ 293 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

rc=UartOpen (baud, UARTBUFLENTX, UARTBUFLENRX, UARTOPTIONS)
#cmpif 0x01 : DbgAssertRC (1050)

endsub

//
// Device Name (writable/not)
// Connection Parameters

//
sub ConfigServiceGAP ()

dim devicename$: devicename$= GAPDEVNAME

rc=BleGapSvcInit (devicename$, GAPNAME WRITEABLE, GAPAPPEARANCE, GAPMINCONNINTus, GAPMAXCONNINTu
s, GAPLINKSUPRVSNTOUTus, GAPSLAVELATENCY)

#cmpif 0x01 : DbgAssertRC (1150)

endsub

//
// Security :: 1=Open, 2=NO MITM, 3=WITH MITM
//
sub OpenVSP (vspSec)

dim uuid$

dim hVspUuidRx

dim hVspUuidTx

dim hVspUuidMdmIn
dim hVspUuidMdmOut

//create the advert & scan reports

uuid$ = VSPUUIDSERVICE

uuids = StrDehexize$ (uuid$)

hVspUuidSve = BleHandleUuidl28 (uuid$)

hVspUuidRx = BleHandleUuidSibling (hVspUuidSvc, VSPUUIDRX)
hVspUuidTx = BleHandleUuidSibling (hVspUuidSvc, VSPUUIDTX)
hVspUuidMdmIn = BleHandleUuidSibling (hVspUuidSvc, VSPUUIDMDMIN)
hVspUuidMdmOut= BleHandleUuidSibling (hVspUuidSvc, VSPUUIDMDMOUT)
vspSec = (vspSec & 0x7)<<2

//finally open the VSP

https://www.lairdconnect.com/ 294 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

rc=BleVspOpenEx (VSPBUFLENTX, VSPBUFLENRX, vspSec, hVspUuidSvc, hVspUuidRx, hVspUuidTx, hVspUuidMd
mIn, hVspUuidMdmOut)

fcmpif 0x01 : DbgAssertRC (1410)

endsub

//

sub StartADVERTS ()
dim advReport$
dim scnReport$

dim peerAdr$: peerAdrs=""

rc=BleAdvRptInit (advReport$, ADVDISCOVERYFLAGS, GAPAPPEARANCE, ADVMAXDEVICENAMELEN)
#cmpif 0x01 : DbgAssertRC (1530)

rc=BleScanRptInit (scnReport$)

#cmpif 0x01 : DbgAssertRC (1550)

rc=BleAdvRptAddUuidl28 (scnReport$,hVspUuidSvc)

#cmpif O0x01 : DbgAssertRC (1570)

rc=BleAdvRptsCommit (advReport$, scnReports$)

#cmpif 0x01 : DbgAssertRC (1590)

//finally start the adverts
rc=BleAdvertStart (0, peerAdr$, ADVINTERVALmS, ADVTIMEOUTms , ADVFILTERPOLICY)
#cmpif 0x01 : DbgAssertRC (1630)

endsub

//**

// Handler definitions

//**

//**

// Equivalent to main() in C

//**

//Config and open UART

// See UARTxxx #defines above

https://www.lairdconnect.com/ 295 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions La rd

) CONNECTIVITY
User Guide _)

OpenUART ()

//Configure GAP Service

// See GAPxxx #defines above

//Config and open VSP

// See VSPxxx #defines above

//Advertising

// See ADVxxx #defines above

//waitevent

6.15.2 Command and Bridge Mode Operation

Just as the physical UART is used to interact with the module when it is not running a smart BASIC application, it is also
possible to have limited interaction with the module in interactive mode. The limitation applies to NOT being able to launch
smart BASIC applications using the AT+RUN command. If bridge mode is enabled then any incoming VSP data is
retransmitted out via the UART. Conversely, any data arriving via the UART is transmitted out the VSP service. This latter
functionality provides a cable replacement function.

Selection of Command or Bridge Mode is done using the nAutorun input signal. When nAutorun is low, interactive mode is
enabled. When it is high, and bit 8 in the config register 100 accessed by AT+CFG 100 is set, bridge mode is selected the
defaule value of config register 100 is 0x8102 which means by default, bridge mode is enabled if SIO2 is held high and
nAutorun is high too.

The operation of VSP command and bridge mode is illustrated as per the diagrams on the following page (aknowledgments to
Nicolas Mejia) .

The main purpose of interactive mode operation is to facilitate the download of an autorun smart BASIC application. This
allows the module to be soldered into an end product without preconfiguration and then the application can be downloaded
over the air once the product has been pre-tested. It is the smart BASIC application that is downloaded over the air, NOT the
firmware. Due to this principle reason for use in production, to facilitate multiple programming stations in a locality the transmit
power is limited to -12dBm. It can be changed by changing the 109 config key using the command AT+CFG.

https://www.lairdconnect.com/ 296 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

The default operation of this virtual serial port service is dependent on one of the digital input lines being pulled high externally.
Consult the hardware manual for more information on the input pin number. By default it is SIO2 on the module, but it can be
changed by setting the config key 100 via AT+CFG.

When SIO_2 is
attached to VCC
Does
Yes
nAut.orun 0 > “SautorunS” file
Pin ;

exist?

\2
1 Run “Sautoruns”
app
Virtual Serial Port No

‘Bridge Mode’ No

Does
“Sautoruns”
file ever end?

V

Virtual Serial Port Command
Mode and UART
simultaneously

You can interact with the BL653 over the air via the Virtual Serial Port Service using the Laird iOS or Android “BL6xx Serial”
app, available free on the Apple App Store and Google Play Store respectively.

You may download smartBASIC applications onto the BL653 Over The Air using a BT900-US/BL652/BL653/BL654 devkit and
a smartBASIC application from GitHub. Contact your local FAE for details.

As most of the AT commands are functional, you may obtain information such as version numbers by sending the command
AT | 3 to the module over the air.

Note that the module enters interactive mode only if there is no autorun application or if the autorun application exits to
interactive mode by design. Hence in normal operation where a module is expected to have an autorun application the virtual
serial port service will not be registered in the GATT table.

If the application requires the virtual serial port functionality then it shall have to be registered programmatically using the
functions that follow in subsequent subsections. These are easy to use high level functions such as
OPEN/READ/WRITE/CLOSE.

https://www.lairdconnect.com/ 297 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

https://github.com/LairdCP/BL652-Applications/blob/master/Applications/%24autorun%24.VSP.UART.bridge.outgoing.sb

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

6.15.3 VSP (Virtual Serial Port) Events

In addition to the routines for manipulating the Virtual Serial Port (VSP) service, when data arrives via the receive
characteristic it is stored locally in an underlying ring buffer and then an event is generated.

Similarly when the transmit buffer is emptied, events are thrown from the underlying drivers so that user smart BASIC code in
handlers can perform user defined actions.

The following is a list of events generated by VSP service managed code which can be handled by user code.

EVVSPRX This event is generated when data has arrived and has been stored in the local ring buffer to be
read using BleVSpRead().

EVVSPTXEMPTY This event is generated when the last byte is transmitted using the outgoing data characteristic via
a notification or indication.

Use the iOS BL6xx Serial app and connect to your BL653 to test this sample app.

Example:

// Example :: VSpEvents.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM tx$,rc,x,scRptS,adRpt$,addrs, hndl

//handler for data arrival
FUNCTION HandlerBleVSpRx () AS INTEGER
//print the data that arrived
DIM n, rx$
n = BleVSpRead (rx$,20)
PRINT "\nrx=";rx$
ENDFUNC 1

//handler when VSP tx buffer is empty
FUNCTION HandlerVSpTxEmpty () AS INTEGER
IF x==0 THEN
rc = BleVSpWrite (tx$)
x=1
ENDIF
ENDFUNC 1

PRINT "\nDevice name is "; BleGetDeviceName$ ()

//Open the VSP

rc = BleVSpOpen (128,128,0,hndl)

//Initialise a scan report

rc = BleScanRptInit (scRpt$)

//Advertise the VSP service in the scan report so

//that it can be seen by the client

https://www.lairdconnect.com/ 298 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

rc = BleAdvRptAddUuidl28 (scRpt$,hndl)

adRpt$=""

rc = BleAdvRptsCommit (adRpt$, scRptS$)

addr$="" //because we are not doing a DIRECT advert
rc = BleAdvertStart (0,addrs$, 20,300000,0)

//Now advertising so can be connectable

ONEVENT EVVSPRX CALL HandlerBleVSpRx
ONEVENT EVVSPTXEMPTY CALL HandlerVSpTxEmpty

tx$="tx buffer empty"

PRINT "\nUse the 10S BL6xx Serial app to test this"

//wait for events and messages

WAITEVENT

6.15.4 BleVSpOpen

FUNCTION

This function opens the default VSP service using the parameters specified. The service’s UUID is: 569a1101-b87f-
490c-92cb-11babeabl67c

By default, ModemIn and ModemOut characteristics are registered in the GATT table with the Rx and Tx FIFO characteristics.
To suppress Modem characteristics in the GATT table, set bit 1 in the nFlags parameter (value 2). If the virtual serial port is
already open, this function fails.

Note that the parameters specified in the first call to this function are sticky. After calling BleVspClose() if this function is
recalled the parameters will be ignored and the internal state machine managing the VSP function will resume from a
suspended state. This is because on a close, it is not possible to remove the service from the GATT table. If this is strictly
required, perform a warm reset using RESET() and then action appropriately in the new incarnation. One way of detection a
new incarnation could be by using NvRecordSet()/NvRecordGet() as that writes/reads to non-volatile memory.

BLEVSPOPEN (txbuflen, rxbuflen, nFlags, svcUuid)

INTEGER, indicating the success of command:
0 Opened successfully
Returns 0x604D Already open
0x604E Invalid Buffer Size
0x604C Cannot register Service in Gatt Table while BLE connected

= Local Stack Frame Underflow
= Local Stack Frame Overflow

Exceptions

Arguments

byVal txbuflen AS INTEGER

txbuflen | Set the transmit ring buffer size to this value. If set to 0, a default value is used by the
underlying driver and use BleVsplnfo(2) to determine the size.

byVal rxbuflen AS INTEGER

rxbuflen | Set the receive ring buffer size to this value. If set to 0, a default value is used by the
underlying driver and use BleVsplnfo(1) to determine the size.

byVal nFlags AS INTEGER

This is a bit mask to customise the driver as follows:

nFlags

https://www.lairdconnect.com/ 299 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

Set to 1 to try for reliable data transfer. This uses INDICATE
messages if allowed and if there is a choice. Some services only allow

Bit 0 NOTIFY and in that case, if set to 1, it is ignored.
This is deprecated — always set to 0
Bit 1 Set to 1 to suppress Modemin and ModemOut characteristics
Bits Security Setting for accesing characteristics
3 Bit Number
Open
Open

ENCRYPTED_NO_MITM
ENCRYPTED_WITH_MITM
SIGNED_NO_MITM (reserved for future)
SIGNED_WITH_MITM (reserved for future)
ENCRYPTED_NO_MITM
1 ENCRYPTED_NO_MITM

Bit 5..31 Reserved for future use. Set to O.
byRef svcUuid AS INTEGER
On exit, this variable is updated with a handle to the service UUID which can then be
subsequently used to advertise the service in an advert report. Given that there is no BT
SIG adopted Serial Port Service the UUID for the service is 128 bit, so an appropriate
Advert Data element can be added to the advert or scan report using the function
BleAdvRptAddUuid128() which takes a handle of that type.
BLEVSPINFO, BLEVSPCLOSE, BLEVSPWRITE, BLEVSPREAD,
BLEVSPFLUSH,BLEVSPOPENEX

P RPPRPPOOOOS>M~
P OORFrPRFPF OO
P OPFRPOPFRPOFR,OMN

svcUuid

Related Commands

Example:

// Example :: BleVspOpen.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM scRpt$,adRpt$,addr$, vspSvcHndl

//Close VSP if already open

IF BleVSpInfo (0)!=0 THEN
BleVSpClose ()

ENDIF

//Open VSP

IF BleVSpOpen (128,128,0,vspSvcHndl)==0 THEN
PRINT "\nVSP service opened"

ELSE
PRINT "\nFailed"

ENDIF

Expected Output:
VSP service opened

https://www.lairdconnect.com/ 300 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

6.15.5 BleVSpOpenEx
FUNCTION

This function opens the a managed VSP service using the parameters specified. The service’s UUID and UUIDs for the up to
4 characteristics can all be inidividually specified.

ModemIn and ModemOut characteristics are registered in the GATT table with the Rx and Tx FIFO characteristics if both
UUIDMdmIn and UUIDMdmOut are not invalid (invalid handle == 0).

Note that the parameters specified in the first call to this function are sticky. After calling BleVspClose() if this function is called
again then the parameters will be ignored and the internal state machine managing the VSP function will resume from a
suspended state. This is because on a close, it is not possible to remove the service from the GATT table. If this is strictly
required, perform a warm reset using RESET() and then action appropriately in the new incarnation. One way of detection a
new incarnation could be by using NvRecordSet()/NvRecordGet() as that writes/reads to non-volatile memory.

BLEVSPOPENEX (txbuflen, rxbuflen, nFlags, hUuidSvc, hUuidRx, hUuidTx, hUuidMdmin, hUuidMdmOut)

INTEGER, indicating the success of command:
0 Opened successfully
Returns 0x604D Already open
0x604E Invalid Buffer Size
0x604C Cannot register Service in Gatt Table while BLE connected
= Local Stack Frame Underflow
= | ocal Stack Frame Overflow

Exceptions

Arguments

byVal txbuflen AS INTEGER
txbuflen | Set the transmit ring buffer size to this value. If set to 0, a default value is used by the
underlying driver and use BleVsplnfo(2) to determine the size.
byVal rxbuflen AS INTEGER
rxbuflen | Set the receive ring buffer size to this value. If set to 0, a default value is used by the
underlying driver and use BleVspinfo(1) to determine the size.
byVal nFlags AS INTEGER
This is a bit mask to customise the driver as follows:
Set to 1 to try for reliable data transfer. This uses INDICATE
messages if allowed and if there is a choice. Some services only allow
NOTIFY and in that case, if set to 1, it is ignored.
This is deprecated — always set to 0
This bit is ignored. See hUuidMdmIn and hUuidMdmOut instead to
manage.
Security Setting for accesing characteristics
Bit Number
Open
Open
ENCRYPTED_NO_MITM
ENCRYPTED_WITH_MITM
SIGNED_NO_MITM (reserved for future)
SIGNED_WITH_MITM (reserved for future)
ENCRYPTED_NO_MITM
ENCRYPTED_NO_MITM
Bit 5..31 Reserved for future use. Set to 0.
byVal hUuidSvc AS INTEGER
This is the handle for the service UUID which can then be subsequently used to advertise
the service in an advert report. Given that there is no BT SIG adopted Serial Port Service
the UUID for the service is 128 bit, so an appropriate Advert Data element can be added to
the advert or scan report using the function BleAdvRptAddUuid128() which takes a handle
of that type.
byVal hUuidRx AS INTEGER
This is the handle for the Rx Characteristic UUID. It cannot be an invalid handle.
byVal hUuidTx AS INTEGER
This is the handle for the Tx Characteristic UUID. It cannot be an invalid handle.

Bit 0

Bit 1

nFlags

PFRrRPPROOOON
w
PORORORON

hUuidSvc

hUuidRx

hUuidTx

https://www.lairdconnect.com/ 301 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

hUuidMdmIn

byVal hUuidMdmIn AS INTEGER
This is the handle for the MdmIn Characteristic UUID. Can be an invalid handle (0) and in
that case both modem characteristic are not registered.

uUuidMdmOut

byVal hUuidMdmOut AS INTEGER
This is the handle for the MdmOut Characteristic UUID. . Can be an invalid handle (0) and
in that case both modem characteristic are not registered.

Related Commands

BLEVSPINFO, BLEVSPCLOSE, BLEVSPWRITE, BLEVSPREAD, BLEVSPFLUSH,
BLEVSPOPEN

//Example

//Open VSP

ELSE

ENDIF

DIM scRpt$, adRpt$, addr$, hUuidSve, hUuidRx, hUuidTx, hUuidMdmIn, hUuidMdmOut, uuids$

uuid$ = "ced9d91366924a1287d56£2764762b2a"

uuid$ = StrDehexize$ (uuid$)

hUuidSve = BleHandleUuidl28 (uuid$)

hUuidRx = BleHandleUuidSibling (hUuidl, 0x1234)
hUuidTx = BleHandleUuidSibling (hUuidl, 0x5678)
hUuidMdmIn = BleHandleUuidSibling (hUuidl, 0x9ABC)
hUuidMdmOut = BleHandleUuidSibling (hUuidl, 0xDEFO0)

IF BleVSpOpenEx (128,128,0, hUuidSvc,hUuidRx, hUuidTx, hUuidMdmIn, hUuidMdmOut)==0 THEN

PRINT "\nVSP service opened with non-default UUIDs"

PRINT "\nFailed"

Expected Output:

| VSP service opened with non-default UUIDs

6.15.6 BleVSpClose

SUBROUTINE

This subroutine closes the managed virtual serial port which had been opened with BLEVSPOPEN. This routine is safe to call
if it is already closed. When this subroutine is invoked both receive and transmit buffers are flushed. If there is data in either
buffer when the port is closed, it will be lost.

Note that the parameters specified in the first call of BleVspOpen() are sticky. After calling this function if BleVspOpen() or
BleVspOpenEXx() is called again then the open parameters will be ignored and the internal state machine managing the VSP
function will resume from a suspended state. This is because on a close, it is not possible to remove the service from the
GATT table. If this is strictly required, perform a warm reset using RESET() and then action appropriately in the new

https://www.lairdconnect.com/

302 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

incarnation. One way of detection a new incarnation could be by using NvRecordSet()/NvRecordGet() as that writes/reads to
non-volatile memory.

BLEVSPCLOSE ()

= Local Stack Frame Underflow

Exceptions = Local Stack Frame Overflow

Arguments None
Related Commands BLEVSPINFO, BLEVSPOPEN, BLEVSPWRITE, BLEVSPREAD, BLEVSPFLUSH

Use the iOS “BL6xx Serial” app and connect to your BL653 to test this sample app.

Example:

// Example :: BleVspClose.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM tx$,rc,scRpt$,adRpt$,addrs$, hndl

//handler when VSP tx buffer is empty
FUNCTION HandlerVSpTxEmpty () AS INTEGER
PRINT "\n\nVSP tx buffer empty"

BleVspClose ()
ENDEUNC O

PRINT "\nDevice name is "; BleGetDeviceNames$ ()

//Open the VSP, advertise

rc = BleVSpOpen (128,128,0,hndl)

rc = BleScanRptInit (scRpt$)

rc = BleAdvRptAddUuidl28 (scRpt$,hndl)
adRptS$=""

rc = BleAdvRptsCommit (adRpt$, scRpt$)
addrs$=""

rc = BleAdvertStart (0,addr$,20,300000,0)

//This message will send when connected to client

tx$="send this data and will close when sent"

rc = BleVSpWrite (tx$)

ONEVENT EVVSPTXEMPTY CALL HandlerVSpTxEmpty

WAITEVENT

PRINT "\nExiting..."

https://www.lairdconnect.com/ 303 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

Expected Output:

Device name is LAIRD BL653

VSP tx buffer empty
Exiting...

6.15.7 BleVSplinfo

FUNCTION

This function is used to query information about the virtual serial port, such as buffer lengths, whether the port is already open
or how many bytes are waiting in the receive buffer to be read.

BLEVSPINFO (infold)

Returns INTEGER The value associated with the type of UART information requested
Exceptions = Local Stack Frame Underflow

= Local Stack Frame Overflow
Arguments

byVal infold AS INTEGER
This specifies the information type requested as follows if the port is open:

0 0 if closed, 1 if open, 3 if open and there is a BLE connection and 7 if the
transmit fifo characteristic CCCD has been updated by the client to enable
notifies or indications.

Receive ring buffer capacity

Transmit ring buffer capacity

Number of bytes waiting to be read from receive ring buffer

Free space available in transmit ring buffer

Tx/Rx attribute size in bytes. Valid range is 20-244, and can be configured using
AT+CFG 212. See Data Packet Length Extension section for more information.
Related Commands BLEVSPOPEN, BLEVSPCLOSE, BLEVSPWRITE, BLEVSPREAD, BLEVSPFLUSH

infold

A WNE

Example:

// Example :: BleVspInfo.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM hndl, rc

//Close VSP if it is open
BleVSpClose ()

rc = BleVSpOpen (128,128,0,hndl)

PRINT "\nVsp State: "; BleVSpInfo (0)

PRINT "\nRx buffer capacity: "; BleVSpInfo(l)

PRINT "\nTx buffer capacity: "; BleVSpInfo(2)

PRINT "\nBytes waiting to be read from rx buffer: "; BleVSpInfo (3)

PRINT "\nFree space in tx buffer: "; BleVSpInfo (4)

PRINT "\nTx/Rx Characteristic Size: "; BleVSpInfo (5) // Changed using AT+CFG 212 xx
BleVspClose ()

PRINT "\nVsp State: "; BleVSpInfo (0)

Expected Output:

Vsp State: 1
Rx buffer capacity: 128
Tx buffer capacity: 128

https://www.lairdconnect.com/ 304 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

Bytes waiting to be read from rx buffer: 0
Free space in tx buffer: 128

Tx/Rx Characteristic Size: 20

Vsp State: O

6.15.8 BleVSpWrite
FUNCTION

This function is used to transmit a string of characters from the virtual serial port.

BLEVSPWRITE (strMsg)

Returns INTEGER 0 to N : Actual number of bytes successfully written to local transmit ring buffer.

= Local Stack Frame Underflow

Exceptions = Local Stack Frame Overflow

Arguments

byRef strMsg AS STRING

The array of bytes to be sent. STRLEN(strMsg) bytes are written to the local transmit ring
buffer. If STRLEN(strMsg) and the return value are not the same, it implies that the transmit
buffer did not have enough space to accommodate the data.

If the return value does not match the length of the original string, use STRSHIFTLEFT functi
to drop the data from the string, so subsequent calls to this function only retry with data not
placed in the output ring buffer.

Another strategy is to wait for EVVSPTXEMPTY events, then resubmit data.

Related Commands BLEVSPOPEN, BLEVSPCLOSE, BLEVSPINFO, BLEVSPREAD, BLEVSPFLUSH

strMsg

Note: strMsg cannot be a string constant, e.g. “the cat”, but must be a string variable. If you must use a const string, first
save it to a temp string variable and then pass it to the function.

Use Laird Toolkit app for iOS/Android and connect to your BL653 to test this sample app.
Example:

// Example :: BleVSpWrite.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM tx$,rc,scRpt$,adRpt$,addrs$, hndl, cnt

//handler when VSP tx buffer is empty
FUNCTION HandlerVSpTxEmpty () AS INTEGER
cnt=cnt+1
IF cnt<= 2 THEN
tx$="then this is sent"
rc = BleVSpWrite (tx$)
ENDIF

ENDFUNC 0

https://www.lairdconnect.com/ 305 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

rc = BleVSpOpen (128,128,0,hndl)

rc = BleScanRptInit (scRpt$)

rc = BleAdvRptAddUuidl28 (scRpt$,hndl)
adRpts=""

rc = BleAdvRptsCommit (adRpt$, scRptS$)
addrs$=""

rc = BleAdvertStart (0,addr$,20,300000,0)

PRINT "\nDevice name is "; BleGetDeviceName$ ()

cnt=1

tx$="send this data and "

rc = BleVSpWrite (tx$)

ONEVENT EVVSPTXEMPTY CALL HandlerVSpTxEmpty

WAITEVENT

PRINT "\nExiting..."

Expected Output:

Device name is LAIRD BL653
Exiting...

6.15.9 BleVSpRead

FUNCTION

This function is used to read the content of the receive buffer and copy it to the string variable supplied.

BLEVSPREAD (strMsg, nMaxRead)

INTEGER 0 to N : The total length of the string variable. This means the caller does not

Returns
! need to call strlen() function to determine how many bytes in the string must be processed.
Exceptions = Local Stack Frame Underflow
P = Local Stack Frame Overflow
Arguments
strMs byRef strMsg AS STRING
9 | The content of the receive buffer is copied to this string.
byVal nMaxRead AS INTEGER
nMaxRead

The maximum number of bytes to read.
Related Commands | BLEVSPOPEN, BLEVSPCLOSE, BLEVSPINFO, BLEVSPWRITE, BLEVSPFLUSH

Note: strMsg cannot be a string constant, e.g. “the cat”, but must be a string variable and. If you must use a const string,
first save it to a temp string variable and then pass it to the function

Use the Laird Toolkit app for iOS/Android with your BL653 to test this sample app.

https://www.lairdconnect.com/ 306 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

Example:

// Example :: BleVSpRead.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM conHndl

//0Only 1 global variable because its value is used in more than 1 routine
//A1ll other variables declared locally, inside routine that they are used in.
//More efficient because these local variables only exist in memory

//when they are being used inside their respective routines

//
// Open VSp and start advertising

//
SUB OnStartup ()

DIM rc, hndl, tx$, scRpt$, addr$, adRpt$: adRpt$="" : addrs$=""
rc=BleVSpOpen (128,128, 0, hhndl)

rc=BleScanRptInit (scRpt$)

rc=BleAdvRptAddUuidl28 (scRpt$,hndl)
rc=BleAdvRptsCommit (adRpt$, scRptS$)
rc=BleAdvertStart (0, addr$,20,300000,0)

PRINT "\nDevice name is "; BleGetDeviceNames$ ()

tx$="\nSend me some text \nTo exit the app, just tell me\n"
rc = BleVSpWrite (tx$)
ENDSUB

//
// Close connections so that we can run another app without problems
//

SUB CloseConnections ()

DIM rc
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()
BleVspClose ()

ENDSUB

//
// VSP Rx buffer event handler
//

https://www.lairdconnect.com/ 307 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird ‘

) CONNECTIVITY
User Guide _)

FUNCTION HandlerVSpRx () AS INTEGER
DIM rc, rx$, e$: eS="exit"
rc=BleVSpRead (rx$,20)

PRINT "\nMessage from client: ";rx$

//If user has typed exit
IF StrPos (rx$,e$,0) > -1 THEN
EXITEFUNC O
ENDIF
ENDFUNC 1

//
// BLE event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)

conHndl=nCtx
IF nMsgID==1 THEN
PRINT "\nDisconnected from client"
EXITFUNC O
ENDIF
ENDFUNC 1

ONEVENT EVVSPRX CALL HandlerVSpRx
ONEVENT EVBLEMSG CALL HndlrBleMsg

OnStartup () //Calls first subroutine declared above
WAITEVENT
CloseConnections () //Calls second subroutine declared above

PRINT "\nExiting..."

Expected Output:

Device name is LAIRD BL653

Messgae from client: (Whatever data you send from your device)
Message from client: exit

Exiting...

https://www.lairdconnect.com/ 308 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

6.15.10 BleVSpUartBridge
SUBROUTINE

This function creates a bridge between the managed Virtual Serial Port Service and the UART when both are open. Any data
arriving from the VSP is automatically transferred to the UART for forward transmission. Any data arriving at the UART is sent
over the air.

It should be called either when data arrives at either end or when either end indicates their transmit buffer is empty. The
following events are examples: EVVSPRX, EVUARTRX, EVVSPTXEMPTY and EVUARTTXEMPTY.

Given that data can arrive over the UART a byte at a time, a latency timer specified by AT+CFG 116 command may be used
to optimise the data transfer over the air. This tries to ensure that full packets are transmitted over the air. Therefore, if a single
character arrives over UART, a latency timer is started. If it expires, that single character (or any more that arrive but less than
20) will be forced onwards when that timer expires.

BLEVSPUARTBRIDGE ()

= Local Stack Frame Underflow

Exceptions = Local Stack Frame Overflow

Arguments None
Related Commands BLEVSPOPEN, BLEVSPCLOSE, BLEVSPINFO, BLEVSPWRITE, BLEVSPFLUSH

Example:

// Example :: BleVSpUartBridge.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM conHndl

//
// Open VSp and start advertising

//
SUB OnStartup ()

DIM rc, hndl, tx$, scRpt$, addr$, adRpt$

rc=BleVSpOpen (128,128,0,hndl)

rc=BleScanRptInit (scRpt$)

rc=BleAdvRptAddUuidl28 (scRpt$, hndl)

rc=BleAdvRptsCommit (adRpt$, scRpt$S)

rc=BleAdvertStart (0,addr$,20,300000,0)

rc=GpioBindEvent (1,16,1) //Channel 1, bind to low transition on GPIO pin 16

PRINT "\nDevice name is "; BleGetDeviceName$ ();"\n"

tx$="\nSend me some text. \nPress button 0 to exit\n"
rc = BleVSpWrite (tx$)
ENDSUB

//

https://www.lairdconnect.com/ 309 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

// Close connections so that we can run another app without problems
//

SUB CloseConnections ()

DIM rc
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()
BleVspClose ()

ENDSUB

//
// BLE event handler - connection handle is obtained here
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)

conHndl=nCtx
IF nMsgID==1 THEN
PRINT "\nDisconnected from client"
EXITFUNC O
ENDIF
ENDFUNC 1

//
//handler to service button 0 pressed
//
FUNCTION HndlrBtnOPr () AS INTEGER

//just exit and stop waiting for events

ENDFUNC O

//
//handler to service an rx/tx event
//
FUNCTION HandlerBridge () AS INTEGER

// transfer data between VSP and UART ring buffers

BleVspUartBridge ()
ENDFUNC 1
ONEVENT EVVSPRX CALL HandlerBridge
ONEVENT EVUARTRX CALL HandlerBridge
ONEVENT EVVSPTXEMPTY CALL HandlerBridge
ONEVENT EVUARTTXEMPTY CALL HandlerBridge
https://www.lairdconnect.com/ 310 Americas: +1-800-492-2320

© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

ONEVENT EVBLEMSG CALL HndlrBleMsg

ONEVENT EVGPIOCHAN1 CALL HndlrBtnOPr

OnStartup ()

WAITEVENT

CloseConnections () //Calls second subroutine declared above
PRINT "\nExiting..."

6.15.11 BleVSpFlush
SUBROUTINE

This subroutine flushes either or both receive and transmit ring buffers.

This is useful when, for example, you have a character terminated messaging system and the peer sends a very long
message, filling the input buffer. In that case, there is no more space for an incoming termination character. A flush of the
receive buffer is the best approach to recover from that situation.

BLEVSPFLUSH (bitMask)

Returns . None

Arguments

byVal bitMask AS INTEGER
bitMask | Bit O is set to flush the Rx buffer. Bit 1 is set to flush the Tx buffer. Set both bits to flush both
buffers.

Related Commands BLEVSPOPEN, BLEVSPCLOSE, BLEVSPINFO, BLEVSPWRITE, BLEVSPREAD

Example:

// Example :: BleVSpFlush.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM conHndl
//
// Open VSp and start advertising
//
SUB OnStartup ()

DIM rc, hndl, tx$, scRpt$, addr$, adRpt$: adRpt$="" : addrS$=""

rc=BleVSpOpen (128,128, 0,hndl)

rc=BleScanRptInit (scRpt$)

rc=BleAdvRptAddUuidl28 (scRpt$, hndl)

rc=BleAdvRptsCommit (adRpt$, ScRptS)

rc=BleAdvertStart (0,addr$,20,300000,0)

rc=GpioBindEvent (1,16,1) //Channel 1, bind to low transition on GPIO pin 16

PRINT "\nDevice name is "; BleGetDeviceName$s ()

https://www.lairdconnect.com/ 311 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions
User Guide

La i rdT J» CONNECTIVITY

tx$="\nSend me some text, I won't get it. \nTo exit the app press Button 0\n"

rc = BleVSpWrite (tx$)

ENDSUB

//

// Close connections so that we can run another app without problems

//

SUB CloseConnections ()
DIM rc
rc=BleDisconnect (conHndl)

rc=BleAdvertStop ()

BleVspClose ()
BleVspFlush (3) //Flush both buffers
ENDSUB
//
// VSP Rx buffer event handler
//

FUNCTION HandlerVSpRx () AS INTEGER
BleVspFlush (1)
PRINT "\nRx buffer flushed"
ENDFUNC 1
//

//handler to service button 0 pressed

//
FUNCTION HndlrBtnOPr () AS INTEGER

//stop waiting for events and exit app

ENDFUNC 0

//

// BLE event handler
//

FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
conHndl=nCtx
IF nMsgID==1 THEN
PRINT "\nDisconnected from client"
EXITFUNC O
ENDIF
ENDFUNC 1

ONEVENT EVVSPRX CALL HandlerVSpRx

https://www.lairdconnect.com/ 312

© Copyright 2020 Laird Connectivity, Inc.

All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

ONEVENT EVBLEMSG CALL HndlrBleMsg
ONEVENT EVGPIOCHAN1 CALL HndlrBtnOPr

OnStartup () //Calls first subroutine declared above
WAITEVENT
CloseConnections () //Calls second subroutine declared above

PRINT "\nExiting..."

Expected Output:

Device name is LAIRD BL653
Rx buffer flushed

Rx buffer flushed
Exiting...

6.16 Data Packet Length Extension

This section describes all the events and functions used for Data Packet Length Extension and related features to achieve
higher throughputs.

6.16.1 Overview

6.16.1.1 Data Packet Length Extension

One of the major additions in Bluetooth v4.2 is LE Data Packet Length Extension. This feature allows the BLE packet size to
increase from 27 to 251 bytes at the link layer, thus increasing the capacity of the data channel by approximately ten times.
The benefits of of this include the following:
= Higher Throughputs — Less time is required to transfer the same amount of data compared to Bluetooth v4.1.
= Lower power consumption — Fewer transactions are required to transfer a given amount of data compared to Bluetooth
v4.1. This reduces the time for which the radio is active.

In order to take full advantage of packet length extension, the device should also have an ATT_MTU greater than the default
23 bytes.

6.16.1.2 ATT_MTU

The attribute Maximum Transmission Unit (ATT_MTU) is the maximum size of any packet sent betweem a GATT client and a
GATT server. It determines the maximum amount of data that can be sent over the air for GATT operations.

Read 0to (ATT_MTU-1) The GATT client can only read 22 bytes from a GATT server’s attribute data.

Write 0to (ATT_MTU-3) The GATT client can only write up to 20 bytes to a GATT server attribute.
Notification 0to (ATT_MTU-3) The GATT server can only send notifies of data up to 20 bytes long
Indications 0to (ATT_MTU-3) The GATT server can only send indications of data up to 20 bytes long

The MTU exchange is a subprocedure used by the GATT client to set the connection’s ATT_MTU to the maximum possible
value that can be supported by both devices. This means that if the ATT_MTU is set to a value larger than the default 23
bytes, larger amounts of data can be sent between the GATT server and the GATT client per transaction, therefore resulting in
higher throughput. For example, when the ATT_MTU is set to 247, single read/write/notifies/indicates can be performed on
attributes that are 244 bytes long.

https://www.lairdconnect.com/ 313 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.16.2 CFG Keys Configuration

6.16.2.1 Maximum ATT_MTU

The maximum ATT_MTU value that the BL653 supports can be set using AT+CFG 211 num. Once this value is set, the
BL653 should be reset (e.g. via ATZ command or a UART BREAK) for the configuration to take effect. When the smartBASIC
application is running and if the BL653 is acting as a GATT client, the function BleGattcAttributeMtuRequest should be used to
request the ATT_MTU size to change to its maximum supported value. If the BL653 is acting as a GATT server, when it
receives the request it automatically responds with its maximum ATT_MTU. The connection’s MTU is the minimum value
between the client’'s and server’'s maximum ATT_MTU.

211 Maximum ATT_MTU in bytes

Example:

AT+CFG 211 247
00

ATZ

00

AT+CFG 211 2

27 0x000000F7 (247)

00

6.16.2.2 Maximum Attribute Data Length

In order to take full advantage of the increased ATT_MTU and packet length extension, the BL653 now supports attribute data
lengths of up to 244 bytes. The maximum attribute data length is set using AT+CFG 212 num. The default value is 20 bytes.
Once this is set, the BL653 should be reset (e.g. via ATZ command or a UART BREAK) for the configuration to take effect. At
runtime, the function BleAttrMetaDataEx can then be used to create characteristic values larger than 20 bytes.

212 Maximum Attribute Data Length Length

Example:

AT+CFG 212 244

00

ATZ

00

AT+CFG 212 2

27 0x000000F4 (244)

00

https://www.lairdconnect.com/ 314 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

6.16.2.3 Maximum Packet Length

The BL653 supports a packet size of 27 bytes by default, and can be configured to support packet sizes up to 251 bytes,
which is the maximum that is allowed by the Bluetooth specification. In order to increase the packet size supported by the
device, the command AT+CFG 216 num should be called, where num should be in the range of 27-251 bytes long. For values
less than or greater than the range, the packet length will be capped to 27 bytes or 251 bytes respectively.

Note: This function only sets the maximum packet length supported by the device. To actually change the packet length
for a connection, the function BleGattcAttributeMtuRequest() during the connection, and the packet length
requested will be ‘ATT_MTU + 4’. For more information, refer to the example for BleGattcAttributeMtuRequest().

6.16.3 Events and Messages

6.16.3.1 EVATTRIBUTEMTU

This event is thrown when the ATT_MTU of a connection is changed. It occurs after an MTU exchange procedure has been
intiated from the GATT client. The event comes with the following parameters:

= Connection handle — The handle of the connection for which the attribute MTU has changed.
= Attribute MTU — The new attribute size. This is in the range of 23-247 bytes.

For usage, see example for BleGattcAttributeMtuRequest.

6.16.3.2EVPACKETLENGTH

This event message is thrown when the connection’s data packet length changes. It is only thrown after a negotiation of the
attribute MTU via the BleAttributeMtuRequest smartBASIC function. The event comes with the following parameters:

= Connection handle — The handle of the connection for which the packet length has changed.

= Maximum Tx Octets — The maximum number of bytes that the BL653 sends on this connection. The valid range is
between 27-251 bytes.

= Maximum Tx Time — The maximum time that the BL653 takes to send one byte on this connection. The valid range is
between 328-2120 microseconds. This value cannot be controlled by the smartBASIC application and is only provided for
informative purposes.

= Maximum Rx Octets — The maximum number of bytes that the BL653 receives on this connection. The valid range is
between 27-251 bytes. The default value is 27 bytes.

= Maximum Rx Time — The maximum time that the BL653 takes to send one byte on this connection. The valid range is
betweem 328-2120 microseconds. This value cannot be controlled by the smartBASIC application and is only provided
for informative purposes.

For usage, see example for BleGattcAttributeMtuRequest.

6.16.4 BleGattcAttributeMtuRequest

This function is used by the GATT client to request a new attribute MTU from the remote GATT server. On the BL653, the
default ATT_MTU is 23 bytes. The maximum value that the BL653 can support is 247 bytes. This can be set using the config
key 211.

Note: The ATT_MTU value is set using the interactive command AT+CFG 211 num. This value is then always used
when the BleGattcAttributeMtuRequest is called.

BLEGATTCATTRIBUTEMTUREQUEST(nConnHandle)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal nEnable AS INTEGER.

nConnHandle The connection handle for which the ATT_MTU should change

https://www.lairdconnect.com/ 315 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

// Example :: BleGattcAttributeMtuRequest.sb

// IMPORTANT: before running this application, the ATT MTU and maximum packet
// length are set using the interactive commands:

// AT+CFG 211 247 (This is to set the maximum ATT MTU)
// AT+CFG 216 251 (This is to set the maximum packet length)
// ATZ (This is to reset the device for value to take effect)

// In order to achieve an ATT MTU larger than the default 23, the remote device
// should also have its maximum ATT MTU set to a value greater than 23. If the
// remote device is a BL653, the same AT+CFG command should be used

//BLE EVENT MSG IDs
#define BLE EVBLEMSGID CONNECT 0 // msgCtx connection handle
#define BLE EVBLEMSGID DISCONNECT 1 // msgCtx = connection handle

DIM rc, stRsp$, addr$

//

// This handler is called when there is a BLE message

//

function HandlerBleMsg (BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER) as integer
dim hz

select nMsgId
case BLE EVBLEMSGID CONNECT
print " --- Connect: (";integer.h' nCtx;")\n"
// Upon connection, request a new attribute length. The value used will be that
// whcih was set using 'AT+CFG 211 num' before running the program
rc = BleGattcAttributeMtuRequest (nCtx)

case BLE EVBLEMSGID DISCONNECT
print " --- Disconnect: (";integer.h' nCtx;")\n"
// Upon disconnection, start advertising again
rc = BleAdvertStart (0,addr$,100,0,0)

case else

endselect
endfunc 1

//
// This handler is called when the packet length is changed
//
function HandlerPacketLength (BYVAL hConn, BYVAL Tx Octets, BYVAL Tx Time, BYVAL
Rx Octets, BYVAL Rx Time)

print "Packet Length Change: \n"

print "Handle: ";integer.h' hConn;"\n"

print "Tx Octets=";Tx Octets;" Tx Time =";Tx Time;"\n"
print "Rx Octets=";Rx Octets;" Rx Time =";Rx Time;"\n"

endfunc 1

//
// This handler is called when there is an event that the attribute MTU has changed
//
function HandlerAttrMTU (BYVAL hCOnn AS INTEGER, BYVAL nSize AS INTEGER)

print "Attribute MTU Changed - Handle:";integer.h' hConn;" Size:";nSize;"\n"

https://www.lairdconnect.com/ 316 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

endfunc 1

e
// Enable synchronous event handlers

f e
OnEvent EVBLEMSG call HandlerBleMsg

OnEvent EVATTRIBUTEMTU call HandlerAttrMTU

OnEvent EVPACKETLENGTH call HandlerPacketLength

// Initialise LE routines

rc = BleAdvertStart (0,addr$,100,0,0)

// Open the gatt client. Specify the buffer size to be 251 to be able to receive

// notifications up to 244 bytes long (maximum supported by BL653 when ATT MTU = 247)
rc = BleGattcOpen (251, 0)

S
// Wait for a synchronous event.

// An application can have multiple <WaitEvent> statements

WAITEVENT

Expected Output:

AT+CFG 211 247

00

AT+CFG 216 251

00

ATZ

00

AT+RUN “BleGattcAttributeMtuReqg”
--— Connect: (0001FFO00)
Attribute MTU Changed - Handle:0001FF00 Size:247
Packet Length Change:

Handle: 0001FFO0O

Tx_ Octets=251 Tx Time =2120
Rx Octets=251 Rx Time =2120

6.16.5 BleMaxPacketLengthSet

This function has been removed and replaced with the config key 216. To set the maximum packet length, either call ‘AT+CFG
216 nSize’ (followed by ‘ATZ’ for the value to take effect), or at runtime calling NvCfgKeySet(216, nSize) (followed by reset(0)
for the value to take effect.

6.16.6 BleMaxPacketLengthGet

This function is used to get the preferred maximum packet length on the BL653. The actual packet length change only occurs
when when the attribute MTU for the connection is changed via the BleGattcAttributeMtuRequest function.

https://www.lairdconnect.com/ 317 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

BLEMAXPACKETLENGTHSET (nSize)

Returns | INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
nSize byRef nSize AS INTEGER.
When the function is used, this value will contain the maximum packet length preferred by the device.
Example:
// Example :: BleMaxPacketLengthSet.sb

// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

// Before running the example, issue ‘at+cfg 216 155’ followed by ‘atz’
dim rc, nSize

// Now get the maximum packet length
rc = BleMaxPacketLengthGet (nSize)
PRINT "\nThe maximum packet size is ";nSize

| The maximum packet size is 155

6.17 LE Ping

6.17.1 Overview

The LE Ping feature can be used to verify the existence of an encrypted link with the remote device. When enabled, the BL653
sends a request to the remote device to send an encrypted packet. If a timeout occurs without the reception of a packet, an
event is triggered on the BL653.

6.17.2 Events and Messages

6.177.2.1 EVBLE _PING_AUTH_TIMEOUT
This event is thrown when the ping authenticated payload timer has expired without receiving an encrypted packet. The event
comes with the following parameter:-

Connection Handle — The handle of the connection for which the timeout has occurred.

For usage, see example for BlePingAuthTimeout.

6.17.3 BlePingAuthTimeout

On an encrypted connection, this function is used to monitor the time since the last reception of an encrypted packet. If the
timeout is exceeded without receiving a packet, then the EVBLE_PING_AUTH_TIMEOUT is triggered. This can be used to
detect if there is something wrong with the encrypted link, and therefore if the event is received, a safe action would be to
disconnect.

Note: Setting nAuthTimeOut to a value less than (2*Connection Interval) will always cause the
EVBLE_PING_AUTH_TIMEOUT event to be triggered. The reason for this is that two connection events are
required for a packet to be sent to the remote device and then sent back, therefore having nAuthTimeout smaller
than (2*Connection Interval) means that the timer will always expire before the response is received from the
remote device, causing the event to be triggered.

BLEPINGAUTHTIMEOUT (hConnHanlde, nAuthTimeout)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
https://www.lairdconnect.com/ 318 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940

All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

Arguments:

byVal hConnHandle AS INTEGER.
The connection handle for which the authenticated payload timer is to start.
byVal nAuthTimeout AS INTEGER.

nAuthTimeout | The authentication timeout in microseconds. The range of this value is between 10000 and 480000
microseconds, and is rounded up to the nearest 10000us (10ms).

nConnHandle

Example:

//Example :: BlePingAuthTimeout.sb

// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

// Set BLE PING TIMEOUT to a value more than (2*connection interval)
// for the feature to work. Otherwise the event will be triggered
// because two connection events are required for a packet to be

// sent back and forth.

#define BLE PING TIMEOUT 10000

#define BTAddr "000016A4B75204"

// Variable declaration
DIM hndl, rc, intrvl,sprvto,slat, pingTO

[/ mmm T -
// Function to handle Ble event messages

/= m T
#define BLE EVBLEMSGID CONNECT 0 //nCtx = connection handle
#define BLE_EVBLEMSGID DISCONNECT 1 //nCtx = connection handle
#define BLE EVBLEMSGID ENCRYPTED 18 //nCtx = connection handle
[/ m e

FUNCTION HandlerBleMsg (nMsgId, nCtx)

select nMsgId
case BLE EVBLEMSGID CONNECT
print "## Connected!\n"
// Read connection interval
rc = BleGetCurConnParms (nCtx,intrvl, sprvto,slat)
print "## Connection Interval=";intrvl;"\n"
// Pair to the remote device
rc = BlePair (nCtx, 0)

case BLE EVBLEMSGID DISCONNECT
print "## Disconnected!\n"

case BLE EVBLEMSGID ENCRYPTED
print "## Encrypted Connection!\n"
// Start LE Ping Authenticated Timeout
pingTO = BLE PING TIMEOUT
rc = BlePingAuthTimeout (nCtx, pingTO)

if rc == 0 then
print "## Ping auth timeout enabled :: Timeout=";pingTO;"\n"
endif

case else

endselect
ENDFUNC 1
/=
// This handler is called when the LE Ping authentication has timed out
https://www.lairdconnect.com/ 319 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940

All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

function HandlerLePingTimeout (BYVAL hConn AS INTEGER)
print "## LE Ping Timeout : ";integer.h' hConn;"\n"
// Disconnect as this is not safe, check timeout is more than 2*connection interval
rc = BleDisconnect (hConn)

endfunc 1

/s
// Enable synchronous event handlers
T
OnEvent EVBLEMSG call HandlerBleMsg

OnEvent EVBLE PING AUTH TIMEOUT call HandlerLePingTimeout

//Connect to remote device

DIM addr$

addr$ = BTAddr

addr$ = StrDehexize$ (addr$)

rc = BleConnect (addr$, 5000, 27000, 30000, 500000)

WaitEvent

6.18 LE 2M PHY and CODED PHY

6.18.1 Events and Messages

6.18.1.1 EVBLE_PHY REQUEST

By default, this event is not enabled and an incoming PHY change request is automatically accepted. This event is only
enabled when the function BleConnectConfig(9, 1) is called. It is thrown when there is a request from the remote device to
switch the PHY modulation. In the function handler for this event, the function BlePhySet should be used to respond with the
module’s PHY preferences. The event comes with the following parameters:-

Connection Handle — The handle of the connection for which there is a PHY modulation request.

BlePhyTx — The transmission PHY preference of the remote device. This will be a bitmask. Bit 0 is set for LIMPHY, Bit 1 is set
for 2MPHY, and Bit 2 is set for coded PHY.

BlePhyRx — The reception PHY preference of the remote device. This will be a bitmask. Bit 0 is set for LIMPHY, Bit 1 is set for
2MPHY, and Bit 2 is set for coded PHY.

For usage, see example for BlePhyReq.

6.18.1.2 EVBLE_PHY UPDATED
This event is thrown when the PHY modulation of the underlying connection has been updated. The event contains the
following parameters:-

Connection Handle — The handle of the connection for which there is a PHY modulation has been updated.

Status — The HCI status code of the operation. 0x00 indicates a successful command. 0x00 — OxFF indicates that the
command has failed. A full list of HCI status codes can be found at the end of this document.

BlePhyTx — The new value of the transmission PHY. 1 for IMPHY, 2 for 2MPHY, 4 for coded PHY.
BlePhyRx — The new value of the transmission PHY. 1 for IMPHY, 2 for 2MPHY, 4 for coded PHY.

For usage, see example for BlePhyReq.

https://www.lairdconnect.com/ 320 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

6.18.2 BlePhySet

This function is used to set the PHY preferences of a connection, or reply to PHY request from a remote device. When this
command is initiated from the module, it triggers an EVBLE_PHY_REQUEST on the remote device, and if successful,
EVBLE_PHY_UPDATED event is thrown to indicate that the PHY configuration of the connection has changed.

Note: For Coded PHY functionality, the bandwidth configuration should be set to HIGH. This is done through “AT+CFG
214 1” followed by ATZ in interactive mode, or NvCfgKeySet(214,1) followed by Reset(0) during runtime.

This function is only used to switch the PHY settings of an existing connection (e.g. from 1IMPHY to CODED PHY).
In order to advertise, scan or connect over CODED PHY, the functions BleAdvertConfig(), BleScanConfig() and
BleConnectConfig() should be used before BleAdvertStart(), BleScanStart() or BleConnect() is called, respectively.

BLEPHYSET (hConn, nPhyTx, nPhyRx, nOptions)

Returns ‘ INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal hConn AS INTEGER.

h
Conn The handle of the connection for which a PHY modulation update is taking place.

byVal nPhyTx AS INTEGER.
A bit field that indicates the transmission PHYs that the host prefers
= BitO : The host prefers to use the LE 1M transmission PHY (possibly among others).
= Bit1 : The host prefers to use the LE 2M transmission PHY (possibly among others).
= Bit2: The host prefers to use the LE CODED transmission PHY (possibly among others).
= Bit 3-7: Reserved for future use.

nPhyTx

byVal nPhyRx AS INTEGER.
A bit field that indicates the reception PHYs that the host prefers
= Bit0 : The host prefers to use the LE 1M reception PHY (possibly among others).
= Bit1 : The host prefers to use the LE 2M reception PHY (possibly among others).
»= Bit2: The host prefers to use the LE CODED transmission PHY (possibly among others).
= Bit 3-7: Reserved for future use.

nPhyRx

byVal nPhyRx AS INTEGER.

nOptions .
P This is reserved for future use and should always be set to 0.

//Example :: BlePhySet.sb
// Ensure that the remote device is advertising
#define BTAddr "000016A4B75202"

// Variable declaration
DIM rc, hConn

A R
// Function to handle Ble event messages

[(| == e S S S e e S S S S S S S S Es o=
#define BLE EVBLEMSGID CONNECT 0 //nCtx = connection handle
#define BLE EVBLEMSGID DISCONNECT 1 //nCtx = connection handle

[[m=mmm e S S S S S S S oSS

select nMsgId

case BLE EVBLEMSGID CONNECT
print "## Connected!\n"
// Upon connection, request a change to 2MPHY
hConn = nCtx

https://www.lairdconnect.com/ 321 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

dim nPhyTx : nPhyTx = 2

dim nPhyRx : nPhyRx 2

dim nOptions : nOptions = 0

rc = BlePhySet (hConn, nPhyTx, nPhyRx, nOptions)

case BLE EVBLEMSGID DISCONNECT
print "## Disconnected!\n"

case else

endselect
ENDFUNC 1
/==
// This handler is called when there is a connection attempt timeout
Bt
function HandlerBleConnTimOut () as integer

print "## Connection attempt stopped via timeout\n"
endfunc 1

function HandlerPhyRequest (BYVAL hConn, BYVAL PhyTx, BYVAL PhyRx)
print "## BLE PHY REQUEST: \n"
print "Handle: ";integer.h' hConn;"\n"
print "PhyTx=";PhyTx;" PhyRx =";PhyRx;"\n"

endfunc 1

function HandlerPhyUpdated (BYVAL hConn, BYVAL nStatus, BYVAL PhyTx, BYVAL PhyRx)
print "## BLE PHY CHANGED: \n"
print "Handle: ";integer.h' hConn;"\n"
print "Status: ";integer.h' nStatus;"\n"
print "PhyTx=";PhyTx;" PhyRx =";PhyRx;"\n"
endfunc 1

/= o
// Enable synchronous event handlers

/= o
OnEvent EVBLEMSG call HandlerBleMsg

OnEvent EVBLE CONN_TIMEOUT call HandlerBleConnTimOut

OnEvent EVBLE PHY REQUEST call HandlerPhyRequest

OnEvent EVBLE PHY UPDATED call HandlerPhyUpdated

//Connect to remote device
DIM addr$

addr$ = BTAddr

addr$ = StrDehexize$ (addr$)

// Change default configuration so that EVBLE PHY REQUEST is thrown
rc = BleConnectConfig (9, 1)

rc = BleConnect (addr$, 30000, 27000, 30000, 500000)

WaitEvent

https://www.lairdconnect.com/ 322 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

Expected Output:

Connected!

BLE PHY CHANGED:
Handle: 0001FF00
Status: 00000000
PhyTx=2 PhyRx =2

/ OTHER EXTENSION BUILT-IN ROUTINES

This chapter describes non BLE-related extension routines that are not part of the core smartBASIC language.

7.1 Near Field Communications (NFC)

This chapter provides details of all the smartBASIC functions and subroutines that expose the NFC functionality and also the
events that are generated when in operation.

7.1.1 Overview

This section describes all the events and routines used to interact with the NFC peripheral on the BL653 which is a passive
device which means it is not possible to establish NFC communications between two BL653 devices. In any NFC
communications, one device shall be an Active device.

On the BL653 the NFC is exposed as a Tag Type 2 Passive interface which means it can only offer tags to be read from an
Active NFC reader (for example, a smartphone or an Arduino based shield).

The NFC Forum has agreed on four tag types and a good definition of those NFC Tag Types is provided at
http://www.nfc.cc/technology/nfc-tag-types which is reproduced as follows:

= Typel-Type lTagis based on ISO/IEC 14443A. This tag type is read and re-write capable. The memory of the tags
can be write protected. Memory size can be between 96 bytes and 2 Kbytes. Communication Speed with the tag is 106
kbit/sec. Example: Innovision Topaz

= Type2-Type 2 Tag is based on ISO/IEC 14443A. This tag type is read and re-write capable. The memory of the tags
can be write protected. Memory size can be between 48 bytes and 2 Kbytes. Communication Speed with the tag is 106
kbit/sec. Example: NXP Mifare Ultralight, NXP Mifare Ultralight

= Type 3 -Type 3 Tag is based on the Japanese Industrial Standard (JIS) X 6319-4. This tag type is pre-configured at
manufacture to be either read and re-writable, or read-only. Memory size can be up to 1 Mbyte. Communication Speed
with the tag is 212 kbit/sec. Example: Sony Felica

= Type 4 - Type 4 is fully compatible with the ISO/IEC 14443 (A \& B) standard series. This tag type is pre-configured at
manufacture to be either read and re-writable, or read-only. Memory size can be up to 32 KBytes; For the communication
with tags APDUs according to ISO 7816-4 can be used. Communication speed with the tag is 106 kbit/sec. Example:
NXP DESfire, NXP SmartMX with JCOP.)

Mifare Classic is not an NFC forum compliant tag, although reading and writing of the tag is supported by most of the
NFC devices as they ship with an NXP chip. The specifications for the tag types are available for free from the NFC-
Forum website.

The following is a high level overview of NFC communications and it is encouraged that the reader access resources on the
internet which give further details, like for example http://www.nfc.cc/technology/nfc/.

= The NFC physical layer is a half-duplex, bi-directional pipe with a typical datarate of 106kbps and can be 212 or 424
kbps. (The BL653 only provides a 106kbps datarate)

= The datais carried on a 13.56MHz carrier wave which is provided by one of the active devices in the peer to peer link. The signalling
in the carrier is done using load modulation. “The term load modulation describes the influence of load changes on the initiators
carrier field’s amplitude”
<credit: http://www.nfc.cc/technology/nfc/>

= There is Active mode and Passive mode. At least one device (the initiator) has to be an active device which provides the
13.56MHz carrier wave.

https://www.lairdconnect.com/ 323 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

http://www.nfc.cc/technology/nfc-tag-types
http://www.nfc.cc/technology/nfc/
http://www.nfc.cc/technology/nfc/

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

»= The data layer for Tags consists of NDEF messages. NDEF = NFC Data Exchange Format.
Each NDEF message consists of one or more NDEF records.
Each NDEF record consists of a well defined variable length header and a payload which can be anything and the NFC
forum does not specify any format.

= An NDEF Record header consists of a payload length, a Type field and an optional ID Field.
The Type field is used to qualify the payload so that the recipient can interpret it appropriately.
The optional ID field is typically used to give a ‘name’ to the record which allows other records in the message to link to.
= NFC provides for three types of communications over the physical channel and they are; Reader/Writer mode, Card
Emulation mode and Peer-To-Peer mode. In the context of BL653, only reader/writer mode functionality is made
available and initially only passive Tags Type 2 which means Tags can be read but not written.
Future enhancments to the BL653 firmware may provide Tag Type 4 (which can be read or written) but that is dependent
on the chipset vendor providing an appropriate stack.

The Tag Type 2 functionality exposed in the BL653 is nicely illustrated by the following diagram, for which Laird acknowledges
Nordic Semiconductor, the chipset vendor.

In the diagram the Polling device is an active device like an NFC enabled smartPhone or an Arduino with an Adafruit NFC
shield.

Generate fields—p
READ commands=—=s=—p

Polling

Hecttromagnetic fleld

device

<4—NDEF(«Hello world!»)

Figure 9: Simplified overview of how NFC can be used

7.1.2 NDEF Messages

NDEF is the acronym for “NFC Data Exchange Format”
NDEF Messages, in the context of Tags of any type, are simply an array of 1 or more NDEF Records.
A Tag of any type is simply an NDEF message.

Each NDEF record consists of a header and a payload both being variable length and the length of the payload in each
record can be up to 232 bytes long.

The header consists of:

Byte 0 : A bit mask which contains a 3 bit TNF (Type Name Format) and 5 other single bit fields. One of which specifies if the
Payload length field is 1 or 4 bytes and another which specifies if the ID field in the header is present. The rest of the bits are
used to specify if the record is the first, last or an in-between record in the overall NDEF message.

Byte 1 — Specifies the length of the Type field in the header which can be up to 255 bytes

Next Byte (or next 4 Bytes) — The payload length.

Next Byte — The ID Length (if the ID bit in the first byte is set)

Next N bytes — Where N is specified by Byte 1 is the the Type field

Next N Bytes — Where N is specified by the ‘ID length’ field and only if the ID bit in Byte 0 is set, used for the ID.

For full details please refer to the NFC Forum technical specification titted NFC Data Exchange Foramt (NDEF) and there are
various resources online which have good explanations.

https://www.lairdconnect.com/ 324 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions La

) CONNECTIVITY
User Guide _)

7.1.3 Arduino Based NFC Reader

The API presented in this section was tested using an Arduino Uno (www.arduino.cc/en/Main/ArduinoBoardUno) fitted with an
Adafruit ‘PN532 RFID/NFC Shield’ (www.adafruit.com/products/789) and an Arduino application which is also available as-is
without warranty and it can be freely modified called NfcCli.ino.

It is assumed that the reader is familiar with how to use an Arduino especially how to load apps into a target board. Please
refer to online resources if not.

The Arduino application presents a uart based command line interface and currently has three commands :

= open\r — This opens the NFC interface

= scan\r — This forces a scan for tags and will timeout after about 5 seconds. If a tag is read, then it is interpreted and
displayed in textual manner

= close\r — This closes the NFC interface

The command set allows for keeping the Arduino NFC antenna constantly in contact with the module’s antenna and then
allows the field to be enabled or disabled.

7.1.4 Sample Application 1

The following example application, for which the source available, shows how to create an NDEF message for a Tag which
has two text records where the Type is “T.”

//**

// Example App File : nfcl.text.tag.sb

//

// This application commits an NDEF message with two text tag of type 'T' with
// a "Hello World" and "Welcome" message. Which can be read with an Arduino +

// Adafruit NFC shield running an arduino app written by Laird which is availble
// on request.

//

//**

//**

// Definitions
//**

#define INVALID NDEF HANDLE OxXFFFFFFEF

//**

// Register Error Handler as early as possible
//**
sub HandlerOnErr ()

print "\n OnErr - ";GetLastError ();"\n"
endsub
onerror next HandlerOnErr

//**

// Debugging resource as early as possible
//**

//
//
sub AssertResCode (byval rc as integer,byval tag as integer)
if rc!=0 then
print "\nFailed with ";integer.h' rc;" at tag ";tag
endif
endsub

//**

// Global Variable Declarations

//**

https://www.lairdconnect.com/ 325 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

http://www.arduino.cc/en/Main/ArduinoBoardUno
http://www.adafruit.com/products/789

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

dim rc

dim nfcHandle //returned by NfcOpoen

dim ndefHandle //returned by NfcNdefMsgNew
dim type$

dim id$

dim engLang$
dim payload$
dim records,memTotal, memUsed

//**

// Initialisse Global Variable
//**

type$="T" : id$=" "
engLang$=" en"
rc=strsetchr (engLang$, strlen (engLang$),0) //prepend the language code length + UTF type

//**

// Function and Subroutine definitions
//***************************************‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k************************

//**

// Handler definitions
//**

//

// This handler is called when data has arrived at the serial port
#define NFC MSGIN NFCFIELDOFF (2)

#define NFC_MSGIN NFCFIELDON (3)

#define NFC MSGIN NFCTAGREAD (7)

//

function HandlerNfc (msgid) as integer
print "\nEVNFC "
select (msgid)
case NFC MSGIN NFCFIELDOFF
print "FIELD OFF"
case NFC MSGIN NFCEFIELDON
print "FIELD ON"
case NFC MSGIN NFCTAGREAD
print "TAG READ"
case else
endselect
endfunc 1

//**

//**

// Equivalent to main() in C
//**

OnEvent EVNFC call HandlerNfc

//Enable NFC hardware interface, it already is, so will succeed
rc=NfcHardwareState (0, 1)

https://www.lairdconnect.com/ 326 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird '

) CONNECTIVITY
User Guide _)

AssertResCode (rc,20000)

//Open NFC and return the handle
rc=NfcOpen (0, "\00", nfcHandle)
AssertResCode (rc,20005)

//Create a new NDEF message object that has a maximum size of 16 bytes
rc=NfcNdefMsgNew (32, ndefHandle)
AssertResCode (rc,20010)

//Oops, buffer will be too small do delete and create a new one
rc=NfcNdefMsgDelete (ndefHandle)
AssertResCode (rc,20012)

//Create a new NDEF message object that has a maximum size of 128 bytes
rc=NfcNdefMsgNew (128, ndefHandle)
AssertResCode (rc,20014)

//Add a NDEF Record of type "T" and message "My World" in english language code
payload$="My World"
rc=NfcNdefRecAddGeneric (ndefHandle, 1, type$, id$, engLang$, INVALID NDEF HANDLE, payloads$)
AssertResCode (rc,20020)

//0Oops, changed my mind about message so reset the ndef buffer
rc=NfcNdefMsgReset (ndefHandle)
AssertResCode (rc,20022)

//Add a NDEF Record of type "T" and message "Hello World" in english language code
payload$="Hello World"
rc=NfcNdefRecAddGeneric (ndefHandle, 1, type$, id$, engLang$, INVALID NDEF HANDLE, payloads$)
AssertResCode (rc,20024)

//Add a NDEF Record of type "T" and message "Welcome" in english language code
payload$="Welcome"
rc=NfcNdefRecAddGeneric (ndefHandle, 1, type$, id$, englang$, INVALID NDEF HANDLE, payloads$)
AssertResCode (rc,20040)

//Inspect the status of the ndef message object
rc=NfcNdefMsgGetInfo (ndefHandle, records, memTotal ,memUsed)
if rc==0 then

print "\nNDEF Info: Records=";records;" TotalMem=";memTotal;" UsedMem=";memUsed
endif

//Commit the NDEF message to the stack
rc=NfcNdefMsgCommit (nfcHandle, ndefHandle)
AssertResCode (rc, 20060)

//Enable field Sense

rc=NfcFieldSense (nfcHandle, 1)
AssertResCode (rc,20080)

WaitEvent

https://www.lairdconnect.com/ 327 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide La"'d 2» CONNECTIVITY

The output from the Arduino reader is as follows:

open

OK
scan

++ NDEF MESSAGE ++
NFC Forum Type 2
UID: 5F 59 28 A2 AB C6 79

Contains (2) NDEF Records.

NDEF Record 1 (Payload Length=: 14 (0xE))
TNF: 1
Type: T
03656E48656C6C6F20576F726C64 .enHello World

NDEF Record 2 (Payload Length=: 10 (0xA))
TNEF: 1
Type: T
03656E57656C636F6D65 .enWelcome

—-— NDEF MESSAGE --
OK

7.1.5 Sample Application 2

The following example application, for which the source available, shows how to create an NDEF message for a Tag which
has a single record defined as a ‘Simplified Tag Format for a Single Bluetooth Carrier Record’ as specified in the Bluetooth
SIG specification “Bluetooth Secure Simple Pairing Using NFC” dated 2014-01-09.

//**

// Example App File : nfc2.text.ble.connection.handover.sb

// This application commits an NDEF message with a "Simplified Tag Format for a
// single Bluetooth Carrier Record" which will result in a connection and a just
// works pairing from an android device like Nexus 7 tablet.

// It have only been tested against a Nexus 7 (newest model)

//**

//**

// Definitions
//**

#define INVALID NDEF HANDLE O0xXFFEFFEEF

//**

// Register Error Handler as early as possible
//**

sub HandlerOnErr ()

print "\n OnErr - ";GetLastError ();"\n"
endsub
onerror next HandlerOnErr

//**

// Debugging resource as early as possible
//**

//

https://www.lairdconnect.com/ 328 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

//
sub AssertResCode (byval rc as integer,byval tag as integer)
if rc!=0 then
print "\nFailed with ";integer.h' rc;" at tag ";tag
endif
endsub

//**

// Global Variable Declarations

//**

dim rc
dim nfcHandle //returned by NfcOpoen
dim ndefHandle //returned by NfcNdefMsgNew

dim payload$
dim records,memTotal, memUsed

dim maxdevname : maxdevname = 12
dim appearance : appearance = 0x512
dim flags : flags = 0x2

dim role : role=2

dim oobKey$: oobKey$="" //no TK

dim devname$: devnameS$="LAIRD BL653"
dim advRpt$, scnRpt$

dim peerAd$: peerAdS$=""

dim hConn : hConn=0xFFFFFFFF

//**

// Function and Subroutine definitions
//**

//**

// Handler definitions
//**

//

// This handler is called when data has arrived at the serial port
#define NFC_MSGIN NFCFIELDOFF (2)

#define NFC MSGIN NFCFIELDON (3)

#define NFC_MSGIN NFCTAGREAD (7)

//

function HandlerNfc (msgid) as integer
print "\nEVNFC "
select (msgid)
case NFC MSGIN NFCFIELDOFF
print "FIELD OFFE"
case NFC MSGIN NFCFIELDON
print "FIELD ON"
case NFC MSGIN NFCTAGREAD
print "TAG READ"
case else
endselect
endfunc 1

//
// This handler is called when there is a BLE message
A R
#define BLE EVBLEMSGID CONNECT 0
#define BLE EVBLEMSGID NEW BOND 10
#define BLE EVBLEMSGID ENCRYPTED 18
//
https://www.lairdconnect.com/ 329 Americas: +1-800-492-2320

© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

function HandlerBleMsg (BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER) as integer

select nMsgId
case BLE EVBLEMSGID CONNECT
hConn=nCtx
print "\n +++ Connect: (";integer.h' hConn;")"

case BLE EVBLEMSGID NEW BOND
print "\n +++ New Bond"
//Disable field Sense
rc=NfcFieldSense (nfcHandle, 0)
AssertResCode (rc,20080)
print "\n --- NFC Field OFE"

case BLE EVBLEMSGID ENCRYPTED
print "\n +++ Encrypted Connection"

case else
endselect
endfunc 1

//

// This handler is called when there is a EVDISCON message

#define ADVTYPE 0 //ADV_IND

#define ADVINTVTL 100 //andvert interval in milliseconds

#define ADVTOUT 0 //no timoeut

//

function HandlerDisconnect (BYVAL nConnH AS INTEGER, BYVAL nReas AS INTEGER) as integer
print "\n +++ Disconnect: (";integer.h' nConnH;") reason=";nReas

rc=BleAdvertStart (ADVTYPE, peerAdS$, ADVINTVTL, ADVTOUT, 0)
AssertResCode (rc, 10000)

endfunc 1

//**

//**

// Equivalent to main() in C
//**

s
// Enable synchronous event handlers
=
OnEvent EVNFC call HandlerNfc

OnEvent EVBLEMSG call HandlerBleMsg
OnEvent EVDISCON call HandlerDisconnect

//Open NFC and return the handle
rc=NfcOpen (0, "\00", nfcHandle)
AssertResCode (rc,20005)

//Create a new NDEF message object that has a maximum size of 128 bytes
rc=NfcNdefMsgNew (128, ndefHandle)
AssertResCode (rc,20014)

//Add "Simplified Tag Format for a single Bluetooth Carrier" Record
rc=NfcNdefRecAddLeOob (ndefHandle, maxdevname, appearance, role, flags, ocobKey$)
AssertResCode (rc,20020)

https://www.lairdconnect.com/ 330 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

//Inspect the status of the ndef message object
rc=NfcNdefMsgGetInfo (ndefHandle, records, memTotal, memUsed)
if rc==0 then

print "\n *** NDEF Info: Records=";records;" TotalMem=";memTotal;" UsedMem=";memUsed
endif

//Commit the NDEF message to the stack
rc=NfcNdefMsgCommit (nfcHandle,ndefHandle)
AssertResCode (rc,20060)

//Initialise the GAP service
rc=BleGapSvcInit (devname$, 0, appearance, 7500,100000,2000000,0)
AssertResCode (rc,20100)

//Initialise adverts and commit
rc=BleAdvRptInit (advRpt$, flags, appearance, maxdevname)
AssertResCode (rc,20200)

rc=BleScanRptInit (scnRpt$)

AssertResCode (rc,20210)
rc=BleAdvRptsCommit (advRpt$, scnRpts$)

AssertResCode (rc,20220)

//Start Adverts
rc=BleAdvertStart (ADVTYPE, peerAd$, ADVINTVTL, ADVTOUT, 0)
AssertResCode (rc,20300)

print "\n --- Adverts ON"

//Enable field Sense
rc=NfcFieldSense (nfcHandle, 1)
AssertResCode (rc,20400)

print "\n --- NFC Field ON"

[e e e e e o e e e e e 5 0 5 0 5 0 0 5 5 e D e D S D S S e D e
// Wait for an event.

[e e e e o e e o e o e e e e e e 5 0 5 0 5 0 0 0 0 5 0 5 5 0 0 D e D e e D D D e e
WaitEvent

The output from the Arduino reader is as follows:

open

OK
scan

++ NDEF MESSAGE ++
NFC Forum Type 2
UID: 5F 59 28 A2 AB C6 79

Contains (1) NDEF Record.

NDEF Record 1 (Payload Length=: 32 (0x20))
TNF: 2
Type: application/vnd.bluetooth.le.oob
021C02081B83160BA416000003191205 ...,
0201060C094C4149524420424C363532 LAIRD BL653

—-— NDEF MESSAGE --
OK

Where the payload 021C02.... 363532 is an array of BLE Advert Data Elements which have format Len:Tag:Data. For
example 021C02 implies an AD element of length 2 and tag 1C and since 1C means ‘LE Role’ it corresponds to the value 2
that was passed in the variable ‘role’ in the function call NfcNdefRecAddLeOob() in the sample app 2 above.

https://www.lairdconnect.com/ 331 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

71.6 Wake-On-NFC

When the module is in deep sleep, it is possible to wake it up when an NFC field energises it's antenna when an active reader
comes into the zone.

By default this does not happen; it only wakes up if the field sense is switched on via NfcFieldSense(). To do that, a ‘dummy’
tag needs to be commited. The following sequence is necessary to enable this feature:

1. NfcOpen()

2. NfcNdefMsgNew()

3. NfcNdefRecAddLeOob() or NfcNdefRecAddGeneric()
4. NfcNdefMsgCommit()

5. NfcFieldSense()

6. SystemStateSet(0)

Once SystemStateSet() is processed, the module enters deep sleep unless the reader is already energising the NFC field
which will prevent deep sleep to persist.

Please note that when the system wakes up, it is assumed that in a normal deployed scenario there will be an $autorun$
application so after reset your application will automatically restart. In your application you could call SYSINFO(2001) which
will tell you what was the reason for waking up from reset. If you logically AND the result with the value 0x80000 and you end
up with 0x80000, then it implies the wakeup was due to Wake-On-NFC.

IF (SYSINFO(2001) & 0x80000)==0x80000 THEN
PRINT “We woke up because of NFC”
ENDIF

7.1.7 Events and Messages

In addition to the routines for manipulating the NFC interface, when an active reader generates a carrier field around the
module’s antenna and FIELD-ON event is generated, and conversely when the carrier field collapses because the active
device moves away, a FIELD-OFF event is generated. When the Tag exposed by the module is actually read, then a TAG-
READ event is generated.

The following is a list of events generated by the NFC manager which can be handled by user code.

EVNFC This is an event message with one INTEGER payload which identifies the event that happened as
follows:
2 FIELD OFF (reader carrier has collapsed)
3 FIELD ON (reader carrier is active)
7 TAG READ (reader has finished reading the commited NDEF message)

7.1.8 NfcHardwareState

FUNCTION

This function is used to enable or disable the NFC hardware on the device.

Note: On the BL653 the 2 pins used for the NFC antenna are multifunction so that they are either for NFC or plain GPIO.
However, this is set via a non-volatile configuration register in a special region of the onchip flash. These pins are
by default set for NFC functionality and have appropriate protection from over energisation from an active field.
Given this is a flash register, once the NFC functionality is disabled using this function, it can only be reactivated by
reloading the entire firmware using the JLINK interface. It is not possible to reset this register when firmware is
uploaded using the UART interface.

NFCHARDWARESTATE (interfaceNum, newState)

INTEGER, indicating the success of command:

Returns 0 Opened successfully
0x5A00 Invalid interface number
0x5A06 Enable Fail

https://www.lairdconnect.com/ 332 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide

La i rdT J» CONNECTIVITY

= Local Stack Frame Underflow

Exceptions = Local Stack Frame Overflow
Arguments
byVal interfaceNum AS INTEGER
interfaceNum | For platforms that have multiple NFC interfaces, this identifies the interface to enable or
disable and for platforms with only one interface specify O for this argument
byVal newState ASINTEGER
newsState

Set to 0 to disable NFC functionality. Non-zero to enable.

Related Commands

NFCFIELDSENSE, NFCCLOSE, NFCNDEFMSGCOMMIT

Example:

//See subsection

‘Sample Application 17

7.1.9

FUNCTION

NfcOpen

This function opens the NFC interface identified by the ‘interfaceNum’ parameter, configure it as specified in the ‘config$’
future extensible string parameter and will return a handle which is used in appropriate subsequent NFC related function calls.

The ‘interfaceNum’ parameter exists as in future other smartBASIC based can potentially have multiple physical NFC

interfaces.

NFCOPEN (interfaceNum, config$, nfcHandle)

INTEGER, indicating the success of command:
0 Opened successfully

Returns
0x5A00 Invalid interface number
0x5A04 NFC hardware not available
Exceptions = Local Stack Frame Underflow
xcept = Local Stack Frame Overflow
Arguments
byVal interfaceNum AS INTEGER
interfaceNum | For platforms that have multiple NFC interfaces, this identifies the interface to open and for

platforms with only one interface specify 0 for this argument

config$

byval config$ AS STRING

This is an extensible argument with 0 or more bytes which is used to configure the NFC
interface as follows:

Byte Value Description

0 0 Tag Type 2 Functionality

A 0 value specifies default functionality, and more bytes will be allocated as needed to
define appropriate new functionality

nfcHandle

byRef nfcHandle ASINTEGER

If the function fails, then on exit this parameter is set to INVALID_HANDLE (which is
OxFFFFFFFF), and if successful a valid handle to be used in susbsequent appropriate NFC
related function calls.

Related Commands

NFCFIELDSENSE, NFCCLOSE, NFCNDEFMSGCOMMIT

Example:
//See subsections ‘Sample Application 1’ and ‘Sample Application 2’
https://www.lairdconnect.com/ 333 Americas: +1-800-492-2320

© Copyright 2020 Laird Connectivity, Inc.
All Rights Reserved

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

7110 NfcClose

SUBROUTINE

This function closes the NFC interface identified by the ‘nfcHandle’ parameter and on exit the handle will be set to
OXFFFFFFFF so that it cannot be mistakenly used.

NFCCLOSE (nfcHandle)

Returns None
Exceptions = Local Stack Frame Underflow
P = Local Stack Frame Overflow
Arguments
nfcHandle byRef nfcHandle AS INTEGER

If the function is successful then on exit this variable will be set to OxFFFFFFFF
Related Commands NFCFIELDSENSE, NFCOPEN, NFCNDEFMSGCOMMIT

Example:

//See subsection ‘Sample Application 2’

7111 NfcFieldSense

FUNCTION

This function is used when the device is in passive mode to enable or disable field sensing so that an active device can
communicate with it.

NFCFIELDSENSE (nfcHandle, fNewState)

INTEGER, indicating the success of command:

0 Opened successfully

Returns 0x020C Invalid handle

0x5A03 NFC interface is not open
Ox5AEx An underlying stack related error

= Local Stack Frame Underflow

Exceptions = Local Stack Frame Overflow
Arguments
nfcHandle byVal nfcHandle ASINTEGER
This is the handle returned by a prior call of NfcOpen()
byVal fNewState AS INTEGER
fNewState

Specify 0 to disable field sensing and non-zero to enable it
Related Commands NFCOPEN, NFCCLOSE, NFCNDEFMSGCOMMIT

Example:

//See subsections ‘Sample Application 1’ and ‘Sample Application 2’

https://www.lairdconnect.com/ 334 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

7.1.12 NfcNdefMsgNew

FUNCTION

An NDEF record can be as long as 4.2 billion bytes and since an NDEF message is an array of NDEF records the whole
message can theoretically be multiples of 4.2 billion bytes.

In practice most tags only have a limited amount of memory (typically less than 32K). Most messages are less than a kilobyte
in the context of the smartBASIC based device.

All the NDEF messages that will be created using the API exposed in this device will not be of the same length, but the
memory must be persistent so that it can be delivered to a reader when required.

Therefore, this smartBASIC implementation, requires that the creation of an NDEF message starts with dynamically allocated
memory which can be released as and when required.

This function is used to create a dynamic buffer in RAM. This buffer is of the minimum length specified by the ‘maxMSgLen’
parameter and is associated with a ‘ndefHandle’ for which a valid handle value is returned if the memory requested was
successfully acquired from the underlying memory manager. There is also an absolute limit on this implementation with
regards to maximum amount of memory that can be allocated and that value can be obtained via AT | 2052 command or from
within a running app using SYSINFO(2052).

The ‘ndefHandle’ is subsequently used for various API calls to make up the full message by writing single records at a time.
Note that NDEF records are added to this buffer using variious NfcNdefRecAddXXXX() functions and at any time the function
NfcNdefMsgGetinfo() can be used to see how big the buffer is and how much of that is used.

NFCNDEFMSGNEW (maxMsgLen, ndefHandle)

INTEGER, indicating the success of command:

0 Opened successfully
0x5A09 Invalid max memory required
Returns ox5A0A Memory could not be acquired
SYSINFO(2052) returns max len allowed in this system
No spare handles as available
SYSINFO(2051) returns max ndef handles in this system

= Local Stack Frame Underflow

0x5A0B

Exceptions = Local Stack Frame Overflow
Arguments
byVal maxMsgLen AS INTEGER
maxMsaLen This specifies the maximum expected length of the NDEF message that will be stored in the
9 memory acquired. If, while adding a record, it does not fit, use NfcNdefMsgDelete() function
to release that memory and call this function again with a larger value and try again.
byRef ndefHandle AS INTEGER
ndefHandle If the function fails, then on exit this parameter is set to INVALID_HANDLE (which is

OxFFFFFFFF), and if successful a valid handle to be used in susbsequent appropriate
NDEF related function calls.

NFCNDEFMSGCOMMIT, NFCNDEFDELETE, NFCDEFMSGGETINFO,
NFCNDEFMSGRESET,NFCNDEFRECADDLEOOB,NFCNDEFRECADDGENERIC

Related Commands

Example:

//See subsections ‘Sample Application 1’ and ‘Sample Application 27

https://www.lairdconnect.com/ 335 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

7.1.13 NfcNdefMsgDelete

FUNCTION

This function is used to release the memory block associated with an ndefHandle that was aquired using NfcNdefMsgNew().

NFCNDEFMSGDELETE (ndefHandle)

INTEGER, indicating the success of command:

0 Opened successfully

Returns Ox5A20 Cannot be deleted as it has been commited and locked to the
stack using NfcNdefMsgCommit()

Ox5A0C The handle is not valid

= Local Stack Frame Underflow

Exceptions * Local Stack Frame Overflow
Arguments
ndefHandle byVal ndefHandle AS INTEGER

The handle of the memory block that was acquired using NfcNdefMsgNew

Related C ds | NFCNDEFMSGCOMMIT, NFCNDEFNEW, NFCDEFMSGGETINFO,
clated Lommands | NFCNDEFMSGRESET,NFCNDEFRECADDLEOOB,NFCNDEFRECADDGENERIC

Example:

//See subsections ‘Sample Application 1’

7.1.14 NfcNdefMsgGetinfo

FUNCTION

After an NDEF message memory buffer has been acquired using NfcNdefMsgNew(), call this function to see how much of the
memory is used after adding records.

This function is particularly useful during the smartBASIC app development as it allows the optimisation of memory usage after
all testing has been done to then reduce the size of the buffer for final deployment.

NFCNDEFMSGGETINFO (ndefHandle, records, memTotal, memUsed)

INTEGER, indicating the success of command:

Returns 0 Opened successfully
Ox5A0C The handle is not valid

= Local Stack Frame Underflow

= Local Stack Frame Overflow

Exceptions

Arguments

byRef ndefHandle AS INTEGER

The handle of the memory block that was acquired using NfcNdefMsgNew.

byRef records AS INTEGER

records | If the ndefHandle is valid, then on exit this will be updated with the number of records
currently added to the message.

byRef MemTotal AS INTEGER

If the ndefHandle is valid, then on exit this will be updated with the total memory allcocated
for this message (value that was specified in NfcNdefMsgNew()) when the handle was
acquired.

byRef MemUsed AS INTEGER

If the ndefHandle is valid, then on exit this will be updated with the memory that has been
used in the buffer. For deployed systems, you want this to be as close to memTotal as
possible to optimise memory usage.

ndefHandle

memTotal

memUsed

https://www.lairdconnect.com/ 336 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

Related C d4s | NFCNDEFMSGCOMMIT, NFCNDEFDELETE, NFCDEFMSGNEW,
elated Lommands | NFCNDEFMSGRESET,NFCNDEFRECADDLEOOB,NFCNDEFRECADDGENERIC

Example:

//See subsections ‘Sample Application 1’ and ‘Sample Application 2’

7.1.15 NfcNdefMsgReset

FUNCTION

After an ndef message has been used, this function can be used to reset the record count and memory used to 0 so that a
new message with new records can be created without releasing the memory. It eliminates a heap free and malloc and so
helps mitigate heap fragmentation.

NFCNDEFMSGRESET (ndefHandle)

INTEGER, indicating the success of command:

0 Opened successfully

Returns Ox5A20 Cannot be deleted as it has been commited and locked to the
stack using NfcNdefMsgCommit()

Ox5A0C The handle is not valid

= Local Stack Frame Underflow

Exceptions = Local Stack Frame Overflow
Arguments
ndefHandle byVal ndefHandle AS INTEGER

The handle of the memory block that was acquired using NfcNdefMsgNew

Related C d NFCNDEFMSGCOMMIT, NFCNDEFNEW, NFCDEFMSGGETINFO,
clated Lommands NFCNDEFMSGDELETE,NFCNDEFRECADDLEOOB,NFCNDEFRECADDGENERIC

Example:

//See subsections ‘Sample Application 1’

7116 NfcNdefRecAddLeOob

FUNCTION
This function is used to add an NDEF record to a NDEF Message.

After an NDEF message memory buffer has been acquired using NfcNdefMsgNew(), call this function to add a ‘Simplified Tag
Format for a Single Bluetooth Carrier Record’ as specified in the Bluetooth SIG specification “Bluetooth Secure Simple Pairing
Using NFC” dated 2014-01-09.

This tag is a single record in the NDEF message and will contain the following BLE AD elements (same format as in BLE
adverts).

= LE Bluetooth Local Device Address

= LERole

= Appearance

= Local Name

= (Optional) Security Manager TK Value

Please note that due to the inclusion of the local device address LE Privacy should not be enabled otherwise the NFC record
will soon contain a stale address and so the smartphone/tablet will not be able to make a connection and pair.

Note: The Local Device Address and Local Name is not provided in this function call as the underlying service routine will
obtain both information from the stack. With regards to the Local Name, only the maximum characters you want to

https://www.lairdconnect.com/ 337 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

add to the record need be specified. Depending on the actual device name registered with the stack using
BleGapSvclnit() function the appropriate AD element tag will be automatically used.

Warning:
This function adds an NDEF record as per the specification mentioned above and publishes it as a Type 2 tag. You will not
be able to interact with it using any iOS devices even when the iOS device (like the iPhone 6S) has NFC which is only used
for Apple Pay. With Android, you will see inconsistent behaviour between different brands and OS versions. Hence any
testing you perform is best done using something like an Arduino Uno and an Adafruit NFC Shield as shown above in the
context of the two sample apps.

If you wish to experiment, use the function NfcNdefRecAddGeneric() which will allow you to create NDEF records of any
type and payload.

NFCNDEFRECADDLEOOB (ndefHandle, maxDevName, appearance, role, flags, oobKey$)

INTEGER, indicating the success of command:

0 Opened successfully
0x5A0C The handle is not valid
0x5A13 Invalid Device Name Length
Returns O0x5A14 Invalid Appearance (has to be 0 .. OXFFFF)
0x5A15 Invalid Role
0x5A16 Invalid OobKey (must be 0 or 16 bytes long)
Ox5A17 Invalid Flags value
O0x5A11 Inconsistent records in message (lengths don’t make sense)
OX5AEC Not enough space in msg buffer

= Local Stack Frame Underflow
= Local Stack Frame Overflow

Exceptions

Arguments

byRef ndefHandle AS INTEGER
The handle of the memory block that was acquired using NfcNdefMsgNew.

byVal maxDevName AS INTEGER

This specifies the maximum length of the device name to be added to the record. The
appropriate AD type tag will automatically used if the length is shorter than the actuall name
registered using BleGapSvclinit().

byVal appearance AS INTEGER

To be consistent, this should be the same ‘appearance’ that was provided when
BleGapSvclnit() was called. This value can be used by the phone/tablet to present an icon
after it reads the NFC tag.

byVal role ASINTEGER
This is the BLE role that this device prefers and the value to specify is as follows:
0 Only Peripheral Supported
1 Only Central Supported
2 Both, Peripheral Preferred
3 Both, Central Preferred

byval flags AS INTEGER
This should be the same flags value as was supplied in the most recent call of the function
BleAdvRptinit().

ndefHandle

maxDevName

appearance

role

flags Reproduced from BleAdvRptlnit() ..

Specifies the flags AD bits where bit 0 is set for limited discoverability and bit 1 is set for
general discoverability. Bit 2 will be forced to 1 and bits 3 & 4 will be forced to 0. Bits 3to 7
are reserved for future use by the BT SIG and must be set to 0.

https://www.lairdconnect.com/ 338 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide

La i rdT J» CONNECTIVITY

oobkey$

byRef oobKey$ AS STRING
If this string is empty then then Security Manager TK Value AD element is not added to the
record. If it is exactly 16 bytes long then it will be added.

Related Commands

NFCNDEFMSGCOMMIT, NFCNDEFDELETE, NFCDEFMSGNEW,
NFCNDEFMSGRESET, NFCNDEFRECADDGENERIC, NFCNDEFMSGGETINFO

Example:

//See subsection

‘Sample Application 2’

7117 NfcNdefRecAddGeneric

FUNCTION

This function is used to add an NDEF record to a NDEF Message.

After an NDEF message memory buffer has been acquired using NfcNdefMsgNew(), call this function to add any record of
your choice where you can specify the Type, ID and Payload.

The payload can even be another NDEF message, which means you can create records where the payload is an embedded
NDEF record. That schema has been seen in few implementations. This is why the payload is specified using a prepend string
parameter ‘payload0$’, followed by a ndef handle ‘ndefHandlePayload’, and lastly a postpend string parameter ‘payload1$’.

It is perfectly valid for any two out of <payload0$, ndefHandlePayload, payload1$> to be empty strings or an invalid handle.

NFCNDEFRECADDGENERIC (ndefHandle, tnf, type$, id$, payload0$, ndefHandlePayload, payload1$)

INTEGER, indicating the success of command:
0 Opened successfully

0x5A0C Either ndefHandle or ndefHandlePayload is not valid
0x5A18 Invalid TNF value
Returns 0x5A12 ndefHandlePayload is valid but is empty
0x5A11 Inconsistent records in message (lengths don’t make sense)
0x5A21 type$ is empty
0x5A22 type$ is too big
0x5A23 id$ is too big
OX5AEC Not enough space in message buffer
E ti = Local Stack Frame Underflow
xceptions = Local Stack Frame Overflow
Arguments
ndefHandle byRef ndefHandle AS INTEGER

The handle of the memory block that was acquired using NfcNdefMsgNew.

tnf

byVal tnf AS INTEGER
This can only be in the range 0 to 7 as it needs to fit in the 3 bit field of the first byte of the
record.

type$

byRef type$ AS STRING
This is string that has to be between 1 and 255 bytes long and specifies the content of the
Type field in the record header.

id$

byRef id$ AS STRING

This is string that has to be between 0 and 255 bytes long and specifies the content of the
ID field in the record header. If the string is empty, then the ID field, which is optional, is not
added to the record header.

Payload0$

byRef payload0$ AS STRING
This is string can be empty. If not it is added to the payload of the record.

ndefHandlePayload

byVal ndefHandlePayload AS INTEGER

This can be OxFFFFFFFF which is designated as an invalid handle and in that is ignored. If
it is not OXFFFFFFFF and not a valid handle then this routine will exit with an error.

If a valid handle, but the message buffer is empty then routine will exit with an error.

https://www.lairdconnect.com/

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

339
© Copyright 2020 Laird Connectivity, Inc.
All Rights Reserved

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

Finally if the message is not empty, then it is copied in its entirety to this record (including
the header, not just the payload in that message)

This allows a nested mechanism and as deep as the number of ndef message handles
that can be created.

Note that once, the content of this embedded message is copied, this embedded handle
message can be reset to create yet another message for embedding.

byRef payloadl$ AS STRING
This is string can be empty. If not it is added to the payload of the record

NFCNDEFMSGCOMMIT, NFCNDEFDELETE, NFCDEFMSGNEW,
NFCNDEFMSGRESET, NFCNDEFRECADDLEOOB, NFCNDEFMSGGETINFO

Payload1$

Related Commands

Example:

//See subsections ‘Sample Application 1’

7.1.18 NfcNdefMsgCommit

FUNCTION

After a message has been created and records added, it needs to be commited so that it can be served as a tag for an active
reader to access.

This function is used to do that and if successfully commited, then the ndefHandle is locked and cannot be deleted or reset
using the NfcNdefMsgDelete() or NfcNdefMsgReset() function respectively.

When the tag is read, an EVNFC message is thrown with context NFC_READ.

NFCNDEFMSGCOMMIT (nfcHandle, ndefHandle)

INTEGER, indicating the success of command:

Returns 0 Opened successfully
Ox5A0C The handle is not valid

= Local Stack Frame Underflow

Exceptions = Local Stack Frame Overflow
Arguments
defHandl byRef ndefHandle AS INTEGER
ndetrandle | the handle that was returned by NfcOpen().
ndefHandle byRef ndefHandle AS INTEGER

The handle of the memory block that was acquired using NfcNdefMsgNew.

NFCNDEFDELETE, NFCDEFMSGNEW, NFCNDEFMSGGETINFO,
NFCNDEFMSGRESET,NFCNDEFRECADDLEOOB,NFCNDEFRECADDGENERIC

Related Commands

Example:

//See subsections ‘Sample Application 1’ and ‘Sample Application 2’

https://www.lairdconnect.com/ 340 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

7.2 System Configuration Routines

7.2.1 SystemStateSet

FUNCTION

This function is used to alter the power state of the module as per the input parameter.

SYSTEMSTATESET (nNewState)

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

Arguments

nNewsState | PyVal nNewState AS INTEGER

New state of the module as follows:
0 System OFF (Deep Sleep Mode)

Note: You may also enter this state when UART is open and a BREAK condition is
asserted. Deasserting BREAK makes the module resume through reset i.e.
power cycle.
Example:
// Example :: SystemStateSet.sb

// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples
//Put the module into deep sleep
PRINT "\n"; SystemStateSet (0)

7.3 Cryptographic Routines

7.3.1 EccGeneratePubPrvKeys

This functions is used to generate public/private keypair based on the algorithm (ECC type) provided.

ECCGENERATEPUBPRVKEYS (nEccType, privKey$, pubKey$)

INTEGER, a result code. The most typical values are:-

0x0000 — Keys created successfully

0x5907 — CRYPTO_ECC_TYPE_UNKNOWN (Unknown ECC type)
0x0201 — MALLOC_FAIL (not enough memory to return the keys)

Returns

Arguments

byVal nEccTypeAS INTEGER

The ECC type to be used when calculating and generating the shared key. Possible
values:-

0x10000 : Algorithm Curve 25519 (used in Eddystone EID)

byRef privKey$ AS STRING
On exit, will contain the generated private key, size as appropriate for algorithm

byRef pubKey$ AS STRING
On exit, will contain the generated public key, size as appropriate for algorithm

nEccType

privkey$

pubKey$

See example for EccCalcSharedSecret().

https://www.lairdconnect.com/ 341 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

7.3.2 EccCalcSharedSecret

This function is used to create a shared scalar value which will have the same value when the remote performs an equivalent
calculation with its own local private key and this side’s public key.

Essentially, calling EccGeneratePubPrvKeys() twice to create two sets of private and public keys and then calling
EccPubSharedSecret() twice with the private from one and public from the other will generate the same sharedSecret$.

ECCCALCSHAREDSECRET (nEccType, privKey$, pubKey$, sharedSecret$)

INTEGER, a result code. The most typical values are:-
Ret 0x0000 — Keys created successfully
eturns 0x5907 — CRYPTO_ECC_TYPE_UNKNOWN (Unknown ECC type)
0x0201 — MALLOC_FAIL (not enough memory to return the keys)
Arguments
byVal nEccTypeAS INTEGER
nEccType | The ECC type to be used when generating the public/private keypair. Possible values:-
0x10000 : Algorithm Curve 25519 (used in Eddystone EID)
rivKevs byRef privKey$ AS STRING
PrIVIEY® | on entry contains the local private key, untouched on exit
bKevs byRef pubKey$ AS STRING
pu Y* | on entry contains the remote public key, untouched on exit
byRef sharedSecret$ AS STRING
sharedSecret$ On exit will contain the shared secret key
// Example :: EccCalcSharedSecret.sb

// Note: In real world scenarios, two devices generate their private/public

// key pair separately, then exchange the public key. Using the remote's

// public key and the own private key, the shared secret is generated, therefore

// ending with the same shared secret without exposing material that could be used to
// by a third party to decrypt in a reasonable amount of time.

// For simplicity, this example shows this process performed on one device only

dim rc, EccType : EccType = 0x10000
dim prvKey AS, pubKey AS, Secret AS
dim prvKey B$S, pubKey BS$, Secret B$

// Generate first Public/Private keypair
rc = EccGeneratePubPrvKeys (EccType, prvKey AS, pubKey AS)
if rc == 0 then
PRINT "\rPrv Key A: "; strhexize$ (prvKey AS)
PRINT "\rPub Key A: "; strhexize$ (pubKey AS)
endif

// Generate second Public/Private keypair
rc = EccGeneratePubPrvKeys (EccType, prvKey BS, pubKey B$)
if rc == 0 then
PRINT "\rPrv Key B: "; strhexize$ (prvKey BS)
PRINT "\rPub Key B: "; strhexize$ (pubKey BS)
endif

// Compute first shared secret using private key A and public key B
rc = EccCalcSharedSecret (EccType, prvKey AS, pubKey BS$, Secret AS)

if rc == 0 then
PRINT "\rShared Secret 1: "; strhexizeS$ (Secret AS)
endif

// Compute second shared secret using private key B and public key A

https://www.lairdconnect.com/ 342 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

rc = EccCalcSharedSecret (EccType, prvKey BS, pubKey AS$, Secret BS)
if rc == 0 then

PRINT "\rShared Secret 2: "; strhexizeS$ (Secret BS)
endif

// Compare keys to check if they are the same
If StrCmp (Secret AS, Secret B$S)==0 then

PRINT "\rThe generated shared secret keys are identical"
else

PRINT "\rThe generated shared secret keys do not match"
Endif

Expected Output:

Prv Key A: 3A803352CFBBE969C28952C9950706A7F807C3B3974B65FEFD69C15A258C56EF

Pub Key A: 92F2589A0B0OSFOA1ADBC42F38FFB3093823257607C5DCOF4AF9DDEFES85E34030

Prv Key B: 10C9D43736EC510DE317732EF1C057954EB11FBD7800B1C6D827E63FB2657B5F

Pub Key B: 91FADCE2BD6E2FE7DF7F3251B2879753753D8F7F7D85978E2F0743DB3AE20577
Shared Secret 1: 3666BE535446B3E8A99970982EB2CE79C2501312CE2D30872DDB540A46453D23
Shared Secret 2: 3666BE535446B3E8A99970982EB2CE79C2501312CE2D30872DDB540A46453D23
The generated shared keys are identical

7.3.3 EccHmacSha256

This function is used to generate a HMAC-SHA256 authenticated hash of the content of data$ using the key supplied which
can be from 0 to 64 bytes in length.

ECCHMACSHA256 (key$, data$, hmacOut$)

INTEGER, a result code. The most typical values are:-
Returns 0x0000 — Keys created successfully
0x0201 — MALLOC_FAIL (not enough memory to return the keys)
Arguments
Kevs byRef key$ AS STRING
Y® | on entry contains a key from 0 to 64 bytes long and untouched on exit
datas byRef data$ AS STRING
ata® | on entry contains the data to be hashed and untouched on exit
byRef hmacOut$ AS STRING
hmacOut$ o ; .
On exit will contain the hmac output, use strlen() to determine length
//Example :: EccHmacSha256.sb

dim rc, key$
dim data A$, hmacOut AS
dim data B$, hmacOut BS

key$ = "KEY"
data AS$ = "AAAAB"
data_B$ = "AAAAA"

// Generate the HMAC-SHA256 for the first data
rc = EccHmacSha256 (key$, data AS, hmacOut AS)

if rc == 0 then
PRINT "\rHMAC of data A: "; strhexize$ (hmacOut AS)
endif

// Generate the HMAC-SHA256 for the second data
rc = EccHmacSha256 (key$, data BS, hmacOut_BS)
if rc == 0 then

https://www.lairdconnect.com/ 343 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

PRINT "\rHMAC of data A: "; strhexize$ (hmacOut BS$)
endif

// Compare the HMAC-SHA256 outputs

if StrCmp (hmacOut A$, hmacOut BS) == 0 then
PRINT "\rData A matches Data B"
else
PRINT "\rData A does not match Data B"
endif

Expected Output:

HMAC of data A: 7DB831431B6B7CDACE411CO9F51CCC550EF1C20FB0812A24B7BBE12AE4332BB20
HMAC of data A: 7DBF238349A98AB446AB8B4596E12E3729653ADAIE1A4BI9ADAST7C507E2021034
Data A does not match Data B

7.4 Watchdog Timer
7.4.1 WdtStart

FUNCTION

This function starts a watchdog timer with nResetTimeout in seconds. If the timer is not reset within nResetTimeout seconds,
the module will reset.

INTEGER, a result code and the most typical values are following:-

0x0000 := Success

0x5262 := An invalid time has been provided (i.e. the value is outside the range)
0x5263:= The watchdog timer is already running

Returns

Arguments

byVal nResetTimeout AS INTEGER

nResetTimeout The reset timeout in seconds. Valid range is between 0-131072.

//Example :: WdtStart
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc, nTimeout

nTimeout = 60

// Start a timer for 60 seconds
rc = WdtStart (nTimeout)

if rc == 0 then
PRINT "Watchdog Timer started\n"
else
PRINT "Failed to start Watchdog Timer\n"
endif
WaitEvent

Expected Output:

| Watchdog Timer started

https://www.lairdconnect.com/ 344 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

7.4.2 WdtReset

FUNCTION

This function resets the watchdog timer. WdtStart should be called before this function can be used.

Returns Will return a resultcode and the most typical value is 0x0000 indicating success.
Arguments None
//Example :: WdtReset

// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc, nTimeout

nTimeout = 60

// Start a watchdog timer for 60 seconds
rc = WdtStart (nTimeout)

// Start a recurring normal timer to reset the watchdog timer every 55 seconds
Timerstart (1, 55000, 1)

Function HandlerTimerl ()
rc = WdtReset ()

if rc == 0 then
print "Watchdog timer reset successfully\n"
endif
Endfunc 1

OnEvent EVTMR1 CALL HandlerTimerl

WaitEvent

Expected Output:

|Watchdog timer reset successfully

7.4.3 WdtIsRunning
FUNCTION

This function starts a watchdog timer with nResetTimeout in seconds. If the timer is not reset within nResetTimeout seconds,
the module will reset.

Will return the following value:-
Returns 0 := Not Running
1 := Running
Arguments None
//Example :: WdtIsRunning

// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc, nTimeout

nTimeout = 60

// Start a timer for 60 seconds
rc = WdtStart (nTimeout)

rc = WdtIsRunning ()
if rc == 1 then

PRINT "Watchdog is running\n"
else

PRINT "Watchdog is not running\n"
endif

https://www.lairdconnect.com/ 345 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

WaitEvent

Expected Output:

| Watchdog is running

Miscellaneous Routines
7.4.4 ReadPwrSupplyMv

FUNCTION

This function is used to read the power supply voltage and the value will be returned in millivolts.

Note: Due to the nrf52833’s ADC accuracy, this value has a +/-3% error.

READPWRSUPPLYMV ()
Returns INTEGER, the power supply voltage in millivolts.
Arguments None

Example:
// Example :: ReadPwrSupplyMv.sb

// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

//read and print the supply voltage
PRINT "\nSupply voltage is "; ReadPwrSupplyMv () ;"mV"

Expected Output:

| Supply voltage is 3343mV

7.4.5 SetPwrSupplyThreshMv

FUNCTION

This function sets a supply voltage threshold. If the supply voltage drops below this then the BLE_EVMSG event is thrown into
the run time engine with a MSG ID of BLE_EVBLEMSGID_POWER_FAILURE_WARNING (19) and the context data will be
the current voltage in millivolts.

Please note that when the power supply rises above this value and then drops again, the power fail warning event will
NOT be thrown again, unless this function is called explicitly again in the event handler.

In addition, if the event is enabled by calling this function AND the supply voltage is still below the threshold then all
flash write and erase operations will fail silently (for example, like pairing [with bonding] will fail to retain the keys).
Likewise NvRecordSet (and all other operations that involve writing to flash memory) will silently fail and nothing will
be written.

7.4.5.1 Events & Messages

19 The supply voltage has dropped below the value specified as the argument to this function in the most
recent call. The context data is the current reading of the supply voltage in millivolts

SETPWRSUPPLYTHRESHMV (nThreshMv)

‘ INTEGER, 0 if the threshold is successfully set, 0x6605 if the value cannot be

Returns implemented.

Arguments

https://www.lairdconnect.com/ 346 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

nThreshMv | byVal nThresMv AS INTEGER
The BLE_EVMSG event is thrown to the engine if the supply voltage drops below this
value. Valid values are 2100, 2300, 2500 and 2700.
If 0 is supplied then low supply voltage notification is disabled which implies flash
operation is no longer affected.

Example:

// Example :: SetPwrSupplyThreshMv.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc

DIM mv

//
// Handler for generic BLE messages

!/
FUNCTION HandlerBleMsg (BYVAL nMsgId, BYVAL nCtx) AS INTEGER

SELECT nMsgId
CASE 19
PRINT "\n --- Power Fail Warning ",nCtx
//mv=ReadPwrSupplyMv ()
PRINT "\n --- Supply voltage is "; ReadPwrSupplyMv ();"mV"
CASE ELSE
//ignore this message
ENDSELECT
ENDFUNC 1

//
// Handler to service button 0 pressed
//
FUNCTION HndlrBtnOPr () AS INTEGER

//just exit and stop waiting for events

ENDFUNC 0

ONEVENT EVBLEMSG CALL HandlerBleMsg
ONEVENT EVGPIOCHAN1 CALL HndlrBtnOPr

rc=GpioBindEvent (1,16,1) //Channel 1, bind to low transition on GPIO pin 16
PRINT "\nSupply voltage is "; ReadPwrSupplyMv () ;"mv\n"
mv=2700

rc=SetPwrSupplyThreshMv (mv)

PRINT "\nWaiting for power supply to fall below ";mv;"mV"

https://www.lairdconnect.com/ 347 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

) Lall'd J» CONNECTIVITY
User Guide

//wait for events and messages

WAITEVENT

PRINT "\nExiting..."

Expected Output:

Supply voltage is 3343mV

Waiting for power supply to fall below 2700mV
Exiting..

7.4.6 CRCl16Generate

FUNCTION

This function is used to calculate the CRC16 value of a given string.

INTEGER, a result code. The most typical value is 0x0000, indicating a successful

Returns operation.

Arguments

byVal nType AS INTEGER
The type of CRC16 checksum to generate

0 — Nordic CRC16
Other - Invalid

byRef Data$ AS STRING
This variable should contain the string data to perform a checksum on

byRef nCRC AS STRING
NnCRC | Setto a variable to contain the previous checksum value and will contain an updated
checksum when complete. Set to 0xffff before starting

nType

Data$

Example:

// Example :: CRC16.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc
DIM nType : nType = 0
DIM Data$: Data$ = "RandomData"

DIM nCRC16 : nCRCl6 = 0O

rc = CRCl6Generate (nType, Data$, nCRC16)
IF rc == 0 THEN

PRINT "\nThe computed CRC1l6 value is ";nCRC1l6
ELSE

PRINT "\nFailed to generate CRC16 value"
ENDIF

https://www.lairdconnect.com/ 348 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

7.4.7 CRC32Generate
FUNCTION

This function is used to calculate the CRC32 value of a given string.

INTEGER, a result code. The most typical value is 0x0000, indicating a successful

Returns operation.

Arguments

byVal nType AS INTEGER
The type of CRC32 checksum to generate. Possible values are:-

nTyPe | § _ Nordic CRC32
Other - Invalid

byRef Data$ AS STRING
This variable should contain the string data to perform a checksum on

byRef nCRC AS STRING
NnCRC | Setto a variable to contain the previous checksum value and will contain an updated
checksum when complete. Set to 0xffff before starting

Data$

Example:

// Example :: CRC32.sb
// https://github.com/LairdCP/BL653-Applications/tree/master/UserGuideExamples

DIM rc
DIM nType : nType = 0
DIM Data$: Data$ = "RandomData"

DIM nCRC32 : nCRC32 = 0

rc = CRC32Generate (nType, Data$, nCRC32)

IF rc == 0 THEN

PRINT "\nThe computed CRC32 value is ";nCRC32
ELSE

PRINT "\nFailed to generate CRC32 value"
ENDIF

8 EVENTS AND MESSAGES

smartBASIC is designed to be event driven, which makes it suitable for embedded platforms where it is normal to wait for
something to happen and then respond.

The event handling is done synchronously, meaning the smartBASIC runtime engine has to process a WAITEVENT statement
for any events or messages to be processed. This guarantees that smartBASIC never needs the complexity of locking
variables and objects.

The subsystems which generate events and messages relevant to the routines described in this guide are as follows:

= BLE events and messages as described here.
= Generic Characteristics events and messages as described here.

9 MISCELLANEOUS

9.1 Bluetooth Result Codes

There are some operations and events that provide a single byte Bluetooth HCI result code (such as the EVDISCON
message). The meaning of the result code is as per the list reproduced from the Bluetooth Specifications below. No guarantee
is supplied as to its accuracy. Consult the specification for more.

Result codes in grey are not relevant to Bluetooth Low Energy operation.

https://www.lairdconnect.com/ 349 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird :

) CONNECTIVITY
User Guide _)

BT HCI_STATUS_CODE_SUCCESS 0x00
BT _HCI_STATUS_CODE_UNKNOWN_ BTLE COMMAND 0x01
BT _HCI_STATUS_CODE_UNKNOWN_CONNECTION_IDENTIFIER 0x02
BT HCI HARDWARE FAILURE 0x03
BT HCI PAGE TIMEOUT 0x04
BT HCI_AUTHENTICATION_ FAILURE 0x05
BT _HCI_STATUS_CODE_PIN_OR_LINKKEY MISSING 0x06
BT HCI_MEMORY CAPACITY EXCEEDED 0x07
BT HCI_CONNECTION TIMEOUT 0x08
BT HCI CONNECTION LIMIT EXCEEDED 0x09
BT HCI SYNC CONN LIMI TO A DEVICE EXCEEDED 0x0A
BT HCI ACL COONECTION ALREADY EXISTS 0x0B
BT _HCI_STATUS CODE_COMMAND DISALLOWED 0x0C
BT HCI CONN REJECTED DUE TO LIMITED RESOURCES 0x0D
BT HCI CONN REJECTED DUE TO SECURITY REASONS 0x0E
BT HCI BT HCI CONN REJECTED DUE TO BD ADDR 0x0F
BT HCI CONN ACCEPT TIMEOUT EXCEEDED 0x10
BT HCI UNSUPPORTED FEATURE ONPARM VALUE 0x11
BT _HCI_STATUS_CODE_INVALID BTLE COMMAND PARAMETERS 0x12
BT _HCI_REMOTE USER_TERMINATED CONNECTION 0x13
BT _HCI_REMOTE DEV_TERMINATION DUE_TO_LOW_RESOURCES 0x14
BT _HCI_REMOTE DEV_TERMINATION DUE_TO_POWER_OFF 0x15
BT HCI_LOCAL HOST TERMINATED CONNECTION 0x16
BT HCI REPEATED ATTEMPTS 0x17
BT HCI PAIRING NOTALLOWED 0x18
BT HCI LMP PDU 0x19
BT _HCI_UNSUPPORTED REMOTE FEATURE 0x1A
BT HCI SCO OFFSET REJECTED 0x1B
BT HCI SCO_INTERVAL REJECTED 0x1C
BT HCI SCO AIR MODE REJECTED 0x1D
BT _HCI_STATUS_CODE_ INVALID LMP PARAMETERS Ox1E
BT HCI_STATUS_CODE_UNSPECIFIED ERROR Ox1F
BT HCI UNSUPPORTED LMP PARM VALUE 0x20
BT HCI ROLE CHANGE NOT ALLOWED 0x21
BT HCI_STATUS_CODE_LMP RESPONSE TIMEOUT 0x22
BT HCI LMP ERROR TRANSACTION COLLISION 0x23
BT HCI_STATUS_CODE_LMP PDU_NOT_ ALLOWED 0x24
BT HCI ENCRYPTION MODE NOT ALLOWED 0x25
BT HCI LINK KEY CAN NOT BE CHANGED 0x26
https://www.lairdconnect.com/ 350 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940

All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide

La i rdT J» CONNECTIVITY

BT HCI REQUESTED QOS NOT SUPPORTED
BT_HCI_INSTANT PASSED
BT_HCI_PAIRING WITH UNIT_KEY UNSUPPORTED
BT_HCI_DIFFERENT TRANSACTION COLLISION

BT HCI QOS UNACCEPTABLE PARAMETER

BT HCI QOS REJECTED

BT HCI CHANNEL CLASSIFICATION UNSUPPORTED
BT HCI INSUFFICIENT SECURITY

BT HCI_PARAMETER OUT OF MANDATORY RANGE
BT HCI ROLE SWITCH PENDING

BT HCI RESERVED SLOT VIOLATION

BT HCI ROLE SWITCH FAILED

BT HCI_EXTENDED INQUIRY RESP TOO LARGE

BT HCI SSP NOT SUPPORTED BY HOST

BT HCI HOST BUSY PAIRING

BT HCI CONN REJ DUETO NO SUITABLE CHN FOUND
BT_HCI_CONTROLLER BUSY
BT_HCI_CONN_INTERVAL UNACCEPTABLE
BT_HCI_DIRECTED ADVERTISER TIMEOUT
BT_HCI_CONN_TERMINATED DUE_TO MIC_ FAILURE
BT_HCI_CONN_FAILED TO_ BE_ESTABLISHED

10 ACKNOWLEDGEMENTS

10.1 AES Encryption

The following are required acknowledgements to address our use of open source code on the BL653 to implement AES
encryption. Laird’s implementation includes the following files: aes.c and aes.h.

Copyright (c) 1998-2008, Brian Gladman, Worcester, UK. All rights reserved.

10.1.1 License

Terms

0x27
0x28
0x29
0x2A
0x2C
0x2D
0x2E
0x2F
0x30
0x32
0x34
0x35
0x36
0x37
0x38
0x39
0x3A
0x3B
0x3C
0x3D
0x3E

The redistribution and use of this software (with or without changes) is allowed without the payment of fees or royalties

providing the following:

= Source code distributions include the above copyright notice, this list of conditions and the following disclaimer;
= Binary distributions include the above copyright notice, this list of conditions and the following disclaimer in their

documentation;

= The name of the copyright holder is not used to endorse products built using this software without specific written

permission.

10.1.2 Disclaimer

This software is provided 'as is' with no explicit or implied warranties in respect of its properties, including, but not limited to,
correctness and/or fitness for purpose.

Issue 09/09/2006

https://www.lairdconnect.com/ 351

© Copyright 2020 Laird Connectivity, Inc.
All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide La"'d 2» CONNECTIVITY

This is an AES implementation that uses only 8-bit byte operations on the cipher state (there are options to use 32-bit types if
available).

The combination of mix columns and byte substitution used here is based on that developed by Karl Malbrain. His contribution
is acknowledged.

10.2 Micro-ECC

The following are required acknowledgements to address our use of open source code on the BL653 to implement Elliptic-
Curve Diffie Hellman cryptography . Laird’s implementation includes the following files: uECC.c and uECC.h.

Copyright (c) 2014, Kenneth MacKay

10.2.1 License Terms

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

= Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

= Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

10.2.2 Disclaimer

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

https://www.lairdconnect.com/ 352 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

La NNECTIVITY
User Guide Ird <0 T

11 INDEX

Arduino Based NFC Reader BleConnectCanCelccceeeviuieeeiniiiee e
ASSERTBL654 BleConnectConfig
AT + MAC............... BleConnMngrUpdCfg....
AT L BleConnRssiStart......
AT | or ATl or ATIX BleCONNRSSISIOP ...
ATEF e BlEDECOUE32.......eiiiiiiie et
ATHBLX e BleDECOAEBITS......ccviiiiiiiee e
ATHBTD i BleDECOAEFLOATcoiiiiiieeiiiiee et
ATHCFG . BlEDECOUESLEccooiviieiiiiiee et
AUXCIOSE. ...eeieiiiiieeciiie ettt BlEDECOUES24 ...
AUXCIOSEEXeveeieiiiiie et BlEDECOUESScooiiiiieiiiiie e
AUXFIUSN ... BleDeCOdESFLOATccoiiieeiiieee et
AUXGEICTS ..ottt BleDeCOdeSTRINGcccceeeiiiiieeiiiee e
AUXINTO et BleDeCOdeTIMESTAMP.......coovveiiiiee e
AUXREAMeeiiiiiiiie ittt BLEDECODEUILGcocoiiiiieiiiiee et
AUXREAAMALCN ...ooeiiiiiiiiiiie e BleDeCcodeU24ooeiiiiieeiiieee e
AUXREAAN ... itiiieiiiiee et BlEDECOUEUS.......cooiiiieiiiiie ettt
AUXWIILE ...ttt e e eeee e BlEDISCCNAIFIrStvvive e
BleACCEPLPANING.....ccceieiiiiiiiiiee e BleDiscCharNeXt........cccveieeeiiiiiiiiiieee e
BleAdVErtConfigccoviiiiiieiie e BIEDISCDESCFIIST. ...t
BleAdvertStart............ccceeevnneee. BlEDISCDESCNEXLvveeeiiiieeiiiie et
BIEAAVEISIOPvvvieeieeiiiiiiiee e BIEDISCONNECT ..ot
BleAdVRPptAddUUIdL28..........ocoeeeiiiiiiieieeeee e BIeDiSCSErVICEFIrStuuviiieiiiiiiiieieee e
BleAdvRptAddUUId16............ccceeeeiiiiiiiieeeee, BIeDiSCSErVICENEXL.......uuevieeeiiiiiiieieee et
BleAdVRptAppendAD..........cccceeeveivnnenen. BIEENCOAELG........ccoiiiiiiiiieee e e
BleAdVRPLIGEISPACEoovvveeeiiiieeeeiiie e BIEENCOAE24 ...t
BIEAAVRPINIE ..o BIEENCOAE32.......oeiiiiiiieie et
BleAdvRptsCommit BIEENCOAES.........oiiiiiiiieiiie e
BleAttrMetadataEx BleEncodeBITS.........
BleAuthorizeChar BleEncodeFLOAT
BleAuthorizeDesc...... BleEncodeSFLOAT
BleBondingEraseAll BleEncodeSFLOATEXccccccvvenne
BleBondingEraseKey BleEncodeSTRINGcccceeevvieenns
BleBondinglsTrusted.................... BleEncodeTIMESTAMP...................
BleBondingPersistKey.................. BleEncryptConnection.....................
BleBONAINGSTaLS......cccveeeiiiiee e BleGAPSVCINIToeeiiiiiieiiiiie e
BleBondMngrGetinfo.........ccceeereieiiiier e BleGattcAttributeMtuRequest
BleChannelMap.........cccceeiiiiieiiiieee e BleGAtCCIOSEeeeeieiieeiieie et
BleCharCOommMIt.........ccceeiiiieeiiiiie et BleGattCFINACRHAr...........cccvieiiiie e
BleCharDeSCAA..........eveiiiiiieiiiie e BleGattCFINADESCccovviieeiiiiee et
BleCharDescPrstnFrmtccooviiiiiiiiiieiiiiieeeeeeee BleGattcNotifyRead...........ccccooiiiiiiiiiiiiiiiiceeee s
BleCharDescRead...........ccccueeiiiiiiiiiiiiieeeeeeeeee BleGattCOPEN.ccei it
BleCharDescUSErDESCuuuuvrvrmrminiiiiiiiiiiiniininennnns BleGattcRead.............cccccvvvvviiiiii
BIEChAINEWuiiiiiiiiiiiiiiiiiii e BleGattcReadDatacccceevvvvvveviiiiiiiiiieieeeeeeeeeeeeee
BleCharValuelndicate...........ccccvvvuieimininiiiiinnnns BleGattCWIitecovvvvveiiieieee
BleCharValueNotifyccueeeiiiiiiiiiieeieeeeeeee BleGattcWriteCmdccoooiviiiiiieiieniiiiines
BleCharValueRead............ccccceeiiiiiiiiiiiieeieieeeeee BleGetADDYINAEX.......c..eveeieieeiiiiiieieee e
BleCharValueWrite............ceeeveeiiiiiiieiiee e BlIeGEtADDYTAG . .ccei it
BleCoNnfigDCDCcueiiiaiiiiiiieeee et BleGetAddrFromConnHandle
BIECONNECT......uvviieiiiiiiiiiiiiieee BleGetConnHandleFromAddr
https://www.lairdconnect.com/ 353 Americas: +1-800-492-2320
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940

All Rights Reserved Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions

User Guide

La i rd“ 2» CONNECTIVITY

BleGetCurConnParms ..139
BleGetDeviceName161
BleHandleUuid128164
BleHandleUuid16cccoooueieiiiiieiiiieee e 163
BleHandleUuidSibling..........cccccooiiiiiiiiiie e 165
BIEPAIN. ...t 274
BleScanAbOrtooiiiiii e 114
BleScanConfigcccveeeiiiiiiiieiie e 117
BleScanFIuShoooiiiiiii e 116
BleScanGetAdVREPOIt..........cevveeiiiiiiiieiie e 119
BleScanGetPagerAddr..........cccoeiviiiiiiiiie e 127
BleScanRPtINitccooviiiiiiiiie e 98
BleSCaNSArteiieiiiieiiee e 107, 112
BIeSCaNSIOPvvviieeeee i 115
BleSecMngrBondREq.........ccueeveeeiiiiiiiieeee e 289
BleSecMNgrioCapccccvuuvieeieeiiiiiieee e 278
BleSecMNgrKeySIzes.......cccooveveeeiiiiiiiieiie e 289
BleSecMngrLescKeypressEnablecccccvveveeeenn. 282
BleSecMngrLescKeypressNotifyccccceeevviivieneeeennn. 282
BleSecMngrLescOwnOobDataGet..............ccccvvvereeeenn. 286
BleSecMngrLescPairingPref ... 274
BleSecMngrLescPeerOobDataSet..............ccccvvveveeeenn. 286
BleSecMNgrOOBKEY........cccveeieeeiiiiiiiieeee e 284
BleSecMngrPasskeyccccceevveiiireeeieeieesiiee. 279, 280
BleServiceChangedNtfyc.ccccoeviiiieiieeiiiiciieeeeeee 193
BleServiceCOmMMIt.........ccooueeeiiiiiree e e 168
BlESEIVICENEW......oiiiiiiieiiiiee et 166
BleSetAddreSSTYPEEXuvvviieeiiiiiiiiiiee et 53
BleSetCurConnParms..................136
BleSvcAddIncludeSvc..................168
BleSvcRegDevinfo162
BIETXPOWEISELeeeeiiiiiieeeiiiie et 88

BleTXPWIWhiIlEePaIrNgccvveeiiiieieiiiiee e

BleVSpClose

BleVSpFlush

BIEVSPINTO ..vieeeiiiie e
BleVSpOpen

BIEVSPOPENEXeeiiiiiiieiiiiee et 304
BIEVSPREA.eiiieiiiiie et 310
BleVSpUartBridgecceoiiireiiiiieeiiiee e 312
BIEVSPWIILE ...eeeiiiie ettt 308
BleWhitelisStAAdAdAT...........ccveiiiiiiiee e 151
BleWhitelistAddINAeXcovveiiiiiiieiieeeerec e 151
BleWhiteliStClear..........cooouiiieiieeiiiiiiee e 150
BleWhiteliStCreate...........ccuveieiieeiiiieiiee e 146
BleWhiteliStDeSIIOYccuvveieiieeiiiiiiece e 149
BleWhitelistInfo ... 152
BleWhitelistSetFilter ... 150
Bonding FUNCHONS........c.ooiiiiieiiee e 265
Bonding Table Types: Rolling & Persistcccccee... 265
Command & Bridge Mode Operationccccccoecuvveeeee.. 299
ERASEFILESYSTEM.....coiiiiiiiiieiiieiiee e 52
EVATTRIBUTEMTU....cooiiiiiiiiiieiieeiee e 318
https://www.lairdconnect.com/ 354

© Copyright 2020 Laird Connectivity, Inc.
All Rights Reserved

EVATTRNOTIFY
EVATTRREAD..........
EVATTRWRITE
EVAUTHCCCD ..ottt e
EVAUTHDESC......cciiiiiieiteiieeec e
EVAUTHSCCDooiiiiiiiiiiec et
EVAUTHVAL ...ttt
EVBLE_ADV_REPORTooiiiiiriieiiieniee e
EVBLE_ADV_TIMEOUTccoiiiiiieniienrie e
EVBLE_CONN_TIMEOUT
EVBLE_FAST_PAGED........cccoiiiiiiiiieniie e
EVBLE_SCAN_TIMEOUT
EVBLEMSG ..ottt
EVBLEMSG ..ottt
EVCHARCCCD ...ttt
EVCHARDESC ..ottt e
EVCHARHVC.......ooiiiiiiiitc e
EVCHARSCCDcciiiiiiiieiite et
EVCHARVAL ..ottt
EVCONNRSSIoooiiiiiiiiieceee e
EVDISCCHAR......coiitiiiiitet et
EVDISCDESC......coiiiiiiiititesiee ettt
EVDISCONoiiiiiiiiiieiieenie et
EVDISCPRIMSVC ..ottt
EVFINDCHARcoiiitiiiiit ettt
EVFINDDESCooiitiiiiiiit et
EVGATTCTOUT oottt
EVLESCKEYPRESS...........cccoeen.e.

EVNOTIFYBUFccooviiiiiiiiecee,

EVNOTIFYBUFcccoviiiiiicieee,
EVPACKETLENGTHccccocvennn.
EVVSPRX.....cccccuvenn.
EVVSPTXEMPTY
GpioAssignEvent....... .
GPIOBINAEVENLeoiiiiiiiiiiiie e
GPIOCONTIGPWIMoiiiiiiii e
(€701 o] 2 L= To PP URP
GPIOSELFUNC ...t
GPIOSEIFUNCEXeiiiiiiiii it
GPIOUNASSIGNEVENTooiiiiiieiiiieeciee e
GPIOUNBINDEVENToooiiiiiiieiiii e
GPIOWTILE ...t
NDEF MESSAQESvvieieeeiiianieeesiieesieee s e s
NFCCIOSE ...
NfCFIEldSENSE...ccciiiiie e,
NfcHardwareState............cccooviiiiiiiiiieeieecee s
NfCNAefMSgCOMMIL........cooiiiiiiiiiiiie e
NfcNdefMsgDeletecoooiiiiiiiiiiiee e
NfcNdefMSgGetInfo.........cooiiiiiiiiiiie s
NFCNAEfMSGNEW ...
NfCNAefMSGRESELeeieiiiiii e
NfCNAefReCAddGENENIC.......coviiiiiiiiieeeeiiiieeeee e
NfcNdefRecAddLEOOD.........cooiiiiiiiiieeiiiicece e

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL653 smartBASIC Extensions Laird CONNECTIVITY

User Guide

NfcOpen.........ccecuvveee. UART Events

ReadPwrSupplyMv UartOpeNccvveveeeeiiciiiieeee e
SetPwrSupplyThreshMv . VSP (Virtual Serial Port) Events .
SYSINFO oottt VSP Configuration...........ccccoecvviieeeee i
SYSINFOS ... WaKe-ON-NFCccooiiiiiiiie e
SYSTEMSTATESET ..oooiiiiiieeee ettt Whisper Mode Pairing..........ccoovveeeeeiiiciiiiieeee e

Americas: +1-800-492-2320

https://www.lairdconnect.com/ 355
© Copyright 2020 Laird Connectivity, Inc. Europe: +44-1628-858-940
All Rights Reserved Hong Kong: +852 2923 0610

	1 Introduction
	1.1 What Does a BLE Module Contain?

	2 Module Configuration
	3 Error Codes
	3.1 Error Code Lookup
	3.2 Error Code Viewer
	3.3 Error Code Updates

	4 Interactive Mode Commands
	4.1.1 AT I or ATI or ATIX
	4.1.2 AT+CFG
	4.1.3 AT+CFGEX
	4.1.4 AT+BTD *
	4.1.5 AT + MAC “12 hex digit mac address”
	4.1.6 AT+BLX
	4.1.7 AT&F
	4.1.8 AT+PROTECT
	4.1.9 AT+REGOUT0

	5 Core Language Built-in Routines
	5.1 Information Routines
	5.1.1 SYSINFO
	5.1.2 SYSINFO$

	5.2 UART Interface
	5.2.1 UartOpen
	5.2.2 UartSetRTS
	5.2.3 UartBREAK

	5.3 Auxiliary UART (Universal Asynchronous Receive Transmit)
	5.3.1 Auxilliary UART Events
	5.3.2 AUXOpen
	5.3.3 AUXClose
	5.3.4 AUXCloseEx
	5.3.5 AUXInfo
	5.3.6 AUXWrite
	5.3.7 AUXRead
	5.3.8 AUXReadN
	5.3.9 AUXReadMatch
	5.3.10 AUXFlush
	5.3.11 AUXGetCTS
	5.3.12 AUXSetRTS
	5.3.13 AUXBreak

	5.4 I2C – Two Wire Interface (TWI)
	5.5 Input/Output Interface Routines
	5.5.1 Events and Messages
	5.5.2 GpioSetFunc
	5.5.3 GpioSetFuncEx
	5.5.4 GpioConfigPwm
	5.5.5 GpioRead
	5.5.6 GpioWrite
	5.5.7 GpioBindEvent/GpioAssignEvent
	5.5.8 GpioUnbindEvent/GpioUnAssignEvent

	5.6 Miscellaneous Routines
	5.6.1 ASSERTBL653
	5.6.2 ERASEFILESYSTEM

	6 BLE Extensions Built-in Routines
	6.1 LE Privacy
	6.1.1 BleSetAddressTypeEx

	6.2 Events and Messages
	6.2.1 EVBLE_ADV_TIMEOUT
	6.2.2 EVBLE_CONN_TIMEOUT
	6.2.3 EVBLE_ADV_REPORT
	6.2.4 EVBLE_FAST_PAGED
	6.2.5 EVBLE_SCAN_TIMEOUT
	6.2.6 EVBLEMSG
	6.2.7 EVDISCON
	6.2.8 EVCHARVAL
	6.2.9 EVCHARVALUE
	6.2.10 EVCHARHVC
	6.2.11 EVCHARCCCD
	6.2.12 EVCHARSCCD
	6.2.13 EVCHARDESC
	6.2.14 EVAUTHVAL
	6.2.15 EVAUTHVALEX
	6.2.16 EVAUTHCCCD
	6.2.17 EVAUTHSCCD
	6.2.18 EVAUTHDESC
	6.2.19 EVVSPRX
	6.2.20 EVVSPTXEMPTY
	6.2.21 EVCONNRSSI
	6.2.22 EVNOTIFYBUF
	6.2.23 EVCONNPARAMREQ
	6.2.24 EVBLE_EXTADVDROPPED
	6.2.25 EVBLE_EXTADVNOMEM
	6.2.26 EVBLE_SCAN_ABORTED
	6.2.27 EVBLE_EXTADV_END
	6.2.28 EVBLE_EXTADV_RPT
	6.2.29 EVBLE_EXTSCN_RPT
	6.2.30 EVBLE_EXTADV_RPT_INCOMPLETE

	6.3 Miscellaneous Functions
	6.3.1 BleTxPowerSet
	6.3.2 BleTxPwrWhilePairing
	6.3.3 BleConfigHfClock
	6.3.4 BleConfigDcDc
	6.3.5 BleChannelMap

	6.4 Advertising Functions
	6.4.1 BleAdvertStart
	6.4.2 BleAdvertStop
	6.4.3 BleAdvertConfig
	6.4.4 BleAdvRptInit
	6.4.5 BleScanRptInit
	6.4.6 BleAdvRptGetSpace
	6.4.7 BleExtAdvRptGetSpace
	6.4.8 BleAdvRptAddUuid16
	6.4.9 BleAdvRptAddUuid128
	6.4.10 BleAdvRptAppendAD
	6.4.11 BleExtAdvRptAppendAD
	6.4.12 BleAdvRptsCommit

	6.5 Extended Adverts Functions
	6.5.1 BleAdvSetCreate
	6.5.2 BleAdvSetNewData
	6.5.3 BleAdvSetStart
	6.5.4 BleAdvSetStop
	6.5.5 BleScanStartEx
	6.5.6 BleExtRptMetadata
	6.5.7 BleConnectExtended
	6.5.8 BleExtAdvRptAppendAD
	6.5.9 BleExtAdvRptAddUuid16
	6.5.10 BleExtAdvRptAddUuid128
	6.5.11 BleExtAdvRptGetSpace

	6.6 Scanning Functions
	6.6.1 BleScanStart
	6.6.2 BleScanStartEx
	6.6.3 BleScanAbort
	6.6.4 BleScanStop
	6.6.5 BleScanFlush
	6.6.6 BleScanConfig
	6.6.7 BleScanGetAdvReport
	6.6.8 BleScanGetAdvReportEx
	6.6.9 BleGetADbyIndex
	6.6.10 BleGetADbyTag
	6.6.11 BleScanGetPagerAddr

	6.7 Connection Functions
	6.7.1 Events and Messages
	6.7.2 BleConnect
	6.7.3 BleConnectExtended
	6.7.4 BleConnectCancel
	6.7.5 BleConnectConfig
	6.7.6 BleDisconnect
	6.7.7 BleSetCurConnParms
	6.7.8 BleGetCurConnParms
	6.7.9 BleConnMngrUpdCfg
	6.7.10 BleGetConnHandleFromAddr
	6.7.11 BleGetAddrFromConnHandle
	6.7.12 BleConnRssiStart
	6.7.13 BleConnRssiStop

	6.8 Whitelist Management Functions
	6.8.1 BleWhitelistCreate
	6.8.2 BleWhitelistDestroy
	6.8.3 BleWhitelistClear
	6.8.4 BleWhitelistSetFilter
	6.8.5 BleWhitelistAddAddr
	6.8.6 BleWhitelistAddIndex
	6.8.7 BleWhitelistInfo

	6.9 GATT Server Functions
	6.9.1 Events and Messages
	6.9.2 BleGapSvcInit
	6.9.3 BleGetDeviceName$
	6.9.4 BleSvcRegDevInfo
	6.9.5 BleHandleUuid16
	6.9.6 BleHandleUuid128
	6.9.7 BleHandleUuidSibling
	6.9.8 BleServiceNew
	6.9.9 BleServiceCommit
	6.9.10 BleSvcAddIncludeSvc
	6.9.11 BleAttrMetadataEx
	6.9.12 BleCharNew
	6.9.13 BleCharDescUserDesc
	6.9.14 BleCharDescPrstnFrmt
	6.9.15 BleCharDescAdd
	6.9.16 BleCharCommit
	6.9.17 BleCharValueRead
	6.9.18 BleCharValueWrite
	6.9.19 BleCharValueWriteEx
	6.9.20 BleCharValueNotify
	6.9.21 BleCharValueIndicate
	6.9.22 BleCharDescRead
	6.9.23 BleAuthorizeChar
	6.9.24 BleAuthorizeDesc
	6.9.25 BleServiceChangedNtfy

	6.10 GATT Client Functions
	6.10.1 Events and Messages
	6.10.1.1 EVGATTCTOUT
	6.10.1.2 EVDISCPRIMSVC
	6.10.1.3 EVDISCCHAR
	6.10.1.4 EVDISCDESC
	6.10.1.5 EVFINDCHAR
	6.10.1.6 EVFINDDESC
	6.10.1.7 EVATTRREAD
	6.10.1.8 EVATTRWRITE
	6.10.1.9 EVNOTIFYBUF
	6.10.1.10 EVATTRNOTIFY
	6.10.1.11 EVATTRNOTIFYEX

	6.10.2 BleGattcOpen
	6.10.3 BleGattcClose
	6.10.4 BleDiscServiceFirst / BleDiscServiceNext
	6.10.5 BleDiscCharFirst / BleDiscCharNext
	6.10.6 BleDiscDescFirst /BleDiscDescNext
	6.10.7 BleGattcFindChar
	6.10.8 BleGattcFindDesc
	6.10.9 BleGattcRead/BleGattcReadData
	6.10.10 BleGattcWrite
	6.10.11 BleGattcWriteCmd
	6.10.12 BleGattcWritePrepare
	6.10.13 BleGattcWriteExec
	6.10.14 BleGattcNotifyRead

	6.11 Attribute Encoding Functions
	6.11.1 BleEncode8
	6.11.2 BleEncode16
	6.11.3 BleEncode24
	6.11.4 BleEncode32
	6.11.5 BleEncodeFLOAT
	6.11.6 BleEncodeSFLOATEX
	6.11.7 BleEncodeSFLOAT
	6.11.8 BleEncodeTIMESTAMP
	6.11.9 BleEncodeSTRING
	6.11.10 BleEncodeBITS

	6.12 Attribute Decoding Functions
	6.12.1 BleDecodeS8
	6.12.2 BleDecodeU8
	6.12.3 BleDecodeS16
	6.12.4 BleDecodeU16
	6.12.5 BleDecodeS24
	6.12.6 BleDecodeU24
	6.12.7 BleDecode32
	6.12.8 BleDecodeFLOAT
	6.12.9 BleDecodeSFLOAT
	6.12.10 BleDecodeTIMESTAMP
	6.12.11 BleDecodeSTRING
	6.12.12 BleDecodeBITS

	6.13 Bonding and Bonding Database Functions
	6.13.1 Bonding Functions
	6.13.2 Bonding Table Types: Rolling & Persist
	6.13.3 Whisper Mode Pairing
	6.13.3.1 Events and Messages

	6.13.4 BleBondingStats
	6.13.5 BleBondingPersistKey
	6.13.6 BleBondingIsTrusted
	6.13.7 BleBondingEraseKey
	6.13.8 BleBondingEraseAll
	6.13.9 BleBondMngrGetInfo

	6.14 Security Manager Functions
	6.14.1 Events and Messages
	6.14.1.1 EVBLEMSG
	6.14.1.2 EVLESCKEYPRESS
	6.14.1.3 EVBLE_PASSKEY

	6.14.2 BleSecMngrLescPairingPref
	6.14.3 BlePair
	6.14.4 BleSecMngrIoCap
	6.14.5 BleAcceptPairing
	6.14.6 BlePairingStaticPasskey
	6.14.7 BleSecMngrPasskey
	6.14.8 BleSecMngrLescKeypressEnable
	6.14.9 BleSecMngrLescKeypressNotify
	6.14.10 BleSecMngrOOBPref
	6.14.11 BleSecMngrOOBKey (Legacy Pairing)
	6.14.12 BleSecMngrLescOwnOobDataGet
	6.14.13 BleSecMngrLescPeerOobDataSet
	6.14.14 BleSecMngrKeySizes
	6.14.15 BleSecMngrBondReq
	6.14.16 BleEncryptConnection

	6.15 Virtual Serial Port Service – Managed
	6.15.1 VSP Configuration
	6.15.2 Command and Bridge Mode Operation
	6.15.3 VSP (Virtual Serial Port) Events
	6.15.4 BleVSpOpen
	6.15.5 BleVSpOpenEx
	6.15.6 BleVSpClose
	6.15.7 BleVSpInfo
	6.15.8 BleVSpWrite
	6.15.9 BleVSpRead
	6.15.10 BleVSpUartBridge
	6.15.11 BleVSpFlush

	6.16 Data Packet Length Extension
	6.16.1 Overview
	6.16.1.1 Data Packet Length Extension
	6.16.1.2 ATT_MTU

	6.16.2 CFG Keys Configuration
	6.16.2.1 Maximum ATT_MTU
	6.16.2.2 Maximum Attribute Data Length
	6.16.2.3 Maximum Packet Length

	6.16.3 Events and Messages
	6.16.3.1 EVATTRIBUTEMTU
	6.16.3.2 EVPACKETLENGTH

	6.16.4 BleGattcAttributeMtuRequest
	6.16.5 BleMaxPacketLengthSet
	6.16.6 BleMaxPacketLengthGet

	6.17 LE Ping
	6.17.1 Overview
	6.17.2 Events and Messages
	6.17.2.1 EVBLE_PING_AUTH_TIMEOUT

	6.17.3 BlePingAuthTimeout

	6.18 LE 2M PHY and CODED PHY
	6.18.1 Events and Messages
	6.18.1.1 EVBLE_PHY_REQUEST
	6.18.1.2 EVBLE_PHY_UPDATED

	6.18.2 BlePhySet

	7 Other Extension Built-in Routines
	7.1 Near Field Communications (NFC)
	7.1.1 Overview
	7.1.2 NDEF Messages
	7.1.3 Arduino Based NFC Reader
	7.1.4 Sample Application 1
	7.1.5 Sample Application 2
	7.1.6 Wake-On-NFC
	7.1.7 Events and Messages
	7.1.8 NfcHardwareState
	7.1.9 NfcOpen
	7.1.10 NfcClose
	7.1.11 NfcFieldSense
	7.1.12 NfcNdefMsgNew
	7.1.13 NfcNdefMsgDelete
	7.1.14 NfcNdefMsgGetInfo
	7.1.15 NfcNdefMsgReset
	7.1.16 NfcNdefRecAddLeOob
	7.1.17 NfcNdefRecAddGeneric
	7.1.18 NfcNdefMsgCommit

	7.2 System Configuration Routines
	7.2.1 SystemStateSet

	7.3 Cryptographic Routines
	7.3.1 EccGeneratePubPrvKeys
	7.3.2 EccCalcSharedSecret
	7.3.3 EccHmacSha256

	7.4 Watchdog Timer
	7.4.1 WdtStart
	7.4.2 WdtReset
	7.4.3 WdtIsRunning

	Miscellaneous Routines
	7.4.4 ReadPwrSupplyMv
	7.4.5 SetPwrSupplyThreshMv
	7.4.5.1 Events & Messages

	7.4.6 CRC16Generate
	7.4.7 CRC32Generate

	8 Events and Messages
	9 Miscellaneous
	9.1 Bluetooth Result Codes

	10 Acknowledgements
	10.1 AES Encryption
	10.1.1 License Terms
	10.1.2 Disclaimer

	10.2 Micro-ECC
	10.2.1 License Terms
	10.2.2 Disclaimer

	11 INDEX

