

CBM150S Series

Application Note V10

AC-DC Switching Brick Power Module

CBM150S Series

Application Note

Approved By:

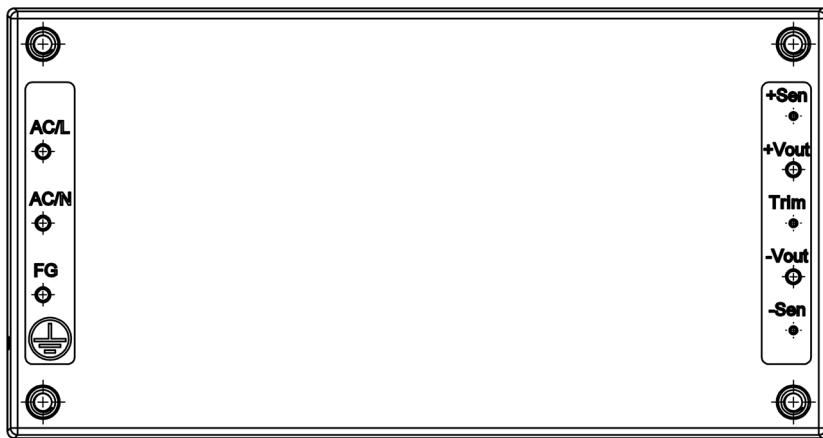
Department	Approved By	Checked By	Written By
Research and Development Department	Ovid	Calvin	Red
Design Quality Department	Benny	JoJo	

CBM150S Series

Application Note V10

Contents

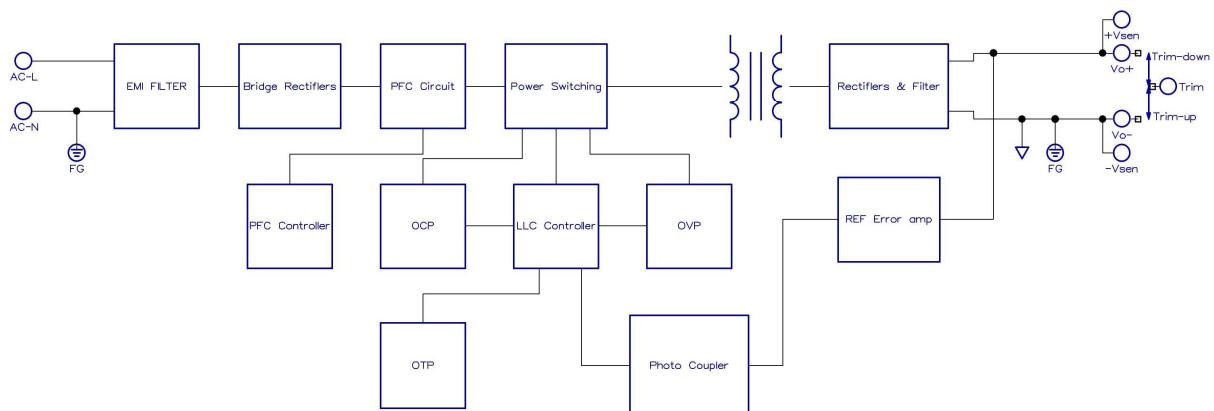
1. Introduction	3
2. Pin Function Description	3
3. Electrical Block Diagram	3
4. Test Set-Up	4
5. Features and Functions	4
5.1 Over Current Protection	4
5.2 Over Voltage Protection	4
5.3 Over Temperature Protection	4
5.4 Output Voltage Adjustment	4
6. Input / Output Considerations	5
6.1 Output Ripple and Noise Measurement	5
7. Thermal Design	6
7.1 Operating Temperature Range	6
7.2 Convection Requirements for Cooling	6
7.3 Thermal Considerations	6
7.4 Power Derating	6
7.5 Full Brick Heat Sinks	8
8. Packing Information	9


CBM150S Series

Application Note V10

1. Introduction

This application note describes the features and functions of Cincon's CBM150S series, switching AC-DC brick power module. The CBM150S does not require any extremal components to pass EMI class B. These are highly efficient, reliable, compact, high power density, single output AC/DC power modules. The module is fully protected against short circuit and over-voltage conditions. Cincon's world class automated manufacturing methods, together with an extensive testing and qualification program, ensure that the CBM150S series brick power module is extremely reliable.


2. Pin Function Description

No	Label	Function	Description
1	AC/L	AC Line	Positive Supply Input
2	AC/N	AC Neutral	Negative Supply Input
3	FG	Mounting Insert	Mounting Insert (FG)
4	+Sen	+V Sense	Positive Power Output Sense
5	+Vout	+V Output	Positive Power Output
6	Trim	Trim	External Output Voltage Adjustment
7	-Vout	-V Output	Negative Power Output
8	-Sen	-V Sense	Negative Power Output Sense

Note: Base plate can be connected to FG through M3 threaded mounting insert. Recommended torque 3Kgf-cm.

3. Electrical Block Diagram

CBM150S Series

Application Note V10

4. Test Set-Up

The basic test set-up to measure parameters such as efficiency and load regulation is shown in Figure 1. When testing the Cincon's CBM150S series under any transient conditions, please ensure that the transient response of the source is sufficient to power the equipment under test. We can calculate:

- Efficiency
- Load regulation and line regulation

The value of efficiency is defined as:

$$\eta = \frac{V_o \times I_o}{V_{in} \times I_{in}} \times 100\%$$

Where:

V_o is output voltage,
 I_o is output current,
 V_{in} is input voltage,
 I_{in} is input current.

The value of load regulation is defined as:

$$\text{Load reg.} = \frac{V_1 - V_2}{V_2} \times 100\%$$

Where:

V_1 is the output voltage at 60% load.
 V_2 is the output voltage at $60\% \pm 40\%$ load.

The value of line regulation is defined as:

$$\text{Line reg.} = \frac{V_{HL} - V_{LL}}{V_{LL}} \times 100\%$$

Where:

V_{HL} is the output voltage of maximum input voltage at full load.

V_{LL} is the output voltage of minimum input voltage at full load.

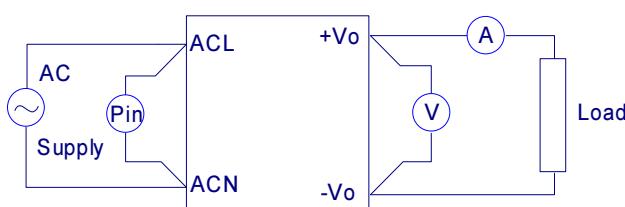


Figure 1. CBM150S Series Test Setup

5. Features and Functions

5.1 Over Current Protection

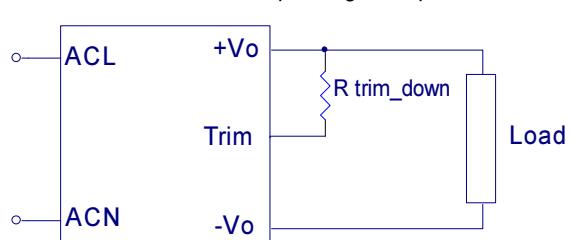
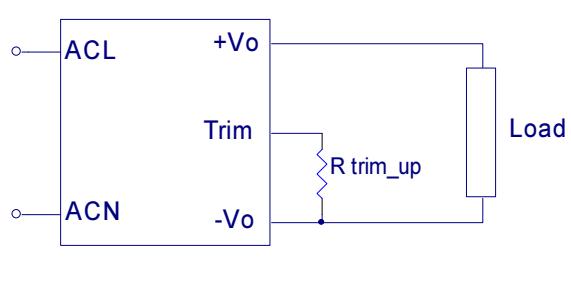
All models have internal over current and continuous short circuit protection. The unit operates normally once the fault condition is removed. At the point of current limit inception, the converter will go into hiccup mode protection.

5.2 Over Voltage Protection

All different voltage models have a fully continuous over voltage protection. The brick power module will supply OVP. In the event of happen the OVP, 12V-48V will go into hiccup mode protection, but 54V will go into latch off protection.

5.3 Over Temperature Protection

These modules have an over temperature protection circuit to safeguard against thermal damage. Shutdown occurs with the maximum case reference temperature is exceeded. The module will restart when the case temperature falls below over temperature recovery threshold. Please measure case temperature of the center part of aluminum base plate.



5.4 Output Voltage Adjustment

Output may be externally trimmed (-5% to +5%) with a fixed resistor. $P_o \leq \text{max. rated power}$, $I_o \leq I_{o_max.}$

Trim up/down is extra features, changing the output voltage will cause some electrical properties to be substandard.

EX:

Output voltage $\pm 1\%$, etc.

CBM150S Series

Application Note V10

The value of R_{Trim_up} defined as:

$$R_{Trim_up} = \left[\frac{V_r * (R_1 + R_2) * R_3}{V_o * R_3 - V_r * (R_1 + R_2) - V_r * R_3} \right] - R_t (K\Omega)$$

Where:

R_{Trim_up} is the external resistor in $K\Omega$.

V_o is the desired output voltage.

R_1, R_2, R_3, R_t and V_r are internal to the unit and are defined in Table 1.

Table 1 – Trim up and Trim down Resistor Values

Model Name	Output Voltage(V)	R_1 (K Ω)	R_2 (K Ω)	R_3 (K Ω)	R_t (K Ω)	V_r (V)
CBM150S120	12.0	11.5	7.87	5.1	1	2.5
CBM150S240	24.0	36	7.87	5.1	1	2.5
CBM150S280	28.0	47	4.99	5.1	1	2.5
CBM150S360	36.0	53.6	14.7	5.1	1	2.5
CBM150S480	48.0	82.5	10	5.1	1	2.5
CBM150S540	54.0	100	4.75	5.1	1	2.5

For example, to trim-up the output voltage of 12V module (CBM150S120) by 5% to 12.6V, R_{Trim_up} is calculated as follows:

$R_1=11.5K\Omega, R_2=7.87K\Omega, R_3=5.1K\Omega, R_t=1K\Omega, V_r=2.5V, V_o=12.6V$

$R_{Trim_up} =$

$$\frac{11.4 * 5.1 * (11.5 + 7.87) - 2.5 * 5.1 * (11.5 + 7.87)}{2.5 * (11.5 + 7.87) - (11.4 * 5.1) + (2.5 * 5.1)} - 1 \\ = 79.05 (K\Omega)$$

The typical value of R_{Trim_up}

Trim up (%)	12V	24V	28V	36V	48V	54V
	R _{Trim_up} (K Ω)					
1%	386.7	465.51	440.03	448.81	362.11	377.45
2%	196.73	229.85	225.16	229.87	206.05	211.57
3%	131.71	152.37	151.07	154.28	143.82	146.79
4%	98.87	113.83	113.55	115.98	110.35	112.27
5%	79.05	90.77	90.87	92.84	89.44	90.82

The value of R_{Trim_down} defined as:

$$R_{Trim_down} = \left[\frac{V_o * R_3 * (R_1 + R_2) - V_r * R_3 * (R_1 + R_2)}{V_r * (R_1 + R_2) - V_o * R_3 + V_r * R_3} \right] - R_t (K\Omega)$$

Where:

R_{Trim_down} is the external resistor in $K\Omega$.

V_o is the desired output voltage.

R_1, R_2, R_3, R_t and V_r are internal to the unit and are defined in Table 1.

Table 1 – Trim up and Trim down Resistor Values

Model Name	Output Voltage(V)	R_1 (K Ω)	R_2 (K Ω)	R_3 (K Ω)	R_t (K Ω)	V_r (V)
CBM150S120	12.0	11.5	7.87	5.1	1	2.5
CBM150S240	24.0	36	7.87	5.1	1	2.5
CBM150S280	28.0	47	4.99	5.1	1	2.5
CBM150S360	36.0	53.6	14.7	5.1	1	2.5
CBM150S480	48.0	82.5	10	5.1	1	2.5
CBM150S540	54.0	100	4.75	5.1	1	2.5

For example: to trim-down the output voltage of 12V module (CBM150S120) by 5% to 11.4V, R_{Trim_down} is calculated as follows:

$R_1=11.5K\Omega, R_2=7.87K\Omega, R_3=5.1K\Omega, R_t=1K\Omega, V_r=2.5V, V_o=11.4V$

$R_{Trim_down} =$

$$\frac{2.5 * (11.5 + 7.87) * 5.1}{12.6 * 5.1 - 2.5 * (11.5 + 7.87) - 2.5 * 5.1} - 1 \\ = 288.69 (K\Omega)$$

The typical value of R_{Trim_down}

Trim down (%)	12V	24V	28V	36V	48V	54V
	R _{Trim_down} (K Ω)					
1%	1577.57	3807.37	4941.39	6648.57	12886.3	13755.5
2%	761.94	1900.72	2376.86	3195.6	5128.82	5690.03
3%	497.57	1256.58	1552.47	2087.18	3175.24	3558.12
4%	366.75	932.87	1145.77	1540.62	2285.35	2572.84
5%	288.69	738.11	903.47	1215.09	1776.31	2005.17

6. Input / Output Considerations

6.1 Output Ripple and Noise Measurement

The test set-up for noise and ripple measurements is shown in Figure 2 Measured method:

Add a $C_2=0.1\mu F$ ceramic capacitor and a $C_1=10\mu F$ electrolytic capacitor to output at 20 MHz bandwidth.

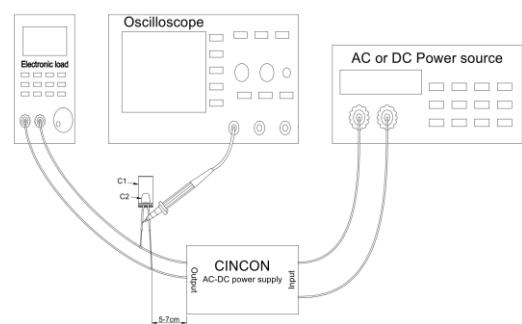


Figure 2. Output Voltage Ripple and Noise Measurement Set-Up

CBM150S Series

Application Note V10

7. Thermal Design

7.1 Operating Temperature Range

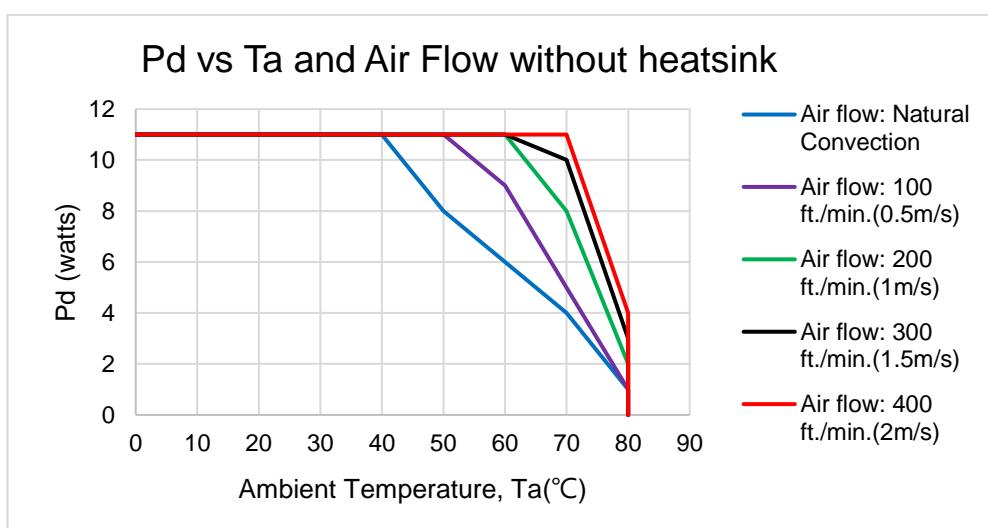
The highly efficient design of Cincon's CBM150S series brick power module has resulted in their ability to operate within ambient temperature environments from -40°C to $+80^{\circ}\text{C}$. Due consideration must be given to the de-rating curves when ascertaining the maximum power that can be drawn from the module. The maximum power which can be drawn is influenced by a number of factors, such as:

- Input voltage range
- Permissible Output load (per derating curve)
- Forced air or natural convection
- Heat sink (optional)

7.2 Convection Requirements for Cooling

To predict the approximate cooling needed for the brick power module, refer to the power derating curves in **section 7.4**. These derating curves are approximations of the ambient temperatures and airflows required to keep the brick power module temperature below its maximum rating. Once the module is assembled in the actual system, the module's temperature should be monitored to ensure it does not exceed 90°C (T_c) as measured at the center of the top of the case (thus verifying proper cooling).

7.3 Thermal Considerations


The brick power module operates in a variety of thermal environments; however, sufficient cooling should be provided to help ensure reliable operation of the unit. Heat is removed by conduction, convection, and radiation to the surrounding environment. The example is presented in **section 7.4**. The power output of the module should not be allowed to exceed rated power ($V_{o_set} \times I_{o_max}$).

7.4 Power Derating

The operating case temperature range of CBM150S series is -40°C to $+90^{\circ}\text{C}$ (T_c). When operating the CBM150S series, proper derating or cooling is needed (at 115VAC). The maximum case temperature under any operating condition should not exceed 90°C (T_c).

The following curve is the derating curve of CBM150S series without heatsink.

Note: P_d is calculated after 1 minute of burn-in

CBM150S Series

Application Note V10

Example without heatsink:

What is the minimum airflow necessary for a CBM150S120 operating at 115VAC, an output current of 8.33A, and a maximum ambient temperature of 50°C without heatsink?

Solution:

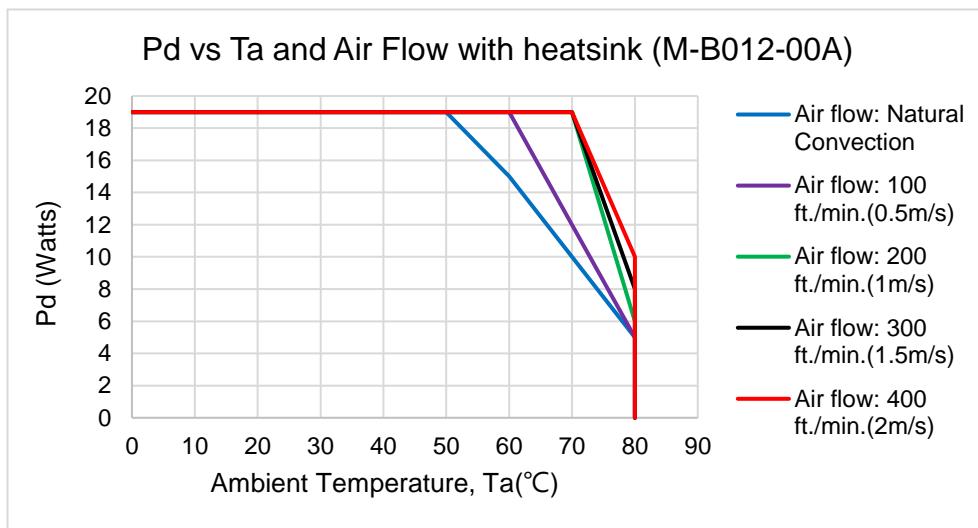
Given: $V_{in}=115\text{VAC}$, $V_o=12\text{V}_{dc}$, $I_o=8.33\text{A}$

Determine Power dissipation (P_d): $P_d= P_i - P_o = P_o(1-\eta)/\eta$, $P_d= 12\text{V} \times 8.33\text{A} \times (1-0.895)/0.895 = 11.73\text{Watts}$

Determine airflow: Given: $P_d= 11.73\text{W}$ and $T_a= 40^\circ\text{C}$

Check Power Derating curve: Minimum airflow= Natural Convection.

Verify:


Maximum temperature rise is $\Delta T= P_d \times R_{ca} = 11.73 \times 4.1 = 48.093^\circ\text{C}$

Maximum case temperature is $T_c = T_a + \Delta T = 88.093^\circ\text{C} < 90^\circ\text{C}$

Where:

The R_{ca} is thermal resistance from case to ambient environment.

T_a is ambient temperature and T_c is case temperature.

Example with heatsink M-B012-00A:

What is the minimum airflow necessary for a CBM150S120 operating at 115VAC, an output current of 12.5A, and a maximum ambient temperature of 60°C with heatsink M-B012-00A.

Solution:

Given: $V_{in}=115\text{VAC}$, $V_o=12\text{V}_{dc}$, $I_o=12.5\text{A}$

Determine Power dissipation (P_d): $P_d= P_i - P_o = P_o(1-\eta)/\eta$, $P_d= 12\text{V} \times 12.5\text{A} \times (1-0.895)/0.895 = 17.60\text{Watts}$

Determine airflow: Given: $P_d= 17.60\text{W}$ and $T_a = 50^\circ\text{C}$

Check above Power de-rating curve: Minimum airflow= Natural Convection

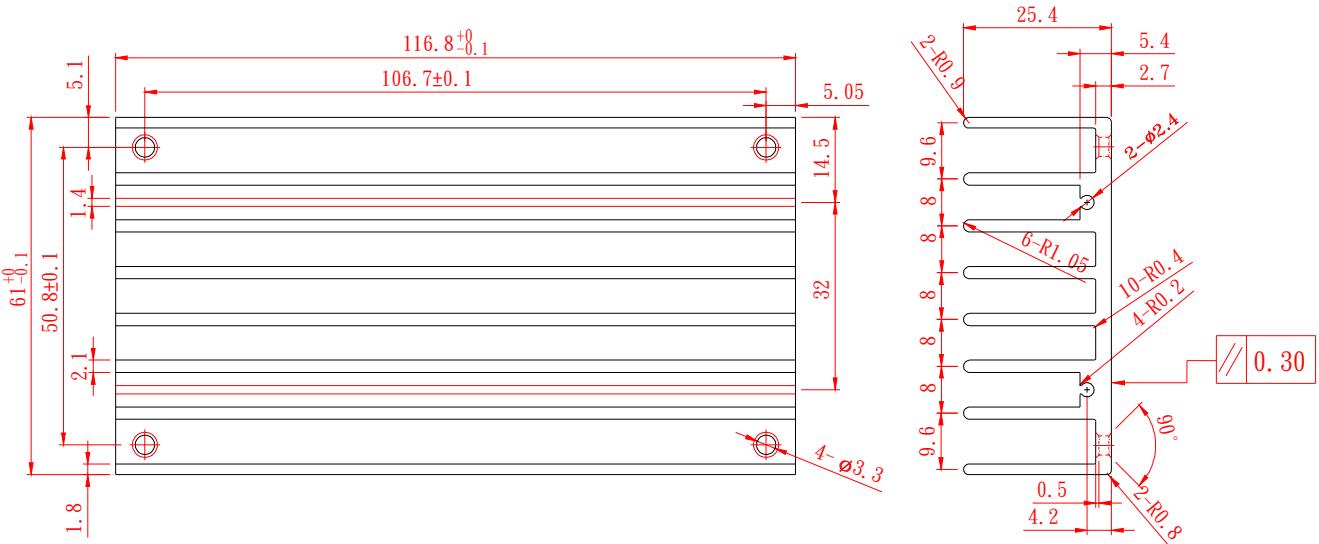
Verify:

Maximum temperature rise is $\Delta T= P_d \times R_{ca} = 17.60 \times 1.88 = 33.088^\circ\text{C}$

Maximum case temperature is $T_c = T_a + \Delta T = 83.088^\circ\text{C} < 90^\circ\text{C}$

Where:

The R_{ca} is thermal resistance from case to ambient environment.


T_a is ambient temperature and T_c is case temperature.

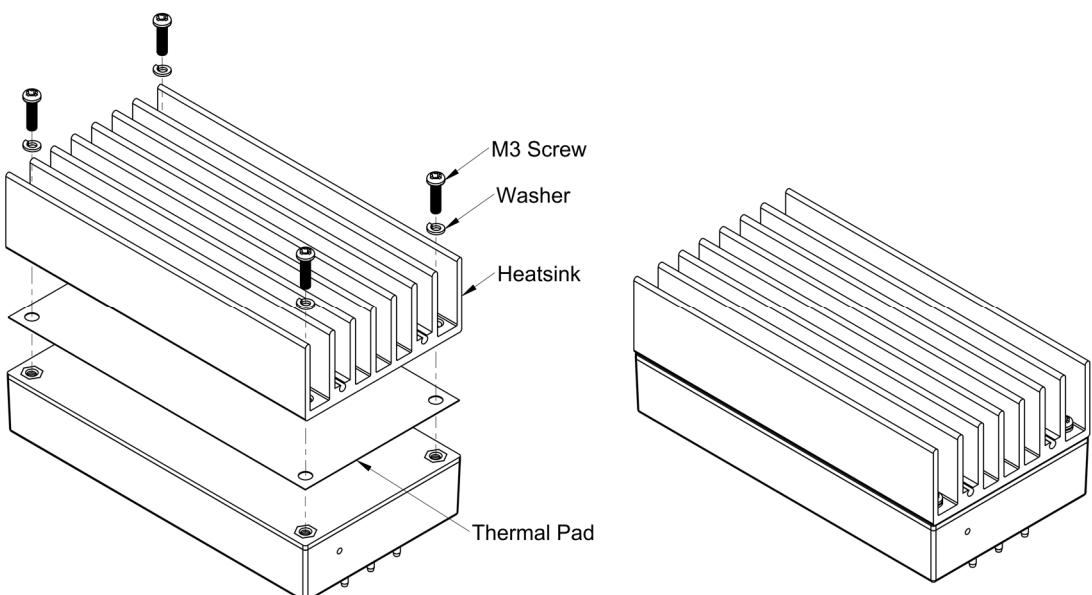
CBM150S Series

Application Note V10

7.5 Full Brick Heat Sinks

All Dimensions in mm

Heat Sink: 116.8*61*25.4mm (M-B012-00A, G6620090204)


Rca: 1.88 °C/W (typ.), At natural convection

1.45 °C/W (typ.), At 100LFM

1.04 °C/W (typ.), At 200LFM

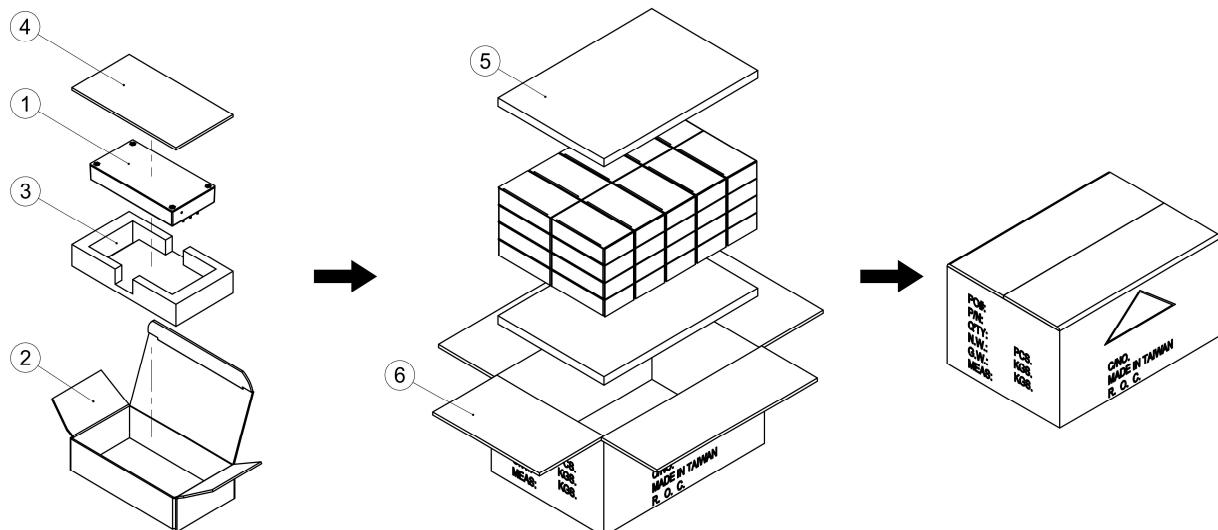
0.84 °C/W (typ.), At 300LFM

0.73 °C/W (typ.), At 400LFM

Heat Sink: 116.8*61*25.4mm (M-B012-00A, G6620090204)

Thermal pad: SR60*115.8*0.23 (G6135041073)

Screw SMP+SW M3*8L (G75A1300322)



CBM150S Series

Application Note V10

8. Packing Information

The packing information for CBM150S SERIES is showing as follows:

ITEM	PART NO.	NAME	OUTSIDE DIM	PCS
1	G98~	CBM150S Product	116.8*61*19.7mm	40
2	G64205299	Inner Box	150*85*40mm	40
3	G64301118	Antistatic Foam	147*81*26.6mm	40
4	G64301223	Antistatic Foam	147*81*3mm	40
5	G64303228	Foam	435*300*20mm	2
6	G64112340	No. 67 Cardboard Box	454.5*318.2*230.3mm	1

Each Box Packaging 40 PCS Products

Gross weight Ref. 14.6 Kg

CBM150S 40 PCS a box, including the total weight of package material about 14.6Kg

CINCON ELECTRONICS CO., LTD.

Headquarters:

14F, No.306, Sec.4, Hsin Yi Rd.
Taipei, Taiwan
Tel: 886-2-27086210
Fax: 886-2-27029852
E-mail: support@cincon.com.tw
Web Site: <http://www.cincon.com>

Factory:

No. 8-1, Fu Kung Rd.
Fu Hsing Industrial Park
Fu Hsing Hsiang,
ChangHua Hsien, Taiwan
Tel: 886-4-7690261
Fax: 886-4-7698031

Cincon North America:

1655Mesa Verde Ave. Ste 180
Ventura, CA93003
Tel: 805-639-3350
Fax: 805-639-4101
E-mail: info@cincon.com