

- i

-

CONTENTS

Chapter 1 Overview .. 1

1.1 Hardware and Software Requirements .. 1

Chapter 2 Hardware Design .. 2

2.1 Creation of Hardware Design .. 2

2.1.1 Creating a New Project .. 2

2.1.2 Creating a Platform Designer System .. 5

2.1.3 Configuring Assignment and Constraint .. 27

2.1.4 Compiling the Quartus Prime Software Project ... 30

2.2 Download Hardware Design to Target FPGA ... 32

Chapter 3 Ashling RiscFree IDE Build Flow .. 35

3.1 Create the hello_world Example Project ... 35

3.2 Build and Run the Program ... 46

3.3 Edit and Re-Run the Program .. 60

3.4 Why the LED Blinks .. 65

3.5 Debugging the Application .. 66

3.6 Configure System Library ... 68

Chapter 4 Appendix .. 73

4.1 Revision History .. 73

4.2 Copyright Statement .. 73

- 1

-

Chapter 1

Overview

This document provides an introductory roadmap for developing a Nios® V processor system. It
walks you through creating and running a basic Hello World program and controlling the LED blink
feature on an FPGA board. The example setup uses the Terasic Atum A3 Nano development board,
with Quartus® Prime software and the Ashling* RiscFree* IDE for Altera FPGAs as the primary
development tools.

11..11 HHaarrddwwaarree aanndd SSooffttwwaarree RReeqquuiirreemmeennttss

Hardware Requirements

 Terasic Atum A3 Nano development board

Software Requirements

 Quartus Prime Pro Edition (This document uses Quartus Prime Pro Edition version 25.1)
 Ashling RiscFree IDE for Altera FPGAs

- 2

-

Chapter 2

Hardware Design

This chapter will guide you through starting the hardware design process by adding the Nios V
processor and its peripherals into Platform Designer. After setting up the system assignments and
constraints, you will complete the hardware design by successfully compiling the project.

22..11 CCrreeaattiioonn ooff HHaarrddwwaarree DDeessiiggnn

This section describes the flow of how to create a hardware system including Platform Designer
feature.

22..11..11 CCrreeaattiinngg aa NNeeww PPrroojjeecctt

1. Launch Quartus Prime then select File->New Project Wizard, start to create a new project. See
Figure 2-1.

- 3

-

Figure 2-1 Start to Create a New Project

2. Choose a working directory for this project, type project name and top-level entity name as
shown in Figure 2-2. Click Next to next window.

Figure 2-2 Input the working directory, the name of project, top-level design entity

3. We choose device family and device settings. You should choose settings the same as the Figure

2-3.

- 4

-

 FPGA Family :Agilex 3(C-Series)
 FPGA Name : A3CZ135BB18AE7S

Then click Finish to finish new project. Figure 2-4 show a new complete project.

Figure 2-3 New Project Wizard: Family & Device Settings

- 5

-

Figure 2-4 A New Complete Project

22..11..22 CCrreeaattiinngg aa PPllaattffoorrmm DDeessiiggnneerr SSyysstteemm

1. Choose Tools > Platform Designer to open new Platform Designer system wizard. See Figure
2-5.

- 6

-

Figure 2-5 Platform Designer Menu

2. Click the Create New Platform Designer System icon and name the new project system
"system" (refer to Figure 2-6).

- 7

-

Figure 2-6 Create New System [1]

Click Create and your will see a window as shown in Figure 2-7. Then a Platform Designer window

will appear.

Figure 2-7 Create New System [2]

- 8

-

 Adding Components

1. Now, we will first add a reset component into the system.

Go to IP tab and choose Library > Basic Functions > Configuration and Programming > Agilex

Reset Release to open wizard of adding reset component (See Figure 2-8)

Figure 2-8 Add Agilex Reset Release

See Figure 2-9, In the Agilex Reset Release IP window:

a. Check Reset Interface.

- 9

-

b. Rename the HDL entity name to “reset_release”
c. Click Finish

Figure 2-9 Agilex Reset Release

A reset_release component is added in the system as shown in Figure 2-10.

Figure 2-10 Add reset_relese component

- 10

-

2. Then we will add a Nios V microcontroller into the system. Choose Library > Processors and

Peripherals > Embedded Processors > Nios V/m Microcontroller to open wizard of adding
cpu component. See Figure 2-11.

Figure 2-11 Add Nios V/m Processor

See Figure 2-12, n the Nios V/m Microcontroller IP window:

a. Rename the HDL entity name to “nios_m”
b. Click Finish
c. Figure Figure 2-13 show the nios_m component is added in the system.

- 11

-

Figure 2-12 Nios V/m Processor

- 12

-

Figure 2-13 Add Nios V CPU completely

3. Choose Library > Interface Protocols > Serial > JTAG UART Intel FPGA IP to open wizard
of adding JTAG UART as shown in Figure 2-14.

In the JTAG UART IP window:
a. Rename the HDL entity name to “jatg_uart”
b. Click Finish

4. Figure Figure 2-15 show the jtag_usrt component is added in the system.

- 13

-

Figure 2-14 Add JTAG UART (1)

Figure 2-15 JTAG UART

- 14

-

5. Choose Library > Basic Functions > On-Chip Memory > On-Chip Memory II (RAM or

ROM) Intel FPGA IP to open wizard of adding On-Chip memory. See Figure 2-16.

In the On-Chip Memory II IP window:
a. Change memory size to “262144”.
b. Rename the HDL entity name to “onchip_memory”
c. Click Finish

6. Figure 2-17 show the onchip_memory component is added in the system.

Figure 2-16 Add On-Chip Memory

- 15

-

Figure 2-17 Add On-Chip memory Completely

7. Choose Library > Processors and Peripherals > Peripherals > PIO (Parallel I/O) to open
wizard of adding PIO. See Figure 2-18.

In the PIO(Parallel I/O) IP window:
a. Rename the HDL entity name to “pio_led”
b. Click Finish

8. Figure 2-19 show the pio_led component is added in the system.

- 16

-

Figure 2-18 Add PIO

- 17

-

Figure 2-19 PIO

 Connect Interfaces and Signals

This section explains two ways to connect components in Platform Designer.

 Method 1: Click on an open connection circle to link compatible interfaces. Once
connected, the line turns black and the circle is filled. Clicking a filled circle will remove
the connection.

Figure 2-20 Connect interfaces and signals (1)

 Method 2:

In the Platform Designer window (see Figure 2-21), right-click ninit_done of the

- 18

-

reset_release component, then select:

Connections: reset_release.ninit_done > reset_in.in_reset

This connects reset_release.ninit_done to reset_in.in_reset, as shown in the figure.

Figure 2-21 Connect interfaces and signals (2)

- 19

-

Use any of the methods above to connect the components in the system as specified in the table
below.

Component

Name
Signal Name

Connected

Component
Connected Signal

reset_release ninit_done reset_in reset_in.in_reset

nios_m
clk clock_in clock_in.out_clk
reset reset_in reset_in.out_reset

jtag_uart

clk clock_in clock_in.out_clk
reset reset_in reset_in.out_reset
avalon_jtag_slave niosv_m niosv_m.data_manager
irq niosv_m niosv_m.platform_irq_rx

onchip_memory

clk clock_in clock_in.out_clk
s1 niosv_m niosv_m.data_manager

niosv_m.instruction_manager
reset reset_in reset_in.out_reset

pio_led

clk clock_in clock_in.out_clk
reset reset_in reset_in.out_reset
s1 niosv_m niosv_m.data_manager
external_connection Export as:

pio_led_external_connection

Choose external_connection of pio_led and right-click then choose Connections > Export as:

pio_led_external_connection. (See Figure 2-22)

- 20

-

Figure 2-22 Setting external_connection of pio_led

Refer to Figure 2-23 for the final connection configuration.

- 21

-

Figure 2-23 final connection configuration

 Clear System Warnings and Errors

1. Choose System > Assign Base Addresses as shown in Figure 2-24. After that, you will find that
there is no error in the message window as shown in Figure 2-25.

- 22

-

Figure 2-24 Assign Base Addresses

- 23

-

Figure 2-25 No errors or warnings

 Configuring the Reset Vector of the Nios V Processor

2. Click niosv_m in the component list on the right part to edit the component. Update Reset

Agent and Vector Offset as shown in Figure 2-26.

- 24

-

Figure 2-26 Update CPU settings

 Saving and Generating System HDL

3. Click Generate > Generate HDL and then pop a window as shown in Figure 2-27. Click
Generate and then pop a window as shown in Figure 2-28. Click Save and the generation start.

- 25

-

Figure 2-27 Generate Platform Designer

Figure 2-28 Save changes

4. Figure 2-29 shows the generate process. If there is no error in the generation, the window will
show successful as shown in Figure 2-30.

- 26

-

Figure 2-29 Generate Platform Designer

Figure 2-30 Generate Platform Designer Completely

5. Click Close and File > Exit to exit the Platform Designer and return to the window

- 27

-

22..11..33 CCoonnffiigguurriinngg AAssssiiggnnmmeenntt aanndd CCoonnssttrraaiinntt

1. In Quartus, choose File > New to open new files wizard. See Figure 2-31.

Figure 2-31 New Verilog file

2. Choose Verilog HDL File (Figure 2-32.) and click OK to return to the window as shown in
Figure 2-33. Figure 2-33 show a blank verilog file.

Figure 2-32 New Verilog File

- 28

-

Figure 2-33 A blank verilog file

3. Type verilog the following script as shown in Figure 2 44.

module myfirst_niosv

(

 CLOCK_50,

 LED

);

input CLOCK_50;

output [3:0] LED;

wire [3:0] pio_led;

assign LED = ~pio_led;

system system_inst (

 .clk_clk (CLOCK_50),

 .pio_led_external_connection_export (pio_led)

);

endmodule

- 29

-

Figure 2-34 Input verilog Text

4. Choose Save Icon in the tool bar. There will appear a window as shown in Figure 2-35.
Makesure the file name is myfirst_niosv.v and click Save.

Figure 2-35 Save Verilog file

- 30

-

22..11..44 CCoommppiilliinngg tthhee QQuuaarrttuuss PPrriimmee SSooffttwwaarree PPrroojjeecctt

1. Choose Processing > Start Compilation as shown in Figure 2-36. Figure 2-37 shows the
compilation process.

Figure 2-36 Start Compilation

Figure 2-37 Execute Compilation

- 31

-

2. A window that shows successfully will appear as shown in Figure 2-38.

Figure 2-38 Compilation project completely

3. Choose Assignments > Pin Planner to open pin planner as shown in Figure 2-39. Figure 2-40
show blank pins.

Figure 2-39 Pins menu

- 32

-

Figure 2-40 Blank Pins

4. Input Location value as shown in Figure 2-41.

Figure 2-41 Set Pins

5. Close the Pin Planner.
6. Restart compilation the project.

22..22 DDoowwnnllooaadd HHaarrddwwaarree DDeessiiggnn ttoo TTaarrggeett FFPPGGAA

This section describes how to download the configuration file to the board.

Download the FPGA configuration file (i.e. the SRAM Object File (.sof) that contains the NIOS V
standard system) to the board by performing the following steps:

1. Connect the board to the host computer via the USB download cable.

2. Apply power to the board.

- 33

-

5. Choose Tools -> Programmer in Quartus.

6. Click Hardware Setup in the top, left comer of the Programmer window. The Hardware Setup
dialog box appears.

7. Select Atum A3 Nano from the Currently selected hardware drop-down list box.

 Note: If the appropriate download cable does not appear in the list, you must first install drivers
for the cable. Refer to Quartus Prime Pro Help for information on how to install the driver. See
Figure 2-42.

Figure 2-42 Hardware Setup Window

15. Turn on the Program/Configure option for the programming file. (See Figure 2-43 for an
example).

16. Click Start.

- 34

-

Figure 2-43 Programmer

The Progress meter sweeps to 100% after the configuration finished. When configuration is
complete, the FPGA is configured with the Nios V system, but it does not yet have a C program in
memory to execute.

- 35

-

Chapter 3

Ashling RiscFree IDE

Build Flow

This chapter covers the build process for C software programs targeting the Nios V processor. The
Ashling RiscFree IDE for Altera FPGAs provides an easy-to-use graphical user interface (GUI) that
automates the build process and the management of CMakeLists.txt files. The IDE also integrates a
text editor and a debugger.

In this chapter, you will use the Ashling RiscFree IDE for Altera FPGAs to compile a simple C
example program, which will run on a standard Nios V system configured on the FPGA of your
development board. You will create a new software project, build it, and execute it on the target
hardware. You will also learn to edit the project, rebuild it, and initiate a debugging session.

33..11 CCrreeaattee tthhee hheelllloo__wwoorrlldd EExxaammppllee PPrroojjeecctt

In this section you will create a new NIOS V C/C++ application project. To begin, perform the
following steps:

 Creating a Board Support Package

1. In Quartus Prime, select File > Open to open system.qsys, as shown in the figure below.

- 36

-

Figure 3-1 Open .qsys

2. Click File > New BSP to create a new BSP, as shown in the figure below.

Figure 3-2 Creating a new bsp

- 37

-

3. Create a software folder and a bsp subfolder within it. Name the file settings.bsp and click
Create, as shown below.

Figure 3-3 Creating a new bsp

- 38

-

4. In the System File field, browse to and select system.qsys, as shown below.

Figure 3-4 Select system file

5. Click Create to generate the BSP.

Figure 3-5 Creating bsp

- 39

-

6. Double-click the BSP Editor tab to maximize it, as shown below. Click Generate BSP.

Figure 3-6 Creating bsp

7. Launch Nios V Command Shell from the Start Menu.

- 40

-

Figure 3-7 Launch Nios V Command Shell

8. Run the command below to switch to the working directory (see Figure 3-8).

cd /d <myfirst_niosv path>

Figure 3-8 Switch working directory

9. Run the commands shown to create the application (see Figure 3-9).

mkdir software\app

echo #include ^<stdio.h^> > software\app\hello_world.c

echo int main() {printf("Hello from Nios V!\n");} >> software\app\hello_world.c

- 41

-

niosv-app --bsp-dir=software/bsp --app-dir=software/app --srcs=software/app/hello_world.c --elf-name=hello_world.elf

Figure 3-9 Creating application

 Importing Projects into Ashling RiscFree IDE for Altera FPGAs

1. User need to install WSL in your windows system.
2. Launch Ashling RiscFree IDE for Intel FPGAs from the Start Menu.

Figure 3-10 Select Workspace

Note: If the user does not see the Ashling RiscFree IDE Shortcut in the Quartus 25.1 Pro folder of
the Windows Start Menu, please refer to the link below to resolve the issue : Resolving the Missing

https://github.com/johnnyfan1979/public_doc/blob/main/documentation/Tools/Resolving%20the%20Missing%20Ashling%20RiscFree%20IDE%20Shortcut%20in%20the%20Quartus%2025.1%20Pro%20Start%20Menu.md

- 42

-

Ashling RiscFree IDE Shortcut in the Quartus 25.1 Pro Start Menu

3. Then click Launch Set the workspace as shown in Figure 3-11, then click Launch.

Figure 3-11 Select Workspace

4. Choose File->Import Nios V CMake Project to open the Import Window.

https://github.com/johnnyfan1979/public_doc/blob/main/documentation/Tools/Resolving%20the%20Missing%20Ashling%20RiscFree%20IDE%20Shortcut%20in%20the%20Quartus%2025.1%20Pro%20Start%20Menu.md

- 43

-

Figure 3-12 Import Nios V CMake Project

5. In the Import Window, make sure the following things:

 ● Browse and select the bsp project folder.

 ● Give the project a name. (bsp is default name)

Figure 3-13 Ashling RiscFree IDE Import Project Wizard

6. Click Finish. The Ashling RiscFree IDE import the bsp project and returns to the Nios V C/C++
project perspective. See Figure 3-14.

- 44

-

Figure 3-14 Ashling RiscFree IDE C++ Project Perspective for bsp

7. Choose File->Import Nios V CMake Project to open the Import Window.

8. In the Import Window, make sure the following things:

 ● Browse and select the app project folder.

 ● Give the project a name. (app is default name)

- 45

-

Figure 3-15 Ashling RiscFree IDE Import Project Wizard

9. Click Finish. The Ashling RiscFree IDE import the app project and returns to the Nios V
C/C++ project perspective. See Figure 3-16.

Figure 3-16 Ashling RiscFree IDE C++ Project Perspective for bsp and app

- 46

-

When you import the project, the Ashling RiscFree IDE add two new projects in the Projects
Explorer tab:

■ app is your C/C++ application project. This project contains the source and header files for your
application.

■ bsp is a system library that encapsulates the details of the Nios V system hardware.

33..22 BBuuiilldd aanndd RRuunn tthhee PPrrooggrraamm

In this section you will build and run the program to execute the compiled code.

1. Before building the project, we would like to confirm with you that the .sof file (hardware
design file) in the Quartus project has been downloaded (refer to Section 2.2).

2. To build the program, right-click the app project in the Projects Explorer tab and choose Build

Project. The Build Project dialog box appears and the IDE begins compiling the project.

- 47

-

Figure 3-17 Ashling RiscFree IDE C++ Project Perspective for bsp and app

3. When the compilation is complete, a Build Finished message will appear in the CDT Build
Console. The compilation time will vary depending on your system. Refer to Figure 3-18 for an
example.

- 48

-

Figure 3-18 Ashling RiscFree IDE app Build Completed

4. After compilation complete, right-click the app project, choose Run As, and choose Ashling

RISC-V Hardware Debugging.

- 49

-

Figure 3-19 Ashling RiscFree IDE Import Project Wizard

5. In the C Local Application window, select hello_world.elf and then click OK.

Figure 3-20 Ashling RiscFree IDE Import Project Wizard

- 50

-

6. In the Edit Configuration window:

 Select the Debugger tab.
o For Debug Probe, select Atum A3 Nano Development board.
o Click Auto-detect Scan Chain.
o Click Run.

Figure 3-21 Ashling RiscFree IDE Import Project Wizard

The IDE begins to download the program to the target FPGA development board and begins
execution.

When the target hardware begins executing the program, a message ‘Got a debugger connection’
will appear in the Console tab (switch to 4. hello_world.elf[Ashing RISC-V Hardware Debuggin]).

- 51

-

Figure 3-22 Debugger connection message in the Console

You can configure the Ashling RiscFree IDE to integrate external tools. As an example, the
following steps detail how to set up the juart-terminal tool to display a "Hello World" message via
the JTAG UART IP.

To perform external tool configuration for juart-terminal, follow these steps:

1. Go to Run > External Tools > External Tools Configurations.

- 52

-

Figure 3-23 Navigating to External Tools Configurations

2. Double click Program to open a New_configuration window.

- 53

-

Figure 3-24 Creating a new Program configuration

3. Rename the configuration as Nios V JTAG UART Output.

- 54

-

Figure 3-25 Renaming the configuration to 'Nios V JTAG UART Output'

4. In Location, click Browse File system.

- 55

-

Figure 3-26 Browse for the executable file in the Location field

5. Browse and select the juart-terminal file in the following paths:

<Intel Quartus Prime installation directory>/quartus/bin64/juart-terminal.exe

- 56

-

Figure 3-27 Selecting 'juart-terminal.exe'

6. Set the Arguments as “-c 1 -d 1 -i 0”. This configures the JTAG UART connection is towards
the JTAG UART IP at cable 1, device 1, and instance 0.

- 57

-

Figure 3-28 Setting arguments for the JTAG UART

7. Click Apply, then click Run

- 58

-

Figure 3-29 Applying and running the external tool

8. The message ’Hello from Nios V!’ appears in the Nios V JTAG UART Output tab.

- 59

-

Figure 3-30 "Hello from Nios V!" message in the output tab.

9. Before proceeding to the next step, the user needs to switch to the hello_world.elf console and
stop Terminate . This will ensure that the next step can be executed without any issues.

- 60

-

Figure 3-31 Stop Terminate.

Now you have created, compiled, and run your first software program based on NIOS V. And you
can perform additional operations such as configuring the system properties, editing and re-building
the application, and debugging the source code.

33..33 EEddiitt aanndd RRee--RRuunn tthhee PPrrooggrraamm

You can modify the hello_world.c program file in the IDE, build it, and re-run the program to
observe your changes executing on the target board. In this section you will add code that will make
LEDG blink.

Perform the following steps to modify and re-run the program:

- 61

-

1. In the hello_world.c file, modify the text shown in the example below:

#include <stdio.h>

#include <system.h>

#include <altera_avalon_pio_regs.h>

int main()

{

 printf("Hello from Nios V!\n");

 int count = 0;

 int delay;

 while (1) {

 IOWR_ALTERA_AVALON_PIO_DATA(PIO_LED_BASE, count & 0x01);

 delay = 0;

 while (delay < 2000000) {

 delay++;

 }

 count++;

 }

 return 0;

}

- 62

-

Figure 3-32 Adding LED blink code to 'hello_world.c'

2. Save the project.

3. Recompile the file by right-clicking app in the Projects Explorer tab and choosing Build

Project

- 63

-

Figure 3-33 Rebuilding the project after code changes

4. After Build Porject done, Run > Run As > Ashling RISC-V Hardware Debugging.

- 64

-

Figure 3-34 Run program

5. Orient your development board so that you can observe LEDG blinking.

Figure 3-35 LEDG

- 65

-

33..44 WWhhyy tthhee LLEEDD BBlliinnkkss

The Nios V system description header file, system.h, contains the software definitions, name,
locations, base addresses, and settings for all of the components in the Nios V hardware system. The
system.h file is located in the in the bsp\system.h directory as shown in Figure 3-36.

Figure 3-36 system.h Location

If you look at the system.h file for the Nios V project example used in this tutorial, you will notice
the pio_led function. This function controls the LED. The Nios V processor controls the PIO ports
(and thereby the LED) by reading and writing to the register map. For the PIO, there are four
registers: data, direction, interrupt mask, and edge capture. To turn the LED on and off, the
application writes to the PIO data register.

The PIO core has an associated software file altera_avalon_pio_regs.h. This file defines the core’s
register map, providing symbolic constants to access the low-level hardware.

- 66

-

The altera_avalon_pio_regs.h file is located in bsp\drivers\inc.

When you include the altera_avalon_pio_regs.h file, several useful functions that manipulate the
PIO core registers are available to your program. In particular, the function

IOWR_ALTERA_AVALON_PIO_DATA (base, data)

can write to the PIO data register, turning the LED on and off. The PIO is just one of many Platform
Designer peripherals that you can use in a system. To learn about the PIO core and other embedded
peripheral cores, refer to Embedded Peripherals IP User Guide.

When developing your own designs, you can use the software functions and resources that are
provided with the Nios V HAL. Refer to the Nios V Processor Software Developer Handbook for
extensive documentation on developing your own Nios V processor-based software applications.

33..55 DDeebbuuggggiinngg tthhee AApppplliiccaattiioonn

Before you can debug a project in the Ashling RiscFree IDE, you need to create a debug
configuration that specifies how to run the software. To set up a debug configuration, perform the
following steps:

1. In the hello_world.c, double-click the front of the line which is needed to set breakpoint. See
Figure 3-37.

- 67

-

Figure 3-37 Set Breakpoint

2. To debug your application, right-click the application (app by default) and choose Debug as >

Ashling RISC-V Hardware Debugging.

3. If the Confirm Perspective Switch message box appears, click Switch.

After a moment, the main () function appears in the editor. A blue arrow next to the first line of code
indicates that execution stopped at that line.

4. Choose Run-> Resume to resume execution.

When debugging a project in the Ashling RiscFree IDE, you can pause, stop or single step the
program, set breakpoints, examine variables, and perform many other common debugging tasks.

Note: To return to the C/C++ project perspective from the debug perspective, click the C/C++
icon in the top right corner of the GUI.

- 68

-

33..66 CCoonnffiigguurree SSyysstteemm LLiibbrraarryy

In this section you will learn how to configure some advanced options about the target memory or
other things. By performing the following steps, you can charge all the available settings:

1. In Quartus Prime, select File > Open, and open system.qsys, as shown in the figure below.

Figure 3-38 Opening 'system.qsys' in Quartus Prime

2. Click File > Open to open the BSP, as shown in the figure below.

- 69

-

Figure 3-39 Opening the BSP file

3. Select the BSP Editor tab.

Figure 3-40 Selecting the 'BSP Editor' tab

4. Browse to and open software/bsp/settings.bsp.
5. Click Open to open the BSP Editor.

- 70

-

6. Double-click the BSP Editor Tab to maximize the tab, as shown in the figure below.

Figure 3-41 Maximizing the 'BSP Editor' tab.

7. Click Generate BSP

The following content will introduce how to configure a software project to use hardware memory.
By modifying the System Library Properties in the Ashling RiscFree IDE, you can precisely
configure the memory mapping.

1. In the Ashling RiscFree IDE, right-click app and choose System Library Properties. The
Properties for app_syslib dialog box opens.

2. Click System Library. The System Library page contains settings related to how the program
interacts with the underlying hardware. The settings have names that correspond to the targeted
NIOS V hardware.

3. In the BSP Linker Script tab, observe which memory has been assigned for Block Started by

Symbol memory (.bss), exception handler memory (.exceptions), Heap memory, Read-only

- 71

-

data memory (.rodata), Read/write data memory (.rwdata), Stack memory and Program

memory (.text), see Figure 3-42. These settings determine which memory is used to store the
compiled executable program when the example app programs runs. In the Main tab, You can
also specify which interface you want to use for stdio, stdin, and stderr. You can also configure
build options to support C++, reduced device drivers, etc.

4. Choose onchip_memory for all the memory options in the BSP Linker Script tab. See Figure

3-42 for an example.

Figure 3-42 Configuring System Library Properties

5. Click Generate BSP to regenerate BSP. Close the Platform Designer Windows and return to
the IDE workbench.

- 72

-

Note: If you make changes to the system properties you must rebuild your project. To rebuild,
right-click the app project in the Projects Explorer tab and choose Build Project.

- 73

-

Chapter 4

Appendix

44..11 RReevviissiioonn HHiissttoorryy

Version Change Log

V1.0 Initail version

44..22 CCooppyyrriigghhtt SSttaatteemmeenntt

Copyright © Terasic Inc. All Rights Reserved.

	Chapter 1 Overview
	1.1 Hardware and Software Requirements

	Chapter 2 Hardware Design
	2.1 Creation of Hardware Design
	2.1.1 Creating a New Project
	2.1.2 Creating a Platform Designer System
	2.1.3 Configuring Assignment and Constraint
	2.1.4 Compiling the Quartus Prime Software Project

	2.2 Download Hardware Design to Target FPGA

	Chapter 3 Ashling RiscFree IDE Build Flow
	3.1 Create the hello_world Example Project
	3.2 Build and Run the Program
	3.3 Edit and Re-Run the Program
	3.4 Why the LED Blinks
	3.5 Debugging the Application
	3.6 Configure System Library

	Chapter 4 Appendix
	4.1 Revision History
	4.2 Copyright Statement

