

ANR022

RADIO MODULE CROSS MIGRATION
GUIDE

TARVOS-III/TELESTO-III/THEBE-
II/THEMISTO-I TO
THYONE-I

VERSION 1.0

FEBRUARY 15, 2023

WÜRTH ELEKTRONIK MORE THAN YOU EXPECT

Revision history

Manual version	Notes	Date
1.0	<ul style="list-style-type: none">Initial version	January 2023

Abbreviations

Abbreviation	Name	Description
ACK	Acknowledgement	Radio packet sent back to the transmitter to acknowledge the reception of data.
CE	Conformité Européene	CE conformity indicates that a product has been assessed by the manufacturer and deemed to meet EU requirements. For radio modules this means beside safety, health and EMC also spectrum requirements.
CTS	Clear-to-Send	UART flow control signal line
FCC	Federal Communications Commission	FCC regulates interstate and international communications by radio, television, wire, satellite, and cable in U.S. territories.
IC	Industry Canada	Canadian Authority regulating and approving wireless products certification.
ID	Identity document	An official document used for identification.
IO	Input & Output	
LRM	Long range mode	Special radio profile for large transmission ranges.
PCB	Printed Circuit Board	
RF	Radio frequency	Describes wireless transmission.
RTS	Request-to-Send	UART flow control signal line
RX	Receive	UART data signal line
SRD	Short Range Device	Unlicensed frequency bands.
SWD	Serial Wire Debug	
TELEC	Telecom Engineering Center	TELEC is the main registered certification body for radio equipment conformity certification in Japan.
TX	Transmit	UART data signal line
UART	Universal Asynchronous Receiver Transmitter	Universal Asynchronous Receiver Transmitter allows communicating with the module of a specific interface

Contents

1	Introduction	5
2	Supported radio modules	6
3	Adapter board	7
3.1	Schematic	7
3.2	Board	8
3.3	Assembly	10
3.4	Bill of materials	11
4	Replacing by the Thyone-I	12
4.1	Hardware adaption	12
4.1.1	Foot print	12
4.1.2	Pinout	14
4.1.3	Antenna	15
4.1.4	Trace design	15
4.2	Host firmware adaption	19
4.2.1	Overall behavior	19
4.2.2	UART interface	19
4.2.2.1	Transparent mode	19
4.2.2.2	Command mode	20
4.2.3	Radio interface	21
4.2.3.1	Network and mesh	21
4.2.3.2	Radio settings	21
4.2.4	Timing	21
4.2.5	Power saving modes	21
4.2.6	Boot mode	21
5	References	23
6	Important notes	24
6.1	General customer responsibility	24
6.2	Customer responsibility related to specific, in particular safety-relevant applications	24
6.3	Best care and attention	24
6.4	Customer support for product specifications	24
6.5	Product improvements	25
6.6	Product life cycle	25
6.7	Property rights	25
6.8	General terms and conditions	25
7	Legal notice	26
7.1	Exclusion of liability	26
7.2	Suitability in customer applications	26
7.3	Trademarks	26
7.4	Usage restriction	26

8 License terms	28
8.1 Limited license	28
8.2 Usage and obligations	28
8.3 Ownership	29
8.4 Firmware update(s)	29
8.5 Disclaimer of warranty	29
8.6 Limitation of liability	30
8.7 Applicable law and jurisdiction	30
8.8 Severability clause	30
8.9 Miscellaneous	30

1 Introduction

The radio frequency spectrum is regulated by designated regulatory authorities that define how specific spectrum bands can be used. As each frequency band has its strength, Würth Elektronik eiSos provides for each frequency band proprietary and standardized radio modules, which allow the user to decide the best module for the end application. The most common characteristics to choose radio modules are frequency, energy efficiency, data transmission rate and transmission protocols.

With the evolution of radio chips, new proprietary and standardized radio modules have been developed, that are more energy efficient during data transmission and reception. Furthermore new coding and modulation techniques have been added, that allow higher transmission ranges (long range mode) and/or higher data rates.

Due to the worldwide operation the interest of using the 2.4 GHz frequency band increases. This application note describes an adapter board, that is used to place a 2.4 GHz Thyone-I radio module on the footprint of a Tarvos-III/Telesto-III/Thebe-II/Themisto-I radio module.

Furthermore, the steps for hardware and firmware integration to replace an existing Tarvos-III/Telesto-III/Thebe-II/Themisto-I radio module by a Thyone-I radio module are described.

For reasons of simplicity, in the whole document we use the term **sub-GHz proprietary module** instead of listing the modules Tarvos-III, Telesto-III, Thebe-II and Themisto-I.

Due to changes in hardware platform and firmware when replacing a radio module, the end device's radio certification becomes void. A new radio certification or declaration needs to be acquired by performing actions according to the local statutory requirements at the location of deployment. It is advised to go through the relevant modules to get detailed information on radio certification and declaration.

To evaluate the migration to Thyone-I, Würth Elektronik eiSos GmbH & Co. KG is able to provide adapter boards. Please get in contact with your local sales.

2 Supported radio modules

The supported 2.4 GHz Würth Elektronik eISOS radio modules described in this application note is the proprietary radio module **Thyone-I**

Module	Form factor [mm ²]	Freq. band [MHz]	Antenna	Protocol	Certification
Tarvos-III	27x17	868	50 Ω pad	Proprietary	CE
Telesto-III	27x17	915	50 Ω pad	Proprietary	IC FCC
Thebe-II	27x17	868	50 Ω pad	Proprietary	CE
Themisto-I	27x17	915	50 Ω pad	Proprietary	FCC IC
Thyone-I	12x8	2440	Smart antenna	Proprietary	CE FCC IC TELEC

Table 1: Comparison: Features

Smart antenna connection gives the possibility to either connect the module's internal antenna or to use 50 Ohm connection toward an external antenna.

Module	VDD [V]	I _{TX} [mA]	I _{RX} [mA]	I _{Sleep} [µA]	Power _{TX} [dBm]
Tarvos-III	2.2 to 3.8	26	8	0.2	14
Telesto-III	2.2 to 3.8	26	8	0.2	14
Thebe-II	2.2 to 3.7	500	12	0.9	27
Themisto-I	2.2 to 3.7	400	12	0.9	25
Thyone-I	1.8 to 3.6	18.9	7.7	0.4	6

Table 2: Comparison: Electrical characteristics

Due to the form factor and pin compatibility, an adapter board is necessary to use a 2.4 GHz module in the place of **sub-GHz proprietary module**.

3 Adapter board

3.1 Schematic

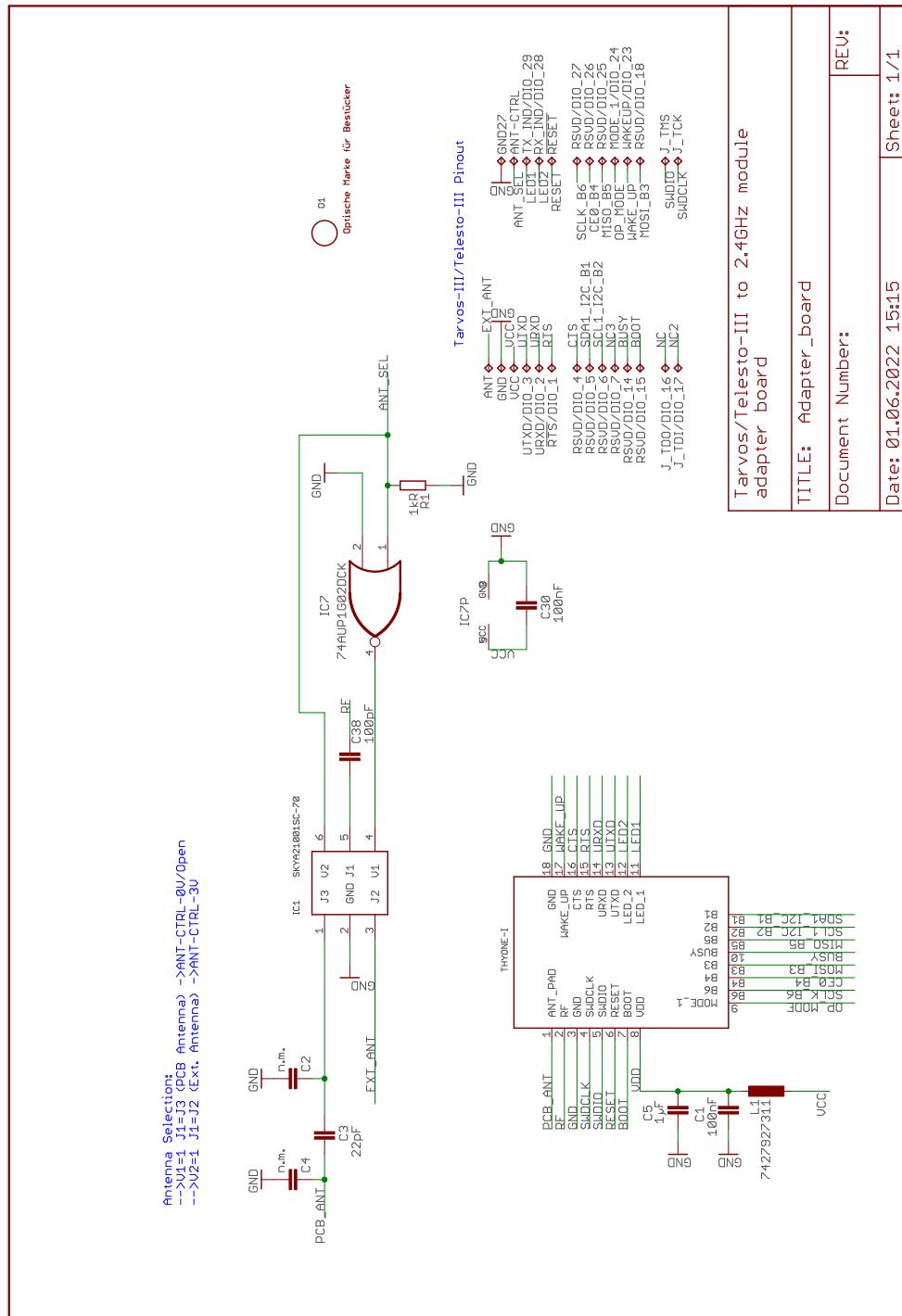


Figure 1: Adapter board schematic

3.2 Board

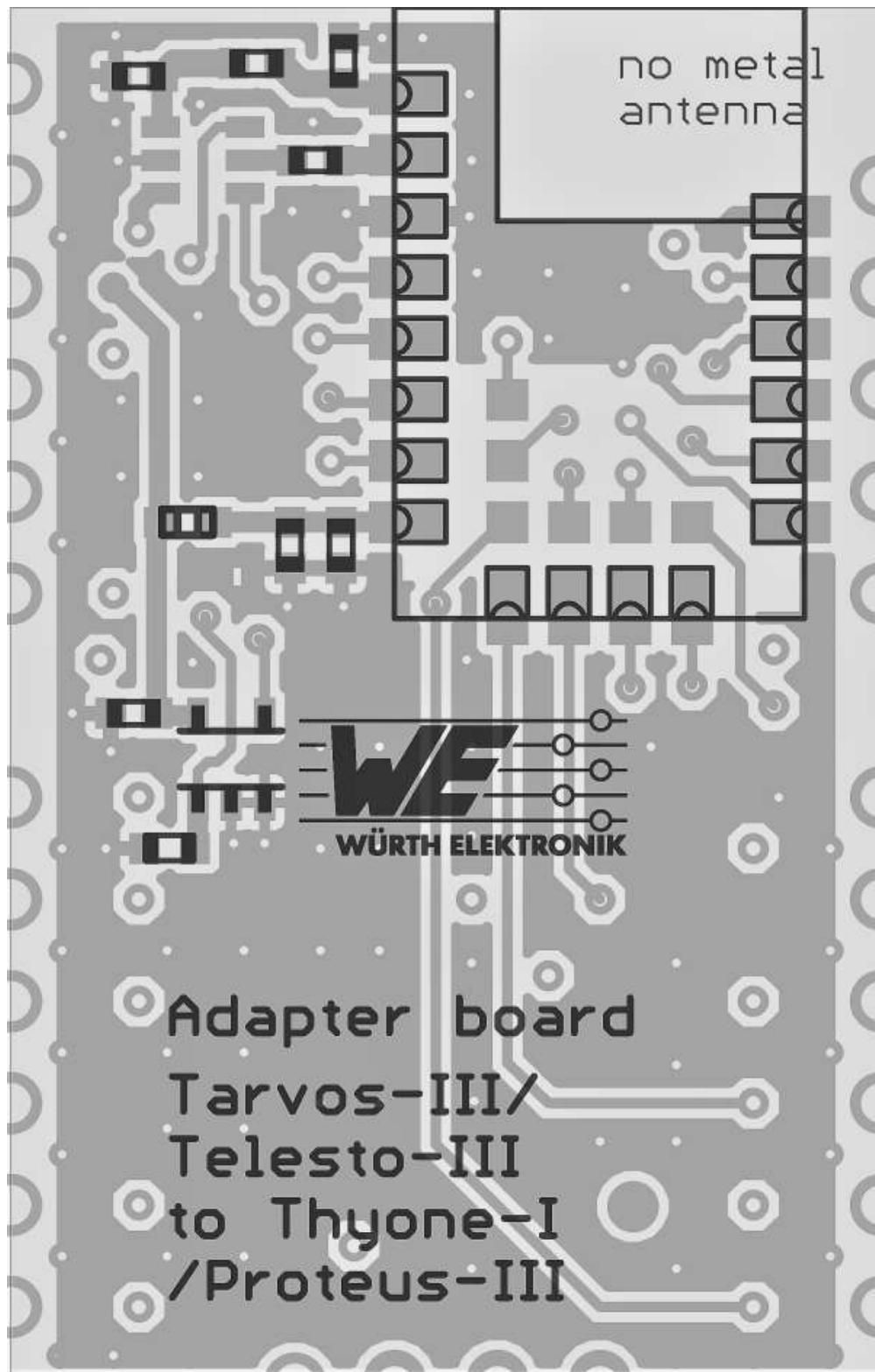


Figure 2: Adapter board layout

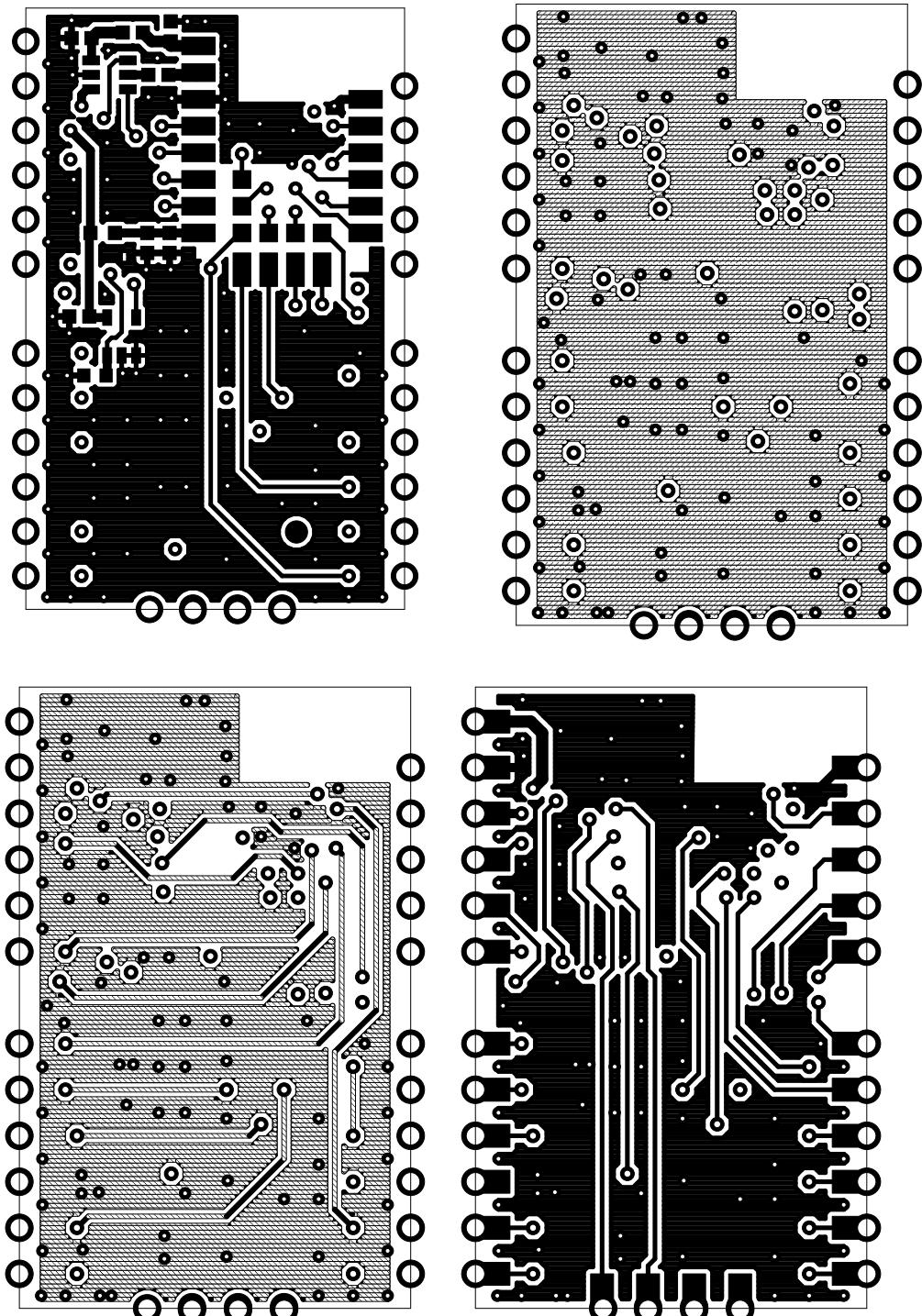


Figure 3: Top, bottom & internal layers

3.3 Assembly

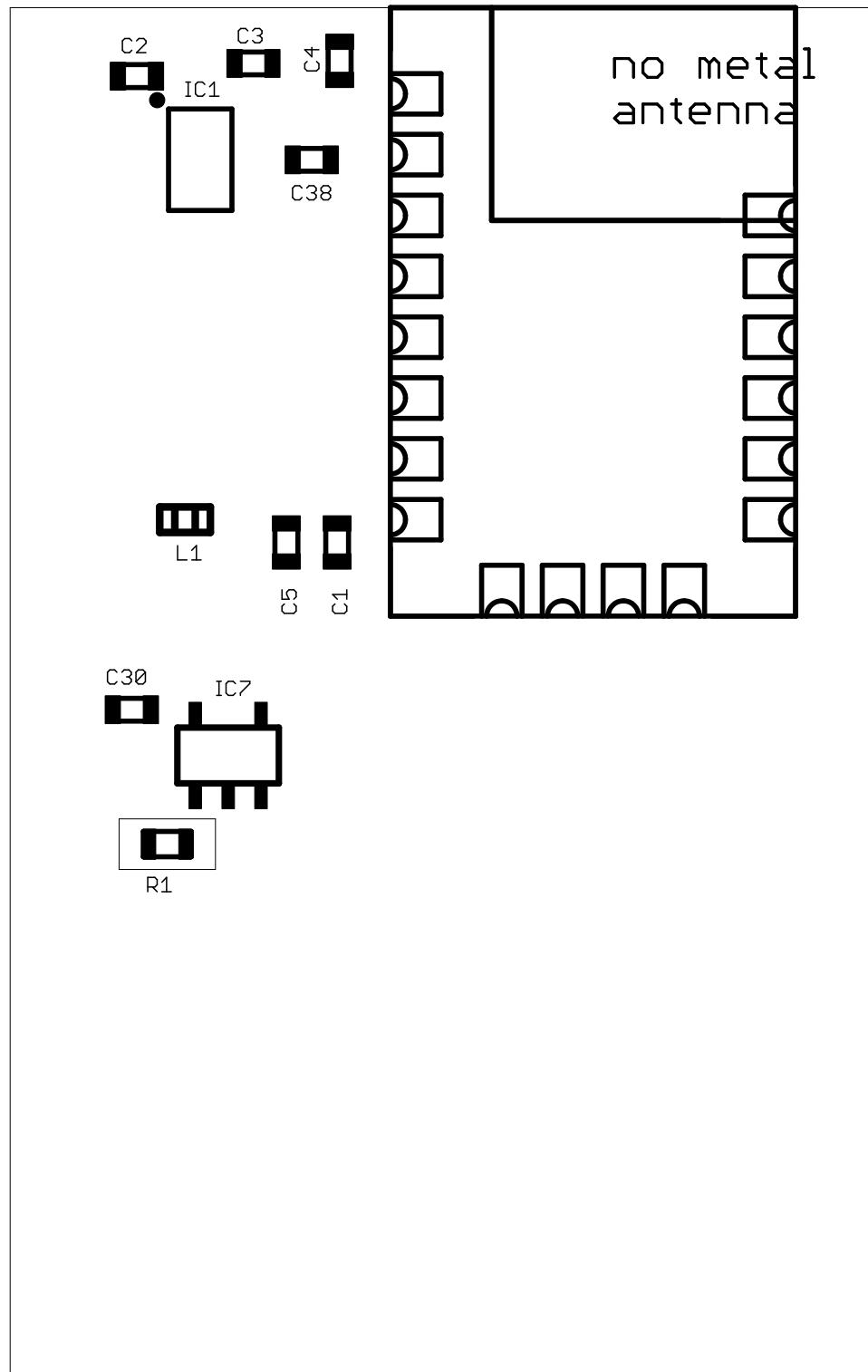


Figure 4: Assembly

3.4 Bill of materials

Part	Value	Package	MANUFACTURER	NR
C1	100nF	C0402_IPC	Würth Elektronik	885012205037
C2	n.m.	C0402_IPC	Würth Elektronik	885012105012
C3	22pF	C0402_IPC	Würth Elektronik	885012005027
C4	n.m.	C0402_IPC		
C5	1µF	C0402_IPC	Würth Elektronik	885012105012
C30	100nF	C0402_IPC	Würth Elektronik	885012205037
C38	100pF	C0402_IPC	Würth Elektronik	885012005031
IC1	RF Switch	6-PIN_SC-70		
IC7	NOR Logic gate	SC70-5		
L1	7427927311	L0402_WE-MK	Würth Elektronik	7427927311
R1	1kR	R0402_IPC		
THYONE-I	2611011021000	SMD	Würth Elektronik	2611011021000

Figure 5: Bill of materials

4 Replacing by the Thyone-I

The Tarvos-III, Telesto-III, Thebe-II and Themisto-I is a family of sub-GHz proprietary radio modules that share the same footprint. This chapter describes how to use the adapter board mentioned in chapter 3 to replace one of the mentioned sub-GHz proprietary modules by a Thyone-I 2.4 GHz module.

The adapter board allows the user to test the possibility of migrating from **sub-GHz proprietary module** to Thyone-I. The user shall modify the adapter board design according to the existing host or application if needed.

4.1 Hardware adaption

4.1.1 Foot print

The adapter board has the same dimensions as the **sub-GHz proprietary module**. Furthermore, it is pin compatible.

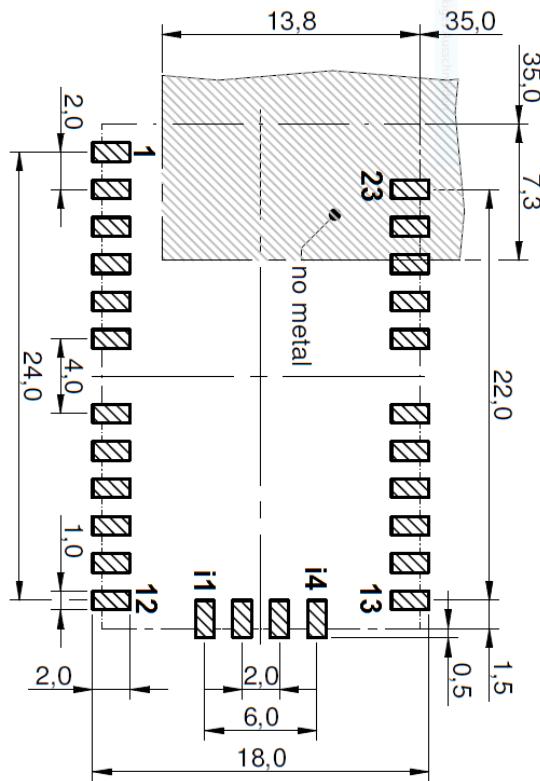


Figure 6: Footprint (Top view)

The internal PCB antenna of Thyone-I module on adapter board can be used only if the no metal area in footprint is implemented on the host PCB.

The Tarvos-III and Telesto-III are available in two hardware variants. The first variant provides the radio signal at the *ANT* pin. In this variants 2609011181000 (Tarvos-III) and 2609011191000 (Telesto-III) an external antenna matched to $50\ \Omega$ can be connected at this pin.

The second variants 2609011081000 (Tarvos-III) and 2609011091000 (Telesto-III) offers an integrated PCB antenna. The integrated PCB antenna is strongly miniaturized and therefore supports reduced efficiency and range. Using this variant the *ANT* pin has no function and can be left open. No external antenna has to be connected. The explanation how to use the different connection variant is described in chapter 4.1.3

4.1.2 Pinout

Table 3 lists the pin mapping of the **sub-GHz proprietary module** to the Thyone-I in the adapter board:

Pin No.	Thyone-I	sub-GHz proprietary module	Description
1	<i>ANT & RF</i>	<i>ANT</i>	Antenna pin connection
2	<i>GND</i>	<i>GND</i>	Ground
3	<i>VCC</i>	<i>VCC</i>	Supply voltage
4	<i>UTXD</i>	<i>UTXD</i>	UART TX
5	<i>URXD</i>	<i>URXD</i>	UART RX
6	<i>/RTS</i>	<i>/RTS</i>	UART /RTS
7	<i>/CTS</i>	<i>RESERVED</i>	UART /CTS
8	<i>B1</i>	<i>RESERVED</i>	
9	<i>B2</i>	<i>RESERVED</i>	
10	Not connected	<i>RESERVED</i>	
11	<i>BUSY</i>	<i>RESERVED</i>	
12	<i>BOOT</i>	<i>BOOT</i>	The <i>BOOT</i> pin is used to enable the bootloader for firmware updates. Boot pin operation is inverted between the modules, please look into the section 4.2.6.
13	<i>B3</i>	<i>RESERVED</i>	
14	<i>WAKE_UP</i>	<i>WAKE-UP</i>	Pin function changed. The <i>WAKE-UP</i> pin is used to wake-up the module from sleep mode.
15	<i>MODE_1</i>	<i>MODE_1</i>	The <i>MODE_1</i> pin is used on the sub-GHz proprietary module and Thyone-I module to determine the mode of operation during boot up.
16	<i>B5</i>	<i>RESERVED</i>	
17	<i>B4</i>	<i>RESERVED</i>	
18	<i>B6</i>	<i>RESERVED</i>	
19	<i>/RESET</i>	<i>/RESET</i>	Reset pin
20	<i>LED1</i>	<i>/TX_IND</i>	
21	<i>LED2</i>	<i>/RX_IND</i>	

Pin No.	Thyone-I	sub-GHz proprietary module	Description
22	Not connected	<i>RESERVED</i> on sub-GHz proprietary module ANT-CTRL on Adapter board	ANT-CTRL <i>Pin 22</i> of the adapter board controls RF switch to change between antenna
23	<i>GND</i>	<i>GND</i>	Ground
i1	<i>SWDIO</i>	<i>TEST</i>	Debug Interface
i2	<i>SWDCLK</i>	<i>TEST</i>	Debug Interface
i3	Not connected	<i>TEST</i>	
i4	Not connected	<i>TEST</i>	

Table 3: Pin mapping between Thyone-I and **sub-GHz proprietary module**

4.1.3 Antenna

Using the adapter board along with Thyone-I module, the option to switch between internal and external antenna connection is available. The *ANT* pin (No.1, *Ext_ANT* in the schematic) of the adapter board is used for an external antenna connection matched to 50Ω .

The *ANT-CTRL* pin (No.22) is used to switch between Thyone-I on-board PCB antenna and the external antenna pin *Ext_ANT* of the adapter board.

The *ANT-CTRL* pin (No.22) has an internal pull-down resistor and selects internal PCB antenna by default. An external pull-up resistor on this pin shall be avoided.

By applying a high logic level to the *ANT-CTRL* pin, the *ANT* Pin of the adapter board can be used for external antenna connection. If *Pin 22* is left open or a low level is applied, the Thyone-I on-board PCB antenna is used.

4.1.4 Trace design

Thyone-I Module itself complies with FCC and IC certification. For evaluation purpose, the adapter board uses an IC to switch between the on-board PCB-antenna of the Thyone-I module and the external RF PAD connection. Due to which the adapter board differs from the trace design and is not approved to be FCC and IC compliant.

To reference the end device to the Würth Elektronik eiSos' FCC ID it is mandatory to use the trace design. Based on the end application and antenna option needed, the user can implement one of the two variants of the trace designs.

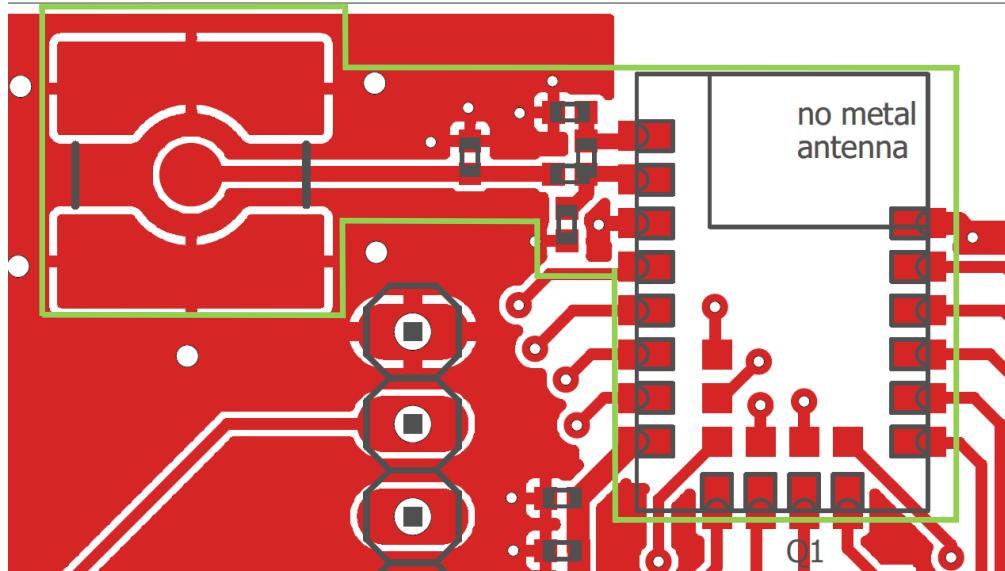


Figure 7: Trace design: Layout

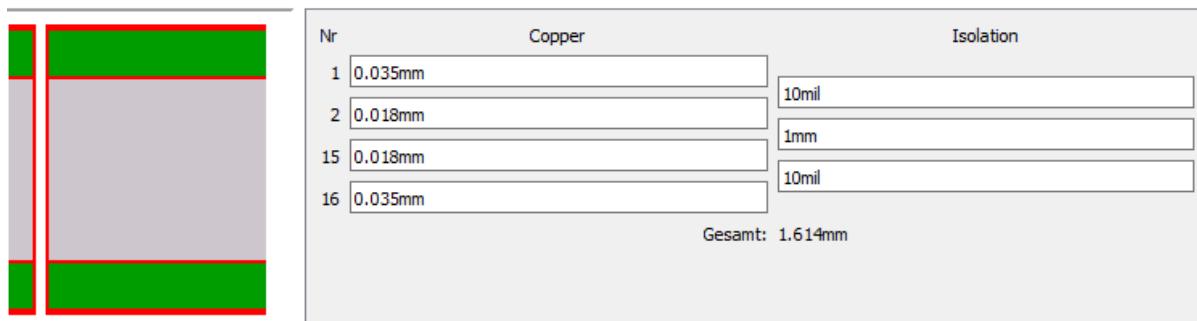


Figure 8: Reference design: Stack-up

- Top layer is used for routing, filled with ground plane except area under the module and antenna free area.
- Second layer is filled with ground plane, except the antenna free area.
- Third layer is the supply layer, except antenna free area. Some routing is allowed, not dividing the supply layer in to many or too small parts.
- Bottom layer is used for routing and filled with ground.

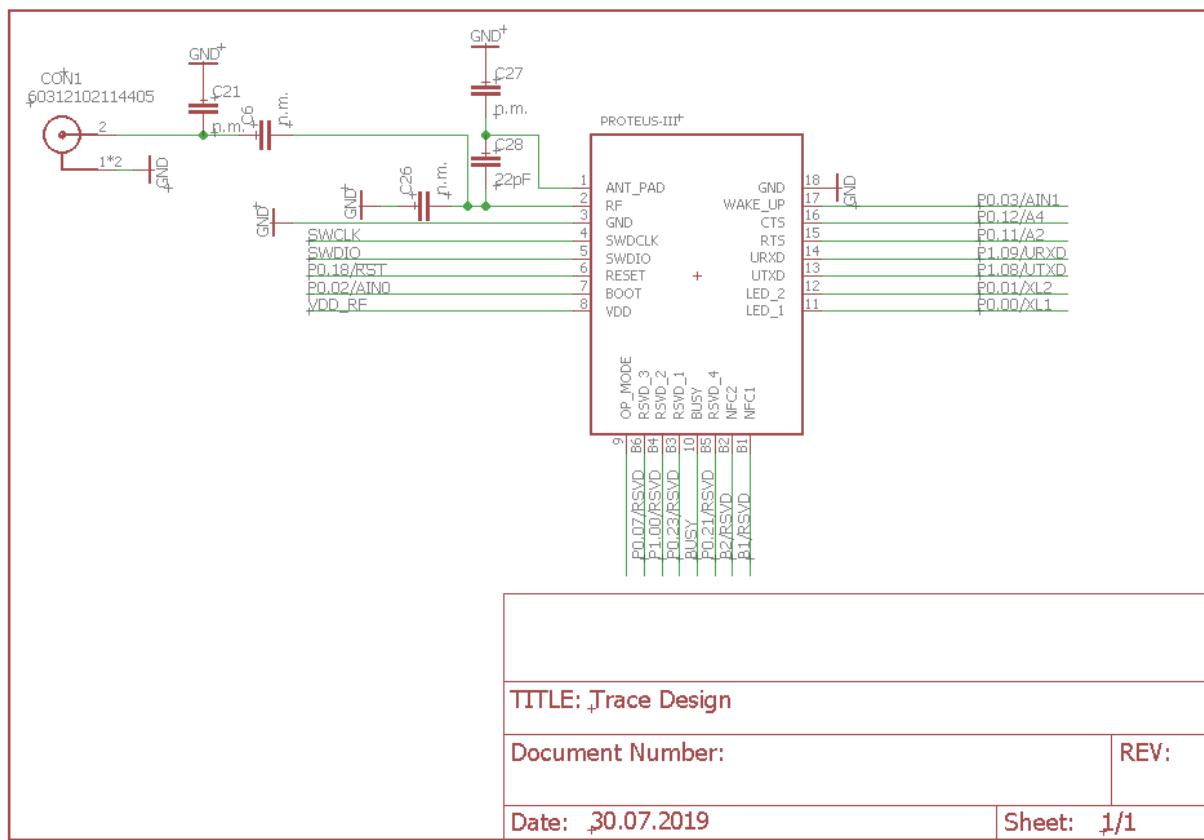


Figure 9: Trace design: Schematic

The RF pin of module can be coupled to the modules on-board PCB antenna or an external antenna.

Two variants of the Thyone-I module are certified:

- For the modules on-board PCB antenna: 22 pF shall be assembled on C28.
 - If additional tuning is needed in the end application, C27 and C26 can be assembled.
 - The exact values of C27 and C26 shall be specified in the end application corresponding to the individual need.

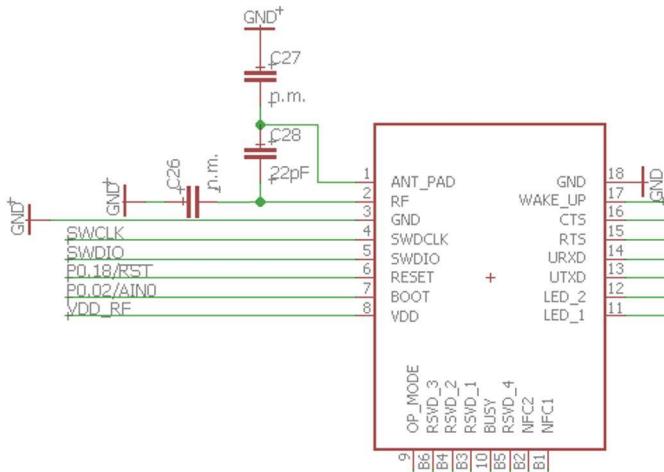


Figure 10: On-board PCB antenna

- For the external antenna: 22 pF shall be assembled on C6.
 - If additional tuning is needed in the end application, C21 and C26 can be assembled.
 - The exact values of C21 and C26 shall be specified in the end application corresponding to the individual need.

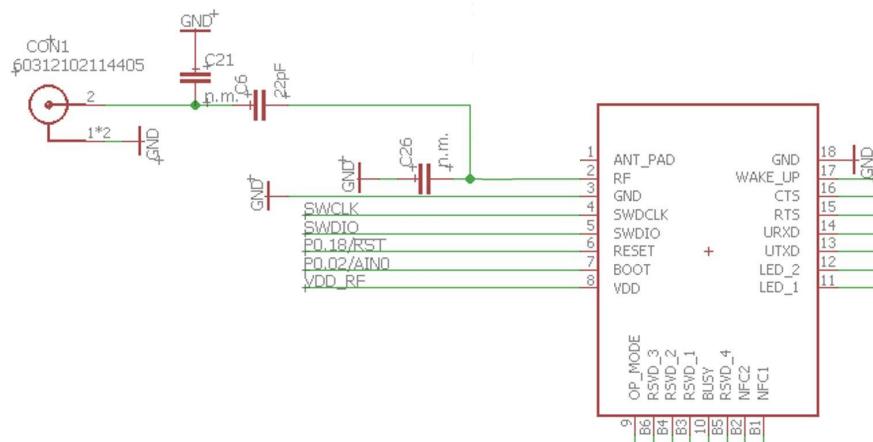


Figure 11: External antenna connection

4.2 Host firmware adaption

4.2.1 Overall behavior

As the **sub-GHz proprietary module** and the Thyone-I are both proprietary radio modules, both are similar w.r.t. their behavior. This means that the same network topologies are supported and the same data transmission can be used.

Due to this, the application's behavior must not be changed when replacing a **sub-GHz proprietary module** by a Thyone-I radio module.

4.2.2 UART interface

Both, the Thyone-I as well as the **sub-GHz proprietary module**, use an UART interface. It is configured as 115200 Baud 8n1 by default.

The **sub-GHz proprietary module** supports all baud rates between 9600 and 921600 Baud, where the Thyone-I supports only distinct baud rates between 1200 and 1000000 Baud. Furthermore, for baud rates higher than 115200 Baud, the flow control must be used at Thyone-I.

For Thyone-I the flow control of the UART is enabled when running a firmware update via the UART interface.

Both, the Thyone-I as well as the **sub-GHz proprietary module**, provide a transparent mode and command mode:

Transparent mode: All bytes sent to the radio module are transmitted via radio. All bytes received via radio are output by the UART without any protocol (header and footer). See chapter 4.2.2.1.

Command mode: Hexadecimal commands of pre-defined structure are used to control the radio module, like triggering a transmission or going into sleep mode. See chapter 4.2.2.2.

On both modules, the operation mode can be chosen in the same way:

- Applying a low signal to the *MODE_1* pin during the reset till the module is booted up, starts the command mode.
- Applying a high signal to the *MODE_1* pin during the reset till the module is booted up, starts the transparent mode.

4.2.2.1 Transparent mode

The transparent modes on both modules have the same function. Only the trigger that starts the radio transmission of data may differ. There are several options such as:

- Transmit radio data after timeout
- Transmit radio data after ETX character has been received via UART

4.2.2.2 Command mode

As described above, in command mode hexadecimal commands are used to control the radio module. Both, the **sub-GHz proprietary module** and the Thyone-I, use a similar command structure, whereas the Thyone-I uses a 2-byte length field and the **sub-GHz proprietary module** uses a 1-byte length field:

Start signal	Command	Length	Payload	CS
0x02	1 Byte	2 Bytes	Length Bytes	1 Byte

Table 4: Command structure of the Thyone-I

Start signal	Command	Length	Payload	CS
0x02	1 Byte	1 Byte	Length Bytes	1 Byte

Table 5: Command structure of the **sub-GHz proprietary module**

Furthermore, the commands themselves differ. See the `CMD_DATA_IND` command for example, that outputs the radio data on the UART:

Start signal	Command	Length	Src Addr	RSSI	Payload	CS
0x02	0x84	2 Bytes	4 Bytes	1 Byte	(Length - 5) Bytes	1 Byte

Table 6: `CMD_DATA_IND` command of the Thyone-I

Start signal	Command	Length	Payload	RSSI	CS
0x02	0x81	1 Byte	(Length - 1) Bytes	1 Byte	1 Byte

Table 7: `CMD_DATA_IND` command of the **sub-GHz proprietary module**

Besides the length of the Length field as already described, the Command byte itself (0x81 vs. 0x84) as well as the location of the remaining fields changed.

As consequence of this all commands must be updated to the new commands.

Please note that the Wireless Connectivity SDK [1, 2] implements all these commands. Thus, only the driver of the **sub-GHz proprietary module** must be replaced by the Thyone-I driver to update the application to the new commands.

4.2.3 Radio interface

4.2.3.1 Network and mesh

Both, the **sub-GHz proprietary module** and Thyone-I, provide several network topologies. Data can be transmitted from point to point (unicast), point to a sub net (multicast) or point to the whole network (broadcast). Furthermore, both radio modules provide the repeater function, that allows to setup a flooding mesh network, where all messages are distributed throughout the whole network.

In the **sub-GHz proprietary module** a so called "address mode" is configured to define which network structure is used. The Thyone-I always runs a star network, but provides several commands for the radio transmission of broadcast, multicast and unicast messages.

4.2.3.2 Radio settings

The radios of the **sub-GHz proprietary module** and Thyone-I are different, but have the same options. Both contain

- The so called "radio profiles" that allow to define the radio data rate and the resulting transmission range.
- The radio channels that define the frequencies that are used to transmit data via radio.
- The TX power that define the transmission range and current consumption when transmitting.

Thus, the behavior of both radios is the same, except of the used channel and data rate, and the resulting range and current consumption.

4.2.4 Timing

Due to the higher data rate of the Thyone-I radio profiles, the time to transmit radio data is shortened w.r.t. the **sub-GHz proprietary module**. Thus, the accelerated timing behavior must be considered in the application.

4.2.5 Power saving modes

Both radio modules provide at least one sleep mode. It can be enabled by sending the respective command to the radio module. On both modules, the *WAKE-UP* pin is used to leave the sleep mode again and enable the normal operation.

4.2.6 Boot mode

Both radio modules provide a so called "boot mode", that must be entered to enable the firmware update via the UART interface. The boot mode is started by pulling the *BOOT* pin of the radio module to the respective pin level during the reset. To do so, the level of the *BOOT* pin must be

- LOW on the Thyone-I.
- HIGH on the **sub-GHz proprietary module**.

In case, the *BOOT* pin is hardwired to ground on the **sub-GHz proprietary module**, a replacement by the Thyone-I is not possible, as the Thyone-I would always start in boot mode.

If the Boot pin is hardwired on the Host PCB, adapter board design shall be modified by integrating an inverter IC on the *BOOT* pin of the Thyone-I module.

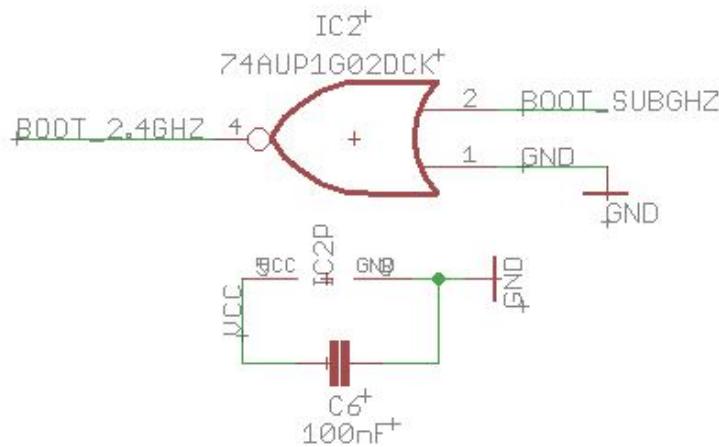


Figure 12: Boot pin modification

5 References

- [1] Würth Elektronik. Wireless Connectivity SDK for Raspberry Pi - Radio module drivers in C-code. <https://github.com/WurthElektronik/WirelessConnectivity-SDK>.
- [2] Würth Elektronik. Wireless Connectivity SDK for STM32 - Radio module drivers in C-code. https://github.com/WurthElektronik/WirelessConnectivity-SDK_STM32.

6 Important notes

The following conditions apply to all goods within the wireless connectivity product range of Würth Elektronik eiSos GmbH & Co. KG:

6.1 General customer responsibility

Some goods within the product range of Würth Elektronik eiSos GmbH & Co. KG contain statements regarding general suitability for certain application areas. These statements about suitability are based on our knowledge and experience of typical requirements concerning the areas, serve as general guidance and cannot be estimated as binding statements about the suitability for a customer application. The responsibility for the applicability and use in a particular customer design is always solely within the authority of the customer. Due to this fact, it is up to the customer to evaluate, where appropriate to investigate and to decide whether the device with the specific product characteristics described in the product specification is valid and suitable for the respective customer application or not. Accordingly, the customer is cautioned to verify that the documentation is current before placing orders.

6.2 Customer responsibility related to specific, in particular safety-relevant applications

It has to be clearly pointed out that the possibility of a malfunction of electronic components or failure before the end of the usual lifetime cannot be completely eliminated in the current state of the art, even if the products are operated within the range of the specifications. The same statement is valid for all software sourcecode and firmware parts contained in or used with or for products in the wireless connectivity and sensor product range of Würth Elektronik eiSos GmbH & Co. KG. In certain customer applications requiring a high level of safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health, it must be ensured by most advanced technological aid of suitable design of the customer application that no injury or damage is caused to third parties in the event of malfunction or failure of an electronic component.

6.3 Best care and attention

Any product-specific data sheets, manuals, application notes, PCN's, warnings and cautions must be strictly observed in the most recent versions and matching to the products firmware revisions. This documents can be downloaded from the product specific sections on the wireless connectivity homepage.

6.4 Customer support for product specifications

Some products within the product range may contain substances, which are subject to restrictions in certain jurisdictions in order to serve specific technical requirements. Necessary information is available on request. In this case, the field sales engineer or the internal sales person in charge should be contacted who will be happy to support in this matter.

6.5 Product improvements

Due to constant product improvement, product specifications may change from time to time. As a standard reporting procedure of the Product Change Notification (PCN) according to the JEDEC-Standard, we inform about major changes. In case of further queries regarding the PCN, the field sales engineer, the internal sales person or the technical support team in charge should be contacted. The basic responsibility of the customer as per section 6.1 and 6.2 remains unaffected. All wireless connectivity module driver software "wireless connectivity SDK" and its source codes as well as all PC software tools are not subject to the Product Change Notification information process.

6.6 Product life cycle

Due to technical progress and economical evaluation we also reserve the right to discontinue production and delivery of products. As a standard reporting procedure of the Product Termination Notification (PTN) according to the JEDEC-Standard we will inform at an early stage about inevitable product discontinuance. According to this, we cannot ensure that all products within our product range will always be available. Therefore, it needs to be verified with the field sales engineer or the internal sales person in charge about the current product availability expectancy before or when the product for application design-in disposal is considered. The approach named above does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.

6.7 Property rights

All the rights for contractual products produced by Würth Elektronik eiSos GmbH & Co. KG on the basis of ideas, development contracts as well as models or templates that are subject to copyright, patent or commercial protection supplied to the customer will remain with Würth Elektronik eiSos GmbH & Co. KG. Würth Elektronik eiSos GmbH & Co. KG does not warrant or represent that any license, either expressed or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, application, or process in which Würth Elektronik eiSos GmbH & Co. KG components or services are used.

6.8 General terms and conditions

Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms and Conditions of Würth Elektronik eiSos Group", last version available at www.we-online.com.

7 Legal notice

7.1 Exclusion of liability

Würth Elektronik eiSos GmbH & Co. KG considers the information in this document to be correct at the time of publication. However, Würth Elektronik eiSos GmbH & Co. KG reserves the right to modify the information such as technical specifications or functions of its products or discontinue the production of these products or the support of one of these products without any written announcement or notification to customers. The customer must make sure that the information used corresponds to the latest published information. Würth Elektronik eiSos GmbH & Co. KG does not assume any liability for the use of its products. Würth Elektronik eiSos GmbH & Co. KG does not grant licenses for its patent rights or for any other of its intellectual property rights or third-party rights.

Notwithstanding anything above, Würth Elektronik eiSos GmbH & Co. KG makes no representations and/or warranties of any kind for the provided information related to their accuracy, correctness, completeness, usage of the products and/or usability for customer applications. Information published by Würth Elektronik eiSos GmbH & Co. KG regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof.

7.2 Suitability in customer applications

The customer bears the responsibility for compliance of systems or units, in which Würth Elektronik eiSos GmbH & Co. KG products are integrated, with applicable legal regulations. Customer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of Würth Elektronik eiSos GmbH & Co. KG components in its applications, notwithstanding any applications-related information or support that may be provided by Würth Elektronik eiSos GmbH & Co. KG. Customer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences lessen the likelihood of failures that might cause harm and take appropriate remedial actions. The customer will fully indemnify Würth Elektronik eiSos GmbH & Co. KG and its representatives against any damages arising out of the use of any Würth Elektronik eiSos GmbH & Co. KG components in safety-critical applications.

7.3 Trademarks

AMBER wireless is a registered trademark of Würth Elektronik eiSos GmbH & Co. KG. All other trademarks, registered trademarks, and product names are the exclusive property of the respective owners.

7.4 Usage restriction

Würth Elektronik eiSos GmbH & Co. KG products have been designed and developed for usage in general electronic equipment only. This product is not authorized for use in equipment

where a higher safety standard and reliability standard is especially required or where a failure of the product is reasonably expected to cause severe personal injury or death, unless the parties have executed an agreement specifically governing such use. Moreover, Würth Elektronik eiSos GmbH & Co. KG products are neither designed nor intended for use in areas such as military, aerospace, aviation, nuclear control, submarine, transportation (automotive control, train control, ship control), transportation signal, disaster prevention, medical, public information network etc. Würth Elektronik eiSos GmbH & Co. KG must be informed about the intent of such usage before the design-in stage. In addition, sufficient reliability evaluation checks for safety must be performed on every electronic component, which is used in electrical circuits that require high safety and reliability function or performance. By using Würth Elektronik eiSos GmbH & Co. KG products, the customer agrees to these terms and conditions.

8 License terms

This License Terms will take effect upon the purchase and usage of the Würth Elektronik eiSos GmbH & Co. KG wireless connectivity products. You hereby agree that this license terms is applicable to the product and the incorporated software, firmware and source codes (collectively, "Software") made available by Würth Elektronik eiSos in any form, including but not limited to binary, executable or source code form.

The software included in any Würth Elektronik eiSos wireless connectivity product is purchased to you on the condition that you accept the terms and conditions of this license terms. You agree to comply with all provisions under this license terms.

8.1 Limited license

Würth Elektronik eiSos hereby grants you a limited, non-exclusive, non-transferable and royalty-free license to use the software and under the conditions that will be set forth in this license terms. You are free to use the provided Software only in connection with one of the products from Würth Elektronik eiSos to the extent described in this license terms. You are entitled to change or alter the source code for the sole purpose of creating an application embedding the Würth Elektronik eiSos wireless connectivity product. The transfer of the source code to third parties is allowed to the sole extent that the source code is used by such third parties in connection with our product or another hardware provided by Würth Elektronik eiSos under strict adherence of this license terms. Würth Elektronik eiSos will not assume any liability for the usage of the incorporated software and the source code. You are not entitled to transfer the source code in any form to third parties without prior written consent of Würth Elektronik eiSos.

You are not allowed to reproduce, translate, reverse engineer, decompile, disassemble or create derivative works of the incorporated Software and the source code in whole or in part. No more extensive rights to use and exploit the products are granted to you.

8.2 Usage and obligations

The responsibility for the applicability and use of the Würth Elektronik eiSos wireless connectivity product with the incorporated Firmware in a particular customer design is always solely within the authority of the customer. Due to this fact, it is up to you to evaluate and investigate, where appropriate, and to decide whether the device with the specific product characteristics described in the product specification is valid and suitable for your respective application or not.

You are responsible for using the Würth Elektronik eiSos wireless connectivity product with the incorporated Firmware in compliance with all applicable product liability and product safety laws. You acknowledge to minimize the risk of loss and harm to individuals and bear the risk for failure leading to personal injury or death due to your usage of the product.

Würth Elektronik eiSos' products with the incorporated Firmware are not authorized for use in safety-critical applications, or where a failure of the product is reasonably expected to cause severe personal injury or death. Moreover, Würth Elektronik eiSos' products with the incorporated Firmware are neither designed nor intended for use in areas such as military, aerospace, aviation, nuclear control, submarine, transportation (automotive control, train control, ship control), transportation signal, disaster prevention, medical, public information network etc. You

shall inform Würth Elektronik eiSos about the intent of such usage before design-in stage. In certain customer applications requiring a very high level of safety and in which the malfunction or failure of an electronic component could endanger human life or health, you must ensure to have all necessary expertise in the safety and regulatory ramifications of your applications. You acknowledge and agree that you are solely responsible for all legal, regulatory and safety-related requirements concerning your products and any use of Würth Elektronik eiSos' products with the incorporated Firmware in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by Würth Elektronik eiSos. **YOU SHALL INDEMNIFY WÜRTH ELEKTRONIK EISOS AGAINST ANY DAMAGES ARISING OUT OF THE USE OF WÜRTH ELEKTRONIK EISOS' PRODUCTS WITH THE INCORPORATED FIRMWARE IN SUCH SAFETY-CRITICAL APPLICATIONS.**

8.3 Ownership

The incorporated Firmware created by Würth Elektronik eiSos is and will remain the exclusive property of Würth Elektronik eiSos.

8.4 Firmware update(s)

You have the opportunity to request the current and actual Firmware for a bought wireless connectivity Product within the time of warranty. However, Würth Elektronik eiSos has no obligation to update a modules firmware in their production facilities, but can offer this as a service on request. The upload of firmware updates falls within your responsibility, e.g. via ACC or another software for firmware updates. Firmware updates will not be communicated automatically. It is within your responsibility to check the current version of a firmware in the latest version of the product manual on our website. The revision table in the product manual provides all necessary information about firmware updates. There is no right to be provided with binary files, so called "Firmware images", those could be flashed through JTAG, SWD, Spi-Bi-Wire, SPI or similar interfaces.

8.5 Disclaimer of warranty

THE FIRMWARE IS PROVIDED "AS IS". YOU ACKNOWLEDGE THAT WÜRTH ELEKTRONIK EISOS MAKES NO REPRESENTATIONS AND WARRANTIES OF ANY KIND RELATED TO, BUT NOT LIMITED TO THE NON-INFRINGEMENT OF THIRD PARTIES' INTELLECTUAL PROPERTY RIGHTS OR THE MERCHANTABILITY OR FITNESS FOR YOUR INTENDED PURPOSE OR USAGE. WÜRTH ELEKTRONIK EISOS DOES NOT WARRANT OR REPRESENT THAT ANY LICENSE, EITHER EXPRESS OR IMPLIED, IS GRANTED UNDER ANY PATENT RIGHT, COPYRIGHT, MASK WORK RIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT RELATING TO ANY COMBINATION, MACHINE, OR PROCESS IN WHICH THE WÜRTH ELEKTRONIK EISOS' PRODUCT WITH THE INCORPORATED FIRMWARE IS USED. INFORMATION PUBLISHED BY WÜRTH ELEKTRONIK EISOS REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE A LICENSE FROM WÜRTH ELEKTRONIK EISOS TO USE SUCH PRODUCTS OR SERVICES OR A WARRANTY OR ENDORSEMENT THEREOF.

8.6 Limitation of liability

Any liability not expressly provided by Würth Elektronik eiSos shall be disclaimed.

You agree to hold us harmless from any third-party claims related to your usage of the Würth Elektronik eiSos' products with the incorporated Firmware, software and source code. Würth Elektronik eiSos disclaims any liability for any alteration, development created by you or your customers as well as for any combination with other products.

8.7 Applicable law and jurisdiction

Applicable law to this license terms shall be the laws of the Federal Republic of Germany. Any dispute, claim or controversy arising out of or relating to this license terms shall be resolved and finally settled by the court competent for the location of Würth Elektronik eiSos' registered office.

8.8 Severability clause

If a provision of this license terms is or becomes invalid, unenforceable or null and void, this shall not affect the remaining provisions of the terms. The parties shall replace any such provisions with new valid provisions that most closely approximate the purpose of the terms.

8.9 Miscellaneous

Würth Elektronik eiSos reserves the right at any time to change this terms at its own discretion. It is your responsibility to check at Würth Elektronik eiSos homepage for any updates. Your continued usage of the products will be deemed as the acceptance of the change.

We recommend you to be updated about the status of new firmware and software, which is available on our website or in our data sheet and manual, and to implement new software in your device where appropriate.

By ordering a wireless connectivity product, you accept this license terms in all terms.

List of Figures

1	Adapter board schematic	7
2	Adapter board layout	8
3	Top, bottom & internal layers	9
4	Assembly	10
5	Bill of materials	11
6	Footprint (Top view)	12
7	Trace design: Layout	16
8	Reference design: Stack-up	16
9	Trace design: Schematic	17
10	On-board PCB antenna	18
11	External antenna connection	18
12	Boot pin modification	22

List of Tables

1	Comparison: Features	6
2	Comparison: Electrical characteristics	6
3	Pin mapping between Thyone-I and sub-GHz proprietary module	15
4	Command structure of the Thyone-I	20
5	Command structure of the sub-GHz proprietary module	20
6	CMD_DATA_IND command of the Thyone-I	20
7	CMD_DATA_IND command of the sub-GHz proprietary module	20

Contact

Würth Elektronik eiSos GmbH & Co. KG
Division Wireless Connectivity & Sensors

Max-Eyth-Straße 1
74638 Waldenburg
Germany

Tel.: +49 651 99355-0
Fax.: +49 651 99355-69
www.we-online.com/wireless-connectivity

WÜRTH ELEKTRONIK MORE THAN YOU EXPECT