Laird »

CONNECTIVITY

User Guide

smartBASIC Core Functionality

Version 3.2

From version 3.0 onwards, smartBASIC is enhanced with FLOAT variable types. This user guide
describes its use when applicable.

Please note that the FLOAT capability is an optional feature. Although many Laird platforms
may expose version 3.0 or newer capability, they may not have FLOAT; the need for extra code
memory may prevent it from being added to the build.

Where FLOAT is mentioned in this guide, an explicit comment is not made to state that it is an
optional feature.

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

REVISION HISTORY

2.0-r1 1 Feb 2013 Created by splitting from BL600 user manual Mahendra Tailor
2.0-r2 14 Aug 2014 Fix typo errors Mahendra Tailor
2.0-r3 16 Mar 2015 Added #cmpif nnn statement Mahendra Tailor
2.0-r4 22 May 2015 Added ‘STRING from INTEGER’ section Mahendra Tailor
2.1-r0 18 Aug 2015 AT |1 0xC12C Mahendra Tailor

Changed to new template; general edits and

2,51 31 Aug 2016 . Mahendra Tailor
formatting
Updated FOR/NEXT description to remove
10Jul 2017 "Note: In smart BASIC the Statement Block is Mahendra Tailor
ALWAYS executed at least once."
3.0 2 Feb 2018 Added FLOAT variable type details Mahendra Tailor
3.1 19 June 2018 Updated for the BL652 product release Youssif Saeed Jonathan Kaye
3.2 14 Feb 2019 Updated logos and URLs Sue White
https://connectivity.lairdtech.com/wireless- 2 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

CONTENTS
1 SMArtBASIC DOCUMENTATION ..eiiiiiiiiiiiiiiiit ettt b e st e s b e e s bt e sb e e sbe e sar e e sbeesareesneenane 5
2 INErOAUCEION 10 SMAITBASIC ...ttt sttt ettt et b e bt et e s e e s b e e s be e s bt e et eae e smeeene e b e e s e eanesanesenenbeennes 5
2.1 WHhy DO WE NEEA SIMAITBASIC? ... ieee ettt ectee ettt e e ettt e ettt e e e sttt e e e s tee e e sateeeesstaeeeansteeessseeeestaeeeansseeessaeasenssenesnnens 6
2.2 VAV N A g L=l o T o] 1 Tor= N o o 1 PSSR 6
2.3 What Does @ Wireless Module CONTAINT......c.ciiiiiiiiiiei ettt ettt s e e sbee s b e e sbeesbe e e sneesnees 6
2.4 SIMAIEBASIC ESSENTIANS ...cnteiiieeiiie ettt ettt ettt e et s et e s ab e e s a bt e s ab e e sa b e e sabeesabeesabeesabeesabeesabeesneenane 7
2.5 DeVeloping WIth SIMIGAITBASIC.........oooi ettt e e et e ettt e e e st eeeettteeeeetsaeeesabaeeeassssesassaaaesstaseeansbasesassasesssseaaans 8
2.6 SMArtBASIC OPEIating IMOUES........uviieiiiieeeiiie e eetee e stee e ettt e e e teeeeste e e e et teeesaasseeesssaaeeesssaeesasssaeeassseeaastesesnnsneeesseeenans 8
2.7 BT TS e T Y o] o] 1 Tor= o LSS 9
2.8 N oYY o] Y 41 L= 1V, =T 4 Vo] o SRS 10
2.9 Using the Module’s FIash File SYSTEMcccceiiiiiiiee ettt s re e e e ee s e e e e e e ssrae e e esnteeeesnnaaeesnnseeas 10
3 GEEEING STAMTEA. ..ttt ettt e b e e e s bt e e s b et e bt e e s bt e e bt e e sb e e e be e e sabeenbeesbbeeanbeesateennteesareennneens 10
3.1 LT T L= 4 =T o PP PP R OPPPRPP 10
3.2 CONNECEING THINEGS U .uiieiiiiiiieiiiee e ctiee ettt eetee e ettt e e e ette e e et tbeeeesabeeeeeabeeeeassaaeesabeseeanssaeessaseeestaeeaanssssessseaasastaneannses 11
3.3 UWTEIMING 1.ttt sttt ettt e et e s bt e s bt e s be e bt e bt e ae e eaeeebe e beeabeeabeeabesbbesbeesbe e bt embeemeeemeenbeebeenbenanens 11
3.4 Your First SmartBASIC APPIICATION . ..uvieieiii ettt e et e e e e e e st e e e e e te e e seasaeeesataeeeesteeesansaeeesnnaeaaans 15
4 INtEractive MO COMMANGSoiiiiiiiiee ettt ettt sttt e bt ettt e ae e s bt e s bt e b e e st e sebesbsesbeesbe e bt enseentesmeesneenneenresarens 27
4.1) PP PP PR ORI URTRRPRRPTNS 28
5 SMArtBASIC COMMANGSoiuiiiiiiiiiiiiiiiiete ettt ettt e b e s b s s e st s a e e sa e e b e aa e s ab e s ae e s b e e b e e b e e b e senesanesreesnis 43
51 Y01 - D GO PP UUPTPUPPPRROOPIRt 43
5.2 UL Tt o T o -3 PP PP PP PP 43
5.3 SUBTOULINES ...ttt ettt h e bttt et ea b e e atesh e e e bt e sbe e be e bt eaeeeateehe e bt et e eabeeabeeabessbesbeesbeenbeenbesaeesaeenne 43
5.4] =101 0.0 1= 01 £ PP 44
5.5 (o= o 4 To] o PPN 44
5.6 Y g YU Tl DY T oV o o TS 44
5.7 VATADIES .. et h e R et e ae e R e e r e r et s n e s e nreenne e ne e et eneene 45
5.8 CONSEANTS. .. e 49
5.9 Compiler Related COmMMANAS aNd DIFECHIVEScciuiiiieciee et ee et eette et e e sare e e st e e e sbeeeesseeeesnseeesnsseeesnnnee 50
T8 O B Y g1 o0 L=l A ol o o =TI o [PPSR 51
Lo 70 A 0o o L1 4o -] TP PR PP PP 53
LT N =3 o Tl o =Y o I 1 Y= SR 60
LT T V=Y oYl =T oV |11V SRS 61
5.14 MisCellan@ous COMMANGS.cootiriiiiiriirtereere ettt ettt sttt et et sie e sbeesb e e bt e et et e sseeereesre e re e reeanesanesanenreenes 64
6 Core Language BUilt-in ROULINESeiiieiii ittt et e e sttt e e s ee e e st e e e s ateeeseaseeeesnsaeesensteeesanseeessnsanaeansseeesnnnes 69
https://connectivity.lairdtech.com/wireless- 3 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

6.1 RESUIT COUBS ...ttt e b e bt et st s he e e s e e R e e R e e n e seneseeesbeesreeneenneemeesmeeeneenreenreearens 69
6.2 INFOrMALION ROULINES ...ttt ettt et et e s r et ser e s eee s be e sre e neeneeme e emeeeneenreenreeanens 70
6.3 YT A R Y [Tod T o = 2o T 4 g =TSP 73
6.4 ArithmMEtic ROULINES (INTEEEI) .. uviiiiieiiieiieeeciee et e et e st e et e st e e e ste e st e e e bee s teeebeesateeanseesataesaseesataeanseesntaesnseesnsaessseennns 74
6.5 Arithmetic ROULINES (FIOGTING POINT)ciiviiiiiieiiieeieesteeetee sttt st e s te e st eete e st e e sbeesateesaaeesateesnseesaseesnsessnsenanseennne 76
6.6 SEFING ROUTINES ...ttt s e s bt e e s b bt e e s e b et e e s b et e e e sb e e e snbae e e sbaeeesanbeeesnnne 86
6.7 TABIE ROULINES ...ttt ettt et s b e s bt e s bt e bt e bt e ae e s ae e eheesbe e b e et e eabesabesaaesbeesbeenbeenseeneesneenne 108
6.8 MiSCEIIANEOUS ROULINES....c..eeiiiiieieeieeie ettt et ettt st r e s b e b e e r e e ar e senesbnesbeesreenneennesnnesneene 112
6.9 Random Number Generation ROULINES..........ooeiirieiiieiieieeere ettt s s s re e s e e s e 112
6.10 TIMEIr ROULINES ..oeiiiiiiiiiicii bbb e b s s b s b s e s b e s ba e s b e s baesbe s e sanesane s 115
6.11 Circular Buffer Management FUNCHIONScoicuiiiiicieee ettt e e e st e e st e e e s ate e e saaee e esnaeeeesnnneeesnanens 122
6.12 Serial ComMMUNICAtIONS ROULINES.eiiiiiiiieiiei ettt et et s bt e bt e s bt e s sbee s b e e beesbeeeaneesaneas 129
6.13 UART (Universal Asynchronous RECEIVE TranSMIL)cccueccreriiieiiieeeieeeitesesieesteeesieeeiesestaeeseeessaeessesesssessessssneensens 130
6.14 12C (TWO WIir€ INtEITACE OF TWI) ceeiieeiiii ettt ettt ettt e e ettt e e ettt e e e sttt e e e e tb e e e eeabaaeesabaeaeanssasesssaeeesntasesanssseesssnens 147
B.15 SPIINEEITACE .ottt ettt et s he e s bbbt ea e sh b e s bt e bt e bt e bt e ae e ea e e e bt e b e ek e e abeeabeshbesheenbeebeenteeneene 159
(o3 S @ ¥/ oY o ={- T o] o (ol =¥] o Tot o) o -3 PSR 165
B.17 FIlE /O FUNCHIONS «eeveeeeeeeee ettt e et e et e e e ettt e s et e e saseeeseaseeeesenaeeesaeseeesaasseeesansaeesaseeesaasseeesaneaeesaaneeessssseeesananens 172
6.18 Non-Volatile Memory Management ROULINEScccuuiiiiiiieieiiee e cciiee et eeeesetee e eeeee e e staeeesaee e e ssaeeeesaseeeseneeeesnseens 177
6.19 INPUL/OULPUL INTEITACE ROUTINESooviiiiieiiitieiieietee sttt ettt st sb e st ea et et e st e besbesbesseentensensentesaesbesbesneennens 182
(20O U Y= g T o TV] =TT 184
7 EVENTS QN0 IMIESSAZES . uvveeveiiiieeiee ettt ettt estteesteseste e e tee e baeebee e baeesbeeabeeesbeeeaseeeabeeeaseeeaseeeabeeasbeeeaseeeabeeenseesateesseesntessnsennnne 186
8 [V oTe [U1 TSN @loT o 1T T (o] o F PSPPI 187
9 JYol oY I=To F= LT o 41T) £ RS 188
9.1 [Tol=T g R =T oy o PO TP PR OPPTO PR 188
9.2 DT ol =TT 44 1= PP PP P OSSPSR PRRPROPTN 188
https://connectivity.lairdtech.com/wireless- 4 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

} SMARTBASIC DOCUMENTATION

This Core Functionality user guide provides detailed information on the core aspects of Laird’s smartBASIC language which
is embedded inside Laird modules. This guide, designed to make handling BLE-enabled end products a straightforward
process, includes the following:

= An explanation of the language’s core functionality
= |nstructions on how to start using the tools
= Adetailed description of all language components and example of their use
A module-specific user guide is also available to provide detailed information on applicable smartBASIC extensions relating

to Bluetooth, BLE, and so on. Both the Core Functionality and the module-specific smartBASIC extensions user guides are
included in the firmware .zip file.

From version 3.0 onwards, smartBASIC is enhanced with FLOAT variable types. This user guide describes
its use when applicable.

Please note that the FLOAT capability is an optional feature. Although many Laird platforms may
expose version 3.0 or newer capability, they may not have FLOAT; the need for extra code memory may
prevent it from being added to the build.

Where FLOAT is mentioned in this guide, an explicit comment is not made to state that it is an optional
feature.

2 INTRODUCTION TO SMARTBASIC

For those with programming experience, smartBASIC is easy to use because it is derived from the BASIC language. BASIC,
which stands for Beginners All-Purpose Symbolic Instruction Code, was developed in the early 1960s as a tool for teaching
computer programming to undergraduates at Dartmouth College in the United States. From the early 70s to the mid-80s,
BASIC, in various forms, was one of the most popular programming languages and the only user programming language in
the first IBM PC to be sold in the early 80s. Prior to that, the first Apple computers were also deployed with BASIC.

Both BASIC and smartBASIC are interpreted languages — but in the interest of run-time speed on an embedded platform
which has limited resources, smartBASIC's program text is parsed and saved as bytecodes which are subsequently
interpreted by the run-time engine to execute the application. On some module platforms which have limited code flash
space, the parsing from source code to bytecode is done on a Windows PC using a free cross-compiler supplied by Laird on
can even be done online when using the Laird utility UwTerminalX. Other platforms with more firmware code space also
offer on-board compiling capabilities in addition to the external cross-compilation utility.

The early BASIC implementations were based on source code statements which, because they were line numbered,
resulted in non-structured applications that liberally used GOTO statements.

At the outset, smartBASIC was developed by Laird to offer structured programming constructs. It is not line number based
and it offers the usual modern constructs like subroutines, functions, while, if and for loops.

smartBASIC offers further enhancement which acknowledges the fact that user applications are always in unattended use
cases. It forces the development of applications that have an event driven structure as opposed to the classical sequential
processing for which many BASIC applications were written. This means that a typical smartBASIC application source code
consists of the following:

= Variable declarations and initializations
= Subroutine definitions

= Event handler routines

= Startup code

https://connectivity.lairdtech.com/wireless- 5 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

The source code ends with a final statement called WAITEVENT, which never returns. Once the run-time engine reaches the
WAITEVENT statement, it waits for events to happen and, when they do, the appropriate handlers written by the user are
called to service them.

2.1 Why Do We Need smartBASIC?

Programming languages are mostly designed for arithmetic operations, data processing, string manipulation, and flow
control. Where a program needs to interact with the outside world, like in a BLE device, it becomes more complex due to
the diversity of different input and output options. When wireless connections are involved, the complexity increases. To
compound the problem, almost all wireless standards are different, requiring a deep knowledge of the specification and
silicon implementations to make them work.

We believe that if wireless connectivity is going to be widely accepted, there must be an easier way to manage it.
smartBASIC was developed and designed to extend a simple BASIC-like programming language with all the tokens that
control a wireless connection using modern language programming constructs.

smartBASIC differs from an object-oriented language in that the order of execution is generally the same as the order of the
text commands. This makes it simpler to construct and understand, particularly if you’re not using it every day.

Our other aim in developing smartBASIC from the ground up is to make wireless design of products both simple and similar
in look and feel for all platforms. To do this we are embedding smartBASIC within our wireless modules along with all the
embedded drivers and protocol stacks that are needed to connect and transfer data. A run-time engine interprets the
customer applications (reduced to bytecode) that are stored there, allowing a complete product design to be implemented
without the need for any additional external processing capability.

2.2 Why Write Applications?

smartBASIC has been designed to make wireless development quick and simple, vastly cutting down time to market. There
are three good reasons for writing applications in smartBASIC:

= Since the module can auto launch the application each time it powers up, you can implement a complete design
within the module. At one end, the radio connects and communicates while, at the other end, external interactions
are available through the physical interfaces such as GPI10Os, ADCs, 12C, SPI, and UART.

= |fyou want to add a range of different wireless options to an existing product, you can load applications into a range
of modules with different wireless functionality. This presents a consistent APl interface defined to your host system
and allows you to select the wireless standard at the final stage of production.

= |fyou already have a product with a wired communications link, such as a modem, you can write a smartBASIC
application for one of our wireless modules that copies the interface for your wired module. This provides a fast way
for you to upgrade your product range with a minimum number of changes to any existing end user firmware.

In many cases, the example applications on our website and the specific user manual for the module can be modified to
speed up the development process.

2.3 What Does a Wireless Module Contain?

Our smartBASIC-based modules are designed to provide a complete wireless processing solution. Each module contains the
following:

= Ahighly integrated radio with an integrated antenna (external antenna options are also available)
= Radio Physical and Link Layer

= Higher level stack

= Multiple GPIO and ADC

= Wired communication interfaces like UART, 12C, and SPI

= A smartBASIC run-time engine

https://connectivity.lairdtech.com/wireless- 6 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

http://www.lairdtech.com/product-categories/embedded-wireless/bluetooth-modules/bluetooth-v40-v42

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

= Program accessible flash memory which contains a robust flash file system exposing a conventional file system and a
database for storing user configuration data

= Voltage regulators and brown-out detectors
For simple end devices, these modules can completely replace the host in an embedded processing system.

The following block diagram (Figure 1) illustrates the structure of a BLE smartBASIC module from a hardware perspective on
the left and a firmware/software perspective on the right.

| 44 connection pads

User smartBASIC Application

| UART | | GPIO | | ADC | | 12C | | SPI
Example App
256K Flash
ARM Cortex MO
(smartBASIC)
16K RAM
I
BLE Radio
r | Bluetooth Low Energy Stack
I I
I I
| Internal |
i | Antenna Ok @ j
] :

Figure 1: Example BLE smartBASIC module block diagram

2.4 smartBASIC Essentials

smartBASIC is based upon the BASIC language. It has been designed to be highly efficient in terms of memory use, making it
ideal for low cost embedded systems with limited RAM and code memory.

The core language, which is common throughout all smartBASIC implementations, provides the standard functionality of
any program, such as:

= Variables (integer, float, and string) = Looping = |/O functions

= Arithmetic functions = Functions and subroutines = Memory management
= Binary operators = String processing functions = Event handling

= Conditionals = Arrays (single dimension only)

The language on the various platforms differs by having a sophisticated set of target-specific extensions, such as BLE.

These extensions have been implemented as additional program functions that control the wireless connectivity of the
module including, but not limited to, the following and are described in a module specific extension user guide:

= Advertising = Power management
= Connecting = Wireless status
= Security — encryption and authentication

https://connectivity.lairdtech.com/wireless- 7 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

2.5 Developing with smartBASIC

smartBASIC is one of the simplest embedded environments on which to develop because much of the functionality comes
prepackaged. The compiler, which can be internal or external on a Windows PC (or online), compiles source text on a line-
by-line basis into a stream of bytes (or bytecode) that can be stored to a custom-designed flash file system. Following that,
the run-time engine interprets the application bytecode in-situ from flash.

To further simplify development, Laird provides its own custom developed application called UWTerminalX which is a full
blown customized terminal emulator for Windows, available upon request at no cost. Refer to the UWTerminalX section for
information on writing smartBASIC applications using UWTerminalX.

UWTerminalX also can upload your smartBASIC source to an online server where it can be compiled.

2.6 smartBASIC Operating Modes

Any platform running smartBASIC has up to three modes of operation:

= Interactive Mode — In this mode, commands are sent via a streaming interface which is usually a UART, and are
executed immediately. This similar to the behavior of a modem using AT commands. Interactive mode can be used by
a host processor to directly configure the module. It is also used to manage the download and storage of smartBASIC
applications in the flash file system subsequently used in run-time mode.

= Application Load Mode — This mode is only available if the platform includes the compiler in the firmware image.
Some platforms have limited firmware space and so compilation is only possible outside the platform using a
smartBASIC cross-compiler which is provided for free.

If this feature is available, then the platform switches into Load mode when the compile (AT+CMP) command is sent
by the host.

In this mode the relevant application is checked for syntax correctness on a line-by-line basis, tokenised to minimize
storage requirements, and then stored in a non-volatile file system as the compiled application. This application can
then be run at any time and can even be designated as the application to be automatically launched upon power up.

= Run-time Mode — In Run-time mode, pre-compiled smartBASIC applications are read from program memory and
executed in-situ from flash. The ability to run the application from flash ensures that as much RAM memory as
possible is available to the user application for use as data variables.

On startup, an external GPIO input pin is checked. If the state of the input pin is asserted (high or low, depending on the
platform) and a compiled application called $autorun$ exists in the file system, the device enters directly into Run-time
mode and the application is automatically launched. If that input pin is not asserted, then regardless of the existence of the
autorun file, it enters Interactive mode.

If the auto-run application completes or encounters a STOP or END statement, then the module returns to Interactive
mode.

It is therefore possible to write autorun applications that continue to run and control the module’s behavior until power-
down, which provides a complete embedded application.

The modes of the module and transitions are illustrated in Figure 2.

https://connectivity.lairdtech.com/wireless- 8 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Power Up/Start

autorun input,
deasserted
OR
$autorung app
missing

autorun input

command
' AT+RUN "file"*

Run mode

STOP or
END statement or
runtime error and no ONERROR handler

Figure 2: Module modes and transitions

2.7 Types of Applications

There are two types of applications used within a smartBASIC module. In terms of composition, they are the same but they
run at different times.

= Autorun — This is a normal application named Sautorun$ (case insensitive). When a smartBASIC module powers up, it
looks for the $autorun$ application. If it finds it and if the nAutoRUN pin of the module is asserted then it executes it.
Autorun applications may be used to initialize the module to a customer’s desired state, make a wireless connection,
or provide a complete application program. At the completion of the autorun application, which is when the last
statement returns or a STOP or END statement is encountered, a smartBASIC module reverts to Interactive mode.

In unattended use cases, the autorun application is expected to never terminate. It is typical for the last statement in
an application to be the WAITEVENT statement.

Be aware that an autorun application does not need to complete and exit to Interactive mode. The application can be
a complete program that runs within the smartBASIC module, removing the requirement for an external processor.

Applications can access the GPIOs and ADCs and use ports (UART, 12C, and SPI, for example) to interface with
peripherals such as displays and sensors.

Note: By default, when the autorun application starts up and if the STDOUT is the UART, then it is in a closed
state to minimise power consumption. If a PRINT statement is encountered which results in output,
then the UART is automatically opened using default comms parameters.

= Other — Applications can be loaded into the BASIC module and run under the control of an external host processor
using the AT+RUN command or the app name alone. The flash memory supports the storage of multiple applications.

Note: The storage space is platform-dependent. Check the individual platform data sheet.
https://connectivity.lairdtech.com/wireless- 9 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

2.8 Non-Volatile Memory

All smartBASIC modules contain user-accessible flash memory. The quantity of memory varies between modules; check the
applicable datasheet.

The flash memory is available for three purposes:

= File storage — Files which are not applications can also be stored in flash memory (for example X.509 certificates). The
most common non-application files are data files for application which can be read by an application using file i/o
functions exposed in the language.

= Application storage — Storage of user applications and the AT+RUN command (or the filename on its own) is used to
select which application runs.

= Non-volatile records — Individual blocks of data can be stored in non-volatile memory in a dictionary where each
record consists of a 16-bit user defined ID and data consisting of variable length. This is useful for cases where
program specific data needs to be preserved across power cycles. For example, passwords.

2.9 Using the Module’s Flash File System

All smartBASIC modules hold data and application files in a simple flash file system which was developed by Laird and has
some similarity to a DOS file system. Unlike DOS, it consists of a single directory in which all the files are stored.

Note: When files are deleted from the flash file system, the flash memory used by that file is not released. Therefore,
repeated downloads and deletions eventually fill the file system, requiring it to be completely emptied using the
AT&F 1 command.

The command AT | 6 returns statistics related to the flash file system when in interactive mode. From within a smartBASIC
application, the function SYSINFO(x), where x is 601 to 606 inclusive, returns similar information.

Note: Non-volatile records are stored in a special flash segment that is capable of coping with cases where there is no
free unwritten flash but there are many deleted records.

3 GETTING STARTED

This section is a quick start guide for using smartBASIC to program an application. It shows the key elements of the BASIC
language as implemented in the module and guides your use of UWTerminalX (a free Laird Terminal Emulation utility
available) and Laird’s Development Kit to test and debug your application.

The examples in this section are based upon Laird’s BL600, a BLE module. However, the principles apply to any smartBASIC-
enabled module.

3.1 Requirements

To replicate this example, you need the following items:

= A BL600 series development kit

= UWTerminalX application (contact Laird for the latest version) and can run on Windows, Linux, and Mac.

= Across-compiler application with a name typically formatted as XComp_dddddddd_aaaa_bbbb.exe, where dddddddd
is the first non-space eight characters from the response to the AT | 0 command and aaaa/bbbb is the hexadecimal
output to the command AT | 13.
This is not mandatory as UwTerminalX will search online for the cross-compiler if it is not available locally.

https://connectivity.lairdtech.com/wireless- 10 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Note: aaaa/bbbb is a hash signature of the module so that the correct cross-compiler is used to generate the
bytecode for download. When an application is launched in the module, the hash value is compared
against the signature in the run-time engine and, if there is a mismatch, the application is aborted.

3.2 Connecting Things Up

The simplest way to power the development board and module is to connect a USB cable to the PC. The development
board regulates the USB power rail and feeds it to the module.

Note: The current requirement is typically a few milliamps with peak currents not exceeding 20 milliamps. We
recommend connecting to a powered USB hub or a primary USB port.

3.3 UWTerminal

UWTerminal is a terminal emulation application with additional GUI extensions to allow easy interactions with a
smartBASIC-enabled module. It is similar to other well-known terminal applications such as HyperTerminal. As well as a
serial interface, it can also open a TCP/IP connection either as a client or as a server. This aspect of UWTerminal is more
advanced and is covered in the UWTerminal User’s Guide. The focus of this chapter is its serial mode.

In addition to its function as a terminal emulator it also has smartBASIC embedded so you can locally write and run
smartBASIC applications. This allows you to write smartBASIC applications which use the terminal emulation extensions
that enable you to automate the functionality of the terminal emulator.

It may be possible in the future to add BLE extensions so that when UWTerminal is running on a Windows 8 PC with
Bluetooth 4.0 hardware, an application that runs on a BLE module also runs in the UwTerminal environment.

Before starting UWTerminal, note the serial port number to which the development kit is connected.

Note: The USB to serial chipset driver on the development kit generates a virtual COM port. Check the port by
selecting My Computer > Properties > Hardware > Device Manager > Ports (COM & LPT).

To use UWTerminal, follow the steps below. Note that the screen shots may differ slightly as it is a continually evolving
Windows application:

1. Switch on the development board, if applicable.
2. Start the UWTerminal application on your PC to access the opening screen (Figure 3).

Teminal | BASIC| Config 4bout |

Bcep | Decine |

This application is provided by Laird Technolagies withaut warranty, You are welcome to check our website for the latest -
wersion.

This message is displayed EITHER because “accept” is not specified in the command line OR at least one command line:
option has been specified with an invalid parameter,

m

'Y'ou can launch this application and bypass this window by creating a shortcut link and passing ACCEPT a5 a command line
option. Other command line options are:-

ACCEPT
Bypass About screen on startup

M=n
[1..255] specifies a comport number
BAUD=n
[1200..521600] Could be limited to 115200 depending on PC hardware

STOP=n
0.2

Figure 3: UWTerminal opening screen

3. Click Accept to open the configuration screen.

https://connectivity.lairdtech.com/wireless- 11 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Teminal | BASIC Carfig | About |

0K Cancel | Quit

EDMI vI [~ Poll for port v Use AT+FwRH Command
1 Comport
BaudlateIBBl][l vl 48 Maw AT+Fw/RH Command Length

" TepSocket PﬂlileNone -
Stop Bit:|1 vI
[Line Terminatar—
& R Data Bilxls vI
cLF HandshakingIDTSIRTS vI

¥ Trace/Log BASIC comms traffic in Terminal Window

" CRLF
" LFCR

Log Filename | [~ Append

Figure 4: UWTerminal Configuration screen

4. Enter the COM port that you have used to connect the development board. The other default parameters should be:

Baudrate 9600
Parity None
Stop Bits 1

Data Bits 8
Handshaking CTS/RTS

Note: Comport (not TCP Socket) should be selected on the left.

Other modules may use different settings, please check the corresponding extension manuals for this
information.

5. Select Poll for port to enable a feature that attempts to re-open the comport if the development kit is unplugged
from the PC causing the virtual comport to disappear.

6. InLine Terminator, select the characters that are sent when you type ENTER.
7. Once these settings are correct, click OK to bring up the main terminal screen.

3.3.1 Navigating UWTerminal

et
m I_J:I_[_-II" Nal v

Teminal | BASIC | Config | About |
CTS® DSRE DCOE RI@ RT:

Figure 5: UWTerminal tabs and status lights

The following tabs are located at the top of the UWTerminal:

= Terminal — Main terminal window. Used to communicate with the serial module.

= BASIC — smartBASIC window. Can be used to run BASIC applications locally without a device connected to the serial
port.

Note: You can use any text editor, such as notepad, for writing your smartBASIC applications. However, if you use
an advanced text editor or word processor you need to take care that non-standard formatting characters
are not incorporated into your smartBASIC application.

https://connectivity.lairdtech.com/wireless- 12 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

= Config — Configuration window. Used to set up various parameters within UWTerminal.

= About - Information window that displays when you start UWTerminal. It contains command line arguments and
information that can facilitate the creation of a shortcut to the application and launch the emulator directly into the
terminal screen.

The four LED-type indicators below the tabs display the status of the RS-232 control lines that are inputs to the PC. The
colors are red, green, or white. White signifies that the serial port is not open.

Note: According to RS-232 convention, these are inverted from the logic levels at the GPIO pin outputs on the module.
A Ov on the appropriate pin at the module signifies an asserted state

= CTS —Clear to Send. Green indicates that the module is ready to receive data.
= DSR - Data Set Ready. Typically connected to the DTR output of a peripheral.
= DCD - Data Carrier Detect.
= RI-Ring Indicate.
If the module is operating correctly and there is no radio activity, then CTS should be asserted (green), while DSR, DCD, and

Rl are deasserted (red). Again, note that if all four are white (Figure 6), it means that the serial port of the PC has not been
opened and the button labelled OpenPort can be used to open the port.

Teminal | BASIC | Config | About |
CT5C} DSRCY DCDCY R RTSV DTRV BREAK[LocalEcho v LineModel/ [:|ea[||]penpull|

Figure 6: White lights

Note: At the time of this manual being written, the DSR line on the BL600 DevKit is connected to the SIO25 signal on
the module which has to be configured as an output in a smartBASIC application so that it drives the PC’s DSR
line. The DCD line (input on a PC) is connected to SI029 and should be configured as an output in an application
and finally the Rl line (again an input on a PC) is connected to SIO30. Please request a schematic of the BL600
development kit to ensure that these SIO lines on the modules are correct.

Teminal | BASIC | Config | About |
CTS# DSRE DCO@ R RTSW DTR[V BREAK[LocalEcho [V LineMode[” Elearl EIusertl

Figure 7: Control options

Next to the indicators are several control options (Figure 7) which can be used to set the signals that appear on inputs to
the module.

= RTS and DTR — The two additional control lines for the RS-232 interface.

Note: If CTS/RTS handshaking is enabled, the RTS checkbox has no effect on the actual physical RTS output pin as
it is automatically controlled via the underlying Windows driver. To gain manual control of the RTS output,
disable Handshaking in the Configuration window.

= BREAK - Used to assert a break condition over the Rx line at the module. It must be deasserted after use. A Tx pin is
normally at logic high (> 3v for R$232 voltage levels) when idle; a BREAK condition is where the Tx output pin is held
low for more than the time it takes to transmit 10 bits.

https://connectivity.lairdtech.com/wireless- 13 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

If the BREAK checkbox is ticked, the Tx output is at non-idle state and no communication is possible with the UART
device connected to the serial port.

= LocalEcho — Enables local echoing of any characters typed at the terminal. In default operation, this option box should
be selected because modules do not reflect commands entered in the terminal emulator.

= LineMode — Delays transmission of characters entered into UWTerminal until you press Enter. Enabling LineMode
means that Backspace can be used to correct mistakes. We recommend that you select this option.

= Clear — Removes all characters from the terminal screen.

= ClosePort — Closes the serial port. This is useful when a USB to serial adaptor is being used to drive the development
board which has been briefly disconnected from the PC.

= OpenPort — Re-opens the serial port after it has been manually closed.
3.3.2 Useful Shortcuts

There are several shortcuts that can speed up the use of UWTerminal.

Each time UWTerminal starts, it asks you to acknowledge the Accept screen and to enter the COM port details. If you are
not going to change these, you can skip these screens by entering the applicable command line parameters in a shortcut
link.

Follow these steps to create a shortcut to UWTerminal on your desktop:
1. Locate and right-click the UwTerminal.exe file, and then drag and drop it onto your desktop. In the dialog box, select
Create Shortcut.
Right-click the newly created shortcut.
3. Select Properties.
Edit the Target line to add the following commands (Figure 8):

accept com=n baud=bbb linemode
(where n is the COM port that is connected to the dev kit and bbb is the baud rate)

| Secty | Detals Previous Versions
. Genend | Shoact Compatbity

| Uvetesrrrs COMS 5600

Tagettype: Application
Target location: Target
Target: wget\Uw Terminal exe accept com=5 baud=5600

Figure 8: Shortcut properties

Starting UWTerminal from this shortcut launches it directly into the terminal screen. At any time, the status bar on the
bottom left (Figure 9) shows the comms parameters being used at that time. The two counts on the bottom right (Tx and
Rx) display the number of characters transmitted and received.

The information within { } denotes the characters sent when you press ENTER on the keyboard.

1
[[COMS:9600,M.81){cr} j T[S [Re 20

Figure 9: Terminal screen status bar

3.3.3 Using UWTerminal
The first thing to do is to check that the module is communicating with UWTerminal. To do this, follow these steps:
https://connectivity.lairdtech.com/wireless- 14 Americas: +1-800-492-2320

modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

1. Check that the CTS light is green (DSR, DCD, and Rl should be red).
2. Type at.

3. Press Enter. You should get a 00 response (Figure 10).

Terminal | BASIC | Config | Abaut |
CTS4 DSR4 DCcodE R RTSW DTRV BRI

Figure 10: Interactive command access

UWTerminal supports a range of interactive commands to interact directly with the module. The following ones are

typical

AT — Returns 00 if the module is working correctly.

AT | 3 —Shows the revision of module firmware. Check to see that it is the latest version.
AT | 13 — Shows the hash value of the smartBASIC build.

AT | 4 — Shows the MAC address of the module.

AT+DIR — Lists all the applications loaded on the module.

AT+DEL “filename” — Deletes an application from the module.

AT+RUN “filename” — Runs an application that is already loaded on the module. Please be aware that if a
filename does not contain any spaces, it is possible to launch an application by just entering the filename as
the command.

The next chapter lists all the Interactive commands.

First, check to see what is loaded on the module by typing AT+DIR and Enter:

at+dir
06 Sfac
00

tory$

If the module has not been used before, you should not see any lines starting with the two-digit 06 sequence.

3.4 Your First smartBASIC Application
3.4.1 Create ‘Hello World’ App

Let’s start where every other programming manual starts... with a simple program to display “Hello World” on the screen.
We use Notepad to write the smartBASIC application.

To write this smartBASIC application, follow these steps:

1. Open Notepad.
2. Enter the following text:

print "\nHello World\n"

3. Save the file with single line test1.sb.

Note the following:

https://connectivity.lairdtech.com/wireless- 15 Americas: +1-800-492-2320

modules/bluetooth-

modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

smartBASIC source code files can have any extension. UWTerminalX, which is used to download an application to the
module, strips all letters including and after the first *.” when the file is downloaded to the module.

For example, a file called “this.is.my.first.file.sb” is downloaded as “this”, as is “this.is.my.second.file.sb”; but
“that.is.my.other.file.sb” is downloaded as “that”. This has special significance when you want to manage the special
smartBASIC file called “Sautorun$” which is run automatically on power up.

It means that you can have files called “SautorunS.heart.rate.sb” and “Sautorun$.blood.pressure.sb” in a single folder and
yet ensure that when downloaded they get saved as “SautorunS”

We recommend always using the extension .sb to make it easier to distinguish between smartBASIC files and other files.
You can also associate this extension with your favorite editor and enable appropriate syntax highlighting. You may also
encounter files with extension .sblib which are library source files provided by Laird to make developing code easier. They
are included in your application using the #include statement which is described later in this manual.

As you start to develop more complex applications, you may want to use a more fully-featured editor such as TextPad (trial
version downloadable from www.textpad.com) or Notepad++ (free and downloadable from https://notepad-plus-
plus.org/download).

Tip: Laird recommends using TextPad and Notepad++3: because appropriate syntax highlighting files are available for
each build of the firmware which means all tokens recognized by smartBASIC are highlighted in various colors.

If you use Notepad++, do the following:

1. Copy the file smartBASIC(notepad++).xml to the Notepad++ install folder.
2. Launch Notepad++.

3. From the menu, select Language > Define your Language.

4

In the new dialog box, click Import... and select the smartBASIC(notepad++).xml file from the folder you saved it
to. A confirmation dialog box displays stating that the import was successful.

5. Close the User-defined Language dialog box and then the Notepad++ application.
6. Reopen Notepad++ and select Language > smartBASIC from the menu.

If you use TextPad, do the following:

1. Copy the smartBASIC(Textpad).syn file from the firmware upgrade zip file to the Textpad install folder
(specifically, the system subfolder).

As a one-time procedure, start TextPad.

Ensure no documents are currently open.

From the menu, select Configure > Preferences.

Select Document Classes.

In the User defined classes list box, add smartBASIC.

Click the plus sign (+) to expand Document Classes and select smartBASIC.

© N wmhwnN

In the new Files in class smartBASIC list box, add the following two lines:

*.sb
* sblib

Click + to expand smartBASIC and select Syntax.
9. Select Enable syntax highlighting to enable it.
10. In the Syntax definition file dropdown menu, enter or select the smartBASIC(textpad).syn file.
11. Click OK.

You should now have TextPad configured so that any file with file extension .sb or .sblib is displayed with color
syntax highlighting. To change the colors of the syntax highlighting, do the following:

1. From the Configure/Preferences dialog box, select the Document Classes plus sign (+) (next to smartBASIC)
and select Colors.

https://connectivity.lairdtech.com/wireless- 16 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality La rd » CONNECTIVITY

User Guide

2. Change the color of any of the items as necessary.
For example, smartBASIC FUNCTIONSs are ‘Keywords 2’, smartBASIC SUBs are ‘Keywords 3’ and smartBASIC
Event and Message IDs (as used in the ONEVENT statement) are ‘Keywords 4’

Figure 11 displays a sample of what a smartBASIC code fragment looks like in TextPad.

oo

'// Handler definitions
U AR e e e e e e R e R e e

s

'// Uart Inactivity timer handler

s

function handlerUartTimer() as integer
dim rc

'//Close the uart, and set up TX/BX/RTS lines as gpio and for a hi-lo tramsition
'//on the RX line to be detected

if UartCloseEx(1}) == 0 then
rc=GpioSetFunc(21,2,1) '//TX - set high on default
rc=GpioSetFunc(23,2,0) "//RT5 - =et low by default
rc=GpioSetFunc(22,1,2) "//RX - Pull high input & irg on hiZ2lo transition
rc=GpiolAssignEvent (UART_GPIC ASSIGN CHANNEL,22,1)
if rc != 0 then
print "\nGpiokssignEvent () Failed"
endif
endif

endfunc 1

s
'// Delay before uart is opened
v
function handlerOpenDelay() as integer

dim rc

'// free up the level transition detection

re=GpioUnAssignEvent (UART_GPIC_ASSIGN CHANNEL)

'//Open the uart

rc=UartCpen(9600,0,0, "CHE1H")

'//send an ack character

print "!"

20 endfunc 1

Figure 11: Example of a smartBASIC code fragment in TextPad

3.4.2 Download ‘Hello World’ App

You must now load the compiled output of this file into the smartBASIC module’s File System so that you can run it. To do
this, follow these steps:

1. To manage file downloads, right click on any part of the black UWTerminalX screen to display the drop-down menu
(Figure 12).
CTS4 DSRA DCO@ RI@ RTSWV DTRV BREAK[LocalEcho ¥ LineMode[™ |3|ea,||3|.,sep.,,,|

Compile + Load
XCompile + Load + Run
XCompile + Load
KCompile

Download

Font

Run...

Automation

Batch

File Player

Figure 12: Right-click UWTerminalX screen

2. Click XCompile+Load and navigate to the directory where you’ve stored your test1.sb file.

Note: Do not select Compile+Load.

3. Click Open. In UWTerminalX, you should see the following display:

https://connectivity.lairdtech.com/wireless- 17 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird —» CONNECTIVITY

User Guide

AT I O

10 0 B1600Med
AT I 13

10 13 9E56 5F81

<<Cross Compiling [testl.sb]>>

AT+DEL "testl" +

AT+FOW "testl"

AT+FWRH "FES00002250000000000FFFFFFFF569E815FFC10"
AT+FWRH "FB70090054455354312E555743000110CE211000"
AT+FWRH "FB0O009000D000A48656C6C6F20576F726C640A00"
AT+FWRH "CC211400A52000000110FD10F510"

AT+FCL

+++ DONE +++

Behind the scenes, the shortcut uses Interactive Commands to load the file onto the module. The first two AT |
commands are used to identify the module so that the correct cross compiler can be invoked resulting in the text
<<Cross Compiling [test1l.sb]>>.

In this example, since the compilation is successful, the generated binary file must be downloaded and the AT+DEL
“filename” + deletes any previous file with the same name that might already be on the module. The new file is
downloaded using the AT+FOW, AT+FWRH, and AT+FCL commands. The strings following AT+FWRH consist of the
binary data generated by the cross compiler.

There may be a possible failure in this process if the cross compiler cannot be located. In this case, the following
window displays:

AT I O

10 0 B1600Med

AT I 13

10 13 9E56 5F81

??? Cross Compiler [XComp B1600Med 9E56 5F81.exe] not found ???

To fix this issue, locate the cross-compiler application mentioned in between the [] brackets and save it to either the
folder containing UWTerminalX.exe or the folder that contains the smartBASIC application testl.sb

A compilation error may be another cause of failure. For example, if the print statement contains an error in the
form of a missing end of string delimiter, then the following should display in a separate window:

{¢? Laird Technologies, 28068

Bl6B8Med
B8.8.17.8

2.8
2ES6 5F81

2030 3o 3o 3000030 oo -IoE o000 o 0o 300 -0 Jof oo o0 JeE o oo

Compiling file <D:“Work-BLE\DEU_MAIHN-UserManualstestl.sh> ..
303030 3of 3000030 oo -JoE o000 o oo 300 30 Jof oo om0 -Jof oo

print 'nHello Worldwn

[ERROR. Line 11 Code:158A8

Hit any key to exit

Figure 13: Compilation error window

Now that the application has been downloaded into the module, run it by issuing testl or AT+RUN “test1”.

https://connectivity.lairdtech.com/wireless- 18 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Note: smartBASIC commands, variables, and filenames are not case sensitive; smartBASIC treats Test1, test1
and TEST1 as the same file.

The screen should display the following results (when both forms of the command are entered):

at+run "testl"
Hello World
00

Testl
Hello World
00

You can check the file system on the module by typing AT+DIR and pressing Enter, you should see the following:

06 testl
00

You have just written and run your first smartBASIC program.

To make it a little more complex, try printing Hello World ten times. For this we can use the conditional functions within
smartBASIC. We also introduce the concept of variables and print formatting. Later chapters go into much more detail, but
this gives a flavor of the way they work.

Before we do that, it's worth laying out the rules of the application source syntax.
3.4.3 smartBASIC Statement Format

The format of any line of smartBASIC is defined in the following manner:
{ COMMENT | COMMAND | STATEMENT | DIRECTIVE } < COMMENT > { TERMINATOR }

Anything in { } is mandatory and anything in < > is optional. Within each set of { } or < > brackets, the character | is used to
denote a choice of values.

The various elements of each line are:

= COMMENT - A COMMENT token is a ‘ or // followed by any sequence of characters. Any text after the token is
ignored by the parser. A comment can occupy its own line or be placed at the end of a STATEMENT or COMMAND.
COMMAND - An Interactive command; one of the commands that can be executed from Interactive mode.

= STATEMENT — A valid BASIC statement(s) separated by the : character if there are more than one statement.

Note: When compiling an application, a line can be made of several statements which are separated by the :
character.

= DIRECTIVE - A line starting with the # character. It is used as an instruction to the parser to modify its behavior. For
example, #DEFINE and #INCLUDE.

= TERMINATOR - The \r character which corresponds to the Enter key on the keyboard.
The smartBASIC implementation consists of a command parser and a single line/single pass compiler. It takes each line of
text (a series of tokens) and does one of the following (depending on its content and operating mode):

= Acts on them immediately (such as with AT commands).

= [fthe build includes the compiler, generates a compiled output which is stored and processed later by the run-time
engine. This capability is not present in the BL600 due to flash memory constraint.

https://connectivity.lairdtech.com/wireless- 19 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

smartBASIC has been designed to work on embedded systems where there is often a very limited amount of RAM. To make
it efficient, you must declare every variable that you intend to use by using the DIM statement. The compiler can then
allocate the appropriate amount of memory space.

wn
|

In the following example program, we are using the variable “i” to count how many times we print “Hello World”.
smartBASIC allows a couple of different variable types, numbers (32-bit signed integers) and strings.

Our program (stored in a file called HelloWorld.sb’) looks like the following:

/[Example :: HelloWorld.sh

DIM i as integer /ldeclare our variable

fori=1to 10 [/[Perform the print ten times

print “"Hello World \n" //The \n forces a new line each time

next

Some notes regarding the previous program:

= Any line that starts with an apostrophe (‘) is a comment and is ignored by the compiler from the token onwards. In
other words, the opening line is ignored. You can also add a comment to a program line by adding an apostrophe
proceeded by a space to start the comment.
If you have C++ language experience, you can also use the // token to indicate that the rest of the line is a comment.
= The second item of interest is the line feed character ‘\n’ which we’ve added after Hello World in the print statement.
This tells the print command to start a new line. If left out, the ten Hello World’s would have been concatenated
together on the screen. You can try removing it to see what would happen.

Compile and download the file HelloWorld.sb to the module (using XCompile+Load in UwTerminalX) and then run the
application in the usual way:

AT+RUN “helloworld”

The following output displays:

Hello World
Hello World
Hello World
Hello World
Hello World
Hello World
Hello World
Hello World
Hello World
Hello World

If you now change the print statement in the application to

print "Hello World ";i;"\n" //The \n forces a new line each time

... the following output displays:

https://connectivity.lairdtech.com/wireless- 20 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Hello World 1
Hello World 2
Hello World 3
Hello World 4
Hello World 5
Hello World 6
Hello World 7
Hello World 8
Hello World 9
Hello World 10

If you run AT+DIR, both programs are now loaded in memory. They remain there until you remove them with AT+DEL.

06 testl
06 HelloWorld
00
Note: All responses to interactive commands are of the format

\nNN\tOptionalTextl\tOptionalText2. \r

where NN is always a two-digit number and \t is the tab character and is terminated by \r.

This format has been provided to assist with developing host code that can parse these responses in a stateless
fashion. The NN always allows the host to attach meaning to any response from the module.

3.4.4 Autorun

One of the major features of a smartBASIC module is its ability to launch an application autonomously when power is
applied. To demonstrate, we use the same HelloWorld example.

An autorun application is identical to any other smartBASIC application except for its name, which must be called
Sautorun$. Whenever a smartBASIC module is powered up, it checks its nAutoRUN input line (see your module’s pinout)
and, if it is asserted (Ov on BL600 module), it looks for and executes the autorun application.

In our development kits, the nAutoRUN input pin of the module is connected to the DTR output pin of the USB to UART
chip. This means the DTR checkbox in UWTerminalX can be used to affect the state of that pin on the module. The DTR
checkbox is always selected by default (in asserted state), which translates to a Ov at the nAutoRUN input of the module.
This means if an autorun application exists in the module’s file system, it is automatically launched on power up.

Teminal | Script | Config| About |
CTs# DsR&@ DCOM RI@ RTSH DTRI

Copy the smartBASIC source file HelloWorld.sb to SautorunS.sb and then cross-compile and download to the module. After
it is downloaded, enter the AT+DIR command and the following displays:

at+dir
06 testl
06 HelloWorld
06 Sautorun$
00
TIP: A useful feature of UWTerminalX is that the download function strips off the filename extension when it

downloads a file into the module file system. This means that you can store several different autorun

https://connectivity.lairdtech.com/wireless- 21 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

applications on your PC by giving them longer, more descriptive extension names. For example:
SautorunS.HelloWorld
By doing this, each Sautorun$ file on your PC is unique and the list is simpler to manage.

Note: If Windows adds a text extension, rename the file to remove it. Do not use multiple extensions in filenames
(such as filename.extl.ext2). The resulting files (after being stripped) may overwrite other files.

Clear the UWTerminalX screen by clicking the Clear button on the toolbar and then enter the command ATZ to force the
module to reset itself. You could also click Reset on the development kit to achieve the same outcome.

Warning: If the JLINK debugger is connected to the development kit via the ribbon, then the reset button has no effect on
the BL600.

The following output displays:

Hello World 1
Hello World 2
Hello World 3
Hello World 4
Hello World 5
Hello World 6
Hello World 7
Hello World 8
Hello World 9
Hello World 1

In UWTerminalX, next clear the screen using the Clear button and then unselect the checkbox labelled DTR so that the
nAutoRUN input of the module is not asserted. After a reset (ATZ or the button), the screen remains blank which signifies
that the autorun application was NOT invoked automatically.

The reason for providing this capability (suppressing the launching of the autorun application) is to ensure that if your
autorun application has the WAITEVENT as the last statement. This allows you to regain control of the module’s command
interpreter for further development work.

3.4.5 Debugging Applications

One difference with smartBASIC is that it does not have program labels (or line numbers). Because it is designed for a single
line compilation in a memory constrained embedded environment, it is more efficient to work without them.

Because of the absence of labels, smartBASIC provides facilities for debugging an application by inserting breakpoints into
the source code prior to compilation and execution. Multiple breakpoints can be inserted and each breakpoint can have a
unique identifier associated with it. These IDs can be used to aid the developer in locating which breakpoint resulted in the
break. It is up to the programmer to ensure that all IDs are unique. The compiler does not check for repeated values.

Each breakpoint statement has the following syntax: BP nnnn

Where nnnn should be a unique number which is echoed back when the breakpoint is encountered at runtime. It is up to
the developer to keep all the nnnn’s unique as they are not validated when the source is compiled.

Breakpoints are ignored if the application is launched using the command AT+RUN (or name alone). This allows the
application to be run at full speed with breaks, if required. However, if the command AT+DBG is used to run the application,
then all debugging commands are enabled.

When the breakpoint is encountered, the runtime engine is halted and the command line interface becomes active. At this
point, the response seen in UWTerminal is in the following form:

<linefeed>21 BREAKPOINT nnnn<carriage return>

https://connectivity.lairdtech.com/wireless- 22 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Where nnnn is the identifier associated with the BP nnnn statement that caused the halt in execution. As the nnnn
identifier is unique, this allows you to locate the breakpoint line in the source code.

For example, if you create an application called test2.sb with the following content:

/IExample :: test2.sb (See in BL600CodeSnippets)

DIM i as integer

for i=1to 10
print "Hello World”;i;”\n"
if i==3 then
bp 3333
endif

next

When you launch the application using AT+RUN, the following displays:

Hello World
Hello World
Hello World
Hello World
Hello World
Hello World
Hello World
Hello World
Hello World
Hello World

= O oo Jo uld W

If you launch the application using AT+DBG, the following displays:

Hello World 1
Hello World 2
Hello World 3

21 BREAKPOINT 3333

Having been returned to Interactive mode, the command ? varname can be used to interrogate the value of any of the
application variables, which are preserved during the break from execution. The command = varname newvalue can then
be used to change the value of a variable, if required. For example:

? 1

08 3
00

=1 42

? 1

08 42
00

The single step command SO (Step Over) can then be invoked to step through the next statements individually (note the
first SO reruns the BP statement).

https://connectivity.lairdtech.com/wireless- 23 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

When required, the command RESUME can be used to resume the run-time engine from the current application position as
shown below:

Hello World 1

Hello World 2

Hello World 3

21 BREAKPOINT 3333
I8

resume

Hello World 8

Hello World 9

Hello World 10

3.4.6 Structuring an Application

Applications must follow smartBASIC syntax rules. However, the single pass compiler places some restrictions on how the
application needs to be arranged. This section explains these rules and suggests a structure for writing applications which
should adhere to the event driven paradigm.

Typically, do something only when something happens. This smartBASIC implementation has been designed from the
outset to feed events into the user application to facilitate that architecture and, while waiting for events, the module is
designed to remain in the lowest power state.

smartBASIC uses a single pass compiler which can be extremely efficient in systems with limited memory. They are called
“single pass” as the source application is only passed through the parser line by line once. That means that it has no
knowledge of any line which it has not yet encountered and it forgets any previous line as soon as the first character of the
next line arrives. The implication is that variables and subroutines need to be placed in position before they are first
referenced by any function which dictates the structure of a typical application.

In practice, this results in the following structure for most applications:

= Opening Comments — Any initial text comments to help document the application.

= Includes —The cross compiler which is automatically invoked by UWTerminalX allows the use of #DEFINE and
#INCLUDE directives to bring in additional source files and data elements.

= Variable Declarations — Declare any global variables. Local variables can be declared within subroutines and functions.

= Subroutines and Functions — These should be cited here, prior to any program references. If any of them refer to
other subroutines or functions, these referred ones should be placed first. The golden rule is that nothing on any line
of the application should be “new”. Either it should be an inbuilt
smartBASIC function or it should have been defined higher up within the application.

= Event and error handlers — Normally these reference subroutines, so they should be placed here.

= Main program — The final part of the application is the main program. In many cases this may be as simple as an
invocation of one of the user functions or subroutines and then finally the WAITEVENT statement.

The following is an example of an application (btn.button.led.test.sb) which monitors button presses and reflects them to
LEDs on the BL600 development kit:

// * * * * * * * * * * * * * * * * * * *

/I Laird Technologies (c) 2013

1l

[l ++++++++++++
[l +++++ ++

/[+++++ When UwTerminal downloads the app it will store it as a filenname ++

I/l +++++ which consists of all characters up to the first . and excluding it ++

https://connectivity.lairdtech.com/wireless- 24 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

/] +++++ ++

[l ++++++++++++++H+
I

I

/I Simple development board button and LED test

/I Tests the functionality of button 0, button 1, LED 0 and LED 1 on the development board

/I DVK-BL600-V01

I

/1 24/01/2013 Initial version

I

/ **x **x **x * * * * * * * * * * * * * * * * *

/**

/I Definitions

/ ** ** ** * * * * * * * * * * * * * * * * *

h * * * * * * * * * * * * * * * * * * *

/I Library Import

/**

[l#include "$.lib.ble.sb"

h * * * * * * * * * * * * * * * * * * *

/I Global Variable Declarations

”**

dimrc /I declare rc as integer variable

/**

/I Function and Subroutine definitions

/**

I

I

function buttonOrelease() /lthis function is called when the button O is released"
gpiowrite(18,0) /[turns LED 0 off
print "Button 0 has been released \n" //these lines are printed to the UART when the button is released

print "LED 0 should now go out \n\n"

endfunc 1

1l
https://connectivity.lairdtech.com/wireless- 25
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

function buttonOpress() /lthis function is called when the button O is pressed"
gpiowrite(18,1) /[turns LED 0 on
print "Button 0 has been pressed \n" //these lines are printed to the UART when the button is pressed

print "LED 0 will light while the button is pressed \n"

endfunc 1

I

I

function buttonlrelease() [Ithis function is called when the button 1 is released"
gpiowrite(19,0) /lturns LED 1 off

print "Button 1 has been released \n" //these lines are printed to the UART when the button is released

print "LED 1 should now go out \n\n"

endfunc 1

I

Il

function buttonlpress() /Ithis function is called when the button 1 is pressed”
gpiowrite(19,1) /['turns LED 1 on

print "Button 1 has been pressed \n" //these lines are printed to the UART when the button is pressed
print "LED 1 will light while the button is pressed \n"

endfunc 1

”**

/I Handler definitions

/**

/**

/I Equivalent to main() in C

/In * % * % * * % * % * % * % * % * % * % * % * % * % * % * % * % * % * % * %

rc = gpiosetfunc(16,1,2) //sets siol6 (Button 0) as a digital in with a weak pull up resistor
rc = gpiosetfunc(17,1,2) //sets siol7 (Button 1) as a digital in with a weak pull up resistor
rc = gpiosetfunc(18,2,0) //sets siol8 (LEDO) as a digital out

rc = gpiosetfunc(19,2,0) //sets siol9 (LEDL) as a digital out

rc = gpiobindevent(0,16,0) /Ibinds a gpio transition high to an event. sio16 (button 0)

rc = gpiobindevent(1,16,1) /Ibinds a gpio transition low to an event. siol6 (button 0)

rc = gpiobindevent(2,17,0) /Ibinds a gpio transition high to an event. siol7 (button 1)

rc = gpiobindevent(3,17,1) /Ibinds a gpio transition low to an event. siol7 (button 1)

onevent evgpiochanO call buttonOrelease //detects when button 0 is released and calls the function

https://connectivity.lairdtech.com/wireless- 26
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

onevent evgpiochanl call buttonOpress //detects when button 0 is pressed and calls the function
onevent evgpiochan2 call buttonlrelease //detects when button 1 is released and calls the function

onevent evgpiochan3 call buttonlpress //detects when button 1 is pressed and calls the function

print "Ready to begn button and LED test \n" //these lines are printed to the UART when the program is run

print "Please press button 0 or button 1 \n\n"

I

/I Wait for a synchronous event.

/I An application can have multiple <WaitEvent> statements
I

waitevent /lwhen program is run it waits here until an event is detected

When this application is launched and appropriate buttons are pressed and released, the output is as follows:

Ready to begin button and LED test

Please press button 0 or button 1

Button 0 has been pressed
LED 0 will light while the button is pressed
Button 0 has been released

LED 0 should now go out

4 INTERACTIVE MODE COMMANDS

Interactive mode commands allow a host processor or terminal emulator to interrogate and control the operation of a
smartBASIC based module. Many of these emulate the functionality of AT commands. Others add extra functionality for
controlling the filing system and compilation process.

Syntax Unlike commands for AT modems, a space character must be inserted between AT, the command, and
subsequent parameters. This allows the smartBASIC tokeniser to efficiently distinguish between AT commands
and other tokens or variables starting with the letters “at”.

‘Example:

AT I 3

The response to every Interactive mode command has the following form:
<linefeed character> response text <carriage return>

This format simplifies the parsing within the host processor. The response may be one or multiple lines. Where more than
one line is returned, the last line has one of the following formats:

<If>00<cr> for a successful outcome, or

<If>01<tab> hex number <tab> optional verbose explanation <cr> for failure.

https://connectivity.lairdtech.com/wireless- 27 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Note: In the case of the 01 response, the “<tab>optional_verbose_explanation” is missing in resource constrained
platforms like the BL600 modules. The ‘verbose explanation’ is a constant string and since there are over 1000
error codes, these verbose strings can occupy more than 10 kilobytes of flash memory.

The hex number in the response is the error result code consisting of two digits which can be used to help investigate the
problem causing the failure. Rather than provide a list of all the error codes in this manual, you can use UWTerminalX to
obtain a verbose description of an error when it is not provided on a platform.

To get the verbose description highlight the error code, right click on UwTerminal screen and select one of the many
options that have ‘lookup’ text in them.

If you get the text “UNKNOWN RESULT CODE OxHHHH”, please contact Laird for the latest version of UWterminalX.

4.1 AT

AT is an Interactive mode command. It must be terminated by a carriage return for it to be processed.

It performs no action other than to respond with \n0O\r. It exists to emulate the behavior of a device which is controlled
using the AT protocol. This is a good command to use to check if the UART has been correctly configured and connected to
the host.

411 AT lor ATI ATI

COMMAND

Provides compatibility with the AT command set of Laird’s standard Bluetooth modules.

AT i num
Returns \NTO\tMM\tInformation\r
\NnOO\r
Where
\n = linefeed character Ox0A
\t = horizontal tab character 0x09
MM = a number (see below)
Information = string consisting of information requested associated with MM
\r = carriage return character 0xOD
Arguments
num Integer Constant
A number in the range of 0 to 65,535. Currently defined numbers are:
0 Name of device
3 Version number of module firmware
4 MAC address in the form TT AAAAAAAAAAAA
5 Chipset name
6 Flash File System size stats (data segment): Total/Free/Deleted
7 Flash File System size stats (FAT segment): Total/Free/Deleted
12 Last error code
13 Language hash value
16 NvRecord Memory Store stats: Total/Free/Deleted
33 BASIC core version number
36 Config Keys Store stats: Total/Free/Deleted
601 Flash File System: Data Segment: Total Space
602 Flash File System: Data Segment: Free Space
https://connectivity.lairdtech.com/wireless- 28 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality
User Guide

Lai rd CONNECTIVITY

603 Flash File System: Data Segment: Deleted Space
604 Flash File System: FAT Segment: Total Space
605 Flash File System: FAT Segment: Free Space
606 Flash File System: FAT Segment: Deleted Space
631 NvRecord Memory Store Segment: Total Space
632 NvRecord Memory Store Segment: Free Space
633 NvRecord Memory Store Segment: Deleted Space
1000..1999 | See SYSINFO() function definition
2000..2999 | See SYSINFO() function definition
(See Note 2 below)
0xC12C Returns a 16-bit running CRC for data downloaded for files using AT+FWR or
AT+FWRH.

All other numbers currently return the manufacturer’s name.
For ATi4 the TT in the response is the type of address as follows:

00 Public IEEE format address
01 Random static address (default as shipped)
02 Random Private Resolvable (used with bonded devices)
03 Random Private Non-Resolvable (used for reconnections)
Please refer to the Bluetooth specification for a further description of the types.
Interactive Ves
Command

This is an Interactive mode command and must be terminated by a carriage return for it to be processed.

‘Example:

AT 1 3

10 3 2.0.1.2

00

AT I 4

10 4 01 D31A%920731B0

AT iis a core command.

Note 1: The information returned by this Interactive command can be useful from within a running application; a built-in
function called SYSINFO(cmdId) can be used to return the same information and cmdid is the same value as used
in the list above.

Note 2: 0xC12C works only if enabled in the build. (12 looks like an R so a mnemonic for CRC)

The CRC is generated using the ‘C’ function Calcl6bitCrcNonTableMethod ()
starting value of 0x0000

defined below, with the

This is an Interactive mode command and must be terminated by a carriage return for it to be processed.

29
© Copyright 2019 Laird. All Rights Reserved

https://connectivity.lairdtech.com/wireless- Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

modules/bluetooth-modules

smartBASIC Core Functionality

User Guide

Lai rd CONNECTIVITY

/*

** Given an array of bytes, a new 16 bit CRC is calculated using the slow
** method. Slow method because it is used once to calc lang hash.

* %

W 16 12 5

** this is the CCITT CRC 16 polynomial X + X + X + 1.

** This works out to be 0x1021, but the way the algorithm works

** lets us use 0x8408 (the reverse of the bit pattern). The high

** bit is always assumed to be set, thus we only use 16 bits to

** represent the 17 bit value.

* *

*/

#define POLY 0x8408

/* */

unsigned short
CalclébitCrc(

unsigned short nCrcle,

const unsigned char *pSrcStr,

unsigned short nSrclLen

)

unsigned char i;

unsigned short data;

while (nSrcLen--)
{

for (i=0,

i < 8;

i++, data >>= 1)

if ((nCrclo & 0x0001)

{

data=(unsigned int)O0xff & *pSrcStr++;

/* init value or a previously calculated value*/

/* in bytes */

A

(data & 0x0001))

nCrcl6 = (nCrclo >> 1) ~ POLY;

}

else

{
nCrclo >>= 1;

}

}
https://connectivity.lairdtech.com/wireless- 30 Americas: +1-800-492-2320

modules/bluetooth-modules

© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

nCrcl6 = ~nCrclo6;
data = nCrclé6;
nCrclo = (nCrclo << 8) | (data >> 8 & O0xff);

return nCrcl6;

4.1.2 AT+DIR

COMMAND

Lists all application or data files in the module’s flash file system.

AT+DIR <”string”>

Returns \nO6\tFILENAME1\r

\NO6\tFILENAME2\r

\NO6\tFILENAMENn\r

\n0O\r

If there are no files within the module memory, then only \n0O\r is sent.

Arguments:

string string_constant An optional pattern match string.
If included AT+DIR only returns application names which include this string.
Note: The match string is not case sensitive.

Interactive Yes

Command

This is an Interactive Mode command and musT be terminated by a carriage return for it to be processed.

‘Examples:
AT+DIR

AT+DIR “new”

AT+DIR is a core command.
4.1.3 AT+DEL

COMMAND
This command deletes a file from the module’s flash file system.

When the file is deleted, the space it occupied does not get marked as free for use again. Eventually, after many deletions,
the file system does not have free space for new files. When this happens, the module responds with an appropriate error
code when a new file write is attempted. Use the command AT&F 1 to completely erase and reformat the file system.

At any time, you can use the command AT | 6 to get information about the file system. It responds with the following:
10 6 aaaa,bbbb,cccc
Where aaaa is the total size of the file system, bbbb is the free space available, and cccc is the deleted space.

From within a smartBASIC application you can get aaaa by calling SYSINFO(601), bbbb by calling SYSINFO(602), and cccc by
calling SYSINFO(603).

https://connectivity.lairdtech.com/wireless- 31 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Note: After AT&F 1 is processed, because the file system manager context is unstable, there is an automatic self-
reboot.

AT+DEL “filename” (+)

Returns OK
If the file does not exist or if it was successfully erased, it responds with
\nOO\r.

Arguments:

filename string_constant.

The name of the file to be deleted. The maximum length of filename is
24 characters and should not include the following characters :*?"<>|

Interactive

Command Yes

This is an Interactive Mode command and must be terminated by a carriage return for it to be processed.

Adding the “+” sign to an AT+DEL command can be used to force the deletion of an open file. For example, use AT+DEL
“filename” + to delete an application which you have just exited after running it.

‘Examples:

AT+DEL “data”
AT+DEL “myapp” +

AT+DEL is a core command.
41.4 AT+RUN

COMMAND

AT+RUN runs a precompiled application that is stored in the module’s flash file system. Debugging statements in the
application are disabled when it is launched using AT+RUN.

AT+RUN “filename”

Returns If the filename does not exist, the AT+RUN responds with an error response starting with a 01 and a
hex value describing the type of error. When the application aborts or if the application reaches its
end, a deferred \n0OO\r response is sent.

If the compiled file was generated with a non-matching language hash, then it does not run with an
error value of 0707 or 070C

Arguments:

filename string_constant.
The name of the file to be run. The maximum length of filename is 24 characters
and should not include the following characters :*?"<>|

Interactive Yes

Command

This is an Interactive mode command and must be terminated by a carriage return for it to be processed.

Note: Debugging is disabled when using AT+RUN, hence all BP nnnn statements are inactive. To run an application
with debugging active, use AT+DBG.

If any variables exist from a previous run, they are destroyed before the specified application is serviced.

https://connectivity.lairdtech.com/wireless- 32 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Note: The application “filename” can also be invoked by entering the name if it does not contain any spaces.

‘Examples:

AT+RUN “NewApp”
or
NewApp

AT+RUN is a core command.
4.1.5 AT+DBG

COMMAND
AT+DBG runs a precompiled application that is stored in the flash file system. In contrast to AT+RUN, debugging is enabled.

AT+DBG “filename”

Returns If the filename does not exist, the AT+DBG responds with an error response. When the application
aborts or if the application reaches its end, a deferred \n0O\r response is sent.

Arguments:

filename string_constant.
The name of the file to be run. The maximum length of filename is 24 characters and should not
include the following characters :¥?"<>|

Interactive Yes

Command

This is an Interactive mode command and must be terminated by a carriage return for it to be processed.

Debugging is enabled when using AT+DBG, which means that all BP nnnn statements are active. To launch an application
without the debugging capability, use AT+RUN. You do not need to recompile the application, but this is at the expense of
using more memory to store the application.

If any variables exist from a previous run, they are destroyed before the specified application is serviced.

‘Examples:

AT+DBG “NewApp”

AT+DBG is a core command.

41.6 AT+SET

This command has been deprecated, please use the new presentation command AT+CFG num value instead.
41.7 AT+GET

This command has been deprecated, please use the new command AT+CFG num ? instead.

41.8 AT+CFG

COMMAND

AT+CFG is used to set a non-volatile configuration key. Configuration keys are comparable to S registers in modems. Their
values are kept over a power cycle but are deleted if the AT&F* command is used to clear the file system.

If a configuration key that you need isn’t listed below, use the functions NvRecordSet() and NvRecordGet() to set and get
these keys respectively.

https://connectivity.lairdtech.com/wireless- 33 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

The ‘num value’ syntax is used to set a new value and the ‘num ?’ syntax is used to query the current value. When the value
is read the syntax of the response is

27 Oxhhhhhhhh (dddd)

..where Oxhhhhhhhh is an eight hexdigit number which is 0 padded at the left and ‘dddd’ is the decimal signed value.

AT+CFG num value
or
AT+CFG num ?

Returns If the config key is successfully updated or read, the response is \n0O\r.
Arguments:
num Integer Constant

The ID of the required configuration key. All the configuration keys are stored as an
array of 16-bit words.

value Integer_constant
This is the new value for the configuration key and the syntax allows decimal, octal,
hexadecimal or binary values.

Interactive

Command Yes

This is an Interactive mode command and MUST be terminated by a carriage return for it to be processed.

The following Configuration Key IDs are defined.

40 Maximum size of local simple variables
This refers to the total amount of space the runtime engine allocates for simple variables (like INTEGER)
declared as local variables in user functions (FUNCTION) and subroutines (SUB). Note that if an array of
10 is declared then it takes up 10 locations. This means that if there is a nest of function calls, then in
total they should not end up declaring space exceeding this amount.

41 Maximum size of local complex variables
This refers to the total amount of space the runtime engine allocates for complex variables (like STRING)
declared as local variables in user functions (FUNCTION) and subroutines (SUB). Note that if an array of
10 is declared then it takes up 10 locations. This means that if there is a nest of function calls, then in
total they should not end up declaring space exceeding this amount.

42 Maximum depth of nested user defined functions and subroutines

43 The size of stack for storing user functions simple variables
This is the total depth of the stack which is used to expedite reverse polish notation for arithmetic
expressions. This needs to be extended only if some very complex nested brackets exist in an arithmetic
expression

44 The size of stack for storing user functions complex variables
This is the stack used for performing complex expressions, like for example AS=AS+"hello”+”world”

45 The size of the message argument queue length

AT+CFG is a core command.

Note: These values revert to factory default values if the flash file system is deleted using the
“AT & F *” interactive command.

https://connectivity.lairdtech.com/wireless- 34 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

419 AT+CFGEX

COMMAND

AT+CFGEX is used to set a non-volatile configuration key with a string constant as opposed to an integer constant with the
at+cfg command. Configuration keys are comparable to S registers in modems. Their values are kept over a power cycle but
are deleted if the AT&F* command is used to clear the file system.

The ‘num “value” syntax is used to set a new value and the ‘num ?’ syntax is used to query the current value. Note that the
value must be enclosed by “” so that the system can recognize that it is a string. When the value is read the syntax of the
response is

27 1234567890abcdef

..where 1234567890abcdef is the string that is stored in the key.
AT+CFGEX num “value” or AT+CFGEX num ?

Returns If the config key is successfully updated or read, the response is \n00\r.
Arguments:
num Integer Constant

The ID of the required configuration key. All the configuration keys are stored as an
array of 16-bit words.

value String_constant
This is the new value for the configuration key and the syntax allows only strings
enclosed in "".

Interactive
Yes

Command

This is an Interactive mode command and MUST be terminated by a carriage return for it to be processed.

AT+CFGEX is a core command. It is currently only available on some platforms. Please refer to the relevant plat
documentation for a list of the Configuration Ids that are supported for that platform.

Note: These values revert to factory default values if the flash file system is deleted using the
“AT & F *” interactive command.

4.1.10 AT+FOW

COMMAND

AT+FOW opens a file to allow it to be written with raw data. The group of commands (AT+FOW, AT+FWR, AT+FWRH and
AT+FCL) are typically used for downloading files to the module’s flash filing system. For example, web pages, x.509
certificates, or BLE data.

AT+FOW “filename”

Returns If the filename is valid, AT+FOW responds with \n0O\r.
Arguments:
filename string_constant.

The name of the file to be opened. The maximum length of filename is 24 characters
and should not include the following characters :*?"<>|

Interactive
Yes
Command
https://connectivity.lairdtech.com/wireless- 35 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

‘Examples:

AT+FOW “myapp”

AT+FOW is a core command.
4111 AT+FWR

COMMAND

AT+FWR writes a string to a file that has previously been opened for writing using AT+FOW. The group of commands
(AT+FOW, AT+FWR, AT+FWRH and AT+FCL) are typically used for downloading files to the module’s flash filing system. For
example, web pages, x.509 certificates, or BLE data.

AT+FWR “string”

Returns If the string is successfully written, AT+FWR responds with \n0O\r.

Arguments:

string string_constant — A string that is appended to a previously opened file. Any \NN or \r or \n
characters present within the string are de-escaped before they are written to the file.

Interactive Ves

Command

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

‘Examples:

AT+FWR “\nhelloworld\r”
AT+FWR “\00\01\02”

AT+FWR is a core command.
4112 AT+FWRH

COMMAND

AT+FWRH writes a string to a file that has previously been opened for writing using AT+FOW. The group of commands
(AT+FOW, AT+FWR, AT+FWRH and AT+FCL) are typically used for downloading files to the module’s flash filing system. For
example, web pages, x.509 certificates, or BLE data.

AT+FWRH “string”

Returns If the string is successfully written, AT+FWRH responds with \n0O\r.

Arguments

string string_constant — A string that is appended to a previously opened file. Only hexadecimal
characters are allowed and the string is first converted to binary and then appended to the
file.

Interactive Ves

Command

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

‘Examples:

AT+FWRH “FE900002250DEDBEEF”
AT+FWRH “000102"

https://connectivity.lairdtech.com/wireless- 36 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

‘Invalid example

AT+FWRH “hello world” ‘because not a valid hex string

AT+FWRH is a core command.
4113 AT+FCL

COMMAND

AT+FCL closes a file that has previously been opened for writing using AT+FOW. The group of commands; AT+FOW,
AT+FWR, AT+FWRH and AT+FCL are typically used for downloading files to the module’s flash filing system.

AT+FCL

Returns If the filename exists, AT+FCL responds with \n0O\r.
Arguments:

None

Interactive Yes

Command

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

‘Examples:

AT+FCL

AT+FCL is a core command.
4.1.14 ? (Read Variable)

COMMAND

When an application encounters a STOP, BPnnn, or END statement, it falls into the Interactive mode of operation and does
not discard any global variables created by the application. This allows them to be referenced in Interactive mode.

? var <[index]>

Returns Displays the value of the variable if it had been created by the application. If the variable is an
array, then the element index MUST be specified using the [n] syntax.

If the variable exists and it is a simple type, then the response to this command is
\n08\tnnnnnn\r
\n00\r

If the variable is a string type, then the response is
\n08\t"Hello World"\r
\n00\r

If the variable does not exist, then the response to this command is
\n01\tE023\r

Where \n = linefeed, \t = horizontal tab and \r = carriage return

Note: If the optional type prefix is present, the output value, when it is an integer constant, is
displayed in that base. For example:

? h’ wvar returns

\n08\tH'nnnnnn\r

\nO00\r
https://connectivity.lairdtech.com/wireless- 37 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Arguments:

Var <[n]> Any valid variable with mandatory [n] if the variable is an array.

For integer variables, the display format can be selected by prefixing the variable
with one of the integer type prefixes:

D' := Decimal
H' := Hexadecimal
0O' :=Octal
B' := Binary
Interactive Ves
Command

This is an Interactive mode command and MUST be terminated by a carriage return for it to be processed.

‘Examples:

? argc

08 11

00

? h’argc

08 H’ 0000000B
00

? B’argc

08 B’000000000000000000000001011
? argv[0]

08 “hello”

00

? is a core command.
4.1.15 = (Set Variable)

COMMAND

When an application encounters a STOP, BPnnn, or END statement, it falls into the Interactive mode of operation and does
not discard the global variables so that they can be referenced in Interactive Mode. The = command is used to change the
content of a known variable. When the application is resumed, the variable contains the new value. It is useful when
debugging applications.

=var<[n]> value

Returns If the variable exists and the value is of a compatible type, then the variable value is overwritten and
the response to this command is:
\n0OO\r
If the variable exists and it is NOT of compatible type, then the response to this command is
\n01\tE027\r
If the variable does not exist, then the response to this command is
\n01\tE023\r
If the variable exists but the new value is missing, then the response to this command is
\nO01\tE26\r
Where \n = linefeed, \t = horizontal tab and \r = carriage return
Arguments:
Var<[n]> The variable whose value is to be changed
value A string_constant or integer_constant of appropriate form for the variable.
Interactive Yes
Command

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

https://connectivity.lairdtech.com/wireless- 38 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Examples: (after an app exits which had DIM’d a global variable called ‘argc’)

? argc

08 11
00

= argc 23
00

? argc

08 23
00

=is a core command.
4.1.16 SO

SO (Step Over) is used to execute the next line of code in Interactive Mode after a break point has been encountered when
an application had been launched using the AT+DBG command.

Use this command after a breakpoint is encountered in an application to process the next statement. SO can then be used
repeatedly for single line execution

SO is normally used as part of the debugging process after examining variables using the ? Interactive Command and
possibly the = command to change the value of a variable.

See also the BP nnnn, AT+DBG, ABORT, and RESUME commands for more details to aid debugging.

SO is a core function.
4.1.17 RESUME

COMMAND

RESUME is used to continue operation of an application from Interactive Mode which had been previously halted. Normally
this occurs because of an execution of a STOP or BP statement within the application. On execution of RESUME, application
operation continues at the next statement after the STEP or BP statement.

If used after a SO command, application execution commences at the next statement.

RESUME

Returns If there is nothing to resume (e.g. immediately after reset or if there are no more statements within
the application), then an error response is sent.
\nO1\tEO29\r

Interactive Yes

Command

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed

‘Examples:

RESUME

RESUME is a core function.
4.1.18 ABORT

COMMAND

Abort is an Interactive Mode command which is used to abandon an application, whose execution has halted because it has
processed a STOP or BP statement.

https://connectivity.lairdtech.com/wireless- 39 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide
ABORT
Returns Abort is an Interactive Mode command which is used to abandon an application, whose execution
has halted because it had processed a STOP or BP statement. If there is nothing to aborts, then it
returns a success 00 response.
Interactive Yes
Command

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

‘Examples:
‘' (Assume the application someapp.sb has a STOP statement somewhere which invokes
interactive mode)

AT+RUN “someapp”
ABORT

ABORT is a core command.
4.1.19 AT+REN

COMMAND

Renames an existing file.

AT+REN “oldname” “newname”

Returns OK if the file is successfully renamed.
Arguments
oldname string_constant. The name of the file to be renamed.

Newname | string_constant. The new name for the file.
The maximum length of filename is 24 characters.

Interactive

Command Yes

oldname and newname must contain a valid filename, which cannot contain the following seven characters
x 2" <> |

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

‘Examples:

AT+REN “oldscript.txt” “newscript.txt”

AT+REN is a core command.
41.20AT&F

COMMAND
AT&F provides facilities for erasing various portions of the module’s non-volatile memory.

AT&F integermask

Returns OK if file successfully erased.

Arguments
https://connectivity.lairdtech.com/wireless- 40 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Integermask | Integer corresponding to a bit mask or the “*” character

Interactive

Command ves

The mask is an additive integer mask, with the following meaning:

0x00000001 Erases normal file system and system config keys
(see AT+CFG for examples of config keys)

0x00000002 Erases the Sequential File System, if exists in the build
0x00000004 Erases the Worm Segment (Debug builds only)

0x00000008 Erases the non-volatile heap, if exists in the build

0x00000010 Erases the User non-vol records (NvRecordGet/Set)

0x00000020 Erases the Transactional Configuration Database, if exists in the build

0x00000040 Erase all Dictionary type segments (DEPRECATED — please do not use)

0x00000100 Erases the System Config Keys Dictionary and set to defaults. Values affected by the AT+CFG
command

0x00000200 Erase User Nvrecords Dictionary (bit 18 also does the same)

* Erases all data segments

Else Not applicable to current modules

If an asterisk is used in place of a number, then the module is configured back to the factory default state by erasing all
flash file segments.

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

AT&F 1 ‘delete the file system only
ATS&F 16 ‘delete the user non volatile keys (0x0010)
ATE&F * ‘delete all data segments

AT&F is a core command.

4.1.21 AT Z or ATZ

Resets the CPU.

AT 2

Returns \nOO\r
Arguments: | None
Interactive Yes
Command

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

‘Examples:

AT Z
https://connectivity.lairdtech.com/wireless- 41 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

AT Zis a core command.

https://connectivity.lairdtech.com/wireless- 42 Americas: +1-800-492-2320
modules/bluetooth-modules Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

5 SMARTBASIC COMMANDS

smartBASIC contains a wide variety of commands and statements. These include a core set of programming commands
found in most languages and extension commands, found in your module’s extension manual, that are designed to expose
specific functionality of the platform. For example, Bluetooth Low Energy’s GATT, GAP, and security functions.

Because smartBASIC is designed to be a very efficient embedded language, you must take care of command syntax.

5.1 Syntax

smartBASIC commands are classified as one of the following:

= Functions
= Subroutines
= Statements

5.2 Functions

A function is a command that generates a return value and is normally used in an expression. For example:
newstr$ = LEFTS (oldstring$S, num)

In other words, functions cannot appear on the left side of an assighment statement (which has the equals sign). However,
a function may affect the value of variables used as parameters if it accepts them as references rather than as values. This
subtle difference is described further in the next section.

5.3 Subroutines

A subroutine does not generate a return value and is generally used as the only command on a line. Like a function, it may
affect the value of variables used as parameters if it accepts them as references rather than values. For example:

STRSHIFTLEFT (string$S, num)

This brings us to the definition of the different forms an argument can take, both for a function and a subroutine. When a
function is defined, its arguments are also defined in the form of how they are passed — either as byVal or byRef.

Passing Arguments as If an argument is passed as byVal, then the function or subroutine only sees a copy of
byVal the value. While it can change the copy of the variable upon exit, all changes are lost.

If an argument is passed as byRef, then the function or subroutine can modify the
variable and, upon exit, the variable that was passed to the routine contains the new
value.

Passing Arguments as
byRef

To understand, look at the smartBASIC subroutine STRSHIFTLEFT. It takes a string and shifts the characters to the left by a
specified number of places:

STRSHIFTLEFT (string$S, num)

It is used as a command on string$, which is defined as being passed as byRef. This means that when the rotation is
complete, string$ is returned with its new value. num defines the number of places that the string is shifted and is passed
as byVal; the original variable num is unchanged by this subroutine.

Note: Throughout the definition of the following commands, arguments are explicitly stated as being byVal or byRef.

Functions, as opposed to subroutines, always return a value. Arguments may be either byVal or byRef. Generally and by
default, string arguments are passed byRef. The reason for this is twofold:

= |t saves valuable memory space because a copy of the string (which may be long) does not need to be copied to the

stack.
https://connectivity.lairdtech.com/wireless- 43 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

= Astring copy operation is lengthy in terms of CPU execution time. However, in some cases the valuables are passed
byVal and in that case, when the function or subroutine is invoked, a constant string in the form “string” can be passed
toit.

Note: For arguments specified as byRef, it is not possible to pass a constant value — whether number or string.

5.4 Statements

Statements do not take arguments, but instead take arithmetic or string expression lists. The only Statements in
smartBASIC are PRINT and SPRINT.

5.5 Exceptions

Developing a software application that is error free is virtually an impossible task. All functions and subroutines act on the
data that is passed to them and there are occasions when the values do not make sense. For example, when a divide
operation is requested and the divisor passed to the function is the value zero. In these types of cases it is impossible to
generate a return of meaningful value, but the event needs to be trapped so that the effects of doing that operation can be
lessened.

The mitigation process is via the inclusion of an ONERROR handler as explained in detail later in this manual. If the
application does not provide an ONERROR handler and if an exception is encountered at run-time, then the application
aborts to Interactive mode.

Note: This is disastrous for unattended use cases. A good catchall ONERROR is to invoke a handler in which the module
is reset; then at least the module resets from a known condition.

5.6 Language Definitions
Throughout the rest of this manual, the following convention is used to describe smartBASIC commands and statements:
5.6.1 Command

FUNCTION / SUBROUTINE / STATEMENT

Description of the command.

COMMAND (<byRef | byval> arg1 <AS type>,..)

Returns

TYPE Description. Value that a function returns (always byVal).

Exceptions

ERRVAL Description of the error.

Arguments (a list of the arguments for the command)
argl byRef TYPE A description, with type, of the variable.
argn byVal TYPE A description, with type, of the variable.

Icr::;‘::: Whether the command can be run in Interactive Mode using the ! token.

‘Examples:

Examples using the command.

https://connectivity.lairdtech.com/wireless- 44 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Note: Always consult the release notes for a particular firmware release when using this manual. Due to continual
firmware development, there may be limitations or known bugs in some commands that cause them to differ
from the descriptions given in the following chapters.

5.7 Variables

One of the important rules is that variables used within an application MUST be declared before they are referenced within
the application. In most cases the best place is at the start of the application. Declaring a variable can be thought of as
reserving a portion of memory for it. smartBASIC does not support forward declarations. If an application references a
variable that has not been declared, the parser reports an ERROR and aborts the compilation.

Variables are characterized by two attributes:

= Variable Scope
= Variable Class

5.7.1.1 DIM
The Declare statement is used to declare several variables of assorted types to be defined in a single statement.

If it is used within a FUNCTION or SUB block of code, then those variables only have local scope. Otherwise they have
validity throughout the application. If a variable is declared within a FUNCTION or SUB and a variable of the same name
already exists with global scope, then this declaration takes over whilst inside the FUNCTION or SUB. However, this practice
should be avoided.

DIM var<,var<,...>>

Arguments
Var A complete variable definition with the syntax varname <AS type>. Multiple variables can be
defined in any order with each definition being separated by a comma.
Each variable (var) consists of one mandatory element varname and one optional element AS type
separated by whitespaces and described as follows:
= Varname - A valid variable name.
= AStype —Where ‘type’ is INTEGER, FLOAT, or STRING. If this element is missing, then varname
is used to define the type of the variable so that if the name ends with a $ character, then it
defaults to a STRING; otherwise an INTEGER. FLOAT variables must be explicitly typed as there
is no implicit way to declare them.
A variable can be declared as an array, although only one dimension is allowed. Arrays must always
be defined with their size, e.g.
array [20] — The (20) with round brackets is also allowed.
The size of an array cannot be changed after it is declared and the maximum size of an array is
platform dependent which is determined at firmware build time.
Interactive No
Command

/IExample :: DimEx1.sb (See in Firmware Zip file)

DIM templ AS INTEGER

DIM temp2 /IWill be an INTEGER by default
https://connectivity.lairdtech.com/wireless- 45 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

' DIM temp3$ AS STRING

DIM temp4$ /IWill be a STRING by default

DIM temp5$ AS INTEGER //Allowed but not recommended practice as there
/lis a $ at end of name

DIM temp6 AS STRING /[Allowed but not recommended practice as no $
/lat end of name

DIM al,a2,a3%,a4 /I3 INTEGER variables and 1 STRING variable

print "We will now print each variable on screen \n"

print temp1, temp2, temp3$, temp4$, temp5$, temp6, al, a2, a3$, a4

//Since the variables have not been instantiated, they hold default values

/IThe comma inserts a TAB

Expected Output:

We will now print each variable on screen

0 0 0 0 0 0

5.7.2 Variable Scope

The scope of a variable defines where it can be used within an application.

= Local Variable — The most restricted scope. These are used within functions or subroutines and are only valid within
the function or subroutine. They are declared within the function or subroutine.

= Global Variable — Any variables not declared in the body of a subroutine or a function and are valid from the place
they are declared within an application. Global Variables remain in scope at the end of an application, which allows
the user or host processor to interrogate and modify them using the ? and = commands respectively.
As soon as a new application is run, they are discarded.

Note: If a local variable in a routine body has the same name as a global variable, then within a function or a
subroutine, that global variable cannot be accessed.

5.7.3 Variable Class

smartBASIC supports two generic classes of variables:

= Simple — Numeric variables. There are currently two types: INTEGER and FLOAT

= Simple variables are scalar and can be used within arithmetic expressions as described later. Beware of auto-casting
that the compiler performs in expression if it encounters different types of variables in a single expression. Use this
with care.

= Complex — Non-numeric variables. There is currently only one type: STRING.
STRING is an object of concatenated byte characters of any length up to a maximum of 65280 bytes but for platforms

with limited memory, it is further limited and that value can be obtained by submitting the AT | 1004 command when
in Interactive mode and using the SYSINFO(1004) function from within an application.

For example, in the BL600 module, the limit is 512 bytes since it is always the largest data length for any attribute.

https://connectivity.lairdtech.com/wireless- 46 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Complex variables can be used in expressions which are dedicated for that type of variable. In the current
implementation of smartBASIC, the only general-purpose operator that can be used with strings is the '+' operator
which is used to concatenate strings.

/IExample :: DimEx2.sb (See in Firmware Zip file)
DIM i$ as STRING

DIM a$ as STRING

a$ = "Laird"

i$ =a$ + "Rocks!" //Here we are concatenating the two strings

print i$

Expected Output:

LairdRocks!

Note: To preserve memory, smartBASIC only allocates memory to string variables when they are first used and not when
they are declared. If too many variables and strings are declared in a limited memory environment it is possible
to run out of memory at run time. If this occurs an ERROR is generated and the module returns to Interactive
Mode. The point at which this happens depends on the free memory so it varies between different modules.

This return to Interactive Mode is NOT desirable for unattended embedded systems. To prevent this, every
application MUST have an ONERROR handler which is described later in this user manual.

Note: Unlike in the “C” programming language, strings are not null terminated but defined by a length field.

5.7.3.1 Arrays

Variables can be created as arrays of single dimensions; their size (number of elements) must be explicitly stated when
they are first declared using the nomenclature [x] or (x) after the variable name, e.g.

DIM array1 [10] AS STRING
DIM array2(10) AS STRING

/IExample :: ArraysEx1.sb (See in Firmware Zip file)

DIM nCmds AS INTEGER
DIM stCmds[20] AS STRING //declare an array as a string with 20 elements

/INot recommended because we are only using 7 elements as you will see below

//Setting the values for 7 of the elements
stCmds[0]="\rATSO0=1\r"
stCmds[1]="ATS512=4\r"
stCmds[2]="ATS501=1\r"
stCmds[3]="ATS502=1\r"
stCmds[4]="ATS503=1\r"

https://connectivity.lairdtech.com/wireless- 47 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

stCmds[5]="ATS504=1\r"
stCmds[6]="AT&W\r"
nCmds=6

/IPrint the 7 elements above in order
DIM i AS INTEGER
for i=0 to nCmds step 1

print stCmds[i]

next

Expected Output:

ATS0=1
ATS512=4
ATS501=
ATS502=1

ATS503=1

5.7.3.2 General Comments on Variables

Variable Names begin with 'A' to 'Z' or'_' and can have any combination of 'A' to 'Z','0't0 '9' ‘S’ and '_".

Note: Variable names are not case sensitive (for example, testS and TESTS are the same variable).

smartBASIC is a strongly typed language and so if the compiler encounters an incorrect variable type then the compilation
fails.

5.7.3.3 Declaring Variables

Variables are normally declared individually at the start of an application or within a function or subroutine.

DIM string$ AS STRING
DIM str1$ /I the $ at the end of the name implies a string
/I so AS STRING not necessary
DIM templ AS INTEGER
DIM tmpFIt AS FLOAT
DIM alarmstate /I no $ at the of the name implies an INTEGER (never FLOAT)
/I'so AS INTEGER not necessary
DIM array [10] AS STRING

https://connectivity.lairdtech.com/wireless- 48 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

5.8 Constants

5.8.1 Numeric Constants

Numeric Constants can be defined in decimal, hexadecimal, octal, or binary using the following nomenclature:

Decimal D’1234 or 1234 (default)
Hex H'1234 or 0x1234

Octal 0’1234

Binary B’01010101

Floating 123.45 or 1.2345e2
Point

Note: By default, all numbers are assumed to be in decimal format.

The maximum integer signed constant that can be entered in an application is 2147483647 and the minimum is -
2147483648.

The maximum float constant that can be entered in an application is approximately 3.402823e38 and all integers with 6 or
fewer significant digits can be represented without loss of precision. (source: https://en.wikipedia.org/wiki/Single-
precision_floating-point_format)

A hexadecimal constant consists of a string consisting of characters 0 to 9, and A to F (a to f). It must be prefixed by the two-
character token H' or h' or Ox.

H'1234
h'DEADBEEF
0x1234

An octal constant consists of a string consisting of characters 0 to 7. It must be prefixed by the two-character token O' or o'

0'1234
0'5643

A binary constant consists of a string consisting of characters 0 and 1. It must be prefixed by the two-character token B' or
b'.

B'11011100
b'11101001

A binary constant can consist of 1 to 32 bits and is left padded with Os.
5.8.2 String Constants

A string constant is any sequence of characters starting and ending with the " character. To embed the " character inside a
string constant specify it twice.

"Hello World"
"Laird ""Rocks""" // in this case the string is stored as Laird "Rocks”

Non-printable characters and print format instructions can be inserted within a constant string by escaping using a starting
‘\’ character and two hexadecimal digits. Some characters are treated specially and only require a single character after the
‘\’ character.

The table below lists the supported characters and the corresponding string.

https://connectivity.lairdtech.com/wireless- 49 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Linefeed \n) \22 or *"
Carriage return \r A \41
Horizontal Tab \t B \42

\ \5C etc....

5.9 Compiler Related Commands and Directives

591 #SET

The smartBASIC complier converts applications into an internally compiled program on a line by line basis. It has strict rules
regarding how it interprets commands and variable types. In some cases, it is useful to modify this default behavior,
particularly within user defined functions and subroutines or when developing applications and temporary code needs to
be added to monitor variables using print statements. To allow this, a special directive is provided - #SET.

#SET is a special directive which instructs the complier to modify the way that it interprets commands and variable types. In
normal usage you should never have to modify any of the values.

#SET must be asserted before the source code that it affects, or the compiler behavior will not be altered.

#SET can be used multiple times to change the tokeniser behavior throughout a compilation.

H#SET commandID, commandValue

Arguments
cmdID Command ID and valid range is 0..10000
cmdValue Any valid integer value

Currently smartBASIC supports the following cmdIDs:

1 0 1 0 Default Simple Arguments type for routines. 0 = ByVal, 1=ByRef
2 0 1 1 Default Complex Arguments type for routines. 0 = ByVal, 1=ByRef
3 8 256 32 Stack length for Arithmetic expression operands
4 4 256 8 Stack length for Arithmetic expression constants
5 16 65535 1024 Maximum number of simple global variables per application
6 16 65535 1024 Maximum number of complex global variables per application
7) 65535 32 Maximum number of simple local variables per routine in an
application
8 5 65535 32 Maximum number of complex local variables per routine in an
application
9 2 32767 256 Max array size for simple variables in DIM
10 2 32767 256 Max array size for complex variables in DIM
smallest Conditional compilation mask . . .
1 ve 32bit Largest The Cmdld can also be referred to using the string ‘Scmpif’
value +ve 0 For example, #SET Scmpif,nnn
32bit The ‘nnn’ value is a mask
https://connectivity.lairdtech.com/wireless- 50 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

value See Note 2 below for more details of how to use the #cmpif
conditional statement

Note 1: Unlike other commands, #SET may not be combined with any other commands on a line.

Note 2: The syntax of the conditional compile statement is:
#cmpif constant_integer_expression : statement
When ‘nnn’ in the #set command is 0, then any statements starting with #cmpif are NOT converted into any
object code. If ‘nnn’ is non zero, then for all #cmpif constant_integer_expression statements if (nnn &
constant_integer_expression) results in a non-zero value, then the statement(s) following the : separator gets
compiled into object code.
For example
#set Scmpif,0x4
dima:a=0
#cmpif Ox1 : print “This will not get printed because 4&1 is equal to 0”
#cmpif Ox5 : print “This will get printed because 5&1 no equal to 0”
#cmpif Ox5 : a=42 //a will be set to 42
#cmpif 0x2 : z=100 //a will not be set to 100

Further note:
If (constant_integer_expression & mmm) evaluates to 0 then the rest of the entire line will not get compiled
even if the line contains multiple statements separated by the ‘.’ character.

‘Example

#set1, 1 ‘change default simple args to byRef
#set 2, 0 ‘change default complex args to byVal

5.10 Arithmetic Expressions

Arithmetic expressions are a sequence of INTEGER and FLOAT constants, variables, and operators. At runtime the
arithmetic expression, which is normally the right hand side of an = sign, is evaluated. Where it is set to a variable, then the
variable takes the value and class of the expression (such as INTEGER or FLOAT).

If the arithmetic expression is invoked in a conditional statement, its default type is an INTEGER.

INTEGER and FLOAT variable types should not be mixed but can be.

A quirk of the compiler is that when parsing an expression it will determine the type (INTEGER or FLOAT) at the beginning
and then for each variable that is encountered that is not of the expected type, it will auto-cast at that point. So for
example, if you have an integer expression where it encounters vFloatl+vFloat2 and the values are 1.5 and 0.6, then result
will be 1+0=1 and not the value 2 given 1.5 and 0.6 is 2.1 hence intuitively you would expect it to be 2.

/[Example :: Arithmetic.sb (See in Firmware Zip file)
DIM sum1,bit1,bit2
bitl =2

bit2 =3

DIM volume,height,area

https://connectivity.lairdtech.com/wireless- 51 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

" height=5

area = 20

sum1l = bitl + bit2

volume = height * area

print "\nSum1 = ";sum1

print "\nVolume = ";volume;"\n"

Expected Output:

Suml =

Volume = 100

Arithmetic operators can be unitary or binary. A unitary operator acts on a variable or constant which follows it, whereas a
binary operator acts on the two entities on either side.

Operators in an expression observe a precedence which is used to evaluate the result using reverse polish notation. An
explicit precedence order can be forced by using (and) in the usual manner.

The following is the order of precedence within operators:
= Unitary operators have the highest precedence

! logical NOT
~ | bit complement (Not legal with FLOAT types)

- negative (negate the variable or number — multiplies it by -1)

+ | positive (make positive — multiplies it by +1)

= Precedence then devolves to the binary operators in the following order:

* Multiply

/ | Divide

% | Modulus (Not legal with FLOAT types)
+ | Addition

- Subtraction

<< | Arithmetic Shift Left (Not legal with FLOAT types)
>> | Arithmetic Shift Right (Not legal with FLOAT types)

< Less Than (results in a 0 or 1 value in the expression)

<= | Less Than or Equal (results in a 0 or 1 value in the expression)

> | Greater Than (results in a 0 or 1 value in the expression)

>= | Greater Than or Equal (results in a 0 or 1 value in the expression)

== | Equal to (resultsin a 0 or 1 value in the expression)

I= | Not Equal to (results in a 0 or 1 value in the expression)

& | Bitwise AND (Not legal with FLOAT types)

A Bitwise XOR (exclusive OR) (Not legal with FLOAT types)
https://connectivity.lairdtech.com/wireless- 52 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

| Bitwise OR (Not legal with FLOAT types)
&& | Logical AND (resultsin a 0 or 1 value in the expression)

AA | Logical XOR (results in a 0 or 1 value in the expression)

|| | Logical OR (resultsin a 0 or 1 value in the expression)

5.11 Conditionals

Conditional functions are used to alter the sequence of program flow by providing a range of operations based on checking
conditions.

Note: smartBASIC does not support program flow functionality based on unconditional statements, such as JUMP or
GOTO. In most cases where a GOTO or JUMP might be employed, ONERROR conditions are likely to be more
appropriate.

Conditional blocks can be nested. This applies to combinations of DO, UNTIL, DOWHILE, FOR, IF, WHILE, and SELECT. The
depth of nesting depends on the build of smartBASIC but in general, nesting up to 16 levels is allowed and can be modified
using the AT+CFG command.

Please note SELECT and FOR compound statements will not accept FLOAT type in the condition expression and neither will
CASE X.

5.11.1 DO / UNTIL

This DO/UNTIL construct allows a block of one or more statements to be processed until a condition becomes true.

DO
statement block
UNTIL arithmetic expr
= Statement block — A valid set of program statements. Typically, several lines of application.

= Arithmetic expression — A valid arithmetic or logical expression. Arithmetic precedence is defined in the section
‘Arithmetic Expressions’.

For DO / UNTIL, if the arithmetic expression evaluates to zero, then the statement block is executed again. Care should be
taken to ensure this does not result in infinite loops.

Interactive Command: NO

/[Example :: DoUntil.sb (See in Firmware Zip file)
DIM a AS INTEGER //don’t really need to supply AS INTEGER
a=1
DO
a=atl
PRINT a
UNTIL a==10 //loop will end when A gets to the value 10

Expected Output:

2345678910

DO / UNTIL is a core function.

https://connectivity.lairdtech.com/wireless- 53 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

5.11.2 DO / DOWHILE

This DO / DOWHILE construct allows a block of one or more statements to be processed while the expression in the
DOWHILE statement evaluates to a true condition.

DO
statement block
DOWHILE arithmetic expr
= Statement block — A valid set of program statements. Typically, several lines of application

= Arithmetic expression — A valid arithmetic or logical expression. Arithmetic precedence is defined in the section
‘Arithmetic Expressions’.

For DO / DOWHILE, if the arithmetic expression evaluates to a non-zero value, then the statement block is executed again.
Care should be taken to ensure this does not result in infinite loops.

Interactive Command: NO

/[Example :: DoWhile.sb (See in Firmware Zip file)
DIM a AS INTEGER //don’t really need to supply AS INTEGER
a=1
DO
a=atl
PRINT a
DOWHILE a<10 //loop will end when A gets to the value 10

Expected Output:

‘ 2345678910 I

DO / DOWHILE is a core function.
5.11.3 FOR / NEXT

The FOR / NEXT composite statement block allows program execution to be controlled by the evaluation of several
variables. Using the tokens TO or DOWNTO determines the order of execution. An optional STEP condition allows the
conditional function to step at other than unity steps. Given the choice of either TO/DOWNTO and the optional STEP, there
are four variants:

FOR var = arithexprl TO arithexpr2
statement block
NEXT

FOR var = arithexprl TO arithexpr2 STEP arithexpr3
statement block
NEXT

FOR var = arithexprl DOWNTO arithexpr2
statement block
NEXT

FOR var = arithexprl DOWNTO arithexpr2 STEP arithexpr3
statement block

NEXT
https://connectivity.lairdtech.com/wireless- 54 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

= Statement block — A valid set of program statements. Typically, several lines of application which can include nested
conditional statement blocks.

= Var— A valid INTEGER variable which can be referenced in the statement block

= Arithexprl — A valid arithmetic or logical expression. arithexpr1 is enumerated as the starting point for the FOR NEXT
loop.

= Arithexpr2 — A valid arithmetic or logical expression. arithexpr2 is enumerated as the finishing point for the FOR NEXT
loop.

= Arithexpr3 — A valid arithmetic or logical expression. arithexpr3 is enumerated as the step in variable values in
processing the FOR NEXT loop. If STEP and arithexpr3 are omitted, then a unity step is assumed.

Note: Arithmetic precedence, is as defined in the section ‘Arithmetic Expressions’

The lines of code comprising the statement block are processed with var starting with the value calculated or defined by
arithexprl. When the NEXT command is reached and processed, the STEP value resulting from arithexpr3 is added to var if
TO is specified, or subtracted from var if DOWNTO is specified.

The function continues to loop until the variable var contains a value less than or equal to arithexpr2 in the case where TO
is specified, or greater than or equal to arithexpr2 in the alternative case where DOWNTO is specified.

Interactive Command: NO

/IExample :: ForNext.sb (See in Firmware Zip file)
DIM a
FORa=1TO 2
PRINT "Hello"
NEXT

print "\n"

FOR a=2 DOWNTO 1
PRINT "Hello"
NEXT

print "\n"
FORa=1TO4 STEP?2

PRINT "Hello"
NEXT

Expected Output:

HelloHello

HelloHello

HelloHello

FOR / NEXT is a core function.

https://connectivity.lairdtech.com/wireless- 55 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

5.11.4 IF THEN / ELSEIF / ELSE / ENDIF

The IF statement construct allows a block of code to be processed depending on the evaluation of a condition expression. If
the statement is true (equates to non-zero), then the following block of application is processed until an ENDIF, ELSE, or
ELSEIF command is reached.

Each ELSEIF allows an alternate statement block of application to be executed if that conditional expression is true and any
preceding conditional expressions were untrue.

Multiple ELSEIF commands may be added, but only the statement block immediately following the first true conditional
expression encountered is processed within each IF command.

The final block of statements is of the form ELSE and is optional.

IF arithexpr_1 THEN
statement block A
ENDIF

IF arithexpr_1 THEN
statement block A
ELSE

statement block B
ENDIF

IF arithexpr_1 THEN
statement block A
ELSEIF arithexpr_2 THEN
statement block B

ELSE

statement block C
ENDIF

= Statement block A|B|C — A valid set of zero or more program statements.

= Arithexpr_n — A valid arithmetic or logical expression. A valid arithmetic or logical expression. Arithmetic precedence,
is as defined in the section ‘Arithmetic Expressions’.

All IF constructions must be terminated with an ENDIF statement.

Note: As the arithmetic expression in an IF statement is making a comparison, rather than setting a variable, the
double == operator MUST be used, e.g.

IF i==3 THEN : SLEEP(200)

See the Arithmetic Expressions section for more options.

Interactive Command: NO

/[Example :: IfThenElse.sb (See in Firmware Zip file)

DIM n

n=1

IF n>0 THEN
PRINT "Laird Rocks\n"

ENDIF

IF n==0 THEN
PRINT "n is 0"

https://connectivity.lairdtech.com/wireless- 56 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

' ELSEIF n==1 THEN
PRINT "nis 1"
ELSE
PRINT "nis not 0 nor 1"
ENDIF

Expected Output:

Laird Rocks

IF is a core function.

5.11.5 WHILE / ENDWHILE

The WHILE command tests the arithmetic expression that follows it. If it equates to non-zero, then the following block of
statements is executed until an ENDWHILE command is reached. If it is zero, then execution continues after the next

ENDWHILE.

WHILE arithexpr
statement block
ENDWHILE

= Statement block — A valid set of zero or more program statements.
= Arithexpr — A valid arithmetic or logical expression. Arithmetic precedence, is as defined in the section ‘Arithmetic

Expressions’.

All WHILE commands must be terminated with an ENDWHILE statement.

Interactive Command: NO

/[Example :: While.sb (See in Firmware Zip file)
DIMn
n=0

//mow print “Hello” ten times

WHILE n<10
PRINT " Hello " ;n
n=n+1

ENDWHILE

Expected Output:

Hello 0 Hello 1 Hello 2 Hello 3 Hello 4 Hello 5 Hello 6 Hello 7 Hello 8 Hello 9

WHILE is

a core function.

57 Americas: +1-800-492-2320

modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

https://connectivity.lairdtech.com/wireless-

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

5.11.6 SELECT / CASE / CASE ELSE / ENDSELECT

SELECT is a conditional command that uses the value of an INTEGER arithmetic expression to pass execution to one of
several blocks of statements which are identified by an appropriate CASE nnn statement, where nnn is an INTEGER constant
only (FLOAT is specifically not allowed). After completion of the code, which is marked by a CASE nnn or CASE ELSE
statement, execution of the application moves to the line following the ENDSELECT command. In a sense, it is a more
efficient implementation of an IF block with many ELSEIF statements.

An initial block of code can be included after the SELECT statement. This is always processed. When the first CASE
statement is encountered, execution moves to the CASE statement corresponding to the computed value of the arithmetic
expression in the SELECT command.

After selection of the appropriate CASE, the relevant statement block is executed until a CASE, BREAK or ENDSELECT
command is encountered. If a match is not found, then the CASE ELSE statement block is run.

It is mandatory to include a final CASE ELSE statement as the final CASE in a SELECT operation.

SELECT arithexpr
unconditional statement block
CASE integerconstA
statement block A
CASE integerconstB
statement block B
CASE integerconstc, integerconstd, integerconste, integerconstf, ...
statement block C
CASE ELSE
statement block
ENDSELECT

= Unconditional statement block — An optional set of program statements, which are always executed.
= Statement block — A valid set of zero or more program statements.

= Arithexpr — A valid INTEGER arithmetic or logical expression. Arithmetic precedence, is as defined in the section
‘Arithmetic Expressions’.

= |IntegerconstX — One or more comma separated integer constants corresponding to one of the possible values of
arithexpr which identifies the block that is processed.

Interactive Command: NO

/IExample :: SelectCase.sb (See in Firmware Zip file)
DIM a,b,c
a=3:b=4 /IUse ":" to write multiple commands on one line
SELECT a*b
CASE 10
c=10
CASE 12 /Ithis block will get processed
c=12
CASE 14, 156, 789, 1022
c=-1
CASE ELSE
c=0
ENDSELECT
PRINT c

https://connectivity.lairdtech.com/wireless- 58 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Expected Output:

12

SELECT is a core function.
5.11.7 BREAK

BREAK is relevant in a WHILE/ENDWHILE, DO/UNTIL, DO/DOWHILE, FOR/NEXT, or SELECT/ENDSELECT compound construct.
It forces the program counter to exit the currently processing block of statements.

For example, in a WHILE/ENDWHILE loop, the statement BREAK stops the loop and forces the command immediately after
the ENDWHILE to be processed. Similarly, in a DO/UNTIL, the statement immediately after the UNTIL is processed.

BREAK

Interactive Command: NO

/[Example :: Break.sb (See in Firmware Zip file)
DIM n
n=0

WHILE n<10
n=n+1
IF n==5 THEN
BREAK
ENDIF
PRINT "Hello " ;n
ENDWHILE

PRINT "\nFinished\n"

Expected Output:

Hello 1Hello 2Hello 3Hello 4

Finished

BREAK is a core function.
5.11.8 CONTINUE

CONTINUE is used within a WHILE/ENDWHILE, DO/UNTIL, DO/DOWHILE, or FOR/NEXT compound construct, where it forces
the program counter to jump to the beginning of the loop.

CONTINUE

Interactive

Y
Command es

/IExample :: Continue.sb (See in Firmware Zip file)

https://connectivity.lairdtech.com/wireless- 59 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

WHILE n<10
n=n+1
IF n==5 THEN
CONTINUE
ENDIF
PRINT "Hello " ;n
ENDWHILE

PRINT "\nFinished\n"

Expected Output:

Hello 1Hello 2Hello 3Hello 4Hello ©Hello 7Hello 8Hello 9Hello 10

CONTINUE is a core function.

5.12 Error Handling

Error handling functions are provided to allow program control for instances where exceptions are generated for errors.
These allow graceful continuation after an error condition is encountered and are recommended for robust operation in an
unattended embedded use case scenario.

In an embedded environment, it is recommended to include at least one ONERROR and one ONFATALERROR statement
within each application. This ensures that if the module is running unattended, then it can reset and restart itself without
the need for operator intervention.

5.12.1 ONERROR

ONERROR is used to redirect program flow to a handler function that can attempt to modify operation or correct the cause
of the error. Three different options are provided in conjunction with ONERROR: REDO, NEXT, and EXIT.

The GETLASTERROR() command should be used in the handler routine to determine the type of error that was generated.

ONERROR REDO routine On return from the routine, the statement that originally caused the error is
reprocessed.

ONERROR NEXT routine On return from the routine, the statement that originally caused the error is
skipped and the following statement is processed.

ONERROR EXIT If an error is encountered, the application exits and returns operation to
Interactive Mode.

Arguments
Routine The handler SUB that is called when the error is detected. This must be a SUB routine which
takes no parameters. It must not be a function. It must exist within the application PRIOR to this
ONERROR command being compiled.
Interactive No
Command
https://connectivity.lairdtech.com/wireless- 60 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

/[Example :: OnError.sb (See in Firmware Zip file)
DIM a,b,c
SUB HandlerOnErr() /IDo this when an error occurs
DIM le
le = GetLastError()
PRINT "Error code 0x";le;" denotes a Divide by zero error.\n"
PRINT "Let's make b equal 25 instead of 0\n\n"
b=25
ENDSUB
a=100 : b=0
ONERROR REDO HandlerOnErr //Calls the "HandlerOnErr" routine.
/IAfter that, the error causing statement
/l(below) is reprocessed
c=a/b

print "c now equals ";c

Expected Output:

Error code 0x1538 denotes a Divide by zero error.

Let's make b equal 25 instead of 0

c now equals 4

ONERROR is a core function.
5.12.2 ONFATALERROR

ONFATALERROR is used to redirect program flow to a subroutine that can attempt to modify operation or correct the cause
of a fatal error. Three different options are provided — REDO, NEXT, and EXIT.

The GETLASTERROR() command should be used in the subroutine to determine the type of error that was generated.

ONFATALERROR REDO routine On return from the routine, the statement that originally caused the error is
reprocessed.

ONFATALERROR NEXT routine On return from the routine, the statement that originally caused the error is
skipped and the following statement is processed.

ONFATALNERROR EXIT If an error is encountered, the application exits and returns the operation to
Interactive Mode.

ONFATALERROR is a core function.

5.13Event Handling

An application written for an embedded platform is left unattended and in most cases, waits for something to happen in
the real world, which it detects via an appropriate interface. When something happens, it needs to react to that event. This
is unlike sequential processing where the program code order is written in the expectation of a series of preordained
events. Real world interaction is not like that and so this implementation of smartBASIC has been optimized to force the
developer of an application to write applications as a group of handlers used to process events in the order as and when
those events occur.

https://connectivity.lairdtech.com/wireless- 61 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

This section describes the statements used to detect and manage those events.

5.13.1 WAITEVENT

WAITEVENT is used to wait for an event, at which point an event handler is called. The event handler must be a function
that takes no arguments and returns an INTEGER.

If the event handler returns a zero value, then the next statement after WAITEVENT is processed. Otherwise WAITEVENT
continues to wait for another event.

WAITEVENT

Interactive Command Yes

FUNCTION Func0()
PRINT "\nEVO"
ENDFUNC 1

FUNCTION Funcl()
PRINT "\nEV1"

ENDFUNC 0

ONEVENT EVO CALL Func0
ONEVENT EV1 CALL Funcl

WAITEVENT /Iwait for an event to occur

PRINT "\n Got here because EV1 happened"

WAITEVENT is a core function.
5.13.2ONEVENT

ONEVENT is used to redirect program flow to a predefined FUNCTION that can respond to a specific event when that event

occurs. This is commonly an external event, such as an I/0 pin change or a received data packet, but can be a software
generated event too.

ONEVENT symbolic_name CALL routine When a particular e\./e.nt is detfected, program execution is
directed to the specified function.

A previously declared ONEVENT for an event is unbound from

ONEVENT symbolic_name DISABLE the specified sub.ro.utlne. T.hIS allows fqr complex a.ppllcatlons
that need to optimise runtime processing by allowing an
alternative to using a SELECT statement.

Events are detected from within the run-time engine — in most cases via interrupts - and are only processed by an
application when a WAITEVENT statement is processed.

Until the WAITEVENT, all events are held in a queue.

Note: When WAITEVENT services an event handler, if the return value from that routine is non-zero, then it
continues to wait for more events. A zero value forces the next statement after WAITEVENT to be processed.

https://connectivity.lairdtech.com/wireless- 62 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Arguments

Routine The FUNCTION that is called when the event is detected. This must be a function which
returns an INTEGER and takes no parameters. It must not be a SUB routine. It must exist
within the application PRIOR to this ONEVENT command.

Symbolic_Name | A symbolic event name which is predefined for a specific smartBASIC module.
Some Symbolic Event Names:
A partial list of symbolic event names are as follows:

EVTMRnN Timer n has expired (see Timer Events)
EVUARTRX Data has arrived in UART interface
EVUARTTXEMPTY The UART TX ring buffer is empty

Note: Some symbolic names are specific to a particular hardware implementation.

Interactive

Command No

Note: This example was written for the BL600 module so the signal numbers used in the GpioBindEvent() statements
may be different depending on your module.

/[Example :: OnEvent.sb (See in BL600CodeSnippets)
DIM rc

FUNCTION BtnOpress()
PRINT "\nButton 0 has been pressed™
ENDFUNC 1 /IWill continue waiting for an event

FUNCTION BtnOrel()
PRINT "\nButton 0 released. Resume waiting for an event\n"
ENDFUNC 1

FUNCTION Btnlpress()
PRINT "\nButton 1 has been pressed"
ENDFUNC 1

FUNCTION Btn1rel()
PRINT "\nButton 1 released. No more waiting for events\n"
ENDFUNC 0

rc = gpiobindevent(0,16,0) //binds gpio transition high on sio16 (button 0) to event 0
rc = gpiobindevent(1,16,1) /Ibinds gpio transition low on sio16 (button 0) to event 1
rc = gpiobindevent(2,17,0) /Ibinds gpio transition high on siol6 (button 1) to event 2
rc = gpiobindevent(3,17,1) /Ibinds gpio transition low on sio16 (button 2) to event 3

onevent evgpiochan0 call BtnOrel //detects when button 0 is released and calls the function

https://connectivity.lairdtech.com/wireless- 63 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

© onevent evgpiochanl call BtnOpress //detects when button O is pressed and calls the function
onevent evgpiochan2 call Btnlrel //detects when button 1 is released and calls the function

onevent evgpiochan3 call Btnlpress //detects when button 1 is pressed and calls the function

PRINT "\nWaiting for an event...\n"
WAITEVENT /lwait for an event to occur

PRINT "\nGot here because evgpiochan2 happened"

Expected Output:

Waiting for an event...

Button 0 has been pressed

Button 0 released. Resume waiting for an event

Button 1 has been pressed

Button 1 released. No more waiting for events

Got here because evgpiochan3 happened

ONEVENT is a core function.

5.14Miscellaneous Commands
514.1 PRINT

The PRINT statement directs output to an output channel which may be the result of multiple comma or semicolon
separated arithmetic or string expressions. The output channel is a UART interface on most platforms.

PRINT exprlist

Arguments

exprlist An expression list which defines the data to be printed consisting of comma or semicolon
separated arithmetic or string expressions.

Interactive
Yes

Command

Formatting with PRINT — Expression Lists

Expression lists are used for outputting data — principally with the PRINT and the SPRINT command. Two types of Expression
lists are allowed — arithmetic and string. Multiple valid Expression lists may be concatenated with a comma or a semicolon
to form a complex Expression list.

The use of a comma forces a TAB character between the Expression lists it separates and a semicolon generates no output.
The latter results in the output of two expressions being concatenated without any white space.

Numeric Expression Lists
https://connectivity.lairdtech.com/wireless- 64 Americas: +1-800-492-2320

modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Numeric variables are formatted in the following form:
<type.base> arithexpr <separator>
Where,

= Type — Must be INTEGER or FLOAT for simple variables

= base — Integers can be forced to print in decimal, octal, binary, or hexadecimal by prefixing with D’, O’, B’, or H’
respectively. Floats can be forced to print in NN.DD or NN.DD eEE format using the .F’ and .E’ respectively.
For example, INTEGER.h’ somevar results in the content of somevar being output as a hexadecimal string and
FLOAT.F’ somevar results in output that is format nnnn.dddd

= Arithexpr — A valid arithmetic or logical expression.

= Separator — One of the characters, or ; which have the following meaning:

, Insert a tab before the next variable.

; Print the next variable without a space.

String Expression Lists
String variables are formatted in the following form:
<type . minchar> strexpr< separator>

= Type — Must be STRING for string variables. The type must be followed by a full stop to delineate it from the width
field that follows.

= Minchar — An optional parameter which specifies the number of characters to be printed for a string variable or
expression. If necessary, leading spaces are filled with spaces.

= strexpr - A valid string or string expression.

= Separator — One of the characters, or ; which have the following meaning:

, Insert a tab before the next variable.

; Print the next variable without a space.

/[Example :: Print.sb (See in Firmware Zip file)
PRINT "Hello \n"

DIM a

DIM f as FLOAT

a=100: f=12.34

PRINT "\nF as float '; FLOAT.E' f ;"\n"
PRINT a

PRINT "\nIn Hex", "0x"; INTEGER.H' a ;"\n"
PRINT "In Octal ", INTEGER.O' a ;"\n"
PRINT "In Binary ", INTEGER.B'a ;"\n"

Expected Output:

Hello

F as float 1.234e+01

100

In Hex 0x00000064

In Octal 00000000144

In Binary 000000000000000000000000001100100

PRINT is a core function.

https://connectivity.lairdtech.com/wireless- 65 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

5.14.2SPRINT

The SPRINT statement directs output to a string variable, which may be the result of multiple comma or semicolon
separated arithmetic or string expressions.

It is very useful for creating strings with formatted data.

SPRINT #stringvar, exprlist

Arguments

Stringvar A pre-declared string variable.

Exprlist An expression list which defines the data to be printed; consisting of comma or semicolon
separated arithmetic or string expressions.

Interactive Yes

Command

Formatting with SPRINT — Expression Lists

Expression lists are used for outputting data — principally with the PRINT command and the SPRINT command. Two types of
Expression lists are allowed — arithmetic and string. Multiple valid Expression lists may be concatenated with a comma or a
semicolon to form a complex Expression list.

The use of a comma forces a TAB character between the Expression lists it separates and a semicolon generates no output.
The latter results in the output of two expressions being concatenated without any whitespace.

Numeric Expression Lists
This is exactly as per the PRINT statement described in the previous section.

/IExample :: SPrint.sb (See in Firmware Zip file)

DIM a,s$: a=100
/INote: SPRINT replaces the content of s$ with exprlist each time it is used
SPRINT #s$,a //s$ now contains 100

PRINT "\n";s$;"\n"
SPRINT #s$,INTEGER.H'a //s$ now contains 64

PRINT s$;"\n"

SPRINT #s$,INTEGER.O'a //s$ now contains 144
PRINT s$;"\n"

SPRINT #s$,INTEGER.B'a //s$ now contains 1100100
PRINT s$;"\n"

Expected Output:

100

00000064

00000000144
00000000000000000000000001100100

SPRINT is a core function.

https://connectivity.lairdtech.com/wireless- 66 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

514.3STOP
STOP is used within an application to stop it running so that the device falls back into Interactive Command line mode.
STOP

It is normally limited to use in the prototyping and debugging phases.

Once in Interactive Mode, the command RESUME is used to restart the application from the next statement after the STOP
statement.

Interactive Command No

/[Example :: Stop.sb (See in Firmware Zip file)
DIM a, s$
a=100

/INote: SPRINT replaces the content of s$ with exprlist each time it is used
SPRINT #s$,a /Is$ now contains 100

PRINT "\n";s$;"\n"

SPRINT #s$,INTEGER.H'a //s$ now contains 64

STOP

PRINT s$;"\n"

SPRINT #s$,INTEGER.O'a //s$ now contains 144

PRINT s$;"\n"

SPRINT #s$,INTEGER.B'a //s$ now contains 1100100

PRINT s$;"\n"

Expected Output:

100

01 0702
resume
00000064
00000000144

00000000000000000000000001100100

STOP is a core function.

https://connectivity.lairdtech.com/wireless- 67 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

5.14.4BP

COMMAND

The BP (Breakpoint) statement is used to place a BREAKPOINT in the body of an application. The integer constant that is
associated with each breakpoint is a developer supplied identifier which gets echoed to the standard output when that
breakpoint is encountered. This allows the application developer to locate which breakpoint resulted in the output.
Execution of the application is then paused and operation passed back to Interactive mode.

BP nnnn

After execution is returned to Interactive mode, either RESUME can be used to continue execution or the Interactive mode
command SO can be used to step through the next statements.

Note: The next state is the BP statement itself, hence multiple SO commands may need to be issued.

Arguments

nnnn A constant integer identifier for each breakpoint in the range 0 to 65535. The integers should
normally be unique to allow the breakpoint to be determined, but this is the responsibility of
the programmer. There is no limit to the number of breakpoints that can be inserted into an
application other than ensuring that the maximum size of the compiled code does not exceed
the 64K word limit.

Interactive No

Command

Note: Itis helpful to make the integer identifiers relevant to the program structure to help the debugging process. A
useful tip is to set them to the program line.

/[Example :: BP.sb (See in Firmware Zip file)
PRINT "hello"

BP 1234

PRINT "world"

PRINT "Laird"

PRINT "Rocks"

BP 5678

PRINT "the"

PRINT "“world"

https://connectivity.lairdtech.com/wireless- 68 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Expected Output (Depending on what order you use the commands SO and RESUME):

hello

21 BREAKPOINT 1234
resume

worldLairdRocks

21 BREAKPOINT 5678
SO

the

21 BREAKPOINT 5678
S0

world

21 BREAKPOINT 5678

BP is a core function.

6 CORE LANGUAGE BUILT-IN ROUTINES

Core Language built-in routines are present in every implementation of smartBASIC. These routines provide the basic
programming functionality. They are augmented with target specific routines for different platforms which are described in
the extension manual for the target platform.

6.1 Result Codes

Some of these built-in routines are subroutines, and some are functions. Functions always return a value, and for some of
these functions the value returned is a result code, indicating success or failure in executing that function. A failure may not
necessarily result in a run-time error (see GetlLastError() and ResetLastError()), but may lead to an unexpected output.

Being able to see what causes a failure greatly helps with the debugging process. If you declare an integer variable rc (for
example) and set its value to your function call, after the function is executed, you can print rc and see the result code. For
it to be useful, it must be in Hexadecimal form, so prefix your result code variable with INTEGER.H’ when printing it. You
can also save a bit of memory by printing the return value from the function directly, without the use of a variable.

/IExample :: ResultCodes.sb (See in Firmware Zip file)
DIM cB,nltems,rc,s$

rc=CircBufltems(cB,nltems)
PRINT INTEGER.H'rc

PRINT "\n"; /INew line

/[Printing return value directly
PRINT INTEGER.H'CircBufltems(cB,nltems)

/ITo remove the leading zeros

https://connectivity.lairdtech.com/wireless- 69 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

‘r SPRINT #s$, INTEGER.H'CircBufltems(cB,nltems)
 StrshiftLeft(s$,4) : PRINT s$

Now highlight the last four characters of the result code in UwTerminal and select Lookup Selected ErrorCode.

Teminal | BASIC | Config | About |
CTS4 DSR@ DCOM R RTSWV DTRIV BREAK[™ LocalEcho v LineMode[” |;|ea,||3|.,sep.,,l|

XCompile
KCompile + Load
XCompile + Load + Run

Compile + Load

Lookup Selected ErrorCode ‘_‘ ;

Nrvamlnad

Expected Output:

//smartBASIC Error Code: 073D -> "RUN INV CIRCBUF HANDLE"

6.2 Information Routines
6.2.1 GETLASTERROR

FUNCTION

GETLASTERROR is used to find the value of the most recent error and is most useful in an error handler associated with
ONERROR and ONFATALERROR statements which were described in the previous section.

You can get a verbose error description by printing the error value, then highlighting it in UwTerminal, and selecting
‘Lookup Selected ErrorCode’.

GETLASTERROR ()

Returns INTEGER Last error that was generated.

Exceptions = Local Stack Frame Underflow
= Local Stack Frame Overflow

Arguments | None

Interactive

Command No

/[Example :: GetLastError.sb (See in Firmware Zip file)
DIM err

err = GETLASTERROR()

PRINT "\nerror = 0x" ; INTEGER.H'err

Expected Output (If no errors from last application run):

error = 0x00000000
https://connectivity.lairdtech.com/wireless- 70 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

GETLASTERROR is a core function.
6.2.2 RESETLASTERROR

SUBROUTINE
Resets the last error, so that calling GETLASTERROR() returns a success.
RESETLASTERROR ()

Exceptions = Local Stack Frame Underflow

= Local Stack Frame Overflow

Arguments | None

Interactive

Command No

/[Example :: ResetLastError.sb (See in Firmware Zip file)
DIM err : err = GETLASTERROR()
RESETLASTERROR()

PRINT "\nerror = 0x" ; INTEGER.H'err

Expected Result:

error = 0x00000000

RESETLASTERROR is a core function.
6.2.3 SYSINFO

FUNCTION

Returns an informational integer value depending on the value of varld argument.

SYSINFO(varld)

Returns INTEGER. Value of information corresponding to integer ID requested.

Exceptions = Local Stack Frame Underflow
= Local Stack Frame Overflow

Arguments:
varld byVal varld AS INTEGER
An integer ID which is used to determine which information is to be returned as described
below.
0 ID of device, for the BL600 module the value is 0x42460600. Each platform type has
a unique identifier
3 Version number of Module Firmware. For example, W.X.Y.Z is returned as a 32-bit
value made up of the following:
(W<<26) + (X<<20) + (Y<<6) + (2)
where Y is the Build number and Z is the Sub-Build number
33 BASIC core version number
601 Flash File System: Data Segment: Total Space
602 Flash File System: Data Segment: Free Space
https://connectivity.lairdtech.com/wireless- 71 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

603 Flash File System: Data Segment: Deleted Space

611 Flash File System: FAT Segment: Total Space

612 Flash File System: FAT Segment: Free Space

613 Flash File System: FAT Segment: Deleted Space

631 NvRecord Memory Store Segment: Total Space

632 NvRecord Memory Store Segment: Free Space

633 NvRecord Memory Store Segment: Deleted Space

641 Config Keys Store Segment: Total Space

642 Config Keys Store Segment: Free Space

643 Config Keys Store Segment: Deleted Space

1000 BASIC compiler HASH value as a 32-bit decimal value

1001 How RAND() generates values: 0 for PRNG and 1 for hardware assist
1002 Minimum baudrate

1003 Maximum baudrate

1004 Maximum STRING size

1005 1 for run-time only implementation, 3 for compiler included

2000 Reset reason:

8 — Self-reset due to Flash Erase
9-ATZ
10 - Self-reset due to smartBASIC app invoking function RESET()

2002 Timer resolution in microseconds
2003 Number of timers available in a smartBASIC application

2004 Tick timer resolution in microseconds

Interactive

N
Command °

/[Example :: SysInfo.sb (See in Firmware Zip file)
PRINT "\nSysInfo 1000 =";SYSINFO(1000) // BASIC compiler HASH value
PRINT "\nSysiInfo 2003 =";SYSINFO(2003) // Number of timers

PRINT "\nSysInfo 0x8010 = ";SYSINFO(0x8010) // Code memory page size from FICR

Expected Output (For BL600):

SysInfo 1000 1315489536

SysInfo 2003 8
SysInfo 0x8010

SYSINFO is a core language function.
6.2.4 SYSINFO$

FUNCTION

Returns an informational string value depending on the value of varld argument.

https://connectivity.lairdtech.com/wireless- 72 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

SYSINFOS(varld)

Returns STRING. Value of information corresponding to integer ID requested.
Exceptions = Local Stack Frame Underflow
= Local Stack Frame Overflow
Arguments:
varld byVal varld AS INTEGER
An integer ID which is used to determine which information is to be returned as described below.
4 The Bluetooth address of the module. It is seven bytes long. First byte is 00 for IEEE public
address and 01 for random public address. Next six bytes are the address.
14 A random public address unique to this module. May be the same value as in 4 above unless
AT+MAC was used to set an IEEE mac address. It is seven bytes long. First byte is 00 for IEEE
public address and 01 for random public address. Next six bytes are the address.
Interactive No
Command

/[Example :: Sysinfo$.sb (See in Firmware Zip file)

PRINT "\nSysInfo$(4) =";SYSINFO$(4) // address of module
PRINT "\nSysInfo$(14) =";SYSINFO$(14) // public random address
PRINT "\nSysInfo$(0) =";SYSINFO$(0)

Expected Output:

SysInfo$ (4) \O1\FA\84\D7H\DO9\03

SysInfo$ (14) \O1\FA\84\D7H\D9\03

SysInfo$ (0)

SYSINFOS is a core language function.

6.3 Event & Messaging Routines
6.3.1 SENDMSGAPP

FUNCTION

This function is used to send an EVMSGAPP message to your application so that it can be processed by a handler from the
WAITEVENT framework. It is useful for serialized processing.

For messages to be processed, the following statement must be processed so that a handler is associated with the message.
ONEVENT EVMSGAPP CALL HandlerMsgApp

Where a handler such as the following has been defined prior to the ONEVENT statement as follows:

FUNCTION HandlerMsgApp(BYVAL nMsgld AS INTEGER, BYVAL nMsgCtx AS INTEGER) AS INTEGER
//do something with nMsgld and nMsgCtx

ENDFUNC 1
https://connectivity.lairdtech.com/wireless- 73 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

SENDMSGAPP(msgld, msgCtx)

Returns INTEGER 0000 if successfully sent.
Exceptions = Local Stack Frame Underflow
= local Stack Frame Overflow

Arguments:
msgld byVal msgld AS INTEGER

Presented to the EVMSGAPP handler in the msgld field
msgCtx byVal msgCtx AS INTEGER

Presented to the EVMSGAPP handler in the msgCtx field.
Interactive No
Command

/[Example :: SendMsgApp.sh (See in Firmware Zip file)
DIM rc

FUNCTION HandlerMsgApp(BYVAL nMsgld AS INTEGER, BYVAL nMsgCtx AS INTEGER) AS INTEGER
PRINT "\nld=";nMsgld;" Ctx=";nMsgCtx
ENDFUNC 1

ONEVENT EVMSGAPP CALL HandlerMsgApp
rc = SendMsgApp(100,200)
WAITEVENT

Expected Output:

Id=100 Ctx=200

SENDMSGAPP is a core function.

6.4 Arithmetic Routines (Integer)
6.4.1 ABS

FUNCTION

Returns the absolute value of its INTEGER argument.

ABS (var)
Returns INTEGER Absolute value of var.
Exceptions = Local Stack Frame Underflow
= Local Stack Frame Overflow
= |f the value of varis 0x80000000 (decimal -2,147,483,648) then an
exception is thrown as the absolute value for that value causes an
overflow as 33 bits are required to convey the value.
https://connectivity.lairdtech.com/wireless- 74 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide
Arguments:
var byVal var AS INTEGER
The variable whose absolute value is required.
Interactive No
Command

/[Example :: ABS.sb (See in Firmware Zip file)
DIM sl as INTEGER,s2 as INTEGER
s1=-2:52=4
PRINT s1, ABS(s1);"\n";s2, Abs(s2)

Expected Output:

ABS is a core language function.
6.4.2 MAX

FUNCTION

Returns the maximum of two integer values.

MAX (varl, var2)

Returns INTEGER The returned variable is the arithmetically larger of var1 and var2.
. = Local Stack Frame Underflow
Exceptions
= Local Stack Frame Overflow
Arguments:
arl byVal varl AS INTEGER
Vi
The first of two variables to be compared.
ar2 byVal var2 AS INTEGER
Vi
The second of two variables to be compared.
Interactive No
Command

/[Example :: MAX.sb (See in Firmware Zip file)

DIM s1,s2

s1=-2:s2=4

PRINT s1,s2

PRINT "\n The Maximum of these two integers is "'; MAX(s1,52)

Expected Output:

https://connectivity.lairdtech.com/wireless- 75 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

-2 4

The Maximum of these two integers is 4

MAX is a core language function.
6.4.3 MIN

FUNCTION
Returns the minimum of two integer values.

MIN (varl, var2)

Returns INTEGER The returned variable is the arithmetically smaller of var1 and var2.
. = Local Stack Frame Underflow
Exceptions
= Local Stack Frame Overflow

Arguments:
varl byVal varl AS INTEGER

The first of two variables to be compared.

ar2 byVal var2 AS INTEGER

Vi

The second of two variables to be compared.
Interactive NO
Command

/[Example :: MIN.sb (See in Firmware Zip file)

DIM s1,s2

s1=-2:s2=4

PRINT s1,s2

PRINT "\nThe Minimum of these two integers is "; MIN(s1,52)

Expected Output:

-2 4

The Maximum of these two integers is -2

MIN is a core language function.

6.5 Arithmetic Routines (Floating Point)

The underlying core functionality is derived from the library exposed by math.h in C and as such the outputs for each of
these functions can be seen by accessing, for example https://www.tutorialspoint.com/c_standard_library/math_h.htm

Note: FLOAT capability is an optional feature. Many Laird platforms may expose version 3 or newer capability, but
may not have FLOAT because the need for extra code memory prevents it from being added to the build.

6.5.1 ACOS
FUNCTION
Returns the arc cosine of X
https://connectivity.lairdtech.com/wireless- 76 Americas: +1-800-492-2320

modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

https://www.tutorialspoint.com/c_standard_library/math_h.htm

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide
ACOS(X)
Returns FLOAT
Exceptions » Local Stack Frame Underflow
= Local Stack Frame Overflow
Arguments:
X byVal X AS FLOAT
Interactive No
Command

ACOS is a core language function.
6.5.2 ACOSH
FUNCTION

Returns the inverse hyperbolic cosine of X

ACOSH(X)
Returns FLOAT
Exceptions = Local Stack Frame Underflow
= Local Stack Frame Overflow
Arguments:
X byVal X AS FLOAT
Interactive No
Command

ACOSH is a core language function.
6.5.3 ASIN
FUNCTION

Returns the arc sine of X

ASIN(X)
Returns FLOAT
Exceptions = Local Stack Frame Underflow
= Local Stack Frame Overflow
Arguments:
X byVal X AS FLOAT
Interactive N
Command

ASIN is a core language function.
6.5.4 ASINH
FUNCTION

Returns the inverse hyperbolic sine of X

https://connectivity.lairdtech.com/wireless- 77 Americas: +1-800-492-2320

modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide
ASINH(X)
Returns FLOAT
Exceptions = Local Stack Frame Underflow
= Local Stack Frame Overflow
Arguments:
X byVal X AS FLOAT
Interactive No
Command

ASINH is a core language function.
6.5.5 ATAN
FUNCTION

Returns the arc tan of X

ATAN(X)
Returns FLOAT
Exceptions » Local Stack Frame Underflow
= Local Stack Frame Overflow
Arguments:
X byVal X AS FLOAT
Interactive No
Command

ATAN is a core language function.
6.5.6 ATANH
FUNCTION

Returns the inverse hyperbolic tan of X

ATANH(X)
Returns FLOAT
Exceptions = Local Stack Frame Underflow
*» Local Stack Frame Overflow
Arguments:
X byVal X AS FLOAT
Interactive N
Command

ATANH is a core language function.

6.5.7 CEIL

FUNCTION

Returns the smallest integer value greater than or equal to X

https://connectivity.lairdtech.com/wireless- 78 Americas: +1-800-492-2320

modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality

Lai rd CONNECTIVITY

User Guide
CEIL(X)
Returns FLOAT
Exceptions = Local Stack Frame Underflow
= Local Stack Frame Overflow
Arguments:
X byVal X AS FLOAT
Interactive No
Command

CEIL is a core language function.
6.5.8 COS
FUNCTION

Returns the cosine of X in radians

COS(X)
Returns FLOAT
Exceptions » Local Stack Frame Underflow
= Local Stack Frame Overflow
Arguments:
X byVal X AS FLOAT
Interactive No
Command

COS is a core language function.
6.5.9 COSH
FUNCTION

Returns the hyperbolic cosine of X

COSH(X)
Returns FLOAT
Exceptions = Local Stack Frame Underflow
= Local Stack Frame Overflow
Arguments:
X byVal X AS FLOAT
Interactive No
Command

COSH is a core language function.
6.5.10EXP

FUNCTION

Returns the value of ‘e’ (2.71828) raised to the power of X.

https://connectivity.lairdtech.com/wireless- 79

modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality

User Guide

Lai rd CONNECTIVITY

Note: If you want the value of e in a variable, set it to EXP(1.0)

EXP (X)
Returns FLOAT
Exceptions *» Local Stack Frame Underflow
*» Local Stack Frame Overflow
Arguments:
X byVal X AS FLOAT
Interactive No
Command

EXP is a core language function.

6.5.11 FABS

FUNCTION

Returns the absolute value of its FLOAT argument.

FABS (X)
Returns FLOAT
Exceptions = Local Stack Frame Underflow
= Local Stack Frame Overflow
Arguments:
X byVal X AS FLOAT
Interactive No
Command

FABS is a core language function.

6.5.12FLOOR

FUNCTION

Returns the largest integer value less than or equal to X

FLOOR(X)

Returns FLOAT

Exceptions = Local Stack Frame Underflow

= Local Stack Frame Overflow

Arguments:

X byVal X AS FLOAT

Interactive No

Command

FLOOR is a core language function.

https://connectivity.lairdtech.com/wireless- 80
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

6.5.13FMOD
FUNCTION

Returns the remainder of X divided by Y

FMOD(X,Y)
Returns FLOAT
Exceptions = Local Stack Frame Underflow
= Local Stack Frame Overflow
Arguments:
X byVal X AS FLOAT
Y byVal Y AS FLOAT
Interactive No
Command

FMOD is a core language function.
6.5.14ISFINITE

FUNCTION

Returns 10 if X is a finite number that can be stored in a float type. Note that return value is of INTEGER type.

ISFINITE(X)

Returns INTEGER

Exceptions = Local Stack Frame Underflow

= Local Stack Frame Overflow

Arguments:

X byVal X AS FLOAT

Interactive No

Command

ISFINITE is a core language function.
6.5.15ISINF

FUNCTION

Returns 10 if X is an infinite number that can be stored in a float type. Note that return value is of INTEGER type.

ISINF(X)
Returns INTEGER
Exceptions *» Local Stack Frame Underflow
= Local Stack Frame Overflow

Arguments:

X byVal X AS FLOAT

Command | "
https://connectivity.lairdtech.com/wireless- 81 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality

User Guide

Lai rd CONNECTIVITY

ISINF is a core language function.

6.5.16 ISNAN

FUNCTION

Returns 10 if X is NaN (Not a Number). Note that return value is of INTEGER type.

ISNAN(X)

Returns INTEGER

Exceptions = Local Stack Frame Underflow

= Local Stack Frame Overflow

Arguments:

X byVal X AS FLOAT

Interactive No

Command

ISNAN is a core language function.

6.5.177LOG

FUNCTION

Returns the natural logarithm (base-e logarithm) of X

LOG(X)
Returns FLOAT
Exceptions = Local Stack Frame Underflow
= Local Stack Frame Overflow
Arguments:
X byVal X AS FLOAT
Interactive No
Command

LOG is a core language function.

6.5.18LOGI10

FUNCTION

Returns the logarithm (base-10 logarithm) of X

LOG10(X)
Returns FLOAT
Exceptions *» Local Stack Frame Underflow
= Local Stack Frame Overflow

Arguments:

X byVal X AS FLOAT
https://connectivity.lairdtech.com/wireless- 82
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality
User Guide

Lai rd CONNECTIVITY

Interactive No
Command

LOG10 is a core language function.
6.5.19PI

FUNCTION

Returns the value of PI (3.14.....)

PI()
Returns FLOAT
Exceptions = Local Stack Frame Underflow

= Local Stack Frame Overflow

Arguments: None

Interactive NoO
Command

Pl is a core language function.
6.5.20 POW
FUNCTION

Returns X raised to the power of Y

POW(X,Y)
Returns FLOAT
Exceptions = Local Stack Frame Underflow
= Local Stack Frame Overflow
Arguments:
X byVal X AS FLOAT
Y byVal Y AS FLOAT
Interactive No
Command

POW is a core language function.

6.5.21TROUND

FUNCTION

Returns the nearest whole number to X. If decimal value is from .0 to .5, it returns integer value less than the

argument.

If decimal value is from >0.5 to <(X+1).0, it returns the integer value greater than the argument.

ROUND(X)
Returns FLOAT
Exceptions » Local Stack Frame Underflow
https://connectivity.lairdtech.com/wireless- 83 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

= Local Stack Frame Overflow
Arguments:
X byVal X AS FLOAT
trsetve | No

ROUND is a core language function.
6.5.22 SIN
FUNCTION

Returns the sine of X in radians

SIN(X)
Returns FLOAT
Exceptions = Local Stack Frame Underflow
= Local Stack Frame Overflow
Arguments:
X byVal X AS FLOAT
Interactive No
Command

SIN is a core language function.
6.5.23 SINH
FUNCTION

Returns the hyperbolic sine of X

SINH(X)
Returns FLOAT
Exceptions *» Local Stack Frame Underflow
= Local Stack Frame Overflow
Arguments:
X byVal X AS FLOAT
Interactive No
Command

SINH is a core language function.

https://connectivity.lairdtech.com/wireless- 84 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY
User Guide

6.5.24 SQRT

FUNCTION

Returns the square root of X

SQRT(X)
Returns FLOAT
Exceptions = Local Stack Frame Underflow
= Local Stack Frame Overflow
Arguments:
X byVal X AS FLOAT
Interactive No
Command

SQRT is a core language function.
6.5.25 TAN
FUNCTION

Returns the tan of X in radians

TAN(X)
Returns FLOAT
Exceptions = Local Stack Frame Underflow
= Local Stack Frame Overflow
Arguments:
X byVal X AS FLOAT
Interactive No
Command

TAN is a core language function.
6.5.26 TANH
FUNCTION

Returns the hyperbolic tan of X

TANH(X)
Returns FLOAT
Exceptions = Local Stack Frame Underflow
= Local Stack Frame Overflow
Arguments:
X byVal X AS FLOAT
Interactive No
Command

TANH is a core language function.

https://connectivity.lairdtech.com/wireless- 85 Americas: +1-800-492-2320

modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

6.6 String Routines

When data is displayed to a user or a collection of octets need to be managed as a set, it is useful to represent them as
strings. For example, in BLE modules there is a concept of a database of ‘attributes’ which are just a collection of octets of
data up to 512 bytes in length.

To provide the ability to deal with strings, smartBASIC contains several commands that can operate on STRING variables.
6.6.1 LEFT$

Function

Retrieves the leftmost n characters of a string.

LEFTS(string,length)

Returns STRING The leftmost ‘length’ characters of string as a STRING object.

= Local Stack Frame Underflow
Exceptions = Local Stack Frame Overflow
= Memory Heap Exhausted

Arguments:
string byRef string A.\S STRI.NG .

The target string which cannot be a const string.
length byVal length AS INTEGER

The number of leftmost characters that are returned.
Interactive No
Command

If length’ is larger than the actual length of string then the entire string is returned

Notes: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first
save it to a temp string variable and then pass it to the function.

/IExample :: LEFT$.sb (See in Firmware Zip file)
DIM newstring$
DIM s$

s$="Arsenic"
newstring$ = LEFT$(s$,2)

print newstring$; “\n"

Expected Output:

Ar

LEFTS is a core language function.

FUNCTION
https://connectivity.lairdtech.com/wireless- 86 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Retrieves a string of characters from an existing string. The starting position of the extracted characters and the length of
the string are supplied as arguments.

If ‘pos’ is positive, then the extracted string starts from offset ‘pos’. If it is negative, then the extracted string starts from
offset ‘length of string — abs(pos)’

MIDS(string, pos, length)

Returns STRING The ‘length’ characters starting at offset ‘pos’ of string.

= Local Stack Frame Underflow
Exceptions = Local Stack Frame Overflow
= Memory Heap Exhausted

Arguments:
string | byRef string AS STRING
The target string which cannot be a const string.

pos | byVal pos AS INTEGER

The position of the first character to be extracted. The leftmost character position is 0 (see
examples).

length | byVal length AS INTEGER
The number of characters that are returned

Interactive

Command NO

If ‘length’ is larger than the actual length of string, then the entire string is returned from the position specified. Hence
pos=0, length=65535 returns a copy of string.

Note: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first
save it to a temp string variable and then pass it to the function.

Interactive Command: NO

/[Example :: MID.sb (See in Firmware Zip file)
DIM s$: s$="Arsenic"

DIM new$: new$ = MID$(s$,2,4)

PRINT new$; "\n"

Expected Output:

seni

MIDS is a core language function.
6.6.3 RIGHTS$

FUNCTION

Retrieves the rightmost n characters from a string.

RIGHTS(string, len)

Returns STRING The rightmost segment of length len from string.
https://connectivity.lairdtech.com/wireless- 87 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

= Local Stack Frame Underflow
Exceptions = Local Stack Frame Overflow
= Memory Heap Exhausted

Arguments:
. byRef string AS STRING
string . . .
The target string which cannot be a const string.
byVal length AS INTEGER
length .
The rightmost number of characters that are returned.
Interactive
Command NO

Note: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string,
first save it to a temp string variable and then pass it to the function.

If ‘length’ is larger than the actual length of string, then the entire string is returned.

/[Example :: RIGHT$.sb (See in Firmware Zip file)
DIM s$: s$="Parse"

DIM news$: new$ = RIGHT$(s$,3)

PRINT new$; "\n"

Expected Output:

RIGHTS is a core function.
6.6.4 STRLEN

FUNCTION
STRLEN returns the number of characters within a string.

STRLEN (string)

Returns INTEGER The number of characters within the string.

= Local Stack Frame Underflow

Exceptions
P = Local Stack Frame Overflow
Arguments:
i byRef string AS STRING
string . . :
The target string which cannot be a const string.
Interactive
Command NGO

/I[Example :: StrLen$.sb (See in Firmware Zip file)
DIM s$: s$="HelloWorld"

https://connectivity.lairdtech.com/wireless- 88 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

[PRINT "\n";s$;" is ";StrLen(S$);" bytes long"

Expected Output:

HelloWorld is 10 bytes long

STRLEN is a core function.
6.6.5 STRPOS

FUNCTION

STRPOS is used to determine the position of the first instance of a string within another string. If the string is not found
within the target string a value of -1 is returned.

STRPOS (stringl, string2, startpos)

INTEGER Zero indexed position of string2 within string1.

Returns >=0 If string2 is found within string1 and specifies the location where found
-1 If string2 is not found within string1
. = Local Stack Frame Underflow
Exceptions
= Local Stack Frame Overflow
Arguments:
. byRef string AS STRING
string1 N . . .
The target string in which string2 is to be searched for.
. byRef string AS STRING
string2 . L e . . .
The string that is being searched for within stringl. This may be a single character string.
byVAL startpos AS INTEGER
startpos -
Where to start the position search.
Interactive
Command NO
Note: STRPOS does a case sensitive search.
Note: stringland string2 cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a

const string, first save it to a temp string variable and then pass it to the function.

/[Example :: StrPos.sb (See in Firmware Zip file)

DIM s1$,52$

s1$="Are you there"

s2$="there"

PRINT "\nIn ";S1$;" the word "*;S2$;™ occurs at position *;StrPos(S1$,523,0)

Expected Output:

In 'Are you there' the word 'there' occurs at position 8

https://connectivity.lairdtech.com/wireless- 89 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

STRPOS is a core function.
6.6.6 STRSETCHR

FUNCTION

STRSETCHR allows a single character within a string to be replaced by a specified value. STRSETCHR can also be used to
append characters to an existing string by filling it up to a defined index.

If the nindex is larger than the existing string, then it is extended.

The use of STRSETCHR and STRGETCHR, in conjunction with a string variable allows an array of bytes to be created and
manipulated.

STRSETCHR (string, nChr, nindex)

INTEGER Represents command execution status.

0 If the block is successfully updated

Returns -1 If nChr is greater than 255 or less than 0
-2 If the string length cannot be extended to accommodate nindex
-3 If the resultant string is longer than allowed.

= Local Stack Frame Underflow
Exceptions = Local Stack Frame Overflow
= Memory Heap Exhausted

Arguments:
. byRef string AS STRING

string .
The target string.
byVal nCHr AS INTEGER

nChr The character that overwrites the existing characters. nChr must be within the
range 0 and 255.
byVal nindex AS INTEGER

nindex The position in the string of the character that is overwritten, referenced to a zero
index.

Interactive

Command NO

Note: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first

save it to a temp string variable and then pass it to the function.

/[Example :: StrSetChar.sb (See in Firmware Zip file)

DIM s$: s$="Hello"

PRINT StrSetChr(s$,64,0) 1164 is the ASCII decimal code for the char '@"
PRINT StrSetChr(s$,64,8) /1s$ will be extended

PRINT "\n";s$

Expected Output:

000
https://connectivity.lairdtech.com/wireless- 90 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

STRSETCHR is a core function.
6.6.7 STRGETCHR

FUNCTION

STRGETCHR is used to return the single character at position nindex within an existing string.

STRGETCHR (string, nindex)

INTEGER The ASCII value of the character at position nIndex within string, where nindex is zero
Returns based. If nindex is greater than the number of characters in the string or <0 then an error value
of -1 is returned.

= Local Stack Frame Underflow

Exceptions

P = Local Stack Frame Overflow
Arguments:
strin byRef string AS STRING

g The string from which the character is to be extracted.
nindex byVal nindex AS INTEGER

The position of the character within the string (zero based — see example).

Interactive
Command NGO
Note: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first

save it to a temp string variable and then pass it to the function.

//Example :: StrGetChar.sb (See in Firmware Zip file)
DIM s$: s$="Hello"

PRINT s$;"\n"

PRINT StrGetChr(s$,0), "-> ASCII value for 'H' \n"
PRINT StrGetChr(s$,1), "-> ASCII value for'e' \n"
PRINT StrGetChr (s$,-100), "-> error \n"

PRINT StrGetChr(s$,6), "-> error \n"

Expected Output:

Hello

72 -> ASCII value for 'H'
101 -> ASCII value for'e'
-1 -> error

-1 -> error

STRGETCHR is a core function.
6.6.8 STRSETBLOCK

FUNCTION
https://connectivity.lairdtech.com/wireless- 91 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

STRSETBLOCK allows a specified number of characters within a string to be filled or overwritten with a single character. The
fill character, starting position and the length of the block are specified.

STRSETBLOCK (string, nChr, nindex, nBlocklen)

INTEGER Represents command execution status.

0 If the block is successfully updated
-1 If nChr is greater than 255

Returns -2 If the string length cannot be extended to accommodate nBlocklen
-3 If the resultant string is longer than allowed
-4 If nChr is greater than 255 or less than 0
-5 if the nBlockLen value is negative

X = Local Stack Frame Underflow
Exceptions
= Local Stack Frame Overflow
Arguments:
. byRef string AS STRING

string . .
The target string to be modified
byVal nChr AS INTEGER

nChr The character that overwrites the existing characters.
nChr must be within the range 0 — 255

. byVal nindex AS INTEGER

nindex . . - :
The starting point for the filling block, referenced to a zero index.
byVal nBlocklen AS INTEGER

nBlocklen .
The number of characters to be overwritten

Interactive
N

Command ©

Note: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first

save it to a temp string variable and then pass it to the function.

/IExample :: StrSetBlock.sh (See in Firmware Zip file)
DIM s$: s$="HelloWorld"

PRINT s$;"\n"

PRINT StrSetBlock(s$,64,4,2) : PRINT "\n";s$;"\n"
PRINT StrSetBlock(s$,300,4,200) : PRINT "\n";s$

Expected Output:

HelloWorld
0
Hell@@orld

-4
Hell@@orld

STRSETBLOCK is a core function.

https://connectivity.lairdtech.com/wireless- 92 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

6.6.9 STRFILL

FUNCTION

STRFILL is used to erase a string and then fill it with a number of identical characters.

STRFILL (string, nChr, nCount)

INTEGER Represents command execution status.

0 If successful
-1 If nChr is greater than 255 or less than 0

Returns -2 If the string length cannot be extended due to lack of memory
-3 If the resultant string is longer than allowed or nCount is <0.
STRING

string contains the modified string
= Local Stack Frame Underflow
Exceptions = Local Stack Frame Overflow
= Memory Heap Exhausted

Arguments:
. byRef string AS STRING
string . .
The target string to be filled
byVal nChr AS INTEGER
nChr ASCIl value of the character to be inserted. The value of nChr should be between 0 and 255
inclusive.
byVal nCount AS INTEGER
nCount
The number of occurrences of nChr to be added.
Interactive
Command NO

The total number of characters in the resulting string must be less than the maximum allowable string length for that
platform.

Note: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first
save it to a temp string variable and then pass it to the function.

/[Example :: StrFill.sb (See in Firmware Zip file)
DIM s$: s$="hello"

PRINT s$;"\n"

PRINT StrFill(s$,64,7);"\n"

PRINT s$;"\n"

PRINT StrFill(s$,-23,7)

https://connectivity.lairdtech.com/wireless- 93 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Expected Output:

hello
7

@eeeeee
-1

STRFILL is a core function.
6.6.10 STRSHIFTLEFT

SUBROUTINE

STRSHIFTLEFT shifts the characters of a string to the left by a specified number of characters and drops the leftmost
characters. It is a useful subroutine to have when managing a stream of incoming data, as for example, a UART, 12C or SPI
and a string variable is used as a cache and the oldest N characters need to be dropped.

STRSHIFTLEFT (string, numChars)

= Local Stack Frame Underflow

Exceptions
P = Local Stack Frame Overflow
Arguments:
. byRef string AS STRING
string) .
The string to be shifted left.
byVal numChrs AS INTEGER
numChrs The number of characters that the string is shifted to the left.
If numChrs is greater than the length of the string, then the returned string is empty.
Interactive
Command NO
Note: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first

save it to a temp string variable and then pass it to the function.

/[Example :: StrShiftLeft.sh (See in Firmware Zip file)
DIM s$: s$="123456789"
PRINT s$;"\n"
StrShiftLeft(s$,4) //drop leftmost 4 characters
PRINT s$

Expected Output:

123456789

56789

STRSHIFTLEFT is a core function.
6.6.11 STRCMP

FUNCTION
Compares two string variables.

https://connectivity.lairdtech.com/wireless- 94 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

STRCMP(stringl, string2)

INTEGER A value indicating the comparison result:
0 —if string1 exactly matches string2 (the comparison is case sensitive)

Returns . . .)
1 —if the ASCII value of string1 is greater than string2
-1 - if the ASCII value of string1 is less than string2
i = Local Stack Frame Underflow
Exceptions
= Local Stack Frame Overflow
Arguments:
. byRef string1 AS STRING
string1 . .
The first string to be compared.
. byRef string2 AS STRING
string2 .
The second string to be compared.
Interactive
Command NGO
Note: stringland string2 cannot be a string constant (e.g. “the cat”); they must be a string variable. If you must use a

const string, first save it to a temp string variable and then pass it to the function.

/[Example :: StrCmp.sb (See in Firmware Zip file)
DIM s1$,52%

s1$="hello"

s2$="world"

PRINT StrCmp(s1$,s2$);"\n"

PRINT StrCmp(s2$,51$);"\n"

PRINT StrCmp(s1$,s1$);"\n"

Expected Output:

-1

0

STRCMP is a core function.
6.6.12STRHEXIZE$

FUNCTION

This function is used to convert a string variable into a string which contains all the bytes in the input string converted to 2
hex characters. It therefore results in a string which is exactly double the length of the original string.

STRHEXIZES (string)

STRING A printable version of string which contains only hexadecimal characters and exactly

Returns . .
double the length of the input string.
i = Local Stack Frame Underflow
Exceptions
= Local Stack Frame Overflow
https://connectivity.lairdtech.com/wireless- 95 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

= Memory Heap Exhausted

Arguments:
i byRef string AS STRING
String . .
The string to be converted into hex characters.
Interactive
Command NO

Note: sfring cannoft be a string constant (e.g. “the cat”); it must be a string variable. If you must use
a const string, first save it to a temp string variable and then pass it to the function.

Associated Commands: STRHEX2BIN

/[Example :: StrHexize$.sb (See in Firmware Zip file)
DIM s$,t$

s$="Laird"

PRINT s$;"\n"

t$=StrHexize$(s$)

PRINT StrLen(s$);"\n"

PRINT t$;"\n"

PRINT StrLen(t$);"\n"

Expected Output:

Laird
5
4C61697264

10

STRHEXIZES is a core function.
6.6.13STRDEHEXIZE$

FUNCTION

STRDEHEXISES is used to convert a string consisting of hex digits to a binary form. The conversion stops at the first non-hex
digit character encountered.

STRDEHEXIZES (string)

Returns STRING A de-hexed version of string

= Local Stack Frame Underflow

Exceptions
= Local Stack Frame Overflow
Arguments:
ri byRef string AS STRING
string . L
The string to be converted in-situ.
Interactive
NO
Command
https://connectivity.lairdtech.com/wireless- 96 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

If a parsing error occurs, a nonfatal error is generated which must be handled or the application aborts.

Note: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first
save it to a temp string variable and then pass it to the function.

/[Example :: StrDehexize$.sb (See in Firmware Zip file)

DIM s$: s$="40414243"

PRINT "\nHex data: ";s$
PRINT "\nDehexized: "; StrDehexize$(s$)

/IWill stop at first non hex digit 'h’
s$="4041hello4243"
PRINT "\n";s$;" Dehexized: "; StrDehexize$(s$)

Expected Output:

Hex data: 40414243

Dehexized: @ABC

4041hello4243 Dehexized: @A

STRDEHEXIZES is a core function.
6.6.14STRVALDEC

FUNCTION

STRVALDEC converts a string of decimal numbers into the corresponding INTEGER signed value. All leading whitespaces are
ignored and then conversion stops at the first non-digit character.

STRVALDEC (string)
FUNCTION
Returns INTEGER Represents the decimal value that was contained within string.
. = Local Stack Frame Underflow
Exceptions
= Local Stack Frame Overflow
Arguments:
. byRef string AS STRING
string .
The target string
Interactive
Command NO

If STRVALDEC encounters a non-numeric character within the string it returns the value of the digits encountered before
the non-decimal character.

Any leading whitespace within the string is ignored.

https://connectivity.lairdtech.com/wireless- 97 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Note: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first
save it to a temp string variable and then pass it to the function.

/[Example :: StrValDec.sb (See in Firmware Zip file)
DIM s$

s$=" 1234"

PRINT "\n";StrValDec(s$)
s$="-1234"

PRINT "\n";StrValDec(s$)
s$=" +1234"

PRINT "\n";StrValDec(s$)
s$=" 2345hello"

PRINT "\n";StrValDec(s$)
s$=" hello"

PRINT "\n";StrValDec(s$)

Expected Output:

1234
-1234
1234

2345
0

STRVALDEC is a core function.
6.6.15STRHEX2BIN

FUNCTION

This function is used to convert up to 2 hexadecimal characters at an offset in the input string into an integer value in the
range 0 to 255.

STRHEX2BIN (string,offset)

INTEGER A value in the range 0 to 255 which corresponds to the (up to) 2 hex characters at

Returns
the specified offset in the input string.
. = Local Stack Frame Underflow
Exceptions
= Local Stack Frame Overflow
Arguments:
. byRef string AS STRING
string . .
The string to be converted into hex characters.
offset byVal offset AS INTEGER
This is the offset from where up to two hex characters are converted into a binary number.
Interactive
NO
Command
https://connectivity.lairdtech.com/wireless- 98 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Note: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first
save it to a temp string variable and then pass it to the function.

Associated Commands: STRHEXIZE

/[Example :: StrHex2Bin.sb (See in Firmware Zip file)
DIM s$

$$="0102030405"

PRINT StrHex2Bin(s$,4);"\n"

s$="4C61697264"

PRINT StrHex2Bin(s$,2);"\n"

Expected Output:

STRHEX2BIN is a core function.
6.6.15.1 STRING from INTEGER

Three functions above, STRVALDEC, STRHEX2BIN and EXTRACTINTTOKEN, enable conversion of a string into an INTEGER
value. To achieve the reverse, that is, an INTEGER into a string the question arises as to what format the string should be in:
decimal, hexadecimal, octal or binary. There is also the question of whether the string should be decorated. For example,
converting the integer value 1234 into hex gives “4D2” but there may be a need to decorate it so that you have “0x4D2".

Given there are a lot of options as to how the output should be, which could result in a whole suite of integer to string
functions, the solution provided in smartBASIC is the SPRINT statement which functions like a PRINT statement but instead
of it going to a standard output port like the UART, it gets appended to a string variable.

For example:

To convert an integer value into hex and decorate it with the Ox prefix, use the following statements:

DIM myInt,myStr$
myInt=1234
//convert to hex string “0x4D2”

SPRINT #myStr$, "Ox";integer.h' myInt

To convert an integer value into a binary string, use the following statements:

DIM myInt,myStr$

myInt=11

//convert to binary string “1011”
SPRINT #myStr$, integer.b' myInt

6.6.16 STRESCAPE$

FUNCTION
https://connectivity.lairdtech.com/wireless- 99 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

STRESCAPES is used to convert a string variable into a string which contains only printable characters using a 2 or 3-byte
sequence of escape characters using the \NN format.

STRESCAPES (string)

STRING A printable version of string which means at best the returned string is of the same
length and at worst not more than three times the length of the input string.

The following input characters are escaped as follows:

carriage return \r
Returns linefeed \n
horizontal tab \t
\ \\
n \II
chr<'' \HH
chr>=0x7F \HH
= Local Stack Frame Underflow
Exceptions = Local Stack Frame Overflow
= Memory Heap Exhausted
Arguments:
. byRef string AS STRING
string .
The string to be converted.
Interactive
Command NGO

If a parsing error is encountered, a nonfatal error is generated which needs to be handled otherwise the script aborts.

Note: sfring cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use
a const string, first save it to a temp string variable and then pass it to the function.

Associated Commands: STRDEESCAPE

/l[Example :: StrEscape$.sb (See in Firmware Zip file)
DIM s$,t$

s$="Hello\0Oworld"

t$=StrEscape$(s$)

PRINT StrLen(s$);"\n" : PRINT StrLen(t$);"\n"

Expected Output:

11
13

6.6.17STRDEESCAPE

SUBROUTINE

STRDEESCAPE is used to convert an escaped string variable in the same memory space that the string exists in. Given all 3-
byte escape sequences are reduced to a single byte, the result is never longer than the original.

STRDEESCAPE (string)
Returns None
https://connectivity.lairdtech.com/wireless- 100 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

string now contains de-escaped characters converted as follows:

\r carriage return
\n linefeed

\t horizontal tab
\\ \

\HH ascii byte HH

= Local Stack Frame Underflow
Exceptions = Local Stack Frame Overflow
= String De-Escape Error (E.g. characters after the \ are not recognized)

Arguments:
. byRef string AS STRING
string . —
The string to be converted in-situ.
Interactive
Command NO

If a parsing error occurs, a nonfatal error is generated which must be handled or the application aborts

Note: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first
save it to a temp string variable and then pass it to the function.

/[Example :: StrDeescape.sb (See in Firmware Zip file)
DIM s$,t$

s$="Hello\5C40world"

PRINT s$;"\n"; StrLen(s$);"\n"

StrDeescape(s$)

PRINT s$;"\n"; StrLen(s$);"\n"

Expected Output:

Hello\40world
13

Hello@world

11

6.6.18STRSPLITLEFT$

FUNCTION

STRSPLITLEFTS returns a string which consists of the leftmost n characters of a string object and then drops those
characters from the input string.

STRSPLITLEFTS (string, length)

STRING The leftmost ‘length’ characters are returned, and then those characters are dropped

Returns .
from the argument list.
. = Local Stack Frame Underflow
Exceptions
= Local Stack Frame Overflow
https://connectivity.lairdtech.com/wireless- 101 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

= Memory Heap Exhausted

Arguments:
. byRef string AS STRING
string . . .
The target string which cannot be a const string.
byVal length AS INTEGER
length The number of leftmost characters that are returned before being dropped from the target
string.
Interactive
Command NO
Note: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first

save it to a temp string variable and then pass it to the function.

/IExample :: StrSplitLeft$.sb (See in Firmware Zip file)
DIM origStr$

origStr$ = "12345678"

PRINT StrSplitLeft$ (origStr$, 3);"\n"

PRINT origStr$

Expected Output:

123
45678

STRSPLITLEFTS is a core function.
6.6.19STRSUM
FUNCTION

This function identifies the substring starting from a specified offset and specified length and then does
an arithmetic sum of all the unsigned bytes in that substring and then finally adds the signed initial value
supplied.

For example, if the string is “\01\02\03\04\05” and offset is 1 and length is 2 and initial value is 1000, then the output is
1000+2+3=1005.

STRSUM (string, nindex, nBytes, initVal)

INTEGER The result of the arithmetic sum operation over the bytes in the substring. If nindex

Returns . . .
or nBytes are negative, then the initVal is returned.
. = local Stack Frame Underflow
Exceptions
= Local Stack Frame Overflow
Arguments:
tri byRef string AS STRING
strin
g String that contains the unsigned bytes which need to be arithmetically added

nindex byVal nindex AS INTEGER
https://connectivity.lairdtech.com/wireless- 102 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Index of first byte into the string

ByVal nBytes AS INTEGER

nBytes

4 Number of bytes to process
. ByVal initVal AS INTEGER
initVal .

Initial value of the sum

Interactive
Command NO
Note: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first

save it to a temp string variable and then pass it to the function.

/[Example :: StrSum.sb (See in Firmware Zip file)

DIM s$

s$="0aA%<"

PRINT StrSum(s$,0,5,0);"\n" //48+97+65+37+60+0
PRINT StrSum(s$,0,5,10);"\n" //48+97+65+37+60+10
PRINT StrSum(s$,4,1,100);"\n" //60+100

Expected Output:

307
317
160

STRSUM is a core function.

6.6.20 STRXOR

FUNCTION

This function identifies the substring starting from a specified offset and specified length and then does
an arithmetic exclusive-or (XOR) of all the unsigned bytes in that substring and then finally XORs the
signed initial value supplied.

For example, if the string is “\01\02\03\04\05” and offset is 1 and length is 2 and initial value is 1000, then the output is
1000 ~ 2 A 3=1001.

STRXOR (string, nindex, nBytes, initVal)

INTEGER The result of the XOR operation over the bytes in the substring. If nindex or nBytes

Returns . L .
are negative, then the initVal is returned.
. = Local Stack Frame Underflow
Exceptions
= Local Stack Frame Overflow
Arguments:
ri byRef string AS STRING
strin
g String that contains the unsigned bytes which need to be XOR’d

nindex byVal nindex AS INTEGER
https://connectivity.lairdtech.com/wireless- 103 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Index of first byte into the string

ByVal nBytes AS INTEGER

nBytes

4 Number of bytes to process
o ByVal initVal AS INTEGER
initVal .

Initial value of the XOR

Interactive
Command NO
Note: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first

save it to a temp string variable and then pass it to the function.

/[Example :: StrXOR.sb (See in Firmware Zip file)

DIM number$

number$="01234"

PRINT StrXOR(number$,0,5,0) /[XOR: 48,49,50,51,52,0
PRINT StrXOR(number$,0,5,10) /IXOR: 48,49,50,51,52,10
PRINT StrXOR(number$,0,5,1000) //XOR: 48,49,50,51,52,1000

Expected Output:

52
62
988

STRXOR is a core function.
6.6.21TEXTRACTSTRTOKEN

FUNCTION

This function takes a sentence in the first parameter and extracts the leftmost string token from it and passes it back in the
second parameter. The token is removed from the sentence and is not post processed in any way. The function returns the
length of the string in the token. This means if 0 is returned then there are no more tokens in the sentence.

It makes it easy to create custom protocol for commands send by a host over the UART for your application.

For example, if the sentence is My name is BL600, from Laird and val is -1234 then the first call of this function returns My
and the sentence is adjusted to name is BL600, from Laird. Note that BL600, results in BL600 and then ,. Also, be aware that
the -1234 is returned as two tokens: -and 1234.

The parser logic is the same as when in the command mode. If you are not sure which alphabet character is a token in its
own right, simply try it.

Note: Any text after either ‘ or // is taken as a comment just like the behavior in the command mode.

EXTRACTSTRTOKEN (sentence$,token$)

Returns INTEGER
The length of the extracted token. Is zero if there are no more tokens to extract.
Exceptions = Local Stack Frame Underflow
https://connectivity.lairdtech.com/wireless- 104 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

= Local Stack Frame Overflow

Arguments:
byRef sentence$ AS STRING
sentence$ i . -
String that contains the sentence containing the tokens to be extracted
tokens byRef token$ AS STRING
The leftmost token from the sentence and will have been removed from the sentence.
Interactive
NO
Command
Note: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first

save it to a temp string variable and then pass it to the function.

/[Example :: ExtractStrToken.sb (See in Firmware Zip file)
DIM sentence$, token$, tknlen
sentence$="My name is BL600, from Laird"
PRINT "\nSentence is :";sentence$
DO
tknlen = ExtractStrToken(sentence$,token$)
PRINT "\nToken (len ";tknlen;") = :";token$
UNTIL tknlen==

Expected Output:

Sentence is :My name is BL600, from Laird
Token (len 2) = :My

Token (len 4) = :name

Token (len 2) = :is

Token (len 5) = :BL600

Token (len 1) = :,

Token (len 4) = :from

Token (len 5) = :Laird

Token (len 0) =

ExtractStrToken is a core function.
6.6.22 EXTRACTINTTOKEN

FUNCTION

This function takes a sentence in the first parameter and extracts the leftmost set of tokens that make an integer number
(hex or binary or octal or decimal) from it and passes it back in the second parameter. The tokens are removed from the
sentence. The function returns the number of characters extracted from the left side of the sentence. This means if 0 is
returned then there are no more tokens in the sentence.

For example, if the sentence is 0x100 is a hex,value then the first call of this function returns 256 in the second parameter
and the sentence is adjusted to is a hex value. Note that hex,value, results in hex then, and then value.

The parser logic is the same as when in the command mode. If you are not sure which alphabet character is a token in its
own right, simply try it.

https://connectivity.lairdtech.com/wireless- 105 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Note: Any text after either ‘ or // is taken as a comment just like the behavior in the command mode.

EXTRACTINTTOKEN (sentence$,intValue)

Returns INTEGER

The length of the extracted token. Is zero if there are no more tokens to extract.

. = Local Stack Frame Underflow
Exceptions
= Local Stack Frame Overflow

Arguments:

byRef sentence$ AS STRING
sentence$

String that contains the sentence containing the tokens to be extracted

byRef intValue AS INTEGER

intValue The leftmost set of tokens constituting a legal integer value is extracted from the sentence and
is removed from the sentence.

Interactive
NO
Command
Note: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first

save it to a temp string variable and then pass it to the function.

/[Example :: ExtractIntToken.sh (See in Firmware Zip file)
DIM sentence$
DIM intValue, bytes
DIM token$, tknlen
sentence$="0x100 is a hex,value"
PRINT "\nSentence is :";sentence$
bytes = ExtractIntToken(sentence$,intValue)
PRINT "\nintValue (bytes ";bytes;") = :";intValue
DO
tknlen = ExtractStrToken(sentence$,token$)
PRINT "\nToken (len “;tknlen;") = :";token$
UNTIL tknlen==0

Expected Output:

https://connectivity.lairdtech.com/wireless- 106 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Sentence is :0x100 is a hex,value

intValue (bytes 5) = :256
Token (len 2) = :is

Token (len 1) = :a

Token (len 3) = :thex
Token (len 1) = :,

Token (len 5) = :value

Token (len 0) =

EXTRACTINTTOKEN is a core function.
6.6.23 EXTRACTFLOATTOKEN

FUNCTION

This function takes a sentence in the first parameter and extracts the leftmost set of tokens that make a float number (in
NN.DDD or NN.DDDeEE format) from it and passes it back in the second parameter. The tokens are removed from the
sentence. The function returns the number of characters extracted from the left side of the sentence. This means if 0 is
returned then there are no more tokens in the sentence.

For example, if the sentence is “1.2345 is a float value” then the first call of this function returns 1.2345 in the second
parameter and the sentence will be adjusted to “is a float value”.

The parser logic is the same as when in the command mode. If you are not sure which alphabet character is a token in its
own right, simply try it.

Note: Any text after either ‘ or // is taken as a comment just like the behavior in the command mode.

EXTRACTFLOATTOKEN (sentence$,floatValue)

Returns INTEGER

The length of the extracted token. Is zero if there are no more tokens to extract.

. = Local Stack Frame Underflow
Exceptions
= Local Stack Frame Overflow

Arguments:

byRef sentence$ AS STRING
sentence$S

String that contains the sentence containing the tokens to be extracted

byRef floatValue AS FLOAT

floatValue The leftmost set of tokens constituting a legal floating point value is extracted from the
sentence and is removed from the sentence.

Interactive

Command NO

Note: string cannot be a string constant (e.g. “my number is 1.2345”); it must be a string variable. If you must use a
const string, first save it to a temp string variable and then pass it to the function.

/[Example :: ExtractIntToken.sb (See in Firmware Zip file)

https://connectivity.lairdtech.com/wireless- 107 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

© DIM sentence$
DIM fltValue as FLOAT , bytes
DIM token$, tknlen
sentence$="1.234 is a float,value"
PRINT "\nSentence is :"; sentence$
bytes = ExtractFloatToken(sentence$,fltValue)
PRINT "\nfltVValue (bytes ";bytes;") = :"; FLOAT.E’ fltValue
DO
tknlen = ExtractStrToken(sentence$,token$)
PRINT "\nToken (len ";tknlen;") = :";token$
UNTIL tknlen==

Expected Output:

Sentence is 1.234 is a float,value

intvValue (bytes 5) = :1.234e+01
Token (len 2) = :is

Token (len 1) = :a

Token (len 3) = :float

Token (len 1) = :,

Token (len 5) = :value

Token (len 0) =

EXTRACTFLOATTOKEN is a core function.

6.7 Table Routines

Tables provide associative array (or in other words lookup type) functionality within smartBASIC programs. They are
typically used to allow lookup features to be implemented efficiently so that, for example, parsers can be implemented.

Tables are one dimensional string variables, which are configured by using the TABLEINIT command.

Tables should not be confused with Arrays. Tables provide the ability to perform pattern matching in a highly optimized
manner. As a rule, use tables where you want to perform efficient pattern matching and arrays where you want to
automate setup strings or send data using looping variables.

6.7.1 TABLEINIT

FUNCTION

TABLEINIT inifialises a string variable so that it can be used for storage of mulfiple TLV tokens, allowing a
lookup table to be created.

TLV = Tag, Length, Value
TABLEINIT (string)

INTEGER Indicates success of command:

Returns o
0 Successful initialisation
https://connectivity.lairdtech.com/wireless- 108 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

<>0 Failure

= Local Stack Frame Underflow

Exceptions
= Local Stack Frame Overflow
Arguments:
byRef string AS STRING
string String variable to be used for the Table. Since it is byRef, the compiler does not allow a constant
string to be passed as an argument. On entry the string can be non-empty, on exit the string is
empty.
Interactive
NO
Command
Note: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first

save it to a temp string variable and then pass it to the function.

Associated Commands: TABLEADD, TABLELOOKUP

/[Example :: Tablelnit.sb (See in Firmware Zip file)

DIM t$:t$="Hello"

PRINT "\n";"[";1$;"]"

PRINT "\n";Tablelnit(t$)

PRINT "\n";"[";t$;"]" //String now blank after being initialised as a table

Expected Output:

[Hello]
0
[]

TABLEINIT is a core function.
6.7.2 TABLEADD

FUNCTION

TABLEADD adds the token specified to the lookup table in the string variable and associates the index specified with it.
There is no validation to check if nindex has been duplicated as it is entirely valid that more than one token generates the
same ID value.

TABLEADD (string, strtok, niD)

INTEGER Indicates success of command:
0 Signifies that the token was successfully added

1 Indicates an error if nID > 255 or < 0
Returns . . .
2 Indicates no memory is available to store token
3 Indicates that the token is too large
4 Indicates the token is empty
. = Local Stack Frame Underflow
Exceptions
= Local Stack Frame Overflow
https://connectivity.lairdtech.com/wireless- 109 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Arguments:
string byRe.f string.:; AS STRING - .
A string variable that has been initialised as a table using TABLEINIT.
strtok byVal s.trtok AS STRING
The string token to be added to the table.
niD byVal nID AS INTEGER
The identifier number that is associated with the token and should be in the range 0 to 255.
e o
Note: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first

save it to a temp string variable and then pass it to the function.

Associated Commands: TABLEINIT, TABLELOOKUP

/IExample :: TableAdd.sb (See in Firmware Zip file)
DIM t$: PRINT Tablelnit(t$);"\n"

PRINT TableAdd(t$,"Hello",1);"\n"

PRINT TableAdd(t$,"everyone”,2);"\n"

PRINT TableAdd(t$,"to",300);"\n"

PRINT TableAdd(t$,"",3);"\n"

PRINT t$

/ITokens are stored in TLV format: \Tag\LengthValue

Expected Output:

o o O

4

\01\05Hello\02\08everyone

TABLEADD is a core function.
6.7.3 TABLELOOKUP

FUNCTION

TABLELOOKUP searches for the specified token within an existing lookup table which was created using TABLEINIT and
multiple TABLEADDs and returns the ID value associated with it.

It is especially useful for creating a parser, for example, to create an AT style protocol over a UART interface.

TABLELOOKUP (string, strtok)

INTEGER Indicates success of command:

Returns R i
>=0 signifies that the token was successfully found and the value is the ID
https://connectivity.lairdtech.com/wireless- 110 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

-1 if the token is not found within the table
-2 if the specified table is invalid
-3 if the token is empty or > 255 characters

= Local Stack Frame Underflow

Exceptions
P = Local Stack Frame Overflow
Arguments:
. byRef string AS STRING

string .
The lookup table that is being searched
byRef strtok AS STRING

strtok L .
The token whose position is being found

Interactive

Command NGO

Note: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first

save it to a temp string variable and then pass it to the function.

Associated Commands: TABLEINIT, TABLEADD

/[Example :: TableLookup.sh (See in Firmware Zip file)
DIM t$
PRINT Tablelnit(t$);"\n\n"

PRINT TableAdd(t$,"Hello",1);"\n"
PRINT TableAdd(t$,"world",2);"\n"
PRINT TableAdd(t$,"t0",3);"\n"

PRINT TableAdd(t$,"you",4);"\n\n"

PRINT TableLookup(t$,"t0");"\n"
PRINT TableLookup(t$,"Hello");"\n"
PRINT TableLookup(t$, you");"\n"

Expected Output:

o o o o

https://connectivity.lairdtech.com/wireless- 111 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

TABLELOOKUP is a core function.

6.8 Miscellaneous Routines
This section describes all miscellaneous functions and subroutines
6.8.1 RESET

SUBROUTINE

This routine is used to force a reset of the module.

RESET (nType)

. = Local Stack Frame Underflow
Exceptions

= Local Stack Frame Overflow

Arguments:
nType byVal nType AS INTEGER.
Interactive
Command NO

This is for future use. Set to 0.

/[Example :: RESET.sb (See in Firmware Zip file)
RESET(0) //force a reset of the module

Expected Output:

Like when you reset the module using the interactive command ‘ATZ’, the CTS #
indicator momentarily changes from green to red, then back to green. Teminal \@For | Config| About |

CTS# DSR& DCD# RI#F RTSK DTR[

RESET is a core subroutine.

6.9 Random Number Generation Routines

Random numbers are either generated using pseudo random number generator algorithms or using thermal noise or
equivalent in hardware. The routines listed in this section provide the developer with the capability of generating random
numbers.

The Interactive Mode command AT / 1001 or at runtime SYSINFO(1001) returns the following:

= 1 -If the system generates random numbers using hardware noise
= (0-If generated by a pseudo random number generator

6.9.1 RAND

FUNCTION

The RAND function returns a random 32-bit integer. Use the command AT / 1001 or from within an application the function
SYSINFO(1001), to determine whether the random number is pseudo random or generated in hardware via a thermal noise
generator. If 1001 returns:

= (0-Itis generated by a pseudo random number generator
= 1-Itis generated using hardware

https://connectivity.lairdtech.com/wireless- 112 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

RAND ()
Returns INTEGER A 32-bit integer.

. = Local Stack Frame Underflow
Exceptions

= |ocal Stack Frame Overflow

Arguments: None

Interactive

Command NO
Associated RANDSEED
Commands

Depending on the platform, the RAND function can be seeded using the RANDSEED function to seed the pseudo random
number generator. If used, RANDSEED must be called before using RAND. If the platform has a hardware Random Number
Generator, then RANDSEED has no effect.

/[Example :: RAND.sb (See in Firmware Zip file)
PRINT "\nRandom number is "*;RAND()

Expected Output:

Random number is -2088208507

RAND is a core language function.
6.9.2 RANDEX

FUNCTION

The RANDEX function returns a random 32-bit positive integer in the range 0 to X where X is the input argument. Use the
command AT / 1001 or from within an application the function SYSINFO(1001) to determine whether the random number is
pseudo random or generated in hardware via a thermal noise generator.

If 1001 returns:

= 0-Itis generated by a pseudo random number generator
= 1-Itis generated using hardware

RANDEX (maxval)

Returns INTEGER A 32-bit integer.

= Local Stack Frame Underflow

Exceptions
= Local Stack Frame Overflow
Arguments:
byVal maxval AS INTEGER
maxval . .
The return value does not exceed the absolute value of this variable
Interactive
NO
Command
Associated
RANDSEED
Commands
https://connectivity.lairdtech.com/wireless- 113 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Depending on the platform, the RANDEX function can be seeded using the RANDSEED function to seed the pseudo random
number generator. If used, RANDSEED must be called before using RANDEX. If the platform has a hardware Random
Number Generator, then RANDSEED has no effect.

/IExample :: RANDEX.sh (See in Firmware Zip file)
DIM x : x=500
PRINT "\nRandom number between 0 and ";x;" is ";RANDEX(X)

Expected Output:

Random number between 0 and 500 is 193

RAND is a core language function.
6.9.3 RANDSEED

SUBROUTINE

On platforms without a hardware random number generator, the RANDSEED function sets the starting point for generating
a series of pseudo random integers. To reinitialize the generator, use 1 as the seed argument. Any other value for seed sets
the generator to a random starting point. RAND retrieves the pseudo random numbers that are generated.

It has no effect on platforms with a hardware random number generator.

RANDSEED (seed)
. = Local Stack Frame Underflow
Exceptions
= Local Stack Frame Overflow
Arguments:
seed byVal seed AS INTEGER
ee
The starting seed value for the random number generator function RAND.
Interactive
Command NO
Associated RAND
Commands
RandSeed(1234)

Note: This subroutine has no effect on modules that have a hardware random number generator.

RANDSEED is a core language subroutine.

https://connectivity.lairdtech.com/wireless- 114 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

6.10 Timer Routines

In keeping with the event driven paradigm of smartBASIC, the timer subsystem enables smartBASIC applications to be
written which allow future events to be generated based on timeouts. To make use of this feature up to N timers, where N
is platform dependent, are made available and that many event handlers can be written and then enabled using the
ONEVENT statement so that those handlers are automatically invoked. The ONEVENT statement is described in detail
elsewhere in this manual.

Briefly the usage is, select a timer, register a handler for it using ONEVENT, and start it with a timeout value and a flag to
specify whether it is recurring or single shot. Then when the timeout occurs AND when the application is processing a
WAITEVENT statement, the handler is automatically called.

It is important to understand the significance of the WAITEVENT statement. In a nutshell, a timer handler callback does not
happen if the runtime engine does not encounter a WAITEVENT statement. Events are synchronous not asynchronous like
say interrupts.

All this is illustrated in the sample code fragment below where timer 0 is started so that it recurs automatically every 500
milliseconds and timer 1 is a single shot 1000 milliseconds later.

Note, as explained in the WAITEVENT section of this manual, if a handler function returns a non-zero value then the
WAITEVENT statement is reprocessed, otherwise the smartBASIC runtime engine proceeds to process the next statement
after the WAITEVENT statement — not after the handlers ENDFUNC or EXITFUNC statement. This means that if the
WAITEVENT is the very last statement in an application and a timer handler returns a 0 value, then the application exits the
module from Run Mode into Interactive Mode which is disastrous for unattended operation.

6.10.1 Timer Events

EVTMRn Where n=0 to N, where N is platform dependent, it is generated when timer n expires. The number of
timers (N+1) is returned by the command AT | 2003 or at runtime by SYSINFO(2003)
Timer 0 has higher priority than Timer 1 which it turn has higher priority that timer 2 and so on. This means
that if Timer O is a recurring timer, say every 100 milliseconds and you have Timer 1 has a single shot, it is
possible that the lower priority handler never gets called. Always try to use lower priority timers as
recurring timers.

/[Example :: EVTMRn.sb (See in Firmware Zip file)
FUNCTION HandlerTimer0()
PRINT "\nTimer 0 has expired"
ENDFUNC 1 /Iremain blocked in WAITEVENT

FUNCTION HandlerTimerl()
PRINT "\nTimer 1 has expired"
ENDFUNC 0 /lexit from WAITEVENT

ONEVENT EVTMRO CALL HandlerTimer0
ONEVENT EVTMR1 CALL HandlerTimerl

TimerStart(0,500,1) /[start a 500 millisecond recurring timer
PRINT "\nWaiting for Timer 0"
TimerStart(1,1000,0) //start a 1000 millisecond timer

PRINT "\nWaiting for Timer 1"

https://connectivity.lairdtech.com/wireless- 115 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

——— -

WAITEVENT
PRINT "\nGot here because TIMER 1 expired and handler returned 0"

Expected Output:

Waiting for Timer O
Waiting for Timer 1
Timer 0 has expired
Timer 0 has expired
Timer 1 has expired

Got here because TIMER 1 expired and handler returned O

6.10.2TimerStart

SUBROUTINE
This subroutine starts one of the built-in timers.
The command AT | 2003 returns the number of timers and AT | 2002 returns the resolution of the timer in microseconds.

When the timer expires, an appropriate event is generated, which can be acted upon by a handler registered using the
ONEVENT command.

TIMERSTART (number,interval_ms,recurring)

Arguments:
byVal number AS INTEGER

number The number of the timer. 0to N where N can be determined by submitting the command AT
12003 or at runtime returned via SYSINFO(2003).
If the value is not valid, then a runtime error is thrown with code INVALID_TIMER.
byVal interval AS INTEGER
A valid time in milliseconds, between 1 and 1,000,000,000 (11.6 days). Note although the
time is specified in milliseconds, the resolution of the hardware timer may have more
granularity than that. Submit the command AT | 2002 or at runtime SYSINFO(2002) to
determine the actual granularity in microseconds.
If longer timeouts are required, start one of the timers with 1000 and make it repeating.

interval ms Then implement the longer timeout using smartBASIC code.
If the interval is negative or > 1,000,000,000 then a runtime error is thrown with code
INVALID_INTERVAL. An error is thrown for lesser values dependent on the platform and the
hardware constraints. For example, the BL600 module has a maximum time of 8192000 (2
hrs 16 min).
If the recurring argument is set to non-zero, then the minimum value of the interval is 10
milliseconds

recurrin byVal recurring AS INTEGER

g Set to O for a once-only timer, or non-0 for a recurring timer.

Interactive
N

Command ©

Associated ONEVENT, TIMERCANCEL

Commands

https://connectivity.lairdtech.com/wireless- 116 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

When the timer expires, it sets the corresponding EVTMRn event. That is, timer number 0 sets EVTMRO, timer number 3
sets EVTMR3. The ONEVENT statement should be used to register handlers that capture and process these events.

If the timer is already running, calling TIMERSTART resets it to count down from the new value, which may be greater or
smaller than the remaining time.

If either number or interval is invalid an Error is thrown.

/[Example :: EVTMRn.sb (See in Firmware Zip file)
SUB HandlerOnErr()

PRINT "“Timer Error: ";GetLastError()
ENDSUB

FUNCTION HandlerTimer1()
PRINT "\nTimer 1 has expired"
ENDFUNC 1 /Iremain blocked in WAITEVENT

FUNCTION HandlerTimer2()
PRINT "\nTimer 2 has expired"
ENDFUNC 0 /lexit from WAITEVENT

ONERROR NEXT HandlerOnErr

ONEVENT EVTMR1 CALL HandlerTimerl
ONEVENT EVTMR2 CALL HandlerTimer2

TimerStart(0,-500,1) /[start a -500 millisecond recurring timer
PRINT "\nStarted Timer O with invalid inerval"

TimerStart(1,500,1) /[start a 500 millisecond recurring timer
PRINT "\nWiaiting for Timer 1"

TimerStart(2,1000,0) /Istart a 1000 millisecond timer
PRINT "\nWaiting for Timer 2"

WAITEVENT
PRINT "\nGot here because TIMER 2 expired and Handler returned 0"

https://connectivity.lairdtech.com/wireless- 117 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Expected Output:

Timer Error: 1770

Started Timer 0 with invalid inerval
Waiting for Timer 1

Waiting for Timer 2

Timer 1 has expired

Timer 1 has expired

Timer 2 has expired

Got here because TIMER 2 expired and Handler returned O

TIMERSTART is a core subroutine.
6.10.3TimerRunning

FUNCTION

This function determines if a timer identified by an index number is still running. The command AT | 2003 f return the valid
range of Timer index numbers. It returns 0 to signify that the timer is not running and a non-zero value to signify it is still
running and the value is the number of milliseconds left for it to expire.

TIMERRUNNING (number)

Returns 0 if the timer has expired, otherwise the time in milliseconds left to expire.

Arguments:

byVal number AS INTEGER
The number of the timer. 0to N where N can be determined by submitting the command AT |
maxval 2003 or at runtime returned via SYSINFO(2003).

If the value is not valid, then a runtime error is thrown with code INVALID_TIMER.

Interactive

Command NO
Associated b\ N T TIMERCANCEL
Commands

/IExample :: TimerRunning.sb (See in Firmware Zip file)
SUB HandlerOnErr()

PRINT "“Timer Error ";GetLastError()
ENDSUB

FUNCTION HandlerTimer0()
PRINT "\nTimer 0 has expired"
PRINT "\nTimer 1 has ";TimerRunning(1);" milliseconds to go"
ENDFUNC 1 /Iremain blocked in WAITEVENT

FUNCTION HandlerTimer1()

https://connectivity.lairdtech.com/wireless- 118 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

PRINT "\nTimer 1 has expired"
ENDFUNC 0 [lexit from WAITEVENT

ONERROR NEXT HandlerOnErr

ONEVENT EVTMRO CALL HandlerTimer0
ONEVENT EVTMR1 CALL HandlerTimerl

TIMERSTART(0,500,1) /lstart a 500 millisecond recurring timer
PRINT "\nWiaiting for Timer 0"

TIMERSTART(1,2000,0) /Istart a 1000 millisecond timer
PRINT "\nWaiting for Timer 1"

WAITEVENT

Expected Output:

Waiting for Timer O
Waiting for Timer 1
Timer has expired
Timer has 1500 milliseconds to go
Timer has expired
Timer has 1000 milliseconds to go
Timer has 500 milliseconds to go
Timer has expired

Timer

0
1
0
1
Timer 0 has expired
1
0
1 has 0 milliseconds to go
1

has expired

Timer

TIMERRUNNING is a core function.
6.10.4 TimerCancel

SUBROUTINE

This subroutine stops one of the built-in timers so that it does not generate a timeout event.

TIMERCANCEL (number)

Arguments:

byVal number AS INTEGER
The number of the timer. 0 to N where N can be determined by submitting the command AT |
number 2003 or at runtime returned via SYSINFO(2003).

If the value is not valid, then a runtime error is thrown with code INVALID_TIMER.

https://connectivity.lairdtech.com/wireless- 119 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Interactive
Command NO
Associated
ONEVENT, TIMERCANCEL, TIMERRUNNING
Commands

/[Example :: TimerCancel.sb (See in Firmware Zip file)
DIM i,x
i=0:x=1 /I'x"is HandlerTimerO's return value
/IWill switch to 0 when timer0 has expired so that the application can stop
FUNCTION HandlerTimer0()
PRINT "\nTimer 0 has expired, starting again"
IF i==4 THEN
PRINT "\nCancelling Timer 0"
TimerCancel(0)
PRINT "\nTimer O ran ";i+1;" times"
x=0
ENDIF
i=i+1
ENDFUNC x
ONEVENT EVTMRO CALL HandlerTimer0
TimerStart(0,800,1)
PRINT "\nWaiting for Timer 0. Should run 5 times"
WAITEVENT

Expected Output:

Waiting for Timer 0. Should run 5 times
Timer 0 has expired, starting again
Timer 0 has expired, starting again

Timer 0 has expired, starting again

Timer 0 has expired, starting again

TIMERCANCEL is a core subroutine.
6.10.5GetTickCount

FUNCTION

There is a 31-bit free running counter that increments every millisecond. The resolution of this counter in microseconds can
be determined by submitting the command AT | 2004 or at runtime SYSINFO(2004). This function returns that free running
counter. It wraps to 0 when the counter reaches Ox7FFFFFFF.

GETTICKCOUNT ()

Returns INTEGER A value in the range 0 to Ox7FFFFFFF (2,147,483,647) in units of milliseconds.

Arguments: None
https://connectivity.lairdtech.com/wireless- 120 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Interactive No

Command

Associated GETTICKSINCE
Commands

/[Example :: GetTickCount.sb (See in Firmware Zip file)
FUNCTION HandlerTimer0()

PRINT "\n\nTimer 0 has expired"
ENDFUNC 0

PRINT "\nThe value on the counter is ";GetTickCount()

ONEVENT EVTMRO CALL HandlerTimer0

TimerStart(0,1000,0)
PRINT "\nWaiting for Timer 0"

WAITEVENT

PRINT "\nThe value on the counter is now ";GetTickCount();

Expected Output:

The value on the counter is 159297

Waiting for Timer O

Timer 0 has expired

The value on the counter is now 160299

GETTICKCOUNT is a core subroutine.
6.10.6 GetTickSince

FUNCTION

This function returns the time elapsed since the startTick variable was updated with the return value of GETTICKCOUNT(). It
signifies the time in milliseconds. If startTick is less than 0, which is a value that GETTICKCOUNT() never returns, then a 0 is
returned.

GETTICKSINCE (startTick)

INTEGER A value in the range 0 to Ox7FFFFFFF (2,147,483,647) in units of milliseconds.
startTickr byVal startTick AS INTEGER

Returns o i) .
This is a variable that was updated using the return value from GETTICKCOUNT() and it is used
to calculate the time elapsed since that update.
Arguments: None
Interactive No
https://connectivity.lairdtech.com/wireless- 121 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Command

Associated

GETTICKCOUNT
Commands

/[Example :: GetTickSince.sb (See in Firmware Zip file)
DIM startTick, elapseMs, x

x=1

startTick = GetTickCount()

DO
PRINT x;" x2 ="
X=X*2
PRINT x;"\n"
UNTIL x==32768

elapseMs = GetTickSince(startTick)

PRINT "\n\nThe Do Until loop took ";elapseMS; " msec to process

Expected Output:

1 x 2 =2

2 x 2 =4

4 x 2 =8

8 x 2 =16

16 x 2 = 32
32 x 2 = 64
64 x 2 = 128
128 x 2 = 256

256 x 2 = 512

512 x 2 = 1024
1024 x 2 = 2048
2048 x 2 4096
4096 x 2 8192
8192 x 2 = 16384
16384 x 2 = 32768

The Do Until loop took 21 msec to process

GETTICKCOUNT is a core subroutine.

6.11 Circular Buffer Management Functions

It is a common requirement in applications that deal with communications to require circular buffers that can act as first-in,
first-out queues or to create a stack that can store data in a push/pop manner.

This section describes functions that allow these to be created so that they can be expedited as fast as possible without the
speed penalty inherited in any interpreted language. The basic entity that is managed is the INTEGER variable in
smartBASIC. Hence be aware that for a buffer size of N, four times N is the memory that is taken from the internal heap.

These buffers are referenced using handles provided at creation time.

https://connectivity.lairdtech.com/wireless- 122 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

6.11.1 CircBufCreate

FUNCTION

This function is used to create a circular buffer with a maximum capacity set by the caller. Most often it is used as a first-in,
first-out queue.

CIRCBUFCREATE (nltems, circHandle)

INTEGER

Returns An integer result code. The most typical value is 0x0000, which indicates a successful
operation.

Arguments:
byVal nltems AS INTEGER

nltems This specifies the maximum number of INTEGER values that can be stored in the buffer. If

there isn’t enough free memory in the heap, then this function fails and returns an
appropriate result code.

byRef circHandle AS INTEGER
circHandle If the circular buffer is successfully created, then this variable returns a handle that should be
used to interact with it.

Interactive

Command No

/[Example :: CircBufCreate.sb (See in Firmware Zip file)

DIM circHandle, circHandle2, rc

rc = CircBufCreate(16,circHandle)
PRINT "\n";rc
IF rc!=0 THEN
PRINT "\nThe circular buffer ";circHandle; "was not created"
ENDIF

rc = CircBufCreate(32000,circHandle2)
PRINT "\n\n";rc
IF rc!=0 THEN
PRINT "\n---> The circular buffer 'circHandle2' was not created"”

ENDIF

Expected Output:

20736

-—-> The circular buffer 'circHandle2' was not created

CIRCBUFCREATE is an extension function.

https://connectivity.lairdtech.com/wireless- 123 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

6.11.2 CircBufDestroy

SUBROUTINE

This function is used to destroy a circular buffer previously created using CircBufCreate.

CIRCBUFDESTROY (circHandle)

Arguments:
byRef circHandle AS INTEGER

circHandle A handle referencing the circular buffer that needs to be deleted. On exit an invalid handle value
is returned.

Interactive No

Command

/[Example :: CircBufDestroy.sb (See in Firmware Zip file)

DIM circHandle, circHandle2, rc

rc = CircBufCreate(16,circHandle)
PRINT "\n";rc
IF rc!=0 THEN
PRINT "\nThe circular buffer ";circHandle; " was not created"

ENDIF

CircBufDestroy(circHandle)

PRINT "\nThe handle value is now ";circHandle; " so it has been destroyed"

Expected Output:

0

The handle value is now -1 so it has been destroyed

CIRCBUFDESTROY is an extension function.
6.11.3 CircBufWrite

FUNCTION

This function is used to write an integer at the head end of the circular buffer and if there is no space available to write,
then it returns with a failure resultcode and NOT write the value.

CIRCBUFWRITE (circHandle, nData)

INTEGER
Returns: An integer result code. The most typical value is 0x0000, which indicates a successful
operation.
Arguments:
circHandle byRef circHandle AS INTEGER
This identifies the circular buffer to write into.
nData byVal nData AS INTEGER
This is the integer value to write into the circular buffer
https://connectivity.lairdtech.com/wireless- 124 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Interactive

Command No

/I Example :: CircBufWrite.sb (See in Firmware Zip file)
DIM rc

DIM circHandle

DIM i

rc = CircBufCreate(16,circHandle)
IF rc 1= 0 then
PRINT "\nThe circular buffer was not created\n"
ELSE
PRINT "\nThe circular buffer was created successfully\n"
ENDIF

[lwrite 3 values into the circular buffer
FORi=1TO3
rc = CircBufWrite(circHandle, i)
IF rc 1= 0 then
PRINT "\nFailed to write into the circular buffer\n"
ELSE
PRINT i;" was successfully written to the circular buffer\r"
ENDIF
NEXT

Expected output:

The circular buffer was created successfully
1 was successfuly written to the circular buffer

2 was successfuly written to the circular buffer
3 was successfuly written to the circular buffer

CIRCBUFWRITE is an extension function.
6.11.4 CircBufOverWrite

FUNCTION

This function is used to write an integer at the head end of the circular buffer and if there is no space available to write,
then it returns with a failure resultcode but still writes into the circular buffer by first discarding the oldest item.

CIRCBUFOVERWRITE (circHandle, nData)

INTEGER
An integer result code. The most typical value is 0x0000, which indicates a successful operation

Note: If the buffer was full and the oldest value was overwritten then a non-zero value of
0x5103 is still returned.

Returns:

https://connectivity.lairdtech.com/wireless- 125 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Arguments:

byRef circHandle AS INTEGER

circHandle This identifies the circular buffer to write into.

byVal nData AS INTEGER
nData This is the integer value to write into the circular buffer. It is always written into the buffer.
Oldest is discarded to make space for this.

Interactive

Command No

/I Example :: CircBufOverwrite.sb (See in Firmware Zip file)
DIM rc,circHandle,i

rc = CircBufCreate(4,circHandle)
IF rc 1= 0 THEN
PRINT "\nThe circular buffer was not created\n"
ELSE
PRINT "\nThe circular buffer was created successfully\n"
ENDIF

FORi=1TO5
rc = CircBufOverwrite(circHandle, i)
IF rc == 0x5103 THEN
PRINT "\nOldest value was discarded to write ";i
ELSEIF rc !=0 THEN
PRINT "\nFailed to write into the circular buffer"
ELSE
PRINT "\n";i
ENDIF
NEXT

Expected Output:

The circular buffer was created successfully
1
2

4
Oldest value was discarded to write 5

CIRCBUFOVERWRITE is an extension function.
6.11.5 CircBufRead

FUNCTION
This function is used to read an integer from the tail end of the circular buffer. A nonzero resultcode is returned if the buffer
is empty or if the handle is invalid.

https://connectivity.lairdtech.com/wireless- 126 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

CIRCBUFREAD(circHandle, nData)

INTEGER
Returns: An integer result code. The most typical value is 0x0000, which indicates a successful operation.
If 0x5102 is returned it implies the buffer was empty so nothing was read.

Arguments:
circHandle byRef circHandle AS INTEGER
This identifies the circular buffer to read from.
nData byRef nData AS INTEGER
This is the integer value to read from the circular buffer
Interactive No
Command

/I Example :: CircBufRead.sb (See in Firmware Zip file)

DIM rc,circHandle,i,nData

rc = CircBufCreate(4,circHandle)

IF rc 1= 0 THEN
PRINT "\nThe circular buffer was not created"

ELSE
PRINT "\nThe circular buffer was created successfully\n"
PRINT "Writing..."

ENDIF

FORi=1TO5
rc = CircBufOverwrite(circHandle, i)
IF rc == 0x5103 THEN
PRINT "\nOldest value was discarded to write ";i;"\n"
ELSEIF rc 1=0 THEN
PRINT "\nFailed TO write inTO the circular buffer"
ELSE
PRINT "\n";i
ENDIF
NEXT

/Iread 4 values from the circular buffer
PRINT "\nReading...\n"
FORi=1to4
rc = CircBufRead(circHandle,nData)
IF rc == 0x5102 THEN
PRINT "The buffer was empty"
ELSEIF rc =0 THEN

https://connectivity.lairdtech.com/wireless- 127 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

PRINT "Failed to read from the circular buffer”
ELSE
PRINT nData;"\n"
ENDIF
NEXT

Expected Output:

The circular buffer was created successfully
Writing...

1

2
3
4
Oldest value was discarded to write 5

Reading...
2

3
4
5

CIRCBUFREAD is an extension function.
6.11.6 CircBufltems

FUNCTION

This function is used to determine the number of integer items held in the circular buffer.

CIRCBUFITEMS(circHandle, nltems)

INTEGER, a result code.

Returns: The typical value is 0x0000, indicating a successful operation. If 0x5102 is returned it implies the
buffer was empty so nothing was read.

Arguments:
circHandle byRef circHandle AS INTEGER
This identifies the circular buffer which needs to be queried.
nData byRef nitems AS INTEGER
This returns the total items waiting to be read in the circular buffer.
Interactive No
Command

/I Example :: CircBufltems.sb (See in Firmware Zip file)

https://connectivity.lairdtech.com/wireless- 128 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

" DIM rc,circHandle,i,nltems
rc = CircBufCreate(4,circHandle)
IFrc!=0 THEN
PRINT "\nThe circular buffer was not created\n"
ELSE
PRINT "\nThe circular buffer was created successfully\n"
ENDIF

FORi=1TO5
rc = CircBufOverwrite(circHandle,i)
IF rc == 0x5103 THEN
PRINT "\nOldest value was discarded to write ";i
ELSEIF rc 1=0 THEN
PRINT "\nFailed TO write inTO the circular buffer"”
ENDIF

rc = CircBufltems(circHandle,nltems)
IF rc == 0 THEN
PRINT "\n";nltems;" items in the circular buffer"
ENDIF
NEXT

Expected Output:

The circular buffer was created successfully

items in the circular buffer
items in the circular buffer

items in the circular buffer

Sw D

items in the circular buffer

Oldest value was discarded to write 5

4 items in the circular buffer

CIRCBUFITEMS is an extension function.

6.12Serial Communications Routines

In keeping with the event driven architecture of smartBASIC, the serial communications subsystem enables smartBASIC
applications to be written which allow communication events to trigger the processing of user smartBASIC code.

Note that if a handler function returns a non-zero value then the WAITEVENT statement is reprocessed, otherwise the
smartBASIC runtime engine proceeds to process the next statement after the WAITEVENT statement — not after the

https://connectivity.lairdtech.com/wireless- 129 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

handlers ENDFUNC or EXITFUNC statement. Please refer to the detailed description of the WAITEVENT statement for
further information.

6.13UART (Universal Asynchronous Receive Transmit)

This section describes all the events and routines used to interact with the UART peripheral available on the platform.
Depending on the platform, at a minimum, the UART consists of a transmit, a receive, a CTS (Clear To Send) and RTS (Ready
to Send) line. The CTS and RTS lines are used for hardware handshaking to ensure that buffers do not overrun.

If there is a need for the following low bandwidth status and control lines found on many peripherals, then the user is able
to create those using the GPIO lines of the module and interface with those control/status lines using smartBASIC code.

Output DTR Data Terminal Ready
Input DSR Data Set Ready
Output/Input DCD Data Carrier Detect
Output/Input RI Ring Indicate

The lines DCD and Rl are marked as Output or Input because it is possible, unlike a device like a PC where they are always
inputs and modems where they are always outputs, to configure the pins to be either so that the device can adopt a DTE
(Data Terminal Equipment) or DCE (Data Communications Equipment) role.

Note: DCD and Rl have to be BOTH outputs or BOTH inputs; one cannot be an output and the other an input.

6.13.1 UART Events

In addition to the routines for manipulating the UART interface, when data arrives via the receive line it is stored locally in
an underlying ring buffer and then an event is generated.

Similarly, when the transmit buffer is emptied, events are thrown from the underlying drivers so that user smartBASIC code
in handlers can perform user defined actions.

The following is a detailed list of all events generated by the UART subsystem which can be handled by user code.

This event is generated when one or more new characters have arrived and have been

EVUARTRX stored in the local ring buffer.

This event is generated when the last character is transferred from the local transmit

EVUARTTXEMPTY ring buffer to the hardware shift register.

/I Example :: EVUARTRX.sb (See in Firmware Zip file)
DIM rc
FUNCTION HndlrUartRx()
PRINT "\nData has arrived\r"
ENDFUNC 1 //remain blocked in WAITEVENT

FUNCTION BtnOPressed()
ENDFUNC 0

rc = GPIOBindEvent(0,16,1)
PRINT "\nPress Button 0 to exit this application \n"

https://connectivity.lairdtech.com/wireless- 130 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

' ONEVENT EVUARTRX CALL HndlrUartRx
ONEVENT EVGPIOCHANO CALL BtnOPressed

WAITEVENT //wait for rx, tx and modem status events

PRINT "Exiting..."

Expected Output:

Press Button 0 to exit this application

(S]

Data has arrived
Data has arrived

Data has arrived

Exiting...

Note: If you type unknown commands, an EO07 error displays in UwTerminal.

/I Example :: EVUARTTXEMPTY .sb (See in Firmware Zip file)
FUNCTION HndIrUartTxEty()
PRINT "\nTx buffer is empty"
ENDFUNC 0

ONEVENT EVUARTTXEMPTY CALL HndIrUartTxEty
PRINT "\nSend this via uart"

WAITEVENT

Expected Output:

Send this via uart

Tx buffer is empty

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

131

https://connectivity.lairdtech.com/wireless-
© Copyright 2019 Laird. All Rights Reserved

modules/bluetooth-modules

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

6.13.2UartOpen

Note: If communicating with a Mac OS X device, the baud rate cannot be set above 230400 due to Mac having no
support for these baud rates.

FUNCTION
This function is used to open the main default UART peripheral using the parameters specified.

If the UART is already open, then this function fails. To prevent this, call UartClose() or UartCloseEx() before calling this
function.

If this function is used to alter the communications parameters, like say the baudrate and the application exits to interactive
mode, then those settings are inherited by the interactive mode parser. Hence this is the only way to alter the
communications parameters for Interactive mode.

While the UART is open, if a BREAK is sent to the module, then it forces the module into deep sleep mode as long as BREAK
is asserted. As soon as BREAK is deasserted, the module wakes up through a reset as if it had been power cycled.

UARTOPEN (baudrate,txbuflen,rxbuflen,stOptions)

INTEGER Indicates success of command:
0 Opened successfully
0x5208 Invalid baudrate
0x5209 Invalid parity
0x520A Invalid databits
0x520B Invalid stopbits

Returns: 0x520C Cannot be DTE (because DCD and RI cannot be inputs)
0x520D Cannot be DCE (because DCD and Rl cannot be outputs)
0x520E Invalid flow control request
0x520F Invalid DTE/DCE role request
0x5210 Invalid length of stOptions parameter (must be five characters)

0x5211 Invalid Tx buffer length
0x5212 Invalid Rx buffer length

. = Local Stack Frame Underflow
Exceptions
= Local Stack Frame Overflow

Arguments:

byVal baudrate AS INTEGER

The baudrate for the UART. Note that, the higher the baudrate, the more power is drawn from
baudrate the supply pins.

AT 11002 or SYSINFO(1002) returns the minimum valid baudrate

AT 11003 or SYSINFO(1003) returns the maximum valid baudrate

byVal txbuflen AS INTEGER
txbuflen Set the transmit ring buffer size to this value. If set to 0 then a default value is used by the
underlying driver

byVal rxbuflen AS INTEGER
Rxbuflen Set the receive ring buffer size to this value. If set to 0 then a default value is used by the
underlying driver

byVal stOptions AS STRING

stOptions . . .
This string (can be a constant) MUST be exactly 5 characters long where each character is used
https://connectivity.lairdtech.com/wireless- 132 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

to specify further comms parameters as follows.

Character Offset:
DTE/DCE role request:
0 = T-DTE
= C-DCE
Parity:
= N-None
! = 0-0dd

= E- Even
2 Databits: 5,6, 7, 8,0r9
3 Stopbits: 1 or 2

Flow Control:
= N-None
= H-CTS/RTS hardware
= X - Xon/Xof (may not be available, see extension manual)

UARTINFO, UARTCLOSE, UARTWRITE, UARTREAD, UARTREADMATCH

zslr:t;:n ds UARTGETDSR, UARTGETCTS, UARTGETDCD, UARTGETRI, UARTSETDTR,
UARTSETRTS, UARTSETDCD, UARTSETRI, UARTBREAK, UARTFLUSH
Interactive
Command NO
Note: There are further restrictions on the options based on the hardware as for example a PC implementation cannot
be configured as a DCE role. Likewise, many microcontroller UART peripherals are not capable of 5 bits per
character —but a PCis.
Note: In DTE equipment DCD and Rl are inputs, while in DCE they are outputs.

/I Example :: UartOpen.sh (See in Firmware Zip file)
DIM rc

FUNCTION HndlrUartRx()
PRINT "\nData has arrived\r"
ENDFUNC 1 //remain blocked in WAITEVENT

FUNCTION BtnOPressed()
UartClose()
ENDFUNC 0

rc = GPIOBindEvent(0,16,1) /IFor buttonO

ONEVENT EVUARTRX CALL HndlIrUartRx
ONEVENT EVGPIOCHANO CALL BtnOPressed

https://connectivity.lairdtech.com/wireless- 133 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

UartClose() //Since Uart port is already open we must
/[close it before opening it again with

/[different settings.

/[--- Open comport so that DCD and RI are inputs
rc = UartOpen(9600,0,0,"CN81H") //Open as DCE, no parity, 8 databits,

/I1 stopbits, cts/rts flow control

IF rcl= 0 THEN

PRINT "\nFailed to open UART interface with error code ";INTEGER.H' rc
ELSE

PRINT "\nUART open success"
ENDIF

PRINT "\nPress button0 to exit this application\n"

WAITEVENT /lwait for rx, events
PRINT "\nExiting..."

Expected Output:

UART open successful
Press button0 to exit this application
laird

Data has arrived
Data has arrived
Data has arrived
Data has arrived
Data has arrived
Data has arrived

Exiting...

UARTOPEN is a core function.
6.13.3UARTClose

FUNCTION

This subroutine is used to close a UART port which had been opened with UARTOPEN.

If after the UART is closed a print statement is encountered, the UART automatically re-opens at the default rate (see
hardware specific user manual for actual default value) so that the data generated by the PRINT statement is sent.

This routine throws an exception if the UART is already closed, so if you are not sure then it is best to call it if UARTINFO(1)
returns a non-zero value.

When this subroutine is invoked, the receive and transmit buffers are both flushed. If there is any data in either of these
buffers when the UART is closed, it will be lost. This is because the execution of UARTCLOSE takes a very short amount of
time, while the transfer of data from the buffers takes much longer.

https://connectivity.lairdtech.com/wireless- 134 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

In addition, please note that when a smartBASIC application completes execution with the UART closed, it automatically
reopens in order to allow continued communication with the module in Interactive Mode using the default communications

settings.

UARTCLOSE()
Exceptions = Local Stack Frame Underflow
P = Local Stack Frame Overflow
Arguments None
Interactive
Command NO
Related UARTOPEN,UARTINFO, UARTWRITE, UARTREAD, UARTREADMATCH, UARTGETCTS,
Commands UARTGETDCD, UARTGETRI, UARTSETDTR, UARTSETRTS, UARTSETDCD, UARTSETRI, UARTBREAK,

UARTFLUSH

/[Example :: UartClose.sb (See in Firmware Zip file)
UartClose()

IF UartInfo(0)==0 THEN

PRINT "\nThe Uart port was closed"
ELSE

PRINT "\nThe Uart port was not closed"
ENDIF

IF Uartinfo(0)!=0 THEN
PRINT "\nand now it is open"
ENDI

Expected Output:

The UART port was closed

and now it is open

UARTCLOSE is a core subroutine.
6.13.4UARTCloseEx

FUNCTION

This function is used to close a UART port which had been opened with UARTOPEN depending on the flag mask in the input
parameter.

Please see UartClose() for more details.

UARTCLOSEEX(nFlags)
INTEGER
Returns An integer result code. The most typical value is 0x0000, which indicates a successful operation.

If 0x5231 is returned it implies one of the buffers was not empty so not closed.

https://connectivity.lairdtech.com/wireless- 135 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

= Local Stack Frame Underflow

Exceptions
P = Local Stack Frame Overflow
Arguments
byVal nFlags AS INTEGER
If Bit 0 is set, then only close if both rx and tx buffers are empty. Setting this bit to 0 has the
nFlags .
same effect as UartClose() routine.
Bits 1 to 31 are for future use and must be set to 0.
Interactive
Command NO
Related UARTOPEN,UARTINFO, UARTWRITE, UARTREAD, UARTREADMATCH, UARTGETCTS,
Commands UARTGETDCD, UARTGETRI, UARTSETDTR, UARTSETRTS, UARTSETDCD, UARTSETRI, UARTBREAK,

UARTFLUSH

/[Example :: UartCloseEx.sb (See in Firmware Zip file)
DIM rcl
DIM rc2

UartClose()

rcl = UartOpen(9600,0,0,"CN81H") /lopen as DTE at 300 baudrate, odd parity
//8 databits, 1 stopbits, cts/rts flow control

PRINT "Laird"

IF UartCloseEx(1)!=0 THEN
PRINT "\nData in at least one buffer. Uart Port not closed"

ELSE
rcl = UartOpen(9600,0,0,"CN81H") //open as DTE at 300 baudrate, odd parity
PRINT "\nUart Port was closed"

ENDIF

Expected Output:

Laird

Data in at least one buffer. Uart Port not closed

UARTCLOSEEX is a core function.
6.13.5UARTInfo

FUNCTION

This function is used to query information about the default UART, such as buffer lengths, whether the port is already open
or how many bytes are waiting in the receive buffer to be read.

UARTINFO (infold)

Returns INTEGER The value associated with the type of uart information requested

= Local Stack Frame Underflow

Exceptions
= Local Stack Frame Overflow
https://connectivity.lairdtech.com/wireless- 136 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide
Arguments
byVal infold AS INTEGER
This specifies the type of UART information requested as follows if the UART is open:
0 1-The portis open
0 —The port is closed
The following specify the type of uart information when the port is open:
infold 1 Receive ring buffer capacity
2 Transmit ring buffer capacity
3 Number of bytes waiting to be read from receive ring buffer
4 Free space available in transmit ring buffer
5 Number of bytes still waiting to be sent in transmit buffer
6 Total number of bytes waiting in rx and tx buffer
If the UART is closed, 0 is always returned regardless of the value of infold.
Note: UARTINFO(0O) always returns the open/close state of the UART.
e o
Related UARTOPEN, UARTCLOSE, UARTWRITE, UARTREAD, UARTREADMATCH
Commands UARTGETDSR, UARTGETCTS, UARTGETDCD, UARTGETRI, UARTSETDTR,

UARTSETRTS, UARTSETDCD, UARTSETRI, UARTBREAK, UARTFLUSH

/[Example :: UartInfo.sb (See in Firmware Zip file)
DIM rc,start

UartClose()

IF Uartinfo(0)==0 THEN

PRINT "\nThe Uart port was closed\n"
ELSE

PRINT "\nThe Uart port was not closed\n"
ENDIF

PRINT "\nReceive ring buffer capacity: ";UartInfo(1)
PRINT "\nTransmit ring buffer capacity: ";UartInfo(2)
PRINT "\nNo. bytes waiting in transmit buffer: ";UartInfo(5)

start = GetTickCount()

DO

UNTIL Uartinfo(5)==0

PRINT "\n\nTook ";GetTickSince(start);" milliseconds for transmit buffer to be ~ emptied"

https://connectivity.lairdtech.com/wireless- 137 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Expected Output:

The Uart port was closed

Receive ring buffer capacity: 256
Transmit ring buffer capacity: 256
No. bytes waiting in transmit buffer: 134

Took 142 milliseconds for transmit buffer to be emptied

UARTINFO is a core subroutine.
6.13.6UartWrite

FUNCTION

This function is used to transmit a string of characters.

UARTWRITE (strMsg)

INTEGER
Returns 0 to N : Actual number of bytes successfully written to the local transmit ring buffer
= Local Stack Frame Underflow
Exceptions = Local Stack Frame Overflow
= UART has not been opened using UARTOPEN (or auto-opened with PRINT statement)
Arguments

byRef strMsg AS STRING

The array of bytes to be sent. STRLEN(strMsg) bytes are written to the local transmit ring buffer.

If STRLEN(strMsg) and the return value are not the same, this implies the transmit buffer did
strMsg not have enough space to accommodate the data. If the return value does not match the length

of the original string, then use STRSHIFTLEFT function to drop the data from the string, so that

subsequent calls to this function only retries with data which was not placed in the output ring

buffer.
Interactive
N
Command ©
Related UARTOPEN,UARTINFO, UARTCLOSE, UARTREAD, UARTREADMATCH
Commands UARTGETDSR, UARTGETCTS, UARTGETDCD, UARTGETRI, UARTSETDTR,
UARTSETRTS, UARTSETDCD, UARTSETRI, UARTBREAK, UARTFLUSH
Note: strMsg cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string,

first save it to a temp string variable and then pass it to the function.

/[Example :: UartWrite.sb (See in Firmware Zip file)
DIM rc,str$,i,done,d

/Istr$ contains a lot of space so that we can satisfy the condition in the IF statement

https://connectivity.lairdtech.com/wireless- 138 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Hello World"

FUNCTION HndlIrUartTxEty()
PRINT "\nTx buffer is now empty"
ENDFUNC 0 //exit from WAITEVENT

rc=UartWrite(str$)

/IShift 'str$' if there isn't enough space in the buffer until 'str$' can be written
WHILE done ==
IF rc < StrLen(str$) THEN
PRINT rc;" bytes written"
PRINT "\nStill have ";StrLen(str$)-rc;" bytes to write\n"
PRINT "\nShifting 'str$' by ";rc
StrShiftLeft(str$,rc)
done=0
ELSE
PRINT "\nString 'str$' written successfully"
done=1
ENDIF
ENDWHILE

ONEVENT EVUARTTXEMPTY CALL HndlrUartTxEty

WAITEVENT

Expected Output:

256 bytes written

Still have 18 bytes to write

Shifting 'str$' by 256

String 'str$' written successfully

Tx buffer is now empty

UARTWRITE is a core subroutine.
6.13.7 UartRead
FUNCTION

This function is used to read the content of the receive buffer and append it to the string variable supplied.

https://connectivity.lairdtech.com/wireless- 139 Americas: +1-800-492-2320

modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

UARTREAD(strMsg)

INTEGER 0 to N : The total length of the string variable — not just what got appended. This
Returns means the caller does not need to call strlen() function to determine how many bytes in the
string that need to be processed.

= Local Stack Frame Underflow
Exceptions = Local Stack Frame Overflow
= Uart has not been opened using UARTOPENxxx

Arguments
strMs byRef strMsg AS STRING

g The content of the receive buffer is appended to this string.
Interactive
Command NO
Related UARTOPEN,UARTINFO, UARTCLOSE, UARTWRITE, UARTREADMATCH, UARTGETDSR,
Commands UARTGETCTS, UARTGETDCD, UARTGETRI, UARTSETDTR, UARTSETRTS, UARTSETDCD,

UARTSETRI, UARTBREAK, UARTFLUSH

Note: strMsg cannot be a string constant (e.g. “the cat”); they must be a string variable. If you must use a const string,

first save it to a temp string variable and then pass it to the function.

/[Example :: UartRead.sb (See in Firmware Zip file)
DIM rc,strLength,str$

str$="Your name is "

FUNCTION HndlrUartRx()
TimerStart(0,100,0) //Allow enough time for data to reach rx buffer
ENDFUNC 1

FUNCTION HndIrTmr0()
strLength=UartRead(str$)
PRINT "\n";str$

ENDFUNC 0

ONEVENT EVTMRO CALL HndIrTmr0
ONEVENT EVUARTRX CALL HndlrUartRx

PRINT "\nWhat is your name?\n"

WAITEVENT

Expected Output:

https://connectivity.lairdtech.com/wireless- 140 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

What is your name?

David

Your name is David

TR
UARTREAD is a core subroutine.

6.13.8UartReadN

FUNCTION

This function is used to read the content of the receive buffer and append it to the string variable supplied but it ensures
that the string is not longer than nMaxLen.

UARTREADN(strMsg, nMaxLen)

INTEGER 0 to N : The total length of the string variable — not just what got appended. This
Returns means the caller does not need to call strlen() function to determine how many bytes in the
string that need to be processed.

= Local Stack Frame Underflow
Exceptions = Local Stack Frame Overflow
= Uart has not been opened using UARTOPENxxx

Arguments

byRef strMsg AS STRING
The content of the receive buffer is appended to this string.

byval nMaxLen AS INTEGER
nMaxlLen The output string strMsg is never longer than this value. If a value less than 1 is specified, it is
clipped to 1 and if > that OXFFFF it is clipped to OxFFFF.

strMisg

Interactive

Command NO
Related UARTOPEN,UARTINFO, UARTCLOSE, UARTWRITE, UARTREADMATCH, UARTGETDSR,
Commands UARTGETCTS, UARTGETDCD, UARTGETRI, UARTSETDTR, UARTSETRTS, UARTSETDCD,
UARTSETRI, UARTBREAK, UARTFLUSH
Note: strMsg cannot be a string constant (e.g. “the cat”); they must be a string variable. If you must use a const string,

first save it to a temp string variable and then pass it to the function.

/[Example
DIM rc,strLength,str$

str$=""Your name is "
FUNCTION HndlrUartRx()
TimerStart(0,100,0) //Allow enough time for data to reach rx buffer

ENDFUNC 1

FUNCTION HndIrTmro()

https://connectivity.lairdtech.com/wireless- 141 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

strLength=UartReadn(str$,11)
PRINT "\n";str$
ENDFUNC 0

ONEVENT EVTMRO CALL HndIrTmr0
ONEVENT EVUARTRX CALL HndlrUartRx

PRINT "\nWhat is your name?\n"

WAITEVENT

Expected Output:

What is your name?

David

Your name i

UARTREADN is a core subroutine.
6.13.9UartReadMatch
FUNCTION

This function is used to read the content of the underlying receive ring buffer and append it to the string variable supplied,
up to and including the first instance of the specified matching character OR the end of the ring buffer.

This function is very useful when interfacing with a peer which sends messages terminated by a constant character such as
a carriage return (0x0D). In that case, in the handler, if the return value is greater than 0, it implies a terminated message
arrived and so can be processed further.

UARTREADMATCH(strMsg , chr)

INTEGER Indicates the presence of the match character in strMsg as follows:

0 — Data may have been appended to the string, but no matching character.
1to N —The total length of the string variable up to and including the match chr.
Returns Note: When 0 is returned you can use STRLEN(strMsg) to determine the length of data stored
in the string. On some platforms with low amount of RAM resources, the underlying

code may decide to leave the data in the receive buffer rather than transfer it to the
string.

= Local Stack Frame Underflow
Exceptions = Local Stack Frame Overflow
= Uart has not been opened using UARTOPEN

Arguments
byRef strMsg AS STRING
strMsg The content of the receive buffer gets appended to this string up to and including the match
character.
Chr byVal chr AS INTEGER
https://connectivity.lairdtech.com/wireless- 142 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

The character to match in the receive buffer; for example, the carriage returns character 0x0D

Interactive
Command NO
Related UARTOPEN, UARTINFO, UARTCLOSE, UARTWRITE, UARTREAD, UARTGETDSR, UARTGETCTS,
UARTGETDCD, UARTGETRI, UARTSETDTR, UARTSETRTS, UARTSETDCD, UARTSETRI, UARTBREAK,
Commands
UARTFLUSH
Note: strMsg cannot be a string constant (e.g. “the cat”); they must be a string variable. If you must use a const string,

first save it to a temp string variable and then pass it to the function.

/[Example :: UartReadMatch.sb (See in Firmware Zip file)
DIM rc,str$,ret,char,str2$
ret=1 /[Function return value

char=13 /IASCII decimal value for 'carriage return'

str$="Your name is "

str2$="\n\nMatch character ' ' not found \nExiting.."

FUNCTION HndlIrUartRx()
TimerStart(0,10,0) /[Allow time for data to reach rx buffer
ENDFUNC 1

FUNCTION HndlrTmr0()
rc = UartReadMatch(str$,char)
PRINT "\n";str$
IF rc==0 THEN
rc=StrSetChr(str2$,char,19) //Insert ‘char', the match character
PRINT str2$
str2$="\n\nMatch character not found \nExiting.." //reset str2$
ret=0
ELSE
PRINT "\n\n\nNow type something without the letter 'a'\n"
str$="You sent " Ilreset str$
char=97 /IASCII decimal value for 'a'
ret=1
ENDIF
ENDFUNC ret

ONEVENT EVTMRO CALL HndIrTmr0
ONEVENT EVUARTRX CALL HndlrUartRx

https://connectivity.lairdtech.com/wireless- 143 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

PRINT "\nWhat is your name?\n"

~ WAITEVENT

Expected Output:

What is your name?
Your name is David
Now type something without the letter 'a'

You sent hello

Match character 'a' not found
Exiting..

UARTREADMATCH is a core subroutine.

6.13.10 UartFlush

SUBROUTINE

This subroutine is used to flush either or both receive and transmit ring buffers.

This is useful when, for example, you have a character terminated messaging system and the peer sends a very long
message and the input buffer fills up. In that case, there is no more space for an incoming termination character and the
RTS handshaking line would have been asserted so the message system stalls. A flush of the receive buffer is the best
approach to recover from that situation.

Note: Execution of UARTFLUSH is much quicker than the time taken to transmit data to/from the
buffers
UARTFLUSH(bitMask)

= Local Stack Frame Underflow
Exceptions = Local Stack Frame Overflow
= Uart has not been opened using UARTOPEN

Arguments
byVal bitMask AS INTEGER
This bit mask is used to choose which ring buffer to flush.
Bit Description
bitMask
' 0 | Settoflush the Rx buffer
1 Set to flush the Tx buffer
Interactive
Command NO
Related UARTOPEN, UARTINFO, UARTCLOSE, UARTWRITE, UARTREAD, UARTREADMATCH,
Commands UARTGETCTS, UARTGETDCD, UARTGETRI, UARTGETDSR, UARTSETRTS, UARTSETDCD,
UARTBREAK, UARTFLUSH
https://connectivity.lairdtech.com/wireless- 144 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

/[Example :: UartFlushRx.sb (See in Firmware Zip file)
FUNCTION HndlrUartRx()

TimerStart(0,2,0) /[Allow time for data to reach rx buffer
ENDFUNC 1

FUNCTION HndIrTmr0()
PRINT Uartinfo(3);" bytes in the rx buffer,\n"
UartFlush(01) /[clear rx buffer
PRINT Uartinfo(3);" bytes in the rx buffer after flushing"
ENDFUNC 0

ONEVENT EVUARTRX CALL HndlrUartRx
ONEVENT EVTMRO CALL HndIrTmr0

PRINT "\nSend me some text\n"

WAITEVENT

Expected Output:

Send me some data
Laird

6 bytes in the rx buffer,

0 bytes in the rx buffer after flushing

/[Example :: UartFlushTx.sb (See in Firmware Zip file)
DIM s$: s$ = "Hello World"
DIM rc : rc = UartWrite(s$)

UartFlush(10) //Will flush before all chars have been transmitted
PRINT UartInfo(5); " bytes in the tx buffer after flushing"

Expected Output:

HO bytes in the tx buffer after flushing

UARTFLUSH is a core subroutine.

6.13.11 UartGetCTS

FUNCTION
https://connectivity.lairdtech.com/wireless- 145 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

This function is used to read the current state of the CTS modem status input line.

If the device does not expose a CTS input line, then this function returns a value that signifies an asserted line.

UARTGETCTS()

INTEGER Indicates the status of the CTS line:
Returns 0 : CTSline is NOT asserted
1 : CTSline is asserted
= Local Stack Frame Underflow
Exceptions = Local Stack Frame Overflow
= Uart has not been opened using UARTOPEN

Arguments None
Interactive
Command NGO

UARTOPEN, UARTINFO, UARTCLOSE, UARTWRITE, UARTREAD, UARTREADMATCH,
UARTGETDSR, UARTGETDCD, UARTGETRI, UARTSETDTR, UARTSETRTS, UARTSETDCD,
UARTSETRI, UARTBREAK, UARTFLUSH

Related
Commands

/[Example :: UartGetCTS.sb (See in Firmware Zip file)

IF UartGetCTS()==0 THEN
PRINT "\nCTS line is not asserted"
ELSEIF UartGetCTS()==1 THEN
PRINT "\nCTS line is asserted"
ENDIF

Expected Output:

CTS line 1s not asserted

UARTGETCTS is a core subroutine.
6.13.12 UartSetRTS

SUBROUTINE

This function is used to set the state of the RTS modem control line. When the UART port is closed, the RTS line can be
configured as an input or an output and can be available for use as a general purpose input/output line.

When the UART port is opened, the RTS output is automatically defaulted to the asserted state. If flow control was enabled
when the port was opened, then the RTS output cannot be manipulated as it is owned by the underlying driver.

UARTSETRTS(newState)

= Local Stack Frame Underflow
Exceptions = Local Stack Frame Overflow
= Uart has not been opened using UARTOPEN

Arguments
byVal newState AS INTEGER
newState
0 to deassert and non-zero to assert
https://connectivity.lairdtech.com/wireless- 146 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide
Interactive
Command NO
Related UARTOPEN, UARTINFO, UARTCLOSE, UARTWRITE, UARTREAD, UARTREADMATCH, UARTGETCTS,
UARTGETDCD, UARTGETRI, UARTGETDSR, UARTSETDTR, UARTSETDCD, UARTSETRI, UARTBREAK,
Commands
UARTFLUSH
Note: This subroutine is not implemented in some modules. Refer to module specific user manual if this is available.

UARTSETRTS is a core subroutine.
6.13.13 UartBREAK

SUBROUTINE

This subroutine is used to assert/deassert a BREAK on the transmit output line. A BREAK is a condition where the line is in
non-idle state (that is Ov) for more than 10 to 13 bit times, depending on whether parity has been enabled and the number
of stopbits.

On certain platforms the hardware may not allow this functionality, contact Laird to determine if your device has the
capability. On platforms that do not have this capability, this routine has no effect.

UARTBREAK(state)

= Local Stack Frame Underflow
Exceptions = Local Stack Frame Overflow
= Uart has not been opened using UARTOPEN

Arguments
byVal newState AS INTEGER
newState
0 to deassert and non-zero to assert
Interactive
N
Command 0
Related UARTOPEN, UARTINFO, UARTCLOSE, UARTWRITE, UARTREAD, UARTREADMATCH,
Commands UARTGETCTS, UARTGETDCD, UARTGETRI, UARTGETDSR, UARTSETRTS, UARTSETDCD,

UARTFLUSH

UARTBREAK is a core subroutine.

6.14 12C (Two Wire Interface or TWI)

Note: The routines in this section only work if 12C is supported on the platform.

This section describes all the events and routines used to interact with the 12C peripheral if it is available on the platform.
An 12C interface is also known as a Two Wire Interface (TWI) and has a master/slave topology.

An I12C interface allows multiple masters and slaves to communicate over a shared wired-OR type bus consisting of two lines
which normally sit at 5 or 3.3v.

Some modules can only be configured as an 12C master with the additional constraint that it be the only master on the bus
and only 7-bit slave addressing is supported. Please refer to the specific user manual for clarification.

The two signal lines are called SCL and SDA. The former is the clock line which is always sourced by the master and the
latter is a bi-directional data line which can be driven by any device on the bus.

https://connectivity.lairdtech.com/wireless- 147 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

It is essential to remember that pull up resistors on both SCL and SDA lines are not provided in the module and MUST be
provided external to the module.

A very good introduction to 12C can be found at http://www.i2c-bus.org/i2c-primer/ and the reader is encouraged to refer
to it before using the API described in this section.

6.14.1 12C Events
The API provided in the module is synchronous and so there is no requirement for events.
6.14.212cOpen

FUNCTION
This function is used to open the main 12C peripheral using the parameters specified.

See the module reference manual for details of which pins expose the SCL and SDA functions.

I2COPEN (nClockHz, nCfgFlags, nHande)

INTEGER Indicates success of command:
0 Opened successfully
0x5200 Driver not found

0x5207 Driver already open

Returns 0x5225 Invalid clock frequency requested

0x521D Driver resource unavailable
0x5226 No free PPl channel

0x5202 Invalid signal pins

0x5219 12C not allowed on specified pins
= Local Stack Frame Underflow

Exceptions
P = Local Stack Frame Overflow
Arguments
nClockHz byVal nClockHz AS INTEGER
This is the clock frequency to use, See module specific documentation for valid frequencies.
byVal nCfgFlags AS INTEGER
This is a bit mask used to configure the 12C interface. All unused bits are allocated as for
future use and MUST be set to 0. Used bits are as follows:
Bit Description
nCfgFlags 0 If set, then a 500 microsecond low pulse is NOT sent on open. This low
pulse is used to create a start and stop condition on the bus so that any
signal transitions on these lines prior to this open which may have
confused a slave can initialise that slave to a known state. The STOP
condition should be detected by the slave.
1-31 Unused and MUST be set to 0
byRef nHandle AS INTEGER
nHandle The handle for this interface is returned in this variable if it was successfully opened. This
handle is subsequently used to read/write and close the interface.
Related I2CCLOSE, I2CWRITEREADS, I2CWRITEREGS, I2CWRITEREG16, I2CWRITEREG32,

Commands I2CREADREGS, 12CREADREG16, I2CREADREG32

/IExample :: 12cOpen.sb (See in Firmware Zip file)

https://connectivity.lairdtech.com/wireless- 148 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

http://www.i2c-bus.org/i2c-primer/

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

' DIM handle
DIM rc : rc=12cOpen(100000,0,handle)

IF rc!=0 THEN

PRINT "\nFailed to open I12C interface with error code "; INTEGER.h' rc
ELSE

PRINT "\nl2C open success \nHandle is ";handle
ENDIF

Expected Output:

I2C open success

Handle is 0

I2COPEN is a core function.
6.14.312cClose

SUBROUTINE
This subroutine is used to close a I12C port which had been opened with [2COPEN.

This routine is safe to call if it is already closed.

I2CCLOSE(handle)

= Local Stack Frame Underflow

Exceptions
P = Local Stack Frame Overflow

Arguments

byVal handle AS INTEGER
handle This is the handle value that was returned when I2COPEN was called which identifies the 12C

interface to close.

Interactive
Command

Related I2COPEN, I2CWRITEREADS, I2CWRITEREGS, I2CWRITEREG16, I2CWRITEREG32, I2CREADREGS,
Commands I2CREADREG16, I2CREADREG32

NO

/[Example :: 12cClose.sb (See in Firmware Zip file)
DIM handle
DIM rc : rc=12cOpen(100000,0,handle)

IF rcl= 0 THEN

PRINT "\nFailed to open 12C interface with error code "; INTEGER.h' rc
ELSE

PRINT "\nI2C open success \nHandle is ";handle
ENDIF

https://connectivity.lairdtech.com/wireless- 149 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

! 12cClose(handle) //close the port

12cClose(handle) //no harm done doing it again

12CCLOSE is a core subroutine.
6.14.412cWriteREGS8
SUBROUTINE

This function is used to write an 8-bit value to a register inside a slave which is identified by an 8-bit register address.

Note: A handle parameter is NOT required as this function is used to interact with the main interface. In the future, a
new version of this function is made available if more than one 12C interface is made available, most likely made
available by bit-bashing gpio.

I2CWRITEREG8(nSlaveAddr, nRegAddr, nRegValue)

= Local Stack Frame Underflow

Exceptions
xcept! = Local Stack Frame Overflow
Arguments
byVal nSlaveAddr AS INTEGER
nslaveAddr This is the address of the slave in range 0 to 127.
nRegAddr byVal nRegAddr AS INTEGER

This is the 8-bit register address in the addressed slave in range 0 to 255.

byVal nRegValue AS INTEGER
nRegValue This is the 8-bit value to written to the register in the addressed slave.
Note: Only the lowest eight bits of this variable are written.

Interactive
Command NO
Related I2COPEN, 12CCLOSE, 12CWRITEREADS, I2CWRITEREGS, 12CWRITEREG16, I2CWRITEREG32,

Commands I2CREADREGS, 12CREADREG16, I2CREADREG32

/[Example :: 12cWriteReg8.sb (See in Firmware Zip file)

/[**Please ensure that nSlaveAddr is the slave address of your 12C peripheral**

DIM rc, handle, nSlaveAddr, nRegAddr, nRegVal

/I--- Open 12C Peripheral
rc=12cOpen(100000,0,handle)
IF rcl= 0 THEN
PRINT "\nFailed to open 12C interface with error code "; INTEGER.H' rc
ELSE
PRINT "\nl2C open success"
ENDIF

/I--- Write 'nRegVal' to register 'nRegAddr'

https://connectivity.lairdtech.com/wireless- 150 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

" nSlaveAddr=0x6f : nRegAddr = 23 : nRegVal = 0x63
rc = 12cWriteReg8(nSlaveAddr, nRegAddr, nRegVal)

IF rcl= 0 THEN

PRINT "\nFailed to Write to slave/register "; INTEGER.H'rc
ELSE

PRINT "\n";nRegVal; " written successfully to register ";nRegAddr
ENDIF

12cClose(handle) //close the port

Expected Output:

I2C open success

99 written successfully to register 23

I2CWRITEREGS is a core function.
6.14.512cReadREGS8

SUBROUTINE
This function is used to read an 8-bit value from a register inside a slave which is identified by an 8-bit register address.

Note a ‘handle’ parameter is NOT required as this function is used to interact with the main interface. In the future, a new
version of this function is made available if more than one 12C interface is made available, most likely made available by bit-
bashing GPIO.

I2CREADREGS8(nSlaveAddr, nRegAddr, nRegValue)

= Local Stack Frame Underflow

E ti
xceptions = Local Stack Frame Overflow
Arguments
byVal nSlaveAddr AS INTEGER
nSlaveAddr This is the address of the slave in range 0 to 127.
byVal nRegAddr AS INTEGER
nRegAddr This is the 8-bit register address in the addressed slave in range 0 to 255.
nReaValue byRef nRegValue AS INTEGER
g The 8-bit value from the register in the addressed slave is returned in this variable.
Interactive
Command NGO
Related I2COPEN, 12CCLOSE, I2CWRITEREADS, I2CWRITEREGS, I2CWRITEREG16, I2CWRITEREG32,

Commands I2CREADREGS, 12CREADREG16, I2CREADREG32

/[Example :: 12cReadReg8.sb (See in Firmware Zip file)

/[**Please ensure that nSlaveAddr is the slave address of your 12C peripheral**

DIM rc, handle, nSlaveAddr, nRegAddr, nRegVal

https://connectivity.lairdtech.com/wireless- 151 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

/I--- Open 12C Peripheral
rc=12cOpen(100000,0,handle)
IF rcl= 0 THEN
PRINT "\nFailed to open 12C interface with error code "; INTEGER.H' rc
ELSE
PRINT "\nI2C open success"
ENDIF

/I---Read value from address 0x34
nSlaveAddr=0x6f : nRegAddr =23
rc = I2cReadReg8(nSlaveAddr, nRegAddr, nRegVal)
IF rc!=0 THEN
PRINT "\nFailed to Read from slave/register "'; INTEGER.H'rc
ELSE
PRINT "\nValue read from register is ";nRegVal
ENDIF

12cClose(handle) //close the port

Expected Output:

I2C open success

Value read from register is 99

I2CREADREGS is a core function.
6.14.612cWriteREG16

SUBROUTINE

This function is used to write a 16-bit value to two registers inside a slave and the first register is identified by an 8-bit
register address supplied.

Note a ‘handle’ parameter is NOT required as this function is used to interact with the main interface. In the future, a new
version of this function will be made available if more than one I12C interface is made available, most likely made available
by bit-bashing GPIO.

I2CWRITEREG16(nSlaveAddr, nRegAddr, nRegValue)

= Local Stack Frame Underflow

E ti

xeeptions = Local Stack Frame Overflow
Arguments
nSlaveAddr byVal nSlaveAddr AS INTEGER

This is the address of the slave in range 0 to 127.
nRegAddr byVal nRegAddr AS INTEGER

https://connectivity.lairdtech.com/wireless- 152 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

This is the 8-bit start register address in the addressed slave in range 0 to 255.

byVal nRegValue AS INTEGER
nRegValue This is the 16-bit value to be written to the register in the addressed slave.
Please note only the lowest 16 bits of this variable are written.

Interactive
Command NO
Related I2COPEN, 12CCLOSE, I2CWRITEREADS, 12CWRITEREGS, I2CWRITEREG16, I2CWRITEREG32,

Commands I2CREADREGS, 12CREADREG16, I2CREADREG32

/[Example :: 12cWriteReg16.sb (See in Firmware Zip file)

/[**Please ensure that nSlaveAddr is the slave address of your 12C peripheral**
DIM rc, handle, nSlaveAddr, nRegAddr, nRegVal

/[--- Open 12C Peripheral
rc=12cOpen(100000,0,handle)
IF rcl= 0 THEN
PRINT "\nFailed to open 12C interface with error code "; INTEGER.H' rc
ELSE
PRINT "\nl2C open success"
ENDIF

/I--- Write 'nRegVal' to register 'nRegAddr'
nSlaveAddr=0x6f : nRegAddr = 0x34 : nRegVal = 0x4210
rc = I12cWriteReg16(nSlaveAddr, nRegAddr, nRegVal)
IF rc!=0 THEN
PRINT "\nFailed to Write to slave/register "; INTEGER.H'rc
ELSE
PRINT "\n";nRegVal; " written successfully to register ";nRegAddr
ENDIF

12cClose(handle) //close the port

Expected Output:

I2C open success

16912 written successfully to register 52

I2CWRITEREG16 is a core function.

https://connectivity.lairdtech.com/wireless- 153 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

6.14.712cReadREGI16
SUBROUTINE

This function is used to read a 16-bit value from two registers inside a slave which is identified by an 8-bit register address.

Note: A handle parameter is NOT required as this function is used to interact with the main interface. In the future, a
new version of this function will be made available if more than one 12C interface is made available, most likely
made available by bit-bashing GPIO.

I2CREADREG16(nSlaveAddr, nRegAddr, nRegValue)

= Local Stack Frame Underflow

Exceptions

P = Local Stack Frame Overflow
Arguments byVal nSlaveAddr AS INTEGER

J This is the address of the slave in range 0 to 127.
byVal nRegAddr AS INTEGER
nSlaveAddr This is the 8-bit start register address in the addressed slave in range 0 to 255.
nReaAddr byRef nRegValue AS INTEGER
9 The 16-bit value from two registers in the addressed slave is returned in this variable.

Interactive
Command NGO
Related I2COPEN, 12CCLOSE, I2CWRITEREADS, I2CWRITEREGS, I2CWRITEREG16, I2CWRITEREG32,

Commands I2CREADREGS, 12CREADREG16, I2CREADREG32

/[Example :: 12cReadReg16.sb (See in Firmware Zip file)

/[**Please ensure that nSlaveAddr is the slave address of your 12C peripheral**

DIM rc, handle, nSlaveAddr, nRegAddr, nRegVal

/I--- Open 12C Peripheral
rc=12cOpen(100000,0,handle)
IF rcl= 0 THEN
PRINT "\nFailed to open 12C interface with error code "; INTEGER.H' rc
ELSE
PRINT "\nl2C open success"
ENDIF

/I---Read value from address 0x34
nSlaveAddr=0x6f : nRegAddr = 0x34
rc = 12cReadReg16(nSlaveAddr, nRegAddr, nRegVal)
IF rc!=0 THEN
PRINT "\nFailed to Read from slave/register "; INTEGER.H'rc
ELSE

PRINT "\nValue read from register is ";nRegVal

https://connectivity.lairdtech.com/wireless- 154 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

12cClose(handle) //close the port

Expected Output:

I2C open success

Value read from register is 16912

I2CREADREG16 is a core function.
6.714.812cWriteREG32

SUBROUTINE

This function is used to write a 32-bit value to four registers inside a slave and the first register is identified by an 8-bit
register address supplied.

Note: A handle parameter is NOT required as this function is used to interact with the main interface. In the future, a
new version of this function will be made available if more than one 12C interface is made available, most likely
made available by bit-bashing GPIO.

I2CWRITEREG32(nSlaveAddr, nRegAddr, nRegValue)

= Local Stack Frame Underflow

Exceptions
P = Local Stack Frame Overflow
Arguments
byVal nSlaveAddr AS INTEGER
nSlaveAddr This is the address of the slave in range 0 to 127.
nRegAddr byyql nReg.Addr AS IIYTEGER ' '
This is the 8-bit start register address in the addressed slave in range 0 to 255.
nReaValue byVal nRegValue AS INTEGER
g This is the 32-bit value to be written to the register in the addressed slave.
Interactive
Command NO
Related I2COPEN, 12CCLOSE, I2CWRITEREADS, I2CWRITEREGS, I2CWRITEREG16, 2CWRITEREG32,

Commands I2CREADREGS, 12CREADREG16, I2CREADREG32

/[Example :: 12cWriteReg32.sh (See in Firmware Zip file)

/[**Please ensure that nSlaveAddr is the slave address of your 12C peripheral**
DIM handle

DIM nSlaveAddr, nRegAddr,nRegVal

DIM rc : rc=12cOpen(100000,0,handle)

IF rc!=0 THEN
PRINT "\nFailed to open 12C interface with error code ";INTEGER.h' rc

https://connectivity.lairdtech.com/wireless- 155 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

PRINT "\nl2C open success"
ENDIF

nSlaveAddr = 0x6f : nRegAddr = 0x56 : nRegVal = 0x4210FEDC
rc = 12cWriteReg32(nSlaveAddr, nRegAddr, nRegVal)
IF rc!= 0 THEN
PRINT "\nFailed to Write to slave/register "; INTEGER.H'rc
ELSE
PRINT "\n";nRegVal; " written successfully to register ";nRegAddr

ENDIF

I2cClose (handle) //close the port

Expected Output:

I2C open success

1108410076 written successfully to register 86

I2CWRITEREG32 is a core function.
6.14.912cReadREG32

FUNCTION

This function is used to read a 32-bit value from four registers inside a slave which is identified by a starting 8-bit register
address.

Note: A handle parameter is NOT required as this function is used to interact with the main interface. In the future, a

new version of this function will be made available if more than one 12C interface is made available, most likely
made available by bit-bashing GPIO.

I2CREADREG32(nSlaveAddr, nRegAddr, nRegValue)

= Local Stack Frame Underflow

Exceptions
P = Local Stack Frame Overflow
Arguments
byVal nSlaveAddr AS INTEGER
nSlaveAddr This is the address of the slave in range 0 to 127.
nRegAddr by‘Vql nRquddrAS IIYTEGER ' '
This is the 8-bit start register address in the addressed slave in range 0 to 255.
byRef nRegValue AS INTEGER
nRegValue S .
The 32-bit value from four registers in the addressed slave is returned in this variable.
Interactive
Command NGO
Related I2COPEN, 12CCLOSE, I2CWRITEREADS, I2CWRITEREGS, I2CWRITEREG16, I2CWRITEREG32,

Commands I2CREADREGS, 12CREADREG16, I2CREADREG32

https://connectivity.lairdtech.com/wireless- 156 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

//Example :: I2cReadREG32.sb (See in Firmware Zip file)

//**Please ensure that nSlaveAddr is the slave address of your I2C peripheral**
DIM handle

DIM nSlaveAddr, nRegAddr,nRegVal

DIM rc : rc=I2cOpen (100000,0,handle)

IF rc!= 0 THEN

PRINT "\nFailed to open I2C interface with error code ";INTEGER.h' rc
ELSE

PRINT "\nI2C open success"
ENDIF

//---Read value from address 0x56
nSlaveAddr = 0x6f : nRegAddr = 0x56
rc = I2cReadReg32 (nSlaveAddr, nRegAddr, nRegVal)
IF rc!= 0 THEN
PRINT "\nFailed to read from slave/register"
ELSE
PRINT "\nValue read from register is "; nRegVal

ENDIF

I2cClose (handle) //close the port

Expected Output:

I2C open success

Value read from register is 1108410076

I2CREADREG16 is a core function.
6.14.10 I2cWriteRead

SUBROUTINE

This function is used to write from 0 to 255 bytes and then immediately after that read 0 to 255 bytes in a single transaction
from the addressed slave. It is a ‘free-form’ function that allows communication with a slave which has a 10-bit address.

Note: A handle parameter is NOT required as this function is used to interact with the main interface. In the future, a
new version of this function will be made available if more than one 12C interface is made available, most likely
made available by bit-bashing GPIO.

https://connectivity.lairdtech.com/wireless- 157 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

I2CWRITEREAD(nSlaveAddr, stWrite$, stRead$, nReadLen)

= Local Stack Frame Underflow

Exceptions
P = Local Stack Frame Overflow

Arguments
byVal nSlaveAddr AS INTEGER

nslaveAddr This is the address of the slave in range 0 to 127.
byRef stWriteS AS STRING

stWriteS This string contains the data that must be written first. If the length of this string is 0 then the
write phase is bypassed.

stReads byRef stRead$ AS STRING

This string is written to with data read from the slave if and only if nReadLen is not 0.

byRef nReadlen AS INTEGER
nReadlen On entry, this variable contains the number of bytes to be read from the slave and on exit contains
the actual number that were actually read. If the entry value is 0, then the read phase is skipped.

Interactive
Command NO
Related I2COPEN, 12CCLOSE, I2CWRITEREADS, I2CWRITEREGS, I2CWRITEREG16, I2CWRITEREG32,

Commands I2CREADREGS, 12CREADREG16, I2CREADREG32

//Example :: I2cWriteRead.sb (See in Firmware Zip file)

//**Please ensure that nSlaveAddr is the slave address of your I2C peripheral**
DIM rc

DIM handle

DIM nSlaveAddr

DIM stWrite$, stRead$, nReadLen

rc=I12cOpen (100000, 0, handle)
IF rc!= 0 THEN
PRINT "\nFailed to open I2C interface with error code ";integer.h' rc
ELSE
PRINT "\nI2C open success"
ENDIF

//Write 2 bytes and read 0

nSlaveAddr=0x6f : stWrite$ = "\34\35" : stRead$="" : nReadLen = 0
rc = I2cWriteRead (nSlaveAddr, stWrite$, stRead$, nReadLen)

IF rc!= 0 THEN

PRINT "\nFailed to WriteRead "; integer.h'rc

ELSE
PRINT "\nWrite = ";StrHexize$S (stWrite$);" Read = ";StrHexize$ (stRead$)
ENDIF
https://connectivity.lairdtech.com/wireless- 158 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

//Write 3 bytes and read 4
nSlaveAddr=0x6f : stWrite$ = "\34\35\43" : stRead$="" : nReadlen = 4
rc = I2cWriteRead (nSlaveAddr, stWrite$, stRead$, nReadlLen)
IF rc!= 0 THEN
PRINT "\nFailed to WriteRead "; integer.h'rc
ELSE
PRINT "\nWrite = ";StrHexizeS$ (stWrite$);" Read = ";StrHexize$ (stRead$)

ENDIF

//Write 0 bytes and read 8
nSlaveAddr=0x6f : stWrite$ = "" : stRead$="" : nReadLen = 8
rc = I2cWriteRead (nSlaveAddr, stWrite$, stRead$, nReadLen)
IF rc!= 0 THEN
PRINT "\nFailed to WriteRead "; integer.h'rc
ELSE
PRINT "\nWrite = ";StrHexize$ (stWrite$);" Read = ";StrHexize$ (stRead$)

ENDIF

I2cClose (handle) //close the port

Expected Output:

I2C open success

Write = 3435 Read =

Write 343543 Read = 1042D509

Write Read = 2B322380ED236921

I2CWRITEREAD is a core function.

6.15SPI Interface

Note: The routines in this section only work if SPI is supported on the hardware for which you are developing.

This section describes all the events and routines used to interact with the SPI peripheral if it is available on the platform.
The three signal lines are called SCK, MOSI and MISO, where the first two are outputs and the last is an input.

A very good introduction to SPI can be found at http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
and the reader is encouraged to refer to it before using the API described in this section.

It is possible to configure the interface to operate in any one of the 4 modes defined for the SPI bus which relate to the
phase and polarity of the SCK clock line in relation to the data lines MISO and MOSI. In addition, the clock frequency can be
configured from 125,000 to 8000000 and it can be configured so that it shifts data in/out most significant bit first or last.

https://connectivity.lairdtech.com/wireless- 159 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Note: A dedicated SPI Chip Select (CS) line is not provided and it is up to the developer to dedicate any spare GPIO line
for that function if more than one SPI slave is connected to the bus. The SPI interface in this module assumes
that prior to calling SPIREADWRITE, SPIREAD or SPIWRITE functions the slave device has been selected via the
appropriate GPIO line.

6.15.1 SPI Events
The API provided in the module is synchronous and so there is no requirement for events.
6.15.2SpiOpen

FUNCTION

This function is used to open the main SPI peripheral using the parameters specified.

SPIOPEN (nMode, nClockHz, nCfgFlags, nHande)

INTEGER Indicates success of command:
0 Opened successfully
0x5200 Driver not found

Returns 0x5207 Driver already open

0x5225 Invalid clock frequency requested

0x521D Driver resource unavailable

0x522B Invalid

i = Local Stack Frame Underflow
Exceptions
= Local Stack Frame Overflow

Arguments

byVal nMode AS INTEGER
This is the mode, as in phase and polarity of the clock line, that the interface shall operate at.
Valid values are 0 to 3 inclusive:

Mode CPOL CPHA
nMode 0 0 0
1 0 1
2 1 0
3 1 1

byVal nClockHz AS INTEGER
nClockHz This is the clock frequency to use, and can be one of 125000, 250000, 500000, 1000000,
2000000, 4000000 or 8000000.

byVal nCfgFlags AS INTEGER
This is a bit mask used to configure the SPI interface. All unused bits are allocated as for future
use and MUST be set to 0. Used bits are as follows:

nCfgFlags Bit Description

0 If set, then the least significant bit is clocked in/out first.

1-31 Unused and must be set to 0.

byRef nHandle AS INTEGER
nHandle The handle for this interface is returned in this variable if it is successfully opened. This handle
is subsequently used to read/write and close the interface.

https://connectivity.lairdtech.com/wireless- 160 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Related

SPICLOSE, SPIREADWRITE, SPIWRITE, SPIREAD
Commands

SPIOPEN is a core function.

The following is an example which demonstrates usage of all the SPI related functions available in smartBASIC.

//Example :: SpiExample.sb (See in Firmware Zip file)

//The SPI slave used here is the Microchip 25A512

//See http://wwl.microchip.com/downloads/en/DeviceDoc/22237C.pdf

DIM rc

DIM h //handle
DIM rl //readlen
DIM rd$,wr$S,ps

DIM wren

FUNCTION EepromStatus ()
GpioWrite (13,0)
wr$="\05\00" : rd$="" : rc=SpiReadWrite (wr$,rd$)
GpioWrite (13,1)

ENDFUNC StrGetChr (rd$, 1)

SUB WaitWrite ()
DO
GpioWrite (13,0)
wr$="\05\00" : rd$="" : rc=SpiReadWrite (wr$,rd$)
GpioWrite (13,1)
UNTIL ((StrGetChr (rd$,1)&l)==0)

ENDSUB

SUB EnableWrite ()

https://connectivity.lairdtech.com/wireless- 161 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality
User Guide

Lai rd CONNECTIVITY

GpioWrite (13,0)
wr$S="\06" : rd$="" : rc=SpiWrite (wr$)
GpioWrite (13,1)

ENDSUB

rc= GpioSetFunc(13,2,1)
// ensure CS is not enabled

GpioWrite (13,1)

EnableWrite ()

wr$="\02\01\80\DE\AD\BE\EF\BA\AD\CO\DE"

PRINT "\nWriting to location 0x180 ";StrHexize$ (wr$)
GpioWrite (13,0)

rc=SpiWrite (wr$)

GpioWrite (13,1)

WaitWrite ()
//l/506000060000060060000006000060630000000000060006060300060300000600006
//Read from written location
//l/506000060000060060000006000060630000000000060006060300060300000600006
wr$="\03\01\80\00\00\00\00\00\00\00O\0O"

rds=""

GpioWrite (13,0)

rc=SpiReadWrite (wr$, rd$)

GpioWrite (13,1)

PRINT "\nData at location 0x0180 is ";StrHexize$ (rd$)

2
https://connectivity.lairdtech.com/wireless- 162
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

//Prepare for reads from location 0x180 and then read 4 and then 8 bytes

wr$="\03\01\80"

GpioWrite (13,0)

rc=SpiWrite (wr$)

rd$=""

rc=SpiRead (rd$, 4)

PRINT "\nData at location 0x0180 is ";StrHexize$ (rd$)
rds=""

rc=SpiRead (rd$, 8)

GpioWrite (13,1)

PRINT "\nData at location 0x0184 is ";StrHexize$ (rd$)

SpiClose (h)

Expected Output:

Writing to location 0x180 020180DEADBEEFBAADCODE
Data at location 0x0180 is 0OOOOOODEADBEEFBAADCODE

Data at location 0x0180 is DEADBEEF

Data at location 0x0184 is BAADCODEFFFFFFFF

SPIOPEN is a core subroutine.

6.15.3SpiClose

SUBROUTINE
This subroutine is used to close a SPI port which had been opened with SPIOPEN.

This routine is safe to call if it is already closed.

SPICLOSE(handle)

i = Local Stack Frame Underflow
Exceptions
= Local Stack Frame Overflow

Arguments

byVal handle AS INTEGER
handle This is the handle value that was returned when SPIOPEN was called which identifies the SPI
interface to close.

Interactive

NO
Command
Related
SPICLOSE, SPIREADWRITE, SPIWRITE, SPIREAD
Commands
https://connectivity.lairdtech.com/wireless- 163 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

//Example :: See SpiExample.sb

SPICLOSE is a core subroutine.
6.15.4SpiReadWrite

FUNCTION

This function is used to write data to a SPI slave and at the same time read the same number of bytes back. Every 8 clock
pulses result in one byte being written and one being read.

Note: A handle parameter is NOT required as this function is used to interact with the main interface. In the future, a
new version of this function will be made available if more than one SPI interface is made available.

SPIREADWRITE(stWrite$, stRead$)

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.
i = Local Stack Frame Underflow
Exceptions
= Local Stack Frame Overflow

Arguments
stWrite$ by{?ef sFerteS 45 STRING .

This string contains the data that must be written.

byRef stRead$ AS STRING

While the data in stWrite$ is being written, the slave sends data back and that data is stored in
stRead$.)

this variable.

Note: On exit, this variable contains the same number of bytes as stWrite$.
Interactive
Command NO
Related SPICLOSE, SPIREADWRITE, SPIWRITE, SPIREAD
Commands

//Example :: See SpiExample.sb

SPIWRITEREAD is a core function.
6.15.5SpiWrite

FUNCTION

This function is used to write data to a SPI slave and any incoming data is ignored.

Note: A handle parameter is NOT required as this function is used to interact with the main interface. In the future, a
new version of this function will be made available if more than one SPI interface is made available.

SPIWRITE(stWrite$)

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.
X = Local Stack Frame Underflow
Exceptions
= Local Stack Frame Overflow
Arguments
https://connectivity.lairdtech.com/wireless- 164 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

byRef stWrite$S AS STRING

stWrite$ This string contains the data that must be written.
Interactive
N
Command °
Related SPICLOSE, SPIREADWRITE, SPIWRITE, SPIREAD
Commands
//Example :: See SpiExample.sb

SPIWRITE is a core function.
6.15.6 SpiRead

FUNCTION

This function is used to read data from a SPI slave.

Note: A handle parameter is NOT required as this function is used to interact with the main interface. In the future, a
new version of this function will be made available if more than one SPI interface is made available.

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.
X = local Stack Frame Underflow
Exceptions
= Local Stack Frame Overflow

Arguments
stReads by{?ef s.tReadS A:S STRING .

This string contains the data that is read from the slave.
nReadLen byVal nReadlen AS INTEGER

This specifies the number of bytes to be read from the slave.
Interactive
Command NGO
Related SPICLOSE, SPIREADWRITE, SPIWRITE, SPIREAD
Commands

//Example :: See SpiExample.sb

SPIREAD is a core function.

6.16 Cryptographic Functions

This section describes cryptographic functions that can be used to encrypt and decrypt data, over and
above and in addition to any crypting applied at the transport layer.

In cryptography there are many algorithms which could be symmetric or asymmetric. Each function
described in this section details the type and modes catered for.

6.16.1 AesSetKeylV

FUNCTION

This function is used to initialize a context for AES encryption and decryption using the mode, key and initialization vector
supplied. The modes that are catered for is EBC and CBC with a block size of 128 bits.

https://connectivity.lairdtech.com/wireless- 165 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

AESSETKEYIV (mode, blockSize,keysS, initVectorS)

INTEGER
Returns Is 0x0000 if the context is created successfully. Otherwise, an appropriate resultcode is
returned which conveys the reason it failed.
Arguments
BYVAL mode AS INTEGER
This shall be as follows:
mode 0x100 for EBC mode
0x101 for EBC mode but data is XORed with same initVector$ everytime
0x200 for CBC mode
blockSize BYVAL blockSize AS INTEGER
Must always be set to 16, which is the size in bytes.
BYREF key$ AS STRING
keyS This string specifies the key to use for encryption and decryption and MUST be exactly 16
bytes long
BYREF initVector$ AS STRING
., If mode is 0x101 or 0x200, then this string MUST be supplied and it should be 16 bytes long. It
initVector$.)) . o .
is left to the caller to ensure a sensible value is supplied. For example, providing a string where
all bytes are 0 is going to be of no value.
Interactive
Command NGO
https://connectivity.lairdtech.com/wireless- 166 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

//Example :: AesSetKeyIv.sb (See in Firmware Zip file)
DIM key$, initVector$
DIM rc
//Create context for EBC mode, 128 bit
keyS$="\00\01\02\03\04\05\06\07\08\09\0A\OB\OC\OD\OE\OF"
initVector$="" //EBC does not require initialisation vector
rc=AesSetKeyIv (0x100,16,key$,initVectors$)
IF rc==0 THEN
PRINT "\nEBC context created successfully"
ELSE
PRINT "\nFailed to create EBC context"
ENDIF
//Create context for EBC mode with XOR, 128 bit
key$="\00\01\02\03\04\05\06\07\08\09\0A\OB\OC\OD\OE\OF"
initVector$="\FF\OL1\FF\O3\FF\O5\FF\O7\FF\O9\FF\OB\FF\OD\FF\OF"
rc=AesSetKeyIv (0x101,16,key$,initVectors$)
IF rc==0 THEN
PRINT "\nEBC-XOR context created successfully"
ELSE
PRINT "\nFailed to create EBC-XOR context"
ENDIF
//Create context for CBC mode, 128 bit
key$="\00\01\02\03\04\05\06\07\08\09\0A\OB\OC\OD\OE\QOF"
initVector$="\FF\O1\FF\O03\FF\O5\FF\O07\FF\09\FF\OB\FF\OD\FF\QF"
rc=RAesSetKeyIv (0x200,16,key$,initVectors$)
IF rc==0 THEN
PRINT "\nCBC context created successfully"
ELSE
PRINT "\nFailed to create CBC context"

ENDIF

Expected Output:

EBC context created successfully

EBC-XOR context created successfully

CBC context created successfully

AESSETKEYIV is a core language function.

https://connectivity.lairdtech.com/wireless- 167 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

6.16.2 AesEncrypt

FUNCTION

This function is used to encrypt a string up to 16 bytes long using the context that was pre-created using the most recent
call of the function AesSetKeylv.

For all modes, AesSetKeylV is called only once which means in CBC mode the cyclic data is kept in the context object that
was created by AesSetKeylV.

For example, on the BL600, which has AES 128 encryption hardware assist, the function has been timed to take roughly 125
microseconds, otherwise it can take about 500 microseconds on a 16Mhz ARM Cortex MO processor.

AESENCRYPT (inData$,outData$)

INTEGER

Returns Is 0x0000 if the data is encrypted successfully. Otherwise, an appropriate resultcode is
returned which conveys the reason it failed. ALWAYS check this.

Arguments

inDatas BYREF inData$ AS STRING

This string is up to 16 bytes long and should contain the data to encrypt

BYREF outData$ AS STRING
outData$ On exit, if the function was successful, then this string contains the encrypted cypher data. If
unsuccessful, then string is 0 bytes long.

Interactive

Command NO

//Example :: AesEncrypt.sb (See in Firmware Zip file)
DIM key$, initVector$
DIM inData$, outData$
DIM rc
//Create context for EBC mode, 128 bit
key$="\00\01\02\03\04\05\06\07\08\09\0A\OB\OC\OD\OE\OF"
initVector$="" //EBC does not require initialisation vector
rc=AesSetKeyIv (0x100,16,key$,initVectors$)
IF rc==0 THEN
PRINT "\nEBC context created successfully"
ELSE
PRINT "\nFailed to create EBC context"
ENDIF
inData$="303132333435363738393A3B3C3D3E3F"
inData$=StrDehexize$ (inData$)
rc=AesEncrypt (inData$, outData$)
IF rc==0 THEN
PRINT "\nEncrypt OK"
ELSE

PRINT "\nFailed to encrypt"

https://connectivity.lairdtech.com/wireless- 168 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

PRINT "\ninData = "; strhexize$ (inData$)

PRINT "\noutData = "; strhexize$ (outData$)

Expected Output:

EBC context created successfully

Encrypt OK

inData = 303132333435363738393A3B3C3D3E3F
outData = 03F2C3BDCA826BF082D7CFBO35CDB8C1

AESENCRYPT is a core language function.
6.16.3 AesDecrypt

FUNCTION

This function is used to decrypt a string of exactly 16 bytes using the context that was pre-created using the most recent call
of the function AesSetKeylv.

For all modes, AesSetKeylV is called only once which means in CBC mode the cyclic data is kept in the context object that
was created by AesSetKeylV.

In terms of speed of execution, for example on the BL600, which does not have AES 128 decryption hardware assist, the
function has been timed to take roughly 570 microseconds.

AESDECRYPT (inData$,outData$)

INTEGER

Returns Results in 0x0000 if the data is decrypted successfully. Otherwise an appropriate resultcode is
returned which conveys the reason it failed. ALWAYS check this.

Arguments

inData$ BYREF inData$ AS STRING

This string MUST be exactly 16 bytes long and should contain the data to decrypt

BYREF outData$ AS STRING
outData$ On exit, if the function was successful, then this string contains the decrypted plaintext data. If
unsuccessful, then string is 0 bytes long.

Interactive

Command NO

//Example :: AesDecrypt.sb (See in Firmware Zip file)

DIM key$, initVector$

DIM inData$, outData$, cS$[3]

DIM rc

//Create context for CBC mode, 128 bit
key$="\00\01\02\03\04\05\06\07\08\09\0A\OB\OC\OD\OE\OE"
initVector$="\FF\OL\FF\O3\FF\O5\FF\O7\FF\O9\FF\OB\FF\OD\FF\OF"

rc=AesSetKeyIv (0x200,16,key$,initVector$)

https://connectivity.lairdtech.com/wireless- 169 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

PRINT "\nCBC context created successfully"
ELSE

PRINT "\nFailed to create EBC context"
ENDIF
//encrypt some data
inData$="303132333435363738393A3B3C3D3E3F"
inData$=StrDehexize$ (inData$)
rc=AesEncrypt (inData$,c$[0])
IF rc==0 THEN

PRINT "\nEncrypt OK"
ELSE

PRINT "\nFailed to encrypt"

ENDIF
PRINT "\ninData = "; strhexize$ (inData$)
PRINT "\noutData = "; strhexize$ (c$S[0])

//encrypt same data again
rc=AesEncrypt (inData$,c$[1])
IF rc==0 THEN

PRINT "\nEncrypt OK"
ELSE

PRINT "\nFailed to encrypt"

ENDIF
PRINT "\ninData = "; strhexize$ (inData$)
PRINT "\noutData = "; strhexize$ (c$[1])

//ecrypt same data again
rc=AesEncrypt (inData$,cS$[2])
IF rc==0 THEN

PRINT "\nEncrypt OK"
ELSE

PRINT "\nFailed to encrypt"

ENDIF
PRINT "\ninData = "; strhexize$ (inData$)
PRINT "\noutData = "; strhexize$ (c$[2])

//Rereate context for CBC mode, 128 bit
key$="\00\01\02\03\04\05\06\07\08\09\0A\OB\OC\OD\OE\OE"
initVector$="\FF\OL\FF\O3\FF\O5\FF\O7\FF\O9\FF\OB\FF\OD\FF\0OF"
rc=AesSetKeyIv (0x200,16,key$,initVectors$)

IF rc==0 THEN

PRINT "\nCBC context created successfully"

https://connectivity.lairdtech.com/wireless- 170 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

PRINT "\nFailed to create EBC context"
ENDIF
//now decrypt the data
rc=AesDecrypt (c$[0],outDatas$)
IF rc==0 THEN
PRINT "\n**Decrypt OK**"
ELSE

PRINT "\nFailed to decrypt"

ENDIF
PRINT "\ninData = "; strhexize$(c$[0])
PRINT "\noutData = "; strhexize$ (outData$)

//now decrypt the data
rc=AesDecrypt (c$[1],outData$)
IF rc==0 THEN

PRINT "\n**Decrypt OK**"
ELSE

PRINT "\nFailed to decrypt"

ENDIF
PRINT "\ninData = "; strhexize$ (c$S[1])
PRINT "\noutData = "; strhexize$ (outData$)

//now decrypt the data
rc=AesDecrypt (c$[2],outData$)
IF rc==0 THEN

PRINT "\n**Decrypt OK**"
ELSE

PRINT "\nFailed to decrypt"

ENDIF

PRINT "\ninData = "; strhexize$ (c$[2])

PRINT "\noutData = "; strhexize$ (outData$)
https://connectivity.lairdtech.com/wireless- 171 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Expected Output:

CBC context created successfully

Encrypt OK

inData = 303132333435363738393A3B3C3D3E3F
outData = 55EAFC8281CC28054C4AA268763AFA3B
Encrypt OK

inData = 303132333435363738393A3B3C3D3E3F
outData = 2A8640BD480E092B432139CF28BA2C80
Encrypt OK

inData = 303132333435363738393A3B3C3D3E3F
outData = A418B500A3EOAC30F18DE6AE2E923314
CBC context created successfully

Decrypt OK

inData = 55EAFC8281CC28054C4AA268763AFA3B
outData = 303132333435363738393A3B3C3D3E3F
Decrypt OK

inData = 2A8640BD480E092B432139CF28BA2C80
outData = 303132333435363738393A3B3C3D3E3F
Decrypt OK

inData A418B500A3EOAC30F18DEGAE2E923314
outData 303132333435363738393A3B3C3D3E3F

AESDECRYPT is a core language function.

6.17 File 1/O Functions

A portion of module’s flash memory is dedicated to a file system which is used to store smartBASIC applications and user
data files.

Due to the internal requirement, set by the smartBASIC runtime engine (because applications are interpreted in-situ),
compiled application files must be stored in one contiguous memory block. This means the file system is currently restricted
so that it is NOT possible for an application to open a file and then write to it. To store application data so that they are
non-volatile, use the functions described in the section Non-Volatile Memory Management Routines.

All user data files must be preloaded using the following commands which are described in the section Interactive Mode
Commands:

AT+FOW

AT+FWR or AT+FWRH

AT+FCL

The utility UwTerminal helps with downloading such files, but is not required.

With the use of READ, FTELL, and FSEEK, downloading configuration files (such as digital certificates) can be a useful and
convenient way of making an app behave in a custom manner from data derived from these data files as demonstrated by
the example application listed in the description of FOPEN.

6.17.1 FOPEN

FUNCTION

This function is used to open a file in mode specified by the ‘mode$’ string parameter. When the file is opened the file
pointer is set to zero which effectively means that a read operation occurs from the beginning of the file and then, after the
read, the file pointer is adjusted to offset equal to the size of the read.

Function FSEEK is provided to move that file pointer to an offset relative to the beginning, or current position or from the
end of the file and function FTELL is provided to obtain the current position as an offset from the beginning of the file.

https://connectivity.lairdtech.com/wireless- 172 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

FOPEN (filename$, modeS$)

INTEGER

Returns A non-zero integer representing an opaque handle to the file that was opened. If the file failed
to open (for example because the mode specified writing to the file which is not allowed on
certain platforms) then the returned value is 0.

Arguments

filenames BYREF filename$ AS STRING
This string specifies the name of the file to open.
BYVAL mode$ AS STRING

modes Must always be set to r
This string specifies the mode in which the file should be opened and for this module, as only
reading is allowed, must always be specified as r.

Interactive

Command NO

//Example :: FileIo.sb (See in Firmware Zip file)
//

// First download a file into the module by submitting the following

// commands manually (wait for a 00 response after each command) :-

//

// at+fow "myfile.dat"

// at+fwr "Hello"

// at+fwr " World. "

// at+fwr " This is something"

// at+fwr " in a file which we can read"
// at+fcl

//

// You can check you have the file in the file system by submitting
// the command AT+DIR and you should see myfile.dat listed
//

DIM handle, fname$, flen, frlen,data$, fpos, rc

fname$="myfile.dat"™ : handle = fopen (fname$,"r")
IF handle != 0 THEN
//determine the size of the file
flen = filelen (handle)
print "\nThe file is ";flen;" bytes long"
//get the current position in the file (should be 0)
rc = ftell (handle, fpos)
print "\nCurrent position is "; fpos
//read the first 11 bytes from the file
frlen = fread(handle,data$,11)

https://connectivity.lairdtech.com/wireless- 173 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

print "\nData from file is : ";data$
//get the current position in the file (should be 11)
rc = ftell (handle, fpos)
print "\nCurrent position is "; fpos
//reposition the file pointer to 6 so that we can read 5 bytes again
rc = fseek (handle, 6,0)
//get the current position in the file
rc = ftell (handle, fpos)
//read 5 bytes
frlen = fread(handle,data$,b5)
print "\nData from file is : ";data$
//reposition to the start of 'is'
rc = fseek(handle,19,0)
//read until a 'w' is encountered : w = ascii 0x77
frlen = freaduntil (handle,data$,0x77,32)
print "\nData from file is : ";data$
//finally close the file, which on exit sets the handle to 0
fclose (handle)
ELSE
print "\nFailed to open file ";fname$

ENDIF

Expected Output:

The file is 59 bytes long

Current position is 0

Data from file is : Hello World

Current position is 11

Data from file is : World

Data from file is : is something in a file w

FOPEN is a core language function.
6.17.2FCLOSE

FUNCTION

This function is used to close a file previously opened with FOPEN. It takes a handle parameter as a reference and, on exit,
sets that handle to 0 which signifies an invalid file handle.

FCLOSE (fileHandle)

Returns N/A (it is a subroutine)

Arguments

BYREF fileHandle AS INTEGER

ileHandle . -
f The handle of the file to be closed. On exit, it is set to 0.
Interactive NO
https://connectivity.lairdtech.com/wireless- 174 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Command

//See the full and detailed example in the FOPEN section

FCLOSE is a core language function.
6.17.3FREAD

FUNCTION

This function is used to read X bytes of data from a file previously opened with FOPEN and returns the actual number of
bytes read.

FREAD (fileHandle, data$, maxReadLen)

INTEGER
Returns

The actual number of bytes read from the file. Is 0 if read from end of file is attempted.
Arguments
fileHandle BYVAL fileHandle AS INTEGER

The handle of the file to be read from
datas BYREF data$ AS STRING

The data read from file is returned in this string
maxReadLen BYVAL maxReadLen AS INTEGER

The max number of bytes to read from the file
Interactive
Command NO

//See the full and detailed example in the FOPEN section

FREAD is a core language function.
6.17.4FREADUNTIL

FUNCTION

This function is used to read X bytes or until (and including) a match byte is encountered, whichever comes earlier, from a
file previously opened with FOPEN and returns the actual number of bytes read (includes the match byte if encountered).

FREADUNTIL (fileHandle, data$, matchByte, maxReadLen)

INTEGER
Returns
The actual number of bytes read from the file. Is 0 if read from end of file is attempted.
Arguments
fileHandle BYVAL fileHandle AS INTEGER
The handle of the file to be read from
datas BYREF data$ AS STRING

The data read from file is returned in this string

BYVAL matchByte AS INTEGER
matchByte Read until this matching byte is encountered or the max number of bytes are read.
Whichever condition is asserted first.

BYVAL maxReadLen AS INTEGER

maxReadLen)
The max number of bytes to read from the file
https://connectivity.lairdtech.com/wireless- 175 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

Interactive

Command NO

//See the full and detailed example in the FOPEN section

FREADUNTIL is a core language function.
6.17.5FILELEN

FUNCTION

This function is used determine the total size of the file in bytes.

FILELEN (fileHandle)

INTEGER

Returns The total number of bytes read from the file specified by the handle. Is 0 if an invalid handle is
supplied.

Arguments

fileHandle BYVAL fileHandle AS INTEGER
The handle of a file for which the total size is to be returned.

Interactive

Command NGO

//See the full and detailed example in the FOPEN section

FILELEN is a core language function.
6.17.6 FTELL

FUNCTION

This function is used determine the current file position in the open file specified by the handle. Itis a value from Oto N
where N is the size of the file.

FTELL (fileHandle, curPosition)

INTEGER
Returns The total number of bytes read from the file specified by the handle. Is 0 if an invalid handle is
supplied.
Arguments
fileHandle BYVAL fileHandle AS INTEGER
The handle of a file for which the total size is to be returned.
curPosition BYREF curPosition AS INTEGER
This is updated with the current file position for the file specified by the fileHandle.
Interactive
Command NO

//See the full and detailed example in the FOPEN section

FTELL is a core language function.

FUNCTION
https://connectivity.lairdtech.com/wireless- 176 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

This function is used to move the file pointer of the open file specified by the handle supplied. The offset is relative to the
beginning of the file or the current position or the end of the file which is specified by the ‘whence’ parameter.

FSEEK (fileHandle, offset, whence)

INTEGER
Returns .
Is 0 if successful
Arguments
fileHandle BYVAL fileHandle AS INTEGER
The handle of a file for which the file pointer is to be moved
offset BYVAL offset AS INTEGER
This is the offset relative to the position defined by the ‘whence’ parameter.
BYVAL whence AS INTEGER
This parameter specifies from which position the offset is to be calculated. It shall be 1 to
specify from the current position, 2 from the end of the while and then for all other values
whence o .
from the beginning of the file.
When the start position is ‘end of file’ then a positive ‘offset’ value is used to calculate
backwards from the end of file. Hence supplying a negative value has no meaning.
Interactive
Command NGO

//See the full and detailed example in the FOPEN section

FSEEK is a core language function.

6.18 Non-Volatile Memory Management Routines

These commands provide access to the non-volatile memory of the module and provide the ability to use non-volatile
storage for individual records.

6.18.1 NvRecordGet

FUNCTION

NVRECORDGET reads the value of a user record as a string from non-volatile memory.

NVRECORDGET (recnum, strvar$)

INTEGER, the number of bytes that were read into strvarS. A negative value is returned if an
error was encountered:

1 Recnum is not in valid range or is unrecognised.
Returns - - :
22 Failed to determine the size of the record.
3 The raw record is less than 2 bytes long (possible flash corruption).
4 Insufficient RAM.
5 Failed to read the data record.
i = Local Stack Frame Underflow
Exceptions
= Local Stack Frame Overflow
Arguments
byVal recnum AS INTEGER
recnum The record number to be read, in the range 1 to n, where n is the maximum number of records
allowed by the specific module.
https://connectivity.lairdtech.com/wireless- 177 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide
strvars byRef strvar$ AS STRING
The string variable that contains the data read from the record.
Interactive
N
Command ©
//Example :: NvRecordGet.sb (See in Firmware Zip file)
DIM r$

PRINT NvRecordGet (100,r$);" bytes read"

PRINT "\n";r$

Expected Output (When no data present in record):

0 bytes read

NVRECORDGET is a module function.
6.18.2NvRecordGetEx

FUNCTION

NVRECORDGETX reads the value of a user record as a string from non-volatile memory and if it does not exist or an error
occurred, then the specified default string is returned.

NVRECORDGETEX (recnum, strvar$, strdef)

Returns INTEGER, the number of bytes that are read into strvars.

= Local Stack Frame Underflow
Exceptions = Local Stack Frame Overflow
= Qut of Memory

Arguments
byVal recnum AS INTEGER
recnum The record number that is to be read, in the range 1 to n, where n is the maximum number of
records allowed by the specific module.
strvars byRef strvar$ AS STRING
The string variable that contains the data read from the record.
strdefs byVal strdefs AS STRING
The string variable that supplies the default data if the record does not exist.
Interactive
Command NGO
//Example :: NvRecordGetEx.sb (See in Firmware Zip file)
DIM r$

PRINT NvRecordGetEx (100,r$,"default");" bytes read"

PRINT "\n";r$

Expected Output:

https://connectivity.lairdtech.com/wireless- 178 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

7 bytes read

default

NVRECORDGETEX is a module function.
6.18.3NvRecordSet

FUNCTION

NVRECORDSET writes a value to a user record in non-volatile memory. For each record saved, an extra 28 bytes is used as
an overhead, so it is recommended to minimize the writing of small records.

NVRECORDSET (recnum, strvar$)

INTEGER Returns the number of bytes written.

Returns If an invalid record number is specified, then -1 is returned. There are a limited number of
user records which can be written to, depending on the specific module.

= Local Stack Frame Underflow

Exceptions
= Local Stack Frame Overflow
Arguments
byVal recnum AS INTEGER
recnum The record number that is to be read, in the range 1 to n, where n depends on the specific
module.
strvars byRef strvar$ AS STRING
The string variable that contains the data to be written to the record.
Interactive
Command
WARNING: You should minimise the number of writes. Each time a record is changed, empty flash is used up. The flash
filing system does not overwrite previously used locations. Eventually there will be no more free memory
and an automatic defragmentation will occur. This operation takes much longer than normal as a lot of
data may need to be re-written to a new flash segment. This sector erase operation could affect the
operation of the radio and result in a connection loss.
//Example :: NvRecordSet.sb (See in Firmware Zip file)
DIM w$, r$, rc : w$ = "HelloWorld"

PRINT NvRecordSet (500,w$) ;" bytes written\n"
PRINT NvRecordGetEx (500,r$,"default");" bytes read\n"

PRINT "\n";r$

Expected Output:

10 bytes written

10 bytes read

HelloWorld

https://connectivity.lairdtech.com/wireless- 179 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

NVRECORDSET is a module function.

6.18.4NvCfgKeyGet

FUNCTION

NVCFGKEYGET reads the value of a built-in configuration key. See AT+CFG for a list of configuration keys.
NVCFGKEYGET (keyld, value)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
X = Local Stack Frame Underflow
Exceptions
= Local Stack Frame Overflow
Arguments
byVal keyld AS INTEGER
keyld The configuration key that is to be read, in the range 1 to n, where n depends on the specific
module and the full list is described for the AT+CFG command.
value byRef value AS INTEGER
The integer variable that is updated with the value of the configuration key if it exists.
Interactive See AT+CEG
Command
//Example :: NvCfgKeyGet.sb (See in Firmware Zip file)
DIM v : v =0 //initial the value just in case the key does not
exist

PRINT NvCfgKeyGet (100, v)

PRINT "\n";v

Expected Output:

33031

NVCFGKEYGET is a module function.

https://connectivity.lairdtech.com/wireless- 180 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

6.18.5NvCfgKeySet

FUNCTION

NVCFGKEYSET writes a value to a pre-existing configuration key. See AT+CFG for a complete list of configuration keys. If a
key does not exist, calling this function does not create a new one. The set of configuration keys are created at firmware
build time. If you wish to create a database of non-volatile configuration keys for your own application use the
NvRecordSet/Get() commands.

NVCFGKEYSET (keyld, value)

INTEGER
Returns An integer result code. The most typical value is 0x0000, which indicates a successful
operation.
X = Local Stack Frame Underflow
Exceptions
= Local Stack Frame Overflow
Arguments
byVal keyld AS INTEGER
keyld The configuration key that is to be read, in the range 1 to n, where n depends on the specific
module and the full list is described for the AT+CFG command.
value byVal value AS INTEGER
If the configuration key ‘keyld’ exists then it is updated with the new value.
Interactive
Command NO

WARNING: You should minimise the number of writes, as each time a record is changed, empty flash is used up. The
flash filing system does not overwrite previously used locations. At some point there will be no more free
memory and an automatic defragmentation will occur. This operation takes much longer than normal as a
lot of data may need to be re-written to a new flash segment. This sector erase operation could affect the
operation of the radio and result in a connection loss.

//Example :: NvCfgKeyGet.sb (See in Firmware Zip file)
DIM rc, r, w : w=0x8107

PRINT "\n";NvCfgKeySet (100, w)

PRINT "\n";NvCfgKeyGet (100, r)

PRINT "\nValue for 100 is ";r

Expected Output:

0
0

Value for 100 is 33031

NVCFGKEYSET is a module function.

https://connectivity.lairdtech.com/wireless- 181 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

6.19Input/Output Interface Routines

1/0 and interface commands allow access to the physical interface pins and ports of the smartBASIC modules. Most of these
commands are applicable to the range of modules. However, some are dependent on the actual I/O availability of each
module.

6.19.1 GpioSetFunc

FUNCTION
This routine sets the function of the GPIO pin identified by the nSigNum argument.

The module datasheet contains a pinout table which denotes SIO (Special I/0) pins. The number designated for that special
1/0 pin corresponds to the nSigNum argument.

GPIOSETFUNC (nSigNum, nFunction, nSubFunc)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Note: See module specific user manual for details.

6.19.2GpioConfigPwm

FUNCTION

This routine configures the PWM (Pulse Width Modulation) of all output pins when they are set as a PWM output using
GpioSetFunc() function described above.

Note: This is a ‘sticky’ configuration; calling it affects all PWM outputs already configured. It is advised that this be
called once at the beginning of your application and not changed again within the application, unless all PWM
outputs are deconfigured and then re-enabled after this function is called.

The PWM output is generated using 32-bit hardware timers. The timers are clocked by a 1MHz clock source.

A PWM signal has a frequency and a duty cycle property, the frequency is set using this function and is defined by the
nMaxPeriodus parameter. For a given nMaxPeriodus value, given that the timer is clocked using a 1MHz source, the
frequency of the generated signal is 1000000 divided by nMaxPeriodus. Hence if nMinFreqHz is more than that
1000000/nMaxPeriodus, this function fails with a non-zero value.

The nMaxPeriodus can also be viewed as defining the resolution of the PWN output in the sense that the duty cycle can be
varied from 0 to nMaxPeriodus. The duty cycle of the PWM signal is modified using the GpioWrite() command

For example, a period of 1000 generates an output frequency of 1KHz, a period of 500, a frequency of 2Khz etc.

On exit, the function returns with the actual frequency in the nMinFregHz parameter.

GPIOCONFIGPWM (nMinFreqHz, nMaxPeriodus)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Note: See module specific user manual for details.

6.19.3GpioRead

FUNCTION

This routine reads the value from a SIO (special purpose 1/0) pin.

https://connectivity.lairdtech.com/wireless- 182 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

The module datasheet contains a pinout table which mentions SIO (Special 1/0) pins and the number designated for that
special I/0 pin corresponds to the nSigNum argument.

GPIOREAD (nSigNum)

INTEGER, the value from the signal. If the signal number is invalid, then it returns value 0. For
Returns digital pins, the value is 0 or 1. For ADC pins it is a value in the range 0 to M where M is the max
value based on the bit resolution of the analogue to digital converter.

Note: See module specific user manual for details.

6.19.4GpioWrite

SUBROUTINE
This routine writes a new value to the GPIO pin. If the pin number is invalid, nothing happens.

If the GPIO pin has been configured as a PWM output then the nNewValue specifies a value in the range 0 to N where N is
the max PWM value that generates a 100% duty cycle output (that is, a constant high signal) and N is a value that is
configured using the function GpioConfigPWM().

If the GPIO pin has been configured as a FREQUENCY output then the nNewValue specifies the desired frequency in Hertz in
the range 0 to 4000000. Setting a value of 0 makes the output a constant low value. Setting a value greater than 4000000
clips the output to a 4 MHz signal.

GPIOWRITE (nSigNum, nNewValue)

Note: See module-specific user manual for details.

6.19.5GPIO Events

Here, nis from 0 to N where N is platform dependent and an event is generated when a
preconfigured digital input transition occurs. The number of digital inputs that can auto-

EVGPIOCHANN generate is hardware dependent. For example in the BL600 module, N can be 0,1,2 or 3.
Use GpioBindEvent() to generate these events.
Here, nis from 0 to N where N is platform dependent and an event is generated when a
EVDETECTCHANN preconfigured digital input transition occurs. The number of digital inputs that can auto-

generate is hardware dependent. For example, in the BL600 module, N can only be 0. Use
GpioAssignEvent() to generate these events.

6.19.6 GpioBindEvent/GpioAssignEvent

FUNCTION

These routine binds an event to a level transition on a specified special i/o line configured as a digital input so that changes
in the input line can invoke a handler in smartBASIC user code.

GPIOBINDEVENT (nEventNum, nSigNum, nPolarity)
GPIOASSIGNEVENT (nEventNum, nSigNum, nPolarity)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Note: See module specific user manual for details.

Generally, BindEvent consumes more power than the AssignEvent function and the choice as to which is used is based on
the specific use case with regards to how much power can be used.

https://connectivity.lairdtech.com/wireless- 183 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

6.19.7 GpioUnbindEvent/ GpioAssignEvent

FUNCTION

This routine unbinds the runtime engine event from a level transition bound using GpioBindEvent() or GpioAssignEvent()
respectively.

GPIOUNBINDEVENT (nEventNum)
GPIOUNASSIGNEVENT (nEventNum)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Note: See module specific user manual for details.

6.20 User Routines

As well as providing a comprehensive range of built-in functions and subroutines, smartBASIC provides the ability for users
to write their own, which are referred to as ‘user’ routines as opposed to ‘built-in’ routines.

These are often used to perform frequently repeated tasks in an application and to write event and message handler
functions. An application with user routines is highly modular, allowing reusable functionality.

6.20.1SUB

A subroutine is a block of statements which constitute a user routine which does not return a value but takes arguments.

SUB routinename (arglist)
EXITSUB
ENDSUB

A SUB routine MUST be defined before the first instance of it being called. It is good practice to define SUB routines and
functions at the beginning of an application, immediately after global variable declarations.

The following is a typical example of a subroutine block:

SUB somename (argl AS INTEGER arg2 AS STRING)
DIM S AS INTEGER
S = argl
IF argl == 0 THEN
EXITSUB
ENDIF
ENDSUB

6.20.1.1 Defining the Routine Name
The function name can be any valid name that is not already in use as a routine or global variable.

6.20.1.2Defining the Arglist
The arguments of the subroutine may be any valid variable types, i.e. INTEGER or STRING.

Each argument can be individually specified to be passed either as byVal or byRef. By default, simple variables (INTEGER)
are passed by value (byVal) and complex variables (STRING) are passed by reference (byRef).

However, this default behavior can be varied by using the #SET directive during compilation of an application.

HSET 1,0 ‘Default Simple arguments are BYVAL

HSET 1,1 ‘Default Simple arguments are BYREF

HSET 2,0 ‘Default Complex arguments are BYVAL
https://connectivity.lairdtech.com/wireless- 184 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

HSET 2,1 ‘Default Complex arguments are BYREF

When a value is passed by value to a routine, any modifications to that variable does not reflect back to the calling routine.
However, if a variable is passed by reference then any changes in the variable is reflected back to the caller on exit.

The SUB statement marks the beginning of a block of statements which consists of the body of a user routine. The end of
the routine is marked by the ENDSUB statement.

6.20.2 ENDSUB

This statement ends a block of statements belonging to a subroutine. It MUST be included as the last statement of a SUB
routine, as it instructs the compiler that there is no more code for the SUB routine. Note that any variables declared within
the subroutine lose their scope once ENDSUB is processed.

6.20.3 EXITSUB
This statement provides an early run-time exit from the subroutine.

6.20.4 FUNCTION

A statement beginning with this token marks the beginning of a block of statements which consist of the body of a user
routine. The end of the routine is marked by the ENDFUNC statement.

A function is a block of statements which constitute a user routine that returns a value. A function takes arguments, and
can return a value of type simple or complex.

FUNCTION routinename (arglist) AS vartype
EXITFUNC arithemetic_expression_or_string_expression
ENDFUNC arithemetic_expression_or_string_expression

A function MUST be defined before the first instance of its being called. It is good practice to define subroutines and
functions at the beginning of an application, immediately after variable declarations. A typical example of a function block
would be:

FUNCTION somename (argl AS INTEGER arg2 AS STRING) AS INTEGER
DIM S AS INTEGER

S = argl

IF argl == 0 THEN
EXITFUNC argl*2

ENDIF

ENDFUNC argl * 4

6.20.4.1 Defining the Routine Name

The function name can be any valid name that is not already in use. The return variable is always passed as byVal and shall
be of type varType.

Return values are defined within zero or more optional EXITFUNC statements and ENDFUNC is used to mark the end of the
block of statements belonging to the function.

6.20.4.2 Defining the Return Value

The variable type AS varType for the function may be explicitly stated as one of INTEGER or STRING prior to the routine
name. If it is omitted, then the type is derived in the same manner as in the DIM statement for declaring variables. Hence, if
function name ends with the $ character, then the type is a STRING. Otherwise, it is an INTEGER.

Since functions return a value, when used, they must appear on the right hand side of an expression statement or withina [
] index for a variable. This is because the value has to be 'used up' so that the underlying expression evaluation stack does
not have 'orphaned' values left on it.

https://connectivity.lairdtech.com/wireless- 185 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

6.20.4.3 Defining the Arglist
The arguments of the function may be any valid variable type, i.e. INTEGER or STRING.

Each argument can be individually specified to be passed either as byVal or byRef. By default, simple variables (INTEGER)
are passed byVal and complex variables (STRING) are passed byRef. However, this default behaviour can be varied by using
the #SET directive.

HSET 1,0 ‘Default Simple arguments are BYVAL
HSET 1,1 ‘Default Simple arguments are BYREF
#SET 2,0 ‘Default Complex arguments are BYVAL
HSET 2,1 ‘Default Complex arguments are BYREF

Interactive Command: NO
6.20.5 ENDFUNC

This statement marks the end of a function declaration. Every function must include an ENDFUNC statement, as it instructs
the compiler that here is no more code for the routine.

ENDFUNC arithemetic_expression_or_string_expression

This statement marks the end of a block of statements belonging to a function. It also marks the end of scope on any
variables declared within that block.

ENDFUNC must be used to provide a return value, through the use of a simple or complex expression.

FUNCTION doThis$(byRef s$ as string) AS STRING
S$=S$+” World”
ENDFUNC S$ + “world”

FUNCTION doThis(byRef v as integer) AS INTEGER
v=v+100
ENDFUNC v * 3

6.20.6 EXITFUNC
This statement provides a run-time exit point for a function before reaching the ENDFUNC statement.
EXITFUNC arithemetic_expression or string expression

EXITFUNC can be used to provide a return value, through the use of a simple or complex expression. It is usually invoked in
a conditional statement to facilitate an early exit from the function.

FUNCTION doThis$(byRef s$ as string) AS STRING

S$=S$+” World”
IF a==0 THEN
EXITFUNC S$ + “earth”
ENDIF
ENDFUNC S$ + “world”

/ EVENTS AND MESSAGES

smartBASIC is designed to be event driven, which makes it suitable for embedded platforms where it is normal to wait for
something to happen and then respond.

To ensure that access to variables and resources ends up in race conditions, the event handling is done synchronously,
meaning the smartBASIC runtime engine has to process a WAITEVENT statement for any events or messages to be
processed. This guarantees that smartBASIC never needs the complexity of locking variables and objects.

https://connectivity.lairdtech.com/wireless- 186 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

There are many subsystems which generate events and messages as follows:

= Timer events, which generate timer expiry events and are described here.
= Messages thrown from within the user’s BASIC application as described here.
= Events related to the UART interface as described here.

8 MODULE CONFIGURATION

There are many features of the module that cannot be modified programmatically which relate to interactive mode
operation or alter the behaviour of the smartBASIC runtime engine. These configuration objects are stored in non-volatile
flash and are retained until the flash file system is erased via AT&F* or AT&F 1.

To write to these objects, which are identified by a positive integer number, the module must be in interactive mode and
the command AT+CFG must be used which is described in detail here.

To read current values of these objects use the command AT+CFG, described here.

Predefined configuration objects are as listed under details of the AT+CFG command.

https://connectivity.lairdtech.com/wireless- 187 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

9 ACKNOWLEDGEMENTS

The following are required acknowledgements to address our use of open source code in smartBASIC to implement AES
encryption.

Laird’s implementation includes the following files: aes.c and aes.h.

Copyright (c) 1998-2008, Brian Gladman, Worcester, UK. All rights reserved.

9.1 License Terms

The redistribution and use of this software (with or without changes) is allowed without the payment of fees or
royalties providing the following:

= Source code distributions include the above copyright notice, this list of conditions and the following disclaimer;

= Binary distributions include the above copyright notice, this list of conditions and the following disclaimer in
their documentation;

= The name of the copyright holder is not used to endorse products built using this software without specific
written permission.

9.2 Disclaimer

This software is provided 'as is' with no explicit or implied warranties in respect of its properties, including, but not
limited to, correctness and/or fitness for purpose.

Issue 09/09/2006

This is an AES implementation that uses only 8-bit byte operations on the cipher state (there are options to use 32-bit
types if available).

The combination of mix columns and byte substitution used here is based on that developed by Karl Malbrain. His
contribution is acknowledged.

© Copyright 2018 Laird. All Rights Reserved. Patent pending. Any information furnished by Laird and its agents is believed to be accurate and reliable. All
specifications are subject to change without notice. Responsibility for the use and application of Laird materials or products rests with the end user since
Laird and its agents cannot be aware of all potential uses. Laird makes no warranties as to non-infringement nor as to the fitness, merchantability, or
sustainability of any Laird materials or products for any specific or general uses. Laird, Laird Technologies, Inc., or any of its affiliates or agents shall not be
liable for incidental or consequential damages of any kind. All Laird products are sold pursuant to the Laird Terms and Conditions of Sale in effect from
time to time, a copy of which will be furnished upon request. When used as a tradename herein, Laird means Laird PLC or one or more subsidiaries of Laird
PLC. Laird™, Laird Technologies™, corresponding logos, and other marks are trademarks or registered trademarks of Laird. Other marks may be the
property of third parties. Nothing herein provides a license under any Laird or any third party intellectual property right.

https://connectivity.lairdtech.com/wireless- 188 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

smartBASIC Core Functionality Laird » CONNECTIVITY

User Guide

INDEX

HSET ettt sttt st s RESET .ttt ettt ettt ettt ettt ettt st e sae e e e e sane s 115
? (Read Variable). ..ot RESETLASTERRORcoutiiiiieiierieesiee ettt 72
= (St Variable) ..oueeceeeeeeee e RESUME ...ttt st 41
71 210 SR RIGHTS <ottt ettt ettt st b et a e s eneas 90
ABS..ooiiiie e SELECT / CASE / CASE ELSE / ENDSELECT ...ocvvevierirvireiereenreeenns 59
FAN - 1T PSPPSR 1] O PP PPPTN 40
AT Lttt ettt et e SPLEVENTS .ttt sttt ettt s s 165
) SR L] 24 [0 1] PSR 169
) I USSR L] 24 [0 =3 PSR 165
ATHFCL ettt sttt SPIREAD ...ccutteieeniieenite et site st e st eteesieesbeesaeeebeesisessaeesaneenens 170
ATHGET et SPIREADWRITE ...eviiiieeiieeiee ettt ettt sttt snne e 169
AT+REN...... SPIWRITE........ ...170

AT+RUN 1 2L IS 67
AT+SET... STOP ettt e e e e e ara e e e e e eas 68

STRCMP ..ttt e e e s aarre e e e e s 97

STRDEESCAPE. ..103

STRESCAPES102

LIRS C = 1 1 SRS 93

STRHEXZBIN oeeiiiiiiiiiiieeee et seriree e e e s ssvvnee e e e s s sinnneeees 101

STRHEXIZE ...oveeeeeieeiieteee ettt seiirre e e s sirane e e e 98
CIRCBUFITEMSooiiiiiiiiiiiiieice e StriNgG CoNStaNntsceviiiiiiiiecee 50
CIRCBUFOVERWRITE....ccciiiiiiiiiiiieeieeeceeeeeeeeeeeeeeeeeeeeeeeee e eeeeeeees STRLEN ...t e e e e e e e e e e eeee 90
CIRCBUFREADuuiiiiiiee ittt et ee e ssiiree e e s s s svnnee e e s e eaes STRPOS ...ttt et ae e e e e e s sabaa e e e e e eaas 91
CIRCBUFWRITEeiiiiiieie ettt e e s siine e e e STRSETBLOCK .ceeeieeiiiiieieeeieiiiieeeeee e ee e e ssirrreeeesssasnnneeeessans 94
CONTINUEoiitiiieiiieeee ettt e e s sirr e e e e s s rraeeeesesans STRSETCHR ettt e e s sran e e e e 92
Declaring Variablescoeeereeieninieeeeeeee e STRSHIFTLEFT <ottt s 96
D111 TSRS STRSPLITLEFTS ..ttt cee ettt sre et eveeeesve e eve e sreenean 104
DO / DOWHILEoocuvieteeeie ettt sve v v snee v e STRSUM ..ttt ettt srae e e s s svaaae e s e s s s saaaneeees 105
DO / UNTIL.cttetreetieeeireeeesteeeeereeeesteereesreeeesseesnessesssesseessessesnnes Structuring an Application.......cccceevciieiiieec 24
ENDFUNC ..ottt ettt ettt et e e s e e e s STRXOR ...ttt 106, 107, 108, 110
ENDSUB ..ot e e e LU 2 N 189
EXCEPLIONS. ...t SYNTAX ettt s 44
EXITFUNC.. SYSINFO ...ttt re e e e s s saraa e e e e s saas 73
EXITSUB SYSINFOS ...ttt ettt ettt ettt sttt ettt ere et ss s nsere e 74
FOR / NEXT TABLEADD 112
FUNCTION........... TABLEINIT 111
GETTICKCOUNT... TABLELOOKUP .113
GETTICKSINCE...... Timer Events... ...118
GPIOUNBINDEVENT ... TIMERCANCEL122
[T [0 2T 2 I N TIMERRUNNINGouvtitiiiiiiiiiitiiieiiieieieeiienerereneaeaenenenenenenenenenee 121
J2C EVENTS coeiiiiciiieeee ettt esrre e e e s e s seaee e e s e s sanees TIMERSTART cectttttee ettt e e sstre e e e s e s saanae e e e e s s ssnnneees 119
J2CCLOSE...cciiiiiiiieee ettt e e s s s s eare e e e s e saneee UART EVENES .ttt ee e e 134
IF THEN / ELSEIF / ELSE / ENDIF UARTBREAK ...ttt e e s 152
LEFTS ettt ettt ettt ettt ettt et te et et be b et et enaeneereeaeenan UARTCLOSE ...ttt ettt ee e e s e e e e s 139
IVLAX eeeeaa e s UARTCLOSEEX ...eutuiuiuiuininiuiiiiineniueuanenenenenaaenenennnesensnsnnnnnnnnnennns 140
IVIIN L s e s s e s s e s e s e s e s e s e s e s e sn e e e e s e eenaeans UARTFLUSH ...ttt e enne e e 149
NUMeEric CONSTANTScovriiiiiiiiiieiiee e UARTGETCTS ..ottt s 150
ONERROR. ..ottt ettt e e s s e e e e UARTINFO .ttt e e e e s 141
ONEVENT <t e e e UARTREADuuuitiitieiiiiiiiiieiee e 144, 145
ONFATALERROR......uttitiiiieciiireee et e e e ssiree e e e s severaee e e e e UARTREADMATCH.....uuuiutiiiiiiiiiiiiiiiiiiiieeiv e 147
PRINT <ttt e e s e sarrr e e e e e s e aaereeeeesesnnnnns UARTSETRTS ..eettiiieeeeeriiiteee e seirreee s ssiirn e e s senae e e e s e sinnes 151
RAND .ttt ettt e e e s e e e e e s UARTWRITE ...ttt s e e e s 142
RANDEX ..eeteiieeeieesieeste e s e et e seeeteesseeeneesneeesseesnseesneeenaeenneens RV TS o] =R 46
RANDSEED ... WHILE / ENDWHILEveiiiveeteeee ettt ettt 58

https://connectivity.lairdtech.com/wireless- 189 Americas: +1-800-492-2320
modules/bluetooth-modules © Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

	1 smartBASIC Documentation
	2 Introduction to smartBASIC
	2.1 Why Do We Need smartBASIC?
	2.2 Why Write Applications?
	2.3 What Does a Wireless Module Contain?
	2.4 smartBASIC Essentials
	2.5 Developing with smartBASIC
	2.6 smartBASIC Operating Modes
	2.7 Types of Applications
	2.8 Non-Volatile Memory
	2.9 Using the Module’s Flash File System

	3 Getting Started
	3.1 Requirements
	3.2 Connecting Things Up
	3.3 UWTerminal
	3.3.1 Navigating UWTerminal
	3.3.2 Useful Shortcuts
	3.3.3 Using UWTerminal

	3.4 Your First smartBASIC Application
	3.4.1 Create ‘Hello World’ App
	3.4.2 Download ‘Hello World’ App
	3.4.3 smartBASIC Statement Format
	3.4.4 Autorun
	3.4.5 Debugging Applications
	3.4.6 Structuring an Application

	4 Interactive Mode Commands
	4.1 AT
	4.1.1 AT I or ATI ATI
	4.1.2 AT+DIR
	4.1.3 AT+DEL
	4.1.4 AT+RUN
	4.1.5 AT+DBG
	4.1.6 AT+SET
	4.1.7 AT+GET
	4.1.8 AT+CFG
	4.1.9 AT+CFGEX
	4.1.10 AT+FOW
	4.1.11 AT+FWR
	4.1.12 AT+FWRH
	4.1.13 AT+FCL
	4.1.14 ? (Read Variable)
	4.1.15 = (Set Variable)
	4.1.16 SO
	4.1.17 RESUME
	4.1.18 ABORT
	4.1.19 AT+REN
	4.1.20 AT&F
	4.1.21 AT Z or ATZ

	5 smartBASIC Commands
	5.1 Syntax
	5.2 Functions
	5.3 Subroutines
	5.4 Statements
	5.5 Exceptions
	5.6 Language Definitions
	5.6.1 Command

	5.7 Variables
	5.7.1.1 DIM
	5.7.2 Variable Scope
	5.7.3 Variable Class
	5.7.3.1 Arrays
	5.7.3.2 General Comments on Variables
	5.7.3.3 Declaring Variables

	5.8 Constants
	5.8.1 Numeric Constants
	5.8.2 String Constants

	5.9 Compiler Related Commands and Directives
	5.9.1 #SET

	5.10 Arithmetic Expressions
	5.11 Conditionals
	5.11.1 DO / UNTIL
	5.11.2 DO / DOWHILE
	5.11.3 FOR / NEXT
	5.11.4 IF THEN / ELSEIF / ELSE / ENDIF
	5.11.5 WHILE / ENDWHILE
	5.11.6 SELECT / CASE / CASE ELSE / ENDSELECT
	5.11.7 BREAK
	5.11.8 CONTINUE

	5.12 Error Handling
	5.12.1 ONERROR
	5.12.2 ONFATALERROR

	5.13 Event Handling
	5.13.1 WAITEVENT
	5.13.2 ONEVENT

	5.14 Miscellaneous Commands
	5.14.1 PRINT
	5.14.2 SPRINT
	5.14.3 STOP
	5.14.4 BP

	6 Core Language Built-in Routines
	6.1 Result Codes
	6.2 Information Routines
	6.2.1 GETLASTERROR
	6.2.2 RESETLASTERROR
	6.2.3 SYSINFO
	6.2.4 SYSINFO$

	6.3 Event & Messaging Routines
	6.3.1 SENDMSGAPP

	6.4 Arithmetic Routines (Integer)
	6.4.1 ABS
	6.4.2 MAX
	6.4.3 MIN

	6.5 Arithmetic Routines (Floating Point)
	6.5.1 ACOS
	6.5.2 ACOSH
	6.5.3 ASIN
	6.5.4 ASINH
	6.5.5 ATAN
	6.5.6 ATANH
	6.5.7 CEIL
	6.5.8 COS
	6.5.9 COSH
	6.5.10 EXP
	6.5.11 FABS
	6.5.12 FLOOR
	6.5.13 FMOD
	6.5.14 ISFINITE
	6.5.15 ISINF
	6.5.16 ISNAN
	6.5.17 LOG
	6.5.18 LOG10
	6.5.19 PI
	6.5.20 POW
	6.5.21 ROUND
	6.5.22 SIN
	6.5.23 SINH
	6.5.24 SQRT
	6.5.25 TAN
	6.5.26 TANH

	6.6 String Routines
	6.6.1 LEFT$
	6.6.2 MID$
	6.6.3 RIGHT$
	6.6.4 STRLEN
	6.6.5 STRPOS
	6.6.6 STRSETCHR
	6.6.7 STRGETCHR
	6.6.8 STRSETBLOCK
	6.6.9 STRFILL
	6.6.10 STRSHIFTLEFT
	6.6.11 STRCMP
	6.6.12 STRHEXIZE$
	6.6.13 STRDEHEXIZE$
	6.6.14 STRVALDEC
	6.6.15 STRHEX2BIN
	6.6.15.1 STRING from INTEGER

	6.6.16 STRESCAPE$
	6.6.17 STRDEESCAPE
	6.6.18 STRSPLITLEFT$
	6.6.19 STRSUM
	6.6.20 STRXOR
	6.6.21 EXTRACTSTRTOKEN
	6.6.22 EXTRACTINTTOKEN
	6.6.23 EXTRACTFLOATTOKEN

	6.7 Table Routines
	6.7.1 TABLEINIT
	6.7.2 TABLEADD
	6.7.3 TABLELOOKUP

	6.8 Miscellaneous Routines
	6.8.1 RESET

	6.9 Random Number Generation Routines
	6.9.1 RAND
	6.9.2 RANDEX
	6.9.3 RANDSEED

	6.10 Timer Routines
	6.10.1 Timer Events
	6.10.2 TimerStart
	6.10.3 TimerRunning
	6.10.4 TimerCancel
	6.10.5 GetTickCount
	6.10.6 GetTickSince

	6.11 Circular Buffer Management Functions
	6.11.1 CircBufCreate
	6.11.2 CircBufDestroy
	6.11.3 CircBufWrite
	6.11.4 CircBufOverWrite
	6.11.5 CircBufRead
	6.11.6 CircBufItems

	6.12 Serial Communications Routines
	6.13 UART (Universal Asynchronous Receive Transmit)
	6.13.1 UART Events
	6.13.2 UartOpen
	6.13.3 UARTClose
	6.13.4 UARTCloseEx
	6.13.5 UARTInfo
	6.13.6 UartWrite
	6.13.7 UartRead
	6.13.8 UartReadN
	6.13.9 UartReadMatch
	6.13.10 UartFlush
	6.13.11 UartGetCTS
	6.13.12 UartSetRTS
	6.13.13 UartBREAK

	6.14 I2C (Two Wire Interface or TWI)
	6.14.1 I2C Events
	6.14.2 I2cOpen
	6.14.3 I2cClose
	6.14.4 I2cWriteREG8
	6.14.5 I2cReadREG8
	6.14.6 I2cWriteREG16
	6.14.7 I2cReadREG16
	6.14.8 I2cWriteREG32
	6.14.9 I2cReadREG32
	6.14.10 I2cWriteRead

	6.15 SPI Interface
	6.15.1 SPI Events
	6.15.2 SpiOpen
	6.15.3 SpiClose
	6.15.4 SpiReadWrite
	6.15.5 SpiWrite
	6.15.6 SpiRead

	6.16 Cryptographic Functions
	6.16.1 AesSetKeyIV
	6.16.2 AesEncrypt
	6.16.3 AesDecrypt

	6.17 File I/O Functions
	6.17.1 FOPEN
	6.17.2 FCLOSE
	6.17.3 FREAD
	6.17.4 FREADUNTIL
	6.17.5 FILELEN
	6.17.6 FTELL
	6.17.7 FSEEK

	6.18 Non-Volatile Memory Management Routines
	6.18.1 NvRecordGet
	6.18.2 NvRecordGetEx
	6.18.3 NvRecordSet
	6.18.4 NvCfgKeyGet
	6.18.5 NvCfgKeySet

	6.19 Input/Output Interface Routines
	6.19.1 GpioSetFunc
	6.19.2 GpioConfigPwm
	6.19.3 GpioRead
	6.19.4 GpioWrite
	6.19.5 GPIO Events
	6.19.6 GpioBindEvent/GpioAssignEvent
	6.19.7 GpioUnbindEvent/ GpioAssignEvent

	6.20 User Routines
	6.20.1 SUB
	6.20.1.1 Defining the Routine Name
	6.20.1.2 Defining the Arglist

	6.20.2 ENDSUB
	6.20.3 EXITSUB
	6.20.4 FUNCTION
	6.20.4.1 Defining the Routine Name
	6.20.4.2 Defining the Return Value
	6.20.4.3 Defining the Arglist

	6.20.5 ENDFUNC
	6.20.6 EXITFUNC

	7 Events and Messages
	8 Module Configuration
	9 Acknowledgements
	9.1 License Terms
	9.2 Disclaimer

