1RENESANAS Application Note
RX Family

Firmware Update Module Using Firmware Integration Technology

Introduction

This application note describes the firmware update module using Firmware Integration Technology (FIT).
The module is referred to below as the firmware update FIT module.

By using the FIT module, users can easily incorporate firmware update functionality and secure boot
functionality into their applications. This application note explains how to use the firmware update FIT module
and how to incorporate its API functions into user applications.

The release package associated with this application note includes a demo project. You can confirm the
basic operation of the firmware update functionality by following the steps described in section 5, Demo
Project, to build an environment to run the demo.

Operation Confirmation Devices
RX24T Group

RX26T Group

RX65N, RX651 Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Related Application Notes

Application notes related to this application note are listed below. Refer to them in conjunction with this
document.

e Firmware Integration Technology User’'s Manual (RO1AN1833)

¢ RX Family Adding Firmware Integration Technology Modules to Projects (RO1AN1723)

¢ RX Family Board Support Package Module Using Firmware Integration Technology (RO1AN1685)
¢ RX Family Flash Module Using Firmware Integration Technology (R01AN2184)

¢ RX Family SCI Module Using Firmware Integration Technology (RO1AN1815)

¢ RX Family BYTEQ Module Using Firmware Integration Technology (RO1AN1683)

Target Compilers

e C/C++ Compiler Package for RX Family from Renesas Electronics
e GCC for Renesas RX
e |AR C/C++ Compiler for RX

For details of the environments on which operation has been confirmed, refer to 6.1, Confirmed Operation
Environments.

RO1AN6850EJ0200 Rev.2.00 Page 1 of 86
Jul.20.23 RENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

Contents

S © Y=Y 1 S 5
1.1 About the Firmware Update MOAUIE.............coooiiiiiiiiiie et s 5
1.2 Configuration of Firmware Update MOAUIE..............cooiiiiiiiiiii e 6
1.3 Firmware Update OPeration o i e e e et eeeeeas 7
1.3.1 DUAI-BanK MEthOd.ttt ettt e nnnnbnnbeseeeeeees 8
1.3.1.1 Operation of Dual-Bank Methodooooi i 8
1.3.2 Linear Mode Partial Update Method..............coooiiiiiiiiii et 9
1.3.2.1 Operation of Linear Mode Partial Update Method ..o 9
1.3.3 Linear Mode Full Update Methoduiiiiiiii e 10
1.3.3.1 Operation of Linear Mode Full Update Method.............oooii s 10
1.4 Initial State of FiIrmware UpPdateeeeeiiiiiiiiiiiii et e e e e 11
1.4.1 Initial State of Dual-Bank Methoduiiiiiiiiiie e e 11
1.4.2 |Initial State of Linear Mode Partial Update Method ..., 12
1.4.3 Initial State of Linear Mode Full Update Method...........ccuuuiiiiiiiiii e 12
1.5 Package CONTENTScooiiiiiiiii ettt et e e e et e e e s e e e e e e e e e e e e e e nraes 13
T o I =Y 1 16
D N o I [0 o 4= 11T o SRS 19
2.1 Hardware REQUITEIMENTS ..ottt e e e ettt e e e st e e e e s bbbt e e e e e annnneeeee s 19
2.2 Software REQUINEMENTS....... . ettt et eeeeeeeeeas 19
DG IS (U o o Jo) (=Yo I loTo) [g =1 (o - T RO SO UOR 19
D o (== o 1= [TSP PRSP 19
D T 11 (= Te [gl Y/ o1 OO P 19
b T O7o 1] o 1[I T=Y 11T 1 PRI 20
2.7 Sample ProjeCt COUE SIZES.......uuiiiiiiiiiiiiiii ettt e e ettt e e s s e e e s e eeea e s 21
b T Y (o [V 01T o = PSP P PRSPPI 23
2.9 REIUIMN VAIUES. ...ttt ettt e et e e e e e e e e e e e e e e e aaaaa e e nnnnnenbessseeeeeeeeeens 23
2.10 Adding the FIT Module t0 YOUFr PrOJECLccooieieeieicie et e e e e e e e e e e 24
B T N e I W] e 1o o -SSP RRRR 25
3.1 R FWUP _OPEN FUNCHON. ..ottt e e e e e e e e e e e e ettt e e e e e e e e e e eeaaaaeaaeaaaans 25
3.2 R _FWUP_CIOSE FUNCLON ..ottt e e e e e e e et e e e e e e e e aaaaaaaeaaaaaas 25
3.3 R_FWUP_ISEXiStIMage FUNCHONee it e e e e e e e e e eeeaaannaans 25
3.4 R _FWUP_EraseArea FUNCHON.uiiiiiiiiee ettt e et ee e e e s bt eeeeeeeaans 26
3.5 R_FWUP_GetImageSize FUNCHON........cooiiiie e e e e 26
3.6 R_FWUP_WritelmageHeader FUNCLON ... e 26
3.7 R_FWUP_WritelmageProgram FUNCLONueiiiiiiiiiiiiie et 27
3.8 R_FWUP_Writelmage FUNCHONueiee e e e e e e e e e e e e e e e e e e aanranaans 27
3.9 R _FWUP_Verifylmage FUNCHON ..o e e e e e e e e e e e e e e 27
3.10 R_FWUP_Activatelmage FUNCHON ...t 28
RO1AN6850EJ0200 Rev.2.00 Page 2 of 86

Jul.20.23 RENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

3.11 R _FWUP_EXecImage FUNCLON. ...t e e e e e e e e e e e aaeaee s 28
3.12 R_FWUP_SoftwareReset FUNCHONuuiiiiiiiieeeeeeeeee e 28
3.13 R_FWUP_SoftwareDelay FUNCLON ...ttt e e e e e e e e 29
3.14 R _FWUP_GetVersion FUNCLON..........cooiiiee et e e e e e e e e e aaaeaaaaaeaaas 29
3.15 Wrapper Functions (r_fwup_wrap_Verify.C, N)........ooiuiiiiiiiiiiiie e 30
3.15.1 r_fwup_wrap_sha256_init FUNCHON ... 30
3.15.2 r_fwup_wrap_sha256_update FUNCONeii e 30
3.15.3 r_fwup_wrap_sha256 final FUNCLON................uuiiiiiiiiiiie e 30
3.15.4 r_fwup_wrap_verify_ecdsa FUNCHON ...t 31
3.15.5 r_fwup_wrap_get _crypt context FUNCHONuuiiiiiiiiiiiieiieeee e 31
4. RenNesas IMage GENEIATONccuiuiiii ettt e e e e e e e e e e e e e e esaeeeeesnseeeeeannees 32
4.1 Image Generation MethOdS............uuuiiiiiiiiiiiiicieee e e e e e e e e 32
4.1.1 Initial Image Generation MethOdooiiiiiiiiiiii e e e 33
4.1.2 Update Image Generation MethOdcoooiiiiiiiiii e 34
B | 11T To [1 PP PPPT 35
4.2 Update IMage Fle ... 35
4.2.1 Update IMage Fileottt e et e annaanes 37
4.3 Parameter File. ... e et e e e e e e e e e e e e e e e e e e 39
4.3.1 Contents of Parameter File........ ..o i e 40
4.3.2 How to generate an image with a flash size different from the demo projectccccooiiiiini 43
4.3.3 How to prevent data flash data from being included in the imagecccccciiiii i, 44
4.4 Image Generation MEthOUS...........uiiiiiiiii e 45
4.4.1 Initial Image Generation MEthoduuiiiiiiiiie e e e e e erare e e e 46
4.4.2 Update Image Generation Methodcoooiiiiiiiiiiiiii e 46
5. DEIMO PrOJECT ...ttt e e e 47
5.1 DeMO PrOJECE STIUCIUIE ...ttt e e e ettt e e e e e ettt e e e e e e antaeeeaeessntbeaeeeesastaaeaeeeaanns 47
5.2 Operating environment Preparation............cccccuiiiiiiiiiieiieeeeee e a e e e e e e e e e e e 48
02 B 1 1 = Lo T =Y = 1 1= o o P PPPRRRTPTRR 48
5.2.2 Installing the Python execution enVIrONMENT.............uiiiiiiiiiiii e 48
5.2.3 Installing the OpenSSL execution enNVIFONMENT............ooiiiiiiiiiiiie e 48
5.2.4 Installing the FIash WIILEI........coo e e e e e e e 49
5.2.5 USB serial CoNVErsion DOAI...........uuiiiiiiiiiiiiie et e e e e e e e e st ee e e e s snnaeeeeeeeanes 49
5.3 Execution environment preparation............ooooeeiiieieiiiiiiie e a e e e e e e e e ———— 50
5.3.1 Generating Keys for Signature Generation and Verification.................ccocoiiiiiiiiiiiiice e, 50
5.3.2 Preparing the execution environment for Renesas Image Generator...........ccccvveviieiieiiiiiiieeiee e, 50
5.4 Demo Project EXeCUtION ProCEAUIEcoiiiiiiiiiii e e e e e e e 51
oI B B LU =T 1 1Y = 1 oo SRR 51
5.4.1.1 EXecution ENVIFONMENT ... e e et e et e et e e et e e e e e aaaaaaaaaaaeas 51
5.4.1.2 Building The DemO ProOJECL.......cooeieiiie et e e e e e e e et e e e e e e e e e e eeeensanaans 51
5.4.1.3 Creating Initial and Update IMagescccuuumiiiiiiiiiiiieeeeee e a e e e e e e 53
RO1AN6850EJ0200 Rev.2.00 Page 3 of 86

Jul.20.23 RENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

5.4.1.4 Programming the Initial IMage...........coooiiiiiiiiii e 54
5.4.1.5 Executing a Firmware Update ...t 54
5.4.2 Operation of Linear Mode Partial Update Method ..., 55
5.4.2.1 EXECULiON ENVIFONMENToiiiiiiiiiiiiiii ettt e e ettt e e e e s et e e e e e s annbeeeeeeesanneneeeaeeaanns 55
5.4.2.2 Building The DemMO PrOJECt.......coi i e e e e e s b eeeeeeaans 55
5.4.2.3 Creating Initial and Update IMagesouuiiiiiiiiii e 56
5.4.2.4 Programming the Initial IMage...........coooiiiiiiii e 57
5.4.2.5 Executing a Firmware Update ... 57
5.4.3 Operation of Linear Mode Full Update Method..............c.cooiiiiiiiiiiiiiiii e 58
5.4.3.1 EXECULiON ENVIFONMENToiiiiiiiiiiiiiii ettt e ettt e e e e ettt e e e e s abbbeeeeeesanntneeeaeeeanns 58
5.4.3.2 Building The DemMO PrOJECt.coi i e e e e ebbeeeee e e e aans 58
5.4.3.3 Creating Initial and Update IMagesouuiiiiiiiiii e 59
5.4.3.4 Programming the Initial IMage...........coooiiiiiiiii e 60
5.4.3.5 Executing a Firmware Update ... 60
T Y o 0 T= T Lo [o= SR SURRRR 62
6.1 Confirmed Operation ENVIrONMENTSoooi i e eee e 62
6.2 Operating Environment for DEMO PrOJECE...........uviiiiiiiiiiiiie et s e e 64
6.2.1 Operation Confirmation Environment for RXB5N..............uuuuiiiiiiiiiiiiiiieeee e 64
6.2.1.1 Memory map of dual bank method demo Projectuuueeeiiiiiiiiiiiiieee e 65
6.2.1.2 Memory map of demo project for half-surface update method in linear mode............ccccccvvvvvveeeenn.n. 67
6.2.1.3 Memory map of demo project for full update method in linear mode................ccoooiiiiiiiiiiiieeen. 69
6.2.2 Operation Confirmation Environment for RX26T ... 71
6.2.2.1 Memory map of dual bank method demo ProjeCtcccoiiiiiiiiii i 72
6.2.2.2 Memory map of demo project for half-surface update method in linear mode...............ccvvveeeeeeee.n. 74
6.2.2.3 Memory map of demo project for full update method in linear mode................ccocccciiiiiiiiiiieeieeee, 78
6.2.3 Operation Confirmation Environment for RX24Tooiiiiiii e 80
6.2.3.1 Memory map of demo project for half-surface update method in linear mode.............cccccveeeeeeee.n. 81
6.2.3.2 Memory map of demo project for full update method in linear mode.................coooiiiiiiiiiie, 83
6.3 Open source license information used in the demo Project..........ccccvviiiiiiii e, 85
6.4 Notes on setting peripheral functions during the transition from bootloader to application.................. 85
RO1AN6850EJ0200 Rev.2.00 Page 4 of 86

Jul.20.23 RENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

1. Overview
1.1 About the Firmware Update Module

A firmware update is a process in which a device overwrites its own firmware, the software that controls the
device’s hardware, with a new version of the firmware (called the “update image” in this document) obtained
through unspecified means. Firmware updates may be applied to fix bugs, add new functions, or improve
performance.

The firmware update module is middleware that, when firmware update functionality is added to the user’s
system, provides the following functionality as its components:

Functionality for importing the update image to the MCU via a communication interface

¢ Functionality for validating the update image (ECDSA NIST P-256 and SHA256 are used for validation.)
¢ Functionality for programming the update image to the on-chip flash memory (self-programming)

o Functionality for activating the update image

Generally, a firmware update system comprises two programs: an application program providing firmware
update functionality and a bootloader providing secure boot functionality used to validate the first program.

The bootloader functionality is essential to the proper functioning of the firmware update. It guarantees that
the sequence of processing that composes the firmware update, including validation of the update image, is
legitimate.

The firmware update module for the RX Family provides functionality for the following three firmware update
methods.

e Dual-bank method
e Linear mode partial update method
e Linear mode full update method

A tool (Renesas Image Generator) for creating firmware images is provided as a utility. Renesas Image
Generator can generate the following types of images for use by the firmware update module.

¢ Initial image: An image file containing the bootloader and application program that is programmed using
Flash Writer at the time of initial system configuration (extension: mot).
e Update image: An image file containing the firmware update (extension: rsu).

RO1AN6850EJ0200 Rev.2.00 Page 5 of 86
Jul.20.23 RENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

1.2 Configuration of Firmware Update Module

Figure 1.1 shows the configuration of the modules in the bootloader and application program incorporating
the firmware update module, and Table 1.1 lists the modules used in the bootloader and application
program.

The update image received by the communication interface is self-programmed to the on-chip flash memory
of the target device via the firmware update module and the flash memory driver.

Sample application PC
(262l e e Buffer _ImageData Terminal Soft
(*.rsu) (Binary, XMODEM.... etc)
Buffer fulljor EOF ImageData

FW Update Module

| G t
(APls and wrapper) mage Generator

ImageData

Signature verification

FW Update Module

Communication driver

FIT Module

Flash driver Serial Driver
r_flash

r_sci

‘, [s |
1
L

Tinycrypt ...etc

Software Library

Board support package(r_bsp) Wrapper

e ——

Device : RX65N,RX26T ... etc I Userimplementation

Figure 1.1 Configuration of Modules in Sample Bootloader and Application Program

Table 1.1 List of External Modules Used in Sample Bootloader and Application Program

Type Application Note (Document No.) FIT Module

BSP RX Family Board Support Package Module Using Firmware r_bsp
Integration Technology (RO1AN1685)

Device driver RX Family Flash Module Using Firmware Integration Technology r_flash_rx
(RO1AN2184)

Device driver RX Family SCI Module Using Firmware Integration Technology r_sci_rx
(RO1AN1815)

Middleware RX Family BYTEQ Module Using Firmware Integration Technology | r_byteq
(RO1AN1683)

RO1AN6850EJ0200 Rev.2.00 Page 6 of 86

Jul.20.23 RENESAS

RX Family

Firmware Update Module Using Firmware Integration Technology

1.3 Firmware Update Operation

The firmware update module for the RX Family supports both the dual mode and the linear mode of the

MCU’s on-chip flash memory.

Dual mode uses the hardware's dual bank function to store the firmware to be updated (update image) on
the buffer plane and then swap banks with the main plane to provide a dual bank method of updating..

For linear mode, two methods are provided: one in which the firmware update (update image) is stored
temporarily on the buffer plane and another in which it is programmed directly to the main plane.

e Main plane: Area for storing the image used for booting
o Buffer plane: Area for storing the image to be applied as an update

The method of writing the update image directly to the main plane allows all of the internal flash memory to
be used as the main plane, but since there is no buffer plane, it is not possible to restore the firmware to its
pre-update state in the event of an update failure.

The update method support status varies by device and flash memory capacity, as detailed below.

Table 1.2 Supported Update Methods for Each Product

Type 2MB 1,5MB 1MB 756KB 512KB 384KB 256KB 128KB

Product

RX65N/651 a/b alb b b b - - -
RX26T - - - - a/b - b b
RX24T - - - - b b b b

a: Dual-Bank Method

b: Linear Mode Partial Update Method / Full Update Method

- Not supported
RO1AN6850EJ0200 Rev.2.00 Page 7 of 86

Jul.20.23 RENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

1.3.1 Dual-Bank Method

The update image is stored in the buffer plane in the on-chip flash memory, and, after it is validated, the
banks are swapped, exchanging the main plane and buffer plane.

his method allows the application program to contain the firmware update functionality.

This means that if the firmware update fails before bank swapping occurs, the pre-update image in the main
plane can be launched to retry the firmware update.

Since the on-chip flash memory is divided into two portions by the dual-bank functionality, the size of the on-
chip flash memory available to store the application program is equal to the size of one of the two portions
into which the on-chip flash memory has been divided minus the size of the bootloader.

1.3.1.1 Operation of Dual-Bank Method

The update image is stored in the buffer plane using the dual-bank functionality of the on-chip flash memory,
and the firmware update is accomplished by using the bank-swapping functionality to exchange the banks.

Initial state. [1] Program and verify update image. [2] Swap banks. [3] Activate update image.
buffer user program user program buffer
[BLANK] [update image] [previous update image] [BLANK]
bootloader(mirror) |:> bootloader(mirror) bootloader(mirror) [> bootloader(mirror)
user program user program user program user program
[previous update image] [previous update image] E> [update image] [update image]
bootloader bootloader bootloader bootloader

Figure 1.2 Operation of Dual-Bank Method

[1] Program and verify update image.
The previous update image (application program) stored in the main plane is used to program the update
image to the buffer plane and verify it.

[2] Swap banks.
If verification is successful, the banks are swapped.

[3] Activate update image.
The buffer plane is erased, and the main plane is activated.

RO1AN6850EJ0200 Rev.2.00 Page 8 of 86
Jul.20.23 RENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

1.3.2 Linear Mode Partial Update Method

The update image is stored temporarily in the buffer plane in the on-chip flash memory, and, after it is
validated, it is self-programmed to the main plane. This method allows the application program to contain the
firmware update functionality. This means that if the firmware update fails before self-programming to the
main plane occurs, the pre-update image in the main plane can be launched to retry the firmware update.
The size that can store the application program is half the size of the remaining internal flash memory minus
the bootloader.

1.3.2.1 Operation of Linear Mode Partial Update Method

This method divides the on-chip flash memory into a main plane and a buffer plane and then temporarily
stores the update image in the buffer plane. Firmware is updated by storing the update image on the buffer
plane and copying it from the buffer plane to the main plane.

[1] Program and verify update

Initial state. image. [2] Copy update image. [3] Activate update image.
main main main main
[previous update image] [previous update image] [update image] [update image]
buffer buffer buffer buffer

[BLANK] [update image] [update image] [BLANK]

bootloader E> bootloader E> bootloader E> bootloader

Figure 1.3 Operation of Partial Update Method

[1] Program and verify update image.
The previous update image (application program) stored in the main plane is used to program the update
image to the buffer plane and verify it.

[2] Copy update image.
If verification is successful, the system is reset, the main plane is erased by the bootloader, and the
updated image is copied from the buffer plane to the main plane.

[3] Activate update image.
The buffer plane is erased, and the main plane is activated.

RO1AN6850EJ0200 Rev.2.00 Page 9 of 86
Jul.20.23 RENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

1.3.3 Linear Mode Full Update Method

The update image is self-programmed to the main plane, after which it is validated. This method requires the
bootloader to contain the firmware update functionality. This means that if the firmware update fails, the
bootloader functionality can be used to retry the firmware update. The functionality of the application program
cannot be used until the firmware update succeeds.

The size that can store the application program is the remaining size of the internal flash memory minus the

bootloader.

1.3.3.1 Operation of Linear Mode Full Update Method

This method of writing the update image directly to the main plane allows all of the internal flash memory to
be used as the main plane, but since there is no buffer plane, it is not possible to restore the firmware to its
pre-update state in the event of an update failure.

Initial state. [1] Erase previously update image. [2] Program update image.
main main main
[previous update image] E> [BLANK] E> [update image]
bootloader bootloader bootloader

Figure 1.4 Operation of Full Update Method

[1] Erase previously update image.
The previous update image (application program) stored in the main plane configures the data indicating
updates to the main plane and then applies a reset. After this, the bootloader runs and erases the initial
image from the main plane.

[2] Program update image.
The bootloader downloads the update image from an external source and programs it to the main plane.
The programmed update image is verified, and if verification is successful, the update image is activated.

RO1AN6850EJ0200 Rev.2.00 Page 10 of 86
Jul.20.23 RENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

1.4 Initial State of Firmware Update

To set the firmware update system using the firmware update module to the initial state, build the system by
writing the initial image generated by the Renesas Image Generator to the built-in flash memory with a flash
writer or similar device.

As an alternative method, it is also possible to build the system by first writing only the bootloader with a
flash writer, etc., and then writing the updated image of the application program with the bootloader function.

1.4.1 Initial State of Dual-Bank Method
The following figure shows the construction of the initial state of the dual-bank method using the bootloader.

[1] Program bootloader. [2] Mirror bootloader. [3] Program initial image. [4] Swap banks.
buffer buffer user program buffer
[BLANK] [BLANK] [update image] [BLANK]
buﬁe{éﬁﬁl?]ader) E:> bootloader(mirror) E> bootloader(mirror) bootloader(mirror)
buffer buffer buffer user program Initial
[BLANK] [BLANK] [BLANK] [> [update image] image
bootloader bootloader bootloader bootloader

Figure 1.5 Initial Firmware Update Settings Utilizing Bootloader (Example of Dual-Bank Method)

[1] Program bootloader.
The bootloader is programmed to the on-chip flash memory using a tool such as Flash Writer.

[2] Mirror bootloader.
The bootloader is mirrored to bank 1 by the bootloader.

[3] Program initial image.
The initial image is downloaded from an external source and programmed to the buffer plane using the
functionality of the bootloader. The programmed firmware is verified.

[4] Swap banks.
If verification is successful, the banks are swapped and processing ends.

RO1AN6850EJ0200 Rev.2.00 Page 11 of 86
Jul.20.23 RENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

1.4.2 |Initial State of Linear Mode Partial Update Method
The following figure shows the construction of the initial state of the dual-bank method using the bootloader.

[1] Program bootloader. [2] Program initial image.

main main
[BLANK] [update image]

buffer buffer o
[BLANK] [BLANK] Initial image
bootloader E> bootloader

Figure 1.6 Initial Firmware Update Settings Utilizing Bootloader (Example of Partial Update Method)

[1] Program bootloader.
The bootloader is programmed to the on-chip flash memory using a tool such as Flash Writer.

[2] Program initial image.
The initial image is downloaded from an external source and programmed to the main plane using the
functionality of the bootloader. The programmed firmware is verified, and if verification is successful,
processing ends.

1.4.3 Initial State of Linear Mode Full Update Method

[1] Program bootloader.

[2] Program initial image.

main user program
[BLANK] [update image]
|:> Initial image
bootloader | bootloader

Figure 1.7 Initial Firmware Update Settings Utilizing Bootloader (Example of Full Update Method)

[1] Program bootloader.
The bootloader is programmed to the on-chip flash memory using a tool such as Flash Writer.

[2] Program initial image.
The initial image is downloaded from an external source and programmed to the main plane using the
functionality of the bootloader. The programmed firmware is verified, and if verification is successful,
processing ends.

RO1ANG6850EJ0200 Rev.2.00
Jul.20.23

Re Page 12 of 86
KENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

1.5 Package Contents

The firmware update module package contains several files, including software and tools. These are listed in

the table below.

Table 1.3 Folder Structure of Firmware Update Module Package

Folder Name Description
r01an6850jj0200-rx-fwupdate.zip\
Demos Sample projects
rx
modules Drivers and libraries
—3rd_party
| Ltinycrypt Crypto library
Letc
L—base64 Base64 decode
|—rx24t-rsk Sample project for RX24T
w_buffer Linear Mode Partial Update Method
2_ccrx CC-RX version
—boot_loader Bootloader
—fwup_leddemo LED illumination application
—fwup_main User applications including firmware update
2_gce GCC version
—boot_loader Bootloader
—fwup_leddemo LED illumination application
—fwup_main User applications including firmware update
L—jar IAR version
—boot_loader Bootloader
—fwup_leddemo LED illumination application
—fwup_main User applications including firmware update
L—wo_buffer Linear Mode Full Update Method
2_ccrx CC-RX version
—boot_loader Bootloader
—fwup_leddemo LED illumination application
2_gcc GCC version
—boot_loader Bootloader
—fwup_leddemo LED illumination application
L—jar IAR version
—boot_loader Bootloader
—fwup_leddemo LED illumination application
|—rx26t-mck Sample project for RX26T
ualbank Dual-Bank Method
2_ccrx CC-RX version
—boot_loader Bootloader
—fwup_leddemo LED illumination application
—fwup_main User applications including firmware update
2_gce GCC version
—boot_loader Bootloader
—fwup_leddemo LED illumination application
—fwup_main User applications including firmware update

RO1ANG6850EJ0200 Rev.2.00
Jul.20.23

RENESAS

Page 13 of 86

RX Family

Firmware Update Module Using Firmware Integration Technology

Folder Name Description
Ljar IAR version
—boot_loader Bootloader
—fwup_leddemo LED illumination application
—fwup_main User applications including firmware update
|—w_buffer Linear Mode Partial Update Method
—e2_ccrx CC-RX version
—boot_loader Bootloader
—fwup_leddemo LED illumination application
—fwup_main User applications including firmware update
—e2_gce GCC version
—boot_loader Bootloader
—fwup_leddemo LED illumination application
—fwup_main User applications including firmware update
Ljar IAR version
—boot_loader Bootloader
—fwup_leddemo LED illumination application
—fwup_main User applications including firmware update
L—wo_buffer Linear Mode Full Update Method
2_ccrx CC-RX version
—boot_loader Bootloader
—fwup_leddemo LED illumination application
—e2_gce GCC version
—boot_loader Bootloader
—fwup_leddemo LED illumination application
Ljar IAR version
—boot_loader Bootloader
—fwup_leddemo LED illumination application

L_rx65n-rsk

Sample project for RX26T

—dualbank

Dual-Bank Method

—e2_ccrx

CC-RX version

—boot_loader Bootloader

—fwup_leddemo LED illumination application

—fwup_main User applications including firmware update
—e2_gce GCC version

—boot_loader Bootloader

—fwup_leddemo LED illumination application

—fwup_main User applications including firmware update

|—w_buffer Linear Mode Partial Update Method

2_ccrx CC-RX version

—boot loader Bootloader

—fwup_leddemo LED illumination application

—fwup_main User applications including firmware update

2_gce GCC version

—boot loader Bootloader

—fwup_leddemo LED illumination application

—fwup_main User applications including firmware update
L—jar IAR version

—boot_loader Bootloader

—fwup_leddemo LED illumination application

—fwup_main User applications including firmware update

RO1ANG6850EJ0200 Rev.2.00

Jul.20.23

Re Page 14 of 86
KENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

Folder Name Description
L—wo_buffer Linear Mode Full Update Method
—e2_ccrx CC-RX version
—boot_loader Bootloader
—fwup_leddemo LED illumination application
—e2_gcc GCC version
—boot_loader Bootloader
—fwup_leddemo LED illumination application
Ljar IAR version
—boot_loader Bootloader
—fwup_leddemo LED illumination application
—r_fwup Firmware update module (for sample projects)
FITModules Firmware update module
|—r_config Configuration file
—r_fwup Source code

Renesas Image Generator

L
RenesasimageGenerator (Python program and parameter files)

L_RenesaslmageGenerator.zip
—image-gen.py Python program for Renesas Image Generator

—RX65N_DualBank_ImageGenerator PRM.csv Parameter file for RX65N dual-bank method

Parameter file for RX65N linear mode partial update

|—RX65N_Linear_HaIf_ImageGenerator_PRM .Csv
method

Parameter file for RX65N linear mode full update

|—RX65N_Linear_FuII_ImageGenerator_PRM.csv
method

|—RX26T_DuaIBank_ImageGenerator_PRM.csv Parameter file for RX26T dual-bank method

_ Parameter file for RX26T linear mode partial update
|—RX26T_L|near_HaIf_ImageGenerator_PRM.csv

method

|—Rx 26T Linear Full_ImageGenerator PRM.csv Parameter file for RX26T linear mode full update
method

|—Rx2 AT Linear_Half_ImageGenerator PRM.csv Parameter file for RX24T linear mode partial update
method

L _ Parameter file for RX24T linear mode full update

RX24T_Linear_Full_ImageGenerator_PRM.csv
method
RO1AN6850EJ0200 Rev.2.00 Page 15 of 86

Jul.20.23 RENESAS

RX Family

Firmware Update Module Using Firmware Integration Technology

1.6 API Overview

Table 1.3 lists the API functions included in the firmware update module.

Table 1.4 API Functions

Function Function Description

R _FWUP_Open Opens the module.

R FWUP_Close Performs processing to close the module.
R_FWUP_IsExistimage Confirms the existence of an image in the specified area.
R_FWUP_EraseArea Erases the specified area.

R _FWUP_GetimageSize Obtains the size of the image.

R FWUP_WritelmageHeader Writes the header portion of the image.
R_FWUP_WritelmageProgram Writes the program portion of the image.
R_FWUP_Writelmage Writes the image (header portion + program portion).
R_FWUP_Verifylmage Validates the image.

R FWUP_Activatelmage Activates a new image.

R_FWUP_Execlmage Launches a new image.

R_FWUP_SoftwareReset Applies a software reset.

R_FWUP_SoftwareDelay Applies a software delay.

R FWUP_GetVersion Returns the version number of the module.

Figure 1.8 to Figure 1.12 show flowcharts of example implementations of a bootloader and application
program corresponding to each firmware update method described in in 1.3, Firmware Update Operation,

using the APIs provided in this module.

For details, refer to the source code of the demo projects included in the package associated with this

application note.

(R_FWUP_Open)

Initial image

OFF

program mode?

Program update image on the
buffer side
(R_FWUP_Writelmage, R_ FWUP_Getimage:

ize)

Verify the buffer side
(R_FWUP_Verifylmage)

YES

Does an
image exist on
e main side2
RiFWUPilsExist\mage

not exist

exist

Verify the main side
(R_FWUP_Verifylmage)

y

Bank swap

L(R_FWUP_Activete\mage)J

Erase the buffer side
R_FWUP_EraseArea

v

Run firmware on the Exit with error

main side image
R_FWUP_Execimage

A 4

Software reset
R_FWUP_SoftwareReset,

Exit with error

Figure 1.8 Bootloader Implementation Example for Partial/Full Update Method (Using Buffer Plane)

RO1ANG6850EJ0200 Rev.2.00
Jul.20.23

Re Page 16 of 86
KENESAS

RX Family

Firmware Update Module Using Firmware Integration Technology

(R_FWUP_Open)

Received

Receive Image

Program update image on the

buffer side
(R_FWUP_Writelmage, R_FWUP_GetimageSize)

Not received

On-going

Finished
programming?

Abnormally terminated

Normally terminated

Exit with error

Verify buffer side
(R_FWUP_Verifylmage)

A4

Erase the buffer side
(R_FWUP_EraseArea)

Bankswap
(R_FWUP_Activetelmage)

Application Processing

Software reset
(R_FWUP_SoftwareReset)

]

Figure 1.9 Application Program Implementation Example for Partial/Full Update Method

(Using Buffer Plane)

(R_FWUP_Open)

Exist

Initial image OFF
program mode?

ON

Does an
image exist on
e main side2
R_FWUP_IsExistimage

Not exist

Program update image on the
bufferside
(R_FWUP_Writelmage, R_FWUP_Getimage

ize)

Program update image on the

(R_FWUP_Writelmage, R_FWUP_Getimage

main side
ize)

Verify the bufferside
(R_FWUP_Verifylmage)

Verify main side
(R_FWUP_Verifylmage)

Erase the buffer side
R_FWUP_EraseArea

Exit with error

Software reset
R_FWUP_SoftwareReset

Exit with error

Does an image
exist on the
buffer side?
R_FWUP_IsExistimage
Not exist

Verify main side
(R_FWUP_Verifylmage)

—

YES

Erase the main side
R_FWUP_EraseArea

Exit with error

Run firmware on the
main side image
R_FWUP_Execimage

Software reset
R FWUP_SoftwareReset

Verify buffer side
(R_FWUP_Verifylmage)

NO

YES

Copy the updated image
from buffer side to main side

Erase the buffer side
R_FWUP_EraseArea,

reset
R_FWUP_SoftwareReset__|

Figure 1.10 Bootloader Implementation Example for Full Update Method (No Buffer)

RO1ANG6850EJ0200 Rev.2.00

Jul.20.23

RENESAS

Page 17 of 86

RX Family

Firmware Update Module Using Firmware Integration Technology

(R_FWUP_Open)

Received
Receive Image

Not received
on the buffer side

Program update image

(R_FWUP_Writelmage, R_FWUP_GetlmageSize)

Finished
programming?

Normally terminated

Abnormally terminated

Exit with error

Verify buffer side
(R_FWUP_Verifylmage)

NO

y

Erase the buffer side

(R_FWUP_EraseArea)

Software reset

(R_FWUP_SoftwareReset)

A 4

Application Processing

I

Figure 1.11

Application Program Implementation Example for Linea Mode Partial Update Method

(R_FWUP_Open)

Initial image NO

program
mode?

Not exist
Program update image on orexs

the main side «
R_FWUP_Writelmage, R_FWUP_GetimageSize

oes a
image exist
on the main

side?
R_FWUP_IsExistimage
¥ exist

Verify main side

(R_FWUP_Verifylmage)

Verify main side

(R_FWUP_Verifylmage)

Success?

YES
A 4

Erase the main side

R_FWUP_EraseArea

Exit with error

YES Y

Erase the main side

R_FWUP_EraseArea

!

Exit with error

Software reset
R_FWUP_SoftwareReset

Run firmware on the

main side image
R_FWUP_Execlmage

Figure 1.12 Bootloader Implementation Example for Full Update Method

RO1ANG6850EJ0200 Rev.2.00
Jul.20.23

RENESAS

Page 18 of 86

RX Family Firmware Update Module Using Firmware Integration Technology

2. API Information
2.1 Hardware Requirements
The MCU used must support the following functions:

® Flash memory

2.2 Software Requirements
The module is dependent upon the following drivers:

® Board support package (r_bsp)

® Flash module (r_flash_rx)

® Serial communications interface (SCI: asynchronous/clock synchronous) (r_sci_rx)
® Byte queue buffer module (r_byteq)

2.3 Supported Toolchains
The module has been confirmed to work with the toolchains listed in 6.1, Confirmed Operation Environments.

2.4 Header Files
All API calls and their supporting interface definitions are located in r_fwup_if.h.

2.5 Integer Types
The driver uses ANSI C99. These types are defined in stdint.h.

RO1AN6850EJ0200 Rev.2.00 Page 19 of 86
Jul.20.23 RENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

2.6 Compile Settings

The configuration option settings of the module are contained in r_fwup_config.h.

The names of the options and descriptions of their setting values are listed in Table 2.1.

Table 2.1 Configuration Settings

Configuration options in r_fwup _config.h

FWUP_CFG_UPDATE_MODE Update method

0: Dual-Bank Method

1: Linea Mode Partial Update Method
2: Linea Mode Full Update Method

3: Not available for RX

FWUP_CFG_FUNCTION_MODE Specifies how the module is used.
0: Bootloader
1: Application program

FWUP_CFG_MAIN_AREA_ADDR_L Specifies the start address of the main plane.

FWUP_CFG_BUF_AREA ADDR L Specifies the start address of the buffer plane (in on-chip
flash memory).

FWUP_CFG_AREA_SIZE Specifies the size of the main plane and buffer plane.

FWUP_CFG_CF_BLK SIZE Specifies the block size of the on-chip code flash.

FWUP_CFG_EXT _BUF_AREA ADDR L Specifies the start address of the buffer plane in external

flash memory. (Not subject to change in RX)

FWUP_CFG_EXT_BUF_AREA BLK SIZE Specifies the block size or sector size of the external flash
memory. (Not subject to change in RX)

FWUP_CFG_DF_ADDR_L Start address of data flash.
FWUP_CFG_DF_BLK SIZE Block size of data flash.
FWUP_CFG_DF_NUM_BLKS Block count of data flash.

Specify 0 if there is no data flash.
FWUP_CFG_SIGNATURE_VERIFICATION | Verification method
0: ECDSA + SHA256

1: SHA256
FWUP_CFG_PRINTF_DISABLE Log display setting
0: Enable
1: Disable
RO1AN6850EJ0200 Rev.2.00 Page 20 of 86

Jul.20.23 RENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

2.7 Sample Project Code Sizes

The tables below show the ROM, RAM, and maximum stack sizes for the sample projects included in the
package associated with this application note. The values in the table below have been confirmed under the
following conditions:

Module revision: Firmware update module for RX, v2.0.0

Compiler version: Renesas Electronics C/C++ Compiler for RX Family V3.04.00
GCC for Renesas RX 8.3.0.202202
IAR C/C++ Compiler for Renesas RX 4.20.1

CC-RX

¢ Optimization level: Size and execution speed (-O default)
o Delete variables/functions that have never been referenced (optimize=symbol_delete)
e Generate reduced function I/O functions (Yes: maximum reduced version)

GCC

e Optimization level: Size (-Os)
¢ Use newlib-nano (--specs=nano.specs)

IAR

e Optimization level: High (balanced)

RO1AN6850EJ0200 Rev.2.00 Page 21 of 86
Jul.20.23 RENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

Table 2.2 ROM, RAM, and Maximum Stack Sizes for Sample Projects
ROM, RAM, and Stack Code Sizes

Memory Used (byte)

Remarks
RX65N ROM 24486 25962 22901 boot_loader
15314 15552 12343 fwup_leddemo
24245 26166 22777 fwup_main
RAM 5282 5372 4871 boot_loader
8045 7908 5533 fwup_leddemo
5554 5628 6167 fwup_main
Stack 552 532 1448 boot_loader
188 68 268 fwup_leddemo
552 532 1444 fwup_main
RX26T ROM 23849 24912 22156 boot_loader
13198 14188 11383 fwup_leddemo
23674 24078 21925 fwup_main
RAM 4077 4604 5602 boot_loader
3289 4196 5409 fwup_leddemo
4302 5244 5730 fwup_main
Stack 552 532 1448 boot_loader
188 68 276 fwup_leddemo
552 532 1444 fwup_main
RX24T ROM 21449 22748 21649 boot_loader
20703 11528 9695 fwup_leddemo
20903 21848 21095 fwup_main
RAM 5114 6652 4380 boot_loader
3411 3892 2464 fwup_leddemo
5242 6780 4468 fwup_main
Stack 552 532 1028 boot_loader
188 68 252 fwup_leddemo
552 532 1020 fwup_main
RO1AN6850EJ0200 Rev.2.00 Page 22 of 86

Jul.20.23 RENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

2.8 Arguments

The return values of the API functions are shown below. This enumeration is located in r_fwup_if.h, as are
the prototype declarations of the API functions.

typedef enum fwup area

{
FWUP_AREA MAIN = O,
FWUP_ AREA BUFFER,
FWUP_AREA DATA FLASH

} e fwup area t;

typedef enum e fwup delay units

{
FWUP DELAY MICROSECS = O,
FWUP DELAY MILLISECS,
FWUP_DELAY SECS

} e fwup delay units t;

2.9 Return Values

The return values of the API functions are shown below. This enumeration is located in r_fwup_if.h, as are
the prototype declarations of the API functions.

typedef enum fwup err

{

FWUP_SUCCESS = O, // Normally terminated.
FWUP_PROGRESS, // Firmware update is in progress.
FWUP_ERR FLASH, // Detect error of flash module.
FWUP ERR VERIFY, // Verify error.

FWUP_ERR_FAILURE, // General error.

} e fwup err t;

RO1AN6850EJ0200 Rev.2.00 Page 23 of 86
Jul.20.23 RENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

2.10 Adding the FIT Module to Your Project

The module must be added to each project in which it is used. Renesas recommends the method using the
Smart Configurator described in (1) below. However, the Smart Configurator only supports some RX
devices. Please use the methods of (2) for RX devices that are not supported by the Smart Configurator.

(1) Adding the FIT module to your project using the Smart Configurator in e2 studio

By using the Smart Configurator in e2 studio, the FIT module is automatically added to your project.
Refer to “RX Smart Configurator User’s Guide: e2 studio (R20AN0451)” for details.

(2) Adding the FIT module to your project using the FIT Configurator in e2 studio

By using the FIT Configurator in e2 studio, the FIT module is automatically added to your project. Refer to
“RX Family Adding Firmware Integration Technology Modules to Projects (RO1AN1723)” for details.

(3) Adding the FIT module to your project using the FIT Configurator in the IAR Embedded Workbench for
Renesas RX environment

If you want to add a FIT module in the IAR Embedded Workbench for Renesas RX environment, use the
RX Smart Configurator to add the FIT module to your project. Refer to “RX Smart Configurator User’'s
Guide:

RO1AN6850EJ0200 Rev.2.00 Page 24 of 86
Jul.20.23 RENESAS

RX Family

Firmware Update Module Using Firmware Integration Technology

3. API Functions

3.1

R_FWUP_Open Function

Table 3.1 R_FWUP_Open Function Specifications

Format e _fwup_err_t R_FWUP_Open (void)

Description | Performs processing to open the firmware update module.
Implements processing to open the flash module.

Parameters | None

Return FWUP_SUCCESS Normal end

Values FWUP_ERR_FLASH Flash module error

Special —

Notes

3.2 R_FWUP_Close Function

Table 3.2 R_FWUP_Close Function Specifications

Format void R_FWUP_Close (void)

Description | Performs processing to close the firmware update module.
Implements processing to close the flash module.

Parameters | None

Return None

Values

Special —

Notes

3.3 R_FWUP_IsExistimage Function

Table 3.3 R_FWUP_IsExistimage Function Specifications

Format bool R_FWUP_IsExistimage(e_fwup_area_t area)

Description | Confirms the existence of an image in the specified area.

Parameters | area: Main plane (FWUP_AREA_MAIN) or buffer plane (FWUP_AREA_BUFFER)
Return true Image exists.

Values false Image does not exist.

Special —

Notes

RO1ANG6850EJ0200 Rev.2.00

Jul.20.23

Re Page 25 of 86
KENESAS

RX Family

Firmware Update Module Using Firmware Integration Technology

3.4 R_FWUP_EraseArea Function

Table 3.4 R_FWUP_EraseArea Function Specificationss

Format e fwup_err_ t R FWUP_EraseArea(e_fwup_area_t area)

Description | Erases the specified area.

Parameters | area: Main plane (FWUP_AREA_MAIN) or buffer plane (FWUP_AREA_BUFFER)
Return FWUP_SUCCES Normal end

Values FWUP_ERR_FLASH Flash module error

Special Erasure of the main plane can only be performed by the bootloader.

Notes

3.5 R_FWUP_GetimageSize Function

Table 3.5 R_FWUP_GetimageSize Function Specificationss

Format uint32_t R_FWUP_GetimageSize(void)

Description | Returns the size of the image in bytes.

Parameters | None

Return 0 Acquisition in progress
Values 1 or more Image size

Special —

Notes

3.6 R_FWUP_WritelmageHeader Function

Table 3.6 R_FWUP_WritelmageHeader Function Specifications

Format e _fwup_err_t R_FWUP_WritelmageHeader
(e_fwup_area_t area, uint8_t FWUP_FAR *p_sig_type, uint8_t FWUP_FAR *p_sig,
uint32_t sig_size)

Description | Writes a signature that the bootloader uses for verification to the header of the image in the
designated area.

Parameters | area: Main plane (FWUP_AREA_MAIN) or buffer plane (FWUP_AREA_BUFFER)
p_sig_type: Signature type character string “hash-sha256” or “sig-sha256-ecdsa”
p_sig: Signature
sig_size: Length of signature (Should be set to 64.)

Return FWUP_SUCCES Write completed

Values FWUP_ERR_FLASH Flash module error

Special —

Notes

RO1ANG6850EJ0200 Rev.2.00

Jul.20.23

RENESAS

Page 26 of 86

RX Family

Firmware Update Module Using Firmware Integration Technology

3.7 R_FWUP_WritelmageProgram Function

Table 3.7 R_FWUP_WritelmageProgram Function Specifications

Format e fwup_err_t R_ FWUP_WritelmageProgram
(e_fwup_area_t area, uint8_t *p_buf, uint32_t buf_size)
Description | Writes the program portion of the image to the specified area.
Continue calling this function until the total size of the image is reached.
The image size is obtained by R_FWUP_GetimageSize().
Parameters | area: Main plane (FWUP_AREA_MAIN) or buffer plane (FWUP_AREA_BUFFER)
p_buf: Buffer for program portion of image
buf_size: Buffer size*’
Return FWUP_SUCCES Write completed
Values FWUP_PROGRESS Writing in progress
FWUP_ERR_FLASH Flash module error
Special 1. Specify a multiple of the code flash write unit (for example, 64, 128, or 256).
Notes

3.8 R_FWUP_Writelmage Function

Table 3.8 R_FWUP_Writelmage Function Specifications

Format e fwup_err_ t R FWUP_Writelmage(e_fwup_area_t area, uint8_t *p_buf, uint32_t buf_size)
Description | Writes an image (header portion + program portion) to the specified area.
Continue calling this function until the total size of the image is reached.
The image size is obtained by R_FWUP_GetlmageSize().
Parameters | area: Main plane (FWUP_AREA_MAIN) or buffer plane (FWUP_AREA_BUFFER)
p_buf: Image (header + program) buffer
buf_size: Buffer size*'
Return FWUP_SUCCES Write completed
Values FWUP_PROGRESS Writing in progress
FWUP_ERR_FLASH Flash module error
Special 1. Specify a multiple of the code flash write unit (for example, 64, 128, or 256).
Notes

3.9 R_FWUP_Verifylmage Function

Table 3.9 R_FWUP_Verifylmage Function Specifications

Format e_fwup_err_t R_FWUP_Verifylmage(e_fwup_area_t area)

Description | Verifies an image using the cryptographic library embedded in the module.
Parameters | area: Main plane (FWUP_AREA_MAIN) or buffer plane (FWUP_AREA_BUFFER)
Return FWUP_SUCCES Verification successful

Values FWUP_ERR_VERIFY Verification failed

Special —

Notes

RO1ANG6850EJ0200 Rev.2.00

Jul.20.23

RENESAS

Page 27 of 86

RX Family

Firmware Update Module Using Firmware Integration Technology

3.10 R_FWUP_Activatelmage Function

Table 3.10 R_FWUP_Activatelmage Function Specifications

Format e fwup_err_t R_ FWUP_Activatelmage(void)
Description | Activates a new image.
¢ Dual-bank update method
— Bank swap
¢ Linea mode partial update method
— Bootloader: Copies the buffer plane image to the main plane.
— User program: Returns FWUP_SUCCESS without doing anything.
e Linea mode full update method
— Returns FWUP_SUCCESS without doing anything.
Parameters | None
Return FWUP_SUCCESS Normal end
Values FWUP_ERR_FLASH Flash module error
Special —
Notes

3.11 R_FWUP_Execlmage Function

Table 3.11 R_FWUP_Execlmage Function Specifications

Format void R_FWUP_Execlimage(void)
Description | Runs the program in a valid image.
Parameters | None

Return None

Values

Special —

Notes

3.12 R_FWUP_SoftwareReset Function

Table 3.12 R_FWUP_SoftwareReset Function Specifications

Format void R_FWUP_SoftwareReset(void)
Description | Execute software reset processing.
Parameters | None

Return None

Values

Special —

Notes

RO1ANG6850EJ0200 Rev.2.00

Jul.20.23

RENESAS

Page 28 of 86

RX Family Firmware Update Module Using Firmware Integration Technology

3.13 R_FWUP_SoftwareDelay Function

Table 3.13 R_FWUP_SoftwareDelay Function Specifications

Format uint32_t R_FWUP_SoftwareDelay(uint32_t delay, e _fwup_delay_units_t units)

Description | Execute software delay processing.

Parameters | delay: Delay time
units: Unit (us, ms, or sec.)

Return 0 Normal end
Values Other Abnormal end
Special —

Notes

3.14 R_FWUP_GetVersion Function

Table 3.14 R_FWUP_GetVersion Function Specifications

Format uint32_t R_FWUP_GetVersion(void)

Description | Returns the version number of the module.

Parameters | None

Return Version number
Values

Special —
Notes

RO1AN6850EJ0200 Rev.2.00
Jul.20.23 RENESAS

Page 29 of 86

RX Family

Firmware Update Module Using Firmware Integration Technology

3.15 Wrapper Functions (r_fwup_wrap_verify.c, h)

The demo project provided in this package uses Tinycrypt as the crypto library. If you wish to use another
crypto library, please implement the crypto library you wish to use and modify the implementation in this
wrapper function.

3.15.1 r_fwup_wrap_sha256_init Function

Table 3.15 r_fwup_wrap_sha256_init Function Specifications

Format int32_tr_fwup_wrap_sha256_init (void *vp_ctx)
Description | Start hash value calculation.

Parameters | vp_ctx: Pointer to the context of the cryptographic library
Return 0 Normal end
Values Other Abnormal end
Special —

Notes

3.15.2 r_fwup_wrap_sha256_update Function

Table 3.16 r_fwup_wrap_sha256_update Function Specifications

Format int32_t r_fwup_wrap_sha256_update (void *vp_ctx, const uint8_t *p_data, uint32_t datalen)
Description | Calculates hash values for the specified range.
Parameters | vp_ctx: Pointer to the context of the cryptographic library
p_data: Starting address
datalen: Data length (bytes)
Return 0 Normal end
Values Other Abnormal end
Special —
Notes

3.15.3 r_fwup_wrap_sha256_final Function

Table 3.17 r_fwup_wrap_sha256_final Function Specifications

Format int32_tr_fwup_wrap_sha256_final (uint8_t *p_hash, void *vp_ctx)

Description | Finishes computing the hash value and returns the hash value.

Parameters | P_hash: Pointer to buffer to store the calculated hash value
vp_ctx: Pointer to the context of the cryptographic library

Return 0 Normal end

Values Other Abnormal end

Special —

Notes

RO1ANG6850EJ0200 Rev.2.00

Jul.20.23

Re Page 30 of 86
KENESAS

RX Family

Firmware Update Module Using Firmware Integration Technology

3.15.4 r_fwup_wrap_verify_ecdsa Function

Table 3.18 r_fwup_wrap_verify_ecdsa Function Specifications

Format int32_tr_fwup_wrap_verify_ecdsa
(uint8_t *p_hash, uint8_t *p_sig_type, uint8_t *p_sig, uint32_t sig_size)
Description | ECDSA performs the verification.
Parameters | p_hash: Pointer to the buffer where the hash value is stored
p_sig_type: Signature type
p_sig: Signature
sig_size: Signature size
Return 0 Normal end
Values Other Abnormal end
Special —
Notes

3.15.5 r_fwup_wrap_get_crypt_context Function

Table 3.19 r_fwup_wrap_get_crypt_context Function Specifications

Format void *r_fwup_wrap_get crypt_context (void);

Description | Returns a pointer to the context of the cryptographic library.

Parameters | None

Return Void * Pointer to the context of the cryptographic library
Values

Special —

Notes

RO1ANG6850EJ0200 Rev.2.00

Jul.20.23

RENESAS

Page 31 of 86

RX Family Firmware Update Module Using Firmware Integration Technology

4. Renesas Image Generator

Renesas Image Generator is a utility tool that generates firmware images for use with firmware update
modules. The Renesas Image Generator can generate the following images used by the firmware update
module.

¢ |Initial image: An image file containing the bootloader and application program that is programmed using
Flash Writer at the time of initial system configuration (extension: mot).
¢ Update image: An image file containing the firmware update (extension: rsu).

See 4.1 for how to generate an image, and 4.2 to 4.3 for details on image configuration and parameter files.

Renesas Image Generator is a program that runs on Python.

4.1 Image Generation Methods

Describes the specifications of Renesas Image Generator (image-gen.py) and how to generate an image file
(initial image or update image) using this tool.

See 4.1.1 for how to generate an initial image, and 4.1.2 for how to generate an update image.

The format of the image-gen.py command is as follows:

python image-gen.py < options >

Some image-gen.py command options are required and others are optional. Table 4.1 lists the required
image-gen.py options, and Table 4.2 lists the optional image-gen.py options.

Table 4.1 Required Options of image-gen.py

Option Description

-iup <file> Specifies the application program.
For the character string < file >, specify the mot file name (the full path
including the file name) of the user application program.

-ip <file> Specifies a parameter file.
For the character string < file >, specify the name of the file (the full
path including the file name) containing the parameters to be input.

-o <file> Specifies the file name of the output image.

For the character string < file >, specify the file name (the full path
including the file name), excluding the extension, of the firmware
update image file to be output.

The file extension is .mot because the output image is determined to be
the initial image when the bootloader is specified with the -ibp <file>
option.

If you omit the -ibp <file> specification, the output image is determined
to be an update image and becomes .rsu.

RO1AN6850EJ0200 Rev.2.00 Page 32 of 86
Jul.20.23 RENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

Table 4.2 Optional Options of image-gen.py

Option Description

-ibp <file> Specifies the bootloader.

For the character string < file >, specify mot file name (the full path
including the file name) of the bootloader program.

Specify this option when generating a mot file.

--key <file> Specify the name of the key file to be used to sign the image using
ECDSA. (This option does not need to be set if sha256 is specified for
the -vt option.)

Store the file secp256r1.privatekey in the command execution folder.
If the file name has been changed, specify the full path including the file

name.
-vt <VerificationType>[sha256 / | Specifies the image verification method in the firmware update module.
ecdsa] Appends the hash of the image if sha256 is specified, and the signature

of the image if ecdsa is specified.
If this option is omitted, SHA-256 is used.
If ecdsa is specified, a key file specified with -key is required.

-ff <FileFormat> Specifies the RSU format type.

If BareMetal is specified, it will generate an updated image for this
demo project.

The updated image for BareMetal adds RSU header signature
information. If RTOS is specified, generate update image for FreeRTOS
OTA. The update image for FreeRTOS OTA does not add RSU header
signature information (0x200 bytes data from the beginning of the
update image).

If this option is omitted, BareMetal is used.

-h Output a list of commands.
Specify this option to display help information for the tool.

4.1.1 |Initial Image Generation Method

Renesas Image Generator has the bootloader file name (.mot) generated by build, application program
(.mot), parameter file name (.csv), output file name (no extension), image verification method in firmware
update module. Specify (ecdsa/sha256) as a command line option to generate an initial image file (.mot).

Command input example

> python image-gen.py —-iup fwup main.mot -ip
RX65N DualBank ImageGenerator PRM.csv -o initial firm -ibp
boot loader.mot -vt ecdsa

fwup_main.mot: The mot file name of the user application program

RX65N_DualBank_ImageGenerator PRM.csv: The name of the file containing the parameters to be input
(Example of dual bank mode)

initial_firm: The file name of the initial image file to be output

boot_loader.mot: The mot file name of the bootloader program

ecdsa: Specifies that ECDSA is used to sign the image.

RO1AN6850EJ0200 Rev.2.00 Page 33 of 86
Jul.20.23 RENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

4.1.2 Update Image Generation Method

The Renesas Image Generator uses the update application program (.mot) generated by the build,
parameter file name (.csv), output file name (no extension), image verification method (ecdsa/sha256) for the
firmware update module. Set the command line options to generate an update image file (.rsu).

Command input example

> python image-gen.py -iup fwup leddemo.mot -ip
RX65N DualBank ImageGenerator PRM.csv -o fwup leddemo -vt ecdsa

fwup_leddemo.mot: The mot file name of the user application program to be applied as an update

RX65N_DualBank_ImageGenerator_PRM.csv: The name of the file containing the parameters to be input
(Example of dual bank mode)

fwup_leddemo: The file name of the update image file to be output

ecdsa: Specifies that ECDSA is used to sign the image.

RO1AN6850EJ0200 Rev.2.00 Page 34 of 86
Jul.20.23 RENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

4.2 Image File

4.2.1 Update Image File

Figure 4.1 shows the configuration diagram of the update image file generated by Renesas Image
Generator.

For the format of the RSU header, see Table 43.

RSU Header
Signature Information
(0x200 Byte)

RSU Header
Address Information
(0x100 Byte)

— Scope of signatures

Application Program Data

Figure 4.1 Configuring the update image file

The update image file consists of RSU header and application program data. The RSU header stores the
application program location information required to verify the validity of the application program, as well as
the signature value and hash value of the application program calculated based on the information.
Following the RSU header, place the application program data corresponding to the program allocation
information stored in the RSU header. The Renesas Image Generator arranges the application program data
in the order of the data to be placed in the code flash and the data to be placed in the data flash. Valid code
flash data and data flash data are extracted from the user-generated application program file (.mot),
converted to binary data, and set.

The update image file has the same configuration for the dual bank method, linear mode half-updating
method, and linear mode full-updating method.

Table 4.3 RSU Header Format (1/2)

Length

Offset Item (Bytes) | Description

0x00000000 | Magic Code 7 Magic code (“RELFWV2")

0x00000007 | Reserved 1 Reserved area

0x00000008 | Firmware Verification | 32 Image verification method

Type Set sig-sha256-ecdsa to use ECDSA for image

verification, and hash-sha256 to use hash.

0x00000028 | Signature size 4 Data size of signature value or hash value stored in
Signature
Set 0x40 if Firmware Verification Type is sig-sha256-
ecdsa, and 0x20 if hash-sha256.

0x0000002C | Signature 64 Signature value used for firmware verification
For SHA-256 signature data, bytes 33 to 64 are set to
0x00.

0x0000006C | RSU File Size 4 File size of entire update image file

0x00000070 | Reserved 400 Reserved area

RO1AN6850EJ0200 Rev.2.00 Page 35 of 86

Jul.20.23 RENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

Table 4.3 RSU Header Format (2/2)

Length

Offset Item (Bytes) | Description

0x00000200 | Program Data Num 4 Number of subsequent divided application programs or
data flashes (maximum 31)

0x00000204 | Start Address[0] 4 Start address of the first application program or data
flash

0x00000208 | Data Size[0] 4 Size of the first application program or data flash

0x0000020C | Start Address[1] 4 Start address of second application program or data
flash

0x00000210 | Data Size[1] 4 Second application program or data flash size

0x000002F4 | Start Address[30] 4 Start address of the 31st application program or data
flash

0x000002F8 | Data Size[30] 4 Size of the 31st application program or data flash

0x000002FC | Reserved 4 Reserved area

See Figure 4.2 for the mechanism of generating the update image file.

Update image of linear mode
(halfffull surface) update
methed (.rsu file)

fwup_leddemo.mot Parameter file ~ RSUHeader

Application Signature Information

Update Import a Build program data to (0x200Byte)

application ‘ eTndlo ‘ C= p'a‘;::sr"" Cocs RSU Header
rogram ‘ Address Information

- private key for ecdsa (0x100Byte)

Data to be placed .
in data flash signature data -
generation R e T
secp256r1 privatekey P

Application program datato
be placedin dataflash

Figure 4.2 Updating image of dual bank method/linear mode (half side/whole side) updating method

e The parameter file is a CSV format file that contains the device address information required to generate
the image file.

o The private key for generating the ecdsa signature value is used when ecdsa is specified as the image
verification method in the firmware update module.

RO1AN6850EJ0200 Rev.2.00 Page 36 of 86
Jul.20.23 RENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

4.2.1 Update Image File
The initial image file is the RSU header and application program data plus the bootloader program data.

Figure 4.3 and Figure 4.4 also show a diagram of the initial image file (dual bank method/linear mode
(half/full surface) update method).

Boot Loader
(Codeflash data)
(buffer plane)

RSU Header
Signature Information
(0x200 Byte)

RSU Header
Address Information
(0x100 Byte)

— Scope of signatures

Application Program Data

Boot Loader
(Code flash data)
(Main plane)

Figure 4.3 Initial image file (dual bank method) configuration

The initial image of the dual-bank method places the same bootloader code flash data on both the main and
buffer sides of the code flash to support the bank switching function. The bootloader data to be placed on the
main side of Code Flash uses the data in the user-generated bootloader file (boot_loader.mot) as is. The
bootloader to be placed on the buffer side of the code flash is the bootloader data on the main side with the
address information replaced with the bootloader location on the buffer side.

RSU Header
Signature Information
(0x200 Byte)

RSU Header
Address Information
(0x100 Byte)

r— Scope of signatures

Application Program Data

Boot Loader
(Code flash data)
(Main plane)

Figure 4.4 Composition of initial image file (linear mode (half/full surface) update method)

In the initial image file of the linear mode (half-face/full-face) update method, the bootloader data to be
placed on the main side of the code flash uses the data in the user-generated bootloader file
(boot_loader.mot) as is.

RO1AN6850EJ0200 Rev.2.00 Page 37 of 86
Jul.20.23 RENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

See Figure 4.5 and Figure 4.6 for the mechanism that generates the initial image file.

Initial image of dual bank
method (.mot file)

boot_loader.mot Application program data to
Import Build Bootloader data to be placedin dataflash
Bootloader e? studio - be placed in code - Eemmeia e
s Bootloaderdatato be placed
A E .
in code flash
(buffer plane)
_ RSU Header
fwup_main.mot private key for ecdsa Signature Information
— . (0x200 Byte)
Import Build Appllza‘ctl:: pel signature data
Application . . pr:g:e"[‘, i: m:e generation Add RSU Ieraderf
Program e’ studio Rash ‘ secp25611 privatekey ress Information
. (0x100 Byte)
Application
ity Application program data to
flash be placedin code flash
Bootloaderdata to be placed
in codeflash
(Main plane)
Figure 4.5 Initial image of the dual bank method
Initial image of linear mode
(halfffull surface) update method
(.motZ 7 -1JL)
boot_loader.mot
Import Build Bootloader data to Application program datato
Bootloader ? studio - be P"Ta"sr"" code - Parameter file be placed in dataflash
Main plane
RSU Header
Signature Information
- (0x200 Byte)
fwup_main.mot ;
| : private key for ecdsa RSU Header
Import Applizafti:rtl b signature data Address Information
rogram da o .
Application ‘ AT i pFaced e generation (0x100 Byte)
Program flash ‘ secp256r1 privatekey Application program datato
be placedin code flash
Data to be placed
in data flash
Bootloaderdata to be placed
in code flash
(Main plane)

Figure 4.6 Initial image of linear mode (half/full) update method

e The parameter file is a CSV format file that contains the device address information required to generate
the image file.
o The private key for generating the ecdsa signature value is used when ecdsa is specified as the image
verification method in the firmware update module.

RO1ANG6850EJ0200 Rev.2.00
Jul.20.23

Re Page 38 of 86
KENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

4.3 Parameter File

The parameter file is the information required for Renesas Image Generator to generate the initial and
updated image files for the sample program, and is included in the release package as part of the Renesas
Image Generator Python It is included in the release package as part of the Renesas Image Generator
Python program set (see1.5). When a customer generates an initial or updated image for a demo project,
there is no need to change the contents of the parameter file.

If you are using a product with a different flash size than the demo project (see 4.3.2) or if you do not want to
include data from the data flash in the image (see 4.3.3), you can do so by editing the parameter file.

As an example, the contents of the parameter file for the RX65N (2MB) dual bank system are shown in 4.3.1.

RO1AN6850EJ0200 Rev.2.00 Page 39 of 86
Jul.20.23 RENESAS

RX Family

Firmware Update Module Using Firmware Integration Technology

4.3.1

Contents of Parameter File

The items listed in the parameter file are the same for all devices, but the settings differ for each device.
Table 4.4 shows the contents of the parameter file for the RX65N (2MB) dual bank method demonstration
project. Figure 4.7 shows the parameters referenced for image generation, and Figure 4.8 shows an
example of parameters referenced for initial image generation for the RX65N (2MB) dual bank system.

Table 4.4 Contents of parameter file

the flash in decimal)

Parameter name Description Example of
setting contents
RX65N(2MB)
device Type Dual Mode : Generation of mot file for dual bank system Dual Mode
Linear Mode : Linear mode (half/full surface) update
method Mot file generation for
Code Flash Size(Dual Code Flash Size 0x00200000
Mode Only) (Used to calculate the bootloader address of the buffer
surface in the dual bank method)
Bootloader Start Address | Bootloader start address OxFFFFO0000
Bootloader End Address Bootloader end address OxFFFFFFFF
User Program Start Starting address of the application program on the main 0xFFF00000
Address face
(In dual mode, application program area on main side)
User Program End End address of the application program on the main side OxFFFEFFFF
Address (in dual mode, application program area on main side)
OFS Data Start Address OFSM data start address OxFE7F5D00
(Set 'No Used.' for non-dual bank products)
OFS Data End Address OFSM data end address OxFE7F5D7F
(Set 'No Used.' for non-dual bank products)
Data Flash Start Address | Data flush start address 0x00100000
(Set 'No Used.' if data flush data is not to be generated)
Data Flash End Address Data flash end address 0x00107FFF
(Set 'No Used.' if data flash data is not to be generated)
Near Data Start Near bootloader start address for RL78 No Used.
Address(RL78 Only) (For RX, set 'No Used.)
Near Data End Near boot loader start address for RL78 No Used.
Address(RL78 Only) (For RX, set 'No Used.")
Flash Write Size Flash write size (hnumber of bytes required for one write to 128

The value specified for each parameter is specified in decimal for Flash Write Size and in hexadecimal (with
Ox added at the beginning) for other parameters.

RO1ANG6850EJ0200 Rev.2.00

Jul.20.23

RENESAS

Page 40 of 86

RX Family

Firmware Update Module Using Firmware Integration Technology

Parameter File(.csv)

Initial image of dual bank

Linear mode (half/full

Dual bank method/linear
mode (half/full surface)

Device type

Code Flash Size(Dual Mode Only)

Bootloader Start Address
Bootloader End Address

method surface) initial image update image
(.mot file) (.mot file) (.rsufile)
RSU Header
i A Retalplash (Signature Information)
RSU Header RSU Header

OFSM Resistor

User Program Start Address
User Program End Address

Bootloader
(buffer plane)

(Signature Information)

(Address Information)

OFS Data Start Address
OFS Data End Address

RSU Header
(Signature Information)

RSU Header
(Address Information)

Data Flash StartAddress

RSU Header
(Address Information)

Application Program

Application Program

Data Flash End Address

Data Flash

Data Flash Start Address (RL78 Only)
Data Flash End Address (RL78 Only) Bootloader
Application Program (Main plane)

Flash Write Size

Bootloader
(Main plane)

Figure 4.7 Parameters referenced when generating image files

e Device type is used to determine whether to generate a dual-banked initial image; if Device type is Dual
Mode, a bootloader (main side) and a bootloader (buffer side) are generated; if Device type is Linear
Mode, only the bootloader (Main plane) is generated only in the case of Linear Mode.

e Code Flash Size (Dual Mode Only) is used to determine the address where the bootloader (buffer plane)
is placed.

¢ Using the bootloader file (boot_loader.mot) as input data, the range from Bootloader Start Address to
Bootloader End Address is generated as a code flash for the bootloader (main plane).

o With the application program file (.mot) as input data, the range from User Program Start Address to User
Program End Address is generated as an application program code flash.

e Using the bootloader file (boot_loader.mot) as input data, the range from OFS Data Start Address to OFS
Data End Address is generated as OFS registers.

e Using the application program file (.mot) as input data, the range from Data Flash Start Address to Data
Flash End Address is generated as a data flash.

o Flash Write Size is used to set the data size of the RSU header (address information) as the minimum
unit when writing to the flash.

RO1ANG6850EJ0200 Rev.2.00

Page 41 of 86
Jul.20.23 RENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

Initial image of dual bank

method
boot_loader.mot P (motfile)
0xFE7F5D00 OFSM x Data Flash
Resistor RX65N_DualBank_ImageGenerator_PRM.csv 0x00107FFF Max 32KB(0x8000)
OXFE7FSD7F| 128B(0x80) Device type Dual Mode GxFECFSDOG OFSM Resistor
XFFFF ‘ - 0XFE7F5D7F 128B(0x80)
Code Flash Size(Dual Mode Only): 0x00200000 0xFEEF0000
Bootloader Bootloader Start Address:0xFFFFO000 Bootloader(buffer plane)
R Bootloader End Address:0xFFFFFFFF AKB(0x100001
(0x10000) (0x)
OXFEFFFFFE User Program Start Address:0xFFF00000 O0xFFEFFFFF
User Program End Address:0xFFFEFFFF 0xFFF00000 RSU Header
fwup_main mot OFS Data Start Address: 0xFE7F5D00 (Signature Information)
0xFEF00300 OFS Data End Address: OXFE7F5D7F 0xFFF00200 RSU Header
Data Flash Start Address:00100000 (Address Information)
Application Data Flash End Address:0x00107FFF Z*iii‘;‘;izz_mammmj_
X
P;gg:(ﬂ;" B | | ncar Data Start Address(RL78 Only):No Used.
(0XF0000-0x300) Near Date.a En.d Address(RL78 Only):No Used. Application
Flash Write Size:128 Program
OxFFFEFFFF

Max 960KB(0xF0000-0x300)

0x00100000

Data Flash OxFFFEFFFF
39KB 0xFFFF0000
(0x8000) Bootloader(Main plane)
0x00107FFF 64KB(0x10000)
OxFFFFFFFF

Figure 4.8 RX65N (2MB) Example of parameters referenced for initial image generation for dual bank
method

RO1AN6850EJ0200 Rev.2.00 Page 42 of 86
Jul.20.23 RENESAS

RX Family

Firmware Update Module Using Firmware Integration Technology

4.3.2 How to generate an image with a flash size different from the demo project

If you want to perform firmware updates on products with different flash sizes that are compatible with the
demo project, you can generate initial and updated images by editing the parameter file.

Figure 4.9 shows the contents of the parameter file using the RX65N dual bank method (1.5 MB) as an

example. (The parameters in the red box show the differences from

RX65N_DualBank_ImageGenerator_ PRM.csv)

The parameter file for the RX65N dual bank method (1.5MB) is not included in the package, so customers
must edit the parameters themselves.

boot_loader.mot

0xFE7F5D00

OxFE7FSD7F

OFSM
Resistor
128B(0x380)

RXB65N_DualBank_ImageGenerator_ PRM.csv

0xFFFF0000

O0xFFFFFFFF

OxFFF40300

0xFFFEFFFF

Bootloader
64KB
(0x10000)

fwup_main.mot

Application
Program
704KB
(0xB0000-0x300)

Device type:Dual Mode

[Code Flash Size(Dual Mode Only): 0x00180000]
Bootloader Start Address:0xFFFF0000
Bootloader End Address:0xFFFFFFFF
[User Program Start Address:0xFFF40000]
User Program End Address:0xFFFEFFFF
OFS Data Start Address: 0OxFE7F5D00

OFS Data End Address: OxFE7F5D7F

Data Flash Start Address:00100000

Data Flash End Address:0x00107FFF

Near Data Start Address(RL78 Only):No Used.
Near Data End Address(RL78 Only):No Used.
Flash Write Size: 128

0x00100000

0x00107FFF

Data Flash
32KB
(0x8000)

0x00100000

0x00107FFF Max 32KB(0x8000)

0xFE7F5D00

O0xFE7F5D7F
0xFFF30000

0xFFF3FFFF

0xFFF40000

O0xFFF40200

OXFFF402FF
O0xFFF40300

OXFFFEFFFF

Initial image of dual bank
method
(.mot file)

Data Flash

OFSM Resistor
128B(0x80)

Bootloader(buffer plane)
64KB(0x10000)

RSU Header
(Signature Information)
512B(0x200)

RSU Header
(Address Information)

Application
Program
Max 704KB(0xB0000-0x300)

0xFFFFO0000

OXFFFEFFFF

Bootloader(Main plane)
64KB(0x10000)

Figure 4.9 Example of parameter setting for RX65N (1.5MB) dual bank method

e Code Flash Size (Dual Mode Only) describes the code flash memory capacity of RX65N (1.5MB).

e The User Program Start Address is the address following the last address of the bootloader (buffer
plane).

RO1ANG6850EJ0200 Rev.2.00

Jul.20.23

RENESAS

Page 43 of 86

RX Family Firmware Update Module Using Firmware Integration Technology

4.3.3 How to prevent data flash data from being included in the image

By setting the Data Flash Start Address and Data Flash End Address to "No Used." in the parameter file, the
data flash data is not included in the initial image or update image. Data flash data is not included in the
initial image or update image.

Figure 4.10 shows an example of parameter file settings for the RX65N (2MB) dual-bank system with the
data flash not included in the update image.

Dual bank method/linear
mode (half/full surface)

fwup_main.mot update image
0xFFF00300 (.rsufile)
0xFFF00000 RSU Header
RX65N_DualBank_ImageGenerator_PRM.csv Signature Information
Application Device type:Dual Mode O0xFFF00200 ?gﬁ::ggg:
Program) .
960KB Code Flash Size(Dual Mode Only): 0x00200000 OFEFO02FF (Address Information)
(0XF0000-0x300) Bootloader Start Address:0xFFFF0000 OZFFFooaoo 256B(0x100)
Bootloader End Address:0xFFFFFFFF
‘ User Program Start Address:0xFFF00000 ‘ Application
User Program End Address:0xFFFEFFFF Program
OXFFFEFFFF . Max 960KB
0x00100000 OFS Data Start Address: 0OxFE7F5D00 (0xF0000—0x300)
OFS Data End Address: OxFE7FSD7F OXEFFEFFEF
X
Da;:;';“ Data Flash Start Address:No Used.
(0x8000) Data Flash End Address:No Used.
Near Data Start Address(RL78 Only):No Used.
Near Data End Address(RL78 Only):No Used.
0x00107FFF Flash Write Size:128

Figure 4.10 Parameter settings when data flash is not included in the update image (example for
RX65N)

RO1AN6850EJ0200 Rev.2.00 Page 44 of 86
Jul.20.23 RENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

4.4 Image Generation Methods

Renesas Image Generator (image-gen.py) is used to generate firmware update image files. When executing
a command, it is necessary to specify the information necessary for generating an image. Refer to section
3.3.1 for the initial image generation method and to section 3.3.2 for the update image generation method.

The format of the image-gen.py command is as follows:

python image-gen.py < options >

Some image-gen.py command options are required and others are optional. Table 3.2 lists the required
image-gen.py options, and Table 3.3 lists the optional image-gen.py options.

Table 4.5 Required Options of image-gen.py

Option Description

-iup <file> For the character string < file >, specify the mot file name (the full path
including the file name) of the user application program.

-ip <file> For the character string < file >, specify the name of the file (the full
path including the file name) containing the parameters to be input.

-o <file> For the character string < file >, specify the file name (the full path

including the file name), excluding the extension, of the firmware
update image file to be output.

The file extension (.rsu or .mot) is appended based on the file format
output by Image Generator.

Table 4.6 Optional Options of image-gen.py

Option Description

-ibp <file> For the character string < file >, specify mot file name (the full path
including the file name) of the bootloader program.
Specify this option when generating a mot file.

--key <file> Specify the name of the key file to be used to sign the image using

ECDSA. (This option is not needed when signing an image using SHA-
256.)

Store the file secp256r1.privatekey in the command execution folder.
If the file name has been changed, specify the full path including the file
name.

-vt <VerificationType>[sha256 /
ecdsa]

Specifies the signature verification method.

If this option is omitted, SHA-256 is used.

To specify ECDSA, a key file to be used to sign the image using
ECDSA must be specified using the -key option.

-ff <FileFormat>

Specifies the RSU format type.
If this option is omitted, BareMetal is used.
To generate an RTOS-compatible RSU file, specify RTOS.

Specify this option to display help information for the tool.

RO1ANG6850EJ0200 Rev.2.00
Jul.20.23

Re Page 45 of 86
KENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

4.4.1 Initial Image Generation Method

For the initial image, specify the options for the bootloader file name (.mot) and user program (initial
firmware) file name (.mot) generated by building the projects, the parameter file name (.csv), the output file
name (extension omitted), and the signature verification method (ECDSA or SHA-256), then generate an
image file (.mot).

A command input example is shown below:

python image-gen.py -iup fwup_main.mot -ip RX26T_ImageGenerator_PRM.csv -o initial_firm -ibp
boot_loader.mot -vt ecdsa

fwup_main.mot: The mot file name of the user application program
RX26T_ImageGenerator_PRM.csv: The name of the file containing the parameters to be input
initial_firm: The file name of the initial image file to be output

boot_loader.mot: The mot file name of the bootloader program

ecdsa: Specifies that ECDSA is used to sign the image.

4.4.2 Update Image Generation Method

For the update image, specify the options for the user program (initial firmware) file name (.mot), the
parameter file name (.csv), the output file name (extension omitted), and the signature verification method
(ECDSA or SHA-256), then generate an image file (.rsu).

A command input example is shown below:

python image-gen.py -iup fwup_leddemo.mot -ip RX26T_ImageGenerator_PRM.csv -o fwup_leddemo -ibp
boot_loader.mot -vt ecdsa

fwup_leddemo.mot: The mot file name of the user application program to be applied as an update
RX26T_ImageGenerator PRM.csv: The name of the file containing the parameters to be input
fwup_leddemo: The file name of the update image file to be output

boot_loader.mot: The mot file name of the bootloader program

ecdsa: Specifies that ECDSA is used to sign the image.

RO1AN6850EJ0200 Rev.2.00 Page 46 of 86
Jul.20.23 RENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

5. Demo Project

The demo project is a sample program that shows how to implement firmware update functionality using the
serial communications interface (SCI).

5.1 Demo project Structure

The demo project comprises the FIT module, modules dependent on it, and a main() function that
implements the firmware update demonstration. Versions of the demo project for the devices and compilers
listed in 1.5 are provided.

The firmware update demo consists of the following projects.
Dual-bank method folder structure : Under OO \dualbank\AA\
Linear mode half-surface update method folder structure: Under CIC1\ w_buffer \AA\
Linear mode full update method folder structure: Under CILI\ wo_buffer \AA\
0O : Device name

AN Compiler (ccrx/gecliar)

e boot_loader: Bootloader
This program runs first after a reset. It verifies that the user program has not been tampered with and
then, if verification is successful, launches the user program.

o fwup_main: Application program
An application program (initial firmware) that downloads updated firmware and performs signature
verification.

o fwup_leddemo: Application program (for update)
This is an application program (for updating) that blinks an LED.

RO1AN6850EJ0200 Rev.2.00 Page 47 of 86
Jul.20.23 RENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

5.2 Operating environment preparation

To run the firmware update demo project, you need to install the tools (see 5.2.1 to 5.2.4) on your Windows
PC. Also, use a USB serial conversion board (see 5.2.5) that connects the Windows PC and the target
board.

5.2.1 Installing TeraTerm

Used to transfer the firmware update image via serial communication from a Windows PC to the target
board. In the demo project, we have checked the operation with TeraTerm 4.105.

After installation, set the serial port communication settings as shown in Table Table 5.1

Table 5.1 Communication Specifications

Item Description

Communication system Asynchronous communication
Bit rate 115,200 bps

Data length 8 bits

Parity None

Stop bit 1 bit

Flow control CTS/RTS

5.2.2 Installing the Python execution environment
Used by Renesas Image Generator (image-gen.py) to create initial and update images.

Renesas Image Generator uses ECDSA to generate signature data. In the demo project, environment
operation is confirmed with Python 3.9.0.

Install Python 3.9.0 or higher.

In addition, since the Python encryption library (pycryptodome) is used, after installing Python, execute the
following pip command from the command prompt to install the library.

pip install pycryptodome

5.2.3 Installing the OpenSSL execution environment

OpenSSL is used to generate the keys needed to generate and verify ECDSA signature data for initial and
update images.

Download the OpenSSL installer from the following URL and install it. There is no problem with the Light
version.

https://slproweb.com/products/Win320penSSL.html

RO1AN6850EJ0200 Rev.2.00 Page 48 of 86
Jul.20.23 RENESAS

https://slproweb.com/products/Win32OpenSSL.html

RX Family Firmware Update Module Using Firmware Integration Technology

5.2.4 Installing the Flash Writer
A flash writer is required to write the initial image.

The demo project uses Renesas Flash Programmer v3.11.01.

Renesas Flash Programmer (Programming GUI) | Renesas

5.2.5 USB serial conversion board

Used to transfer the firmware update image via serial communication from a Windows PC to the target
board.

For details on how to connect with the target board, refer to the operation confirmation environment (6.2) of
the relevant target board.

Use Pmod USBUART (manufactured by DIGILENT).

https://reference.digilentinc.com/reference/pmod/pmodusbuart/start

RO1AN6850EJ0200 Rev.2.00 Page 49 of 86
Jul.20.23 RENESAS

https://www.renesas.com/us/en/software-tool/renesas-flash-programmer-programming-gui
https://reference.digilentinc.com/reference/pmod/pmodusbuart/start

RX Family Firmware Update Module Using Firmware Integration Technology

5.3 Execution environment preparation

5.3.1 Generating Keys for Signature Generation and Verification
Use OpenSSL for key generation. Refer to 5.2.3 in advance and install OpenSSL.

Execute the following OpenSSL commands to generate an elliptic curve cryptography (secp256r1) key pair
to be used to generate and verify image signatures, and to extract the private and public keys:

>openssl ecparam —-genkey -name secp256rl -out secp256rl.keypair
using curve name prime256vl instead of secp256rl

>openssl ec -in secp256rl.keypair -outform PEM -out secp256rl.privatekey
read EC key
writing EC key

> openssl ec -in secp256rl.keypair -outform PEM -pubout -out
secp256rl.publickey

read EC key

writing EC key

5.3.2 Preparing the execution environment for Renesas Image Generator
Unzip ImageGenerator.zip included in the package to any folder on your Windows PC. Make sure the folder
name does not contain double-byte characters.

Renesas Image Generator requires a Python execution environment, so refer to 5.2.2 and install Python in
advance.

RO1AN6850EJ0200 Rev.2.00 Page 50 of 86
Jul.20.23 RENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

5.4 Demo Project Execution Procedure
The execution procedure of the demo project differs depending on the firmware update method.

This chapter describes the procedure for executing the demo project using the RX65N (2MB) as an example.

The demo project execution procedure is the same for other MCU products, but only the operation check
environment differs for each MCU, so check the operation check environment (6.2) for the applicable MCU
product.

5.4.1 Dual Bank Method

5.4.1.1 Execution Environment

Prepare the RX65N operation check environment (6.2.1). For MCU products other than RX65N, please refer
to the operation confirmation environment of the applicable MCU product.

5.4.1.2 Building The Demo Project

Follow the steps below to build three demo projects for the dual-bank method in linear mode.

1. Import the boot_loader, fwup_leddemo, and fwup_main demo projects into the integrated development
environment.

2. Add the public key to be used to verify the image to the demo project.
Paste the contents of secp256r1.publickey generated as described in 5.3.1 into
code_signer_public_key.h in the boot_loader and fwup_main projects.

v 1% boot_loader [HardwareDebug] v =5 fwup_main
i Includes Bl Includes
v (3 src v (3 src
v (= key v (= key
| > b code_signer_public_key.h Lh code _signer_public_key.h |

[=» sSMC_gen = smc_gen
= SrC = sre

't:.'-:-‘ boot_loaderscfg }5_.3 fwup_main.scfg

|X] boot_loader HardwareDebug.launch X| fwup_main HardwareDebug.launch

(2) Developer Assistance (7) Developer Assistance

Figure 5.1 Storage Location of code_signer_public_key.h File in Demo Project

RO1AN6850EJ0200 Rev.2.00 Page 51 of 86
Jul.20.23 RENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

/*
* PEM-encoded code signer public key.

* Must include the PEM header and footer:

oM BEGIN CERTIFICATE----- \n"\
* " _ .base64 data...\n"\
oM END CERTIFICATE----- "
*/
#define CODE SIGNER PUBLIC KEY PEM \
M- BEGIN PUBLIC KEY----—- "\
Paste the contents of secp256r1.publickey here.
M END PUBLIC KEY-----— "\

#endif /* CODE_SIGNER PUBLIC KEY H */

3. Build the demo projects.
Build the three demo projects and confirm that the following mot files have been generated:
boot_loader.mot, fwup_leddemo.mot, and fwup_main.mot.

RO1AN6850EJ0200 Rev.2.00 Page 52 of 86
Jul.20.23 RENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

5.4.1.3 Creating Initial and Update Images

The procedure for creating the initial and update images, using initial_firm.mot as the name of the initial
image and fwup_leddemo.rsu as the name of the update image is, is described below.

1. Store the mot files created by building the demo projects in the same folder as Renesas Image
Generator.

image-gen.py

RX65N DualBank ImageGenerator PRM.csv
RX65N Linear Full ImageGenerator PRM.csv
RX65N Linear Half ImageGenerator PRM.csv
boot loader.mot

fwup main.mot

fwup leddemo.mot

secp256rl.privatekey

2. Execute the following command to create the initial image:

> python image-gen.py —-iup fwup main.mot -ip
RX65N DualBank ImageGenerator PRM.csv -o initial firm -ibp
boot loader.mot -vt ecdsa

Successfully generated the initial firm.mot file.

3. Execute the following command to create the update image:

> python image-gen.py -iup fwup leddemo.mot -ip
RX65N DualBank ImageGenerator PRM.csv -o fwup leddemo -vt ecdsa

Successfully generated the fwup leddemo.rsu file.

Confirm that the initial and update image have been created in the same folder as Renesas Image
Generator.

image-gen.py

RX65N DualBank ImageGenerator PRM.csv
RX65N Linear Full ImageGenerator PRM.csv
RX65N_ Linear Half ImageGenerator PRM.csv
boot loader.mot

fwup main.mot

fwup leddemo.mot

secp256rl.privatekey

fwup leddemo.rsu

initial firm.mot

RO1AN6850EJ0200 Rev.2.00 Page 53 of 86
Jul.20.23 RENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

5.4.1.4 Programming the Initial Image

Use Flash Writer to program the initial image (initial_firm.mot) to the MCU board. After programming, turn off
the power to the board and disconnect the debugger (E2 Lite).

5.4.1.5 Executing a Firmware Update

Once the initial image firmware is activated, it waits for the transfer of the update image via the terminal
emulator. The received update image is programmed to the flash memory, and after the transfer completes,
the signature of the update image is verified and the firmware is activated.

Follow the steps below to execute a firmware update.

1.
2.

Refer to 6.2.1, Execution Environment, and connect the devices.

Launch the terminal emulator software on the PC, select the serial COM port, and configure the
connection settings.

Power on the board. The following message is output:

==== RX65N : BootLoader [dual bank] ====
verify install area 0 [sig-sha256-ecdsa]...OK
execute new image ...

==== RX65N : Update from User [dual bank] ver 1.0.0 ====
send user program (*.rsu) via UART.

. Send the updated image via the terminal emulator.

Send file... > check Binary > fwup_leddemo.rsu
The following message is output during the transfer of the update image, and a software reset is applied
after installation and signature verification complete.

W OxFFEO00000, 256 ... OK
W O0xFFE00100, 256 ... OK

W OxFFEO3B0O, 128 ... OK
W OxFFEEFF80, 128 ... OK

. After installing the updated firmware and verifying the signature, it jumps to the updated firmware and

executes the program after processing such as bank swap.

verify install area 1 [sig-sha256-ecdsa]...OK
bank swap ...
software reset...

. When the bootloader completes signature verification, the update image firmware is activated. When the

process completes successfully, the following message is output and the LED flashes.

==== RX65N : BootLoader [dual bank] ====
verify install area 0 [sig-sha256-ecdsa]...OK
execute image ...

FWUP demo (ver 0.1.1)

Check the LEDs on the board.

RO1AN6850EJ0200 Rev.2.00 Page 54 of 86
Jul.20.23 RENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

5.4.2 Operation of Linear Mode Partial Update Method

5.4.2.1 Execution Environment

Prepare the RX65N operation check environment (6.2.1). For MCU products other than RX65N, please refer

to the operation confirmation environment of the applicable MCU product.

5.4.2.2 Building The Demo Project

Follow the steps below to build three demo projects for the partial update method in linear mode.

1. Import the boot_loader, fwup_leddemo, and fwup_main demo projects into the integrated development

environment.
2. Add the public key to be used to verify the image to the demo project.

Paste the contents of secp256r1.publickey generated as described in 5.3.1 into

code_signer_public_key.h in the boot_loader and fwup_main projects.

v =% boot _loader [HardwareD ebug] v IS fwup_main
mit Includes) Includes
v (2 src v B src
v (= key v (= key
[lh| code_signer_public_key.h L] chE-Sianr.J}uhlic_kE!rﬂh]

(= smc_gen = smc_gen
= sre &= src

{5¢ boot_loader.scfg 9% fwup_main.scfg

|X] boot_loader HardwareDebug.launch X| fwup_main HardwareDebug.launch

(7) Developer Assistance (7) Developer Assistance

Figure 5.2 Storage Location of code_signer_public_key.h File in Demo Project

PEM-encoded code signer public key.

* Must include the PEM header and footer:

KoM————— BEGIN CERTIFICATE-—---- \n"\
* "...base64 data...\n"\
KoM————— END CERTIFICATE----- "
*/
#define CODE_SIGNER PUBLIC KEY PEM \
M BEGIN PUBLIC KEY----- "\
Paste the contents of secp256r1.publickey here.
M END PUBLIC KEY----- "\

#endif /* CODE_SIGNER PUBLIC KEY H */

3. Build the demo projects.

Build the three demo projects and confirm that the following mot files have been generated:

boot_loader.mot, fwup_leddemo.mot, and fwup_main.mot.

RO1AN6850EJ0200 Rev.2.00
Jul.20.23 RENESAS

Page 55 of 86

RX Family Firmware Update Module Using Firmware Integration Technology

5.4.2.3 Creating Initial and Update Images

The procedure for creating the initial and update images, using initial_firm.mot as the name of the initial
image and fwup_leddemo.rsu as the name of the update image is, is described below.

1. Store the mot files created by building the demo projects in the same folder as Renesas Image
Generator.

image-gen.py

RX65N DualBank ImageGenerator PRM.csv
RX65N Linear Full ImageGenerator PRM.csv
RX65N Linear Half ImageGenerator PRM.csv
boot loader.mot

fwup main.mot

fwup leddemo.mot

secp256rl.privatekey

2. Execute the following command to create the initial image:

> python image-gen.py —-iup fwup main.mot -ip
RX65N Linear Half ImageGenerator PRM.csv -o initial firm -ibp
boot loader.mot -vt ecdsa

Successfully generated the initial firm.mot file.

3. Execute the following command to create the update image:

> python image-gen.py -iup fwup leddemo.mot -ip
RX65N Linear Half ImageGenerator PRM.csv -o fwup leddemo -vt ecdsa

Successfully generated the fwup leddemo.rsu file.

Confirm that the initial and update image have been created in the same folder as Renesas Image
Generator.

image-gen.py

RX65N DualBank ImageGenerator PRM.csv
RX65N Linear Full ImageGenerator PRM.csv
RX65N_ Linear Half ImageGenerator PRM.csv
boot loader.mot

fwup main.mot

fwup leddemo.mot

secp256rl.privatekey

fwup leddemo.rsu

initial firm.mot

RO1AN6850EJ0200 Rev.2.00 Page 56 of 86
Jul.20.23 RENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

5.4.2.4 Programming the Initial Image

Use Flash Writer to program the initial image (initial_firm.mot) to the MCU board. After programming, turn off

the power to the board and disconnect the debugger (E2 Lite).

5.4.2.5 Executing a Firmware Update

Once the initial image firmware is activated, it waits for the transfer of the update image via the terminal
emulator. The received update image is programmed to the flash memory, and after the transfer completes,

the signature of the update image is verified and the firmware is activated.
Follow the steps below to execute a firmware update.

1. Refer to 6.2.1, Execution Environment, and connect the devices.

2. Launch the terminal emulator software on the PC, select the serial COM port, and configure the

connection settings.

3. Power on the board. The following message is output:

==== RX65N : BootLoader [with buffer] ====
verify install area 0 [sig-sha256-ecdsa]...OK
execute image ...

==== RX65N : Update from User [with buffer] wver 1.0.0 ====
send image (*.rsu) via UART.

4. Send the updated image via the terminal emulator.
Send file... > check Binary > fwup_leddemo.rsu

The following message is output during the transfer of the update image, and a software reset is applied

after installation and signature verification complete.

W O0xFFFO00000, 256 ... OK

W OxFFF00100, 256 ... OK

W OxFFF03B00, 128 ... OK

W OxFFFEFF80, 128 ... OK

verify install area 1 [sig-sha256-ecdsal...OK
software reset...

5. Activation processing is performed by the bootloader and a second software reset is applied.

==== RX65N : BootLoader [with buffer] ====
verify install area 1 [sig-sha256-ecdsa]...OK
activating image ... OK

software reset...

6. When the bootloader completes signature verification, the update image firmware is activated. When the

process completes successfully, the following message is output and the LED flashes.

==== RX65N : BootLoader [with buffer] ====
verify install area 0 [sig-sha256-ecdsa]...OK
execute image ...

FWUP demo (ver 0.1.1)

Check the LEDs on the board.

RO1AN6850EJ0200 Rev.2.00
Jul.20.23 RENESAS

Page 57 of 86

RX Family Firmware Update Module Using Firmware Integration Technology

5.4.3 Operation of Linear Mode Full Update Method

5.4.3.1 Execution Environment

Prepare the RX65N operation check environment (6.2.1). For MCU products other than RX65N, please refer
to the operation confirmation environment of the applicable MCU product.

5.4.3.2 Building The Demo Project

Follow the steps below to build two demo projects for the full update method in linear mode.

1. Import the boot_loader, fwup_leddemo, and fwup_main demo projects into the integrated development
environment.

2. Add the public key to be used to verify the image to the demo project.
Paste the contents of secp256r1.publickey generated as described in 5.3.1 into
code_signer_public_key.h in the boot_loader and fwup_main projects.

W Tl-:“f- boot_loader [HardwareDebug]
[kl Includes
w [src
v (= key
| || code signer_public_key.h |
= smc_gen

= src
%% boot_loaderscfg

¥| boot_|oader HardwareDebug.launch

{?) Developer Assistance

Figure 5.3 Storage Location of code_signer_public_key.h File in Demo Project

* PEM-encoded code signer public key.

* Must include the PEM header and footer:

oM e BEGIN CERTIFICATE----- \n"\
* " . .base6d4 data...\n"\
oM e END CERTIFICATE----- "
*/
#define CODE_SIGNER PUBLIC KEY PEM \
M BEGIN PUBLIC KEY----- "\
Paste the contents of secp256r1.publickey here.
M END PUBLIC KEY----- "\

#endif /* CODE_SIGNER PUBLIC _KEY H */

RO1AN6850EJ0200 Rev.2.00 Page 58 of 86
Jul.20.23 RENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

3. Build the demo projects.
Build the first project (boot_loader) to generate boot_loader.mot.
Build the second project (fwup_leddemo) to generate fwup_leddemo.mot.
Rename fwup_leddemo.mot to fwup_leddemo_011.mot.

Change the version of the second project (fwup_leddemo) as follows, then build it to generate
fwup_leddemo.mot.

fwup leddemo.c

#define FWUP_DEMO VER MAJOR (0)
#define FWUP DEMO VER MINOR (1)
#define FWUP DEMO VER BUILD (1) k1->2

Rename fwup_leddemo.mot to fwup_leddemo_012.mot.

5.4.3.3 Creating Initial and Update Images

The procedure for creating the initial and update images, using initial_firm.mot as the name of the initial
image and fwup_leddemo.rsu as the name of the update image is, is described below.

1. Store the mot files created by building the demo projects in the same folder as Renesas Image
Generator.

image-gen.py

RX65N DualBank ImageGenerator PRM.csv
RX65N Linear Full ImageGenerator PRM.csv
RX65N Linear Half ImageGenerator PRM.csv
boot loader.mot

fwup leddemo 0l1l.mot

fwup leddemo 012.mot
secp256rl.privatekey

2. Execute the following command to create the initial image:

> python image-gen.py -iup fwup leddemo 0ll.mot -ip
RX65N Linear Full ImageGenerator PRM.csv -o initial firm -ibp
boot loader.mot -vt ecdsa

Successfully generated the initial firm.mot file.

RO1AN6850EJ0200 Rev.2.00 Page 59 of 86
Jul.20.23 RENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

3. Execute the following command to create the update image:

> python image-gen.py -iup fwup leddemo 0l2.mot -ip
RX65N Linear Full ImageGenerator PRM.csv -o fwup leddemo 012 -vt
ecdsa

Successfully generated the fwup leddemo.rsu file.

Confirm that the initial and update image have been created in the same folder as Renesas Image
Generator.

image-gen.py

RX65N DualBank ImageGenerator PRM.csv
RX65N Linear Full ImageGenerator PRM.csv
RX65N Linear Half ImageGenerator PRM.csv
boot loader.mot

fwup main.mot

fwup leddemo.mot

secp256rl.privatekey

fwup leddemo 012.rsu

initial firm.mot

5.4.3.4 Programming the Initial Image

Use Flash Writer to program the initial image (initial_firm.mot) to the MCU board. After programming, turn off
the power to the board and disconnect the debugger (EZ2 Lite).

5.4.3.5 Executing a Firmware Update

Once the initial image firmware is activated, it waits for the transfer of the update image via the terminal
emulator. The received update image is programmed to the flash memory, and after the transfer completes,
the signature of the update image is verified and the firmware is activated.

Follow the steps below to execute a firmware update.

1. Referto 6.2.1, Execution Environment, and connect the devices.

2. Launch the terminal emulator software on the PC, select the serial COM port, and configure the
connection settings.

3. Power on the board. The following message is output:

==== RX65N : BootLoader [without buffer] ====
verify install area 0 [sig-sha256-ecdsal...OK
execute image ...

4. Press RESET_SW while holding down USER_SW.

==== RX65N : Image updater [without buffer] ====
send image (*.rsu) via UART.

RO1AN6850EJ0200 Rev.2.00 Page 60 of 86
Jul.20.23 RENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

5. Send the updated image via the terminal emulator.
Send file... > check Binary > fwup_leddemo_012.rsu

The following message is output during the transfer of the update image, and a software reset is applied

after installation and signature verification complete.

W OxFFE00000, 128 ... OK

W OxFFE00080, 128 ... OK

W OxFFEO3B0O, 128 ... OK

W OxXFFFEFF80, 128 ... OK

verify install area O [sig-sha256-ecdsa]...OK
software reset...

6. When the bootloader completes signature verification, the update image firmware is activated. When the

process completes successfully, the following message is output and the LED flashes.

==== RX65N : BootLoader [without buffer] ===
verify install area 0 [sig-sha256-ecdsa]...OK
execute image ...

FWUP demo (ver 0.1.2)

Check the LEDs on the board.

RO1AN6850EJ0200 Rev.2.00
Jul.20.23 RENESAS

Page 61 of 86

RX Family

Firmware Update Module Using Firmware Integration Technology

6. Appendices
6.1

Confirmed Operation Environments

This section describes environments on which the operation of the FIT module has been confirmed.

Table 6.1 Confirmed Operation Environment (CC-RX)

Item

Description

Integrated development
environment

Renesas Electronics e? studio 2023-01

C compiler

Renesas Electronics C/C++ Compiler for RX Family V3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99
Endian order Little endian
Revision of the module | Rev.2.00

Board used

Renesas Starter Kit+ for RX65N (product No.: RTK50565N2SxxxxxBE)
Renesas Flexible Motor Control Kit for RX26T

(product No.: RTKOEMXE70S00020BJ)

Renesas Starter Kit+ for RX24T (product No.:RTK500524TS00000BE)

Table 6.2 Confirmed Operation Environment (GCC)

Item

Description

Integrated development
environment

Renesas Electronics e? studio 2023-01

C compiler

GCC for Renesas RX 8.3.0.202202
Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99
Endian order Little endian
Revision of the module | Rev.2.00

Board used

Renesas Starter Kit+ for RX65N (product No.:RTK50565N2SxxxxxBE)
Renesas Flexible Motor Control Kit for RX26T

(product No.: RTKOEMXE70S00020BJ)

Renesas Starter Kit+ for RX24T (product No.:RTK500524TS00000BE)

Table 6.3 Confirmed Operation Environment (IAR)

Item

Description

Integrated development
environment

IAR Embedded Workbench for Renesas RX 4.20.1

C compiler

IAR C/C++ Compiler for Renesas RX 4.20.1
Compiler option: The default settings of the integrated development environment

Endian order

Little endian

Revision of the module

Rev.2.00

Board used

Renesas Starter Kit+ for RX65N (product No.:RTK50565N2SxxxxxBE)
Renesas Flexible Motor Control Kit for RX26T

(product No.: RTKOEMXE70S00020BJ)

Renesas Starter Kit+ for RX24T (product No.:RTK500524TS00000BE)

RO1ANG6850EJ0200 Rev.2.00

Jul.20.23

Re Page 62 of 86
KENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

The versions of the FIT modules used by the demo project to confirm firmware update operation are listed
below.

(1) Renesas Electronics C/C++ Compiler Package for RX Family

Table 6.4 FIT Module Versions (CC-RX)

Device Project r_bsp r_byteq r_flash_rx r_sci_rx r_fwup_rx

RX65N boot_loader 7.21 210 4.91 4.60 2.00
fwup_main 7.21 2.10 4.91 4.60 2.00
fwup_leddemo 7.21 210 - 4.60 -

RX26T boot_loader 7.30 2.10 5.00 4.80 2.00
fwup_main 7.30 210 5.00 4.80 2.00
fwup_leddemo 7.30 210 - 4.80 -

RX24T boot_loader 7.21 2.10 4.91 4.60 2.00
fwup_main 7.21 2.10 4.91 4.60 2.00
fwup_leddemo 7.21 2.10 - 4.60 -

(2) GCC for Renesas RX

Table 6.5 FIT Module Versions (GCC)

Device Project r_bsp r_byteq r_flash_rx r_sci_rx r_fwup_rx

RX65N boot_loader 7.21 210 4.91 4.60 2.00
fwup_main 7.21 2.10 4.91 4.60 2.00
fwup_leddemo 7.21 210 - 4.60 -

RX26T boot_loader 7.30 2.10 5.00 4.80 2.00
fwup_main 7.30 210 5.00 4.80 2.00
fwup_leddemo 7.30 210 - 4.80 -

RX24T boot_loader 7.21 2.10 4.91 4.60 2.00
fwup_main 7.21 2.10 4.91 4.60 2.00
fwup_leddemo 7.21 2.10 - 4.60 -

(3) IAR C/C++ Compiler for RX

Table 6.6 FIT Module Versions (IAR)

Device Project r_bsp r_byteq r_flash_rx r_sci_rx r_fwup_rx

RX65N boot_loader 7.21 210 4.91 4.60 2.00
fwup_main 7.21 2.10 4.91 4.60 2.00
fwup_leddemo 7.21 210 - 4.60 -

RX26T boot_loader 7.40 2.10 5.00 4.80 2.00
fwup_main 7.40 210 5.00 4.80 2.00
fwup_leddemo 7.40 210 - 4.80 -

RX24T boot_loader 7.21 2.10 4.91 4.60 2.00
fwup_main 7.21 2.10 4.91 4.60 2.00
fwup_leddemo 7.21 2.10 - 4.60 -

RO1AN6850EJ0200 Rev.2.00 Page 63 of 86

Jul.20.23 RENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

6.2 Operating Environment for Demo Project

This module supports multiple compilers. When using this module, the different settings for each compiler
are shown below.

6.2.1 Operation Confirmation Environment for RX65N
The execution environment and connection diagram are shown below.

(")
| RSK+forRX65N
= (power supply)
—2c RXG5N
Development -2MB
PC
RXD6/ (USB serial USB cable |
TXD6 _ converter board
=
S J Host PC

(Serial communications software)

Figure 6.1 RSK-RX65N Device Connection Diagram

The pin assignment is shown in the figure below.

® UART(Red)

PMOD1 USB-UART

2 TXD6 RX
3 RXD6 X
4 PO2(RTS) CTS

B USER_SW (Green)

.

0O

ol -
Sk
Ol
ol -
o

(=)

o

Ho O

o

o

oj«
=]

o

o

o

o

P03 LOW : USER_SW is ON

B Reset Switch (Blue)

RES# LOW : USER_SW is ON

Q000000

- g i ele) (i 2
000 000000000000000000] /
©00000000000000000000000]

6G00000000000000000000000 -
000000000000000000000000 110
- =y

m USER_LED (Yellow)

[LEDO | Note |

P73 LEDO

Figure 6.2 RSK-RX65N Pin Information

RO1AN6850EJ0200 Rev.2.00 Page 64 of 86
Jul.20.23 RENESAS

RX Family

Firmware Update Module Using Firmware Integration Technology

6.2.1.1 Memory map of dual bank method demo project

The memory map and configuration settings for the RX65N dual-bank method demo project are shown

below.

Buffer side
(size=0xF0000)

Bootloader
(size=0x10000)

Main side
(size=0xF0000)

0xFFEO00Q0 - 0xFFEQOQOFF:Header
0xFFEO00200 - 0OxFFEQOQ2FF:List
0xFFEO0300- OxFFEEFFFF:App

OxFFEF0000

OXFFEFFFFF

OxFFF00000 - OxFFFO00FF :Header
OxFFF00200 - OXFFFO02FF List
OxFFF00300 - OXFFFEFFFF:App

Bootloader 0xFFFF0000
(Size:0X1 OOOO) 0xFFFFFFFF
boot_loader fwup_main

0x00000004 Sl 0x00000004 Sl

B_1 B_1

R1 R_1

B2 B_2

R_2 R_2

B B

R R

RPFRAM* RPFRAM*
0x 00800000 BEXRAM_1 0x00800000 BEXRAM_1

REXRAM_1 REXRAM_1

BEXRAM_2 BEXRAM_2

REXRAM_2 REXRAM_2

BEXRAM BEXRAM

REXRAM REXRAM
OxFFFF0O000 PResetPRG 0xFFFO0300 PResetPRG

C1 C.1

C2 C2

C C

cs* cs*

D* D*

wr w*

L L

p P

PFRAM* PFRAM*
OxFFFFFF80 EXCEPTVECT OxFFFEFF80 EXCEPTVECT
OxFFFFFFFC RESETVECT OxFFFEFFFC RESETVECT

Figure 6.3 RXG65N dual bank method demo project memory map

RO1ANG6850EJ0200 Rev.2.00

Jul.20.23

RENESAS

Page 65 of 86

RX Family Firmware Update Module Using Firmware Integration Technology

Table 6.7 RX65N dual bank method configuration settings

Configuration options in r_fwup _config.h

parameter name boot_loader

fwup_main

FWUP_CFG_UPDATE_MODE 0 0
FWUP_CFG_FUNCTION_MODE 0 1
FWUP_CFG_MAIN_AREA_ADDR L 0xFFF00000 0xFFF00000
FWUP_CFG_BUF_AREA_ADDR L 0xFFE00000 0xFFE00000
FWUP_CFG_AREA_SIZE 0xF0000 0xF0000
FWUP_CFG_CF_BLK_SIZE 0x8000 0x8000
FWUP_CFG_EXT_BUF_AREA_ADDR_L (unused) 0x0000 0x0000
FWUP_CFG_EXT_BUF_AREA BLK_SIZE (unused) 4096 4096
FWUP_CFG_DF_ADDR L 0x00100000 0x00100000
FWUP_CFG_DF_BLK_SIZE 64 64
FWUP_CFG_DF_NUM_BLKS 512 512
FWUP_CFG_SIGNATURE_VERIFICATION 0 0
FWUP_CFG_PRINTF_DISABLE 0 0

RO1ANG6850EJ0200 Rev.2.00

Jul.20.23 RENESAS

Page 66 of 86

RX Family

Firmware Update Module Using Firmware Integration Technology

6.2.1.2 Memory map of demo project for half-surface update method in linear mode

Shown below are the memory map of the RX65N linear mode half-surface update method demo project and
the memory map of the configuration settings.

Main side OxFFE00000 - OxFFEO00FF:Header
: 0xFFE00200 - 0xFFEQQ2FF:List
(size=0xF8000) | oxFFE00300- OXFFEEFFFF:App
Block(69-39)
31blocks
Butrsce | OECETEN0 DTt
(size=0xF8000) OXFFEF8300 - OXFFFEFFFF:App
Block(38-8)
31blocks
Bootloader 0xFFFF0000
(size=0x10000) OxFFEEEFEE
boot_loader fwup_main
0x00000004 S| 0x00000004 s
B.1 B_1
R_1 R_1
B.2 B.2
R.2 R.2
B B
R R
RPERAM* RPFRAM*
0x 00800000 BEXRAM_1 O0x 00800000 BEXRAM_1
REXRAM_1 REXRAM_1
BEXRAM_2 BEXRAM_2
REXRAM_2 REXRAM_2
BEXRAM BEXRAM
REXRAM REXRAM
OxFFFF0000 PResetPRG OxFFE00300 PResetPRG
C1 (ol |
Co C2
C C
cs* s
D D
W w*
L L
P P
PFRAM® PFRAM*
OxFFFFFF80 EXCEPTVECT OxFFEF7FB0 EXCEPTVECT
OxFFFFFFFC RESETVECT | OxFFEFTFFC RESETVECT

Figure 6.4 RX65N linear mode half-surface update method demo project memory map

RO1ANG6850EJ0200 Rev.2.00
Jul.20.23

RENESAS

Page 67 of 86

RX Family Firmware Update Module Using Firmware Integration Technology

Table 6.8 RX65N linear mode half-surface update method configuration setting

Configuration options in r_fwup _config.h

parameter name boot_loader fwup_main

FWUP_CFG_UPDATE_MODE 1 1
FWUP_CFG_FUNCTION_MODE 0 1
FWUP_CFG_MAIN_AREA_ADDR L 0xFFE00000 0xFFE00000
FWUP_CFG_BUF_AREA_ADDR L OxFFEF8000 OxFFEF8000
FWUP_CFG_AREA_SIZE 0xF8000 0xF8000
FWUP_CFG_CF_BLK_SIZE 0x8000 0x8000
FWUP_CFG_EXT_BUF_AREA_ADDR_L (unused) 0x0000 0x0000
FWUP_CFG_EXT_BUF_AREA BLK_SIZE (unused) 4096 4096
FWUP_CFG_DF_ADDR L 0x00100000 0x00100000
FWUP_CFG_DF_BLK_SIZE 64 64
FWUP_CFG_DF_NUM_BLKS 512 512
FWUP_CFG_SIGNATURE_VERIFICATION 0 0
FWUP_CFG_PRINTF_DISABLE 0 0

RO1ANG6850EJ0200 Rev.2.00

Jul.20.23 RENESAS

Page 68 of 86

RX Family

Firmware Update Module Using Firmware Integration Technology

6.2.1.3 Memory map of demo project for full update method in linear mode

The memory map of the RX65N linear mode full update method demo project and the memory map of the
configuration settings are shown below.

Main side
(size=0x1F0000)

Bootloader
(size=0x10000)

boot_loader

0xFFEO00Q0 - 0xFFEQOQOFF:Header
0xFFEO00200 - 0OxFFEQOQ2FF:List
0xFFEO0300- OxFFFEFFFF:App

0xFFFF0000

OxFFFFFFFF

fwup_leddemo

0x00000004 sl 0x00000004 su

B_1 SI

R_1 | B_1

B2 R1

R.2 B2

B | R2

R B

RPFRAM* R
0x00800000 BEXRAM_1 | ox00800000 BEXRAM_1

REXRAM_1 REXRAM_1

BEXRAM_2 BEXRAM_2

REXRAM_2 REXRAM_2

BEXRAM BEXRAM

REXRAM REXRAM
0xFFFF0000 PResetPRG OxFFE00300 PResetPRG

C1 C1

C2 C.2

C C

cs* cs

D D

wr wr

L L

p P

PFRAM® OxFFFEFF80 EXCEPTVECT
OxFFFFFF80 EXCEPTVECT OxFFFEFFFC RESETVECT
OxFFFFFFFC RESETVECT

Figure 6.5 RX65N linear mode full update method demo project memory map

RO1ANG6850EJ0200 Rev.2.00

Jul.20.23

RENESAS

Page 69 of 86

RX Family

Firmware Update Module Using Firmware Integration Technology

Table 6.9 RX65N linear mode full update method configuration setting

Configuration options in r_fwup _config.h

parameter name

boot_loader

FWUP_CFG_UPDATE_MODE 2
FWUP_CFG_FUNCTION_MODE 0
FWUP_CFG_MAIN_AREA_ADDR_L 0XFFE00000
FWUP_CFG_BUF_AREA_ADDR_L 0xFFE00000
FWUP_CFG_AREA_SIZE 0x1F0000
FWUP_CFG_CF_BLK_SIZE 0x8000
FWUP_CFG_EXT_BUF_AREA_ADDR_L (unused) 0x0000
FWUP_CFG_EXT_BUF_AREA_BLK_SIZE (unused) 4096
FWUP_CFG_DF_ADDR L 0x00100000
FWUP_CFG_DF_BLK_SIZE 64
FWUP_CFG_DF_NUM_BLKS 512
FWUP_CFG_SIGNATURE_VERIFICATION 0
FWUP_CFG_PRINTF_DISABLE 0
RO1ANG850EJ0200 Rev.2.00 Page 70 of 86
Jul.20.23 RENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

6.2.2 Operation Confirmation Environment for RX26T
The execution environment and connection diagram are shown below.

~

j
r MCK-RX26T

= r
2

L power supply)
RX26T

Development
PC

RXD5/ (USB serial USB cable |
TXD5 _ converter board
—

\ y Host PC
(Serial communications software)

Figure 6.6 MCK-RX26T Device Connection Diagram

The pin assignment is shown in the figure below.

m UART(Red)

| PMOD2___| USB-UART
20 s RX
3 RXD5 X

4 PBO(RTS) CTS

m USER_SW (Green)

1 PB3 LOW : USER_SW is ON

6 GND Connect to PMOD1. 1

m Reset Switch (Blue)

RES# Reset SW for MCU

m USER_LED (Yellow)

LEDO |Note

P20 LED2

ﬁ T

L TTTTAT HIIIIIIIIIIIIIIIII

Figure 6.7 MCK-RX26T Pin Information

RO1ANG6850EJ0200 Rev.2.00

Page 71 of 86
Jul.20.23 RENESAS

RX Family

Firmware Update Module Using Firmware Integration Technology

6.2.2.1 Memory map of dual bank method demo project

The memory map and configuration settings for the RX26T dual-bank method demo project are shown

below.

Buffer side
(size=0x38000)

Bootloader
(size=0x8000)

Main side
(size=0x38000)

Bootloader
(size=0x8000)

0xFFFF8000

| OXFFFFFF80
OXFFFFFFFC

boot_loader

. 0x00000004 Sl

B_1

R_1

B_2

R_2

B

R
RPFRAM*
PResetPRG
E

2

&

"

D*

w*

L

p

PFRAM™
EXCEPTVECT
RESETVECT

0xFFF80000 - OxFFF80QFF :Header
0xFFF80200 - OxFFF802FF:List
0xFFF80300 - OxFFFB7FFF:App

OxFFFB8000

OxFFFBFFFF

0xFFFCO0000 - 0xFFFCOOFF:Header
O0xFFFC0200 - 0xFFFCO2FF:List
0xFFFCO0300 - 0xFFFF7FFF:App

0xFFFF8000

OxFFFFFFFF

0x00000004

OxFFFC0300

0xFFFF7F80
OxFFFFTFFC

fwup_main
gl
B_1
R_1
B_2
R.2
B
R
RPFRAM™
PResetPRG
C
C2
C
B 5
o
w*
L
p
PFRAM™
EXCEPTVECT
RESETVECT

Figure 6.8 RX26T dual bank method demo project memory map

RO1ANG6850EJ0200 Rev.2.00

Jul.20.23

RENESAS

Page 72 of 86

RX Family Firmware Update Module Using Firmware Integration Technology

Table 6.10 RX26T dual bank method configuration settings

Configuration options in r_fwup _config.h

parameter name boot_loader

fwup_main

FWUP_CFG_UPDATE_MODE 0 0
FWUP_CFG_FUNCTION_MODE 0 1
FWUP_CFG_MAIN_AREA_ADDR L O0xFFFC0000 0xFFFC0000
FWUP_CFG_BUF_AREA_ADDR L OxFFF80000 O0xFFF80000
FWUP_CFG_AREA_SIZE 0x38000 0x38000
FWUP_CFG_CF_BLK_SIZE 0x4000 0x4000
FWUP_CFG_EXT_BUF_AREA_ADDR_L (unused) 0x0000 0x0000
FWUP_CFG_EXT_BUF_AREA BLK_SIZE (unused) 4096 4096
FWUP_CFG_DF_ADDR L 0x00100000 0x00100000
FWUP_CFG_DF_BLK_SIZE 64 64
FWUP_CFG_DF_NUM_BLKS 256 256
FWUP_CFG_SIGNATURE_VERIFICATION 0 0
FWUP_CFG_PRINTF_DISABLE 0 0

RO1ANG6850EJ0200 Rev.2.00

Jul.20.23 RENESAS

Page 73 of 86

RX Family

Firmware Update Module Using Firmware Integration Technology

6.2.2.2 Memory map of demo project for half-surface update method in linear mode

Shown below are the memory map of the RX26T linear mode half-surface update method demo project and
the memory map of the configuration settings.

Main side
(size=0x3C000)

Buffer side
(size=0x3C000)

Bootloader
(size=0x8000)

boot_loader

000000004 Sl
B_1
R_1
B_2
R.2
B
R

O0xFFF80000
O0xFFF80200
O0xFFF80300

- OXFFF800FF:Header
- OxFFF802FF:List
- OXFFFB7FFF:App

OxFFFBBF80 - OxFFFBBFFB :EXCEPTVECT
OxFFFBBFFC - OxFFFBBFFF :RESETVECT

OxFFFBCO00
OxFFFBC200
OxFFFBC300

0xFFFF8000

OxFFFFFFFF

RPFRAM*

0xFFFF8000
C1
C 2
C
cs
D
w
L
P

PResetPRG

PFRAM*

OxFFFFFF80
OxFFFFFFFC

EXCEPTVECT
RESETVECT

- OxFFFBCOFF:Header
- OxFFFBC2FF:List
- OXFFFF7FFF:App

fwup_main
| 0x00000004 Sl
B_1
R1
B2
R.2
B
R
RPFRAM*
PResetPRG
C
C.2
C
cs*
o
w
L
p
PFRAM*
EXCEPTVECT
RESETVECT

OxFFF80300

OxFFFBBF80
OxFFFBBFFC

Figure 6.9 RX26T linear mode half-surface update method demo project memory map

RO1ANG6850EJ0200 Rev.2.00

Jul.20.23

RENESAS

Page 74 of 86

RX Family

Firmware Update Module Using Firmware Integration Technology

Table 6.11 RX26T linear mode half-surface update method configuration setting

Configuration options in r_fwup _config.h

parameter name

boot_loader

fwup_main

FWUP_CFG_UPDATE_MODE

1

1

FWUP_CFG_FUNCTION_MODE 0 1
FWUP_CFG_MAIN_AREA_ADDR L 0xFFF80000 0xFFF80000
FWUP_CFG_BUF_AREA_ADDR L OxFFFBCO000 OxFFFBCO000
FWUP_CFG_AREA_SIZE 0x3C000 0x3C000
FWUP_CFG_CF_BLK_SIZE 0x4000 0x4000
FWUP_CFG_EXT_BUF_AREA_ADDR_L (unused) 0x0000 0x0000
FWUP_CFG_EXT_BUF_AREA BLK_SIZE (unused) 4096 4096
FWUP_CFG_DF_ADDR L 0x00100000 0x00100000
FWUP_CFG_DF_BLK_SIZE 64 64
FWUP_CFG_DF_NUM_BLKS 256 256
FWUP_CFG_SIGNATURE_VERIFICATION 0 0
FWUP_CFG_PRINTF_DISABLE 0 0

RO1ANG6850EJ0200 Rev.2.00

Jul.20.23 RENESAS

Page 75 of 86

RX Family

Firmware Update Module Using Firmware Integration Technology

Main side
(size=0xF0000)

Not in use
(size=0x10000)

Buffer side
(size=0xF0000)

0xFFE00000 - 0xFFEOOOFF:Header
0xFFE00200 - 0xFFEOOQ2FF:List
0xFFEO00300- OxFFEEFFFF:App

OxFFEF0000

OXFFEFFFFF
0xFFF00000 - 0xFFFOO0FF :Header
O0xFFF00200 - OxFFFO02FF List
0xFFF00300 - OXFFFEFFFF:App

Bootloader 0xFFFF0000
(Size:OX1 0000) OxFFFFFFFF
boot_loader fwup_main
0x 00000004 SI 0x 00000004 Sl
B_1 B_1
R_1 R.1
B_2 B2
R_2 R2
B B
R R
RPFRAM* RPFRAM*
0x00800000 BEXRAM_1 0x 00800000 BEXRAM_1
REXRAM_1 REXRAM_1
BEXRAM_2 BEXRAM_2
REXRAM_2 REXRAM_2
BEXRAM BEXRAM
REXRAM REXRAM
0xFFFFO000 PResetPRG 0xFFE00300 PResetPRG
Cc C1
C2 c2
C C
cs cs”
D* DY
w w*
L L
P P
PFRAM* PFRAM*
OxFFFFFF80 EXCEPTVECT OxFFEEFF80 EXCEPTVECT
OxFFFFFFFC RESETVECT OxFFEEFFFC RESETVECT

Figure 6.10 RX65N dual bank method demo project memory map

RO1ANG6850EJ0200 Rev.2.00
Jul.20.23

RENESAS

Page 76 of 86

RX Family

Firmware Update Module Using Firmware Integration Technology

Table 6.12 RX65N linear mode half-surface update method configuration setting

Configuration options in r_fwup _config.h
parameter name

FWUP_CFG_UPDATE_MODE

boot_loader

1

fwup_main

1

FWUP_CFG_FUNCTION_MODE 0 1
FWUP_CFG_MAIN_AREA_ADDR L 0xFFE00000 0xFFE00000
FWUP_CFG_BUF_AREA_ADDR L 0xFFF00000 O0xFFF00000
FWUP_CFG_AREA_SIZE 0xF0000 0xF0000
FWUP_CFG_CF_BLK_SIZE 0x8000 0x8000
FWUP_CFG_EXT_BUF_AREA_ADDR_L (unused) 0x0000 0x0000
FWUP_CFG_EXT_BUF_AREA BLK_SIZE (unused) 4096 4096
FWUP_CFG_DF_ADDR L 0x00100000 0x00100000
FWUP_CFG_DF_BLK_SIZE 64 64
FWUP_CFG_DF_NUM_BLKS 512 512
FWUP_CFG_SIGNATURE_VERIFICATION 0 0
FWUP_CFG_PRINTF_DISABLE 0 0

RO1ANG6850EJ0200 Rev.2.00

Jul.20.23 RENESAS

Page 77 of 86

RX Family Firmware Update Module Using Firmware Integration Technology

6.2.2.3 Memory map of demo project for full update method in linear mode

The memory map of the RX26T linear mode full update method demo project and the memory map of the
configuration settings are shown below.

Main side OxFFF80000 - 0xFFF800FF:Header
va OxFFF80200- 0xFFF802FF List
(size=0x78000) | oxFFF80300- OXFFFF7FFF:App

Bootloader OxFFFF8000
(size=0x8000) | oxFFFFFFFF

boot_loader fwup_leddemo

0%00000004 si | 0x00000004 sl

B_1 ' B_1

R_1 : R_1

B_2 [B_2

R_2 | R_2

B , B

R : R

‘ RPFRAM* | OxFFF80300 PResetPRG

OxFFFF8000 PResetPRG ' c1

1 : C2

02 , C

c . cs*

s , D"

D . wr

w* . L

L P

P | OxFFFF7F80 EXCEPTVECT

‘ PFRAM" | OxFFFF7FFC RESETVECT

OxFFFFFF80 EXCEPTVECT '

OxFFFFFFFC RESETVECT

Figure 6.11 RX26T linear mode full update method demo project memory map

RO1AN6850EJ0200 Rev.2.00 Page 78 of 86
Jul.20.23 RENESAS

RX Family

Firmware Update Module Using Firmware Integration Technology

Table 6.13 RX26T linear mode full update method configuration setting

Configuration options in r_fwup _config.h

parameter name

boot_loader

FWUP_CFG_UPDATE_MODE 2
FWUP_CFG_FUNCTION_MODE 0
FWUP_CFG_MAIN_AREA_ADDR_L O0XFFF80000
FWUP_CFG_BUF_AREA_ADDR_L O0xFFF80000
FWUP_CFG_AREA_SIZE 0x78000
FWUP_CFG_CF_BLK_SIZE 0x4000
FWUP_CFG_EXT_BUF_AREA_ADDR_L (unused) 0x0000
FWUP_CFG_EXT_BUF_AREA_BLK_SIZE (unused) 4096
FWUP_CFG_DF_ADDR L 0x00100000
FWUP_CFG_DF_BLK_SIZE 64
FWUP_CFG_DF_NUM_BLKS 256
FWUP_CFG_SIGNATURE_VERIFICATION 0
FWUP_CFG_PRINTF_DISABLE 0
RO1ANG850EJ0200 Rev.2.00 Page 79 of 86
Jul.20.23 RENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

6.2.3 Operation Confirmation Environment for RX24T
The execution environment and connection diagram are shown below.

()
’7‘ RSKRX24T
| E2 Lite (power supply]
25 RX24T
Development
PC
RXD5/ (USB serial USB cable ‘
TXD5 _ converter board
=
\ y Host PC
(Serial communications software)

Figure 6.12 RSK-RX24T Device Connection Diagram

The pin assignment is shown in the figure below.

® UART(Red)

| PMODL | USB-UART

2 TXDS RX
3 RXD5 TX
4 PB7(RTS) CTS

m USER_SW (Green)

P10 LOW : USER_SW is ON

=

©
-
-
=3
<
(=3
(=3
(=3
=3
=3

m Reset Switch (Blue)

RESNH Reset SW for MCU

B ST
Rag[e s g Lo
Bol [T,

L MO0

B USER _LED (Yellow)

LEDO_[Note |

PB3 LED2 ' Il NESAS

Made In UK

Figure 6.13 RSK-RX24T Pin Information

RO1AN6850EJ0200 Rev.2.00 Page 80 of 86
Jul.20.23 RENESAS

RX Family

Firmware Update Module Using Firmware Integration Technology

6.2.3.1 Memory map of demo project for half-surface update method in linear mode

Shown below are the memory map of the RX24T linear mode half-surface update method demo project and
the memory map of the configuration settings.

Main side OxFFFC0000 - OXFFFCOOFF:Header
_ OxFFFCO0200 - 0xFFFCO2FF List
(size=0x1C000) | oxFFFC0300 - OXFFFDBFFF:App
Buferside | AEEOCHD - DEEEOCOPT st
(size=0x1C000) | o, FrFDC300- OXFFFF7FFF:App
Bootloader O0xFFFF8000
(size=0x8000) | oxFFFFFFFF
. boot_loader fwup_main
| 0x00000004 sl 0%00000004 Sl
B_1 B_1
. R.1 R
B_2 B_2
: R_2 R2
B B
R R
. RPFRAM" RPFRAM"
| OxFFEF8000 PResetPRG OxFFFC0300 PResetPRG
' 1 C1
C2 2
f C c
cs* cs*
D* D’
w wr
, L L
' P P
PFRAM" PFRAM"
| OxFFFFFFS0 EXCEPTVECT OxFFFDBF80 EXCEPTVECT
| OXFFFFFFFC RESETVECT OxFFFDBFFC RESETVECT

Figure 6.14

RX24T linear mode half-surface update method demo project memory map

RO1ANG6850EJ0200 Rev.2.00

Jul.20.23

RENESAS

Page 81 of 86

RX Family Firmware Update Module Using Firmware Integration Technology

Table 6.14 RX24T linear mode half-surface update method configuration setting

Configuration options in r_fwup _config.h

parameter name boot_loader fwup_main

FWUP_CFG_UPDATE_MODE 1 1
FWUP_CFG_FUNCTION_MODE 0 1
FWUP_CFG_MAIN_AREA_ADDR L 0xFFE00000 0xFFE00000
FWUP_CFG_BUF_AREA_ADDR L 0xFFF00000 O0xFFF00000
FWUP_CFG_AREA_SIZE 0xF0000 0xF0000
FWUP_CFG_CF_BLK_SIZE 0x8000 0x8000
FWUP_CFG_EXT_BUF_AREA_ADDR_L (unused) 0x0000 0x0000
FWUP_CFG_EXT_BUF_AREA BLK_SIZE (unused) 4096 4096
FWUP_CFG_DF_ADDR L 0x00100000 0x00100000
FWUP_CFG_DF_BLK_SIZE 64 64
FWUP_CFG_DF_NUM_BLKS 512 512
FWUP_CFG_SIGNATURE_VERIFICATION 0 0
FWUP_CFG_PRINTF_DISABLE 0 0

RO1ANG6850EJ0200 Rev.2.00

Jul.20.23 RENESAS

Page 82 of 86

RX Family

Firmware Update Module Using Firmware Integration Technology

6.2.3.2 Memory map of demo project for full update method in linear mode

The memory map of the RX24T linear mode full update method demo project and the memory map of the

configuration settings are shown below.

Main side

(size=0x38000)

Bootloader
(size=0x8000)

boot_loader

0x 00000004

OxFFFF8000

OxFFFFFF80
OxFFFFFFFC

SI

B_1

R_1

B_2

R_2

B

R
RPFRAM*
PResetPRG
C1

Cc2

C

s

D"

W

L

p
PFRAM™

0xFFFF8000

OxFFFFFFFF

0xFFFCO000 - OxFFFCOOFF:Header
0xFFFCO200 - OxFFFCO2FF:List
0xFFFCQ300 - OxFFFF7FFF:App

fwup_leddemo

0x00000004

OxFFFC0300

OxFFFF7F80
OxFFFFTFFC

EXCEPTVECT

RESETVECT

Sl

B_1

R1

B_2

R_2

B

R
PResetPRG
C.1

C2

C

Ccs*

D

w*

L

P
EXCEPTVECT
RESETVECT

Figure 6.15 RX24T linear mode full update method demo project memory map

RO1ANG6850EJ0200 Rev.2.00

Jul.20.23

RENESAS

Page 83 of 86

RX Family

Firmware Update Module Using Firmware Integration Technology

Table 6.15 RX24T linear mode full update method configuration setting

Configuration options in r_fwup _config.h

parameter name

boot_loader

FWUP_CFG_UPDATE_MODE 2
FWUP_CFG_FUNCTION_MODE 0
FWUP_CFG_MAIN_AREA_ADDR_L 0XFFE00000
FWUP_CFG_BUF_AREA_ADDR_L 0xFFE00000
FWUP_CFG_AREA_SIZE 0x1F0000
FWUP_CFG_CF_BLK_SIZE 0x8000
FWUP_CFG_EXT_BUF_AREA_ADDR_L (unused) 0x0000
FWUP_CFG_EXT_BUF_AREA_BLK_SIZE (unused) 4096
FWUP_CFG_DF_ADDR L 0x00100000
FWUP_CFG_DF_BLK_SIZE 64
FWUP_CFG_DF_NUM_BLKS 512
FWUP_CFG_SIGNATURE_VERIFICATION 0
FWUP_CFG_PRINTF_DISABLE 0
RO1ANG850EJ0200 Rev.2.00 Page 84 of 86
Jul.20.23 RENESAS

RX Family Firmware Update Module Using Firmware Integration Technology

6.3 Open source license information used in the demo project

The demo project for this product uses the open source TinyCrypt. If you use TinyCrypto for your
cryptographic library, you must comply with the terms of use set forth in TinyCrypt's license terms.

Check out the TinyCrypt license terms below.

URL : https://github.com/intel/tinycrypt

license : https://github.com/intel/tinycrypt/blob/master/LICENSE

6.4 Notes on setting peripheral functions during the transition from bootloader to
application.

When transitioning from the bootloader sample program to the application, the settings of the bootloader's
peripheral functions are taken over by the application. Therefore, the bootloader sample program is
implemented as follows.

For FIT modules (SCI, Flash) used in the bootloader, the API functions are closed at the end of the
bootloader. Other settings are default values when Smart Configurator is used.

If the customer modifies the bootloader sample program and uses it, the peripheral function settings set in
the bootloader will be inherited by the application side. Therefore, it is recommended to initialize the settings
of the peripheral functions before moving from the bootloader to the application, or to share the settings of
the application and the peripheral functions.

When creating applications, please take the implementation of the bootloader into consideration.

Please note that the Clock setting in the sample program for RSK-RX65N has some differences from the
default value set by the Smart Configurator.
The differences are as follows.

e Each sample program of the dual bank method for CC-RX
External bus clock selection (BCLK): 60MHz (initial value) -> 120MHz

e Sample programs of the Dual-Bank Method and Linear Mode Partial Update Method, and sample
programs of the bootloader in Linear Mode Full Update Method for GCC

External bus clock selection (BCLK): 60MHz (initial value) -> 120MHz
Sub-clock: Used (initial value) -> Unused

e Sample program for LED demo of Linear Mode Full Update Method for GCC
RTCSCK: Used (initial value) -> Unused

RO1AN6850EJ0200 Rev.2.00 Page 85 of 86
Jul.20.23 RENESAS

https://github.com/intel/tinycrypt
https://github.com/intel/tinycrypt/blob/master/LICENSE

RX Family

Firmware Update Module Using Firmware Integration Technology

Revision History

Rev.

Date

Description

Page

Summary

2.00

Jul. 20, 2023

First edition issued

RO1ANG6850EJ0200 Rev.2.00

Jul.20.23

RENESAS

Page 86 of 86

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or /O
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V.
(Max.) and Vi1 (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between V. (Max.) and V4 (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LS| is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-
evaluation test for the given product.

Notice

1.

10.

11.

12.

13.
14.

(Note1)

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product's quality grade, as indicated below.

"Standard™: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’'s manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user’'s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2023 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 About the Firmware Update Module
	1.2 Configuration of Firmware Update Module
	1.3 Firmware Update Operation
	1.3.1 Dual-Bank Method
	1.3.1.1 Operation of Dual-Bank Method

	1.3.2 Linear Mode Partial Update Method
	1.3.2.1 Operation of Linear Mode Partial Update Method

	1.3.3 Linear Mode Full Update Method
	1.3.3.1 Operation of Linear Mode Full Update Method

	1.4 Initial State of Firmware Update
	1.4.1 Initial State of Dual-Bank Method
	1.4.2 Initial State of Linear Mode Partial Update Method
	1.4.3 Initial State of Linear Mode Full Update Method

	1.5 Package Contents
	1.6 API Overview

	2. API Information
	2.1 Hardware Requirements
	2.2 Software Requirements
	2.3 Supported Toolchains
	2.4 Header Files
	2.5 Integer Types
	2.6 Compile Settings
	2.7 Sample Project Code Sizes
	2.8 Arguments
	2.9 Return Values
	2.10 Adding the FIT Module to Your Project

	3. API Functions
	3.1 R_FWUP_Open Function
	3.2 R_FWUP_Close Function
	3.3 R_FWUP_IsExistImage Function
	3.4 R_FWUP_EraseArea Function
	3.5 R_FWUP_GetImageSize Function
	3.6 R_FWUP_WriteImageHeader Function
	3.7 R_FWUP_WriteImageProgram Function
	3.8 R_FWUP_WriteImage Function
	3.9 R_FWUP_VerifyImage Function
	3.10 R_FWUP_ActivateImage Function
	3.11 R_FWUP_ExecImage Function
	3.12 R_FWUP_SoftwareReset Function
	3.13 R_FWUP_SoftwareDelay Function
	3.14 R_FWUP_GetVersion Function
	3.15 Wrapper Functions (r_fwup_wrap_verify.c, h)
	3.15.1 r_fwup_wrap_sha256_init Function
	3.15.2 r_fwup_wrap_sha256_update Function
	3.15.3 r_fwup_wrap_sha256_final Function
	3.15.4 r_fwup_wrap_verify_ecdsa Function
	3.15.5 r_fwup_wrap_get_crypt_context Function

	4. Renesas Image Generator
	4.1 Image Generation Methods
	4.1.1 Initial Image Generation Method
	4.1.2 Update Image Generation Method

	4.2 Image File
	4.2.1 Update Image File
	4.2.1 Update Image File

	4.3 Parameter File
	4.3.1 Contents of Parameter File
	4.3.2 How to generate an image with a flash size different from the demo project
	4.3.3 How to prevent data flash data from being included in the image

	4.4 Image Generation Methods
	4.4.1 Initial Image Generation Method
	4.4.2 Update Image Generation Method

	5. Demo Project
	5.1 Demo project Structure
	5.2 Operating environment preparation
	5.2.1 Installing TeraTerm
	5.2.2 Installing the Python execution environment
	5.2.3 Installing the OpenSSL execution environment
	5.2.4 Installing the Flash Writer
	5.2.5 USB serial conversion board

	5.3 Execution environment preparation
	5.3.1 Generating Keys for Signature Generation and Verification
	5.3.2 Preparing the execution environment for Renesas Image Generator

	5.4 Demo Project Execution Procedure
	5.4.1 Dual Bank Method
	5.4.1.1 Execution Environment
	5.4.1.2 Building The Demo Project
	5.4.1.3 Creating Initial and Update Images
	5.4.1.4 Programming the Initial Image
	5.4.1.5 Executing a Firmware Update

	5.4.2 Operation of Linear Mode Partial Update Method
	5.4.2.1 Execution Environment
	5.4.2.2 Building The Demo Project
	5.4.2.3 Creating Initial and Update Images
	5.4.2.4 Programming the Initial Image
	5.4.2.5 Executing a Firmware Update

	5.4.3 Operation of Linear Mode Full Update Method
	5.4.3.1 Execution Environment
	5.4.3.2 Building The Demo Project
	5.4.3.3 Creating Initial and Update Images
	5.4.3.4 Programming the Initial Image
	5.4.3.5 Executing a Firmware Update

	6. Appendices
	6.1 Confirmed Operation Environments
	6.2 Operating Environment for Demo Project
	6.2.1 Operation Confirmation Environment for RX65N
	6.2.1.1 Memory map of dual bank method demo project
	6.2.1.2 Memory map of demo project for half-surface update method in linear mode
	6.2.1.3 Memory map of demo project for full update method in linear mode

	6.2.2 Operation Confirmation Environment for RX26T
	6.2.2.1 Memory map of dual bank method demo project
	6.2.2.2 Memory map of demo project for half-surface update method in linear mode
	6.2.2.3 Memory map of demo project for full update method in linear mode

	6.2.3 Operation Confirmation Environment for RX24T
	6.2.3.1 Memory map of demo project for half-surface update method in linear mode
	6.2.3.2 Memory map of demo project for full update method in linear mode

	6.3 Open source license information used in the demo project
	6.4 Notes on setting peripheral functions during the transition from bootloader to application.

