Laird 5,

Smart Technology. Delivered.”

BLE Mesh — BL652 Sample smartBASIC Application

INTRODUCTION

In July of 2017, the Bluetooth SIG released Mesh Profile Specification v1.0 which describes a mesh profile
running on top of any BLE device that is v4.0 or newer.

This application note provides an overview of BLE mesh from an application perspective by introducing you to
some early alpha BLE mesh functionality in the Laird BL652 module. This document also describes how to use it
in a sample smartBASIC application by testing the functionality over the UART using a light switch client and
server example. Given the smartBASIC implementation, the mesh explanation is in the context of the event-
driven smartBASIC programming paradigm.

The mesh functionality described in this application note is for testing and demonstrative purpose only and is
not fit for production; it is built using an early alpha release of the BLE mesh SDK (version 0.10.0) from the
Nordic semiconductor. That SDK from Nordic is version 0.10.0.

As this is based on the early alpha release of the SDK from Nordic, we reserve the right to change the specifics of
the API that is used to expose the SDK API and is described in this application note. Nordic may introduce
changes to the stack as they work towards the eventual Bluetooth SIG-approved production release.

REQUIREMENTS
The following are required for this sample smartBASIC application:

= Multiple (at least three) DVK-BL652 development kits — Five development kits are ideal to view the
interaction with multiple on/off servers. One devkit is used as a sniffer for mesh adverts to get a better
understanding of mesh operations; activity, such as unprovisioned beacons, assures you that your
equipment is ‘alive’.
Alternate compatible kits are available from Chip45.

= PC with spare USB ports (using a USB hub, if appropriate)

= UwTerminalX — available for Windows, Linux, and Mac: https://github.com/LairdCP/UwTerminalX/releases

= Engineering mesh-capable firmware for the BL652 (available from the BL652 product page Software
Download section)

= Asample command manager smartBASIC application demonstrating mesh functionality —
Sautorun$.mesh.light.switch.example.sb (included in the firmware zip file)

= A MeshSniff smartBASIC application — SautorunS.mesh.sniff.sb (included in the firmware zip file)

Note: For the purposes of this document, we assume you are familiar with compiling/loading smartBASIC

applications.
Embedded Wireless Solutions Support Center: 1 Americas: +1-800-492-2320
http://ews-support.lairdtech.com Europe: +44-1628-858-940

www.lairdtech.com/bluetooth © Copyright 2017 Laird. All Rights Reserved Hong Kong: +852 2923 0610

http://ews-support.lairdtech.com/
http://www.chip45.com/products/up2net_ble_dwarf_bluetooth_4_nfc_bl652_module_iot_evalboard.php
https://github.com/LairdCP/UwTerminalX/releases
https://www.lairdtech.com/products/bl652-ble-module

Ble Mesh — Sample App

Application Note La l I‘d >»

RELEASE SPECIFIC NOTES

This application note describes mesh functionality exposed via Laird’s smartBASIC programming language
implemented on top of Nordic Semiconductor’s mesh experimental SDK (release level 0.10.0-Alpha). This SDK is
not fully functional and only offers the advert bearer and relay functionality. There are no proxy, friend, or low
power node capabilities.

Please refer to Nordic Semiconductor’s release notes for more details about the experimental 0.10.0 SDK.

DEMO DESCRIPTION

A light switch client and server devices are used for this sample demonstration. The light switch client also
incorporates provisioner functionality; this means that, when the client sees unprovisioned devices, it
automatically provisions and configures a maximum of three devices.

While running the demonstration, if you are near other vendors’ unprovisioned devices, attempts to provision
them may occur. It is unclear in what state those devices will be left. The provisioning functionality is provided
as-is from Nordic’s SDK sample application; future Laird release’s will provide clearer provisioning functionality.

The client device implements the client behavior of a Nordic Semiconductor custom light switch model.
Likewise, the server device implements the server behavior of the light switch model.

Opcodes

A model is an array of opcodes and associated handlers. The Nordic custom light switch model consists of the
following opcodes and recipients for each opcode.

Table 1: Opcodes and opcode recipients

SIMPLE_ON_OFF_OPCODE_SET 0xC1 Server 0/1 | tid
SIMPLE_ON_OFF_OPCODE_GET 0xC1 Server
SIMPLE_ON_OFF_OPCODE_SET_UNRELIABLE | 0xC3 Server 0/1 | tid
SIMPLE_ON_OFF_OPCODE_SET_STATUS 0xC4 Client | 0/1

* 0059 = Nordic Semiconductor Company ID
tid = Transaction ID

Note: The tid data field is simply an incrementing number which wraps at OxFF to 0x00. Nordic does not
attach any specific meaning to it. It is incremented each time a SET or SET_UNRELIABLE message is
sent.

The example demonstrated in this application note only offers provisioning of up to three light switch servers.

The example is best described in Figure 1.

Embedded Wireless Solutions Support Center: Americas: +1-800-492-2320
http://ews-support.lairdtech.com 2 Europe: +44-1628-858-940
www.lairdtech.com/bluetooth © Copyright 2017 Laird. All Rights Reserved Hong Kong: +852 2923 0610

http://ews-support.lairdtech.com/
http://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.meshsdk.v0.10.0%2Fmd_RELEASE_NOTES.html

Ble Mesh — Sample App

Application Note La l I‘d >»

Client Server 0 Server 1 Server 2

0x0001
Config Client 0x0100

Publishes T
Light_Switch Client 2215 T0 Pl oht Switch Server |

0x0002 Publishes To 0x0101
[Light_Switch Client } { Light_Switch Server |

0x0003 Publishes To 0x0102
[Light_Switch Client | »{ Light_Switch Server |

Figure 1: Provisioning of three servers

Figure 1 shows four devkits labelled Client, Server 0, Server 1, and Server 2. Each of the three servers contain a
single element implementing Nordic’s custom light switch model server roles. The client contains three
elements: the first element consists of two models (config client and light switch client) and each of the other
two elements contain a single light switch model client.

When the client devkit is initially powered up, it self-provisions, allocates to itself three node addresses (0x0001,
0x0002, and 0x0003), and gives itself a netkey with index 0 and an appkey with index 0.

When an unprovisioned server is powered up, it starts to advertise an unprovisioned beacon and contains the
device UUID which always remains the same.

When the client receives an unprovisioned beacon, it immediately provisions it and give it the first available
address equal to or greater than 0x0100. It also configures the first available client model to publish to that
server node and configure that server with netkey and appkey. Correspondingly, it sets the publish address of
the server model to the node address of the client. Hence client 0x0001 publishes to node 0x0100 and vice
versa.

All this repeats as more unprovisioned servers power up until all three clients in the client device are configured
to publish to a server.

At any time, if the client wants to set the on/off state of the server, it publishes a message with opcode
SIMPLE_ON_OFF_OPCODE_SET or SIMPLE_ON_OFF_OPCODE_SET_UNRELIABLE. The former one
(SIMPLE_ON_OFF_OPCODE_SET) results in a response message with opcode
SIMPLE_ON_OFF_OPCODE_STATUS; the latter one (SIMPLE_ON_OFF_OPCODE_SET_UNRELIABLE) does not. This
means that, when a SIMPLE_ ON_OFF_OPCODE_SET is sent, the client sees two
SIMPLE_ON_OFF_OPCODE_STATUS messages. One as a response to the message and the other as a result of the
server publishing the new state. SIMPLE_ON_OFF_OPCODE_SET_UNRELIABLE results in a single response arising
from the publish.

The smartBASIC sample app SautorunS.mesh.light.switch.example.sb is an application that accepts the
following commands to trigger the stated actions.

Table 2: Commands to trigger the stated actions

ms start Starts the device as a light switch server
ms on Change the local light state to ON
ms off Change the local light state to OFF
mc client Starts the device as a light switch client
Embedded Wireless Solutions Support Center: Americas: +1-800-492-2320
http://ews-support.lairdtech.com 3 Europe: +44-1628-858-940

www.lairdtech.com/bluetooth © Copyright 2017 Laird. All Rights Reserved Hong Kong: +852 2923 0610

http://ews-support.lairdtech.com/

Ble Mesh — Sample App

Application Note La l I‘d >»

Set the light at server A to new state B and require confirmation.
==0..2 and B==0..1

Set the light at server A to new state B without confirmation.
A==0..2 and B==0..1 and C=1..8

Get the state of the light at server A.
==0..2

mc set AB

mc setunrel AB C

mc get A

BL652 DEVELOPMENT KIT FIRMWARE LOAD

To set up each development kit, with the experimental mesh firmware, locate the mesh firmware zip file, unzip
it into a folder, and follow these steps for each the devkits:

1. Connect your BL652 development kit to your PC via the USB micro cable. The power LED illuminates when
the board is receiving power.
Open UwTerminalX.

In the Config tab, set the parameters and COM port associated with your development board (Figure 2).

—Part Settings

Device | BL6S2 > —
Refresh | Ak |

Port Im
Baudrate m
Parity m

Stop Bits m
Data Bits m
Handshaking Im

Figure 2: Config tab

Click OK to advance to the Terminal tab.

5. Use UwTerminalX to return the BL652 to factory defaults using the command at&f* as shown in Figure 3.
If you are using a new development board with the sample application, you may need to remove the
autorun jumper on J12 and press the reset button to exit out of the sample application; then issue the
at&f* command to erase the file system and all non-volatile data.

[E] UwTerminalX (v1.01) o B R

Terminal | Config | Update | About I Logs |

crs@ osr@ oo @ @ RTs DTR BREAK [| LocalEcho LineMode

[COMS5:115200,M,8,1,5]{cr} | Download TX Remaining: | 0 | Tx: | 23 | Rx: | 142 Cancel

at&f*

FFS Erased, Rebooting...

00

Figure 3: Return the BL652 to factory defaults

Embedded Wireless Solutions Support Center: Americas: +1-800-492-2320
http://ews-support.lairdtech.com 4 Europe: +44-1628-858-940
www.lairdtech.com/bluetooth © Copyright 2017 Laird. All Rights Reserved Hong Kong: +852 2923 0610

http://ews-support.lairdtech.com/

Ble Mesh — Sample App
Application Note

6. Close UwTerminalX.

Laird

7. Inthe folder where the mesh firmware is unzipped, locate the file and launch the following file:

_DownloadFirmwareUart.bat to open the window in Figure 4.

Laird - Device Firmwar

Laird >,

Firmware Upgrade

Platform COM

BLo Sl

1.255
Upgrade File

APP MAGIC LWwWF

COM port iz ireealid, should be between 1 and 255

0K

Figure 4: Firmware upgrade window

In the COM field, enter the same comport number previously in the Config tab (Figure 2).
Confirm that the message COM port is invalid, should be between 1 and 255 is no longer displaying.

10. Click OK and confirm you see the following screen.

r

Laird - Device Firmware Upgrade (v5.00)

Quit |

Proceed

Laird

Firmware Upgrade

Running on 05: Windows Wista or newer

appropriate value to enable pour app bo work,
Pleaze click on the appropriste button to continue.

Upgrade file is: BLESZ_SD_APP_MAGIC.IWF
i&ttached to comport 27

Thiz application upgrades firmware in the device from Laird Technologies.
After the upgrade, it's configuration may be reset to default walues

and compiled scripts may have to be recompiled to be compatible with the new firmware.,
After the upgrade pleasze reset/power cycle the device and then zet the Baudrate to an

L

Figure 5: Resulting firmware upgrade window

11. Click Proceed.

12. When the following screen displays (Figure 6), click Quit.

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

http://ews-support.lairdtech.com/

Ble Mesh — Sample App

Application Note La l I‘d >»

Laird - Device Firmware Upgrade (v5.00) léj

Ey: p—

Firmware Upgrade

Pleaze click on the appropriate button to continue.

Upgrade file is: BLESZ_SD_APP_MAGIC LMWF
Attached to comport 27

Attempting to convert module to ash upload mode
Synchonized with device [Bootloader Version 3.2 or newer)]
Erazing...

witing. .. .
witing. ..

UPGRADE SUCCESS. Pleaze power cycle the module once for normal uze,
Download time:= 1:12 [min:zec)

m

L9

Figure 6: Click Quit

13. Open UwTerminalX.
14. In the Config tab, set the parameters and COM port associated with your development board.

15. Click OK to advance to the Terminal tab.
16. Send the command AT | 3 and confirm the following response to your sent command:

10 3 28.7.3.0-MESH-SDK0.10.0-10

BL652 DEVELOPMENT KIT SMARTBASIC APP LOAD

If you have five boards, then label in the following ways:

= (Client

= ServerO0
= Serverl
= Server?2
= Sniff

Client, Server 0, Server 1, and Server 2 Development Boards

For boards labelled Client, Server 0, and optionally if you have Server 1 and Server 2, perform the following
steps:

1. Load the mesh smartBASIC example application — use the right-click menu to select XCompile + Load.

XCompile

XCompile + Load

XCompile + Load + Run

Load

Load + Run

Lookup Selected Error-Code (Hex)
Lookup Selected Error-Code (Int)

Figure 7: Right-click XCompile + Load

Embedded Wireless Solutions Support Center: Americas: +1-800-492-2320
http://ews-support.lairdtech.com 6 Europe: +44-1628-858-940
www.lairdtech.com/bluetooth © Copyright 2017 Laird. All Rights Reserved Hong Kong: +852 2923 0610

http://ews-support.lairdtech.com/

Ble Mesh — Sample App

Application Note La l I‘d '

2.

From the MeshApps subfolder, select the Sautorun$.mesh.light.switch.example.sb file.
The mesh program should take approximately ten seconds to load.

Once loaded, you can run the mesh example by typing at+run “SautorunS” followed by a return or by
pressing the reset button.

The following message should display (Figure 8).

i i -1 e i 1
CTS4 DSF& DCOMR FI@F RTSV DTRIV BREAK[1L

Funning MESH =sample app

OK

Figure 8: Running MESH sample app

Sniff Development Board

For the board labelled Sniff, perform the following steps:

1.

Load the Mesh Sniff smartBASIC example application — use the right-click menu to select XCompile + Load.

XCompile

XCompile + Load

XCompile + Load + Run

Load

Load + Run

Lookup Selected Error-Code (Hex)
Lookup Selected Error-Code (Int)

Figure 9: XCompile + Load

From the MeshApps subfolder, select the $Sautorun$.mesh.sniff.sb file.
The mesh program should take approximately ten seconds to load.
Wait for the Mesh program to load; this should take approximately 10 seconds.

Once loaded, you can run the sniff example by typing Sautorun$ followed by a return or by pressing the
reset button.

The following message should display (Figure 10).

MESH SNIFFER

CE

X

Figure 10: Mesh sniffer is running

Embedded Wireless Solutions Support Center: Americas: +1-800-492-2320
http://ews-support.lairdtech.com 7 Europe: +44-1628-858-940
www.lairdtech.com/bluetooth © Copyright 2017 Laird. All Rights Reserved Hong Kong: +852 2923 0610

http://ews-support.lairdtech.com/

Ble Mesh — Sample App

Application Note La l I‘d '

LAUNCH AND TEST THE MESH EXAMPLE

This section describes a step-by-step guide to creating and provisioning a mesh of up to four devices (only two
are necessary) using Nordic’s light switch example but implementing it in Laird’s easy-to-use event-driven
smartBASIC programming environment.

The next couple of sections describes the mesh-related enhancements to smartBASIC and then a brief code
walkthrough explaining the application used in this step-by-step section.

I. Connecting and Running UwTerminalX for Each Board
To connect and run UwTerminalX for each board, follow these steps:

Connect all boards to your PC.

2. Open as many UwTerminalX instances as there are boards using the comport that your PC exposes for
each board.

Reset each board via the reset button on the devkit.
Confirm that you see the following message for the client and server boards (Figure 11).

Running MESH sample app

OK

X

Figure 11: Client and server boards message

5. Confirm you see the following for the Sniff board (Figure 12).

MESH SNIFFER

CE

A

Figure 12: Sniff board message

Il. Putting the Boards into Clean, Unprovisioned States

Note: If thisis the first time you are running the test (which means the boards are in a clean state), you can
skip this step.

If the boards possibly have some non-volatile mesh information, we recommend that you use this step
to revert all of the boards to an unprovisioned and clean state.

To put each board into a clean state, follow these steps:

In UwTerminalX, untick the DTR checkbox in the toolbar.

Tick/untick the BREAK checkbox. This resets the module and starts it up so that the smartBASIC Sautorun$
application does not automatically launch.

3. Send AT to confirm that the module now accepts AT commands. You should receive an 00 response.
Send the AT 1 0x100000 command (note the five zeroes) to erase all flash sectors used by the Mesh stack.
In UwTerminalX, click Clear.

Embedded Wireless Solutions Support Center: Americas: +1-800-492-2320
http://ews-support.lairdtech.com 8 Europe: +44-1628-858-940
www.lairdtech.com/bluetooth © Copyright 2017 Laird. All Rights Reserved Hong Kong: +852 2923 0610

http://ews-support.lairdtech.com/

Ble Mesh — Sample App

Application Note La l I‘d '

6. Tick the DTR checkbox.

7. Tick/untick the BREAK checkbox to reset the board. Confirm that UwTerminalX displays the following
(Figure 13).

Bunning MESH sample app

Figure 13: Mesh sample app is running

I1l. Sniff Board UwTerminalX Screen Confirmation

On the sniff board UwTerminalX screen, confirm that there is no activity other than the MESH SNIFFER message.
If this isn’t the case, ensure that the DTR checkbox is ticked, clear the screen, and tick/untick the BREAK
checkbox.

IV. Starting the Mesh on the Server O Board

Start the mesh on the Server 0 board by sending the ms start command. The sniff board traffic should display
the following (Figure 14) which shows that Server 0 started advertising the fact that it is unprovisioned.

} UTNFROV[-51]

548 UNPROV[-51]
| ONPROV [-51]

Field 1 Field 2 Field 3 Field 4 Field 5

Field1 Bluetooth address of the unprovisioned mesh device.

Indicates that this is an unprovisioned mesh beacon. The [-51] is the RSSI value for the beacon

Pl that arrived.
Field 3 The _device UU_ID which is factory-programmed into the device. It remains constant for this
particular device.
The Out-of-Band bit mask which conveys how the authentication phase of the provisioning
takes place. The bit mask is reproduced from the following specs:
0 Other 8 Reserved for future use
1 Electronic/URI 9 Reserved for future use
2 2D machine-readable code 10 Reserved for future use
Field 4 3 Barcode 11 On box
4 Near Field Communication (NFC) 12 Inside box
5 Number 13 On piece of paper
6 String 14 Inside manual
7 Reserved for future use 15 Ondevice
Embedded Wireless Solutions Support Center: Americas: +1-800-492-2320
http://ews-support.lairdtech.com 9 Europe: +44-1628-858-940

www.lairdtech.com/bluetooth © Copyright 2017 Laird. All Rights Reserved Hong Kong: +852 2923 0610

http://ews-support.lairdtech.com/

Ble Mesh — Sample App
Application Note

Field 5

(URTIhash=)

This is currently empty. It would contain an eight-hex digit hash value of a URL that is advertised
by this mesh device in a normal advert (arranged via the GATT stack). It can be used to direct
the user to a website for installation or product details.

See smartBASIC function BleAdvertStart() in the BL652 smartBASIC Extensions User Guide for
more details. You can access this guide from the BL652 product page — Documentation section.

V. Provisioning by Client

You can now provision the first mesh device (Server 0). To do this, follow these steps:

1.
2.

Click Clear on the UwTerminalX screen that is attached to the sniff board.

Start the mesh on-board client by sending it the mc start command.

Once the provisioning and configuration is complete, the following displays on the Server 0 UwTerminalX
window:

Wait For Provisioning
Provizioning Started

Provizioned <addr=2Z56 Cﬂunt=lﬂ
Figure 15: Provisioning complete for Server 0

The final line shows the allocated node address — 256 (0x0100). The count equals 1 because the server
only has one element.

The client UwTerminalX window displays the following:

Unprovizioned recv <Ctx=9F0CE6492091A00B4865DDa:

Provi=sioning Started

Prov_S5Static_ Req
Config Start
Config Done

Figure 16: Client UwTerminalX window

The first line shows the UUID of the device being provisioned. The final line (Config_Done) indicates that
the device is fully configured.

While everything described above is happening, a lot of traffic will display on the sniff board’s UwTerminalX
window as follows.

ans

ans

ans

ans

33334
S S He S e

ans

T
.
I

;
I
|
[
|
3
.
|
T
T

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

10

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

http://ews-support.lairdtech.com/
https://www.lairdtech.com/products/bl652-ble-module

Ble Mesh — Sample App
Application Note

Laird 5,

01D103B7F3C38A PB-ADV[-40] (LinkID=)E4196052 (Trans#=)01 (PDU=)START (seg#=)0 (len=)6 (fcs=)B4 (data=)020000010000
01C98693DD6548 PB-ADV[-50] (LinkID=)E4196052 (Trans#=)01 (PDU=)ACK
01D103B7F3C38A PB-ADV[-40] (LinkID=)E4196052 (Trans#=)02 (PDU=)START (segf= (len=) 65 (fcs=)9B

(data=) 032F55E941D0980450551D4B742D267F3CE253E3
01D103B7F3C38A PB-ADV[-40] (LinkID=)E4196052 (Trans#=)02 (PDU=)CONT (seg#=

(data=) 0D61EC9E7E5D1249BBOD5SBOFOF3D6C727EDS5AB527BDEFBD
01D103B7F3C38A PB-ADV[-40] (LinkID=)E4196052 (Trans#=)02 (PDU=)CONT (seg#=
(data=)D2437EA3B09C3B3722BFA93770CF5266876E2490B96A
01C98693DD6548 PB-ADV[-50] (LinkID=)E4196052 (Trans#=)02 (PDU=)ACK
01C98693DD6548 PB-ADV[-50] (LinkID=)E4196052 (Trans#=)81 (PDU=)START (seg#=)2 (len=)65 (fcs=)38

(data=) 03EALACFB50910D70FFCE51C969A7D1C61D14BF3
01C98693DD6548 PB-ADV[-51] (LinkID=)E4196052 (Trans#=)81 (PDU=)CONT (seg#=)1

(data=) 9B11D6034D23B9774A1A624ED98A0703BA116B0CFI0ES8
01C98693DD6548 PB-ADV[-51] (LinkID=)E4196052 (Trans#=)81 (PDU=)CONT (seg#=) 2
(data=)25AF0110F54A65A4C50AEB15B97049849CADE3ES8F7E
01D103B7F3C38A PB-ADV[-40] (LinkID=)E4196052 (Trans#=)81 (PDU=)ACK
01D103B7F3C38A PB-ADV[-40] (LinkID=)E4196052 (Trans#=)03 (PDU=)START (seg#=)0 (len=)17 (fcs=)3D
(data=)05853081AE7FA16A5D94C0572F292B1CB5
01C98693DD6548 PB-ADV[-51] (LinkID=)E4196052 (Trans#=)03 (PDU=)ACK
01C98693DD6548 PB-ADV[-51] (LinkID=)E4196052 (Trans#=)82 (PDU=)START (seg#=)0 (len=)17 (fcs=)D4
(data=)055F377F9750EA80DA07297C5F5AD23A4A
01D103B7F3C38A PB-ADV[-48] (LinkID=)E4196052 (Trans#= (PDU=) ACK
01D103B7F3C38A PB-ADV[-48] (LinkID=)E4196052 (Trans#= (PDU=) START (seg#= (len=)17 (fcs=)A2
(data=)06946BOA985A9CCODD5956CD1B93418BB3
01C98693DD6548 PB-ADV[-51] (LinkID=)E4196052 (Trans#= (PDU=) ACK
01D103B7F3C38A PB-ADV[-40] (LinkID=)E4196052 (Trans#= (PDU=) ACK
01D103B7F3C38A PB-ADV[-40] (LinkID=)E4196052 (Trans#=)05 (PDU=)START (seg#=)1 (len=)34 (fcs=)14

(data=) 078AB19D80BF8668D7E27F8F7494DE2D9801F5B9
01D103B7F3C38A PB-ADV[-40] (LinkID=)E4196052 (Trans#=) (PDU=) CONT (seg#=)1 (data=)0DCA14A2ABBBB4C730C34D155305
01C98693DD6548 PB-ADV[-50] (LinkID=)E4196052 (Trans#=)05 (PDU=)ACK
01C98693DD6548 PB-ADV[-50] (LinkID=)E4196052 (Trans#=) (PDU=) START (seg#=)0 (len=)1 (fcs=)3E (data=)08
01D103B7F3C38A PB-ADV[-40] (LlnkID)E4196052 (Trans#=)84 (PDU=)ACK
01D103B7F3C38A MSG[-40] (iv=)0 (nid=)4 (ctl/ttl/seq/src=)C042AB938A4C (dst/pdu/mic=)7C8D01377F1D2A9C01F536417E8C
01D103B7F3C38A PB-ADV[-40] (LlnkID J)E4196052 (Trans#=)00 (PDU=)BCTRL (opcode=)LinkCLS (parms=)00
01D103B7F3C38A PB-ADV[-40] (LinkID=)E4196052 (Trans#=)00 (PDU=)BCTRL (opcode=)LinkCLS (parms=)
01D103B7F3C38A PB-ADV[-40] (LinkID=)E4196052 (Trans#=)00 (PDU=)BCTRL (opcode=)LinkCLS (parms=)00
01D103B7F3C38A PB-ADV[-40] (LinkID=)E4196052 (Trans#=)00 (PDU=)BCTRL (opcode=)LinkCLS (parms=)
01C98693DD6548 MSG[-51] (iv=)0 (nid=)4 (ctl/ttl/seq/src=)DFB06C7085F6
(dst/pdu/mic=) 6B681F0CF8AD98DD4D5FADFESFBC51AC83D790A9400B
01C98693DD6548 MSG[-51] (iv=)0 (nid=)4 (ctl/ttl/seq/src=)F5FABABBEFES
(dst/pdu/mic=) 4FDCB79882826390692AB4C50D7C0890B5B9119DBIES

(dst/pdu/mic=) FC28C6BAA70CB2059199A9FDC27EEC687BE129A41985
01C98693DD6548 MSG[-51] (iv=)0 (nid=)4 (ctl/ttl/seq/src=)2534C3B244A0
(dst/pdu/mic=)47C708D4COFEDIEEDB2A08AFO0D62AF6CA9C4A
01D103B7F3C38A MSG[-40] (iv=)0 (nid=)4 (ctl/ttl/seq/src=)4COB512FA5El
(dst/pdu/mic=)B077D91D2CC2ATF21977C26CB1A02CF81589D34368
01D103B7F3C38A MSG[-42] (iv=)0 (nid=)4 (ctl/ttl/seq/src=)DCFA6B83887D
(dst/pdu/mic=) 869C8A471851EAOA3CB5D8CADEFFEA23C8
01C98693DD6548 MSG[-50] (iv=)0 (nid=)4 (ctl/ttl/seq/src=)0E4646BC8D00
(dst/pdu/mic=) 78686F340E5C4B8A4F0C27201848DCC068612A9247DB
01D103B7F3C38A SECNET[-48] (Flags=)00 (NetworkID=)46ADFFAFF97A2B98 (IV=)00000000 (Auth=)4BOAA051BD1F0934
01C98693DD6548 SECNET[-51] (Flags=)00 (NetworkID=)46ADFFAFF97A2B98 (IV=)00000000 (Auth=)4BOAA051BD1F0934

The first line is the unprovisioned beacon which the client detects. In this example, without any user interaction,
it unconditionally assumes that the device should be provisioned. Because of this, the second line displays the

following:

01D103B7F3C38A PB-ADV[-40] (LinkID=)E4196052 (Trans#=)00 (PDU=)BCTRL (opcode=)LinkOPN

(parms=) 9

FOCE6498091A00B4865DD9386892175

This is the provisioning protocol starting with a Link Open message (LinkOPN).

Note that the last field —

labelled (params=) —is the device UUID that was received in the preceding line. It must

add that device UUID because there could be many devices in an unprovisioned state; even though all devices
receive that message, only the device with the matching UUID acknowledges it.

01C98693DD6548 PB-ADV[-51] (LinkID=)E4196052 (Trans#=)00 (PDU=)BCTRL (opcode=)LinkACK

(parms=)

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com 11
www.lairdtech.com/bluetooth

Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

http://ews-support.lairdtech.com/

Ble Mesh — Sample App

Application Note La rd B

Around the place you see the following — the shared secret is being generated using ECDH (Elliptical Curve Diffie-
Hellman):

01D103B7F3C38A PB-ADV[-40] (LinkID=
=)032 941D0980450551D4B742D2
01D103B7F3C3 —ADV[-40] (LinkID=
(J1<)1(J2]37F2 V([-40] (LinkID=

-50] (LinkID=
-50] (LinkI
910D70FFCE51C969
LinkID

>D1249BBODSBOFOF3D6C727EDSABS527 3
,BEB—VZZEFA‘}“—'—'U(F[‘Lf\f\ég—'f\ELL‘}UE‘}”A

\Ctﬁ

\1A62

LinkID= C50AEB

(

(

(
(LlrmI'\ (data=) 05853081AE7FA16A5D94C0572F292B1CBS
(T.1n<T D=

((data=) 055F377F9750EA80DA07297C5F5AD23A4A
(Lln(I“
(LinkID=
(

01C98693DD6548

Then, the provisioning data corresponding to the following information is sent:

ECDHSecret
Key Index | Net Key 4 (128 bit)
IV Index | Unicast Addr Primary Node =Y | Flags

This corresponds to the following traffic:

(LinkID= (seg#=)0 (len=)17 (fcs=)3D (data=)05853081AE7FA16A5D94C0572F292B1CB5
(LinkID=
(LinkID= (seg#=)0 (len=)17 (fcs=)D4 (data=)055F377F9750EA80DA07297C5F5AD23A4A
(LinkID=
(LinkID= (seg#=)0
(LinkID=
(LinkID=
(LinkID= (seg#=)1 (len=)34 (fcs=)14
27F8F74 3&)}1‘2
(LinkID= (seg#=)1 (data=)0DCA14A2ABBBB4C730C34D155305
(LinkID=
(LinkID= (seg#=)0 (len=)1 (fcs=)3E (data=)08
(LinkID

Finally, the device is in the provisioned state (as shown in Figure 15) and the provisioning link is closed as
follows:-

01D103B7F (LinkID LinkCLS
01D103B7F (LinkID= LinkCLS
01D103B7F (LinkID=
01D103B7F3C (LinkID

Then as per Figure 15, the device is to be configured with publish and subscription information which
corresponds to the traffic as follows:

D

G[-51] (iv=)0 (nid=)4
G[-51] (iv=)0 (nid=)4
G[-51] (iv=)0 (nid=)4
3G[-51] (iv=)0 (nid=)4
SG[-51] (iv=)0 (nid=)4

@

ist/pdu/mic=) FC28C6BAA70CB205

/pdu/mic=

@

Q

/)OW 848DCC068612A9247DB

These are normal mesh-encrypted advert packets where the Netkey provided in the provisioning phase is used.

Embedded Wireless Solutions Support Center: Americas: +1-800-492-2320
http://ews-support.lairdtech.com 12 Europe: +44-1628-858-940
www.lairdtech.com/bluetooth © Copyright 2017 Laird. All Rights Reserved Hong Kong: +852 2923 0610

http://ews-support.lairdtech.com/

Ble Mesh — Sample App

Application Note La l I‘d >»

Once a device is provisioned, the Sniff board displays the following traffic:

You will see many lines such as the following:

8 SECNET[-51] (Flags=)00 (NetworkID=)46ADFFAFF97A2B98 (IV=)00000000 (Auth=)4B0 051BD1F0934

These are Secure Network beacons and, in this case, are sent by all provisioned devices to broadcast that it has
been provisioned. You can configure these beacons to be disabled; this is controlled by the provisioner.

VI. Provisioning the Other (Optional) Servers

To provision and configure the other two servers (which are optional), send the ms start command to each one
and confirm that you see the same set of traffic on their respective UwTerminalX windows.

VIl. Send ON/OFF Messages from Client to Server 0
The following steps demonstrate how to send a switch ON command from the client to Server 0.

Using the client’s UwTerminalX window, send the mc set 0 1 command where 0 identifies the server number
and the second parameter (1) requests an ON state (0 indicate a request for an OFF state).

You can also send the set command by pressing and releasing BUTTON1 on the devkit.

On the server side, upon receipt of the SET opcode, the generic event EVBLEMESH_OPC_MSG is generated and
the smartBASIC application handler prints the following (the LED1 also changes its state accordingly).

EVBLEMSG OPC MSG elem:0 hndl:4D444C00 opc:C10059 (SET) data:0100
BleMeshReply () called
BleMeshPublish () called

= The opcode is C10059 which, according to Figure 1, is SIMPLE_ON_OFF_OPCODE_SET

= The datais 0100 where the first byte is the state requested to be set.
The second byte, 00, is Nordic’s choice of sending a transaction number. This is a Nordic decision — the spec
does NOT care about the content of the message, but does it if an adopted message as per the Mesh Model
specification is used. Remember... in that case, the opcode is a 1- or 2-byte value).

Embedded Wireless Solutions Support Center: Americas: +1-800-492-2320
http://ews-support.lairdtech.com 13 Europe: +44-1628-858-940
www.lairdtech.com/bluetooth © Copyright 2017 Laird. All Rights Reserved Hong Kong: +852 2923 0610

http://ews-support.lairdtech.com/

Ble Mesh — Sample App

Application Note La l I‘d >»

On the client side, the following lines display two instances of the same smartBASIC event
(EVBLEMESH_SIMPLEONOFF) being handled:

EVBLEMSG OPC MSG elem:0 hndl:434C5400 opc:C40059 (STATUS) data:01

EVBLEMSG OPC MSG elem:0 hndl:434C5400 opc:C40059 (STATUS) data:01

Although both lines contain the same information/message, the first message arrived because the server sent a
response using BleMeshReply(). The second instance is because the state was published using the function
BleMeshPublish(); this allows for all subscribers of that model to be informed of the new state. In this case, the
provisioner (when configuring the client node) set the clients node address as a subscriber of that server.

When the STATUS message is received, LED1 on the devkit is also updated as per the data in the message.
To demonstrate this subtle response and subscribe behavior, do the following:

1. Atthe client side, enter the mc setunrel 0 1 1 command.

2. Observe that only one EVBLEMSG_OPC_MSG event is thrown at the client side. This corresponds to the
publish given that the unreliable set message was sent (on the server side the opcode is now C30059
which, according to Figure 1 is SIMPLE_ON_OFF_OPCODE_SET_UNRELIABLE).

Also note that the data at the server side is 0101 where the second 01 is the transaction number and is 01
because that was the second message sent to it.

Send the command ‘mc get 0’ from the client results in the message opcode C20059 at the server and the event
EVBLEMESH_OPC_MSG as a result of the response BleMeshReply() from the server and there was no publish
message.

Now let us imagine that at the server side there is a local on/off physical switch which can also result in the state
changing and since the behaviour is that if there is a state change all subscribers need to be informed then we
will expect a message to be sent to the client.

Hence on the UwTerminalX window attached to ‘server 0’ enter the command ‘ms on’. You will see that the
smartBASIC app will confirm that BleMeshPublish() was called and then see that at the client side it has received
the event EVBLEMESH_OPC_MSG.

Try entering the command ‘ms off” and you will see another appropriate print statement at the client side.

If you have also provisioned and configured the other 2 optional servers then appropriate messages on the
client side will allow you to set the state of the corresponding server, for example command ‘mc set 1 1’ or ‘mc
set 2 1’ which are messages sent to server 1 and server 2 respectively.

Consult Table 1 to try all the commands that the smartBASIC application responds to and you are free to add
and or modify the application as you please.

Finally remember that should you wish to understand the provisioning process better and make that happen
many times to fully understand the pattern of behaviour, all you have to do is erase the mesh state information
from the flash as described in Step 2.

Embedded Wireless Solutions Support Center: Americas: +1-800-492-2320
http://ews-support.lairdtech.com 14 Europe: +44-1628-858-940
www.lairdtech.com/bluetooth © Copyright 2017 Laird. All Rights Reserved Hong Kong: +852 2923 0610

http://ews-support.lairdtech.com/

Ble Mesh — Sample App

Application Note La l I‘d >»

MESH RELATED SMARTBASIC FUNCTIONS AND EVENTS

This section describes the functions and events included with this experimental and engineering firmware
release. Considering the early alpha release of the Nordic mesh SDK on which it’s based, Laird reserves the right
to change or delete any of functions and events listed below.

Mesh Related AT Commands
AT&F 0x100000

This AT command is used to delete all mesh-related flash sectors to ensure that all state information is deleted.
This action results in the device reverting to the unprovisioned state at which point it starts sending
unprovisioned beacons.

Mesh Related Result Codes

Many of the new functions return result codes and there is a lookup feature in UwTerminalX that describes what
each failure result code mean. The following are new mesh-related result codes for this alpha release:

UWRESULTCODE_BLE_MESH_INVALID_ OPCODEID 0x60C0
UWRESULTCODE_BLE_MESH_TOO_MANY MODELS 0x60C1
UWRESULTCODE_BLE_MESH_OPCODE_TABLE FULL 0x60C2
UWRESULTCODE_BLE_MESH_MODEL_NOT_ADDED 0x60C3
UWRESULTCODE_BLE_MESH_PREV_MODEL_EMPTY 0x60C4
UWRESULTCODE_BLE_MESH_PREV_ELEMENT EMPTY 0x60C5
UWRESULTCODE_BLE_MESH_CURRENT MODEL_EMPTY 0x60C6
UWRESULTCODE_BLE_MESH_TOO_MANY ELEMENTS 0x60C7
UWRESULTCODE_BLE_MESH_TABLE_ EMPTY 0x60C8
UWRESULTCODE_BLE_MESH_LAST MODEL_EMPTY 0x60C9
UWRESULTCODE_BLE_MESH DUPLICATE OPCODEID 0x60CA
UWRESULTCODE_BLE_MESH_INVALID MODELHANDLE 0x60CB
UWRESULTCODE_BLE_MESH_INVALID_ MODELINDEX 0x60CC
UWRESULTCODE_BLE_MESH_INVALID PACKEDOPCODE 0x60CD
UWRESULTCODE_BLE_MESH_INVALID REPLYINFO 0x60CE
UWRESULTCODE_BLE_MESH_ALREADY STARTED 0x60CF
UWRESULTCODE_BLE_MESH_CANNOT_BE_PROVISIONER 0x60D0
UWRESULTCODE_BLE_MESH_INVALID DATALEN 0x60D1
UWRESULTCODE_BLE_MESH_INVALID_ TIMEOUT 0x60D2

Mesh Related Functions

BleMeshSchemaNew

When a mesh is started, it must know the number of elements the device will expose as well as the models and
opcodes each of those elements will host. The element/mesh/opcode information can be viewed as a tree
structure of information; this function is used to create a container with a single empty element with the index
0. It takes a single integer argument (the location value) as defined in the specification. That value is conveyed to
a provisioner during provisioning; it can provide the user with context about the element as part of the
composition data.

Embedded Wireless Solutions Support Center: Americas: +1-800-492-2320
http://ews-support.lairdtech.com 15 Europe: +44-1628-858-940
www.lairdtech.com/bluetooth © Copyright 2017 Laird. All Rights Reserved Hong Kong: +852 2923 0610

http://ews-support.lairdtech.com/
https://www.bluetooth.com/specifications/assigned-numbers/gatt-namespace-descriptors

Ble Mesh — Sample App

Application Note La l I‘d >»

Note: For those familiar with a USB device functionality when plugged into a host, it sends configuration
data describing itself. The composition data serves a similar function in mesh provisioning.

BleMeshSchemaNew(nLocation)

Returns INTEGER : resultCode
0x0000 : Success
0x0607 : Location value not in range 0x0000 to OxFFFF

Arguments:
byVAL nLocation AS INTEGER.
Specifies the location description as defined in the GATT Bluetooth Namespace Descriptors
which can be found here and is a value in the range 0x0000 to OxFFFF
nlLocation

For this alpha release, provide any negative value when registering the Simple On_Off clients
after adding the provisioning configuration foundation model client.
(See sample example and look for the function mesh_start_client)

BleMeshAddSigModel

A BLE Mesh device contains at least one Element (default one added with BleMeshSchemaNew(), or when
subsequent ones added with BleMeshAddElement()).

Each Element in turn contains at least one Model which in turn contains at least one Opcode.

Use this function to add a model using a 16-bit SIG adopted identifier to the mesh schema. It is added to the
most recently-added element. A model contains opcodes and the function BleMeshAddOpcode() is used to do
that.

BleMeshAddSigModel(nModelld, handleModel)

Returns INTEGER : resultCode

0x0000 : Success

0x0607 : nModelld value not in range 0x0000 to OxFFFF
0x60C4 : Previously added model has no opcodes attached
0x60C1 : Too many models have been defined in total
0x60CC : handleModel is not recognised as a model handle

Arguments:

byVAL nModelld AS INTEGER.
Specifies a value in the range 0x0000 to OxFFFF which is model ID as adopted by the
nModelld Bluetooth SIG and described in the specification Mesh Model Specification.

For example, that specification defines 0x1000 as a generic OnOff server and 0x1001 as a
generic OnOff client.

byREF handleModel AS INTEGER.

On entry, if this model is going to be an extension of a previously-added model then it shall
be the handle of that model obtained when BleMeshAddSigModel() or
BleMeshAddVendorModel() is called, otherwise it shall contain 0.

handleModel o _
On exit, this is an opaque handle value that the smartBASIC app uses to describe a model
when an APl interacts with a model or when a message arrives, this value is presented to
enable the developer to channel the behavior accordingly. We recommend that it is stored in
a global smartBASIC variable.
Embedded Wireless Solutions Support Center: Americas: +1-800-492-2320
http://ews-support.lairdtech.com 16 Europe: +44-1628-858-940

www.lairdtech.com/bluetooth © Copyright 2017 Laird. All Rights Reserved Hong Kong: +852 2923 0610

http://ews-support.lairdtech.com/
https://www.bluetooth.com/specifications/assigned-numbers/gatt-namespace-descriptors

Ble Mesh — Sample App

Application Note La l I‘d >»

BleMeshAddVendorModel

A BLE Mesh device contains at least one Element (default one added with BleMeshSchemaNew(), or when
subsequent ones added with BleMeshAddElement()).

Each Element in turn contains at least one Model which in turn contains at least one Opcode.

Use this function to add a model using a 32-bit vendor identifier in the form of two 16 bit values (nCompanyld
and nModelld) to the mesh schema. It is added to the most recently-added element. A model contains opcodes
and the function BleMeshAddOpcode() is used to do that.

BleMeshAddVendorModel(nCompanyld, nModelld, handleModel)

Returns INTEGER : resultCode

0x0000 : Success

0x0607 : nCompanyld value not in range 0x0000 to OxFFFF
0x0608 : nModelld value not in range 0x0000 to OxFFFF
0x60C4 : Previously added model has no opcodes attached
0x60C1 : Too many models have been defined in total
0x60CC : handleModel is not recognised as a model handle

Arguments:
byVAL nCompanyid AS INTEGER.
Specifies a value in the range 0x0000 to OxFFFF which is a company ID. A member of the
Bluetooth SIG can request one for free.
For a full list of company identifiers see here. Where you will see for example, 0x0059 is for
Nordic Semiconductor.

nCompanyld

It is VERY important that if you create a new custom model you use your own company ID
and not someone else as you risk collision and thus confuse a provisioner.

Also note that if you want to interact with a Nordic defined model, it is valid to use their
company identifier here.

byVAL nModelld AS INTEGER.

nModelld | Specifies a value in the range 0x0000 to OxFFFF which is model ID as adopted by the
Bluetooth SIG and described in the specification Mesh Model Specification.

byREF handleModel AS INTEGER.

On Entry, if this model is going to be an extension of another previously-added model then
it shall be the handle of that model obtained when BleMeshAddSigModel() or
BleMeshAddVendorModel() was called, otherwise it shall contain 0.

handleModel
On Exit, this is an opaque handle value that the smartBASIC app shall use to describe a

model when an APl will interact with a model or when a message arrives, this value will be
presented to enable the developer to channel the behaviour accordingly
Laird recommends that it be stored in a global smartBASIC variable.

BleMeshAddOpcode

A BLE Mesh device contains at least one Element (default one added with BleMeshSchemaNew(), or when
subsequent ones added with BleMeshAddElement()).

Each Element in turn contains at least one Model (added using the function BleMeshAddSigModel() or
BleMeshAddVendorModel()) which in turn contains at least one Opcode so that incoming messages containing
those opcodes can be processed

Use this function to add a packed opcode which is a value in up to 3-bytes long.

Embedded Wireless Solutions Support Center: Americas: +1-800-492-2320
http://ews-support.lairdtech.com 17 Europe: +44-1628-858-940
www.lairdtech.com/bluetooth © Copyright 2017 Laird. All Rights Reserved Hong Kong: +852 2923 0610

http://ews-support.lairdtech.com/
https://www.bluetooth.com/specifications/assigned-numbers/company-identifiers

Ble Mesh — Sample App

Application Note La l I‘d >»

Note: If this function fails with BLE_ MESH_DUPLICATE_OPCODEID (0x60CB), it implies that your mesh
structure is faulty. If you need a duplicate opcode, you must add another element to the device for it
to again be a unique entry. Then, since an element gets its own node address, the node address is
used to differentiate which instance of opcode is being referenced.

BleMeshAddOpcode(nPackedOpcode)

Returns INTEGER : resultCode

0x0000 : Success

0x06C3 : No models have been added to the current element
0x60C2 : Too many opcodes have been added. Limit will be exceeded
0x60CE : nPackedOpcode is invalid

0x60CB : Current element already has this opcode added

Arguments:

byVAL nPackedOpcode AS INTEGER.

For a SIG defined opcode this shall be a value in the range 0x0000 to OxFFFF.

For a vendor defined opcode the value shall be 0xPPVVVV where PP is a value in the range
0xCO to OxFF and VVVV is the companyID.

nPackedOpcode

BleMeshAddElement

Use this function to add another element to the container started with BleMeshSchemaNew() to which more
instances of models and op-codes are added.

As mentioned in the description for BleMeshAddOpcode() a new element is needed if a device will end up with
multiple instances of opcodes. The Mesh specification mandates that an element SHALL have only one instance
of an opcode.

BleMeshAddElement(nLocation)

Returns INTEGER : resultCode

0x0000 : Success

0x0607 : Location value not in range 0x0000 to OxFFFF
0x60C5 : Previous element empty

0x60C6 : Current model empty

0x60C7 : Too many elements. Limit will be exceeded.

Arguments:

byVAL nLocation AS INTEGER.
nLocation | Specifies the location description as defined in the GATT Bluetooth Namespace Descriptors
which can be found here and is a value in the range 0x0000 to OxFFFF

BleMeshStart

Once an Element/Model/Opcode tree has been defined using the functions described above, it must be
registered with the Mesh stack and started. This function consistently does this even if the device is provisioned
and configured. When the mesh stack starts, it checks if the non-volatile information matches the structure
defined in the tree and knows how to fork from there. If the non-volatile data is missing or does not match, it
puts the device into unprovisioned state and starts unprovisioned adverts. Otherwise it resumes mesh operation
as a full member of a network.

Embedded Wireless Solutions Support Center: Americas: +1-800-492-2320
http://ews-support.lairdtech.com 18 Europe: +44-1628-858-940
www.lairdtech.com/bluetooth © Copyright 2017 Laird. All Rights Reserved Hong Kong: +852 2923 0610

http://ews-support.lairdtech.com/
https://www.bluetooth.com/specifications/assigned-numbers/gatt-namespace-descriptors

Ble Mesh — Sample App

Application Note La l I‘d >»

Some of the parameters supplied in this function are used to configure the composition data — the information
that is supplied to a provisioner so that it knows more about this device.

BleMeshStart(nflags, nCompanyld, nProductld, nVersionld, nFeatures, nDefaultTTL)

Returns INTEGER : resultCode

0x0000 : Success

0x0608 : nCompanyld value not in range 0x0000 to OxFFFF
0x0609 : nProductld value not in range 0x0000 to OxFFFF
0x060A : nVersionld value not in range 0x0000 to OxFFFF
0x060C : nDefaultTTL value not in range 0 to 127
0x60D0 : The mesh stack has already been started
0x60C9 : The mesh table tree is not empty

0x60D1 : This device cannot be a provisioner

0x60C8 : The mesh table tree is empty

0x60CA : The last model is empty in the tree

Arguments:

byVAL nFlags AS INTEGER.
nFlags | Bit O is set if a Provisioning Config Client is to be added to the primary element.
Bits 1 to 31 are for future use and should be set to 0

byVAL nCompanyid AS INTEGER.
Specifies a value in the range 0x0000 to OxFFFF which is a company ID. A member of the
Bluetooth SIG can request one for free.

For a full list of company identifiers see here. Where you will see for example, 0x0059 is
for Nordic Semiconductor.

It is VERY important that you use your own companyID so that a provisioner better
understands how to configure your device. Think of this value and the nProductld as the
equivalent of the plug and play VID/PID information presented by a USB device.

byVAL nProductld AS INTEGER.

Specifies a value in the range 0x0000 to OxFFFF which is a product ID. This can be any
desired value; you maintain a list of all the different mesh products that your produce.
This is very similar to the PID value in USB world

byVAL nVersionld AS INTEGER.
nVersionID | Specifies a value in the range 0x0000 to OxFFFF which is a version ID. This can be any
desired value.

byVAL nFeatures AS INTEGER.

The following define which mesh features each bit mask specifies:
Bit 0 — Relay Capability

Bit 1 — Proxy Capability

nFeatures | Bit 2 — Friend Capability

Bit 3 — Low Power Node Capability

nCompanyld

nProductld

Bits 4 to 31 — Reserved for future use and should be setto 0

For this release always set this value to 1. The other features have not yet been
implemented in the underlying stack.

byVAL nDefaultTTL AS INTEGER.
nDefaultTTL | The default time to live for all mesh network messages sent from this node. It can be
overridden in the publication state

Embedded Wireless Solutions Support Center: Americas: +1-800-492-2320
http://ews-support.lairdtech.com 19 Europe: +44-1628-858-940
www.lairdtech.com/bluetooth © Copyright 2017 Laird. All Rights Reserved Hong Kong: +852 2923 0610

http://ews-support.lairdtech.com/
https://www.bluetooth.com/specifications/assigned-numbers/company-identifiers

Ble Mesh — Sample App

Application Note La l I‘d >»

BleMeshPublish

This function is used to publish a message with the opcode and data specified using the publish details of the
model specified by the handleModel provided which is the handle that was returned when either
BleMeshAddSigModel() or BleMeshAddVendorModel() were called. It uses the appkey and netkey bound to the
model.

BleMeshPublish(handleModel, nPackedOpcode, sData$)

Returns INTEGER : resultCode

0x0000 : Success

0x60CC : handleModel is not recognised as a model handle
0x60CE : nPackedOpcode is invalid

Other : Nordic stack specific

Arguments:

byVAL handleModel AS INTEGER.
handleModel This is the handle of a model that was registered using BleMeshAddSigModel() or

BleMeshAddVendorModel(). The destination address, appkey comes from whatever was
configured for the model by a provisioner.
byVAL nPackedOpcode AS INTEGER.
For a SIG-defined opcode, this is a value in the range 0x0000 to OxFFFF.

nPackedOpcode

For a vendor-defined opcode, the value is 0OXPPVVVV where PP is a value in the range
0xCO to OxFF and VVVV is the companyID.

byREF sData$ AS STRING.
sData$ | This contains the data that is sent as payload for the message. The specification allows
this to be from 0 to 380-bytes. It is appropriately lower if the opcode is three-bytes long

BleMeshPublishReliable

This function is used to publish a reliable message with all the parameters as described for the function
BleMeshPublish(). It requires two additional parameters which correspond to the opcode of the message to
expect that acknowledges receipt of this method and the maximum time to wait for that ack.

BleMeshPublishReliable(handleModel, nPackedOpcode, nExpectedOpcode, nTimeoutsec, sData$)

Returns INTEGER : resultCode
0x0000 : Success
0x60CC : handleModel is not recognised as a model handle
0x60CE : nPackedOpcode is invalid
Other :Nordic stack specific
Arguments:
byVAL handleModel AS INTEGER.
handleModel This is the handle of a model that was registered using BleMeshAddSigModel() or
BleMeshAddVendorModel(). The destination address, appkey comes from whatever
was configured for the model by a provisioner.
byVAL nPackedOpcode AS INTEGER.
For a SIG-defined opcode, this is a value in the range 0x0000 to OxFFFF.
nPackedOpcode) o . .
For a vendor-defined opcode, this is the value 0XPPVVVV where PP is a value in the
range 0xCO to OxFF and VVVV is the companyID.
Embedded Wireless Solutions Support Center: Americas: +1-800-492-2320
http://ews-support.lairdtech.com 20 Europe: +44-1628-858-940

www.lairdtech.com/bluetooth © Copyright 2017 Laird. All Rights Reserved Hong Kong: +852 2923 0610

http://ews-support.lairdtech.com/

Ble Mesh — Sample App

Application Note La l I‘d >»

byVAL nExpectedOpcode AS INTEGER.
This is the packed opcode of the message to wait for as an acknowledgement from all
subscribers of this message.

For a SIG-defined opcode, this is a value in the range 0x0000 to OxFFFF.

For a vendor-defined opcode, the value is 0XPPVVVV where PP is a value in the range
0xCO to OxFF and VVVV is the companyID.

byVAL nTimeoutSec AS INTEGER.
Wait for this long, in seconds, for an ack to arrive.

byREF sDataS AS STRING.

This contains the data that is sent as payload for the message. The specification allows
this to be from 0 to 380-bytes. It is appropriately lower if the opcode is three-bytes
long

nExpectedOpcode

nTimeoutSec

sData$

BleMeshReply

This function is used to send a response to an incoming message with the opcode and data specified using the
destination details embedded in the opaque parameter sReplyData$ which was supplied when the incoming
message arrived via the event EVBLEMESH_OPC_MSG. This is described later.

The sReplyData$ also contains the appkey that was used by the incoming message; the response needs to use
the same one.

Note: handleModel and nPackedOpcode were also supplied in the EVBLEMESH_OPC_MSG event when the
incoming message arrived.

BleMeshReply(handleModel, nPackedOpcode, sData$, sReplylnfo$)

Returns INTEGER : resultCode

0x0000 : Success

0x60CC : handleModel is not recognised as a model handle
0x60CE : nPackedOpcode is invalid

0x60CF : sReplyInfo$ is invalid

Other : nordic stack specific

Arguments:
byVAL handleModel AS INTEGER.
handleModel This is the handle of a model registered using BleMeshAddSigModel() or
BleMeshAddVendorModel(). The destination address, appkey comes from whatever was
configured for the model by a provisioner.
byVAL nPackedOpcode AS INTEGER.
nPackedOpcode For a SIG-defined opcode, this is a value in the range 0x0000 to OxFFFF.

For a vendor-defined opcode, the value is OXPPVVVV where PP is a value in the range
0xCO to OxFF and VVVV is the companyID.

byREF sDataS AS STRING.
sData$ | This contains the data that is sent as payload for the message. The specification allows it
to be from 0 to 380-bytes. It is appropriately lower if the opcode is three-bytes long

byREF sReplyinfos AS STRING.
This is supplied in the EVBLEMSG_OPC_MSG event and MUST be supplied unmodified

sReplyinfo . . - e . .
plyinfos from there. It is an opaque object and is checked for modification. If modifications exist,

it results in a failure to send a response.
Embedded Wireless Solutions Support Center: Americas: +1-800-492-2320
http://ews-support.lairdtech.com 21 Europe: +44-1628-858-940

www.lairdtech.com/bluetooth © Copyright 2017 Laird. All Rights Reserved Hong Kong: +852 2923 0610

http://ews-support.lairdtech.com/

Ble Mesh — Sample App

Application Note La l I‘d >»

Mesh Related Events

EVBLEMESH_STATE

This event occurs when the mesh state of the device changes.

Parameters:

byVAL nNewState AS INTEGER.

This contains the new state

byREF sContext$ AS STRING.

This contains context data for the new state

nNewState

sContext$S

The values for nNewState and associated context strings are described in the following table (). If the context
column is ‘none’ then the string will be empty.

Table 3: nNewState and associated context strings

100 WAIT_FOR_PROVISIONING None

110 PROVISIONING_START None
None

120 PROVISIONING_OUTPUT_REQ A usage example will be provided in a future release rather
than this firmware release.
None

130 PROVISIONING_INPUT_REQ A usage example will be provided in a future release rather
than this firmware release.

140 PROVISIONING_STATIC_REQ None
None

150 PROVISIONING_OOB_PUBKEY_REQ A usage example will be provided in a future release rather
than this firmware release.

190 PROVISIONING_FAIL None
First two bytes — First element node address
200 PROVISIONED Second two bytes — Number of elements
Note: Two-bytes entities are little endian.
210 CONFIGURATION_START None
280 CONFIGURATION_DONE None
290 CONFIGURATION_FAIL None
300 KEY_REFRESH_START None
390 KEY_REFRESH_END None
400 IV_UPDATE_NOTIFICATION None
500 UNPROVISIONED_DEVICE 16-byte device UUID
Embedded Wireless Solutions Support Center: Americas: +1-800-492-2320
http://ews-support.lairdtech.com 22 Europe: +44-1628-858-940

www.lairdtech.com/bluetooth © Copyright 2017 Laird. All Rights Reserved Hong Kong: +852 2923 0610

http://ews-support.lairdtech.com/

Ble Mesh — Sample App “ .
Application Note Lall‘d >»
EVBLEMESH_OPC_MSG

This event occurs when a message arrives and must be processed. It may result in zero or more outgoing
messages.

Parameters:

byVAL nElementindex AS INTEGER.
nElementindex | This contains the element index 0 to N and corresponds to the elements that are added
using BleMeshElementAdd()

byVAL handleModel = AS INTEGER.
handleModel | This contains the handle returned by BleMeshAddSigModel() or
BleMeshAddVendorModel()

byVAL nPackedOpcode AS INTEGER.

This contains the packed opcode.

nPackedOpcode | For a SIG-defined opcode, this is a value in the range 0x0000 to OxFFFF.

For a vendor-defined opcode, the value is OXPPVVVV where PP is a value in the range
0xCO to OxFF and VVVV is the companyID.

byREF sDataS AS STRING.
This contains the data that arrived in the message associated with the opcode.

byREF sReplyinfoS AS STRING.
sReplyinfoS | This contains context data that is used if BleMeshReply() is called and should be
supplied unmodified to that function.

sData$

Typically, the smartBASIC handler switch on the nPackedOpcode value (using the Select compound statement)
and then calls an appropriate function to handle the data

SMARTBASIC App CODE WALKTHROUGH

This section describes code fragments from the following smartBASIC application:
Sautorun$.mesh.light.switch.example.sb

The application waits for characters to arrive over the UART. When a carriage return (Ox0D) character is
received, the application passes all characters accumulated since the last carriage return character to the
OnUartCmd() function for processing.

When a character arrives, the EVUARTRX event handler — HandlerUartRxCmd() — is invoked. The handler for
that UARTRX event is registered using the OnEvent statement. Search for that statement towards the end of the
.sb file.

Near the same statement are three more OnEvent statements for the two mesh-related events described in this
application note. These events are EVBLEMESH_OPC_MSG and EVBLEMESH_STATE which invoke the handlers
HandlerMeshOpcMsg() and HandlerMeshState() respectively.

= HandlerMeshState() for event EVBLEMESH_STATE — Prints the state and context value, if it exists.
= HandlerMeshOpcMsg() for event EVBLEMESH_OPC_MSG - Prints all parameters and then, based on the
opcode, sends a reply and/or publishes the current on/off state.

Embedded Wireless Solutions Support Center: Americas: +1-800-492-2320
http://ews-support.lairdtech.com 23 Europe: +44-1628-858-940
www.lairdtech.com/bluetooth © Copyright 2017 Laird. All Rights Reserved Hong Kong: +852 2923 0610

http://ews-support.lairdtech.com/

Ble Mesh — Sample App

Application Note La I rd >»

REFERENCES

The following documents are also accessible from the BL652 product page of the Laird website (Documentation
tab):

= BL652 smartBASIC extension manual
= BL652 Datasheet
= UwTerminalX

The following documents are also accessible from the Bluetooth SIG website:

= Mesh Profile Specification v1.0
= Mesh Model Specification v1.0
= Mesh Device Properties v1.0

REVISION HISTORY

0.10.0/rel10 20 Dec 17 Initial Release Mahendra Tailor Jonathan Kaye
Embedded Wireless Solutions Support Center: Americas: +1-800-492-2320
http://ews-support.lairdtech.com 24 Europe: +44-1628-858-940

www.lairdtech.com/bluetooth © Copyright 2017 Laird. All Rights Reserved Hong Kong: +852 2923 0610

http://ews-support.lairdtech.com/
http://www.lairdtech.com/products/bl652-ble-module
https://www.bluetooth.com/

	Introduction
	Requirements
	Release Specific Notes
	Demo Description
	Opcodes

	BL652 Development Kit Firmware Load
	BL652 Development Kit smartBASIC App Load
	Client, Server 0, Server 1, and Server 2 Development Boards
	Sniff Development Board

	Launch and Test the Mesh Example
	I. Connecting and Running UwTerminalX for Each Board
	II. Putting the Boards into Clean, Unprovisioned States
	III. Sniff Board UwTerminalX Screen Confirmation
	IV. Starting the Mesh on the Server 0 Board
	V. Provisioning by Client
	VI. Provisioning the Other (Optional) Servers
	VII. Send ON/OFF Messages from Client to Server 0

	Mesh Related smartBASIC Functions and Events
	Mesh Related AT Commands
	AT&F 0x100000

	Mesh Related Result Codes
	Mesh Related Functions
	BleMeshSchemaNew
	BleMeshAddSigModel
	BleMeshAddVendorModel
	BleMeshAddOpcode
	BleMeshAddElement
	BleMeshStart
	BleMeshPublish
	BleMeshPublishReliable
	BleMeshReply

	Mesh Related Events
	EVBLEMESH_STATE
	EVBLEMESH_OPC_MSG

	smartBASIC App Code Walkthrough
	References
	Revision History

