Add Nordic Semiconductor
DFU to SDK Example

Bluetooth low energy

eblox

NINA-B301

A
00W9Id

Abstract

We'll take an existing Bluetooth low energy peripheral example and add Nordic Semiconductor's

"buttonless" DFU features to the application, then proceed to create an update zip file and use it to
update the firmware on a Nordic Semiconductor based module.

www.u-blox.com
UBX-19050198 - RO1

http://www.u-blox.com/

e’blox Add Nordic Semiconductor DFU to SDK Example - Application note

Document information

Title Add Nordic Semiconductor DFU to SDK Example
Subtitle Bluetooth low energy

Document type Application note

Document number UBX-19050198

Revision and date RO1 16-Dec-2019

Disclosure restriction

This document applies to the following products:

Product name
ANNA-B112
BMD-300
BMD-301
BMD-340
BMD-341
BMD-345
BMD-350
BMD-380
NINA-B111
NINA-B112
NINA-B301
NINA-B302
NINA-B306

u-blox or third parties may hold intellectual property rights in the products, names, logos and designs included in this
document. Copying, reproduction, modification or disclosure to third parties of this document or any part thereof is only
permitted with the express written permission of u-blox.

The information contained herein is provided “as is” and u-blox assumes no liability for its use. No warranty, either express or
implied, is given, including but not limited to, with respect to the accuracy, correctness, reliability and fitness for a particular
purpose of the information. This document may be revised by u-blox at any time without notice. For the most recent
documents, visit www.u-blox.com.

Copyright © u-blox AG.

UBX-19050198 - RO1 Document information Page 2 of 32

e’blox Add Nordic Semiconductor DFU to SDK Example - Application note

Contents
(D TeTeTWT 4 0 T=1 ok T o e g 5 4 = of o o 2
0o = 0 o 3
1 Software preparation ... —————————————————————————————— 4
1.7 Nordic Semiconductor NRFS SDK ..o s 4
1.2 SEGGER Embedded StUIO......cciiiiiiiiiiiirireei s s 4
QLIRS T A\ T o TR i | == 4
T.3.T NRF CONNECT .o s e e e s 4
1.3.2 nRF command line tools (NrfjProg) ... 4
RS S T o T = e | PN 4
1.4 ENCryption IDraries .. 5
T4 T INSTAll Gt 5
1.4.2 INStall GCC fOr ARM .. ittt n e 5
T.4.3 INStall GNU MAKE ..eiiiiiiiiiiiiii s nr s 5
1.4.4 Fetch and compile the encryption lIBraries ... 6
2 Hardware preparation ... 7
P I = U T=Y e o) ol o =T Lo [=Y] 7
3 ApPPlication fIrMWAre ... s s ssssmssn s mssa s s s s s mssanmnmnsnnsnses 8
I = 11 ol oo T 0 O 12
4.7 DFU DOOTIOAUEN ..iiiiiiiiiiiti it 12
i = VAo [T =T = o T o 12
4.3 Firmware update package generation..........iiiiiiinnn 13
5 BUttonIess DFU ... ssssssssssssssssssssssssssssssssssssssnsssssnssmssassnssssssnssans 19
LT I o =Y o T oTeT=T=T=To Tl e 1= T i o] o = RSN 19
5.2 SAK_CONFIG.N e 21
5.3 LIDrari©s i 22
LS o =T o o 22
5.5 HexX file GeNeration ... 24
ST =T o 0 O 27
ST I S o Te T Yo oY= TaTe IR =Y =T o o] [Tez=) o o IR 27
6.2 Prepare and teSt UPAat ... o e e e s nne e e e nae 28
Y o 1= 5 T 30
N €] o T =T T Y 30
2= =1 =T e Lo o0 3 4 T=T o ol 31
L T=T T I T o o 31
L o 5 - 1o 32

UBX-19050198 - RO1 Contents Page 3 of 32

e’blox Add Nordic Semiconductor DFU to SDK Example - Application note

1 Software preparation

1.1 Nordic Semiconductor nRF5 SDK

Let's start with a fresh unzip of the SDK. This gives us a known starting point. Nordic's nRF5 SDK
many be found here: https://www.nordicsemi.com/Software-and-Tools/Software/nRF5-SDK

For this article, we'll place the SDK in the following folder:

C:\u-blox\nRF5 SDK 16.0.0_98a08e2

1.2 SEGGER Embedded Studio

Nordic Semiconductor have partnered with SEGGER to provide a no-cost, no-size-limit, commercial
license for SEGGER Embedded Studio (SES) for use with Nordic ICs, including the nRF5x series on
which many of u-blox’s modules are based. Install SES from SEGGER and a license from Nordic:

SES: https://www.segger.com/downloads/embedded-studio/

License: https://license.segger.com/Nordic.cgi

1.3 Nordic utilities

We'll use several utilities from Nordic Semiconductor throughout the article. Let's install them now:

1.3.1 nRF Connect

https://www.nordicsemi.com/Software-and-Tools/Development-Tools/nRF-Connect-for-
desktop/Download#infotabs

1.3.2 nRF command line tools (nrfjprog)

https://www.nordicsemi.com/Software-and-Tools/Development-Tools/nRF5-Command-Line-
Tools/Download#infotabs

1.3.3 nRF Util

https://www.nordicsemi.com/Software-and-Tools/Development-Tools/nRF-Util
https://github.com/NordicSemiconductor/pc-nrfutil

nRF Util depends on Python: https://www.python.org/downloads/ The current release (v5.2.0)
requires Python 2.x. Newer releases will move to Python v3.x.

¥ nRF Util can also be downloaded as a pre-compiled EXE for Windows that is not dependent on
Python also being installed. If this EXE is used, be sure to add its location to your PATH
environment variables.

/N nRF Util v6.0.0a0 and v6.0.0a1 have a bug in the public key generation that will cause the bytes to
be reversed resulting in an “INVALID_OBJECT” error. Use nRF Util v5.2.0 until this issue is fixed.

UBX-19050198 - RO1 Software preparation Page 4 of 32

https://www.nordicsemi.com/Software-and-Tools/Software/nRF5-SDK
https://www.segger.com/downloads/embedded-studio/
https://license.segger.com/Nordic.cgi
https://www.nordicsemi.com/Software-and-Tools/Development-Tools/nRF-Connect-for-desktop/Download%23infotabs
https://www.nordicsemi.com/Software-and-Tools/Development-Tools/nRF-Connect-for-desktop/Download%23infotabs
https://www.nordicsemi.com/Software-and-Tools/Development-Tools/nRF5-Command-Line-Tools/Download%23infotabs
https://www.nordicsemi.com/Software-and-Tools/Development-Tools/nRF5-Command-Line-Tools/Download%23infotabs
https://www.nordicsemi.com/Software-and-Tools/Development-Tools/nRF-Util
https://github.com/NordicSemiconductor/pc-nrfutil
https://github.com/NordicSemiconductor/pc-nrfutil
https://www.python.org/downloads/
https://github.com/NordicSemiconductor/pc-nrfutil/releases
https://devzone.nordicsemi.com/f/nordic-q-a/54202/error-of-invalid_object-when-using-nrf-connect-desktop-after-generating-dfu-zip-file-with-new-keys

e’blox Add Nordic Semiconductor DFU to SDK Example - Application note

1.4 Encryption libraries

Next, let's add the encryption libraries that are required for the signed update files we'll create for use
with DFU. There are a couple preliminary steps as outlined in Nordic's instructions here:

https://infocenter.nordicsemi.com/topic/sdk_nrf5_v16.0.0/lib_crypto_backend_micro_ecc.html

1.4.1 Install git

git is a useful tool to have available. macOS and Linux already support it with X-Code or right out of
the box. For Windows, install it from https://git-scm.com/. Any other form of git may be used, such
as with Linux installed on Windows through WSL or a virtual machine.

The SDK uses git to fetch the source code for micro-ecc.

1.4.2 Install GCC for ARM

The GCC for ARM compiler is used to compile the micro-ecc libraries. Download the installer here:

https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-
toolchain/gnu-rm/downloads

The nRF5 SDK v16 uses a newer version of the ARM GCC compiler than the instructions at the
InfoCenter link indicates. Download this version:

GNU Arm Embedded Toolchain: 7-2018-q2-update June 27,2018

ZF When running through the installer, be sure to select the option to "Add path to environment
variable".

1.4.3 Install GNU make

We need the "make" utility to manage the build process. There are several ways to install it. As with
make, for macOS and Linux it's part of the usual development tools. For Windows, we'll use the
installer here: http://gnuwin32.sourceforge.net/packages/make.htm

We need to update the PATH environment variable to include the binary folder for make.exe:

C:\Program Files (x86)\GnuWin32\bin

UBX-19050198 - RO1 Software preparation Page 5 of 32

https://infocenter.nordicsemi.com/topic/sdk_nrf5_v16.0.0/lib_crypto_backend_micro_ecc.html
https://git-scm.com/
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads
http://gnuwin32.sourceforge.net/packages/make.htm

e’blox Add Nordic Semiconductor DFU to SDK Example - Application note

1.4.4 Fetch and compile the encryption libraries

Once the GCC compiler, git, and make are in place, we can use a shortcut provided within the SDK to
do the rest of the work for us. Open a Command window and navigate to the directory

C:\u-blox\nRF5 SDK 16.0.0 98a08e2\external\micro-ecc

There you will find a batch file (and a script for macOS and Linux) called "build_all". Go ahead and run
that to download micro-ecc and build.

C:\u-blox\nRF5 SDK 16.0.0 98a08e2\external\micro-ecc>build all.bat
"micro-ecc not found! Let's pull it from HEAD."

Cloning into 'micro-ecc'...

remote: Enumerating objects: 1086, done.

remote: Total 1086 (delta 0), reused 0 (delta 0), pack-reused 1086

00 KiB/s

Receiving objects: 100% (1086/1086), 647.94 KiB | 921.00 KiB/s, done.
Resolving deltas: 100% (637/637), done.

make: Entering directory 'C:/u-blox/nRF5 SDK 16.0.0 98a08e2/external/micro-
ecc/nrf51 armgcc/armgcc'

mkdir build

cd build && mkdir micro_ecc_lib

Compiling file: uECC.c

ecc/nrf52nf iar/armgcc'

make: Entering directory C:/u-blox/nRF5 SDK 16.0.0 98a08e2/external/micro-
ecc/nrf52nf keil/armgcc'

mkdir build

cd build && mkdir micro ecc lib

Compiling file: uECC.c

Creating library: ../../nrf52nf keil/armgcc/micro_ecc lib nrf52.1ib

C:/Program Files (x86)/GNU Tools ARM Embedded/7 2018-g2-update/bin/arm-none-eabi-ar:
creating ../../nrf52nf keil/armgcc/micro _ecc_lib nrf52.1ib

Done

make: Leaving directory "C:/u-blox/nRF5 SDK 16.0.0 98a08e2/external/micro-
ecc/nrf52nf keil/armgcc’

C:\u-blox\nRF5_SDK 16.0.0_98a08e2\external\micro-ecc>

At this point, the SDK has the necessary encryption libraries not only for DFU use, but also for
establishing secure connections through pairing and bonding.

The preparation to this point only needs done once after the SDK zip file is extracted.

UBX-19050198 - RO1 Software preparation Page 6 of 32

e’blox Add Nordic Semiconductor DFU to SDK Example - Application note

2 Hardware preparation

For this article we'll use BMD-340-EVAL boards and a nRF52840 USB dongle.

You can also use any of the nRF52840 or nRF52832 boards: EVK-NINA-B3, nRF52840 Dongle,
nRF52840 DK, EVK-ANNA-B1, EVK-NINA-B1, BMD-300-EVAL, BMD-301-EVAL, BMD-350-EVAL, or
Nordic Semiconductor nRF52 DK.

If an alternate board is being used, be sure to adjust the directories for your project:
nRF52840 / BMD-340-EVAL, BMD-341-EVAL, BMD-345-EVAL, BMD-380-EVAL, EVK-NINA-B3

e S140 SoftDevice
e PCA10056 hardware directory
e custom_board.h for NINA-B3, BMD-345

¥ When working with the BMD-345, be sure to properly configure the PA /LNA in both the bootloader
and application. This information is found in the BMD-345 data sheet.

nRF52832 / BMD-300-EVAL, BMD-301-EVAL, BMD-350-EVAL, EVK-ANNA-B1, EVK-NINA-B1

e S132 SoftDevice
e PCA10040 hardware directory
e custom_board.h for ANNA-B1, NINA-B1

nRF52810/BMD-330-EVAL

e S112 SoftDevice
e PCA10040e hardware directory

nRF52811 /BMD-360-EVAL
e S113 SoftDevice
e PCA10056e hardware directory

¥ TheBMD-330-EVAL and BMD-360-EVAL have limited DFU functionality. For example, you cannot
update the SoftDevice (Bluetooth Stack).

2.1 Bluetooth address

u-blox modules are programmed with a unique, public Bluetooth address (MAC address).

VA Some of the activities outlined in this application note require fully erasing the module, including
the Bluetooth address.

In order to save this address for later, use nrfjprog to read the User Information Configuration Register
(UICR) area. We’ll use the file name evk_uicr.hex. You may name this as you wish.

nrfjprog --readuicr evk uicr.hex

Save the hex file in a convenient location.

If you should need to restore the UICR, simply program it with:
nrfjprog --program evk uicr.hex

The example we use does not use the public Bluetooth address. Instead, it uses a static random
Bluetooth address that is found in the Factory Information Configuration Registers (FICR). We have
another application note that describes how to add code to read and assign the public Bluetooth
address held in the UICR.

UBX-19050198 - RO1 Hardware preparation Page 7 of 32

e’blox Add Nordic Semiconductor DFU to SDK Example - Application note

3 Application firmware

Now that everything is ready, let's go into the example application called ble_app_uart:
C:\u-blox\nRF5 SDK 16.0.0 98a08e2\examples\ble peripheral\ble app uart>

So we don’t modify the original, we’ll make a copy of the project and all its subdirectories and only
modify the files in the working directory:

C:\u-blox\nRF5 SDK 16.0.0 98a08e2\examples\ble peripherall\ble app uart working>

For this article, we'll use the BMD-340-EVAL board, which is functionally equivalent to the nRF52840
DK. Throughout the SDK, this board is called by its board number, "pca10056".

Navigate to the SES folder and open the project:

C:\u-blox\nRF5 SDK 16.0.0 98a08e2\examples\ble peripherall\ble app uart working\pcalO056\sl
40\ses\ble app uart pcal0056 s140.emProject

Let's compile and load the application to the BMD-340-EVAL, just to be sure it's working before we
start fiddling with it. Details for testing the functionality are located here:
https://infocenter.nordicsemi.com/topic/sdk_nrf5_v16.0.0/ble_sdk_app_nus_eval.html

Have a quick look at the Hex file to see the memory layout. It's located in the Output directory in the
example:

C:\u-blox\nRF5 SDK 16.0.0 98a08e2\examples\ble peripherall\ble app uart working\pcalO056\sl
40\ses\Output\Release\Exe\ble app uart pcal0056 s140.hex

You can open nRF Connect Programmer then add the hex file, or just drag it into the "File Memory
Layout" section:

nRF Connect v3.2.0 = O X

APPS SETTINGS

Bluetooth Low Energy
General tool for development and testing with Bluetooth Update
Low Energy

&

Power Profiler
Tool to measure current for nRF5x applications Update

&

Programmer
Tool for flash programming of nRF SoCs Update

RSSI Viewer
Live visualization of RSSI per frequency for nRF52832

Figure 1: nRF Connect main window (programmer)

UBX-19050198 - RO1 Application firmware Page 8 of 32

https://infocenter.nordicsemi.com/topic/sdk_nrf5_v16.0.0/ble_sdk_app_nus_eval.html

e’blox Add Nordic Semiconductor DFU to SDK Example - Application note

T
m RF Connect v3.2.0 - Programmer - O >

000683592301 ~

File
nRF52840 File Memory Layout

@ Add HEX file

C Reload files

@ Clear files

Application

ble_app_uart_pca10056_s140.hex

|
| 0x00027000 — 0x0002E61C
|

vrite
; , 30236 bytes ile
Lo.g. En ® Reset
1 2:U3:U9.93 / MOael: NKFOZB4U_XXAA_KEV | R
12:03:09.937 RAM: 256KiB. X)
12:03:00.937 Flash: 1024KiB in pages of 4KiB. 4 Write
12:03:10.956 Reading device non-volatile memory. This may take a few seconds.
12:03:11.926 Parsing HEX file: C:\u-blox\nRF5_SDK_16.0.0_98a08e2\examples\ble_peripheral\ble_app_ C Read
12:03:11.940 File was last modified at 11/7/2019, 11:40:35 AM
12:03:11.956 Data block: 0x00027000-0x0002E61C (0x0000761C bytes long) - Auto read memory
4 » -

Figure 2: nRF Connect showing application only

Only the application itself is in the file. Notice the gap below. This is where the SoftDevice gets loaded.
Add or drag the SoftDevice hex file to nRF Connect. The SoftDevice is located here:

C:\u-blox\nRF5 SDK 16.0.0 98a08e2\components\softdevice\sl140\hex\s140 nrf52 7.0.1 softdevi
ce.hex

UBX-19050198 - RO1 Application firmware Page 9 of 32

e’blox Add Nordic Semiconductor DFU to SDK Example - Application note

Now both are shown, along with the MBR:

M nRF Connect v3.20 - Programmer - | X

000683592301 ~

File
nRF52840 File Memory Layout
@& Add HEX file
C Reload files
@ Clearfiles
SoftDevice
| s140_nrf52_7.0.1_softdevice.hex
| —
| 0x00001000 — 0x00026598 write
f 152984 bytes file
Log
I
11:92:32.4U3 segger VErsion: J-LINK UB-SANVISU | 28-VZ-NOraicsem| COmpliea Jan /7 2u1y 140/:10 ® Reset
11:55:32.426 Probed: 683592301.
11:55:32.427 Model: NRF52840_xxAA_REV1. /" Write
11:55:32.427 RAM: 256KiB.
11:55:32.427 Flash: 1024KiB in pages of 4KiB. C Read
11:55:33.436 Reading device non-volatile memory. This may take a few seconds.
11:55:33.622 SoftDevice detected, id 0xCA (5140 v7.0.1) - [Auto read memory
4 »

Figure 3: nRF Connect showing application with SoftDevice

While nRF Connect can be used to program the BMD-340, we'll switch back to SES and load the
SoftDevice and application from there:

File Edit View Search Mavigate Project Build Debug = Target = Tools Window Help
D@~ B @ SR % WRE~X|o -~ & Comedrink Qtrl+T, €

- :
. %% Disconnect Ctrl+T, D
Project Explorer = X main.c ;
- . - % Reconnect Ctri+T, E
%, Release T @ @& o @ G| € 2 \E Attach Debugger Ctrl+T, H
. *
Pro|ect|t_ems | Code | Data « % Reset Cirl+T,
Solution ‘ble_app_uart_pcal10056_s =
4 [Project ble_app_uart 1005 255K 101.6K * 1Z Download ble_app_uart_pcal10056_s5140 Ctri+T, L y -
4 ‘3 Application 2 files [1.3K] [2.0K] * Verify ble_app_uart_pcal0056_s140 Ctri+T, v | col
: *®
[> E:j main.c 1.3K 2.0K .
@ sdk_configh * Erase All Ctri+T, K Lail

Figure 4: SES download application to target

UBX-19050198 - RO1 Application firmware Page 10 of 32

eblox Add Nordic Semiconductor DFU to SDK Example - Application note

Show: Target b ** ‘!" Tasks

Connecting “J-Link’ using "USE’
‘| Preparing target for download
[} te

| Downloading 's140_nrf52_6.1.1_softdevice hex’ to I-Link

| Downloading 'Me_app_uart_pca10056_s140.elf to J-Link

Figure 5: SES download progress window

Déh x

150.2 KB in 5.4¢

6 KB

286 KB in 0.9

} KBS

QK

0K

LED1 should start flashing, indicating that the BMD-340 is advertising for a connection. Go ahead and

test the application according to the instructions at the InfoCenter link above.

UBX-19050198 - RO1

Application firmware

Page 11 of 32

e’blox Add Nordic Semiconductor DFU to SDK Example - Application note

4 Button DFU

4.1 DFU bootloader

Now that the application runs correctly, we can work with the bootloader. Nordic Semiconductor
provides several DFU examples. The Secure Bootloader example is the one we’ll use. See the Nordic
Semiconductor InfoCenter for details about this secure bootloader:

https://infocenter.nordicsemi.com/topic/sdk_nrf5_v16.0.0/ble_sdk_app_dfu_bootloader.html
On your local drive, navigate to the secure_bootloader DFU directory of the examples.

As we did with the UART application, we’ll make a copy of the DFU project and its subdirectories. Copy
the directory:

C:\u-blox\nRF5 SDK 16.0.0_98a08e2\examples\dfu\secure bootloader\pcal0056_s140 ble

to

C:\u-blox\nRF5 SDK 16.0.0 98a08e2\examples\dful\secure bootloader\pcal0056 s140 ble working
Open the SES project for the pca10056 Bluetooth low energy bootloader:

C:\u-blox\nRF5 SDK 16.0.0 98a08e2\examples\dful\secure bootloader\pcal0056 s140 ble working
\ses\secure bootloader ble s140 pcal0056.emProject

If we just try to compile the bootloader as-is, we'll get an error:

#error "Debug public key not valid for production. Please see
https://github.com/NordicSemiconductor/pc-nrfutil/blob/master/README.md to generate it"

Nordic supplies an example key along with some test files. These are only made available so we can
get used to working with updating a file on a device; however, they cannot be used for production.

Let's do as we're instructed - generate our own keys.

4.2 Key generation

We'll use nRF Util to generate our own set of keys. Let's navigate to the directory where the default
public key is located and change the name of the original key file, dfu public key.c:

move dfu public key.c dfu public key.c.NORDIC
Now we can generate our own keys. First we start with the private key:

nrfutil keys generate dfu private key.pem
Generated private key and stored it in: dfu private key.pem

Then create the public key in C language:

nrfutil keys display --key pk --format code --out file dfu public key.c
dfu private key.pem
/* This file was automatically generated by nrfutil on 2019-06-21 (YY-MM-DD) at 14:25:09 */

#include "stdint.h"
#include "compiler abstraction.h"

/** Q@brief Public key used to verify DFU images */

_ ALIGN (4) const uint8 t pk[64] =

{
0xc8, 0xc3, 0x75, Oxef, 0x51, 0x32, 0x99, O0x4a,
0x24, Oxce, 0x53, Oxeb, 0x66, 0x2e, 0x49, 0x18,
Oxfd, 0x36, 0xa8, 0xff, 0x45, 0x3f, Oxbc, 0xa9,
0x12, 0Oxdd, 0x03, 0xf7, 0x83, Oxbd, 0x71, 0x96,
0xd8, Oxa7, 0x08, 0x32, 0xf9, 0x73, 0xd2, 0x9Db,
Oxcd, Oxe7, 0x93, 0x13, 0Ox66, 0x38, 0x72, 0x8a,
0x86, 0x58, Oxla, 0x63, 0x33, 0x2c, Ox6f, 0x50,

UBX-19050198 - RO1 Button DFU Page 12 of 32

https://infocenter.nordicsemi.com/topic/sdk_nrf5_v16.0.0/ble_sdk_app_dfu_bootloader.html

e’blox Add Nordic Semiconductor DFU to SDK Example - Application note

Ox6l, 0x68, 0x04, 0Ox6c, Oxlc, 0x9e, 0xf0, Oxbd
}; // line breaks added for readability

Of course, your public and private keys will have different values.
Now go back to the project in SES and compile the DFU bootloader. There should not be any errors.

Before we program the Eval board, let's erase it fully:

nrfjprog -f nrf52 --recover
Recovering device. This operation might take 30s.
Erasing user code and UICR flash areas.

Go into the SES project and load the DFU and SoftDevice the same way we did for the UART project.
Both LED1 and LED?2 should light up solid. This indicates the BMD-340 is in bootloader mode.

4.3 Firmware update package generation

We'll set the Eval board aside for a moment while we generate and sign the update zip file with the
private key we just generated.

Go back into the output directory of the ble_app_uart example that we compiled earlier.

C:\u-blox\nRF5 SDK 16.0.0 98a08e2\examples\ble peripherall\ble app uart working\pcalO056\sl
40\ses\Output\Release\Exe

We'll break out nrfutil again, but this time to generate the zip file:

Running nrfutil with the --help option shows quite a number of available options.

nrfutil pkg generate --help

For this example, we'll use the following options:

Option Description

--application ble_app_uart pcal0056_s140.hex The compiler output hex file

--application-version-string "1.0.0" Text version string

This text version string is not checked. Only the "application-version”
above is checked to be sure you're programming the same or newer
application.

3 The version number is up to your versioning practices - here's
one possibility: https://semver.org/

-—hw-version 52 The default number "52" is used since we are working with a nRF52xxx
device. This can actually be any integer as well, for example to reflect
the host board version. If you cannot load new code on an old board,
then this is the value for that check.

--sd-req O0xCA If your application requires a specific version of the SoftDevice, this
value is used for that check.

ZF nrfutil pkg generate —help willlist the available
SoftDevice versions and their corresponding firmware IDs. More
than one may be included here, comma separated.

--key-file c:\u-blox\nRF5_SDK_16.0.0_98a08e2 The path and filename of the private .pem key file that we just
\examples\dfu\dfu private key.pem generated.

app vl.zip The output filename

Table 1: nrfutil package generation options

F Asnoted above, v5.2.0 of nrfutil should be used for the time being. The following SoftDevice v7.x.x
codes are not listed in the help output, but are able to be used with nrfutil v5.2.0:

[s112 nrf52 7.0.0]0xC4|
|s112 nrf52 7.0.1]0xCD|
[s113 nrf52 7.0.0[0xC3|
[s113 nrf52 7.0.1]0xCC|

UBX-19050198 - RO1 Button DFU Page 13 of 32

https://semver.org/

e’blox Add Nordic Semiconductor DFU to SDK Example - Application note

15132 nrf52 7.0.0|0xC2|
|s132 _nrf52 7.0.1]0xCB|
5140 nrf52 7.0.0|0xC1|
|s140 nrf52 7.0.1]0xCA|

Putting it all together:

nrfutil pkg generate --application ble app uart pcal0056 s140.hex --application-version-
string "1.0.0" --hw-version 52 --sd-req 0xCA --key-file C:\u-

blox\nRF5 SDK 16.0.0 98a08e2\examples\dful\dfu private key.pem app vl.zip

Zip created at app vl.zip

Let's give the new file a try.

Connect a second EVK or nRF52840 Dongle to your computer. Open nRF Connect and select the
“Bluetooth Low Energy” option:

nRF Connect v3.2.0 = O >

APPS SETTINGS .

Bluetooth Low Energy
General tool for development and testing with Bluetooth Update
Low Energy

&

Power Profiler
Tool to measure current for nRF5x applications Update

©

Programmer
Tool for flash pragramming of nRF SoCs Update

RSSI Viewer
Live visualization of RSSI per frequency for nRF52832

Figure 6: nRF Connect main window (Bluetooth low energy)

UBX-19050198 - RO1 Button DFU Page 14 of 32

e’blox Add Nordic Semiconductor DFU to SDK Example - Application note

In this example the nRF52840 Dongle is the second device. Select this device.

¥ Ifyou see a notice to program the connectivity firmware, select yes.

nRF Connect v3.2.0 - Bluetooth Low Energy — O W

Select device ~ L] & Connection Map iE Server Setup

E01D7CECAE94 . .
- Serial port: COM20 Discovered devices

= USB: Nordic Semiconductor nRF52 Connectivity
000683592301 PCA10056

» Serial port: COM14 + Options

oon

14:51:40.554 Application data folder: C:\Users\brec\AppData\Roaming\nrfconnect\pc-nrfconnect- «

4 3

Figure 7: nRF Connect Bluetooth Low Energy window

UBX-19050198 - RO1 Button DFU Page 15 of 32

e’blox Add Nordic Semiconductor DFU to SDK Example - Application note

Start the scan and look for the Eval board advertising "DfuTarg":

nRF Connect v3.2.0 - Bluetooth Low Energy — O b4

EO1D7CECAE94 ~ & Connection Map = Server Setup

Discovered devices

r E0:1D:7CEC-AE:94 .
— . = Options

|| Sort by signal strength

Filter: | DfuTarg
b Generic Access

DfuTarg -45dBm .l
F1:D7:ES:CF:E4:4B

Generic Attribute
+ Details

oon

5.0 0000 SLall aualwcu "

14:28:00.856 Scanning timed out on adapter COM20

14:31:18.815 Connecting to device

14:31:18.837 Connected to device F1:D7:E9:CF.E4:4B

14:31:18.911 Connection parameters updated for device F1:D07:E9:CF.E4:4B: interval 15ms, timeout 60C

14:31:19.217 Attribute value read, handle: 0x03, value (0x): 44-66-75-54-61-72-67

14:31:33.993 Disconnected from device F1:D7:E9:CF:E4:4B, reason: BLE_HCI_LOCAL_HOST_TERMINAT -~
a4 »

Figure 8: nRF Connect showing scanned bootloader DfuTarg

UBX-19050198 - RO1 Button DFU Page 16 of 32

e’blox Add Nordic Semiconductor DFU to SDK Example - Application note

Go ahead and connect, then we'll see the "Secure DFU" service and an update icon:

nRF Connect v3.2.0 - Bluetooth Low Energy — O b4

EO1D7CECAES4 ~ +h Connection Map iE Server Setup

Discovered devices

E0:1D:7CECAES4 .
. ~ Options

|| Sort by signal strength
Filter. = DfuTarg

» Generic Access DfuTarg o
F1:D7:E9:CF:E4:4B _ DfuTarg -45 dBm .l
Start Secure DFU F1:D7-E9:CFE4:4B
Generic Attribute
¥ Generic Access + Details

¥ Generic Attribute

¥ Secure DFU

Log e]a)

121102711 AT PGIGI oWl s UpUGLCU UL UTVILT 1 LU LSl (LSS0, IS VAl DD, UHNTuUUL uue -

14:31:19.217 Attribute value read, handle: 0x03, value (0x): 44-66-75-54-61-72-67

14:31:33.993 Disconnected from device F1:07:E9:CF.E4:4B, reason: BLE_HCI_LOCAL_HOST_TERMINAT

14:32:29.859 Connecting to device

14:32:29.903 Connected to device F1:.07:E9:CF.E4:4B

14:32:29.965 Connection parameters updated for device F1:07:E9:CF:E4:4B: interval 15ms, timeout 60C

14:32:30.257 Attribute value read, handle: 0x03, value (0x): 44-66-75-54-61-72-67 =
a4 »

Figure 9: nRF Connect showing secure DFU icon

UBX-19050198 - RO1 Button DFU Page 17 of 32

e’blox Add Nordic Semiconductor DFU to SDK Example - Application note

Go ahead and start the DFU process. Navigate to the zip file we just created and click on "Start DFU"

nRF Connect v3.2.0 - Bluetooth Low Energy — O b4

Device Firmware Upgrade (DFU) for device F1:D7:E9:CF:E4:4B

Zip file CAu-blox\nRF5_SDK_16.0.0_98a08e2\examples\ble_peripht

Package application:
info bin_file: ble_app_uart_pcal@®56_s140.bin
dat_file: ble_app_uart_pcal@@56_s140.dat

» Start DFU

Figure 10: nRF Connect ready for DFU upgrade
A status bar will show up, first with a progress bar, then "Complete".

At this point, the Eval board will start advertising "Nordic_UART" - the example we started with -
though now it also has the bootloader on-board. If we power cycle the Eval board while holding Button
4, then it will re-enter bootloader mode indicated by both LED1 and LED2 being lit.

Up to this point, we've accomplished the following:

e Confirmed that our application code works as expected

e Generated private and public keys for our bootloader and update files
e Compiled the bootloader with the new public key

e Generated a DFU update zip file with the new private key

e Performed a DFU update and observed the application running

e Return to bootloader mode through a button press.

¥ Up to this point, the application did not require any special consideration. We only needed to
generate the DFU zip file from the existing application hex and generated public key files.

UBX-19050198 - RO1 Button DFU Page 18 of 32

e’blox Add Nordic Semiconductor DFU to SDK Example - Application note

5 Buttonless DFU

What if we don't have a button available to enter bootloader mode? Or better yet, how about
enhancing our customers' user experience by starting the process automatically? That's where the
"buttonless DFU" comes in. This will require some modification to the application to add a new service
to enable this feature.

A Bluetooth low energy service is a collection of information and behaviors to perform a particular
function or feature. In this case, the service will accept a data value (a characteristic) and write it to a
register that is persistent across a device reset. The bootloader then reads this register to
determine if it should continue with the DFU function, or pass control back to the application.
Additional details can be found in this tutorial from Nordic Semiconductor:

https://devzone.nordicsemi.com/nordic/short-range-guides/b/bluetooth-low-energy/posts/ble-
services-a-beginners-tutorial

In short, this service is performing what we originally enabled with pressing button 4 while resetting
the Eval board.

Let's port the ble_app_buttonless_dfu example into to the ble_app_uart example.

To save the work we've done so far, let’s create a new example folder:

copy C:\u-blox\nRF5 SDK 16.0.0 98a08e2\examples\ble peripheral\ble app uart working C:\u-
blox\nRF5 SDK 16.0.0 98a08e2\examples\ble peripheral\ble app uart working dfu

Change directory into the new folder:

cd C:\u-blox\nRF5 SDK 16.0.0 98a08e2\examples\ble peripherall\ble app uart working dfu
Open the project file from here:

C:\u-blox\nRF5 SDK 16.0.0 98a08e2\examples\ble peripheral\ble app uart working dfu
\pcal0056\sl40\ses\ble app uart pcal0056 s1l40.emProject

5.1 Preprocessor definitions

First we need to configure the project options to use DFU. Right click on the project and select
"Options". Once the options window is open, be sure to select the "Common" configuration before
editing the values:

UBX-19050198 - RO1 Buttonless DFU Page 19 of 32

https://devzone.nordicsemi.com/nordic/short-range-guides/b/bluetooth-low-energy/posts/ble-services-a-beginners-tutorial
https://devzone.nordicsemi.com/nordic/short-range-guides/b/bluetooth-low-energy/posts/ble-services-a-beginners-tutorial

e’blox Add Nordic Semiconductor DFU to SDK Example - Application note

©» SEGGER Embedded Studio for ARM V4,16 - Options >

Project 'ble_app_buttonless_dfu_pca10056_s140° Options

1‘ Js | i Common 'I

+ Code ‘Publi: Configurations I
Ass= Debug
Buil 1 Release Lrocessor
Cod Private Configurations L
£ Common p Includes No
Conprer "'—'—Przprﬁcessor Definitions BL_SETTINGS_ACCESS_OM—
External Build * Preprocessor Undefinitions
File * System Include Directories
Library = Undefine All Preprocessor Definitions No
Linker « User Include Directories oS Seonfignd S S foompor
Preprocessor
Printf/Scanf
Runtime Memory A
Section
Source Code
User Build Step
+ Debug
Debugger
J-Link
Loader
Simulator
Target Control

Target Script
Target Trace Specifies one or more preprocessor definitions. This property will have macro expansion applied to
it.

[_] Show Maodified Options Only

Value

Preprocessor Definitions

Figure 11: SES project pre-processor definitions

Add the following to the Preprocessor definitions:

BL_ SETTINGS ACCESS ONLY
NRF_DFU TRANSPORT BLE=1

And the following User Include Directories:

oo/ /o /.. /.. /components/libraries/bootloader
oo/ /.. /.. /components/libraries/bootloader/dfu
./../../../../../components/libraries/bootloader/ble dfu

(The last item above may already be in the list.)

The last values to adjust are the RAM_START address and RAM_SIZE. These are found in the Linker
options, under the Section Placement Macros line.

UBX-19050198 - RO1 Buttonless DFU Page 20 of 32

@blox

& SEGGER Embedded Studic for ARM V4,22 - Options

Project

'ble_app_uart_pca10056_s140' Options

Add Nordic Semiconductor DFU to SDK Example - Application note

‘1‘ \L £? Common x [[] show Modified Options Only
+ Code Option value o]
Assembler
Build 4 W Linker

Code Generation

Executable File Name

$(OutDir)/$(ProjectNamel$ (EXE)

Compiler * Additional Input Files
External Buald * Link Dependenl Projects Yes
File = Use Manual Linker Script MNo
Library * Section Placement File flash_placementurml modified
Linker * Section Placement Macros FLASH_PH_START=0x0;FLASH_PH_SIZE=0x100000;RA*
* Default Fill Pattern MNane
WRECEISOE * DebuglO Implementation Default
it it * Additional Output Format hex modified
Runtime Memory Are « additional Output File Gap Fill value Nane
section * Generate Map File Yes
Source Code * Entry Point Reset_Handler modified
User Build Step * Linker Symbol Defintions
4 Debug * Keep Symbols
Debugger * Strip Debug Information Mo
GDB Server * Stnp Symbols Mo
FLink * Allow Multiple Symbol Definition Mo
* Mo Enum Size Warning Mo
L',uader * Mo Wide Char Size Warning Mo
Simulator * Suppress Warning on Mismatch Mo
Target Control * Treat Linker Warnings as Errors Mo modified o
Target Script . o :
Target Trace Section Placement Macros

Macro values to substitue in section placement nodes - MACRO1 =value 1 MACROZ =valuel.

Figure 12: SES project RAM settings

Since we're adding the DFU service alongside the Nordic UART Service (NUS), we need give the new
service space in flash. We do this by increasing the start address of RAM and decreasing its size.
These are 16 bytes each, so increase the RAM_START by 0x10 and decrease the RAM_SIZE by 0x10.

For nRF5 SDK v16.0.0, the original values are:

RAM START=0x20002ae8
RAM SIZE=0x3d518

The new values will be:

RAM START=0x20002af8
RAM SIZE=0x3d508

5.2 sdk_config.h

Save the options and open sdk_config.h. There are several settings in here to enable DFU. Each line in
this list are in separate locations throughout the file. Just search for each of these and change the
value as noted:

#define BLE DFU ENABLED 1 // was 0

#define NRF PWR MGMT CONFIG AUTO SHUTDOWN RETRY 1 // was O
#define NRF_SDH BLE VS UUID COUNT 2 // was 1

#define NRF SDH BLE SERVICE CHANGED 1 // was 0

UBX-19050198 - RO1 Buttonless DFU Page 21 of 32

e’blox Add Nordic Semiconductor DFU to SDK Example - Application note

5.3 Libraries

Now, let's add the necessary library and driver files.

Add a new folder in the project called nRF_DFU and add these existing files from the DFU directory of
the Bluetooth low energy components.

From the directory:
C:\u-blox\nRF5 SDK 16.0.0_98a08e2\components\ble\ble services\ble dfu
Add these files:

ble dfu.c
ble dfu bonded.c
ble dfu unbonded.c

And from the directory:
C:\u-blox\nRF5 SDK 16.0.0 98a08e2\components\libraries\bootloader\dfu
Add this file:

nrf dfu svci.c

After adding the folder and files, the project will have this section:

4 {3 nRF_DFU (4files
- £ ble_dfu.c
- & ble_dfu_bonded.c
: E:j ble_dfu_unbonded.c
: E:j nrf_dfu_svci.c

Figure 13: Buttonless UART DFU project - added files

We have the same ble_app_uart functionality as the original example application, though now we also
have everything we need to start adding the buttonless DFU function.

5.4 main.c

With the "behind the scenes" items added, we can finally start adding the DFU code to main.c.

Several header files are needed:

// BEGIN Block Added for DFU

#include "nrf dfu ble svci bond sharing.h"
#include "nrf svci_async_function.h"
#include "nrf svci async handler.h"
#include "ble dfu.h"

#include "nrf bootloader info.h"

// END Block Added for DFU

Let's change the advertising name so we know we're seeing the modified application:

#define DEVICE NAME "UART DFU" /**< Name of device. Will be included in the advertising
data. Changed for DFU */

Here's where the actual work is done. The first function is the event handler to act on the data being

sent to the DFU service.

/**@brief Function for handling DFU events
*
* @details This function is called when entering buttonless DFU
.

@param[in] event Buttonless DFU event.

UBX-19050198 - RO1 Buttonless DFU Page 22 of 32

e’blox Add Nordic Semiconductor DFU to SDK Example - Application note

*/
static void ble dfu buttonless evt handler (ble dfu buttonless evt type t event)
{
switch (event)
{
case BLE DFU EVT BOOTLOADER ENTER PREPARE:
NRF_LOG_INFO("Device is preparing to enter bootloader mode\r\n");
break;

case BLE DFU EVT BOOTLOADER ENTER:
NRF LOG INFO("Device will enter bootloader mode\r\n") ;
break;

case BLE_DFU_EVT_BOOTLOADER_ENTER_FAILED:
NRF_LOG_ERROR ("Device failed to enter bootloader mode\r\n");
break;
default:
NRF_LOG_INFO ("Unknown event from ble dfu.\r\n");
break;

The second function handles the power management. The bootloader service writes a value to a
persistent register, then issues a system reset. The bootloader reads this value to determine whether
it should continue, or pass control to the application. Code can be added here to prevent the DFU from
starting if something critical is going on within the application.

/**@brief Function for handling bootloader power management events
*

* @details This function is called to set a persistent register which informs the

* Dbootloader it should continue or pass control back to the application
*

* @param[in] event Power management event.
*/
static bool app shutdown handler (nrf pwr mgmt evt t event)
{
switch (event)
{
case NRF PWR MGMT EVT PREPARE DFU:
NRF_LOG INFO ("Power management wants to reset to DFU mode\r\n");
// Change this code to tailor to your reset strategy.
// Returning false here means that the device is not ready
// to jump to DFU mode yet.
//
// Here is an example using a variable to delay resetting the device:
//
/* if (!im ready for reset)
{

return false;

*/

break;

default:
// Implement any of the other events available
// from the power management module:
// -NRF_PWR MGMT EVT PREPARE SYSOFF
// -NRF_PWR MGMT EVT PREPARE WAKEUP
// -NRF_PWR MGMT EVT PREPARE RESET
return true;
}
NRF LOG INFO ("Power management allowed to reset to DFU mode\r\n");
return true;

NRF_PWR MGMT HANDLER REGISTER (app_shutdown handler, 0);

UBX-19050198 - RO1 Buttonless DFU Page 23 of 32

e’blox Add Nordic Semiconductor DFU to SDK Example - Application note

Here we initialize the DFU service by adding it to the services_init() function, in bold, italic below:

static void services init (void)
{
uint32 t err code;
ble nus init t nus init;
nrf ble gqwr init t qwr init = {0};
// Initialize Queued Write Module.
gwr _init.error handler = nrf gwr error handler;

err code = nrf:ble_qwr_init(&m_qwr, &qwr init);
APP ERROR CHECK (err code);

// Initialize NUS (Nordic UART Service)
memset (&nus_init, 0, sizeof(nus init));
nus_init.data handler = nus_data handler;
err code = ble nus init(&m nus, &nus init);
APP_ERROR CHECK (err code) ;

// BEGIN Block Added for DFU
// ONLY ADD THIS BLOCK TO THE EXISTING FUNCTION
// Initialize the DFU service

ble dfu buttonless init t dfus init =

{

.evt_handler = ble dfu buttonless evt handler
};
err code = ble dfu buttonless init (&dfus init);
APP ERROR CHECK (err _code);,
// END Block Added for DFU

}

Go ahead and compile the application, but don't program it to the board just yet. There is a little more
prep we need to do.

5.5 Hex file generation
We now have these components:

e Bootloader
e Application with Buttonless DFU code included
e SoftDevice

We're still missing one crucial part - the bootloader settings. These settings values tell the bootloader
about the application:

e Is avalid application present?
e Where is the start address of the application?
e What are the version numbers of the bootloader, SoftDevice, and application?

This file is generated by nrfutil against the new application file. The output is a hex file which is then
combined with the bootloader, SoftDevice and Application hex files. A single hex file is then used to
program a "blank-part" with everything in one pass over the SWD port.

Sowe don't have toinclude long file paths in the nrfutil command, let's copy the hex files we generated
to a common directory.

md c:\u-blox\hexfiles

UBX-19050198 - RO1 Buttonless DFU Page 24 of 32

e’blox Add Nordic Semiconductor DFU to SDK Example - Application note

Copy the respective hex files to this new location:

copy c:\u-blox\nRF5 SDK 16.0.0_98a08e2\components\softdevice\sl140\hex\s140 nrf52 7.0.1 softdevice.hex
c:\u-blox\hexfiles

copy c:\u-blox\nRF5 SDK 16.0.0 98a08e2\examples\dful\secure bootloader\pcal0056 s140 ble wo
rking\ses\Output\Release\Exe\secure bootloader ble s140 pcal0056.hex c:\u-blox\hexfiles

copy c:\u-blox\nRF5 SDK 16.0.0 98a08e2\examples\ble peripherall\ble app uart working\pcalO0
56\s140\ses\Output\Release\Exe\ble app uart pcal0056 s140.hex c:\u-blox\hexfiles

cd c:\u-blox\hexfiles
Now we can run nrfutil to generate the bootloader settings file:

nrfutil settings generate --family NRF52840 --application ble app uart pcal0056 s140.hex -
-application-version 0 --bootloader-version 0 --bl-settings-version 2 bl setting.hex

Note: Generating a DFU settings page with backup page included.
This is only required for bootloaders from nRF5 SDK 15.1 and newer.
If you want to skip backup page generation, use --no-backup option.
Generated Bootloader DFU settings .hex file and stored it in: bl setting.hex
Bootloader DFU Settings:

File: bl setting.hex

Family: NRF52840

Start Address: 0x000FF000

CRC: Ox9DA9DSDF

Settings Version: 0x00000002 (2)

App Version: 0x00000000 (O)

Bootloader Version: 0x00000000 (O)

Bank Layout: 0x00000000

Current Bank: 0x00000000

Application Size: 0x0000BC28 (48168 bytes)

Application CRC: 0xDS5A02BF3

BankO Bank Code: 0x00000001

Softdevice Size: 0x00000000 (0 bytes)

Boot Validation CRC: OxF906A7EC

SD Boot Validation Type: 0x00000000 (0)

App Boot Validation Type: 0x00000001 (1)

L R S I S

c:\u-blox\hexfiles>

¥ We used the family of NRF52840 since we're working with the BMD-340. See the --help output
for other nRF5x versions.

Now we have everything we need to program the BMD-340:

e Bootloader

e Application with buttonless DFU code included
e SoftDevice

e Bootloader Settings

Let's merge it all together into a single hex file. The Nordic Semiconductor mergehex utility will only
allow three input files, so we need two steps:

mergehex --merge bl setting.hex secure bootloader ble s140 pcal0056.hex
s140 nrf52 7.0.1 softdevice.hex --output bl set s140.hex

Parsing input hex files.
Merging files.
Storing merged file.

mergehex --merge bl set s140.hex ble app uart pcal0056 s140.hex --output
bl set s140 app.hex

Parsing input hex files.

Merging files.
Storing merged file.

UBX-19050198 - RO1 Buttonless DFU Page 25 of 32

e’blox Add Nordic Semiconductor DFU to SDK Example - Application note

This final hex file, b1 set s140 app.hex, with all the parts included is what is typically used on a
production line, or for pre-programming the module ahead of assembly into the end-product.

F Other details may be added to the hex file, including the public Bluetooth address noted in section
2.1 above.

UBX-19050198 - RO1 Buttonless DFU Page 26 of 32

e’blox Add Nordic Semiconductor DFU to SDK Example - Application note

6 Test DFU

6.1 Program and test application

Everything is now in place to try out the new application.

Let's erase the BMD-340 to ensure nothing is left-over from our previous work:

c:\u-blox\hexfiles>nrfjprog —-f nrf52 --recover
Recovering device. This operation might take 30s.
Erasing user code and UICR flash areas.

And, finally, load our combined hex file:

c:\u-blox\hexfiles>nrfjprog --program bl set s140 app.hex
Parsing hex file.

Reading flash area to program to guarantee it is erased.
Checking that the area to write is not protected.
Programming device.

Now, power-cycle the BMD-340-EVAL, and the application will start advertising and blink LED1 as
before.

Let's connect to it with nRF Connect:

nRF Connect v2.7.0 - Bluetooth Low Energy - m} X

= EO1D7CECAES4 ~ M ConnectionMap = - Server Setup N NorDic

Discovered devices

NRF5x o] P Start scan
EOQ:1D:7CEC AE94

» Options
<Unknown name> -74 dBm .4
» Generic Access UART_DFU e 3310°BC'EA'SC:53
F8.EE.EB:66:CA:14
» Detail
B Start Secure DFU elals
Generic Attribute <Unki > |
b Generic Access nknown name: -41 dBm .l
60.CE.7E8C:41.DE Connect &
¥ Generic Attribute » Detalls
UART_DFU -46 dBm .l
» UART over BLE F8.EEEB66:CA14 Gonnect &
» Details
» Secure DFU
<Unknown name> -66 dBM .1

55.ED:B1:15:52.EB

g
2
k3

» Details

Log “

(NECATIEEY AUAPLET GONMNEGLEU 10 LU 15 Openea
11:09:20.605 Scan started
11:09:24.172 Connecting to device

11:09:24.201 Connected to device F8:EE:EB:66:CA:14

11:09:24.227 ATT MTU changed, new value is 247

11:09:24.521 Attribute value read, handle: 0x03, value (0x): 55-41-52-54-5F-44-46-55

11:09:29.264 Connection parameters updated for device F8:EE:EB:66:CA:14: interval 20ms, timeou ~

4 »

Figure 14: nRF Connect with applicatoin showing secure DFU icon

UBX-19050198 - RO1 Test DFU Page 27 of 32

e’blox Add Nordic Semiconductor DFU to SDK Example - Application note

Again, we see the bootloader icon as we did with just the ble_app_buttonless_dfu example, though
now we also have the new name, UART_DFU, and the Nordic UART Service. Go ahead and send a few
bytes back and forth over the UART service.

We can leave things connected while we prepare a zip file for update.

6.2 Prepare and test update

Since we already have the application compiled to a hex file, let's use that as the source application
file. In order to inform the bootloader that it's a new, valid update, we'll bump the application version.

In the hexfile directory, use nrfutil again to generate the zip file:

nrfutil pkg generate --application ble app uart pcal0056 s140.hex --application-version-
string "2.0.0" --hw-version 52 --sd-req 0xCA --key-file c:\u-
blox\nRF5 SDK 16.0.0 98a08e2\examples\dful\dfu private key.pem app v2.zip

Go back over to nRF Util and apply the DFU:

nRF Connect v2.7.0 - Bluetooth Low Energy = O X

Device Firmware Upgrade (DFU) for device F8:EE:EB:66:CA: 14

Zip file
C:\rigado\hexfiles\app_v2.zip

Package info

application:
bin_file: ble_app_uart_pcal@@56_s148.bin
dat_file: ble app uart_pcal@@56_s148.dat

Cl

P Start DFU

Figure 15: SES ready for update from application

To see the version checking in use, let's create another zip file, but use "version 1.0.0".

nrfutil pkg generate --application ble app uart pcal0056 s140.hex --application-version-
string "1.0.0" --hw-version 52 --sd-req OxCA --key-file c:\u-
blox\nRF5 SDK 16.0.0 98a08e2\examples\dfuldfu private key.pem app vl.zip

UBX-19050198 - RO1 Test DFU Page 28 of 32

eblox Add Nordic Semiconductor DFU to SDK Example - Application note

If we try to apply it with nRF Connect, we'll see an error since we've already loaded "version 2.0.0".

nRF Connect v2.7.0 - Bluetooth Low Energy = O x

Error

When writing 'EXECUTE' command to Control Point Characteristic of DFU Target:
Operation code 4 (EXECUTE) failed on DFU Target. Result code 11 (EXTENDED_ERROR)
Extended error code 5 (FW_VERSION_FAILURE)

dat_file: ble app uart pcal@®56 s148.dat |

Figure 16: nRF Connect showing error when attempting an "old" update
Version checking is done for all three components: bootloader, SoftDevice, and application.
Thanks to this Nordic Semiconductor DevZone article for inspiration.

There are many more aspects of Nordic's DFU service, such as activating additional transports (UART,
USB, Bluetooth Mesh, Zigbee, and Thread), additional security with bond forwarding, etc. For further
information, please refer to Nordic Semiconductor's InfoCenter.

UBX-19050198 - RO1 Test DFU Page 29 of 32

https://devzone.nordicsemi.com/f/nordic-q-a/41922/dfu-support-for-sdk15-2-0/163787#163787
https://infocenter.nordicsemi.com/topic/com.nordic.infocenter.sdk5.v15.3.0/lib_bootloader_modules.html?cp=5_1_3_5

e’blox Add Nordic Semiconductor DFU to SDK Example - Application note

Appendix
A Glossary

Abbreviation Definition

ASCII American Standard Code for Information Interchange
ARM Arm (Advanced RISC Machines) Holdings

CPU Central Processing Unit

DFU Device Firmware Update

DK Development Kit (see EVK)

EVK EValuation Kit

FICR Factory Information Control Registers

GCC GNU Compiler Collection

GNU Recursive acronym “GNU’s Not Unix”

IDE Integrated Development Environment

LED Light Emitting Diode

MAC address Media Access Control address: a unique identifier assigned to a network interface controller
NUS Nordic UART Service

SDK Software Development Kit

SES SEGGER Embedded Studio

SoftDevice Bluetooth low energy stack provided by Nordic Semiconductor
TLA Three Letter Acronym

UART Universal Asynchronous Receiver Transmitter

UICR User Information Control Registers

USB Universal Serial Bus

WSL Windows Subsystem for Linux

Table 2: Explanation of the abbreviations and terms used

UBX-19050198 - RO1 Appendix Page 30 of 32

e’blox Add Nordic Semiconductor DFU to SDK Example - Application note

Related documents

[11 ANNA-B112 system integration manual, doc. no. UBX-18009821
[2] NINA-B1 system integration manual, doc. no. UBX-15026175
[31 NINA-B3 system integration manual, doc. no. UBX-17056748

[4] u-blox package information guide, doc. no. UBX-14001652

¥ Forregular updates to u-blox documentation and to receive product change notifications, register
on our homepage (www.u-blox.com).

Revision history

Revision Date Name Comments

RO1 16-Dec-2019 brec Initial release

UBX-19050198 - RO1 Related documents Page 31 of 32

https://www.u-blox.com/docs/UBX-18009821
https://www.u-blox.com/docs/UBX-15026175
https://www.u-blox.com/docs/UBX-17056748
https://www.u-blox.com/docs/UBX-14001652
http://www.u-blox.com/

@blox

Contact

For complete contact information, visit us at www.u-blox.com.

u-blox Offices

North, Central and South America

u-blox America, Inc.

Phone: +17034833180
E-mail: info_us@u-blox.com
Regional Office West Coast:
Phone: +1408573 3640
E-mail: info_us@u-blox.com
Technical Support:

Phone: +17034833185
E-mail: support@u-blox.com

UBX-19050198 - RO1

Add Nordic Semiconductor DFU to SDK Example - Application note

Headquarters
Europe, Middle East, Africa

u-blox AG
Phone: +41447227444
E-mail: info@u-blox.com

Support: support@u-blox.com

Contact

Asia, Australia, Pacific

u-blox Singapore Pte. Ltd.

Phone: +656734 3811

E-mail: info_ap@u-blox.com
Support: support_ap@u-blox.com

Regional Office Australia:

Phone: +61284482016
E-mail: info_anz@u-blox.com
Support: support_ap@u-blox.com

Regional Office China (Beijing):
Phone: +86 1068 133545
E-mail: info_cn@u-blox.com
Support: support_cn@u-blox.com

Regional Office China (Chongqing):
Phone: +86236815 1588

E-mail: info_cn@u-blox.com
Support: support_cn@u-blox.com

Regional Office China (Shanghai):
Phone: +86 2160904832
E-mail: info_cn@u-blox.com
Support: support_cn@u-blox.com

Regional Office China (Shenzhen):
Phone: +86 7558627 1083
E-mail: info_cn@u-blox.com
Support: support_cn@u-blox.com

Regional Office India:

Phone: +91 80405092 00
E-mail: info_in@u-blox.com
Support: support_in@u-blox.com
Regional Office Japan (Osaka):
Phone: +81 66941 3660
E-mail: info_jp@u-blox.com
Support: support_jp@u-blox.com
Regional Office Japan (Tokyo):
Phone: +81 35775 3850
E-mail: info_jp@u-blox.com
Support: support_jp@u-blox.com
Regional Office Korea:

Phone: +82 2542 0861

E-mail: info_kr@u-blox.com
Support: support_kr@u-blox.com

Regional Office Taiwan:

Phone: +886 22657 1090
E-mail: info_tw@u-blox.com
Support: support_tw@u-blox.com

Page 32 of 32

http://www.u-blox.com/
mailto:info_us@u-blox.com
mailto:info_us@u-blox.com
mailto:support@u-blox.com
mailto:info@u-blox.com
mailto:support@u-blox.com
mailto:info_ap@u-blox.com
mailto:support_ap@u-blox.com
mailto:info_anz@u-blox.com
mailto:support_ap@u-blox.com
mailto:info_cn@u-blox.com
mailto:support_cn@u-blox.com
mailto:info_cn@u-blox.com
mailto:support_cn@u-blox.com
mailto:info_cn@u-blox.com
mailto:support_cn@u-blox.com
mailto:info_cn@u-blox.com
mailto:support_cn@u-blox.com
mailto:info_in@u-blox.com
mailto:support_in@u-blox.com
mailto:info_jp@u-blox.com
mailto:support_jp@u-blox.com
mailto:info_jp@u-blox.com
mailto:support_jp@u-blox.com
mailto:info_kr@u-blox.com
mailto:support_kr@u-blox.com
mailto:info_tw@u-blox.com
mailto:support_tw@u-blox.com

	Document information
	Contents
	1 Software preparation
	1.1 Nordic Semiconductor nRF5 SDK
	1.2 SEGGER Embedded Studio
	1.3 Nordic utilities
	1.3.1 nRF Connect
	1.3.2 nRF command line tools (nrfjprog)
	1.3.3 nRF Util

	1.4 Encryption libraries
	1.4.1 Install git
	1.4.2 Install GCC for ARM
	1.4.3 Install GNU make
	1.4.4 Fetch and compile the encryption libraries

	2 Hardware preparation
	2.1 Bluetooth address

	3 Application firmware
	4 Button DFU
	4.1 DFU bootloader
	4.2 Key generation
	4.3 Firmware update package generation

	5 Buttonless DFU
	5.1 Preprocessor definitions
	5.2 sdk_config.h
	5.3 Libraries
	5.4 main.c
	5.5 Hex file generation

	6 Test DFU
	6.1 Program and test application
	6.2 Prepare and test update

	Appendix
	A Glossary
	Related documents
	Revision history
	Contact

