
ANR016 RADIO MODULE MIGRATION GUIDE

ALWAYS BE UP TO DATE: REPLACING A RADIO
MODULE BY ITS SUCCESSOR

VERSION 1.6

MARCH 30, 2022

Revision history

Manual version	Notes	Date
1.0	<ul style="list-style-type: none"> Initial version 	October 2019
1.1	<ul style="list-style-type: none"> Added Proteus-III 	February 2020
1.2	<ul style="list-style-type: none"> Update Tarvos-I to Tarvos-III chapter due to Tarvos-III firmware update affecting transparent mode Update Tarvos-II to Tarvos-III chapter due to Tarvos-III firmware update affecting transparent mode Update Thebe-I to Thebe-II chapter due to Thebe-II firmware update affecting transparent mode Improvements for Proteus chapters 	January 2021
1.3	<ul style="list-style-type: none"> Added chapters Telesto-III to Themisto-I and Tarvos-III to Thebe-II 	January 2021
1.4	<ul style="list-style-type: none"> Added chapter Thadeus to Tarvos-III 	July 2021
1.5	<ul style="list-style-type: none"> Added chapters Tarvos/AMB8420 to Tarvos-III and References 	September 2021
1.6	<ul style="list-style-type: none"> Added chapters Proteus-II to Proteus-e and Proteus-III to Proteus-e 	March 2022

Abbreviations

Abbreviation	Name	Description
ACK	Acknowledgement	Radio packet send back to the transmitter to acknowledge the reception of data.
	Blocking	The ability to receive the wanted radio signal with close radio noise.
LRM	Long range mode	Special radio profile for large transmission ranges.
	Payload	The intended message in a frame / package.
RF	Radio frequency	Describes wireless transmission.
SRD	Short Range Device	Unlicensed frequency bands.

Contents

1	Introduction	7
2	Thadeus to Tarvos-III	8
2.1	Summary	8
2.2	Hardware adaption	9
2.2.1	Foot print	9
2.2.2	Pinout	10
2.2.3	Antenna	11
2.3	Host firmware adaption	11
2.3.1	Command Mode	11
2.3.2	UART interface	11
2.3.3	Radio interface	12
2.3.4	Power saving modes	12
2.3.5	Boot mode	12
2.3.6	Timings	12
2.3.7	Transparent mode	12
3	Tarvos/AMB8420 to Tarvos-III	13
3.1	Summary	13
3.2	Hardware adaption	14
3.2.1	Foot print	14
3.2.2	Pinout	14
3.2.3	Antenna	15
3.3	Host firmware adaption	15
3.3.1	Command Mode	15
3.3.2	UART interface	15
3.3.3	Radio interface	15
3.3.4	Power saving modes	16
3.3.5	Boot mode	16
3.3.6	Timings	16
3.3.7	Switch between transparent and command mode	17
4	Tarvos-I to Tarvos-III	18
4.1	Summary	18
4.2	Hardware adaption	19
4.2.1	Foot print	19
4.2.2	Pinout	20
4.2.3	Antenna	21
4.3	Host firmware adaption	21
4.3.1	Command Mode	21
4.3.2	UART interface	21
4.3.3	Radio interface	22
4.3.3.1	Radio compatibility settings	22
4.3.4	Power saving modes	23
4.3.5	Boot mode	23
4.3.6	Timings	23
4.3.7	Transparent mode	23

5 Tarvos-II to Tarvos-III	24
5.1 Summary	24
5.2 Hardware adaption	25
5.2.1 Foot print	25
5.2.2 Pinout	25
5.2.3 Antenna	27
5.3 Host firmware adaption	27
5.3.1 Command Mode	27
5.3.2 UART interface	27
5.3.3 Radio interface	27
5.3.3.1 Radio compatibility settings	28
5.3.4 Power saving modes	28
5.3.5 Boot mode	28
5.3.6 Timings	28
5.3.7 Transparent mode	29
6 Tarvos-III to Thebe-II	30
6.1 Summary	30
6.2 Hardware adaption	30
6.2.1 Foot print	30
6.2.2 Pinout	30
6.2.3 Power supply	31
6.3 Host firmware adaption	31
6.3.1 Radio interface	31
7 Thebe-I to Thebe-II	33
7.1 Summary	33
7.2 Hardware adaption	33
7.2.1 Foot print	33
7.2.2 Pinout	33
7.2.3 Antenna	34
7.3 Host firmware adaption	34
7.3.1 UART interface	34
7.3.2 Radio interface	34
7.3.3 Power saving modes	35
7.3.4 Boot mode	35
7.3.5 Transparent mode	35
8 Telesto-III to Themisto-I	36
8.1 Summary	36
8.2 Hardware adaption	36
8.2.1 Foot print	36
8.2.2 Pinout	36
8.2.3 Power supply	37
8.3 Host firmware adaption	37
8.3.1 Radio interface	37
9 Metis-I to Metis-II	38
9.1 Summary	38
10 Proteus-I to Proteus-II	39
10.1 Summary	39

11 Proteus-II to Proteus-III	40
11.1 Summary	40
11.2 Hardware adaption	41
11.2.1 Foot print	41
11.2.2 Pinout	41
11.2.3 Antenna	43
11.3 Host firmware adaption	43
12 Proteus-II to Proteus-e	44
12.1 Summary	44
12.2 Hardware adaption	45
12.2.1 Foot print	45
12.2.2 Pinout	45
12.2.3 Antenna	46
12.3 Host firmware adaption	47
13 Proteus-III to Proteus-e	49
13.1 Summary	49
13.2 Hardware adaption	50
13.2.1 Foot print	50
13.2.2 Pinout	50
13.3 Host firmware adaption	52
14 AMB2520 to Thalassa	53
14.1 Summary	53
14.2 Hardware adaption	53
14.2.1 Foot print	53
14.2.2 Pinout	54
14.2.3 Antenna	54
14.3 Host firmware adaption	54
15 References	55
16 Important notes	56
16.1 General customer responsibility	56
16.2 Customer responsibility related to specific, in particular safety-relevant applications	56
16.3 Best care and attention	56
16.4 Customer support for product specifications	56
16.5 Product improvements	57
16.6 Product life cycle	57
16.7 Property rights	57
16.8 General terms and conditions	57
17 Legal notice	58
17.1 Exclusion of liability	58
17.2 Suitability in customer applications	58
17.3 Trademarks	58
17.4 Usage restriction	58
18 License terms	60
18.1 Limited license	60

18.2	Usage and obligations	60
18.3	Ownership	61
18.4	Firmware update(s)	61
18.5	Disclaimer of warranty	61
18.6	Limitation of liability	61
18.7	Applicable law and jurisdiction	62
18.8	Severability clause	62
18.9	Miscellaneous	62

1 Introduction

The radio frequency spectrum is regulated by designated regulatory authorities that define how specific spectrum bands can be used. As each frequency band has its strength, Würth Elektronik eiSos provides for each frequency band proprietary radio modules, which allow energy efficient and fast data transmission.

With the evolution of radio chips, new proprietary radio modules have been developed, that are more energy efficient during data transmission and reception. Furthermore new coding and modulation techniques have been added, that allow higher transmission ranges (long range mode) and/or higher data rates.

Due to this natural evolution, when redesigning a device that is already using a proprietary radio module, it is recommended to use the latest member of the corresponding radio module family.

This application note describes the key factors to be considered, when replacing a proprietary Würth Elektronik eiSos radio module with its successor from the same family.

Due to changes in hardware platform and firmware when replacing a radio module with its successor, the end device's radio certification becomes void. A new radio certification or declaration needs to be acquired by performing actions according to the local statutory requirements at the location of deployment.

If a switch from 868 MHz to 915 MHz is desired to serve also the North American market, the application note ANR015 "FROM 868 MHZ TO 915 MHZ" describes the necessary steps to be performed.

2 Thadeus to Tarvos-III

The Thadeus is a 434 MHz proprietary radio module. The Tarvos-III is a 868-MHz radio module of a later generation, that reduces the power consumption, improves the blocking capabilities and provides new modulation techniques to boost the transmission range.

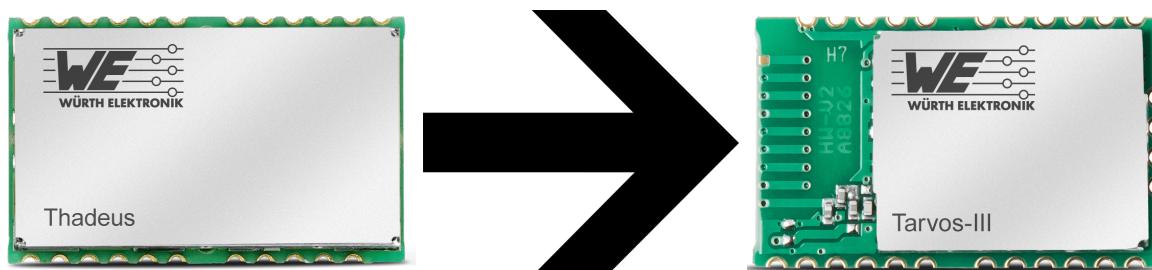


Figure 1: Thadeus to Tarvos-III

2.1 Summary

In comparison to the Thadeus, the Tarvos-III has 4 additional pins. Since the size and the remaining footprint of the two modules are the same, the Thadeus can be replaced by the Tarvos-III, if no underlying non-insulated copper area touches the 4 new pins of the Tarvos-III.

Besides of this, a few pin functions changed, such that the sleep mode for example has to be triggered in a different way on the Tarvos-III. Due to this, and due to new firmware functions the host firmware must be adapted to communicate with the Tarvos-III.

Radio compatibility of both modules is not given as both operate in different frequency bands. Nevertheless, the radio features like addressing or acknowledgments remain the same.

2.2 Hardware adaption

2.2.1 Foot print

Both Thadeus and Tarvos-III have the same dimensions of 17×27×4 mm with the pins located at the same positions. The only change in the footprint is the presence of 4 additional pins (i1-i4) of the JTAG interface on the Tarvos-III.

If a design has been made for Thadeus, the footprint matches the Tarvos-III, if no underlying non-insulated copper area touches the JTAG pins i1-i4 of the Tarvos-III.

In addition to the radio signal to an external antenna on pin 1, the Tarvos-III offers an alternative option to use the on-board PCB antenna. The order code for Tarvos-III with external antenna is 260901118100x. The integrated PCB antenna with reduced efficiency is available using order code 260901108100x.

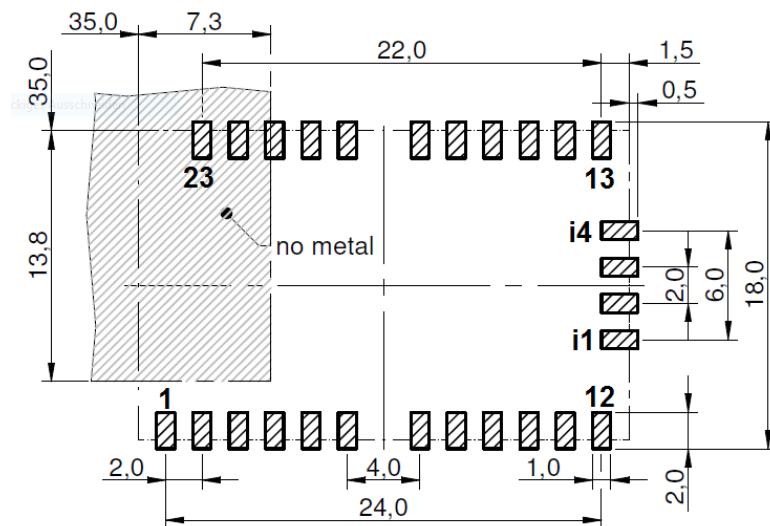


Figure 2: Universal footprint

2.2.2 Pinout

Although the Thadeus and Tarvos-III share the same footprint, some of the pin functions differ on the new hardware platform. The main pin functions such as power supply and UART use the same footprint pin on both modules:

Pin No.	Thadeus	Tarvos-III	Comment
1	<i>ANT</i>	<i>ANT</i>	Antenna pin connection
2	<i>GND</i>	<i>GND</i>	Ground
3	<i>VCC</i>	<i>VCC</i>	Supply voltage
4	<i>UTXD</i>	<i>UTXD</i>	UART TX
5	<i>URXD</i>	<i>URXD</i>	UART RX
6	<i>/RTS</i>	<i>/RTS</i>	UART <i>/RTS</i>
9	<i>RESERVED</i>	<i>RESERVED</i>	
10	<i>RESERVED</i>	<i>RESERVED</i>	
16	<i>RESERVED</i>	<i>RESERVED</i>	
17	<i>RESERVED</i>	<i>RESERVED</i>	
18	<i>RESERVED</i>	<i>RESERVED</i>	
19	<i>/RESET</i>	<i>/RESET</i>	Reset pin
20	<i>/TX_IND</i>	<i>/TX_IND</i>	Pin indicating when a radio packet is transmitted
21	<i>/RX_IND</i>	<i>/RX_IND</i>	Pin indicating when a radio packet is received
22	<i>RESERVED</i>	<i>RESERVED</i>	
23	<i>GND</i>	<i>GND</i>	Ground

Table 1: Pins with same functions on both, Thadeus and Tarvos-III

But pins with special functions changed:

Pin No.	Thadeus	Tarvos-III	Comment
7	/CTS	RESERVED	/CTS function no longer supported.
8	DATA_IND	RESERVED	DATA_IND function no longer supported.
11	DATA_REQ	RESERVED	DATA_REQ function no longer supported.
12	RESERVED	BOOT	The <i>BOOT</i> pin is used on the Tarvos-III to set the module into boot mode, where the module's firmware can be updated using the ACC tool.
13	SLEEP	RESERVED	Sleep function by pin no longer supported, as the Tarvos-III enters the sleep modes via command.
14	TRX_DISABLE	WAKE-UP	Pin function changed. The <i>WAKE-UP</i> pin is used to wake-up the module from sleep mode.
15	/CONFIG	MODE_1	The <i>MODE_1</i> pin is used on the Tarvos-III to determine the operating mode during boot. In contrast to the Thadeus, switching between transparent mode and command mode is not possible during runtime by using the <i>MODE_1</i> pin.

Table 2: Pins of the Thadeus and Tarvos-III that have different functions

2.2.3 Antenna

The Tarvos-III is available in two hardware variants. The first variant provides the radio signal at the *ANT* pin, the same as Thadeus. Using this variant an external antenna matched to $50\ \Omega$ can be connected at this pin.

The second variant of the Tarvos-III offers an internal PCB antenna. Using this variant the *ANT* pin has no function and can be left open. No external antenna has to be connected.

2.3 Host firmware adaption

2.3.1 Command Mode

If you are not already using command mode we recommend to switch over to using command mode whenever your application can be adopted.

2.3.2 UART interface

The Thadeus uses 9600 Baud 8n1 and Tarvos-III uses 115200 Baud 8n1 by default. The Thadeus provides the command and transparent mode on the UART (transparent mode by default). The Tarvos-III provides the command mode and, using firmware version 3.0.0 or higher, the transparent mode (command mode by default).

The command interface on the UART uses of the same command structure. The UART command numbers itself and range of parameter values for a specific command may differ. Thus the command interface must be updated in the host controller. The source codes of the command interface for host integration are available in the Wireless Connectivity SDK on GitHub [1, 2, 3].

2.3.3 Radio interface

The radio interfaces of the Tarvos-III and Thadeus are not compatible as different radio profiles and radio channels (frequencies) are used. Nevertheless, both radio modules support radio features like addressing and acknowledgement.

2.3.4 Power saving modes

As the pins *SLEEP* and *TRX_DISABLE* of the Thadeus are no more available on the Tarvos-III, the low power modes are handled in a different way. The Tarvos-III does not enable the possibility to switch off the radio exclusively by a pin, but allows to enter into two different sleep modes via UART command. The Tarvos-III can be woken up again from any sleep mode using the *WAKE-UP* pin, which is at the location of the Thadeus *TRX_DISABLE* pin.

2.3.5 Boot mode

The Tarvos-III needs to be set to boot mode, if a firmware update is performed. To switch the boot mode on, the *BOOT* pin has to be handled by host controller. The firmware update uses the UART interface at the dedicated module UART pins. Both, Thadeus and Tarvos-III can be connected to the ACC PC tool to perform changes in user settings and a firmware update. Please refer to the product specific details for the firmware update.

2.3.6 Timings

Due to change of the underlying hardware, especially the CPU and radio IC, as well as the use of an RTOS (real time operating system) in the Tarvos-III, most of the timing parameters have slightly changed. Some were decreased, but others increased.

Due to the CPU change and the RTOS the UART RX of the module is now using a shift register of 32 bit instead of 8 bit, which will introduce (worst case) a latency of up to 3 additional byte durations (depending on the selected UART data rate) to each received UART message (command or transparent).

The host-application needs to take this changed timings into account to be able to use the Tarvos-III as replacement.

2.3.7 Transparent mode

Tarvos-III firmware 3.0.0 or newer is required for transparent mode support.

3 Tarvos/AMB8420 to Tarvos-III

The Tarvos series is a family of 868 MHz proprietary radio modules. The Tarvos (formerly known as AMB8420) has been succeeded by the Tarvos-III, that reduces the power consumption and provides a cleaner frequency spectrum, improved blocking capabilities and new modulation techniques to boost the transmission range.

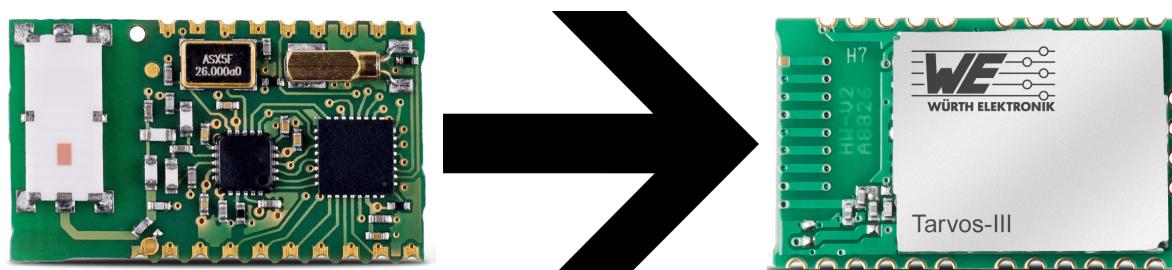


Figure 3: Tarvos to Tarvos-III

3.1 Summary

In comparison to the Tarvos, the Tarvos-III has a slightly different size and footprint. Both radio modules are available with internal antenna and as a variant with the radio signal on the module pad for external antenna connection.

A few pin and software functions changed, such that the host firmware must be adapted to communicate with the Tarvos-III.

Radio compatibility of both modules is given under certain conditions.

If the host cannot be adopted it may not be possible to perform migration to a more recent product.

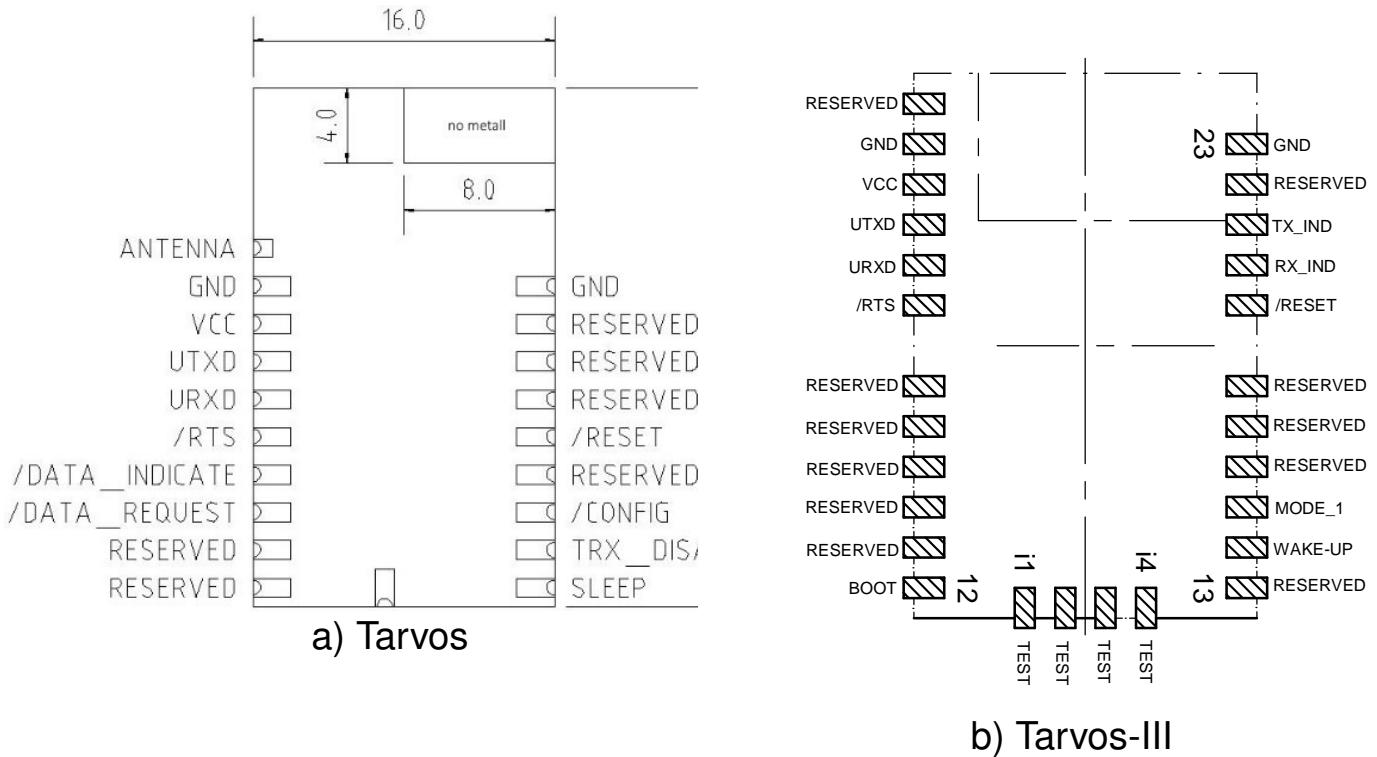


Figure 4: Pinout

3.2 Hardware adaption

3.2.1 Foot print

Both Tarvos and Tarvos-III have similar but not identical dimensions. Where the Tarvos has the size of 16×27.5 mm, the Tarvos-III is 17×27 mm. In addition to that Tarvos-III has additional pins and new pad locations.

3.2.2 Pinout

The pinout of both modules is very similar. The main functions such as power supply, reset and UART share the same pins, but special pin functions have been updated.

In detail, the *DATA_REQUEST*, *DATA_INDICATION*, *TRX_DISABLE* and *SLEEP* pins have been replaced by the *WAKE_UP*, *TX_IND* and *RX_IND* pins. This has the effect that it's not longer possible to trigger the radio transmission and sleep mode via pin. Both, the data transmission as well as the sleep mode have to be triggered by UART commands. The wake-up from sleep mode is still possible via the *WAKE_UP* pin.

The switch between transparent and command mode is now done via the *MODE_1* pin, that replaces the *CONFIG* pin and defines the operation mode right after the start-up of the module.

Last but not least a *BOOT* pin has been added, that allows the Tarvos-III to enter the boot mode for firmware updates via the UART.

3.2.3 Antenna

The Tarvos and the Tarvos-III are available in two hardware variants. The first variant provides the radio signal at the *ANT* pin. Using this variant an external antenna matched to $50\ \Omega$ can be connected at this pin.

The second variant offers an internal PCB antenna. Using this variant the *ANT* pin has no function and can be left open. No external antenna has to be connected.

3.3 Host firmware adaption

3.3.1 Command Mode

If you are not already using command mode, we recommend to switch over to using command mode whenever your application can be adopted.

3.3.2 UART interface

The Tarvos uses 9600 Baud 8n1 and Tarvos-III uses 115200 Baud 8n1 by default. The Tarvos provides the command and transparent mode on the UART (transparent mode by default). The Tarvos-III provides the command mode and, using firmware version 3.0.0 or higher, the transparent mode (command mode by default).

The command interface on the UART uses of the same command structure. The UART command numbers itself and range of parameter values for a specific command may differ. Thus the command interface must be updated in the host controller. The source codes of the command interface for host integration are available in the Wireless Connectivity SDK on GitHub [1, 2, 3].

3.3.3 Radio interface

The Tarvos-III is supporting more radio channels and radio profiles than available on Tarvos. Both radio modules support the 38.4 kbps and 100 kbps radio profile as well as radio channels 102 - 110. If one of these radio channels and radio profiles is used, the Tarvos and Tarvos-III are radio compatible provided that acknowledgements are disabled. The radio timing behavior must be adapted using the respective user settings to allow the communication between Tarvos and Tarvos-III, in case acknowledgements are enabled.

Using these radio settings, a higher radio range can be achieved compared to Tarvos owing to the higher default transmission power of Tarvos-III.

The new radio profiles of the Tarvos-III are incompatible to the previous Tarvos generations, but offer various advantages. The radio profiles 3 and 4 allow a higher transmission range, where radio profile 5 provides a fast data transmission due to the increased data-rate.

Radio profile	Data rate (gross) [kbps]	Max payload size [Byte]	Radio channels
-	4.8	128 ²	102 - 110
-	10	128 ²	102 - 110
-	38.4	128 ²	103 - 109
-	76.8	128 ²	104 - 108
-	100	128 ²	105 - 107

Table 3: Radio profiles of the Tarvos

Radio profile	Data rate (gross) [kbps]	Max payload size [Byte]	Radio channels
0	38.4	128	1 - 139
2	100	128	1 - 139
3 (LRM)	10 (=0.625 kbps net)	48	1 - 139
4 (LRM)	20 (=2.5 kbps net)	64	1 - 139
5	400	224	1 - 139

Table 4: Radio profiles of the Tarvos-III

3.3.4 Power saving modes

As the pins *SLEEP* and *TRX_DISABLE* of the Tarvos are no more available on the Tarvos-III, the low power modes are handled in a different way. The Tarvos-III does not enable the possibility to switch off the radio exclusively via pin, but allows to enter into two different sleep modes via UART command. The Tarvos-III can be woken from any sleep mode using the *WAKE-UP* pin, which is at the location of the Tarvos *TRX_DISABLE* pin.

3.3.5 Boot mode

The Tarvos-III needs to be set to boot mode, if a firmware update is performed. To switch the boot mode on, the *BOOT* pin has to be handled by host controller. The firmware update uses the UART interface at the dedicated module UART pins. Both, Tarvos and Tarvos-III can be connected to the ACC PC tool to perform changes in user settings and a firmware update. Please refer to the product specific details for the firmware update.

3.3.6 Timings

Due to change of the underlying hardware, especially the CPU and radio IC, as well as the use of an RTOS (real time operating system) in the Tarvos-III, most of the timing parameters have slightly changed. Some were decreased, but others increased.

Due to the CPU change and the RTOS the UART RX of the module is now using a shift register of 32 bit instead of 8 bit, which will introduce (worst case) a latency of up to 3 additional byte durations (depending on the selected UART data rate) to each received UART message (command or transparent).

²The maximum payload size depends on the selected address mode.

The host-application needs to take this changed timings into account to be able to use the Tarvos-III as replacement.

3.3.7 Switch between transparent and command mode

Tarvos-III firmware 3.0.0 or newer is required for transparent mode support.

The *CONFIG* pin has been replaced by the *MODE_1* pin, that defines the operation mode after module start-up by the pin level. During operation the mode can be switched by UART commands.

4 Tarvos-I to Tarvos-III

The Tarvos series is a family of 868 MHz proprietary radio modules. The Tarvos-I has been succeeded by the Tarvos-II (chapter 5), that scores with lower sleep, transmission and receptions currents, as well with a cleaner frequency spectrum. The Tarvos-II itself has been succeeded by the Tarvos-III, that further reduces the power consumption and provides new modulation techniques to boost the transmission range. Each generation also includes improvements in the blocking capabilities.

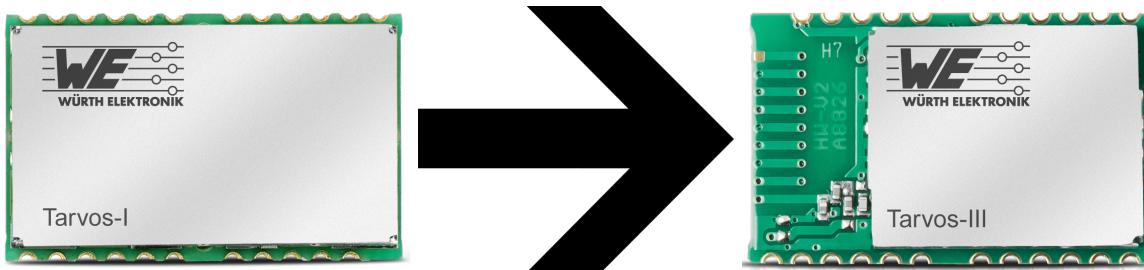


Figure 5: Tarvos-I to Tarvos-III

4.1 Summary

In comparison to the Tarvos-I, the Tarvos-III has 4 additional pins. Since the size and the remaining footprint of the two modules are the same, the Tarvos-I can be replaced by the Tarvos-III, if no underlying non-insulated copper area touches the 4 new pins of the Tarvos-III.

Besides of this, a few pin functions changed, such that the sleep mode for example has to be triggered in a different way on the Tarvos-III. Due to this, and due to new firmware functions the host firmware must be adapted to communicate with the Tarvos-III.

Radio compatibility of both modules is given in most operation modes.

If the host cannot be adopted it may not be possible to perform migration to a more recent product.

4.2 Hardware adaption

4.2.1 Foot print

Both Tarvos-I and Tarvos-III have the same dimensions of 17×27×4 mm with the pins located at the same positions. The only change in the footprint is the presence of 4 additional pins (i1-i4) of the JTAG interface on the Tarvos-III.

If a design has been made for Tarvos-I, the footprint matches the Tarvos-III, if no underlying non-insulated copper area touches the JTAG pins i1-i4 of the Tarvos-III.

In addition to the radio signal to an external antenna on pin 1, the Tarvos-III offers an alternative option to use the on-board PCB antenna. In order to ensure a comparable radio performance to Tarvos-I, it is recommended to use the variant with antenna pin to connect to an external antenna. The order code for Tarvos-III with external antenna is 260901118100x. The integrated PCB antenna with reduced efficiency is available using order code 260901108100x.

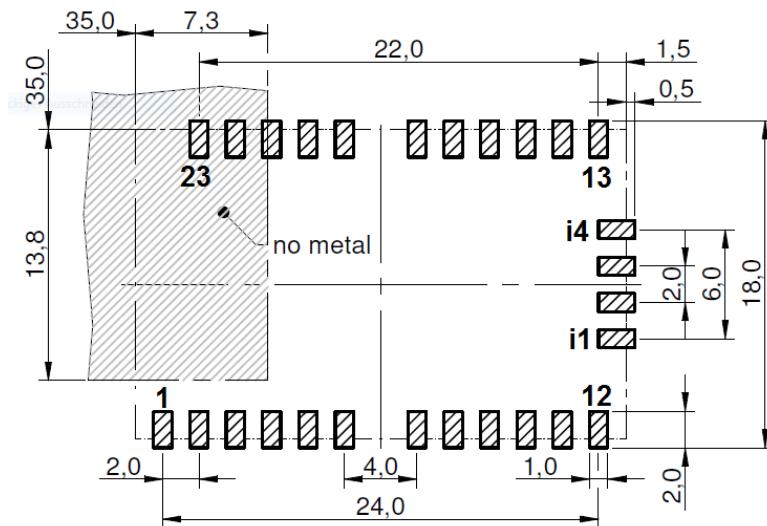


Figure 6: Universal footprint

4.2.2 Pinout

Although the Tarvos-I and Tarvos-III share the same footprint, some of the pin functions differ on the new hardware platform. The main pin functions such as power supply and UART use the same footprint pin on both modules:

Pin No.	Tarvos-I	Tarvos-III	Comment
1	<i>ANT</i>	<i>ANT</i>	Antenna pin connection
2	<i>GND</i>	<i>GND</i>	Ground
3	<i>VCC</i>	<i>VCC</i>	Supply voltage
4	<i>UTXD</i>	<i>UTXD</i>	UART TX
5	<i>URXD</i>	<i>URXD</i>	UART RX
6	<i>/RTS</i>	<i>/RTS</i>	UART <i>/RTS</i>
9	<i>RESERVED</i>	<i>RESERVED</i>	
10	<i>RESERVED</i>	<i>RESERVED</i>	
16	<i>RESERVED</i>	<i>RESERVED</i>	
17	<i>RESERVED</i>	<i>RESERVED</i>	
18	<i>RESERVED</i>	<i>RESERVED</i>	
19	<i>/RESET</i>	<i>/RESET</i>	Reset pin
20	<i>/TX_IND</i>	<i>/TX_IND</i>	Pin indicating when a radio packet is transmitted
21	<i>/RX_IND</i>	<i>/RX_IND</i>	Pin indicating when a radio packet is received
22	<i>RESERVED</i>	<i>RESERVED</i>	
23	<i>GND</i>	<i>GND</i>	Ground

Table 5: Pins with same functions on both, Tarvos-I and Tarvos-III

But pins with special functions changed:

Pin No.	Tarvos-I	Tarvos-III	Comment
7	/CTS	RESERVED	/CTS function no longer supported.
8	DATA_IND	RESERVED	DATA_IND function no longer supported.
11	DATA_REQ	RESERVED	DATA_REQ function no longer supported.
12	RESERVED	BOOT	The <i>BOOT</i> pin is used on the Tarvos-III to set the module into boot mode, where the module's firmware can be updated using the ACC tool.
13	SLEEP	RESERVED	Sleep function by pin no longer supported, as the Tarvos-III enters the sleep modes via command.
14	TRX_DISABLE	WAKE-UP	Pin function changed. The <i>WAKE-UP</i> pin is used to wake-up the module from sleep mode.
15	/CONFIG	MODE_1	The <i>MODE_1</i> pin is used on the Tarvos-III to determine the operating mode during boot. In contrast to the Tarvos-I, switching between transparent mode and command mode is not possible during runtime by using the <i>MODE_1</i> pin.

Table 6: Pins of the Tarvos-I and Tarvos-III that have different functions

4.2.3 Antenna

The Tarvos-III is available in two hardware variants. The first variant provides the radio signal at the *ANT* pin, the same as Tarvos-I. Using this variant an external antenna matched to $50\ \Omega$ can be connected at this pin.

The second variant of the Tarvos-III offers an internal PCB antenna. Using this variant the *ANT* pin has no function and can be left open. No external antenna has to be connected.

4.3 Host firmware adaption

4.3.1 Command Mode

If you are not already using command mode we recommend to switch over to using command mode whenever your application can be adopted.

4.3.2 UART interface

The Tarvos-I uses 9600 Baud 8n1 and Tarvos-III uses 115200 Baud 8n1 by default. The Tarvos-I provides the command and transparent mode on the UART (transparent mode by default). The Tarvos-III provides the command mode and, using firmware version 3.0.0 or higher, the transparent mode (command mode by default).

The command interface on the UART uses of the same command structure. The UART command numbers itself and range of parameter values for a specific command may differ. Thus the command interface must be updated in the host controller. The source codes of the command interface for host integration are available in the Wireless Connectivity SDK on GitHub [1, 2, 3].

4.3.3 Radio interface

The radio interface of the Tarvos-III is compatible to that of Tarvos-I provided that the Tarvos-III is configured to use the 38.4 kbps or the 100 kbps profile with the radio settings as described in section 4.3.3.1. Using these radio settings, a higher radio range can be achieved compared to Tarvos-I owing to the higher default transmission power of Tarvos-III. The new radio profiles of the Tarvos-III are incompatible to the previous Tarvos generations, but offer various advantages. The radio profiles 3 and 4 allow a higher transmission range, where radio profile 5 provides a fast data transmission due to the increased data-rate. Furthermore, all the radio channels, that are used by the Tarvos-I, are also supported by the Tarvos-III.

Radio profile	Data rate (gross) [kbps]	Max payload size [Byte]	Radio channels
-	4.8	128 ²	101 - 111
-	10	128 ²	101 - 111
-	38.4	128 ²	101 - 111
-	76.8	128 ²	101 - 111
-	100	128 ²	101 - 111

Table 7: Radio profiles of the Tarvos-I

Radio profile	Data rate (gross) [kbps]	Max payload size [Byte]	Radio channels
0	38.4	128	1 - 139
2	100	128	1 - 139
3 (LRM)	10 (=0.625 kbps net)	48	1 - 139
4 (LRM)	20 (=2.5 kbps net)	64	1 - 139
5	400	224	1 - 139

Table 8: Radio profiles of the Tarvos-III

4.3.3.1 Radio compatibility settings

General: Tarvos-I firmware must be of version 2.1.0 or later.

Address mode: Tarvos-I supports only address mode 0 and 1.

Addresses: The Tarvos-III uses broadcast addresses by default, whereas the Tarvos-I uses 0 as default destination address and network ID.

Timings: The ACK timeouts must be adjusted to ensure interoperability between Tarvos-III and Tarvos-I, when using acknowledgments.

²The maximum payload size depends on the selected address mode.

4.3.4 Power saving modes

As the pins *SLEEP* and *TRX_DISABLE* of the Tarvos-I are no more available on the Tarvos-III, the low power modes are handled in a different way. The Tarvos-III does not enable the possibility to switch off the radio exclusively by a pin, but allows to enter into two different sleep modes via UART command. The Tarvos-III can be woken up again from any sleep mode using the *WAKE-UP* pin, which is at the location of the Tarvos-I *TRX_DISABLE* pin.

4.3.5 Boot mode

The Tarvos-III needs to be set to boot mode, if a firmware update is performed. To switch the boot mode on, the *BOOT* pin has to be handled by host controller. The firmware update uses the UART interface at the dedicated module UART pins. Both, Tarvos-I and Tarvos-III can be connected to the ACC PC tool to perform changes in user settings and a firmware update. Please refer to the product specific details for the firmware update.

4.3.6 Timings

Due to change of the underlying hardware, especially the CPU and radio IC, as well as the use of an RTOS (real time operating system) in the Tarvos-III, most of the timing parameters have slightly changed. Some were decreased, but others increased.

Due to the CPU change and the RTOS the UART RX of the module is now using a shift register of 32 bit instead of 8 bit, which will introduce (worst case) a latency of up to 3 additional byte durations (depending on the selected UART data rate) to each received UART message (command or transparent).

The host-application needs to take this changed timings into account to be able to use the Tarvos-III as replacement.

4.3.7 Transparent mode

Tarvos-III firmware 3.0.0 or newer is required for transparent mode support.

5 Tarvos-II to Tarvos-III

The Tarvos series is a family of 868 MHz proprietary radio modules. The Tarvos-II has been succeeded by the Tarvos-III, that reduces the power consumption, improves the blocking capabilities and provides new modulation techniques to boost the transmission range.

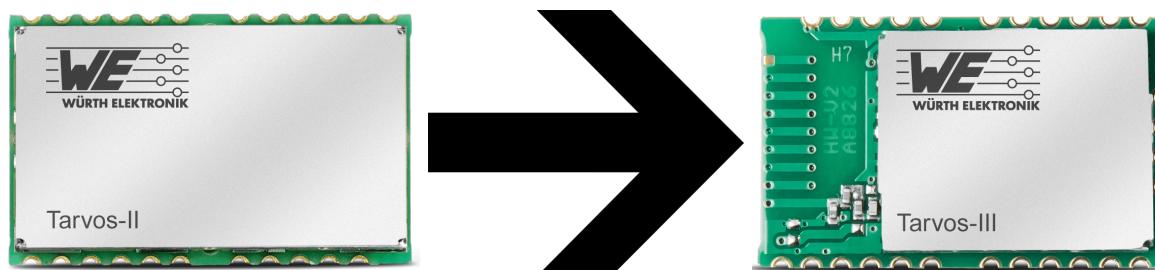


Figure 7: Tarvos-II to Tarvos-III

5.1 Summary

In comparison to the Tarvos-II, the Tarvos-III has 4 additional pins. Since the size and the remaining footprint of the two modules are the same, the Tarvos-II can be replaced by the Tarvos-III, if no underlying non-insulated copper area touches the 4 new pins of the Tarvos-III.

Besides of this, a few pin functions changed, such that the sleep mode for example has to be triggered in a different way on the Tarvos-III. Due to this, and due to new firmware functions the host firmware must be adapted to communicate with the Tarvos-III.

Radio compatibility of both modules is given in most operation modes.

If the host cannot be adopted it may not be possible to perform migration to a more recent product.

5.2 Hardware adaption

5.2.1 Foot print

Both Tarvos-II and Tarvos-III have the same dimensions of 17×27×4 mm with the pins located at the same positions. The only change in the footprint is the presence of 4 additional pins (i1-i4) of the JTAG interface on the Tarvos-III.

If a design has been made for Tarvos-II, the footprint matches the Tarvos-III, if no underlying non-insulated copper area touches the JTAG pins i1-i4 of the Tarvos-III.

In addition to the radio signal to an external antenna on pin 1, the Tarvos-III offers an alternative option to use the on-board PCB antenna. In order to ensure a comparable radio performance to Tarvos-I, it is recommended to use the variant with antenna pin to connect to an external antenna. The order code for Tarvos-III with external antenna is 260901118100x. The integrated PCB antenna with reduced efficiency is available using order code 260901108100x.

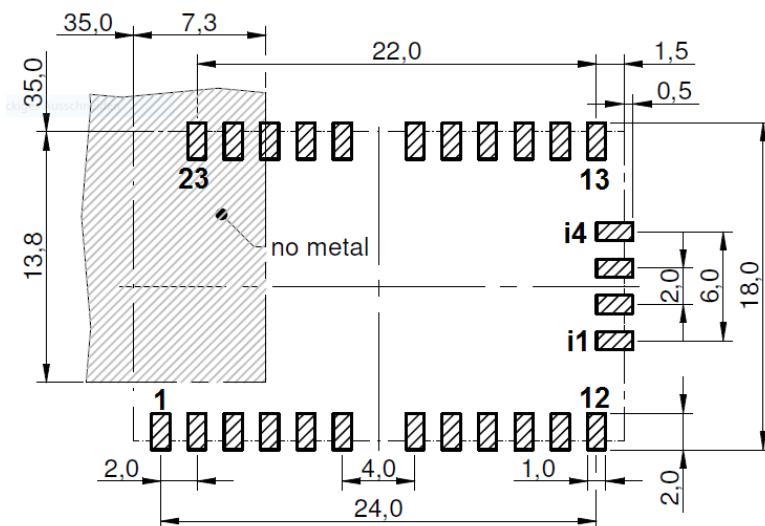


Figure 8: Universal footprint

5.2.2 Pinout

Although the Tarvos-II and Tarvos-III share the same footprint, some of the pin functions differ on the new hardware platform. The main pin functions such as power supply and UART use the same footprint pin on both modules:

Pin No.	Tarvos-II	Tarvos-III	Comment
1	<i>ANT</i>	<i>ANT</i>	Antenna pin connection
2	<i>GND</i>	<i>GND</i>	Ground
3	<i>VCC</i>	<i>VCC</i>	Supply voltage
4	<i>UTXD</i>	<i>UTXD</i>	UART TX
5	<i>URXD</i>	<i>URXD</i>	UART RX
6	<i>/RTS</i>	<i>/RTS</i>	UART <i>/RTS</i>
9	<i>RESERVED</i>	<i>RESERVED</i>	
10	<i>RESERVED</i>	<i>RESERVED</i>	
13	<i>RESERVED</i>	<i>RESERVED</i>	
16	<i>RESERVED</i>	<i>RESERVED</i>	
17	<i>RESERVED</i>	<i>RESERVED</i>	
18	<i>RESERVED</i>	<i>RESERVED</i>	
19	<i>/RESET</i>	<i>/RESET</i>	Reset pin
20	<i>/TX_IND</i>	<i>/TX_IND</i>	Pin indicating when a radio packet is transmitted
21	<i>/RX_IND</i>	<i>/RX_IND</i>	Pin indicating when a radio packet is received
22	<i>RESERVED</i>	<i>RESERVED</i>	
23	<i>GND</i>	<i>GND</i>	Ground

Table 9: Pins with same functions on both, Tarvos-II and Tarvos-III

But pins with special functions changed:

Pin No.	Tarvos-II	Tarvos-III	Comment
7	<i>/CTS</i>	<i>RESERVED</i>	<i>/CTS</i> function no longer supported.
8	<i>DATA_IND</i>	<i>RESERVED</i>	<i>DATA_IND</i> function no longer supported.
11	<i>DATA_REQ</i>	<i>RESERVED</i>	<i>DATA_REQ</i> function no longer supported.
12	<i>RESERVED</i>	<i>BOOT</i>	The <i>BOOT</i> pin is used on the Tarvos-III to set the module into boot mode, where the module's firmware can be updated using the ACC tool.
14	<i>TRX_DISABLE</i>	<i>WAKE-UP</i>	Pin function changed. The <i>WAKE-UP</i> pin is used to wake-up the module from sleep mode.
15	<i>/CONFIG</i>	<i>MODE_1</i>	The <i>MODE_1</i> pin is used on the Tarvos-III to determine the operating mode during boot. In contrast to the Tarvos-II, switching between transparent mode and command mode is not possible during runtime by using the <i>MODE_1</i> pin.

Table 10: Pins of the Tarvos-II and Tarvos-III that have different functions

5.2.3 Antenna

The Tarvos-III is available in two hardware variants. The first variant provides the radio signal at the *ANT* pin, the same as Tarvos-II. Using this variant an external antenna matched to $50\ \Omega$ can be connected at this pin.

The second variant of the Tarvos-III offers an internal PCB antenna. Using this variant the *ANT* pin has no function and can be left open. No external antenna has to be connected.

5.3 Host firmware adaption

5.3.1 Command Mode

If you are not already using command mode we recommend to switch over to using command mode whenever your application can be adopted.

5.3.2 UART interface

The Tarvos-II uses 9600 Baud 8n1 and Tarvos-III uses 115200 Baud 8n1 by default. The Tarvos-II provides the command and transparent mode on the UART (transparent mode by default). The Tarvos-III provides the command mode and, using firmware version 3.0.0 or higher, the transparent mode (command mode by default).

The command interface on the UART uses of the same command structure. The UART command numbers itself and range of parameter values for a specific command may differ. Thus the command interface of the Tarvos-III must be updated in the host controller. The source codes of the command interface for host integration are available in the Wireless Connectivity SDK on GitHub [1, 2, 3].

5.3.3 Radio interface

The radio interface of the Tarvos-III is compatible to that of Tarvos-II provided that the Tarvos-III is configured to use the 38.4 kbps or the 100 kbps profile with the radio settings as described in section 5.3.3.1. Using these radio settings, a higher radio range can be achieved compared to Tarvos-II owing to the higher default transmission power of Tarvos-III. The new radio profiles of the Tarvos-III are incompatible to the previous Tarvos generations, but offer various advantages. The radio profiles 3 and 4 allow a higher transmission range, where radio profile 5 provides a fast data transmission due to the increased data-rate.

All radio channels, that can be used by the Tarvos-II, are supported by the Tarvos-III, too.

Radio profile	Data rate (gross) [kbps]	Max payload size [Byte]	Radio channels
0	38.4	128	101 - 139
1	2.4	128	101 - 139
2	100	128	101 - 139

Table 11: Radio profiles of the Tarvos-II

Radio profile	Data rate (gross) [kbps]	Max payload size [Byte]	Radio channels
0	38.4	128	1 - 139
2	100	128	1 - 139
3 (LRM)	10 (=0.625 kbps net)	48	1 - 139
4 (LRM)	20 (=2.5 kbps net)	64	1 - 139
5	400	224	1 - 139

Table 12: Radio profiles of the Tarvos-III

5.3.3.1 Radio compatibility settings

General: Tarvos-II firmware must be of version 3.5.0 or later.

Address mode: Tarvos-II supports only address mode 0, 1 and 2.

Addresses: The Tarvos-III uses broadcast addresses by default, whereas the Tarvos-II uses 0 as default destination address and network ID.

Timings: The ACK timeouts must be adjusted to ensure interoperability between Tarvos-III and Tarvos-II, when using acknowledgments.

5.3.4 Power saving modes

As the pin *TRX_DISABLE* of the Tarvos-II is no more available on the Tarvos-III, the low power modes are handled in a different way. The Tarvos-III does not enable the possibility to switch off the radio exclusively by a pin, but allows to enter into two different sleep modes via UART command. The Tarvos-III can be woken up again from any sleep mode using the *WAKE-UP* pin, which is at the location of the Tarvos-II *TRX_DISABLE* pin.

5.3.5 Boot mode

The Tarvos-III needs to be set to boot mode, if a firmware update is performed. To switch the boot mode on, the *BOOT* pin has to be handled by host controller. The firmware update uses the UART interface at the dedicated module UART pins. Both, Tarvos-II and Tarvos-III can be connected to the ACC PC tool to perform changes in user settings and a firmware update. Please refer to the product specific details for the firmware update.

5.3.6 Timings

Due to change of the underlying hardware, especially the CPU and radio IC, as well as the use of an RTOS (real time operating system) in the Tarvos-III, most of the timing parameters have slightly changed. Some were decreased, but others increased.

Due to the CPU change and the RTOS the UART RX of the module is now using a shift register of 32 bit instead of 8 bit, which will introduce (worst case) a latency of up to 3 additional byte durations (depending on the selected UART data rate) to each received UART message (command or transparent).

The host-application needs to take this changed timings into account to be able to use the Tarvos-III as replacement.

5.3.7 Transparent mode

Tarvos-III firmware 3.0.0 or newer is required for transparent mode support.

6 Tarvos-III to Thebe-II

The Tarvos-III is a 868 MHz proprietary radio module with 14 dBm output power. For some applications the transmission range of it may not be sufficient. Therefore the 500 mW variant of it, the so called Thebe-II radio module, provides a high transmission range caused by its increased output power.

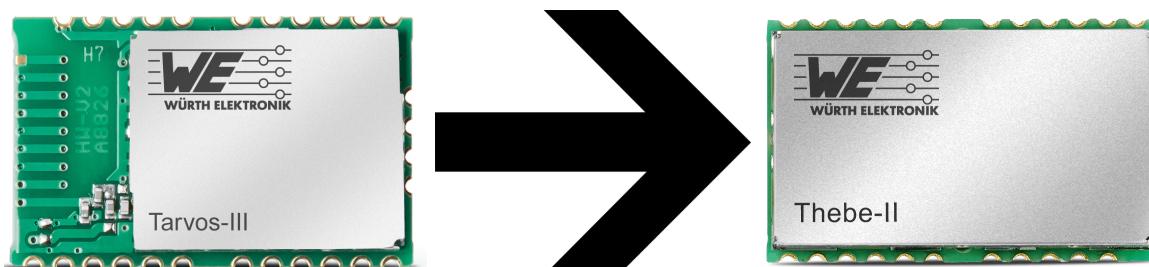


Figure 9: Tarvos-III to Thebe-II

6.1 Summary

Only the hardware variant of the Tarvos-III with external antenna pad can be replaced by the Thebe-II without any layout modification of the underlying PCB. However the power supply used on the PCB must be suited for the peaks in current during transmission caused by Thebe-II.

The radio settings (radio power, channel and profile) differ in both radio modules. Thus, if backward compatibility is required, matching radio settings must be configured by the host controller to allow radio compatible replacement of the Tarvos-III with an Thebe-II.

6.2 Hardware adaption

6.2.1 Foot print

The Tarvos-III and Thebe-II have the same footprint and size. Only the height increases from 3.2 to 3.8mm.

6.2.2 Pinout

There are two hardware variants of the Tarvos-III radio module available. One with an antenna pad *ANT* providing the radio signal for 50Ω matched external antenna connection, and one with integrated PCB antenna. The antenna pad of the variant with integrated PCB antenna does not have any function.

The Thebe-II radio module itself has only one hardware variant, the one with the antenna pad *ANT*.

Thus only the hardware variant of the Tarvos-III using an external antenna can be replaced by an Thebe-II without any redesign of the layout.

In case a Tarvos-III with integrated PCB antenna has been used, the RF path on the underlying PCB must be created first to solder an Thebe-II on it.

6.2.3 Power supply

As the Thebe-II has a higher power demand than Tarvos-III, please check how much power the power supply circuit can provide. Thebe-II needs up to 500 mA at 3.3 V when transmitting data with maximum transmission power.

6.3 Host firmware adaption

Both, the Tarvos-III and Thebe-II provide the same functions. Both use the same command set to control the radio module. Solely, the provided radio profiles, allowed radio channels and output powers differ.

6.3.1 Radio interface

The following points must be only considered, if backward compatibility of the radio is required.

The radio profiles and allowed radio channels differ in some points.

Radio profile	Data rate (gross) [kcps]	Max payload size [Byte]	Radio channels
0	38.4	128	1 - 139
2	100	128	2 - 138
3 (LRM)	10 (=0.625 kbps net)	48	1 - 139
4 (LRM)	20 (=2.5 kbps net)	64	1 - 139
5	400	224	46 - 94, 106

Table 13: Radio profiles of the Tarvos-III

Radio profile	Data rate (gross) [kbps]	Max payload size [Byte]	Radio channels
0	38.4	128	129 - 132
2	100	128	131
3 (LRM)	10 (= 0.625 kbps net)	48	129 - 132
4 (LRM)	20 (= 2.5 kbps net)	64	129 - 132
7	50	128	131

Table 14: Radio profiles of the Thebe-II

Caused by the high output power, the Thebe-II provides only a few radio channels in the so called "band P". To be radio compatible after a replacement of a Tarvos-III by an Thebe-II, the user's application must use a radio profile (i.e. 0, 2, 3 or 4) and radio channel (i.e. in the range of 129 to 132, with further restrictions by the radio profile itself) that is provided by both radio modules.

For example, if radio profile 0 with radio channel 129 are used, the Thebe-II and Tarvos-III are radio compatible.

Besides of that, the Thebe-II allows to use 12-26 dBm output power, where the Tarvos-III allows 0-14 dBm. Both are set to their maximum by default.

Due to EU laws (radio equipment directive, EN300220-2 annex B) the application must ensure to maintain the duty cycle for devices in band P (500 mW, around 869 MHz) at under 10 %.

7 Thebe-I to Thebe-II

The Thebe series is a family of 868 MHz proprietary radio modules with 500 mW output power to achieve high transmission ranges. The Thebe-I has been succeeded by the Thebe-II, that is significantly smaller in size and provides new modulation techniques to boost the transmission range.

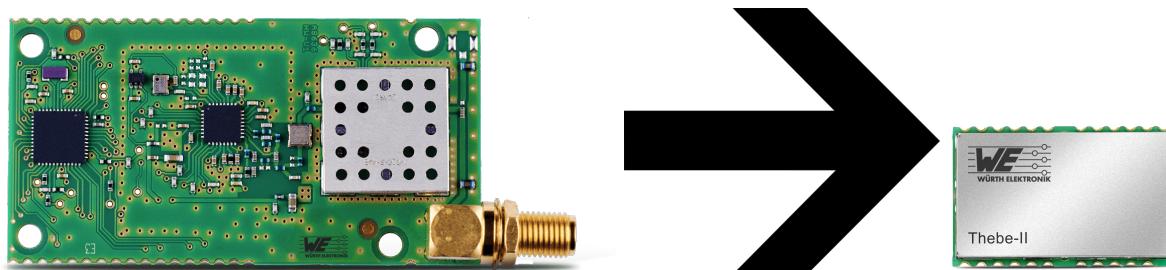


Figure 10: Thebe-I to Thebe-II

7.1 Summary

The Thebe-I and Thebe-II have different sizes and footprints. Thus, when replacing the Thebe-I by a Thebe-II, a redesign of the hardware is needed. Due to new firmware functions the host firmware must be adapted to communicate with the Thebe-II. The radio compatibility in between both modules is not given.

7.2 Hardware adaption

7.2.1 Foot print

The Thebe-I and Thebe-II have different footprints. Besides the number of pins, the size has been reduced significantly. The Thebe-I has dimensions of 33.5×76×14.5mm where as the Thebe-II has a significantly smaller form factor of 17×27×3.8 mm.

7.2.2 Pinout

Although the Thebe-I and Thebe-II have different footprints, the main pin functions such as power supply, reset and UART are retained. Only the following pin functions have changed. On Thebe-II

- the pins */CTS*, *DATA_IND*, *DATA_REQ*, *TRX_DISABLE* and */CONFIG* are no longer supported.
- the pin *BOOT* has been added, that can be used to set the Thebe-II into boot mode.
- the pin *WAKE-UP* has been added to wake-up the module from sleep mode.
- the pin *ANT* has been added to attach an external 50 Ω antenna.

7.2.3 Antenna

The Thebe-I has a SMA antenna connector integrated on the module to attach an external antenna. The Thebe-II on the other hand provides a module pin to connect any 50 Ω matched external antenna on the customer PCB.

7.3 Host firmware adaption

7.3.1 UART interface

The Thebe-I uses 9600 Baud 8n1 and Thebe-II uses 115200 Baud 8n1 by default. The Thebe-I provides the command and transparent mode on the UART (transparent mode by default). The Thebe-II provides the command mode and, using firmware version 3.0.0 or higher, the transparent mode (command mode by default).

The command interface on the UART uses of the same command structure. The UART command numbers itself and range of parameter values for a specific command may differ. Thus the command interface must be updated in the host controller. The source codes of the command interface for host integration are available in the Wireless Connectivity SDK on GitHub [1, 2, 3].

7.3.2 Radio interface

The radio profiles of the Thebe-I and Thebe-II are not compatible. Therefore it is not possible to have a communication from a Thebe-I to a Thebe-II or vice versa.

The radio profiles and channel frequencies differ. The new radio profiles of the Thebe-II offer various advantages. The radio profiles 3 and 4 allow a higher transmission range, where radio profile 2 provides a fast data transmission due to the increased data-rate.

Radio profile	Data rate (gross) [kbps]	Max payload size [Byte]	Radio channels
0	4.8	128	0 - 18
1	4.8	128	9
2	9.6	128	9
7	50	128	9

Table 15: Radio profiles of the Thebe-I

Radio profile	Data rate (gross) [kbps]	Max payload size [Byte]	Radio channels
0	38.4	128	129 - 132
2	100	128	131
3 (LRM)	10 (= 0.625 kbps net)	48	129 - 132
4 (LRM)	20 (= 2.5 kbps net)	64	129 - 132
7	50	128	131

Table 16: Radio profiles of the Thebe-II

7.3.3 Power saving modes

As the pin *TRX_DISABLE* of the Thebe-I is no more available on the Thebe-II, the low power modes are handled in a different way. The Thebe-II does not enable the possibility to switch off the radio exclusively by a pin, but offers the possibility to enter into two different sleep modes via UART command. The Thebe-II can be woken up again from any sleep mode using the *WAKE-UP* pin.

7.3.4 Boot mode

The Thebe-II needs to be set to boot mode, if a firmware update is performed. To switch the boot mode on, the *BOOT* pin has to be handled by host controller. The firmware update uses the UART interface at the dedicated module UART pins. Both, Thebe-I and Thebe-II can be connected to the ACC PC tool to perform changes in user settings and a firmware update. Please refer to the product specific details for the firmware update.

7.3.5 Transparent mode

Thebe-II firmware 3.0.0 or newer is required for transparent mode support.

8 Telesto-III to Themisto-I

The Telesto-III is a 915 MHz proprietary radio module with 14 dBm output power. For some applications the transmission range of it may not be sufficient. Therefore the 25 dBm variant of it, the so called Themisto-I radio module, provides a high transmission range caused by its increased output power.

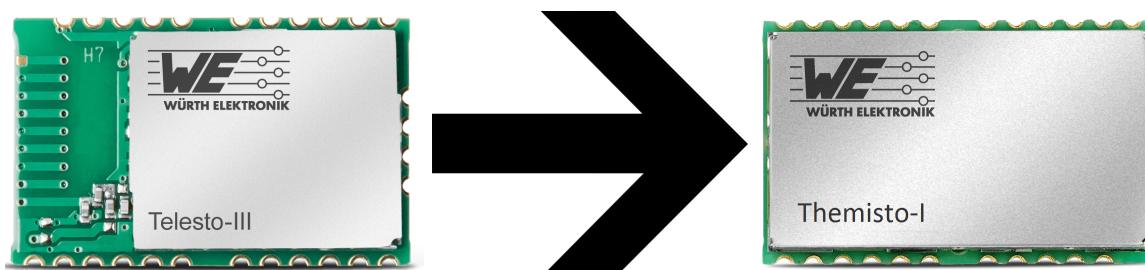


Figure 11: Telesto-III to Themisto-I

8.1 Summary

Only the hardware variant of the Telesto-III with external antenna pad can be replaced by the Themisto-I without any layout modification of the underlying PCB. However the power supply used on the PCB must be suited for the peaks in current during transmission caused by Themisto-I.

The radio settings (radio power and profile) differ in both radio modules. Thus, if backward compatibility is required, matching radio settings must be configured by the host controller to allow radio compatible replacement of the Telesto-III with a Themisto-I.

8.2 Hardware adaption

8.2.1 Foot print

The Telesto-III and Themisto-I have the same footprint and size. Only the height increases from 3.2 to 3.8mm.

8.2.2 Pinout

There are two hardware variants of the Telesto-III radio module available. One with an antenna pad *ANT* providing the radio signal for 50Ω matched external antenna connection, and one with integrated PCB antenna. The antenna pad of the variant with integrated PCB antenna does not have any function.

The Themisto-I radio module itself has only one hardware variant, the one with the antenna pad *ANT*.

Thus only the hardware variant of the Telesto-III using an external antenna can be replaced by a Themisto-I without any redesign of the layout.

In case a Telesto-III with integrated PCB antenna has been used, the RF path on the underlying PCB must be created first to solder a Themisto-I on it.

8.2.3 Power supply

As the Themisto-I has a higher power demand than Telesto-III, please check how much power the power supply circuit can provide. Themisto-I needs up to 400 mA at 3.3 V when transmitting data with maximum transmission power.

8.3 Host firmware adaption

Both, the Telesto-III and Themisto-I provide the same functions. Both use the same command set to control the radio module. Solely, the provided radio profiles and output powers differ.

8.3.1 Radio interface

The following points must be only considered, if backward compatibility of the radio is required.

Telesto-III does not provide radio profile 8 and 9, so far. Thus if radio profile 6 is used, both, Telesto-III and Themisto-I are radio compatible.

The profiles 8 and 9 are long range profiles that provide much higher range at the cost of throughput.

Radio profile	Data rate (gross) [kcps]	Max payload size [Byte]	Radio channels
6	400	224	201-251

Table 17: Radio profiles of the Telesto-III

Radio profile	Data rate (gross) [kbps]	Max payload size [Byte]	Radio channels
6	400	224	201-251
8 (LRM)	480 (= 240 kbps net)	224	201-251
9 (LRM)	480 (= 30 kbps net)	224	201-251

Table 18: Radio profiles of the Themisto-I

Besides of that, the Themisto-I allows to use 12-25 dBm output power, where the Telesto-III allows 0-14 dBm. Both are set to their maximum by default.

9 Metis-I to Metis-II

The Metis series is a family of 868 MHz wireless M-BUS radio modules. The Metis-I has been succeeded by the Metis-II, that scores with lower sleep, transmission and receptions currents, as well with a cleaner frequency spectrum and better blocking capabilities.

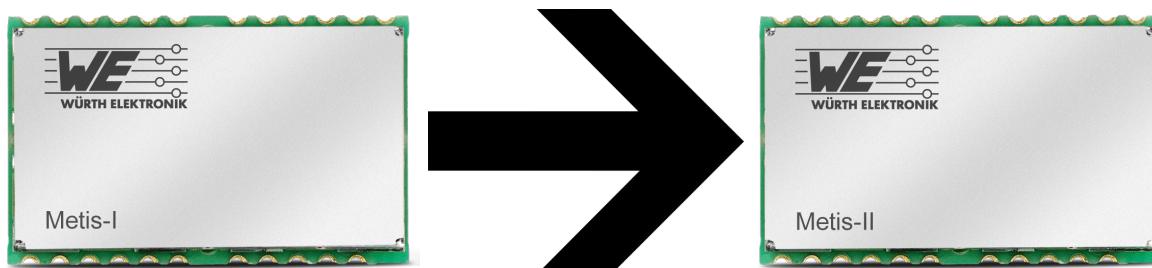


Figure 12: Metis-I to Metis-II

9.1 Summary

As the footprint, pinout and firmware functions coincide, the Metis-I can be replaced by Metis-II without any modification to the hardware design or the host controller firmware.

10 Proteus-I to Proteus-II

The Proteus series is a family of Bluetooth® LE radio modules. The Proteus-I has been succeeded by the Proteus-II, that scores with additional Bluetooth® 5.0 related features.

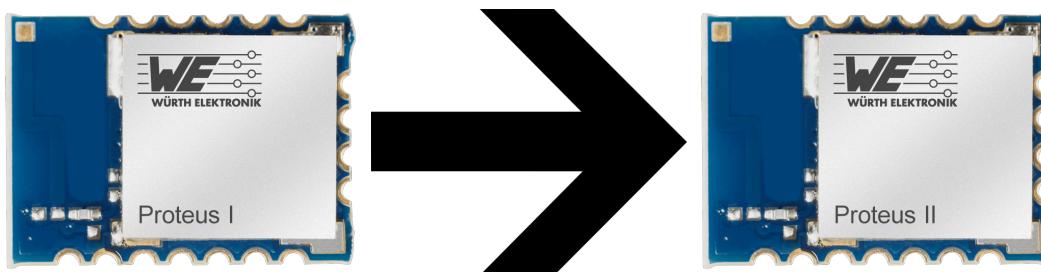


Figure 13: Proteus-I to Proteus-II

10.1 Summary

As the footprints and pinouts coincide and the Proteus-II includes all features of Proteus-I, the Proteus-I can be replaced by Proteus-II without any change in the hardware design. If needed, the host controller firmware can be extended by including the following new Bluetooth® 5.0 functions of the Proteus-II:

- Option to enable the high throughput mode with 4 times the original throughput and data packets of 964 bytes.
- New commands to set up the radio to 2 Mbit data rate mode.

Both, the Proteus-I and Proteus-II are available with integrated PCB-antenna or antenna pin to connect an external antenna. Depending on the Proteus-I variant, the right Proteus-II variant shall be chosen to achieve same ranges.

As the Bluetooth® module is replaced, a new Bluetooth® listing is mandatory.

11 Proteus-II to Proteus-III

The Proteus series is a family of Bluetooth® LE radio modules. The Proteus-I has been succeeded by the Proteus-II, that scores with additional Bluetooth® 5.0 related features. Both are succeeded by the Bluetooth® 5.1 radio module Proteus-III.

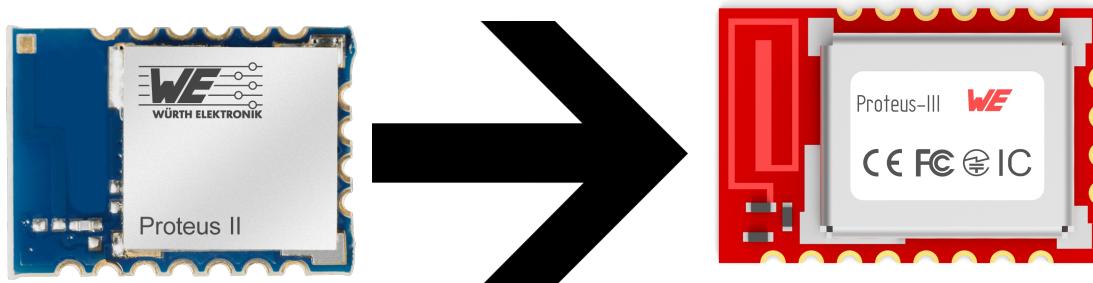


Figure 14: Proteus-II to Proteus-III

11.1 Summary

The Proteus-III has been designed in a way that the footprint and pinout matches the one of the Proteus-II. Under certain conditions the Proteus-II can be replaced by the Proteus-III without hardware modification of the base PCB.

The firmware of the Proteus-III includes additional features and improvement of existing features. Therefore, the host firmware shall be updated if new or improved functions of the Proteus-III shall be used.

Some default parameters have been adjusted. Further some timings may change due to the chipset and Bluetooth® stack update.

As the Bluetooth® module is replaced, a new Bluetooth® listing is mandatory.

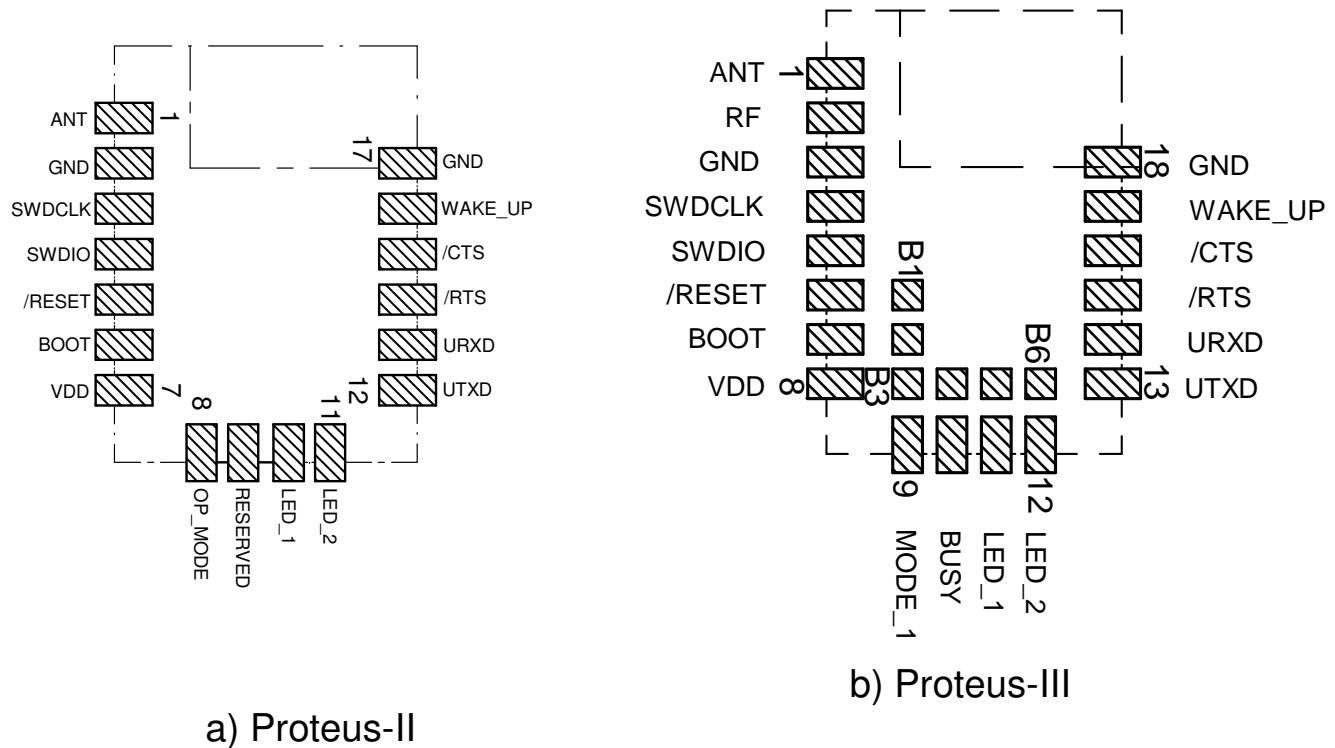


Figure 15: Pinout

11.2 Hardware adaption

11.2.1 Foot print

In comparison to the Proteus-II, the Proteus-III has one additional pin on the left edge, which increases the length to 12×8×2 mm. Six more additional pins have been added on the bottom side of the Proteus-III.

If a design has been made for Proteus-II, the footprint matches the Proteus-III, if no underlying non-insulated copper area touches the new *B1-B6* and *ANT* pins of the Proteus-III. Further this match is only positive for the Proteus-I-II with external antenna.

Due to the increase size of the Proteus-III by 1 mm, the base PCB must be large enough to solder the new module.

11.2.2 Pinout

Although the Proteus-II and Proteus-III share the same footprint, some of the pin functions differ on the new hardware platform.

Pin No	Proteus-II	Pin No	Proteus-III	Comment
2	<i>GND</i>	3	<i>GND</i>	Ground
3	<i>SWDCLK</i>	4	<i>SWDCLK</i>	Serial wire clock (SWD Interface).
4	<i>SWDIO</i>	5	<i>SWDIO</i>	Serial wire input/output (SWD Interface).
5	<i>/RESET</i>	6	<i>/RESET</i>	Reset pin.
6	<i>BOOT</i>	7	<i>BOOT</i>	Boot pin.
7	<i>VDD</i>	8	<i>VDD</i>	Supply voltage
8	<i>OP_MODE</i>	9	<i>MODE_1</i>	Operation mode pin to switch between Command Mode and Peripheral only Mode.
10	<i>LED_1</i>	11	<i>LED_1</i>	Indicates the module state.
11	<i>LED_2</i>	12	<i>LED_2</i>	Indicates the module state.
12	<i>UTXD</i>	13	<i>UTXD</i>	UART Transmission.
13	<i>URXD</i>	14	<i>URXD</i>	UART Reception.
14	<i>/RTS</i>	15	<i>/RTS</i>	UART /RTS signal.
15	<i>/CTS</i>	16	<i>/CTS</i>	UART /CTS signal.
16	<i>WAKE_UP</i>	17	<i>WAKE_UP</i>	Wake-up will allow leaving the system-off mode or re-enabling the UART.
17	<i>GND</i>	18	<i>GND</i>	Ground

Table 19: Pins with same functions on both, Proteus-II and Proteus-III

Pin No	Proteus-II	Pin No	Proteus-III	Comment
-	-	1	<i>ANT</i>	Connection to the internal PCB antenna.
1	<i>ANT</i>	2	<i>RF</i>	Pin providing the radio signal.
9	RESERVED	10	<i>BUSY</i>	Indicates on the Proteus-III if module is busy with data transmission when using Peripheral only Mode.
-	-	B1	RESERVED	Pin for remote GPIO access.
-	-	B2	RESERVED	Pin for remote GPIO access.
-	-	B3	RESERVED	Pin for remote GPIO access.
-	-	B4	RESERVED	Pin for remote GPIO access.
-	-	B5	RESERVED	Pin for remote GPIO access.
-	-	B6	RESERVED	Pin for remote GPIO access.

Table 20: Pins of the Proteus-II and Proteus-III, that have different functions

Besides the differences in the antenna configuration that is addressed in the following chapter, the only function change is the presence of the *BUSY* pin on the Proteus-III. This pin indicates, when the module is ready for radio transmission. If the pin level is high, the radio module is busy.

In Proteus-II the pin number of the *BUSY* pin has been marked as "reserved, do not con-

nect". Thus, it's possible to replace a Proteus-II by Proteus-III without forcing an increased current consumption at this pin.

11.2.3 Antenna

The Proteus-II has been available in two variants. Variant one is providing the radio signal on the *ANT* pin to connect an external antenna. Variant two uses the internal PCB antenna, where the *ANT* pin has no function. In contrast, the Proteus-III combines both variants. The *RF* pin provides the radio signal, where the *ANT* pin can be used to access the internal PCB antenna. This means, that either an external antenna can be connected to the *RF* pin, or a shortcut between the *RF* and *ANT* pin must be created on the base PCB to use the internal PCB antenna.

For using the Proteus-III integrated PCB antenna, please refer to the reference design in the Proteus-III user manual.

11.3 Host firmware adaption

In comparison to the firmware of the Proteus-II, the Proteus-III contains new Bluetooth® features as well as improved features, that already existed on Proteus-II.

New features are:

- Commands to switch Proteus-III GPIOs via remote access.
- Option to enable connection setup and data transmission in long range mode (LE Coded).
- Option to receive beacons (iBeacon, Eddystone beacon) from other devices than Proteus radio modules.
- Option to choose between different contents of the advertising packet.
- Additional security modes for pairing: LescPasskey mode (enter a secure generated pass key) and LescNumComp mode (compare two secure generated pass keys).

The following features changed:

- Extended user setting `RF_ConnectionTiming` to allow finer selection of the timing behavior.
- Extended user setting `RF_ScanTiming` to allow finer selection of the timing behavior.
- Replaced the user settings `UART_Flags` and `UART_BaudrateIndex` by `UART_ConfigIndex`.

In case one of the above features is used in host controller firmware, it must be updated. Please refer to the Wireless Connectivity SDK [1, 3] for radio module drivers and examples in C-code.

12 Proteus-II to Proteus-e

The Proteus series is a family of Bluetooth® LE radio modules. Proteus-I has been the first Bluetooth® LE radio module of Würth Elektronik eiSos that has been followed by Proteus-II and Proteus-III, which introduced new Bluetooth® LE features.

Proteus-e is the first Bluetooth® LE radio module of the so called "eco-line" characterized by reduced size, features and cost.

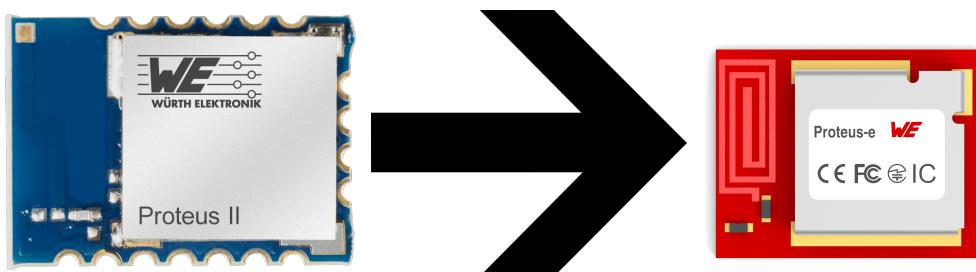


Figure 16: Proteus-II to Proteus-e

12.1 Summary

In comparison to the Proteus-II, the Proteus-e provides a reduced size and a smaller footprint without edge castellation. In case the Proteus-II is replaced by a Proteus-e, a new hardware design must be done, but due to the reduced size, it fits into the previously used space on the PCB.

A few basic functions, like FOTA or central functions, have been removed in the Proteus-e firmware. In case these are not needed by the application, the Proteus-e can be controlled by the same UART commands. Only a few adaptions must be done to the host controller firmware to support the updated feature set.

As the Bluetooth® module is replaced, a new Bluetooth® listing is mandatory.

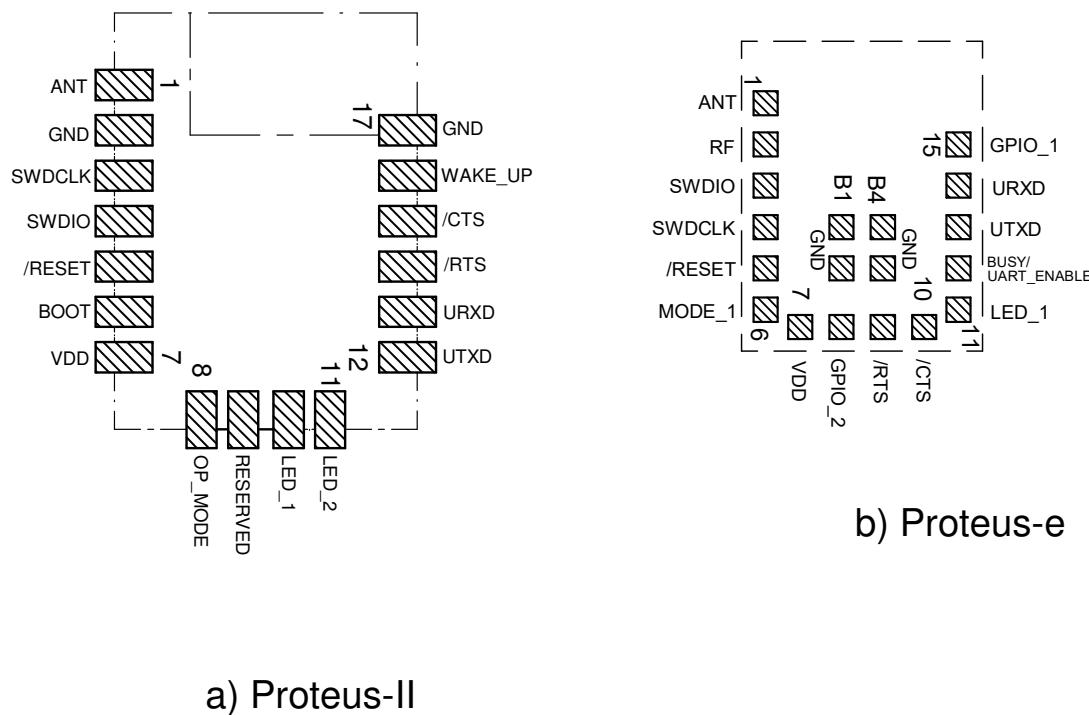


Figure 17: Pinout

12.2 Hardware adaption

12.2.1 Foot print

In comparison to the Proteus-II, the Proteus-e has a similar but different footprint. Due to the reduced size of the Proteus-e (9×7×2 mm), the Proteus-e matches the space reserved for a Proteus-II (11×8×2 mm) design-in.

12.2.2 Pinout

Although the Proteus-II and Proteus-e have a different footprint, most of the pin functions are the same on the new hardware platform.

Pin No	Proteus-II	Pin No	Proteus-e	Comment
3	<i>SWDCLK</i>	4	<i>SWDCLK</i>	Serial wire clock (SWD Interface).
4	<i>SWDIO</i>	3	<i>SWDIO</i>	Serial wire input/output (SWD Interface).
5	<i>/RESET</i>	5	<i>/RESET</i>	Reset pin.
7	<i>VDD</i>	7	<i>VDD</i>	Supply voltage.
8	<i>OP_MODE</i>	6	<i>MODE_1</i>	Operation mode pin to switch between Command Mode and Peripheral only Mode (Transparent mode).
10	<i>LED_1</i>	11	<i>LED_1</i>	Indicates the module state.
12	<i>UTXD</i>	13	<i>UTXD</i>	UART Transmission.
13	<i>URXD</i>	14	<i>URXD</i>	UART Reception.
14	<i>/RTS</i>	9	<i>/RTS</i>	UART /RTS signal.
15	<i>/CTS</i>	10	<i>/CTS</i>	UART /CTS signal.
17	<i>GND</i>	B1-B4	<i>GND</i>	Ground.

Table 21: Pins with same functions on both, Proteus-II and Proteus-e

Pin No	Proteus-II	Pin No	Proteus-e	Comment
-	-	1	<i>ANT</i>	Connection to the internal PCB antenna.
1	<i>ANT</i>	2	<i>RF</i>	Pin providing the radio signal.
16	<i>WAKE-UP</i>	10	<i>BUSY/UART_ENABLE</i>	This pin is shared on the Proteus-e serving several functions.
-	-	15	<i>GPIO_1</i>	Pin for remote GPIO access.
-	-	8	<i>GPIO_2</i>	Pin for remote GPIO access.
6	<i>BOOT</i>	-	-	FOTA has been removed.
11	<i>LED_2</i>	-	-	<i>LED_2</i> has been removed.

Table 22: Pins of the Proteus-II and Proteus-e, that have different functions

Besides the differences in the antenna configuration that is addressed in the following chapter, there are two major changes in the usage of the module pins:

1. The state indication of the module is done only by one LED on Proteus-e.
2. The new pin *BUSY/UART_ENABLE* is a shared pin. In Transparent Mode it indicates when the module is busy with data transmission. In Command Mode it can be used to wake-up the module and enable the UART.

12.2.3 Antenna

The Proteus-II has been available in two variants. Variant one is providing the radio signal on the *ANT* pin to connect an external antenna. Variant two uses the internal PCB antenna, where the *ANT* pin has no function. In contrast, the Proteus-e combines both variants. The

RF pin provides the radio signal, where the *ANT* pin can be used to access the internal PCB antenna. This means, that either an external antenna can be connected to the *RF* pin, or a short cut between the *RF* and *ANT* pin must be created on the base PCB to use the internal PCB antenna.

For using the Proteus-e integrated PCB antenna, please refer to the reference design in the Proteus-e user manual. It's mandatory to respect the trace designs suggested in the user manual to keep the FCC and IC compliance.

12.3 Host firmware adaption

In comparison to the firmware of the Proteus-II, the Proteus-e has an updated function set. Most functions on Proteus-e and Proteus-II are the same and can be controlled by the same set of UART commands. The differences are as follows:

Removed features are:

- Firmware update over the air (FOTA) is not supported on Proteus-e.
- Central functions (like scanning, connection setup initiation) are not supported on Proteus-e.
- The so called "High throughput mode" is not supported on Proteus-e.
- Bluetooth® LE feature data length extension (DLE) that allows a higher throughput on Proteus-II.

In case one of these features is needed by the application, a replacement of Proteus-II by Proteus-e cannot be done.

Changed features are:

- Number of bonded devices reduced to 8 on Proteus-e (Proteus-II supports 32).
- User setting `RF_SecFlagsPerOnly` has been removed. Both, the Command and Transparent Mode, use the user setting `RF_SecFlags` now. Thus, in factory state the Proteus-e provides an open Bluetooth® LE connection in Transparent Mode (Proteus-II uses static pass key encryption in Transparent Mode in factory state).
- State indication is done only on `LED_1` on Proteus-e (Proteus-II uses `LED_1` and `LED_2`).
- Beacon functions replaced by more advanced functions on Proteus-e.
- User setting `RF_ScanTiming` replaced by `RF_AdvertisingInterval` on Proteus-e.
- User setting `RF_ConnectionTiming` replaced by `RF_ConnectionInterval` on Proteus-e.
- Replaced the user settings `UART_Flags` and `UART_BaudrateIndex` by `UART_ConfigIndex` on Proteus-e.
- Content of advertising and scan response packet changed on Proteus-e. Central device must run active scan to detect UUID of the Proteus-e. Device name of up to 26 bytes can be placed in the advertising packet on Proteus-e.

In case one of the above features is used in host controller firmware, it must be updated. Please refer to the Wireless Connectivity SDK [1, 3] for radio module drivers and examples in C-code.

13 Proteus-III to Proteus-e

The Proteus series is a family of Bluetooth® LE radio modules. Proteus-I has been the first Bluetooth® LE radio module of Würth Elektronik eiSos that has been followed by Proteus-II and Proteus-III, which introduced new Bluetooth® LE features.

Proteus-e is the first Bluetooth® LE radio module of the so called "eco-line" characterized by reduced size, features and cost.

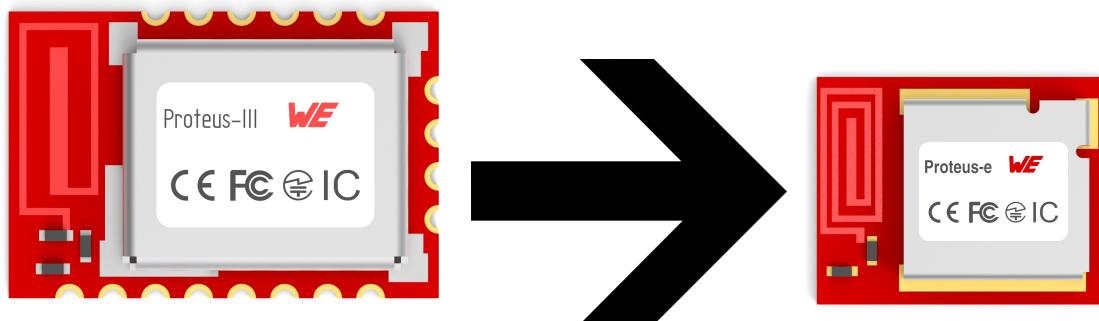


Figure 18: Proteus-III to Proteus-e

13.1 Summary

In comparison to the Proteus-III, the Proteus-e provides a reduced size and a smaller footprint without edge castellation. In case the Proteus-III is replaced by a Proteus-e, a new hardware design must be done, but due to the reduced size, it fits into the previously used space on the PCB.

Various basic functions, like FOTA or central functions, have been removed in the Proteus-e firmware. In case these are not needed by the application, the Proteus-e can be controlled by the same UART commands. Only a few adaptions must be done to the host controller firmware to support the updated feature set.

As the Bluetooth® module is replaced, a new Bluetooth® listing is mandatory.

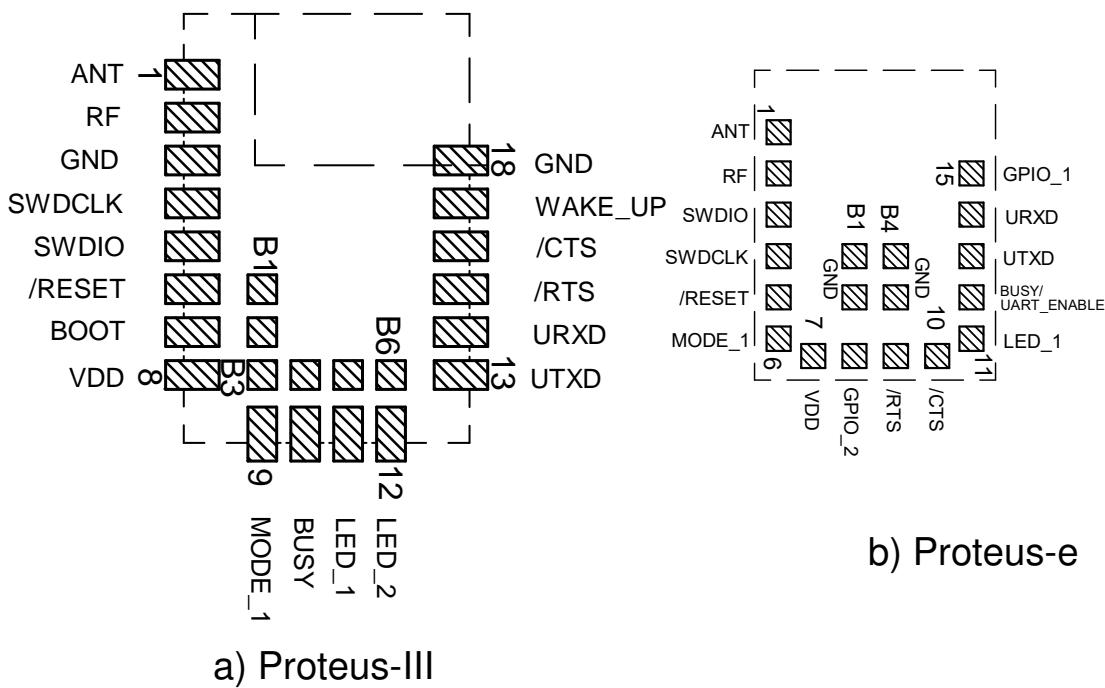


Figure 19: Pinout

13.2 Hardware adaption

13.2.1 Foot print

In comparison to the Proteus-III, the Proteus-e has a similar but different footprint. Due to the reduced size of the Proteus-e (9×7×2 mm), the Proteus-e matches the space reserved for a Proteus-III (12×8×2 mm) design-in.

13.2.2 Pinout

Although the Proteus-III and Proteus-e have a different footprint, most of the pin functions are the same on the new hardware platform.

Pin No	Proteus-III	Pin No	Proteus-e	Comment
1	<i>ANT</i>	1	<i>ANT</i>	Connection to the internal PCB antenna.
2	<i>RF</i>	2	<i>RF</i>	Pin providing the radio signal.
4	<i>SWDCLK</i>	4	<i>SWDCLK</i>	Serial wire clock (SWD Interface).
5	<i>SWDIO</i>	3	<i>SWDIO</i>	Serial wire input/output (SWD Interface).
6	<i>/RESET</i>	5	<i>/RESET</i>	Reset pin.
8	<i>VDD</i>	7	<i>VDD</i>	Supply voltage.
9	<i>MODE_1</i>	6	<i>MODE_1</i>	Operation mode pin to switch between Command Mode and Peripheral only Mode (Transparent mode).
11	<i>LED_1</i>	11	<i>LED_1</i>	Indicates the module state.
13	<i>UTXD</i>	13	<i>UTXD</i>	UART Transmission.
14	<i>URXD</i>	14	<i>URXD</i>	UART Reception.
15	<i>/RTS</i>	9	<i>/RTS</i>	UART /RTS signal.
16	<i>/CTS</i>	10	<i>/CTS</i>	UART /CTS signal.
18	<i>GND</i>	B1-B4	<i>GND</i>	Ground.

Table 23: Pins with same functions on both, Proteus-III and Proteus-e

Pin No	Proteus-III	Pin No	Proteus-e	Comment
10	<i>BUSY</i>	10	<i>BUSY/UART_ENABLE</i>	This pin is shared on the Proteus-e serving several functions.
17	<i>WAKE-UP</i>	10	<i>BUSY/UART_ENABLE</i>	This pin is shared on the Proteus-e serving several functions.
B1	<i>B1</i>	15	<i>GPIO_1</i>	Pin for remote GPIO access.
B2	<i>B2</i>	8	<i>GPIO_2</i>	Pin for remote GPIO access.
B3-B4	<i>B3-B4</i>	-	-	Remote GPIO function removed.
B5-B6	<i>B5-B6</i>	-	-	Pins removed.
7	<i>BOOT</i>	-	-	FOTA has been removed.
12	<i>LED_2</i>	-	-	<i>LED_2</i> has been removed.

Table 24: Pins of the Proteus-III and Proteus-e, that have different functions

There are three major changes in the usage of the module pins:

1. The state indication of the module is done only by one LED on Proteus-e.
2. The new pin *BUSY/UART_ENABLE* is a shared pin. In Transparent Mode it indicates when the module is busy with data transmission. In Command Mode it can be used to wake-up the module and enable the UART. It replaces the pin *BUSY* and *WAKE-UP* on Proteus-III.

3. The remote GPIO function is no longer available on the B-pins, but on the *GPIO_1* and *GPIO_2* pins.

13.3 Host firmware adaption

In comparison to the firmware of the Proteus-III, the Proteus-e has an updated function set. Most functions on Proteus-e and Proteus-III are the same and can be controlled by the same set of UART commands. The differences are as follows:

Removed features are:

- The LE coded phy (long range mode) is not supported on the Proteus-e.
- Firmware update over the air (FOTA) is not supported on Proteus-e.
- Central functions (like scanning, connection setup initiation) are not supported on Proteus-e.
- LESC (Low energy secure connections) are not supported on the Proteus-e.
- Remote GPIO pins cannot be used as PWM pins on Proteus-e.
- The so called "High throughput mode" is not supported on Proteus-e.
- Bluetooth® LE feature data length extension (DLE) that allows a higher throughput on Proteus-III.

In case one of these features is needed by the application, a replacement of Proteus-III by Proteus-e cannot be done.

Changed features are:

- Number of bonded devices reduced to 8 on Proteus-e (Proteus-III supports 32).
- User setting `RF_SecFlagsPerOnly` has been removed. Both, the Command and Transparent Mode, use the user setting `RF_SecFlags` now. Thus, in factory state the Proteus-e provides an open Bluetooth® LE connection in Transparent Mode (Proteus-III uses static pass key encryption in Transparent Mode in factory state).
- The number of pins, that can be used as remote GPIOs, is reduced to 2 (Proteus-III supports 6).
- State indication is done only on *LED_1* on Proteus-e (Proteus-III uses *LED_1* and *LED_2*).
- Beacon functions replaced by more advanced functions to allow highest flexibility in the Beacon's contents on Proteus-e.
- User setting `RF_ScanTiming` replaced by `RF_AdvertisingInterval` on Proteus-e.
- User setting `RF_ConnectionTiming` replaced by `RF_ConnectionInterval` on Proteus-e.
- Content of advertising and scan response packet changed on Proteus-e. Central device must run active scan to detect UUID of the Proteus-e. Device name of up to 26 bytes can be placed in the advertising packet on Proteus-e.
- User setting `RF_AdvertisingFlags` replaced by `RF_AdvertisingData` and `RF_ScanResponseData`.

In case one of the above features is used in host controller firmware, it must be updated. Please refer to the Wireless Connectivity SDK [1, 3] for radio module drivers and examples in C-code.

14 AMB2520 to Thalassa

The AMB2520 is a 2.4 GHz proprietary radio module. It has been replaced by the Thalassa, that is still conform with the current radio regulations.

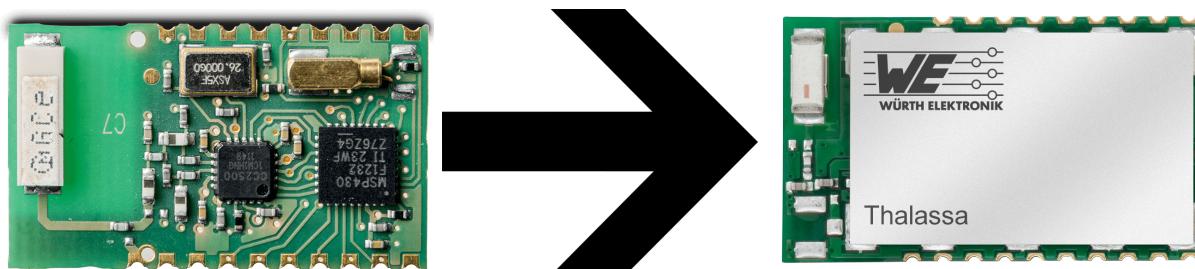


Figure 20: AMB2520 to Thalassa

14.1 Summary

In comparison to the AMB2520, the Thalassa contains one additional pin i1. If this pin does not touch any underlying non-insulated copper area, the AMB2520 can be exchanged by the Thalassa without any modification.

14.2 Hardware adaption

14.2.1 Foot print

Both, the AMB2520 and Thalassa have the same dimensions of 16×27.5×3.2 mm with the pins located at the same positions. The only change in the footprint is the presence of one additional pin (i1) of the JTAG interface on the Thalassa.

If a design has been made for AMB2520, the footprint matches the Thalassa, if no underlying non-insulated copper area touches the JTAG pin i1 of the Thalassa.

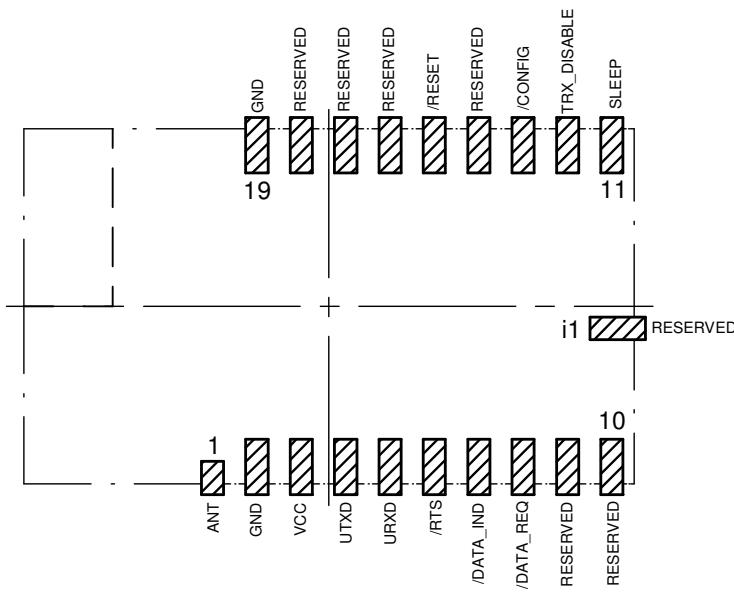


Figure 21: Universal footprint

14.2.2 Pinout

The pinout of both, the AMB2520 and Thalassa is the same.

14.2.3 Antenna

The Thalassa is available in two hardware variants. The first variant provides the radio signal at the *ANT* pin, the same as the AMB2520. Using this variant an external antenna matched to $50\ \Omega$ can be connected at this pin.

The second variant of the Thalassa offers an internal PCB antenna. Using this variant the *ANT* pin has no function and can be left open. No external antenna has to be connected.

14.3 Host firmware adaption

The firmware of both, the AMB2520 and Thalassa is the same. Thus there is no need to update the host controller's firmware.

15 References

- [1] Würth Elektronik. Application note 8 - Wireless connectivity SDK. <http://www.we-online.com/ANR008>.
- [2] Würth Elektronik. Wireless Connectivity SDK for Raspberry Pi - Radio module drivers in C-code. <https://github.com/WurthElektronik/WirelessConnectivity-SDK>.
- [3] Würth Elektronik. Wireless Connectivity SDK for STM32 - Radio module drivers in C-code. https://github.com/WurthElektronik/WirelessConnectivity-SDK_STM32.

16 Important notes

The following conditions apply to all goods within the wireless connectivity product range of Würth Elektronik eiSos GmbH & Co. KG:

16.1 General customer responsibility

Some goods within the product range of Würth Elektronik eiSos GmbH & Co. KG contain statements regarding general suitability for certain application areas. These statements about suitability are based on our knowledge and experience of typical requirements concerning the areas, serve as general guidance and cannot be estimated as binding statements about the suitability for a customer application. The responsibility for the applicability and use in a particular customer design is always solely within the authority of the customer. Due to this fact, it is up to the customer to evaluate, where appropriate to investigate and to decide whether the device with the specific product characteristics described in the product specification is valid and suitable for the respective customer application or not. Accordingly, the customer is cautioned to verify that the documentation is current before placing orders.

16.2 Customer responsibility related to specific, in particular safety-relevant applications

It has to be clearly pointed out that the possibility of a malfunction of electronic components or failure before the end of the usual lifetime cannot be completely eliminated in the current state of the art, even if the products are operated within the range of the specifications. The same statement is valid for all software sourcecode and firmware parts contained in or used with or for products in the wireless connectivity and sensor product range of Würth Elektronik eiSos GmbH & Co. KG. In certain customer applications requiring a high level of safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health, it must be ensured by most advanced technological aid of suitable design of the customer application that no injury or damage is caused to third parties in the event of malfunction or failure of an electronic component.

16.3 Best care and attention

Any product-specific data sheets, manuals, application notes, PCN's, warnings and cautions must be strictly observed in the most recent versions and matching to the products firmware revisions. This documents can be downloaded from the product specific sections on the wireless connectivity homepage.

16.4 Customer support for product specifications

Some products within the product range may contain substances, which are subject to restrictions in certain jurisdictions in order to serve specific technical requirements. Necessary information is available on request. In this case, the field sales engineer or the internal sales person in charge should be contacted who will be happy to support in this matter.

16.5 Product improvements

Due to constant product improvement, product specifications may change from time to time. As a standard reporting procedure of the Product Change Notification (PCN) according to the JEDEC-Standard, we inform about major changes. In case of further queries regarding the PCN, the field sales engineer, the internal sales person or the technical support team in charge should be contacted. The basic responsibility of the customer as per section 16.1 and 16.2 remains unaffected. All wireless connectivity module driver software "wireless connectivity SDK" and its source codes as well as all PC software tools are not subject to the Product Change Notification information process.

16.6 Product life cycle

Due to technical progress and economical evaluation we also reserve the right to discontinue production and delivery of products. As a standard reporting procedure of the Product Termination Notification (PTN) according to the JEDEC-Standard we will inform at an early stage about inevitable product discontinuance. According to this, we cannot ensure that all products within our product range will always be available. Therefore, it needs to be verified with the field sales engineer or the internal sales person in charge about the current product availability expectancy before or when the product for application design-in disposal is considered. The approach named above does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.

16.7 Property rights

All the rights for contractual products produced by Würth Elektronik eiSos GmbH & Co. KG on the basis of ideas, development contracts as well as models or templates that are subject to copyright, patent or commercial protection supplied to the customer will remain with Würth Elektronik eiSos GmbH & Co. KG. Würth Elektronik eiSos GmbH & Co. KG does not warrant or represent that any license, either expressed or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, application, or process in which Würth Elektronik eiSos GmbH & Co. KG components or services are used.

16.8 General terms and conditions

Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms and Conditions of Würth Elektronik eiSos Group", last version available at www.we-online.com.

17 Legal notice

17.1 Exclusion of liability

Würth Elektronik eiSos GmbH & Co. KG considers the information in this document to be correct at the time of publication. However, Würth Elektronik eiSos GmbH & Co. KG reserves the right to modify the information such as technical specifications or functions of its products or discontinue the production of these products or the support of one of these products without any written announcement or notification to customers. The customer must make sure that the information used corresponds to the latest published information. Würth Elektronik eiSos GmbH & Co. KG does not assume any liability for the use of its products. Würth Elektronik eiSos GmbH & Co. KG does not grant licenses for its patent rights or for any other of its intellectual property rights or third-party rights.

Notwithstanding anything above, Würth Elektronik eiSos GmbH & Co. KG makes no representations and/or warranties of any kind for the provided information related to their accuracy, correctness, completeness, usage of the products and/or usability for customer applications. Information published by Würth Elektronik eiSos GmbH & Co. KG regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof.

17.2 Suitability in customer applications

The customer bears the responsibility for compliance of systems or units, in which Würth Elektronik eiSos GmbH & Co. KG products are integrated, with applicable legal regulations. Customer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of Würth Elektronik eiSos GmbH & Co. KG components in its applications, notwithstanding any applications-related information or support that may be provided by Würth Elektronik eiSos GmbH & Co. KG. Customer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences lessen the likelihood of failures that might cause harm and take appropriate remedial actions. The customer will fully indemnify Würth Elektronik eiSos GmbH & Co. KG and its representatives against any damages arising out of the use of any Würth Elektronik eiSos GmbH & Co. KG components in safety-critical applications.

17.3 Trademarks

AMBER wireless is a registered trademark of Würth Elektronik eiSos GmbH & Co. KG. All other trademarks, registered trademarks, and product names are the exclusive property of the respective owners.

17.4 Usage restriction

Würth Elektronik eiSos GmbH & Co. KG products have been designed and developed for usage in general electronic equipment only. This product is not authorized for use in equipment where a higher safety standard and reliability standard is especially required or where a failure of the product is reasonably expected to cause severe personal injury or death,

unless the parties have executed an agreement specifically governing such use. Moreover, Würth Elektronik eiSos GmbH & Co. KG products are neither designed nor intended for use in areas such as military, aerospace, aviation, nuclear control, submarine, transportation (automotive control, train control, ship control), transportation signal, disaster prevention, medical, public information network etc. Würth Elektronik eiSos GmbH & Co. KG must be informed about the intent of such usage before the design-in stage. In addition, sufficient reliability evaluation checks for safety must be performed on every electronic component, which is used in electrical circuits that require high safety and reliability function or performance. By using Würth Elektronik eiSos GmbH & Co. KG products, the customer agrees to these terms and conditions.

18 License terms

This License Terms will take effect upon the purchase and usage of the Würth Elektronik eiSos GmbH & Co. KG wireless connectivity products. You hereby agree that this license terms is applicable to the product and the incorporated software, firmware and source codes (collectively, "Software") made available by Würth Elektronik eiSos in any form, including but not limited to binary, executable or source code form.

The software included in any Würth Elektronik eiSos wireless connectivity product is purchased to you on the condition that you accept the terms and conditions of this license terms. You agree to comply with all provisions under this license terms.

18.1 Limited license

Würth Elektronik eiSos hereby grants you a limited, non-exclusive, non-transferable and royalty-free license to use the software and under the conditions that will be set forth in this license terms. You are free to use the provided Software only in connection with one of the products from Würth Elektronik eiSos to the extent described in this license terms. You are entitled to change or alter the source code for the sole purpose of creating an application embedding the Würth Elektronik eiSos wireless connectivity product. The transfer of the source code to third parties is allowed to the sole extent that the source code is used by such third parties in connection with our product or another hardware provided by Würth Elektronik eiSos under strict adherence of this license terms. Würth Elektronik eiSos will not assume any liability for the usage of the incorporated software and the source code. You are not entitled to transfer the source code in any form to third parties without prior written consent of Würth Elektronik eiSos.

You are not allowed to reproduce, translate, reverse engineer, decompile, disassemble or create derivative works of the incorporated Software and the source code in whole or in part. No more extensive rights to use and exploit the products are granted to you.

18.2 Usage and obligations

The responsibility for the applicability and use of the Würth Elektronik eiSos wireless connectivity product with the incorporated Firmware in a particular customer design is always solely within the authority of the customer. Due to this fact, it is up to you to evaluate and investigate, where appropriate, and to decide whether the device with the specific product characteristics described in the product specification is valid and suitable for your respective application or not.

You are responsible for using the Würth Elektronik eiSos wireless connectivity product with the incorporated Firmware in compliance with all applicable product liability and product safety laws. You acknowledge to minimize the risk of loss and harm to individuals and bear the risk for failure leading to personal injury or death due to your usage of the product.

Würth Elektronik eiSos' products with the incorporated Firmware are not authorized for use in safety-critical applications, or where a failure of the product is reasonably expected to cause severe personal injury or death. Moreover, Würth Elektronik eiSos' products with the incorporated Firmware are neither designed nor intended for use in areas such as military, aerospace, aviation, nuclear control, submarine, transportation (automotive control, train control, ship control), transportation signal, disaster prevention, medical, public information network etc. You shall inform Würth Elektronik eiSos about the intent of such usage before design-in stage. In certain customer applications requiring a very high level of safety and in which the malfunction or failure of an electronic component could endanger human life or

health, you must ensure to have all necessary expertise in the safety and regulatory ramifications of your applications. You acknowledge and agree that you are solely responsible for all legal, regulatory and safety-related requirements concerning your products and any use of Würth Elektronik eiSos' products with the incorporated Firmware in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by Würth Elektronik eiSos. YOU SHALL INDEMNIFY WÜRTH ELEKTRONIK EIROS AGAINST ANY DAMAGES ARISING OUT OF THE USE OF WÜRTH ELEKTRONIK EIROS' PRODUCTS WITH THE INCORPORATED FIRMWARE IN SUCH SAFETY-CRITICAL APPLICATIONS.

18.3 Ownership

The incorporated Firmware created by Würth Elektronik eiSos is and will remain the exclusive property of Würth Elektronik eiSos.

18.4 Firmware update(s)

You have the opportunity to request the current and actual Firmware for a bought wireless connectivity Product within the time of warranty. However, Würth Elektronik eiSos has no obligation to update a modules firmware in their production facilities, but can offer this as a service on request. The upload of firmware updates falls within your responsibility, e.g. via ACC or another software for firmware updates. Firmware updates will not be communicated automatically. It is within your responsibility to check the current version of a firmware in the latest version of the product manual on our website. The revision table in the product manual provides all necessary information about firmware updates. There is no right to be provided with binary files, so called "Firmware images", those could be flashed through JTAG, SWD, Spi-Bi-Wire, SPI or similar interfaces.

18.5 Disclaimer of warranty

THE FIRMWARE IS PROVIDED "AS IS". YOU ACKNOWLEDGE THAT WÜRTH ELEKTRONIK EIROS MAKES NO REPRESENTATIONS AND WARRANTIES OF ANY KIND RELATED TO, BUT NOT LIMITED TO THE NON-INFRINGEMENT OF THIRD PARTIES' INTELLECTUAL PROPERTY RIGHTS OR THE MERCHANTABILITY OR FITNESS FOR YOUR INTENDED PURPOSE OR USAGE. WÜRTH ELEKTRONIK EIROS DOES NOT WARRANT OR REPRESENT THAT ANY LICENSE, EITHER EXPRESS OR IMPLIED, IS GRANTED UNDER ANY PATENT RIGHT, COPYRIGHT, MASK WORK RIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT RELATING TO ANY COMBINATION, MACHINE, OR PROCESS IN WHICH THE WÜRTH ELEKTRONIK EIROS' PRODUCT WITH THE INCORPORATED FIRMWARE IS USED. INFORMATION PUBLISHED BY WÜRTH ELEKTRONIK EIROS REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE A LICENSE FROM WÜRTH ELEKTRONIK EIROS TO USE SUCH PRODUCTS OR SERVICES OR A WARRANTY OR ENDORSEMENT THEREOF.

18.6 Limitation of liability

Any liability not expressly provided by Würth Elektronik eiSos shall be disclaimed.

You agree to hold us harmless from any third-party claims related to your usage of the Würth Elektronik eiSos' products with the incorporated Firmware, software and source code. Würth

Elektronik eiSos disclaims any liability for any alteration, development created by you or your customers as well as for any combination with other products.

18.7 Applicable law and jurisdiction

Applicable law to this license terms shall be the laws of the Federal Republic of Germany. Any dispute, claim or controversy arising out of or relating to this license terms shall be resolved and finally settled by the court competent for the location of Würth Elektronik eiSos' registered office.

18.8 Severability clause

If a provision of this license terms is or becomes invalid, unenforceable or null and void, this shall not affect the remaining provisions of the terms. The parties shall replace any such provisions with new valid provisions that most closely approximate the purpose of the terms.

18.9 Miscellaneous

Würth Elektronik eiSos reserves the right at any time to change this terms at its own discretion. It is your responsibility to check at Würth Elektronik eiSos homepage for any updates. Your continued usage of the products will be deemed as the acceptance of the change.

We recommend you to be updated about the status of new firmware and software, which is available on our website or in our data sheet and manual, and to implement new software in your device where appropriate.

By ordering a wireless connectivity product, you accept this license terms in all terms.

List of Figures

1	Thadeus to Tarvos-III	8
2	Universal footprint	9
3	Tarvos to Tarvos-III	13
4	Pinout	14
	a Tarvos	14
	b Tarvos-III	14
5	Tarvos-I to Tarvos-III	18
6	Universal footprint	19
7	Tarvos-II to Tarvos-III	24
8	Universal footprint	25
9	Tarvos-III to Thebe-II	30
10	Thebe-I to Thebe-II	33
11	Telesto-III to Themisto-I	36
12	Metis-I to Metis-II	38
13	Proteus-I to Proteus-II	39
14	Proteus-II to Proteus-III	40
15	Pinout	41
	a Proteus-II	41
	b Proteus-III	41
16	Proteus-II to Proteus-e	44
17	Pinout	45
	a Proteus-II	45
	b Proteus-e	45
18	Proteus-III to Proteus-e	49
19	Pinout	50
	a Proteus-III	50
	b Proteus-e	50
20	AMB2520 to Thalassa	53
21	Universal footprint	54

List of Tables

1	Pins with same functions on both, Thadeus and Tarvos-III	10
2	Pins of the Thadeus and Tarvos-III that have different functions	11
3	Radio profiles of the Tarvos	16
4	Radio profiles of the Tarvos-III	16
5	Pins with same functions on both, Tarvos-I and Tarvos-III	20
6	Pins of the Tarvos-I and Tarvos-III that have different functions	21
7	Radio profiles of the Tarvos-I	22
8	Radio profiles of the Tarvos-III	22
9	Pins with same functions on both, Tarvos-II and Tarvos-III	26
10	Pins of the Tarvos-II and Tarvos-III that have different functions	26
11	Radio profiles of the Tarvos-II	27
12	Radio profiles of the Tarvos-III	28
13	Radio profiles of the Tarvos-III	31
14	Radio profiles of the Thebe-II	32
15	Radio profiles of the Thebe-I	34
16	Radio profiles of the Thebe-II	35

17	Radio profiles of the Telesto-III	37
18	Radio profiles of the Themisto-I	37
19	Pins with same functions on both, Proteus-II and Proteus-III	42
20	Pins of the Proteus-II and Proteus-III, that have different functions	42
21	Pins with same functions on both, Proteus-II and Proteus-e	46
22	Pins of the Proteus-II and Proteus-e, that have different functions	46
23	Pins with same functions on both, Proteus-III and Proteus-e	51
24	Pins of the Proteus-III and Proteus-e, that have different functions	51

more than you expect

**Internet
of Things**

**Monitoring
& Control**

**Automated Meter
Reading**

Contact:

Würth Elektronik eiSos GmbH & Co. KG
Division Wireless Connectivity & Sensors

Max-Eyth-Straße 1
74638 Waldenburg
Germany

Tel.: +49 651 99355-0
Fax.: +49 651 99355-69
www.we-online.com/wireless-connectivity

