W=

WURTH ELEKTRONIK

ANRO24 PROTEUS-E

ADVANCED DEVELOPER GUIDE

VERSION 1.0

MARCH 9, 2022

Revision history

Manual | FW HW
, . . Notes Date
version | version | version
e ; Februar
« Initial version y
1.0 1.0.0 1.0 2022
ANRO024 Proteus-e version 1.0 ©March 2022

www.we-online.com/wireless-connectivity 1

http://www.we-online.com/wireless-connectivity

Abbreviations

Abbreviation | Name Description
ADC Analog to Digital
Converter
®
BTMAC Bluetooth _conform MAC address of the module used
on the RF-interface.
Central
CPU Processing Unit
Generic Access The GAP provides a basic level of functionality that all
GAP . ®))
Profile Bluetooth® devices must implement.
GATT Genlerlc Attribut
profile
General Purpose
GPIO Input/Output
I/0O Input/output Pinout description.
5 Inter-Integrated
I-C -
Circuit
LDO Low Dropout Low dropout voltage regulator

Bluetooth LE

Bluetooth Low
Energy

Identifier

LPM Low power mode Mode for efficient power consumption.

MAC MAC address of the module.

MTU Mammgm' : Maximum packet size of the Bluetooth® connection.
transmission unit

Payload The intended message in a frame / package.

PDU Packet Data Unit

RF Radio frequency Describes wireless transmission.
Software

SDK Development Kit

Bluetooth Bluetooth Special

SIG Interest Group

SoC Sistem-on-Chip

Soft device Operating system used by the nRF52 chip.

SPI Serlal peripheral Allows the serial communication with the module.
interface

SPP Serial Port Profile
Universal

UART Asynghronous Allows the serial communication with the module.
Receiver
Transmitter

UUID Universally Unique

ANRO024 Proteus-e version 1.0
www.we-online.com/wireless-connectivity 2

©March 2022

http://www.we-online.com/wireless-connectivity

Contents

1 Introduction 5
2 Bluetooth profiles 5
3 SPP-like profile 6
3.1 Generic Access Protocol (GAP) 6
3.2 Generic Attribute Profile (GATT) o o 7
3.2.1 Maximum transmission unit (MTU) 7
3.2.2 Companyidentifier 7
3.23 UUID e 7
3.2.4 Primary Service 7
3.241 Characteristics 7
3.3 Bluetooth LE packetcontent 8
3.3.1 Payload packetformat 8
3.3.2 Advertising packetcontent oL 9
3.3.3 Scanresponse packetcontent L. 9
3.4 Remote GPIOcontrol 10
3.4.1 CMD_GPIO_REMOTE_WRITECONFIG_ REQ. 10
3.4.1.1 Example: Configure two GPIOs of the connected remote device
tooutputhigh 11
3.4.2 CMD_GPIO_REMOTE_READCONFIG_REQ 13
3.4.2.1 Example: Read the current GPIO configuration of the connect-
edremotedevice o 13
3.4.3 CMD_GPIO_ REMOTE WRITE REQ. 15
3.4.3.1 Example: Set a remote output GPIOtolow 16
3.4.4 CMD_GPIO_REMOTE_READ_ REQ 17
3.44A1 Example: Read the values of remote GPIOs 18
3.45 CMD_GPIO_LOCAL WRITE_IND 18
3.4.5.1 Example: GPIOs of the remote device have been written by its
localhost 18
4 App development 19
4.1 Connectionsetupmessagechart 19
4.2 Enable notifications 20
4.3 Bondingdevelopmenthints L. 21
5 Custom firmware development 22
5.1 Important information for custom firmware development 22
5.1.1 How to adapt Nordic Semiconductor SDK examples to run on the
Proteus-e hardware? oo 26
5.1.2 Firmware developmenthints, 28
5.1.3 Qualifying the Proteus-e with respect to Bluetooth® 5.2 28
6 References 29
7 Important notes 30
7.1 General customer responsibility oL 30
7.2 Customer responsibility related to specific, in particular safety-relevant ap-
plications 30
7.3 Bestcareandattention L. 30
ANRO024 Proteus-e version 1.0 ©March 2022

www.we-online.com/wireless-connectivity 3

http://www.we-online.com/wireless-connectivity

7.4 Customer support for product specifications 30
7.5 Productimprovements 31
7.6 Productlifecycle 31
7.7 Propertyrights 31
7.8 Generalterms and conditions L oL 31
8 Legal notice 32
8.1 Exclusionof liability 32
8.2 Suitability in customer applicationso oL 32
8.3 Trademarks 32
8.4 Usagerestriction 32
9 License terms 34
9.1 Limitedlicense 34
9.2 Usageandobligations 34
9.3 Ownership. e 35
9.4 Firmwareupdate(s) 35
9.5 Disclaimerofwarranty 35
9.6 Limitationof liability 35
9.7 Applicable law and jurisdiction Lo 36
9.8 Severabilityclause 36
9.9 Miscellaneous e e e 36
ANRO024 Proteus-e version 1.0 ©March 2022
www.we-online.com/wireless-connectivity 4

http://www.we-online.com/wireless-connectivity

1 Introduction

This document provides advanced information concerning the Proteus-e.

On the one hand the Bluetooth® LE interface of the Proteus-e is described, that must be
implemented in a smart phone app to gain compatibility with the Proteus-e (chapter 2, 3
and 4).

On the other hand, valuable hints to start a custom firmware development on base of the
Proteus-e hardware are given (chapter 5).

Please note that basic understanding of the Bluetooth® LE standard as well as applica-
tion development background on the desired platform is necessary to fully understand this
document. Please refer to the user manual of Proteus-e [4] to get basic information of the
functions provided by the application firmware.

2 Bluetooth profiles

The Bluetooth® LE specification uses so called "profiles" to specify the general behaviour of
a Bluetooth® LE enabled device on the radio to communicate with other Bluetooth® LE de-
vices. Profiles are built on the Bluetooth® LE standard to clearly define what kind of data is
transmitted. The device’s application determines which profiles matches best, from hands-
free capabilities to heart rate sensors to alerts and more.

A device may support more than one profile. For two devices to be compatible, they must
support the same Bluetooth® LE profile.

The Proteus-e module ships with the so-called SPP-like profile (see section 3) created on
the base of the Generic Attribute profile (GATT). This profile is a custom profile defined by
Wiirth Elektronik eiSos and aims at providing a Bluetooth® LE based wireless replacement
to a serial cable connection.

ANRO024 Proteus-e version 1.0 © March 2022
www.we-online.com/wireless-connectivity 5

http://www.we-online.com/wireless-connectivity

3 SPP-like profile

This section contains the key data of the SPP-like profile. Each device in the network must
support this profile to communicate with a Proteus-e device. Customer applications may
support and/or provide other profiles, services or interfaces in addition.

3.1 Generic Access Protocol (GAP)

The main purpose of this protocol is to describe the parameters of lower layers of the
Bluetooth® LE stack including discovery, scanning and security capabilities. The Proteus-e
GAP specifications are listed below:

» See user setting RF_Appearance for the appearance.
» See user setting RF_DeviceName for the device name.

» See user setting FS_BTMAC (0x0018DAxxxxxx) for the device address (6 Byte MAC) of
type "public”.
» Timings:
— See user settings RF_AdvertisingInterval for advertising interval configuration.

— See user setting RF_ConnectionInterval for minimum and maximum connection
interval configuration.

— See user setting RF_TXPower for TX power value.
— See user setting RF_SecFlags for security settings.
— Slave latency: 0

— Peripheral requests for connection parameters update if central has differing con-
nection parameters

« Connection parameters update (initial): 5s
= Connection parameters update (periodic): 10s
= Connection parameters update counter before connection shut down: 3

ANRO024 Proteus-e version 1.0 © March 2022
www.we-online.com/wireless-connectivity 6

http://www.we-online.com/wireless-connectivity

3.2 Generic Attribute Profile (GATT)
3.2.1 Maximum transmission unit (MTU)

The Proteus-e supports up to 243 Byte of payload data. To use this feature a large MTU has
to be requested by the central device. In this case, the GATT MTU size must be 243 Byte
payload + 1 Byte header + 3 Byte NUS header, which is 247 Byte in total.

The PDU size should be 243 Byte payload + 1 Byte header + 3 Byte NUS header + 4 Byte
Bluetooth® LE header, which is 251 Byte in total.

Check also the message charts in chapter 4 to see the MTU request in the
connection setup process.

3.2.2 Company identifier

The Bluetooth® listed company identifier of Wiirth Elektronik eiSos (formerly "Amber wireless
GmbH") is 0X031A (794,,.).

3.2.3 UUID

The Proteus-e uses a 128 Bit UUID of type "Vendor specific". The base UUID is adapted by
the 16 Bit UUIDs of the primary service and the corresponding characteristics.

The use of these UUID is restricted to Proteus-e modules that come with a pre-installed
firmware, or devices that communicate with them.

Service 16 Bit UUID Full UUID

Proteus-e base - 6E400000-C352-11E5-953D-0002A5D5C51B
Proteus-e primary service 0x0001 6E400001-C352-11E5-953D-0002A5D5C51B
RX_CHARACTERISTIC 0x0002 6E400002-C352-11E5-953D-0002A5D5C51B
TX_CHARACTERISTIC 0x0003 6E400003-C352-11E5-953D-0002A5D5C51B

The UUID can be adapted by means of the user settings RF_SPPBaseUUID,
RF_SPPServiceUUID, RF_SPPTXUUID and RF_SPPRXUUID to generate a custom

profile.

3.2.4 Primary Service
3.2.4.1 Characteristics

« The first characteristic of the Proteus-e primary service is RX_CHARACTERISTIC:
— The data is sent from central/client to peripheral/server using a write command.
— Server:
= Has to allow a write command as well as a write without response command.

ANRO024 Proteus-e version 1.0 ©March 2022
www.we-online.com/wireless-connectivity 7

http://www.we-online.com/wireless-connectivity

— Client:
» Use write command to send data to the server.

» The second characteristic of the Proteus-e primary service is TX_CHARACTERISTIC:
— The data is sent from peripheral/server to central/client using a notification.
— Server:
= Has to allow/enable notifications. Notify client/central when sending data.

« When the notification enable bit is written in the CCCD (Client Characteristic
Configuration Descriptor) by the central, the peripheral prints a CMD_CHANNELOPEN_RSP
on the UART to signalize that the peripheral can send data to the central now.

The central can only write this bit, when the configured security level of the
peripheral has been met.

— Client:
» Has to enable notifications.

The permissions to access the characteristics is determined by the security mode of the
module.

Proteus-e CCCD read CCCD write, RX attribute read/write, TX
security mode attribute read/write
No security no protelci:rt]lli)n, open no protection, open link
no protection, open requires encryption, but no MITM protection
Just works link (Mode 1, Level 2)
. no protection, open requires encryption and MITM protection
Static pass key link (Mode 1, Level 3)

3.3 Bluetooth LE packet content
3.3.1 Payload packet format

To identify the type of data transmitted via Bluetooth® LE, the data protocol on the radio
contains a 1 Byte packet header. Thus, the standard Bluetooth® LE payload has to match
the following format to be accepted by the Proteus-e:

Bluetooth® LE Payload
Header Payload
1 Byte dgr Bytes

Table 1: Packet format

The maximum payload size ¢ is 243 Bytes. The Header has to be one of the following
types:

0x01: RF_HEADER_TYPE_DATA: The following bytes contain the user payload data.

0x02: RF_HEADER_TYPE_CMD: The following bytes contain command data, like commands to
switch the remote GPIOs (see chapter 3.4).

ANRO024 Proteus-e version 1.0 © March 2022
www.we-online.com/wireless-connectivity 8

http://www.we-online.com/wireless-connectivity

Other: Other headers are reserved for future use and packets with this header are currently
discarded.
3.3.2 Advertising packet content
The standard Proteus-e advertising packet contains the following data:
» Advertising data flags

 Proteus-e device name as Full or Shortened Local Name (up to 26 Bytes)

3.3.3 Scan response packet content

The scan response packet is requested during scan if active scanning is enabled on the
central device (i.e. smart phone). The standard Proteus-e scan response packet contains
the following data:

» The UUID (128 Bit Proteus-e primary service UUID) of the SPP-like profile

« TX power level (1 Byte in two’s complement notation)

ANRO024 Proteus-e version 1.0 © March 2022
www.we-online.com/wireless-connectivity 9

http://www.we-online.com/wireless-connectivity

3.4 Remote GPIO control

The Proteus-e contains a feature to control its free GPIOs via the Bluetooth® LE interface.
To do so a connected remote device must send remote commands via the Bluetooth® LE
interface to the Proteus-e.

In case the GPIOs of interest have not been configured by the locally connected host via
UART commands, it must be configured first by the remote device via Bluetooth® LE using
the CMD_GPIO_REMOTE_WRITECONFIG_REQ and CMD_GPIO_REMOTE_READCONFIG_REQ command-
S.

If this has been done, the GPIOs can be used as input and/or output pins (CMD_GPI0_REMOTE_
WRITE_REQ / CMD_GPIO_REMOTE_READ_REQ).

The remote commands to be send have the following structure (see the following chapters):

Bluetooth® LE Payload
Header | Command Payload
0x02 x Bytes

Table 2: Packet command format

3.4.1 CMD_GPIO_REMOTE_WRITECONFIG_REQ

This command can be used to configure the free GPIOs of the remote device.

Remote configuration can be blocked by writing the corresponding bit of the
user setting CFG_Flags via UART commands.

Format:
Header | Command | Block; Block,
0x02 0x28 x Bytes x Bytes
Response (CMD_GPIO_REMOTE_WRITECONFIG_CNF):
Header | Command | 0x40 | Block; Block,
0x02 0x68 x Bytes x Bytes

CMD_GPIO_REMOTE_WRITECONFIG_REQ block structure

Each Block has the following format:

ANRO024 Proteus-e version 1.0

www.we-online.com/wireless-connectivity

©March 2022

http://www.we-online.com/wireless-connectivity

Length | GPIO_ID | Function | Value
0x03 1 Byte 1 Byte | 1 Byte

Length: Length of the subsequent bytes in this block
GPIO_ID: ID of the GPIO, see Proteus-e manual

Function:

0x00: GPIO disconnected
0x01: GPIO works as input
0x02: GPIO works as output

Value:

« if Function is disconnected:
Values field is not used in this Block
« if Function is input:
0x00: GPIO has no pull resistor
0x01: GPIO has pull down resistor
0x02: GPIO has pull up resistor
« if Function is output:
0x00: GPIO is output low
0x01: GPIO is output high

CMD_GPIO_REMOTE_WRITECONFIG_CNF block structure

Each Block has the following format:

Length | GPIO_ID | Status
0x02 1 Byte | 1 Byte

Length: Length of the subsequent bytes in this block
GPIO_ID: ID of the GPIO, see Proteus-e manual

Status:

0x00: Success
0x01: Failed

OxFF: Remote configuration not allowed (blocked by the user setting CFG_Flags of the
remote device)

3.4.1.1 Example: Configure two GPIOs of the connected remote device to output
high

Configure the GPIOs with ID 0x01 and 0x02 to output high:

ANRO024 Proteus-e version 1.0 ©March 2022
www.we-online.com/wireless-connectivity 11

http://www.we-online.com/wireless-connectivity

Header [Command Block; Blocks
0x02 0x28 0x03 0x01 0x02 0x01 [0x03 0x02 0x02 0x01

Response:

Header | Command | 0x40 Block; Blocks
0x02 0x68 0x02 0x01 0x00 | 0x02 0x02 0x00

Configured both GPIOs with success.

ANRO024 Proteus-e version 1.0 ©March 2022
www.we-online.com/wireless-connectivity 12

http://www.we-online.com/wireless-connectivity

3.4.2 CMD_GPIO_REMOTE_READCONFIG_REQ

This command can be used to read the configuration of the free GP10s of the remote device.
Format:

Header | Command
0x02 0x2C

Response (CMD_GPIO_REMOTE_READCONFIG_CNF):

Header | Command | 0x40 | Block; | ... | Block,
0x02 0x6C x Bytes x Bytes

CMD_GPIO_REMOTE_READCONFIG_CNF block structure

Each Block has the following format:

Length | GPIO_ID | Function | Value
0x03 1 Byte 1 Byte | 1 Byte

Length: Length of the subsequent bytes in this block
GPIO_ID: ID of the GPIO, see Proteus-e manual

Function:

0x00: GPIO is not configured yet (Length is 0x02 and Value is empty)
0x01: GPIO works as input
0x02: GPIO works as output

Value:

« if Function is input:
0x00: GPIO has no pull resistor
0x01: GPIO has pull down resistor
0x02: GPIO has pull up resistor

« if Function is output:
0x00: GPIO is output low
0x01: GPIO is output high

3.4.2.1 Example: Read the current GPIO configuration of the connected remote
device

Read the current GPIO configuration of the connected remote device:

ANRO024 Proteus-e version 1.0 ©March 2022
www.we-online.com/wireless-connectivity 13

http://www.we-online.com/wireless-connectivity

Response:

Header

Command

0x02

0x2C

Header

Command | 0x40

Blocks

0x02

0x6C

0x03 0x01 0x02 0x01
0x03 0x02 0x02 0x01
0x02 0x03 0x00
0x02 0x04 0x00
0x02 0x05 0x00
0x02 0x06 0x00

The GPIOs with GPIO_ID 0x01 and 0x02 are output high. The remaining GP1Os with GPI-
O_ID 0x03, 0x04, 0x05 and 0x06 are not configured.

ANRO024 Proteus-e version 1.0
www.we-online.com/wireless-connectivity

©March 2022
14

http://www.we-online.com/wireless-connectivity

3.4.3 CMD_GPIO_REMOTE_WRITE_REQ

This command can be used to write the free GPIOs of the remote device. This command
can be only run successfully if the respective pins of the remote device are configured as
output pins.

Perform a CMD_GPIO_REMOTE_READCONFIG_REQ before using the
CMD_GPIO_REMOTE_WRITE_REQ command to ensure the pins are setup cor-
rectly.

Format:

Header | Command | Block; | ... | Block,
0x02 0x29 x Bytes x Bytes

Response (CMD_GPIO_REMOTE_WRITE_CNF):

Header | Command | 0x40 | Block; | ... | Block,
0x02 0x69 x Bytes x Bytes

CMD_GPIO_REMOTE_WRITE_REQ block structure

Each Block has the following format:

Length | GPIO_ID | Value
0x02 1 Byte | 1 Byte

Length: Length of the subsequent bytes in this block
GPIO_ID: ID of the GPIO, see Proteus-e manual

Value:

0x00: Set GPIO to low
0x01: Set GPIO to high

CMD_GPIO_REMOTE_WRITE_CNF block structure

Each Block has the following format:

Length | GPIO_ID | Status
0x02 1 Byte [1 Byte

Length: Length of the subsequent bytes in this block
GPIO_ID: ID of the GPIO, see Proteus-e manual

ANRO024 Proteus-e version 1.0 ©March 2022
www.we-online.com/wireless-connectivity 15

http://www.we-online.com/wireless-connectivity

Status:

0x00: Success
0x01: Failed

3.4.3.1 Example: Set a remote output GPIO to low

Set the output GPIO (GPIO_ID 0x01) of the connected remote device to low:

Header | Command Block;
0x02 0x29 0x02 0x01 0x00
Response:
Header | Command | 0x40 Block;

0x02 0x69

0x02 0x01 0x00

Successfully set GPIO with GPIO_ID 0x01 to low.

ANRO024 Proteus-e version 1.0
www.we-online.com/wireless-connectivity

©March 2022
16

http://www.we-online.com/wireless-connectivity

3.4.4 CMD_GPIO_REMOTE_READ_REQ

This command can be used to read the free GPIOs of the remote device. This command
can be only run successfully if the respective pins of the remote device are configured.

Perform a CMD_GPIO_REMOTE_READCONFIG_REQ before using the
CMD_GPIO_REMOTE_READ_REQ command to ensure the pins are setup cor-

rectly.

Format:

Header | Command | Block; | ... | Block,
0x02 0x2A x Bytes x Bytes

Response (CMD_GPIO_REMOTE_READ_CNF)

Header | Command | 0x40 | Block; | ... | Block,
0x02 Ox6A x Bytes x Bytes

CMD_GPIO_REMOTE_READ_REQ block structure

Each Block has the following format:

Length | GPIO_IDy | ... | GPIO_ID,
1 Bytes 1 Byte 1 Byte

Length: Length of the subsequent bytes in this block
GPIO_ID: ID of the GPIO, see Proteus-e manual

CMD_GPIO_REMOTE_READ_CNF block structure

Each Block has the following format:

Length | GPIO_ID | Value
0x02 1 Byte | 1 Byte

Length: Length of the subsequent bytes in this block
GPIO_ID: ID of the GPIO, see Proteus-e manual

Value:

0x00: The remote GPIO is low.
0x01: The remote GPIO is high.
OxFF: Failed reading remote GPIO value.

ANRO024 Proteus-e version 1.0 ©March 2022
www.we-online.com/wireless-connectivity 17

http://www.we-online.com/wireless-connectivity

3.4.4.1 Example: Read the values of remote GPIOs
Read the value of the GPIOs with GPIO _ID 0x01 and 0x02 of the connected remote device:

Header | Command Block;
0x02 0x2A 0x02 0x01 0x02
Response:
Header | Command | 0x40 Block; Blocks
0x02 OxB6A 0x02 0x01 0x00 | 0x02 0x02 0x01

Successfully read the values of the remote GPIOs with GPIO_ID 0x01 (GPIO is low) and
0x02 (GPIO is high).

3.4.5 CMD_GPIO_LOCAL_WRITE_IND

This message informs the connected remote device, that the radio module’s local host has
written the GPIOs.

Please note that only the GPIOs that have been successfully updated are part
of this message. Failed attempts of GPIO updates will not be indicated by this
message.

Format:

Header

Command

Block;

Blocky,

0x02

OxA8

x Bytes

x Bytes

Each Block has the format of CMD_GPIO_REMOTE_READ_CNF block structure.

3.4.5.1 Example: GPIOs of the remote device have been written by its local host

Command
OxA6

Header
0x02

Block;
0x02 0x01 0x00

Blocks
0x02 0x02 0x01

The GPIOs with GPIO_ID 0x01 (GPIO is low) and 0x02 (GPIO is high) of the remote device
have been written by its local host.

ANRO024 Proteus-e version 1.0
www.we-online.com/wireless-connectivity

©March 2022
18

http://www.we-online.com/wireless-connectivity

4 App development

The definition of the SPP-like profile (see section 3) in combination with the message chart of
chapter 4.1 is sufficient to develop custom apps for mobile devices. To implement this profile
from scratch fundamental knowledge of app development as well as of the Bluetooth® LE
standard is required.

To make life easy Wirth Elektronik eiSos published the source code of the compatible "Pro-
teus Connect App" for iOS [6] and Android [5] on GitHub. This app can be used as starting
point for own app developments.

4.1 Connection setup message chart

The following message chart shows which steps are run during the connection setup process
between a mobile phone and a Proteus-e radio module. To implement the central role in a
mobile device app to connect to the Proteus-e peripheral the steps of the central device
shown below have to be reproduced.

1. First of all, the central device must place a connection request to setup the physical
connection. Here the timing parameters like the connection interval are negotiated.

2. In case the Proteus-e has its security enabled (see user setting RF_SecFlags), a pairing
request must be placed to get the permission to access the peripheral’s characteristics.

3. Afterwards a MTU request is necessary to allow a larger payload.

4. Next the discovery of the characteristics must be done and the notification of the TX
characteristic has to be enabled.

After all these steps have been done, data transmission in both directions is possible.

ANRO024 Proteus-e version 1.0 ©March 2022
www.we-online.com/wireless-connectivity 19

http://www.we-online.com/wireless-connectivity

Central

Trigger connection
setup =>

Connection

=———Connection request=—p

<€——Connection setup=—=>>
J

Pairing (Optional)

Trigger pairing => Pairing reqt >
€—Pairing setup=——=>
\ J

Packet size negotiation
(Optional)

A

MTU req >

Trigger MTU =>

€——MTU response=——————

)

Discovery
N
_g Trigger discovery=> Discovery request=—=3»
I_ €———Discovery=————=>

J

Open back channel

Trigger notification
enable => [

———Notification enable=—3»]

Data transmission

—CMD_CHANNELOPEN_RSP)>

Payload data => [

Payload datam——3p]

Data reception

Payload data C: [

Close connection

<€——CMD_DATA_REQ:

€—Payload datgm—— ‘

Disconnect => [

=——Disconnection request=>] ==CMD_DISCONNECT_IND)>

Proteus-e

Peripheral

Command
mode

Transparent
mode

——CMD_CONNECT_IND=)>

——CMD_SECURITY_IND=)>

| =UART is enabled-

__

CMD_DATA_IND ==l . Payload data—)

| €———pPayload data
CMD_DATA_CNF=——3p !

=—=CMD_TXCOMPLETE_RSP=p»>

__

| —=UART is disabled—

Figure 1: Connection setup chart

4.2 Enable notifications

As described in the previous chapter 4.1 the final step for a successful connection set-
up is the enabling of the notification of the TX_CHARACTERISTIC. To do so, the Android’s

Bluetooth® LE stack offers the following function, that has to be called with the TX_CHARACTERISTIC.

IBluetoothGatt mService;

/++ TX NOTIFICATION

« Enable or disable notifications /indications for a given characteristic .

*

ANRO024 Proteus-e version 1.0
www.we-online.com/wireless-connectivity

©March 2022
20

http://www.we-online.com/wireless-connectivity

« <p>0nce notifications are enabled for a characteristic, a

« {@link BluetoothGattCallback#onCharacteristicChanged] callback will be
« triggered if the remote device indicates that the given characteristic

« has changed.

*

« <p>Requires {@link android.Manifest.permission#BLUETOOTH} permission.

« @param characteristic The characteristic for which to enable notifications

« @param enable Set to true to enable notifications/indications

« @return true, if the requested notification status was set successfully

+/

public boolean setCharacteristicNotification (BluetoothGattCharacteristic characteristic ,
boolean enable) {

if (DBG) {

Log.d(TAG, " setCharacteristicNotification () _—_uuid:_" + characteristic.getUuid()

+ "_enable: " + enable);

}

if (mService == null || mClientlf == 0) return false;

BluetoothGattService service = characteristic .getService();
if (service == null) return false;

BluetoothDevice device = service.getDevice();
if (device == null) return false;

try {
mService. registerForNotification (mClientlf, device.getAddress(),

characteristic .getlnstanceld(), enable);
} catch (RemoteException e) {
Log.e(TAG, ", e);

return false;

}

return true;
}
Code 1: Example code to enable the TX characteristic notification

Please note that the iOS’s Bluetooth® LE stack calls the corresponding function automatical-
ly. Thus calling a notification enable function from the app’s application layer is not needed.

4.3 Bonding development hints

The firmware of the Proteus-e provides the bonding feature that allows to re-pair without
repeating the authentication step (e.g. entering the static passkey). Thus, in the initial
connection all bonding data is stored in the devices’ flash to be used during the setup of
subsequent connections.

The function CMD_DELETEBONDS_REQ of the Proteus-e allows to remove not needed bonding
data from the module’s flash. Thus in case of missing bonding data on one of the two
connection partners, a re-bonding has to be initiated by the central device! Otherwise, the
security level is not met to send the "notification enable" message and thus the channel for
data transmission can not be opened.

Please note that iOS devices do not run the re-bonding step by default, if bond-
ing data is missing on one of the two connection partners.

In certain cases, the bonding data on the iOS device has to be cleared first,
such that iOS starts the re-bonding step.

ANRO024 Proteus-e version 1.0 ©March 2022
www.we-online.com/wireless-connectivity 21

http://www.we-online.com/wireless-connectivity

5 Custom firmware development

Using the Proteus-e hardware a custom firmware can be developed to better fit the cus-
tomer’s needs. Based on the Nordic Semiconductor SDK (nRF5 SDK [2]) and demo ex-
amples various Bluetooth® LE profiles and custom applications can be realized and flashed
on the Proteus-e module. The versatile and well documented Nordic stack ensures quick
and easy realization of various standard Bluetooth® LE profiles. Chapter 5.1 contains the
information needed to run Nordic standard examples on the Proteus-e hardware.

SWD connector Hardware interfaces
UART, SPI, GPIO, CLK, NFC, I2C, Interrupts, ...

GPIO connectors

Antenna

Firmware
Option1or2

Option 1: delivery state Option 2: via SWD interface

Option 1: SPP-like Firmware Option 2: Custom Development

Development m

User application code @ environment

SPP-like Bluetooth profile,) n 3 Segger Embedded SoftDevice or
e SoftDevice Studio, Keil, IAR, plus ~ nRF Connect

edit user settings BT Stack, J-Link flash adapter BT Stack,

GAP, GATT (or compatible) GAP, GATT

WE=- 3 NORDIC
WURTH ELEKTRONIK > SEMICONDUCTOR

free code demos,
all BLE profiles,
flash software,

developer forum

Manual,
advanced user
guide, support

Figure 2: Options for running the Proteus-e with standard or custom firmware

5.1 Important information for custom firmware development

To start a custom firmware development on top of the Proteus-e hardware, the following
information must be considered:

+ Chip
The Proteus-e contains the Nordic Semiconductor nRF52805 SoC. The CPU is a
64MHz ARM Cortex-M4.

* Pinout
The Proteus-e provides the following pins of the Nordic SoC with its pads. Only the
ANT, RF, GND, VDD, Reset, SWDCLK and SWDIO pins are fixed. All other pins

ANRO024 Proteus-e version 1.0 ©March 2022
www.we-online.com/wireless-connectivity 22

http://www.we-online.com/wireless-connectivity

can be used for custom firmware development. For special functions like external low
frequency crystal (XL) or analog input (AIN) the respective pins have to be used.

AroA A AN A AN
v vV VvV vy
| ;)
) (
N) ¢
k { AVAVAVT.;)
W == AN
N TN
< .
N 7o R
: . N
N oN No N
o pd < pd .
N "N N7 R
N
Figure 3: Pinout
No. | Pad Name | No. | Pad Name
1 ANT 11 | P0.00/XL1
2 RF 12 | P0.01/XL2
3 SWDIO 13 P0.16
4 SWDCLK 14 P0.18
5 | P0.21/Reset | 15 P0.20
6 P0.12 B1 GND
7 VDD B2 GND
8 P0.05/AIN3 | B3 GND
9 P0.04/AIN2 | B4 GND
10 P0.14

« Hardware for development & debugging

Using Segger J-Link flasher and the SWD interface is required for firmware develop-
ment and debugging. Checkout the Proteus-e evaluation board. It provides the easiest
way to develop firmware based on Proteus-e module or apps for the SPP-like profile.

» Software development environment

Nordic Semiconductor provides software packages for several compilers (KEIL, IAR,

GCC, Segger Embedded).

ANRO024 Proteus-e version 1.0

www.we-online.com/wireless-connectivity

©March 2022

http://www.we-online.com/wireless-connectivity

It includes the required Bluetooth® LE stack ("Softdevice"), many demo examples for
Bluetooth® LE profiles and services to conveniently develop a custom firmware on
base of the Nordic SoC. Further library’s for hardware peripheral (such as ADC, 12C,
SPI, UART etc.) are also include in the SDK and examples. More information and de-
tails about the chip and the operating system is bundled in the Nordic Semiconductor
Infocenter:

http://infocenter.nordicsemi.com/

Please check the tab "nRF52 Series" to access the newest information about the nR-
F52 radio chip and the software environment.

If available, use the examples for the Nordic evaluation platform (like PCA10040) as a
starting point. See also chapter 5.1 .1 for more information how to run Nordic standard
examples on top of the Proteus-e.

* Clock sources
The Proteus-e module contains a dedicated RF clock (HFCLK). The Proteus-e does
not contain a dedicated low frequency clock (LFCLK). Thus custom firmware must
use the internal RC-oscillator as long as no external clock crystal is connected to the
respective pins (XL1, XL2) on the customer PCB.
Example for enabling the internal RC oscillator for nRF Connect SDK 17.0.2:

// <o>NRF_SDH _CLOCK LF SRC — SoftDevice clock source.
// <0=>NRF _CLOCK LF SRC RC

// <1=>NRF_CLOCK LF SRC XTAL

// <2=>NRF _CLOCK LF SRC SYNTH

#ifndef NRF_SDH_CLOCK LF SRC

#define NRF_SDH_CLOCK _LF SRC 0

#endif

// <o>NRF_SDH CLOCK LF RC _CTIV — SoftDevice calibration timer interval.
#ifndef NRF_SDH_CLOCK LF RC_CTIV

#define NRF_SDH CLOCK LF RC_CTIV 16

#endif

// <o>NRF_SDH CLOCK LF RC TEMP_CTIV — SoftDevice calibration timer interval under
constant temperature.

// <i> How often (in number of calibration intervals) the RC oscillator shall be calibrated

// <i> if the temperature has not changed.

#ifndef NRF_SDH_CLOCK_LF_RC_TEMP_CTIV

#define NRF_SDH_CLOCK LF RC TEMP_CTIV 2

#endif

// <0>NRF_SDH_CLOCK_LF ACCURACY — External clock accuracy used in the LL to compute
timing.
// <0=>NRF CLOCK LF ACCURACY 250 PPM
// <1=>NRF_CLOCK LF _ACCURACY 500 PPM
// <2=>NRF _CLOCK LF ACCURACY 150 PPM
// <3=>NRF CLOCK LF ACCURACY 100 PPM
// <4=> NRF CLOCK LF ACCURACY 75 PPM
// <5=>NRF _CLOCK LF ACCURACY 50 PPM
// <6=>NRF_CLOCK LF ACCURACY 30 _PPM
// <7=>NRF _CLOCK LF ACCURACY 20 PPM
// <8=>NRF CLOCK LF ACCURACY 10 PPM
// <9=> NRF CLOCK LF ACCURACY 5 PPM
// <10=> NRF_CLOCK LF ACCURACY 2 PPM
// <11=>NRF_CLOCK LF ACCURACY _1_PPM
#ifndef NRF_SDH_CLOCK_LF _ACCURACY
#define NRF_SDH CLOCK LF ACCURACY 1

ANRO024 Proteus-e version 1.0 ©March 2022
www.we-online.com/wireless-connectivity 24

http://infocenter.nordicsemi.com/
http://www.we-online.com/wireless-connectivity

#endif
Code 2: sdk_config.h

+ Voltage regulator
As internal voltage regulator, we recommend to use the DCDC instead of the LDO. The
DCDC has to be switched on explicitly in application code. Example for SDK 17.0.2:

sd_power_dcdc_mode_set(NRF_POWER_DCDC_ENABLE);

Changing from LDO to DCDC reduces the current consumption of the module to meet
lowest power specifications.

« Certification and Bluetooth®-Listing
Custom firmware may require additional certification. Any (end-)device containing
Bluetooth® IP must be listed by the Bluetooth® SIG which requires membership and
qualification. Please contact the Bluetooth® SIG or your preferred Bluetooth® certifica-
tion laboratory to obtain the Bluetooth®-listing

To make use of the existing certification and listing of the Proteus-e, it is
mandatory to use the Bluetooth® stack Nordic Semiconductor S112 in ver-

sion 7.3.0.

+ Serial number
The unique serial number (used for tracing and the generation of the Proteus-e BT-
MAC) is placed in the user information configuration register (UICR->Customer[0]) and
will be removed by flashing a customer firmware onto the SoC.

ANRO024 Proteus-e version 1.0 ©March 2022
www.we-online.com/wireless-connectivity 25

http://www.we-online.com/wireless-connectivity

5.1.1 How to adapt Nordic Semiconductor SDK examples to run on the Proteus-e
hardware?

The following description is based on the SDK 17.0.2. Code may differ when
using a different Softdevice and/or SDK version.

Please perform the following steps to run a Nordic standard example on the Proteus-e:
1. Open the desired example project for the nRF52805 radio chip and compile.

2. In case of success', enable the DCDC by adding the following line at the end of the
stack init function.
static void ble_stack init (void){

// Enable DCDC
err_code = sd_power_dcdc_mode_set(NRF_POWER_DCDC_ENABLE);

APP_ERROR_CHECK(err_code);
}

3. If no external crystal has been connected to the radio module, enable the internal
RC-oscillator as shown in code example 2.

4. Go to the file board.h and add the include for the Proteus-e.h board file.

#if defined(BOARD_PCA10040)
#include "pca10040.h"

elif defined(BOARD_PROTEUSE)
#include "Proteuse.h”

#else

#error "Board_is_not_defined"
#endif

"If you have a Nordic evaluation board available, please check that the original example without modifications
runs successfully on the Nordic evaluation board.

ANRO024 Proteus-e version 1.0 ©March 2022
www.we-online.com/wireless-connectivity 26

http://www.we-online.com/wireless-connectivity

5. Then create the Proteus-e board file. To do so, please copy the board file of the Nordic
evaluation board (like PCA10040) and add the pinout, led button numbering, button
numbering and clock definition of the Proteus-e:

#ifndef PROTEUS_E_H
#define PROTEUS_E_H

#define NRF_PIN_LED 1 0
#define NRF_PIN_BUSY UARTENABLE 1
#define NRF_PIN_UARTRTS 4
#define NRF_PIN_GPIO2 5
#define NRF_PIN_OPERATIONMODE 12
#define NRF_PIN_UARTCTS 14
#define NRF_PIN_UARTTX 16
#define NRF_PIN_UARTRX 18
#define NRF_PIN_GPIO1 20
#define NRF_RESET 21

#define LEDS_ACTIVE_STATE 1
#define LEDS_NUMBER 1

#define LEDS_LIST { NRF_PIN_LED_1}
#define BSP_LED_0 NRF_PIN_LED_1

#define BUTTONS_ACTIVE_STATE 0

#define BUTTON_PULL NRF_GPIO_PIN_PULLUP

#define BUTTONS_NUMBER 1

#define BUTTONS_LIST { NRF_PIN_BUSY_UARTENABLE }
#define BSP_BUTTON_0 NRF_PIN_BUSY_UARTENABLE

#define RX_PIN_NUMBER NRF_PIN_UARTRX
#define TX_PIN_NUMBER NRF_PIN_UARTTX
#define CTS_PIN_NUMBER NRF_PIN_UARTCTS
#define RTS_PIN_NUMBER NRF_PIN_UARTRTS

#endif / PROTEUS E H
Code 3: Content of the Proteuse.h

6. In the project options, we need to link to the Proteus-e hardware instead to the Nordic
evaluation board hardware. This can be done by adding "BOARD_PROTEUSE" macro
and by removing the respective macro of the Nordic platform in the precompiler options
of the project.

7. Then check that the application code uses the pins names defined in the Proteus-
e.h . Probably peripheral pins (UART, SPI,...), LED pins and/or button pins have to be
adapted to fit the pin definition of the Proteus-e.h .

Please make sure that the selected pin number and its function matches the
underlying hardware (e.g. evaluation board).

8. Now all necessary changes have been done. Thus, recompile the whole project and
check for warnings and errors.

9. In case of success, erase the whole chip and flash ONLY the Softdevice onto the chip.
The J-Flash tool can be used to do so.

ANRO024 Proteus-e version 1.0 ©March 2022
www.we-online.com/wireless-connectivity 27

http://www.we-online.com/wireless-connectivity

10.

11.

After this, flash the compiled project code onto the chip using Segger Embedded (or
the IDE of your choice) without erasing the flash area of the Softdevice.

Now, the whole code has been flashed and testing can start.

5.1.2 Firmware development hints

When creating a custom firmware the following hints may be useful during development:

In standard Nordic examples, the Reset pin is hard coded. We recommend using the
pin definition of the board-file to guarantee that changes in the layout take effect.

Reviewing the pin settings (direction, pull-up/-down resistors) of the firmware is the first
option when experiencing leakage current.

The UART RX pin is quite sensitive towards wrong levels during UART start-up. A
floating UART RX pin of the SoC may result in unwanted behaviour. In this case, an
internal or external pull-up resistor can be installed to prevent floating. Be aware that
this resistor will lead to leakage current.

Checkout the errata sheet of the nRF52 SoC to have an overview of known issues with
the nRF52 SoC and possible software workarounds.

Checkout the sections "Known issues" of the used SDK and soft device versions to be
aware of potential issues.

5.1.3 Qualifying the Proteus-e with respect to Bluetooth® 5.2

The Proteus-e has been listed as end product with respect to Bluetooth® 5.1 specification. In
case a listing with respect to a newer version of the Bluetooth® standard is desired another
Bluetooth® LE stack must be used.

The end product listing (EPL) mainly has to be built up by adding two parts:

1.

The listing of the controller subsystem, that contains the test of the module and/or radio
chip hardware to be Bluetooth® compliant. The hardware of the Proteus-e fulfills the
specifications to be listed as a Bluetooth® 5.2 controller subsystem.

The listing of the host subsystem, that contains the test of the Bluetooth® stack used
within the product. The Bluetooth® stack used in the Proteus-e is the S112 V7.3.0,
that does not fulfill the specifications to be listed as a Bluetooth® 5.2 host subsystem.
However, another Bluetooth® 5.2 listed stack, like "Zephyr BLE Host" (nRF Connect
SDK [1]) developed by Nordic Semiconductor, can be used to create a new Bluetooth®
5.2 listed end product listing.

Please refer to Application Note ANR27 [3] for more information on the Bluetooth® SIG listing
process and options.

ANRO024 Proteus-e version 1.0 ©March 2022
www.we-online.com/wireless-connectivity 28

http://www.we-online.com/wireless-connectivity

6 References

[1] Nordic Semiconductor. nRF Connect SDK. https://www.nordicsemi.com/Products/
Development-software/nRF-Connect-SDK.

[2] Nordic Semiconductor. nRF5 SDK. https://www.nordicsemi.com/Products/
Development-software/nrf5-sdk.

[3] Wurth Elektronik. Application note 27 - Bluetooth listing guide. http://www.we-online.
com/ANRO27.

[4] Wurth Elektronik. Proteus-e user manual. https://www.we-online.de/katalog/de/
manual/2612011024000.

[5] Wurth Elektronik. Source code of Proteus Connect app for Android. https://github.
com/WurthElektronik/Proteus-Connect-Android.

[6] Wurth Elektronik. Source code of Proteus Connect app for iOS. https://github.com/
WurthElektronik/Proteus-Connect-i0S.

ANRO024 Proteus-e version 1.0 ©March 2022
www.we-online.com/wireless-connectivity 29

https://www.nordicsemi.com/Products/Development-software/nRF-Connect-SDK
https://www.nordicsemi.com/Products/Development-software/nRF-Connect-SDK
https://www.nordicsemi.com/Products/Development-software/nrf5-sdk
https://www.nordicsemi.com/Products/Development-software/nrf5-sdk
http://www.we-online.com/ANR027
http://www.we-online.com/ANR027
https://www.we-online.de/katalog/de/manual/2612011024000
https://www.we-online.de/katalog/de/manual/2612011024000
https://github.com/WurthElektronik/Proteus-Connect-Android
https://github.com/WurthElektronik/Proteus-Connect-Android
https://github.com/WurthElektronik/Proteus-Connect-iOS
https://github.com/WurthElektronik/Proteus-Connect-iOS
http://www.we-online.com/wireless-connectivity

7 Important notes

The following conditions apply to all goods within the wireless connectivity product range of
Wirth Elektronik eiSos GmbH & Co. KG:

7.1 General customer responsibility

Some goods within the product range of Wirth Elektronik eiSos GmbH & Co. KG contain
statements regarding general suitability for certain application areas. These statements
about suitability are based on our knowledge and experience of typical requirements con-
cerning the areas, serve as general guidance and cannot be estimated as binding statements
about the suitability for a customer application. The responsibility for the applicability and use
in a particular customer design is always solely within the authority of the customer. Due to
this fact, it is up to the customer to evaluate, where appropriate to investigate and to decide
whether the device with the specific product characteristics described in the product speci-
fication is valid and suitable for the respective customer application or not. Accordingly, the
customer is cautioned to verify that the documentation is current before placing orders.

7.2 Customer responsibility related to specific, in particular
safety-relevant applications

It has to be clearly pointed out that the possibility of a malfunction of electronic components
or failure before the end of the usual lifetime cannot be completely eliminated in the current
state of the art, even if the products are operated within the range of the specifications. The
same statement is valid for all software sourcecode and firmware parts contained in or used
with or for products in the wireless connectivity and sensor product range of Wirth Elektronik
eiSos GmbH & Co. KG. In certain customer applications requiring a high level of safety
and especially in customer applications in which the malfunction or failure of an electronic
component could endanger human life or health, it must be ensured by most advanced
technological aid of suitable design of the customer application that no injury or damage is
caused to third parties in the event of malfunction or failure of an electronic component.

7.3 Best care and attention

Any product-specific data sheets, manuals, application notes, PCN’s, warnings and cautions
must be strictly observed in the most recent versions and matching to the products firmware
revisions. This documents can be downloaded from the product specific sections on the
wireless connectivity homepage.

7.4 Customer support for product specifications

Some products within the product range may contain substances, which are subject to re-
strictions in certain jurisdictions in order to serve specific technical requirements. Necessary
information is available on request. In this case, the field sales engineer or the internal sales
person in charge should be contacted who will be happy to support in this matter.

ANRO024 Proteus-e version 1.0 © March 2022
www.we-online.com/wireless-connectivity 30

http://www.we-online.com/wireless-connectivity

7.5 Product improvements

Due to constant product improvement, product specifications may change from time to time.
As a standard reporting procedure of the Product Change Notification (PCN) according to
the JEDEC-Standard, we inform about major changes. In case of further queries regarding
the PCN, the field sales engineer, the internal sales person or the technical support team
in charge should be contacted. The basic responsibility of the customer as per section 7.1
and 7.2 remains unaffected. All wireless connectivity module driver software “wireless con-
nectivity SDK™ and it's source codes as well as all PC software tools are not subject to the
Product Change Notification information process.

7.6 Product life cycle

Due to technical progress and economical evaluation we also reserve the right to discontin-
ue production and delivery of products. As a standard reporting procedure of the Product
Termination Notification (PTN) according to the JEDEC-Standard we will inform at an early
stage about inevitable product discontinuance. According to this, we cannot ensure that all
products within our product range will always be available. Therefore, it needs to be verified
with the field sales engineer or the internal sales person in charge about the current product
availability expectancy before or when the product for application design-in disposal is con-
sidered. The approach named above does not apply in the case of individual agreements
deviating from the foregoing for customer-specific products.

7.7 Property rights

All the rights for contractual products produced by Wrth Elektronik eiSos GmbH & Co. KG
on the basis of ideas, development contracts as well as models or templates that are subject
to copyright, patent or commercial protection supplied to the customer will remain with Wirth
Elektronik eiSos GmbH & Co. KG. Wirth Elektronik eiSos GmbH & Co. KG does not warrant
or represent that any license, either expressed or implied, is granted under any patent right,
copyright, mask work right, or other intellectual property right relating to any combination,
application, or process in which Wirth Elektronik eiSos GmbH & Co. KG components or
services are used.

7.8 General terms and conditions

Unless otherwise agreed in individual contracts, all orders are subject to the current ver-
sion of the "General Terms and Conditions of Wurth Elektronik eiSos Group", last version
available at www.we-online.com.

ANRO024 Proteus-e version 1.0 ©March 2022
www.we-online.com/wireless-connectivity 31

www.we-online.com
http://www.we-online.com/wireless-connectivity

8 Legal notice

8.1 Exclusion of liability

Warth Elektronik eiSos GmbH & Co. KG considers the information in this document to be
correct at the time of publication. However, Wirth Elektronik eiSos GmbH & Co. KG re-
serves the right to modify the information such as technical specifications or functions of
its products or discontinue the production of these products or the support of one of these
products without any written announcement or notification to customers. The customer must
make sure that the information used corresponds to the latest published information. Wrth
Elektronik eiSos GmbH & Co. KG does not assume any liability for the use of its products.
Wairth Elektronik eiSos GmbH & Co. KG does not grant licenses for its patent rights or for
any other of its intellectual property rights or third-party rights.

Notwithstanding anything above, Wirth Elektronik eiSos GmbH & Co. KG makes no repre-
sentations and/or warranties of any kind for the provided information related to their accuracy,
correctness, completeness, usage of the products and/or usability for customer applications.
Information published by Wirth Elektronik eiSos GmbH & Co. KG regarding third-party prod-
ucts or services does not constitute a license to use such products or services or a warranty
or endorsement thereof.

8.2 Suitability in customer applications

The customer bears the responsibility for compliance of systems or units, in which Wrth
Elektronik eiSos GmbH & Co. KG products are integrated, with applicable legal regulations.
Customer acknowledges and agrees that it is solely responsible for compliance with all le-
gal, regulatory and safety-related requirements concerning its products, and any use of
Warth Elektronik eiSos GmbH & Co. KG components in its applications, notwithstanding
any applications-related in-formation or support that may be provided by Wirth Elektronik
eiSos GmbH & Co. KG. Customer represents and agrees that it has all the necessary ex-
pertise to create and implement safeguards which anticipate dangerous consequences of
failures, monitor failures and their consequences lessen the likelihood of failures that might
cause harm and take appropriate remedial actions. The customer will fully indemnify Wrth
Elektronik eiSos GmbH & Co. KGand its representatives against any damages arising out
of the use of any Wirth Elektronik eiSos GmbH & Co. KG components in safety-critical
applications.

8.3 Trademarks

AMBER wireless is a registered trademark of Wirth Elektronik eiSos GmbH & Co. KG. All
other trademarks, registered trademarks, and product names are the exclusive property of
the respective owners.

8.4 Usage restriction

Wairth Elektronik eiSos GmbH & Co. KG products have been designed and developed for
usage in general electronic equipment only. This product is not authorized for use in equip-
ment where a higher safety standard and reliability standard is especially required or where
a failure of the product is reasonably expected to cause severe personal injury or death,

ANRO024 Proteus-e version 1.0 ©March 2022
www.we-online.com/wireless-connectivity 32

http://www.we-online.com/wireless-connectivity

unless the parties have executed an agreement specifically governing such use. Moreover,
Wirth Elektronik eiSos GmbH & Co. KG products are neither designed nor intended for use
in areas such as military, aerospace, aviation, nuclear control, submarine, transportation
(automotive control, train control, ship control), transportation signal, disaster prevention,
medical, public information network etc. Wirth Elektronik eiSos GmbH & Co. KG must be
informed about the intent of such usage before the design-in stage. In addition, sufficient
reliability evaluation checks for safety must be performed on every electronic component,
which is used in electrical circuits that require high safety and reliability function or perfor-
mance. By using Wirth Elektronik eiSos GmbH & Co. KG products, the customer agrees to
these terms and conditions.

ANRO024 Proteus-e version 1.0 © March 2022
www.we-online.com/wireless-connectivity 33

http://www.we-online.com/wireless-connectivity

9 License terms

This License Terms will take effect upon the purchase and usage of the Wirth Elektronik
eiSos GmbH & Co. KG wireless connectivity products. You hereby agree that this license
terms is applicable to the product and the incorporated software, firmware and source codes
(collectively, "Software") made available by Wirth Elektronik eiSos in any form, including but
not limited to binary, executable or source code form.

The software included in any Wirth Elektronik eiSos wireless connectivity product is pur-
chased to you on the condition that you accept the terms and conditions of this license
terms. You agree to comply with all provisions under this license terms.

9.1 Limited license

Warth Elektronik eiSos hereby grants you a limited, non-exclusive, non-transferable and
royalty-free license to use the software and under the conditions that will be set forth in this
license terms. You are free to use the provided Software only in connection with one of the
products from Wirth Elektronik eiSos to the extent described in this license terms. You are
entitled to change or alter the source code for the sole purpose of creating an application
embedding the Wirth Elektronik eiSos wireless connectivity product. The transfer of the
source code to third parties is allowed to the sole extent that the source code is used by
such third parties in connection with our product or another hardware provided by Wurth
Elektronik eiSos under strict adherence of this license terms. Wiirth Elektronik eiSos will not
assume any liability for the usage of the incorporated software and the source code. You
are not entitled to transfer the source code in any form to third parties without prior written
consent of Wirth Elektronik eiSos.

You are not allowed to reproduce, translate, reverse engineer, decompile, disassemble or
create derivative works of the incorporated Software and the source code in whole or in
part. No more extensive rights to use and exploit the products are granted to you.

9.2 Usage and obligations

The responsibility for the applicability and use of the Wirth Elektronik eiSos wireless con-
nectivity product with the incorporated Firmware in a particular customer design is always
solely within the authority of the customer. Due to this fact, it is up to you to evaluate and
investigate, where appropriate, and to decide whether the device with the specific product
characteristics described in the product specification is valid and suitable for your respective
application or not.

You are responsible for using the Wiirth Elektronik eiSos wireless connectivity product with
the incorporated Firmware in compliance with all applicable product liability and product
safety laws. You acknowledge to minimize the risk of loss and harm to individuals and bear
the risk for failure leading to personal injury or death due to your usage of the product.
Warth Elektronik eiSos’ products with the incorporated Firmware are not authorized for use
in safety-critical applications, or where a failure of the product is reasonably expected to
cause severe personal injury or death. Moreover, Wirth Elektronik eiSos’ products with the
incorporated Firmware are neither designed nor intended for use in areas such as military,
aerospace, aviation, nuclear control, submarine, transportation (automotive control, train
control, ship control), transportation signal, disaster prevention, medical, public information
network etc. You shall inform Wirth Elektronik eiSos about the intent of such usage before
design-in stage. In certain customer applications requiring a very high level of safety and
in which the malfunction or failure of an electronic component could endanger human life or

ANRO024 Proteus-e version 1.0 ©March 2022
www.we-online.com/wireless-connectivity 34

http://www.we-online.com/wireless-connectivity

health, you must ensure to have all necessary expertise in the safety and regulatory ramifi-
cations of your applications. You acknowledge and agree that you are solely responsible for
all legal, regulatory and safety-related requirements concerning your products and any use
of Wirth Elektronik eiSos’ products with the incorporated Firmware in such safety-critical ap-
plications, notwithstanding any applications-related information or support that may be pro-
vided by Wiirth Elektronik eiSos. YOU SHALL INDEMNIFY WURTH ELEKTRONIK EISOS
AGAINST ANY DAMAGES ARISING OUT OF THE USE OF WURTH ELEKTRONIK EISOS’
PRODUCTS WITH THE INCORPORATED FIRMWARE IN SUCH SAFETY-CRITICAL AP-
PLICATIONS.

9.3 Ownership

The incorporated Firmware created by Wirth Elektronik eiSos is and will remain the exclu-
sive property of Wirth Elektronik eiSos.

9.4 Firmware update(s)

You have the opportunity to request the current and actual Firmware for a bought wireless
connectivity Product within the time of warranty. However, Wirth Elektronik eiSos has no
obligation to update a modules firmware in their production facilities, but can offer this as a
service on request. The upload of firmware updates falls within your responsibility, e.g. via
ACC or another software for firmware updates. Firmware updates will not be communicated
automatically. It is within your responsibility to check the current version of a firmware in the
latest version of the product manual on our website. The revision table in the product manual
provides all necessary information about firmware updates. There is no right to be provided
with binary files, so called "Firmware images", those could be flashed through JTAG, SWD,
Spi-Bi-Wire, SPI or similar interfaces.

9.5 Disclaimer of warranty

THE FIRMWARE IS PROVIDED "AS IS". YOU ACKNOWLEDGE THAT WURTH ELEK-
TRONIK EISOS MAKES NO REPRESENTATIONS AND WARRANTIES OF ANY KIND
RELATED TO, BUT NOT LIMITED TO THE NON-INFRINGEMENT OF THIRD PARTIES’
INTELLECTUAL PROPERTY RIGHTS OR THE MERCHANTABILITY OR FITNESS FOR
YOUR INTENDED PURPOSE OR USAGE. WURTH ELEKTRONIK EISOS DOES NOT
WARRANT OR REPRESENT THAT ANY LICENSE, EITHER EXPRESS OR IMPLIED, IS
GRANTED UNDER ANY PATENT RIGHT, COPYRIGHT, MASK WORK RIGHT, OR OTHER
INTELLECTUAL PROPERTY RIGHT RELATING TO ANY COMBINATION, MACHINE, OR
PROCESS IN WHICH THE WURTH ELEKTRONIK EISOS’ PRODUCT WITH THE INCOR-
PORATED FIRMWARE IS USED. INFORMATION PUBLISHED BY WURTH ELEKTRONIK
EISOS REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTI-
TUTE A LICENSE FROM WURTH ELEKTRONIK EISOS TO USE SUCH PRODUCTS OR
SERVICES OR A WARRANTY OR ENDORSEMENT THEREOF.

9.6 Limitation of liability

Any liability not expressly provided by Wirth Elektronik eiSos shall be disclaimed.
You agree to hold us harmless from any third-party claims related to your usage of the Wrth
Elektronik eiSos’ products with the incorporated Firmware, software and source code. Wrth

ANRO024 Proteus-e version 1.0 © March 2022
www.we-online.com/wireless-connectivity 35

http://www.we-online.com/wireless-connectivity

Elektronik eiSos disclaims any liability for any alteration, development created by you or your
customers as well as for any combination with other products.

9.7 Applicable law and jurisdiction

Applicable law to this license terms shall be the laws of the Federal Republic of Germany.
Any dispute, claim or controversy arising out of or relating to this license terms shall be
resolved and finally settled by the court competent for the location of Wirth Elektronik eiSos’
registered office.

9.8 Severability clause

If a provision of this license terms is or becomes invalid, unenforceable or null and void, this
shall not affect the remaining provisions of the terms. The parties shall replace any such
provisions with new valid provisions that most closely approximate the purpose of the terms.

9.9 Miscellaneous

Wirth Elektronik eiSos reserves the right at any time to change this terms at its own discre-
tion. It is your responsibility to check at Wiirth Elektronik eiSos homepage for any updates.
Your continued usage of the products will be deemed as the acceptance of the change.

We recommend you to be updated about the status of new firmware and software, which is
available on our website or in our data sheet and manual, and to implement new software in
your device where appropriate.

By ordering a wireless connectivity product, you accept this license terms in all terms.

ANRO024 Proteus-e version 1.0 © March 2022
www.we-online.com/wireless-connectivity 36

http://www.we-online.com/wireless-connectivity

List of Figures

1 Connection setupchart 20
2 Options for running the Proteus-e with standard or custom firmware 22
3 Pinout 23

List of Tables

1 Packetformat 8
2 Packet command format 10
ANRO024 Proteus-e version 1.0 ©March 2022

www.we-online.com/wireless-connectivity 37

http://www.we-online.com/wireless-connectivity

WE—-

WURTH ELEKTRONIK

more than you expect

i((—l—»i

% voé

Internet Monitoring Automated Meter
of Things & Control Reading

Contact:
Wirth Elektronik eiSos GmbH & Co. KG
Division Wireless Connectivity & Sensors

Max-Eyth-Stral3e 1
74638 Waldenburg
Germany

Tel.: +49 651 99355-0 e /
Fax.: +49 651 99355-69 R SRS -
www.we-online.com/wireless-connectivity L L) ¢

......

	Introduction
	Bluetooth profiles
	SPP-like profile
	Generic Access Protocol (GAP)
	Generic Attribute Profile (GATT)
	Maximum transmission unit (MTU)
	Company identifier
	UUID
	Primary Service
	Characteristics

	Bluetooth LE packet content
	Payload packet format
	Advertising packet content
	Scan response packet content

	Remote GPIO control
	CMD_GPIO_REMOTE_WRITECONFIG_REQ
	Example: Configure two GPIOs of the connected remote device to output high

	CMD_GPIO_REMOTE_READCONFIG_REQ
	Example: Read the current GPIO configuration of the connected remote device

	CMD_GPIO_REMOTE_WRITE_REQ
	Example: Set a remote output GPIO to low

	CMD_GPIO_REMOTE_READ_REQ
	Example: Read the values of remote GPIOs

	CMD_GPIO_LOCAL_WRITE_IND
	Example: GPIOs of the remote device have been written by its local host

	App development
	Connection setup message chart
	Enable notifications
	Bonding development hints

	Custom firmware development
	Important information for custom firmware development
	How to adapt Nordic Semiconductor SDK examples to run on the Proteus-e hardware?
	Firmware development hints
	Qualifying the Proteus-e with respect to Bluetooth® 5.2

	References
	Important notes
	General customer responsibility
	Customer responsibility related to specific, in particular safety-relevant applications
	Best care and attention
	Customer support for product specifications
	Product improvements
	Product life cycle
	Property rights
	General terms and conditions

	Legal notice
	Exclusion of liability
	Suitability in customer applications
	Trademarks
	Usage restriction

	License terms
	Limited license
	Usage and obligations
	Ownership
	Firmware update(s)
	Disclaimer of warranty
	Limitation of liability
	Applicable law and jurisdiction
	Severability clause
	Miscellaneous

