

Chapter 1

Chapter 2

Chapter 3

Chapter 4

CONTENTS

I

L0 Y= 1

1.1 Hardware and Software REQUITEMENLScccveieiiiiiiieeiie ettt e 1
Hardware DesSigNccceuiiieeiiieeniiiieniirennicrenecsrensesenssessensssssnnnes 2

2.1 Creation of Hardware DeSIZIccueeeuiiiiieiieiieiiesiie ettt 2
2.1.1 Creating @ NEW ProjeCT c...uueiiiieiie ittt e e e s s araneee s 2
2.1.2 Creating a Platform DeSigner SYStEMccicciieiiiciieeeecieee ettt e e et e e e eaae e e e eanes 5
2.1.3 Configuring Assignment and Constraintccccceeevieeriiiiieeeiiee e 27
2.1.4 Compiling the Quartus Prime Software Project.........cccoevveeiviiieeisiiieee e 30
2.2 Download Hardware Design to Target FPGAccocoiiiiiiiiiieceeee e 32
Ashling RiscFree IDE Build FIOWcccccceiieeireniirenciencnenecrennnnn. 35

3.1 Create the hello. world Example Projectccvevvevieiiiiiiiieeieeeeseecie e 35
3.2 Build and Run the Programcccceeieriiiiieiicieiecee ettt 46
3.3 Edit and Re-Run the Programi..........c.ccocveeiiiiiiiieiiciccie et 60
3.4 Why the LED BIINKS.......cccuiiiiiiiiiiiesiecie ettt sne e eveetaesteesenessaeseneesneensaenens 65
3.5 Debugg@ing the APPLICAtIONccveevvieriieciieeiicti ettt sre e be e e steeseaeseaesereesseesseeses 66
3.6 Configure System LIDIATYccecvieiieiieniieii ettt sre e ere e steesenestaesereesreesseesns 68
1Y oY o 1T o Ve [G 73

4.1 ReVISION HISLOTY 1.euviiiiiiiiiieiieiieie ettt ette et ettt ste e st e s v e esveesbeetaestaessseesseesseesseessnessneans 73
4.2 Copyright StALEIMENTecvieiiiiieiieiieetie et et e stresreebeesbeesbeesteestaesrseesseesseesseessaessneans 73

Chapter 1

Overview

This document provides an introductory roadmap for developing a Nios® V processor system. It
walks you through creating and running a basic Hello World program and controlling the LED blink
feature on an FPGA board. The example setup uses the Terasic Atum A3 Nano development board,
with Quartus® Prime software and the Ashling* RiscFree* IDE for Altera FPGAs as the primary
development tools.

1.1 Hardware and Software Requirements

Hardware Requirements
e Terasic Atum A3 Nano development board
Software Requirements

e Quartus Prime Pro Edition (This document uses Quartus Prime Pro Edition version 25.1)
e Ashling RiscFree IDE for Altera FPGAs

Chapter 2

Haradware Design

This chapter will guide you through starting the hardware design process by adding the Nios V
processor and its peripherals into Platform Designer. After setting up the system assignments and
constraints, you will complete the hardware design by successfully compiling the project.

2.1 Creation of Hardware Design

This section describes the flow of how to create a hardware system including Platform Designer
feature.

2.1.1Creating a New Project

1. Launch Quartus Prime then select File->New Project Wizard, start to create a new project. See
Figure 2-1.

\Oh Quartus Prime Pro Edition

J51} Edit View Project Assignments Processing Tools

B new Ctrl+N
Open Ctrl+0
Close Ctrl+F4

& New Project Wizard...

2% Open Example Project
] Open Project. Ctrl+J

Save Project

Close Project
B Save Ctrl+5

Save As...

@l save all Ctrl+Shift+S

File Properties.

Create [Update b
Export,.. Design Units
1 Convert Programming Files

Programming File Generator.
Ei Page Setup...

El Print Preview

80 Print Ctrl+P
Recent Files »
Recent Projects b
Exit Alt+F4

Figure 2-1 Start to Create a New Project

2. Choose a working directory for this project, type project name and top-level entity name as
shown in Figure 2-2. Click Next to next window.

Figure 2-2 Input the working directory, the name of project, top-level design entity

3. We choose device family and device settings. You should choose settings the same as the Figure
2-3.

Then click Finish to finish new project. Figure 2-4 show a new complete project.

FPGA Family :Agilex 3(C-Series)
FPGA Name : A3CZ135BB18AE7S

E‘j New P

roject Wizard

Family, Device & Board Settings

Device Board

Select the family and device you want to target for compilation

on the Tools menu.

Device family

Family: | Agilex 3 (C-Series) v

Device: | All >

Target device

o) Specific device selected in "Available devices' list

Other: nfa
Filter: Name -
Name Core Voltage ALMs Total I/Os
24 A3SCZ100BM16AE7S 0.75V 34000 254
25 A3CZ100BM16AITS 0.75V 34000 254

4

Available devices: 29

Help

Figure 2-3 New Project Wizard: Family & Device Settings

Package: Any
Pin count: Any

Core speed grade: | Any

Show in ‘Available devices' list

v Show advanced devices

GPIOs GTS XCVR Channels

192 4
192 4

< Back

Memory Bits

5365760
5365760

Finish

26

. You can install additional device support with the Install Devices command

M20K
262

Cancel

Figure 2-4 A New Complete Project

2.1.2Creating a Platform Designer System

1. Choose Tools > Platform Designer to open new Platform Designer system wizard. See Figure
2-5.

Figure 2-5 Platform Designer Menu

2. Click the Create New Platform Designer System icon and name the new project system
"system" (refer to Figure 2-6).

Figure 2-6 Create New System [1]

Click Create and your will see a window as shown in Figure 2-7. Then a Platform Designer window

will appear.

Figure 2-7 Create New System [2]

B Adding Components
1. Now, we will first add a reset component into the system.

Go to IP tab and choose Library > Basic Functions > Configuration and Programming > Agilex
Reset Release to open wizard of adding reset component (See Figure 2-8)

Figure 2-8 Add Agilex Reset Release

See Figure 2-9, In the Agilex Reset Release IP window:

a. Check Reset Interface.

b. Rename the HDL entity name to “reset_release”
c. Click Finish

Figure 2-9 Agilex Reset Release

A reset_release component is added in the system as shown in Figure 2-10.

Figure 2-10 Add reset_relese component

2. Then we will add a Nios V microcontroller into the system. Choose Library > Processors and
Peripherals > Embedded Processors > Nios V/m Microcontroller to open wizard of adding
cpu component. See Figure 2-11.

Figure 2-11 Add Nios VV/m Processor

See Figure 2-12, n the Nios V/m Microcontroller IP window:
a. Rename the HDL entity name to “nios_m”
b. Click Finish
c. Figure Figure 2-13 show the nios_m component is added in the system.

-10

Figure 2-12 Nios VV/m Processor

-11

Figure 2-13 Add Nios V CPU completely

3. Choose Library > Interface Protocols > Serial > JTAG UART Intel FPGA IP to open wizard
of adding JTAG UART as shown in Figure 2-14.

In the JTAG UART IP window:
a. Rename the HDL entity name to “jatg_uart”
b. Click Finish

4. Figure Figure 2-15 show the jtag_usrt component is added in the system.

-12

Figure 2-14 Add JTAG UART (1)

Figure 2-15 JTAG UART

-13

5. Choose Library > Basic Functions > On-Chip Memory > On-Chip Memory Il (RAM or
ROM) Intel FPGA IP to open wizard of adding On-Chip memory. See Figure 2-16.

In the On-Chip Memory II IP window:
a. Change memory size to “262144”.
b. Rename the HDL entity name to “onchip_memory”
c. Click Finish

6. Figure 2-17 show the onchip_memory component is added in the system.

Figure 2-16 Add On-Chip Memory

-14

Figure 2-17 Add On-Chip memory Completely

7. Choose Library > Processors and Peripherals > Peripherals > PIO (Parallel 1/0) to open
wizard of adding PIO. See Figure 2-18.

In the PIO(Parallel I/O) IP window:
a. Rename the HDL entity name to “pio_led”
b. Click Finish

8. Figure 2-19 show the pio_led component is added in the system.

-15

Figure 2-18 Add PIO

-16

Figure 2-19 PIO
B Connect Interfaces and Signals
This section explains two ways to connect components in Platform Designer.

® Method 1: Click on an open connection circle to link compatible interfaces. Once
connected, the line turns black and the circle is filled. Clicking a filled circle will remove
the connection.

Figure 2-20 Connect interfaces and signals (1)
® Method 2:

In the Platform Designer window (see Figure 2-21), right-click ninit_done of the
-17

reset_release component, then select:
Connections: reset_release.ninit_done > reset_in.in_reset

This connects reset release.ninit_done to reset in.in_reset, as shown in the figure.

Figure 2-21 Connect interfaces and signals (2)

-18

Use any of the methods above to connect the components in the system as specified in the table

below.
Component : Connected .
P Signal Name Connected Signal
Name Component
reset_release ninit_done reset_in reset_in.in_reset
) clk clock in clock in.out clk
nios_m = — _
- reset reset_in reset_in.out_reset
clk clock in clock in.out clk
) reset reset_in reset_in.out_reset
jtag uart , - . =
avalon_jtag slave | niosv._m niosv_m.data_manager
irq niosv._m niosv_m.platform_irq rx
clk clock in clock in.out clk
) sl niosv._m niosv_m.data_manager
onchip_memory - T T
niosv_m.instruction manager
reset reset_in reset_in.out reset
clk clock in clock in.out clk
reset reset_in reset_in.out reset
pio_led sl niosv._m niosv_m.data manager

external connection

Export as:
pio_led external connection

Choose external_connection of pio_led and right-click then choose Connections > Export as:

pio_led_external_connection. (See Figure 2-22)

-19

Figure 2-22 Setting external_connection of pio_led

Refer to Figure 2-23 for the final connection configuration.

-20

Figure 2-23 final connection configuration
B Clear System Warnings and Errors

1. Choose System > Assign Base Addresses as shown in Figure 2-24. After that, you will find that
there is no error in the message window as shown in Figure 2-25.

-21

Figure 2-24 Assign Base Addresses

-22

Figure 2-25 No errors or warnings
B Configuring the Reset Vector of the Nios V Processor

2. Click niosv_m in the component list on the right part to edit the component. Update Reset
Agent and Vector Offset as shown in Figure 2-26.

-23

Figure 2-26 Update CPU settings
B Saving and Generating System HDL

3. Click Generate > Generate HDL and then pop a window as shown in Figure 2-27. Click
Generate and then pop a window as shown in Figure 2-28. Click Save and the generation start.

- 24

Figure 2-27 Generate Platform Designer

Figure 2-28 Save changes

4. Figure 2-29 shows the generate process. If there is no error in the generation, the window will
show successful as shown in Figure 2-30.

-25

Figure 2-29 Generate Platform Designer

Figure 2-30 Generate Platform Designer Completely

5. Click Close and File > Exit to exit the Platform Designer and return to the window

-26

2.1.3 Configuring Assignment and Constraint

1. In Quartus, choose File > New to open new files wizard. See Figure 2-31.

ik Quartus Prime Pro Edition - E;/myfirst_niosv/myfirst_niosv - rr

Iii Edit View Project Assignments Processing Tools

Dpen... Ctrl+0 =
Close Ctrl+F4 Q
E5 New Project Wizard... Entity
<% Open Example Project...
% Open Project.. Ctrl+J
Save Project

Closg Project

& save Ctrl+5

Gn save All Ctrl+Shift+s
File Properties...
Create [Update 3

Export...

Figure 2-31 New Verilog file

2. Choose Verilog HDL File (Figure 2-32.) and click OK to return to the window as shown in
Figure 2-33. Figure 2-33 show a blank verilog file.

B New X

E MNew Quartus Prime Project -
« Design Files
A EDIF File
% Platform Designer System File
a State Machine File
E{? SystemVerilog HDL File
@ Tel Script File
aB< verilog HDL File
T WHDL File
~ Memory Files
@ Hexadecimal (Intel-Format) File
n@) Memory Initialization File
« Verification/Debugging Files
{1 In-System Sources and Probes File
[:} Logic Analyzer Interface File
@~ signal Tap Logic Analyzer File
+ Other Files
@ Chain Description File
B power and Thermal Calcularor File

Figure 2-32 New Verilog File

-27

Figure 2-33 A blank verilog file

3. Type verilog the following script as shown in Figure 2 44.

module myfirst_niosv

(

CLOCK_50,

LED
)
input CLOCK_50;
output [3:0] LED;
wire [3:0] pio_led;

assign LED = ~pio_led;

system system_inst (
.clk_clk (CLOCK_50),
.pio_led_external_connection_export (pio_led)

)s

endmodule

-28

Figure 2-34 Input verilog Text

4. Choose Save Icon in the tool bar. There will appear a window as shown in Figure 2-35.
Makesure the file name is myfirst_niosv.v and click Save.

Figure 2-35 Save Verilog file

-29

2.1.4Compiling the Quartus Prime Software Project

1. Choose Processing > Start Compilation as shown in Figure 2-36. Figure 2-37 shows

compilation process.

(O Quartus Prime Pro Edition - Dy/myfirst_niosw/myfirst

File Edit Wiew Project

=R -
Project Navigator
Instance
4, Agilex 3: A3CZ135BB18AE75
} "F myfirst_niosv g3

Assignments

A

T

niosv - myfirst_niosv

Tools

Window Help

Stop Processing

O

Entity

Quit Monitoring
Start Compilation
Start Optimization Mode Compilation
Start

Update Memory Initializaticn File

Start Pre-Synthesis IBIS

Ctrl+Shift+C

2 0> Ve OR

‘@' myfirst_niosv.v [£)
WL OE

iosv

2867 | =
268 | =

4

L) Compilation Report Ctrl+R
& Compilation Rep 0CK_50;
@ Compilation Dashboard Ctrl+Shift+r =D}
e 0_led;
9
10 assign LED = ~pio_led;
11
12 system system_inst (
13 Lclk_clk (CLOCK_50),
14 .pio_led_external_connection_export (pio_led)
15);
16
17 endmodule
18
1 »
[G Quartus Prime Pro Edition - Dy/myfirst_niosv/myfirst_niosv - myfirst_niosv = [m} *
File Edit View Project Assignments Processing Iools Window Help search)
5 A - i = * & 25 &%, A T 1 e
B EE ik OC (e L GHF0P VLSO OBLOHS ™
I
|Project Navigater Q1@ ® | @ compilation Dashboard [| 4§ myfirst_niosvy [] P Catalog a8
| Instance Entity Ms needed [=A-BAls 1 o\\-.-m;y» =
i Agilex 3: A3CZ135BB1BAETS * Project Overview T mstalled 1P
|+ P myfirst_niosv g3 31241 (05) 36 Project Directary
Compilation Flow: B R
No Selection Available
Ei% > n Library
I p P IP Generation Basic Functions
| 2% |- » A & Bridges and Adaptors
d : iy Fp " $ozajeca .
i Hierarchy | [Files | @i Design Units IP Components & Interface Protocols
| 0% | - LO0a G N
Memory Interfaces and Controllers
Tasks f@m E c0 Erocessors and Peripherals
Project A] om | . & u s Program
il Revisions.. < Verification
Project Files & .
[| o% &4 @ search for Partner 1P
..
Open.. | 0% ® AF
Add/Remove Files in Project... . e
B platfnrm Desisner bl |] + Add..
® -
(107? [U)Q p p [u)l <<Filters> v Use Regular Expressions Show Non-matching | AMEind.. | | A%Find Next
message Message ID/~
@ veoL info at altera fabric_endpoint.vhd(126): executing entity "altera fabric_endpoint(send_width=0,receive width=1,settings="{fa. 19337
@ verilog HoL info at system_ altera avalon_sc_fifo_1932_22gxxgi.v(127): extracting raM for identifier 'infer_mem’ 22567
@ verilog HoL info at system_ altera avalon_sc_fifo_1932_22gxxgi.v(127): extracting raM for identifier 'infer_mem’ 22567
@ verilog HoL info at system_ altera avalon_sc_fifo_1932_22gxxgi.v(127): extracting raM for identifier 'infer_mem’ 22567
@ verilog HoL info at system_altera avalon_sc_fifo_1932_22gxxgi.v(127): extracting raM for identifier 'infer_mem’ 22567
P =
4 K] 3
Z| system(s) | Processing (42)

33% 't 00:00:21

Figure 2-37 Execute Compilation

-30

the

2. A window that shows successfully will appear as shown in Figure 2-38.

Ok Quartus Prime Pre Editicn - Defryfirst_niosv/myfirst_niosw - myfirst_niosw

= [m] X
|
File Edit View Project Assignments Processing Tools Window Help [E— © |
N va a = - g 8 @ B ° i .
CEBEE AR OO [mso L 6% P ROOBLQOHT W
I
|Project Navigator QU+ ® | @ compilation Dashboard [| @ myfirst_niosvar [Py te®
| Instance Entity Ms needed [=A-B4ls L Q =<<Filter>> =
4 Agilex 3: A3CZ135BB1BAETS ¢ e EEsaTEs - @ Installed IP
b+ T myfirst_niosv g5 3124.1 (0.5) 36 - ~ Project Directory
ComedanonFioy. No Selection Available
B Compile Design 00:03:41 - Library
I y P IP Generation 00:00:00 } Basic Functions
P Analysis & Synthesis & 00:00:47 b Bridges and Adaptors
P Analysis & Elaboration & af Q) ¢ @8 = 000040 '+ DsP
b Synthesis LOEE 00:00:07 } Interface Protocols
> ol) pY } Memory Interfaces and Controllers
p Eorly Timing Analysi:
0 v = ory fming Anciysis ':' } Processors and Peripherals
Hierarchy | [l Files gi" Design Units IP Components = b Fitter < oo0212 b University Program
P Fitter (Implement) L4 } Verification
Tasks HE & » Plan &0 aQ 00:00:39 © search for Partner IP
Project 3 P Place & 4G 00:00:38
i Revisions... M o
Project Files b Route ¢ G 000037
B new. P Retime & 09 00:00:06
Open.. P Fitter (Finalize) &S0 9§ 00:00:18
fi Add/Remove Files in Project
£ B Fost Forward Timing Closure Recommendations (5 =1
B Platform Designer = .
24 1P Catalog :. W Timing Analysis (Signoff) &0 00:00:06 4 »
Assignments = + Add
® -
[18106) [u}g) @ © ! <<Filters> v Use Regular Expressions Show Non-matching | MAFind.. | |MA#jFind Next
Message Message ID|~
@ Loading "final” snapshot for partition "root_partition”. 16734
@ Loading "final” snapshot for partition "auto_fab_0". 16734
@ successfully loaded final database: elapsed time is 00:00:02. 16678
@ using cvpP Hash 8988779 512c10516bce8c74f Tazees95729d3c1d4 cdb68bb019dc13b10772d3 20553
¥ oquartus Prime Assembler was successful. 0 errors, 0 warnings
2 @ auartus prime Full compilation was successful. 0 errors, 9 warnings 21793
1 % -
@
& system(10) | Processing(1615)
100% 00:03:41

Figure 2-38 Compilation project completely

3. Choose Assignments > Pin Planner to open pin planner as shown in Figure 2-39. Figure 2-40

show blank pins.

ik Quartus Prime Pro Edition - Di/myfirst_niosw/myfirst_niosv - myfirst_niosv

File Edit Miew Project Processing Tools

R EE -~

|
|Project Mavigator

Window Help
’= Device..
< Settings.. Ctrl+Shift+E
& pssignment Editor Ctrl+Shift+A

n Planner
Bemove Assignments...
E » Back-Annotate Assignments...
Import Assignments...
Export Assignments..
Logic Lock Regions Window

&5 Design Partitions Window

rl+Shift+MN

Alt+L
Alt+D

Instance
== Agilex 3: ABCZ135BB18AE
} NF irst_niosv g3
1
s Hierarrhu E Files

=1 Nesion Hnits

Figure 2-39 Pins menu

-31

IP Comnnnents

¥ MNamed: | *

& @ Node Name
i out | ED[3]
oul | Ep[2]
oul | Ep[1]
°ut | ED[O]
N CLOCK_50
N altera_reserved_tck
altera_reserved_tdi
= dltera_reserved_tdo
N altera_reserved_tms
<<new node>>

o
n

uﬁt

Tl a»

eDirection glfo Bank
Output

Output

Output

Output

Input

Input

Input

Output

Input

e Location

Figure 2-40 Blank Pins

4. Input Location value as shown in Figure 2-41.

(¥ Named: | *

& @ Node Name

out | Ep[3]

oul | Ep[2]

out | Fp[1]

°ut | ED[O]
n CLOCK_50
N altera_reserved_tck
altera_reserved_tdi
altera_reserved_tdo
= altera_reserved_tms
<<new node>>

-
in
=
out
-
in

5. Close the Pin Planner.

MEEE:$
e Direction e Location 9 1/O Bank
Output PIN_AF2 6H
Output PIN_AF1 6H
Output PIN_AM6 6H
Output PIN_AG2 6H
Input PIN_K43 3AT
Input
Input
Dutput
Input

Figure 2-41 Set Pins

6. Restart compilation the project.

Edit:

@) Fitter Location
PIN_K35
PIN_A22
PIN_A19
PIN_B29
PIN_K40
PIN_AA48
PIN_AA49
PIN_AD4S
PIN_ADA49

L7

Edit:

@) Fitter Location €
PIN_K35

PIN_A22

PIN_A19

PIN_B29

PIN_K40

PIN_AA48

PIN_AA49

PIN_AD4S

PIN_ADA49

2.2 Download Hardware Design to Target FPGA

This section describes how to download the configuration file to the board.

Download the FPGA configuration file (i.e. the SRAM Object File (.sof) that contains the NIOS V

standard system) to the board by performing the following steps:

1. Connect the board to the host computer via the USB download cable.

2. Apply power to the board.

-32

5. Choose Tools -> Programmer in Quartus.

6. Click Hardware Setup in the top, left comer of the Programmer window. The Hardware Setup
dialog box appears.

7. Select Atum A3 Nano from the Currently selected hardware drop-down list box.

Note: If the appropriate download cable does not appear in the list, you must first install drivers
for the cable. Refer to Quartus Prime Pro Help for information on how to install the driver. See
Figure 2-42.

Figure 2-42 Hardware Setup Window

15. Turn on the Program/Configure option for the programming file. (See Figure 2-43 for an
example).

16. Click Start.

-33

! % Programmer - Dy/myfirst_niosv/myfirst_niosv - myfirst_niosv - [myfirst_niosw.cdf]*® — O x

File Edit Wiew Processing Tools Window Help

Search @
;Hardware Setup... | |Atum A3 Nano [USB-1] Mode: | JTAG - Progress: 100% (Successful) '] [
Enable real-time ISP to allow background programming when available
File Device Checksum Usercode Program/ Verify Blank- Examine Security Erase ISP

plhStart onfisure Check Bit CLAMP
hston output_files/m... A3CZ135BB18A 063CDB4E FFFFFFFF

M Auto Detect

Delete
U Add File...
Hh Change File._.
b Save File

* add Device...

TEIIII_:\
oI

»

%Down

EEEEEEEER
A3ICZ135BB18A
TDO

L

Figure 2-43 Programmer
The Progress meter sweeps to 100% after the configuration finished. When configuration is

complete, the FPGA is configured with the Nios V system, but it does not yet have a C program in
memory to execute.

-34

Chapter 3
Ashling RiscFree IDE
Build Flow

This chapter covers the build process for C software programs targeting the Nios V processor. The
Ashling RiscFree IDE for Altera FPGAs provides an easy-to-use graphical user interface (GUI) that
automates the build process and the management of CMakeLists.txt files. The IDE also integrates a
text editor and a debugger.

In this chapter, you will use the Ashling RiscFree IDE for Altera FPGAs to compile a simple C
example program, which will run on a standard Nios V system configured on the FPGA of your
development board. You will create a new software project, build it, and execute it on the target
hardware. You will also learn to edit the project, rebuild it, and initiate a debugging session.

3.1 Create the hello_world Example Project

In this section you will create a new NIOS V C/C++ application project. To begin, perform the
following steps:

B Creating a Board Support Package

1. In Quartus Prime, select File > Open to open system.gsys, as shown in the figure below.

-35

Figure 3-1 Open .gsys

2. Click File > New BSP to create a new BSP, as shown in the figure below.

Figure 3-2 Creating a new bsp

-36

3. Create a software folder and a bsp subfolder within it. Name the file settings.bsp and click
Create, as shown below.

Figure 3-3 Creating a new bsp

-37

4. 1In the System File field, browse to and select System.gsys, as shown below.

Figure 3-4 Select system file

5. Click Create to generate the BSP.

Figure 3-5 Creating bsp
-38

6. Double-click the BSP Editor tab to maximize it, as shown below. Click Generate BSP.

Figure 3-6 Creating bsp

7. Launch Nios V Command Shell from the Start Menu.

-39

Figure 3-7 Launch Nios V Command Shell

8. Run the command below to switch to the working directory (see Figure 3-8).

cd /d <myfirst_niosv path>

Nios V Command Shell (Quari X + v

Entering Nios V shell
Microsoft Windows [Version 10.0.26100.2314]
(c) Microsoft Corporation. All rights reserved.

[niosv-shell] C:\Users\Terasic\AppData\Local\quartus> cd /d D:\myfirst_niosy|

Figure 3-8 Switch working directory

9. Run the commands shown to create the application (see Figure 3-9).

mkdir software\app
echo #include "<stdio.h"> > software\app\hello_world.c

echo int main() {printf("Hello from Nios V!\n");} >> software\app\hello world.c

- 40

niosv-app --bsp-dir=software/bsp --app-dir=software/app --srcs=software/app/hello_world.c --elf-name=hello_world.elf

Nios V Command Shell (Quarl X + v

Entering Nios V shell

Microsoft Windows [Version 10.0.26100.2314]

(c) Microsoft Corporation. All rights reserved.

[niosv-shell] C:\Users\Terasic\AppData\Local\quartus> cd /d D:\myfirst_niosv

[niosv-shell] D:\myfirst_niosv> mkdir software\app

[niosv-shell] D:\myfirst_niosv> echo #include “<stdio.h"> > software\app\hello_world.c

[niosv-shell] D:\myfirst_niosv> echo int main() {printf("Hello from Nios V!\n");} >> software\app\hello_world.c

[niosv-shell] D:\myfirst_niosv> niosv-app —--bsp-dir=software/bsp --app-dir=software/app --srcs=software/app/hello_world.
c ——elf-name=hello_world.elf

2025.06.20.15:03:33 Info: ELf name is set to "hello_world.elf".

2025.06.20.15:03:33 Info: "software\app\CMakelists.txt" was generated.

[niosv-shell] D:\myfirst_niosv>

Figure 3-9 Creating application
B Importing Projects into Ashling RiscFree IDE for Altera FPGAs

1. User need to install WSL in your windows system.
2. Launch Ashling RiscFree IDE for Intel FPGAs from the Start Menu.

Figure 3-10 Select Workspace

Note: If the user does not see the Ashling RiscFree IDE Shortcut in the Quartus 25.1 Pro folder of
the Windows Start Menu, please refer to the link below to resolve the issue : Resolving the Missing

-41

https://github.com/johnnyfan1979/public_doc/blob/main/documentation/Tools/Resolving%20the%20Missing%20Ashling%20RiscFree%20IDE%20Shortcut%20in%20the%20Quartus%2025.1%20Pro%20Start%20Menu.md

Ashling RiscFree IDE Shortcut in the Quartus 25.1 Pro Start Menu

3. Then click Launch Set the workspace as shown in Figure 3-11, then click Launch.

Figure 3-11 Select Workspace

4. Choose File->Import Nios V CMake Project to open the Import Window.

- 42

https://github.com/johnnyfan1979/public_doc/blob/main/documentation/Tools/Resolving%20the%20Missing%20Ashling%20RiscFree%20IDE%20Shortcut%20in%20the%20Quartus%2025.1%20Pro%20Start%20Menu.md

Figure 3-12 Import Nios V CMake Project
5. In the Import Window, make sure the following things:
e Browse and select the bsp project folder.

e Give the project a name. (bsp is default name)

Figure 3-13 Ashling RiscFree IDE Import Project Wizard

6. Click Finish. The Ashling RiscFree IDE import the bsp project and returns to the Nios V C/C++
project perspective. See Figure 3-14.

-43

Figure 3-14 Ashling RiscFree IDE C++ Project Perspective for bsp

. Choose File->Import Nios V CMake Project to open the Import Window.

. In the Import Window, make sure the following things:

e Browse and select the app project folder.

e Give the project a name. (app is default name)

- 44

Figure 3-15 Ashling RiscFree IDE Import Project Wizard

9. Click Finish. The Ashling RiscFree IDE import the app project and returns to the Nios V
C/C++ project perspective. See Figure 3-16.

Figure 3-16 Ashling RiscFree IDE C++ Project Perspective for bsp and app

- 45

When you import the project, the Ashling RiscFree IDE add two new projects in the Projects
Explorer tab:

m app is your C/C++ application project. This project contains the source and header files for your
application.

m bsp is a system library that encapsulates the details of the Nios V system hardware.

3.2 Build and Run the Program

In this section you will build and run the program to execute the compiled code.

1. Before building the project, we would like to confirm with you that the .sof file (hardware
design file) in the Quartus project has been downloaded (refer to Section 2.2).

2. To build the program, right-click the app project in the Projects Explorer tab and choose Build
Project. The Build Project dialog box appears and the IDE begins compiling the project.

- 46

Figure 3-17 Ashling RiscFree IDE C++ Project Perspective for bsp and app

3. When the compilation is complete, a Build Finished message will appear in the CDT Build
Console. The compilation time will vary depending on your system. Refer to Figure 3-18 for an
example.

-47

Figure 3-18 Ashling RiscFree IDE app Build Completed

4. After compilation complete, right-click the app project, choose Run As, and choose Ashling
RISC-V Hardware Debugging.

- 48

Figure 3-19 Ashling RiscFree IDE Import Project Wizard

5. Inthe C Local Application window, select hello_world.elf and then click OK.

Figure 3-20 Ashling RiscFree IDE Import Project Wizard

- 49

6. In the Edit Configuration window:

e Select the Debugger tab.
o For Debug Probe, select Atum A3 Nano Development board.
o Click Auto-detect Scan Chain.
o Click Run.

Figure 3-21 Ashling RiscFree IDE Import Project Wizard

The IDE begins to download the program to the target FPGA development board and begins
execution.

When the target hardware begins executing the program, a message ‘Got a debugger connection’
will appear in the Console tab (switch to 4. hello_world.elf[Ashing RISC-V Hardware Debuggin]).

-50

Figure 3-22 Debugger connection message in the Console

You can configure the Ashling RiscFree IDE to integrate external tools. As an example, the

following steps detail how to set up the juart-terminal tool to display a "Hello World" message via
the JTAG UART IP.

To perform external tool configuration for juart-terminal, follow these steps:

1. Go to Run > External Tools > External Tools Configurations.

-51

Figure 3-23 Navigating to External Tools Configurations

2. Double click Program to open a New_configuration window.

-52

Figure 3-24 Creating a new Program configuration

3. Rename the configuration as Nios V JTAG UART Output.

-53

Figure 3-25 Renaming the configuration to ‘Nios V JTAG UART Output'

4. 1In Location, click Browse File system.

- 54

Figure 3-26 Browse for the executable file in the Location field
5. Browse and select the juart-terminal file in the following paths:

<Intel Quartus Prime installation directory>/quartus/bin64/juart-terminal.exe

-55

| £ Open X

< <« Data (D:) » altera_pro » 251 » quartus » binf4 » po &) Search bing4 el |

Organise « Mew folder =~ 0 0
~
u Videos » MName Date modified Type Size
L) g s e B
FERREK [%] jtag_hw_jtag_over_protocol2-blaster.dll 2025-03-27 11:24 PM Application extens... 122 KB
@ Camera Upload: B jtag_hw_jtag_over_protocol-blaster.dll 2025-03-27 11:24 PM Application extens... 137 KB
@ my_first_niosV B jtag_hw_pli-blaster.dll 2025-03-27 11:24 PM Application extens... 143 KB
3 N YIS TT 1974 A p—ey - A3 K
New folder B jtag_hw_ush-blaster.dll 2025-03-27 11:24 PM Application extens... 143 KB
E jtag_pli-blaster_vpi.dll 2025-03-27 11:25 PM Application extens... 321 KB
W jtagconfig.exe 2025-03-27 11:24 PM Application 273 KB
v 32 Dropbox
b P [jtagquery.exe 2023-03-27 11:24 PM Application 3158 KB
’ dropbox.cach [jtagserver.exe 2025-03-27 11:24 PM Application 539 KB
& Camera Uploa |juart-termina|.exe 2025-03-27 11:25 PM Application 62 KB
v - This PC B legality_lab.dll 2025-03-27 11:25 PM Application extens... 1,648 KB
File name: |Juart-terminal‘exe V| b e

Figure 3-27 Selecting 'juart-terminal.exe’

6. Set the Arguments as “-c 1 -d 1 -1 0”. This configures the JTAG UART connection is towards
the JTAG UART IP at cable 1, device 1, and instance 0.

-56

Figure 3-28 Setting arguments for the JTAG UART

7. Click Apply, then click Run

-57

Figure 3-29 Applying and running the external tool

8. The message "Hello from Nios V!” appears in the Nios V JTAG UART Output tab.

- 58

Figure 3-30 ""Hello from Nios V!'* message in the output tab.

9. Before proceeding to the next step, the user needs to switch to the hello_world.elf console and
stop Terminate . This will ensure that the next step can be executed without any issues.

-59

Figure 3-31 Stop Terminate.

Now you have created, compiled, and run your first software program based on NIOS V. And you
can perform additional operations such as configuring the system properties, editing and re-building
the application, and debugging the source code.

3.3 Edit and Re-Run the Program

You can modify the hello_world.c program file in the IDE, build it, and re-run the program to
observe your changes executing on the target board. In this section you will add code that will make
LEDG blink.

Perform the following steps to modify and re-run the program:

-60

1.

In the hello_world.c file, modify the text shown in the example below:

#include <stdio.h>

#include <system.h>

#include <altera_avalon_pio_regs.h>

int main()

{

printf("Hello from Nios V!I\n");
int count = 9;
int delay;
while (1) {
IOWR_ALTERA_AVALON_PIO DATA(PIO_LED BASE, count & 0x01);
delay = 0;
while (delay < 2000000) {
delay++;
}

count++;

}

return 0;

-61

Figure 3-32 Adding LED blink code to ‘hello_world.c'

2. Save the project.

3. Recompile the file by right-clicking app in the Projects Explorer tab and choosing Build
Project

- 62

Figure 3-33 Rebuilding the project after code changes

4. After Build Porject done, Run > Run As > Ashling RISC-V Hardware Debugging.

-63

Figure 3-34 Run program

5. Orient your development board so that you can observe LEDG blinking.

Figure 3-35 LEDG

- 64

3.4 Why the LED Blinks

The Nios V system description header file, system.h, contains the software definitions, name,
locations, base addresses, and settings for all of the components in the Nios V hardware system. The
system.h file is located in the in the bsp\system.h directory as shown in Figure 3-36.

Figure 3-36 system.h Location

If you look at the system.h file for the Nios V project example used in this tutorial, you will notice
the pio_led function. This function controls the LED. The Nios V processor controls the PIO ports
(and thereby the LED) by reading and writing to the register map. For the PIO, there are four
registers: data, direction, interrupt mask, and edge capture. To turn the LED on and off, the
application writes to the PIO data register.

The PIO core has an associated software file altera_avalon_pio_regs.h. This file defines the core’s
register map, providing symbolic constants to access the low-level hardware.
- 65

The altera_avalon_pio_regs.h file is located in bsp\drivers\inc.

When you include the altera_avalon_pio_regs.h file, several useful functions that manipulate the
PIO core registers are available to your program. In particular, the function

IOWR_ALTERA AVALON PIO DATA (base, data)

can write to the PIO data register, turning the LED on and off. The PIO is just one of many Platform
Designer peripherals that you can use in a system. To learn about the PIO core and other embedded
peripheral cores, refer to Embedded Peripherals IP User Guide.

When developing your own designs, you can use the software functions and resources that are
provided with the Nios V HAL. Refer to the Nios V Processor Software Developer Handbook for
extensive documentation on developing your own Nios V processor-based software applications.

3.5 Debugging the Application

Before you can debug a project in the Ashling RiscFree IDE, you need to create a debug
configuration that specifies how to run the software. To set up a debug configuration, perform the
following steps:

1. In the hello_world.c, double-click the front of the line which is needed to set breakpoint. See
Figure 3-37.

- 66

Figure 3-37 Set Breakpoint

2. To debug your application, right-click the application (app by default) and choose Debug as >
Ashling RISC-V Hardware Debugging.

3. Ifthe Confirm Perspective Switch message box appears, click Switch.

After a moment, the main () function appears in the editor. A blue arrow next to the first line of code
indicates that execution stopped at that line.

4. Choose Run-> Resume to resume execution.

When debugging a project in the Ashling RiscFree IDE, you can pause, stop or single step the
program, set breakpoints, examine variables, and perform many other common debugging tasks.

Note: To return to the C/C++ project perspective from the debug perspective, click the C/C++
icon in the top right corner of the GUI.

-67

3.6 Configure System Library

In this section you will learn how to configure some advanced options about the target memory or
other things. By performing the following steps, you can charge all the available settings:

1. In Quartus Prime, select File > Open, and open system.gsys, as shown in the figure below.

Figure 3-38 Opening 'system.qsys’ in Quartus Prime

2. Click File > Open to open the BSP, as shown in the figure below.

- 68

Figure 3-39 Opening the BSP file
3. Select the BSP Editor tab.

Figure 3-40 Selecting the 'BSP Editor’ tab
4. Browse to and open software/bsp/settings.bsp.
5. Click Open to open the BSP Editor.
- 69

6. Double-click the BSP Editor Tab to maximize the tab, as shown in the figure below.

Figure 3-41 Maximizing the 'BSP Editor" tab.
7. Click Generate BSP

The following content will introduce how to configure a software project to use hardware memory.
By modifying the System Library Properties in the Ashling RiscFree IDE, you can precisely
configure the memory mapping.

1. In the Ashling RiscFree IDE, right-click app and choose System Library Properties. The
Properties for app_syslib dialog box opens.

2. Click System Library. The System Library page contains settings related to how the program

interacts with the underlying hardware. The settings have names that correspond to the targeted
NIOS V hardware.

3. In the BSP Linker Script tab, observe which memory has been assigned for Block Started by
Symbol memory (.bss), exception handler memory (.exceptions), Heap memory, Read-only
-70

data memory (.rodata), Read/write data memory (.rwdata), Stack memory and Program
memory (.text), see Figure 3-42. These settings determine which memory is used to store the
compiled executable program when the example app programs runs. In the Main tab, You can
also specify which interface you want to use for stdio, stdin, and stderr. You can also configure
build options to support C++, reduced device drivers, etc.

4. Choose onchip_memory for all the memory options in the BSP Linker Script tab. See Figure
3-42 for an example.

Figure 3-42 Configuring System Library Properties

5. Click Generate BSP to regenerate BSP. Close the Platform Designer Windows and return to
the IDE workbench.

-71

Note: If you make changes to the system properties you must rebuild your project. To rebuild,
right-click the app project in the Projects Explorer tab and choose Build Project.

-72

4.1 Revision History

Version Change Log
V1.0 Initail version

4.2 Copyright Statement

Copyright © Terasic Inc. All Rights Reserved.

-73

Chapter 4

Appendix

	Chapter 1 Overview
	1.1 Hardware and Software Requirements

	Chapter 2 Hardware Design
	2.1 Creation of Hardware Design
	2.1.1 Creating a New Project
	2.1.2 Creating a Platform Designer System
	2.1.3 Configuring Assignment and Constraint
	2.1.4 Compiling the Quartus Prime Software Project

	2.2 Download Hardware Design to Target FPGA

	Chapter 3 Ashling RiscFree IDE Build Flow
	3.1 Create the hello_world Example Project
	3.2 Build and Run the Program
	3.3 Edit and Re-Run the Program
	3.4 Why the LED Blinks
	3.5 Debugging the Application
	3.6 Configure System Library

	Chapter 4 Appendix
	4.1 Revision History
	4.2 Copyright Statement

