W=

WURTH ELEKTRONIK

ANROOQO9 PRroTEUS-III

ADVANCED DEVELOPER GUIDE

VERSION 1.0

JANUARY 3, 2020



The content of this document is property of Wiirth Elektronik eiSos and con-
tains confidential information. It is not intended to be distributed to any third

party without the written consent of Wirth Elektronik eiSos.



Revision history

Manual | FW HW
) . . Notes Date
version | version | version
« Initial version January
1.0 1.0 1.2 2020
ANROO09 Proteus-Ill version 1.0 ©January 2020

www.we-online.com/wireless-connectivity 1


http://www.we-online.com/wireless-connectivity

Abbreviations and abstract

Abbreviation | Name Description
®
BTMAC Bluetooth .conform MAC address of the module used
on the RF-interface.
CS Checksum Byte wise XOR combination of the preceding fields.
DTM Direct test mode Mode to test Bluetooth® specific RF settings.
Generic Access The GAP provides a basic level of functionality that all
GAP . ® A )
Profile Bluetooth® devices must implement.
I/0 Input/output Pinout description.
LPM Low power mode | Mode for efficient power consumption.
MAC MAC address of the module.
MTU MaX|mt.Jm. . Maximum packet size of the Bluetooth® connection.
transmission unit
Payload The intended message in a frame / package.
RF Radio frequency Describes wireless transmission.
Receive Signal The RSSI indicates the strength of the RF signal. Its
RSSI . . . . ; .
Strength Indicator | value is always printed in two’s complement notation.
Soft device Operating system used by the nRF52 chip.
Universal
UART Asynghronous Allows the serial communication with the module.
Receiver
Transmitter
All numbers beginning with 0x are hexadecimal
[HEX] Oxhh Hexadecimal numbers. All other numbers are decimal, unless
stated otherwise.

ANROO09 Proteus-Ill version 1.0
www.we-online.com/wireless-connectivity 2

©January 2020



http://www.we-online.com/wireless-connectivity

Contents

1 Introduction 5
2 Prerequisites 5
3 Bluetooth profiles 5
4 AMBER SPP-like profile 6
4.1  Generic Access Protocol (GAP) . . . . . . . . . . 6
4.2  Generic Attribute Profile (GATT) . . . . . . . . . . . . o . 7
421 Datalengthextension. . . .. ... ... .. ... ... ....... 7
4.2.2 Companyidentifier . . . . ... ... ... ... . ... .. 7
423 UUID . . ... e 7
4.2.4 Primary Service . . . . . . . 8
4241 Characteristics . . . . . ... ... ... . ... ... . ... . 8
4.3 Bluetooth LE packetcontent . . . . . .. .. ... ... ... ... ..... 9
43.1 RF-Packetformat . .. ... ... ... ... .. ... . ... ... 9
4.3.2 Advertising packetcontent . . . . ... ... oL 9
4.3.3 Scanresponse packetcontent . . . .. ... ... ... L. 9
5 App development 10
5.1 Connection setup messagecharts . . . . . ... .. ... ... ....... 10
5.1.1 No security and authentication . . . . .. ... ... ... ...... 10
51.2 Justworkspairing . . . . . .. ... 10
5.1.3 Staticpasskeypairing . . . ... ... ... o 11
5.1.4 Lescpasskeypairing . . . . . . . . . ... 12
5.1.5 Lesc numeric comparisonpairing . . . . . . .. ... ... 13
5.2 Enable notifications . . . . . . .. .. 15
53 Remote GPIOcontrol . .. ... ... . .. ... 16
5.3.1 CMD_GPIO_REMOTE_WRITECONFIG_REQ . . . ... ... ... 16

5.3.1.1 Example: Configure two GPIOs of the connected remote device
tooutputhigh . . . . ... .. ... . 17
5.3.2 CMD_GPIO_REMOTE_READCONFIG_ REQ ... ......... 18

5.3.2.1 Example: Read the current GPIO configuration of the connect-
edremotedevice . . . . . . ... 18
5.3.3 CMD_GPIO_REMOTE WRITE_REQ. . . . ... ... ... .... 20
5.3.3.1 Example: Set a remote output GPIOtolow . .. ... ... .. 21
5.3.4 CMD_GPIO_REMOTE_READ_REQ . ... ... .. ... ..... 22
5.3.4.1 Example: Read the values of remote GPIOs . . . . . . ... .. 22
5.3.5 CMD_GPIO_LOCAL WRITE_IND . . ... ... ... ....... 23

5.3.5.1 Example: GPIOs of the remote device have been written by its
localhost . . ... ... . . . .. ... 23
5.4 Bonding developmenthints . . . . . ... ... oo oL 24
5.5 Nordic Bluetooth LE UART example appasbase . . . ... ... ... ... 24
6 Custom firmware development 26
6.1  Custom firmware services of Wirth Elektronik eiSos . . . . . .. ... ... 26
ANROOQ9 Proteus-Ill version 1.0 ©January 2020

www.we-online.com/wireless-connectivity 3


http://www.we-online.com/wireless-connectivity

6.2  Important information for custom firmware development . . . . . ... . .. 27
6.2.1 How to adapt Nordic Semiconductor SDK examples to run on the

Proteus-lll hardware? . . . . . . . . . . . ... .. oL 31
6.2.2 Firmware developmenthints . . . . ... ... ... ... ... ... 33
7 Important notes 35
7.1 General customer responsibility . . . . . .. ... oL oo 35
7.2  Customer responsibility related to specific, in particular safety-relevant ap-
plications . . . . . . . 35
7.3 Bestcareandattention . ... ... ... ... ... L. 35
7.4  Customer support for product specifications . . . . . . ... ... ... ... 35
7.5 Productimprovements . . . . .. .. ... 36
7.6 Productlifecycle . . . . . . . . . . 36
7.7 Propertyrights . . . . . . . . . 36
7.8 Generalterms andconditions . . . . . . ... ... L. 36
8 Legal notice 37
8.1 Exclusionof liability . . . . . .. . .. ... .. 37
8.2  Suitability in customer applications . . . . .. ... oL 37
8.3 Trademarks . . . . . . . . e 37
8.4 Usagerestriction . . . . . . . . . . . e 37
9 License terms 39
9.1 Limitedlicense . . . . . . . . .. ... 39
9.2 Usageandobligations . . . . . ... ... . . ... 39
9.3 Ownership. . . . . . . 40
9.4 Firmwareupdate(s) . . . . . . . . . 40
9.5 Disclaimerofwarranty . . . . . ... ... ... 40
9.6 Limitationofliability . . . . . ... ... ... ... ... L 41
9.7 Applicable law and jurisdiction . . . . . . ... ... oL 41
9.8 Severabilityclause . .. .. ... ... .. 41
9.9 Miscellaneous . . . . . . . . L. 41
ANROOQ9 Proteus-Ill version 1.0 ©January 2020

www.we-online.com/wireless-connectivity 4


http://www.we-online.com/wireless-connectivity

1 Introduction

This document provides all the information necessary to integrate the Proteus-I1l Bluetooth® LE
module into user application. The standard features available with the default firmware are
described in detail. Further, key parameters of the Bluetooth® LE specifications necessary
to ensure interoperability with Bluetooth® compliant third party devices are listed and de-
scribed in detail.

Besides of this, valuable hints to start an app development as well as to start a custom
firmware development on base of the Proteus-lll hardware are given in the subsequen-
t chapters.

2 Prerequisites

A basic understanding of the Bluetooth® LE standard as well as application development
background on the desired platform is necessary to fully understand this document.

The manual of Proteus-lll contains basic information of the standard firmware and the soft-
ware interfaces provided by the application. Please read this manual carefully and complete-
ly before using its information.

Wiirth Elektronik eiSos does not provide general support towards the Bluetooth® standard
or smart device app development (independent of the platform).

3 Bluetooth profiles

Bluetooth® specification uses so called "Profiles" to specify the general behavior of a Bluetooth®

enabled device to communicate with other Bluetooth® devices. Profiles are built on the
Bluetooth® standard to clearly define what kind of data is transmitted. The device’s appli-
cation determines which profiles it must support, from hands-free capabilities to heart rate
sensors to alerts and more.

A device may support more than one profile. For two devices to be compatible, they must
support the same Bluetooth® LE profile.

The Proteus-lll module ships with the so called AMBER SPP-like (Serial Port Profile) pro-
file created based on the Generic Attribute profile (GATT). This profile aims at providing a
Bluetooth® LE based wireless replacement to a serial cable connection.

ANROOQ9 Proteus-Ill version 1.0 ©January 2020
www.we-online.com/wireless-connectivity 5


http://www.we-online.com/wireless-connectivity

4 AMBER SPP-like profile

This section contains the key data of the AMBER SPP-like profile. Each device in the net-
work must support this profile to communicate with a Proteus-I11l device with the default SPP-
like firmware. Customer applications may support and/or provide other profiles, services or
interfaces.

4.1 Generic Access Protocol (GAP)

The main purpose of this protocol is to describe the parameters of lower layers of the
Bluetooth® stack including discovery, scanning and security capabilities. The Proteus-IlI
GAP specifications are listed below:

» Appearance as specified in the user setting RF_Appearance.
* Device name as specified in the user setting RF_DeviceName.
» Device address (6 Byte MAC) of type "public", see user setting FS_BTMAC (0x0018DAXXXXXX)

» Timings:

— See user settings RF_ScanTiming and RF_ScanFlags for scan and advertising re-
lated timing parameters like

= Advertising interval

« Scan window

= Scan interval

« Connection setup timeout

— See user setting RF_ConnectionTiming for connection related timing parameters
like

* Minimum connection interval

» Maximum connection interval

= Connection supervision timeout
— See user setting RF_TXPower for TX power value.
— See user setting RF_SecFlags for security settings.
— Slave latency: 0

— Peripheral requests for connection parameters update if central has differing con-
nection parameters

= Connection parameters update (initial): 5s
= Connection parameters update (periodic): 10s
= Connection parameters update counter before connection shut down: 3

ANROOQ9 Proteus-Ill version 1.0 ©January 2020
www.we-online.com/wireless-connectivity 6



http://www.we-online.com/wireless-connectivity

4.2 Generic Attribute Profile (GATT)

The directions RX and TX in this document are described from the perspective
of a central role, see description below.

4.2.1 Data length extension

The Proteus-Ill supports up to 243 Byte of payload data. To use this feature the data length
extension has to be requested by the central device. In this case, the GATT MTU size must
be 243 Byte payload + 1 Byte AMBER header + 3 Byte NUS header, which is 247 Byte in
total.

The PDU size should be 243 Byte payload + 1 Byte AMBER header + 3 Byte NUS header +
4 Byte Bluetooth® LE header, which is 251 Byte in total.

Check also the message charts in chapter 5 to see the MTU request in the
connection setup process.

4.2.2 Company identifier

The Bluetooth® listed company identifier of Wiirth Elektronik eiSos (formerly Amber wireless
GmbH) is 0x031A (794,..).

4.2.3 UUID

The Proteus-1ll uses a 128Bit UUID of type "Vendor specific". The base UUID is adapted by
the 16Bit UUIDs of the primary service and the corresponding characteristics.

These UUIDs are only allowed to be used when one of the two corresponding devices is a
Proteus-1ll module or contains a Proteus-lll module of Wirth Elektronik eiSos which have
pre-installed firmware.

Service 16Bit UUID | Full UUID

Proteus-Ill base 6E400000-C352-11E5-953D-0002A5D5C51B

Proteus-Ill primary service | 0x0001 6E400001-C352-11E5-953D-0002A5D5C51B

TX_CHARACTERISTIC 0x0002 6E400002-C352-11E5-953D-0002A5D5C51B

RX_CHARACTERISTIC 0x0003 6E400003-C352-11E5-953D-0002A5D5C51B
ANROO09 Proteus-Ill version 1.0 ©January 2020

www.we-online.com/wireless-connectivity 7



http://www.we-online.com/wireless-connectivity

4.2.4 Primary Service

4.2.4.1 Characteristics

By means of the user setting RF_SPPBaseUUID the base UUID can be adapted

to generate a custom profile.

« The first characteristic of the Proteus-Ill primary service is TX_CHARACTERISTIC:

— The data is sent from central/client to peripheral/server using a write command.

— Server:

= Has to allow a write command as well as a write without response command.

— Client:

» Use write command to send data to the server.

» The second characteristic of the Proteus-Ill primary service is RX_CHARACTERISTIC:

— The data is sent from peripheral/server to central/client using a notification.

— Server:

= Has to allow/enable notifications. Notify client/central when sending data.
« When the notification enable bit is written in the ¢cCD (Client Characteristic

Configuration Descriptor) by the central, the peripheral prints a CMD_CHANNELOPEN_RSP

on the UART to signalize that the peripheral can send data to the central now.
The central can only write this bit, when the configured security level of the
peripheral has been met.

— Client:

» Has to enable notifications.

The permissions to access the characteristics is determined by the security mode of the

module.

Proteus-IlI
security mode

CCCD read

CCCD write, RX attribute read/write, TX
attribute read/write

no protection, open

No security link no protection, open link

no protection, open require encryption, but no MITM protection

Just works link (Mode 1, Level 2)

, no protection, open require encryption and MITM protection

Static pass key link (Mode 1, Level 3)
no protection, open require encryption, MITM protection, lesc

Lesc Pass key link (Mode 1, Level 4)
Lesc numeric no protection, open require encryption, MITM protection, lesc

comparison link (Mode 1, Level 4)

ANRO0O09 Proteus-IIl version 1.0

www.we-online.com/wireless-connectivity

©January 2020
8



http://www.we-online.com/wireless-connectivity

4.3 Bluetooth LE packet content
4.3.1 RF-Packet format

To identify the type of data transmitted via Bluetooth® LE, the data protocol on the radio
contains a 1 Byte packet header. Thus, the standard Bluetooth® LE payload has to match
the following format to be understood by the Proteus-Il:

Bluetooth® LE Payload
AMBER Header | Payload
1 Byte dgr Bytes

Table 1: RF-packet format

The maximum payload size ®g7 is 243 Bytes.
The AMBER Header has to be one of the following types:

0x01: RF_HEADER_TYPE_DATA: The following bytes contain the user payload data.

0x02: RF_HEADER_TYPE_CMD: The following bytes contain command data. See chapter 5.3
for more details.

Other: Other headers are reserved for future use and packets with this header are currently
discarded.
4.3.2 Advertising packet content
The standard Proteus-IIl advertising packet contains the following data:
 Advertising data flags
» The UUID (128 Bit Proteus-Ill primary service UUID) of the AMBER SPP-like profile
» TXPower level (1 Byte in two’s complement notation, only in command mode)
 Proteus-Ill device name as Shortened Local Name (up to 5 Bytes in command mode,
up to 8 Bytes in peripheral only mode)
4.3.3 Scan response packet content

The scan response packet is requested during scan if active scanning is enabled. The
standard Proteus-Ill scan response packet contains the following data:

» Manufacturer data (up to 20 Bytes) in RF-packet format (see Table 1) using the com-
pany identifier. This manufacturer data is used to realize the Beacon feature.

ANROOQ9 Proteus-Ill version 1.0 ©January 2020
www.we-online.com/wireless-connectivity 9



http://www.we-online.com/wireless-connectivity

5 App development

The definition of the AMBER SPP-like profile (see section 4) in combination with the mes-
sage charts of chapter 5 are sufficient to develop custom apps for mobile devices. To imple-
ment this profile from scratch fundamental knowledge of app development as well as of the
Bluetooth® LE standard is required.

5.1 Connection setup message charts

The following message charts show which steps are run during the connection setup pro-
cess between two Proteus-Ill modules. To implement the central role in an app to connect
to the Proteus-Ill peripheral the steps of the central device shown below have to be repro-
duced.

More detailed information can be found in the message chart chapter of Nordic Semicon-
ductor’s documentation of the Softdevice S140 V7.0.1.

5.1.1 No security and authentication

If the Proteus-Ill peripheral does not use any security settings, we just have to connect to
it. After connecting a MTU request is necessary to allow a higher payload size. After the
discovery of the characteristics, the notification of the RX characteristic has to be enabled.

UART Central | Bluetooth Peripheral UART

CMD_CONNECT_REQ
r

CMD_CONNECT_CNF

- connection establishment
CMD_CONNECT_IND < > CMD—CONNECT—I”}D
< mtu request
mtu response
-
discovery
- -
notification enable CMD CHANNELOPEN RSP
CMD_CHAMNNELOPEN_RSP = - ;__
-

Figure 1: No security enabled

5.1.2 Just works pairing

If the Proteus-Ill peripheral needs the just works pairing security level, we just have to place a
just works pairing request (no in/out capabilities, no mitm) after the connection step was run.
Here a MTU request is necessary again to allow a higher payload size. After the discovery
of the characteristics, the notification of the RX characteristic has to be enabled.

ANROOQ9 Proteus-Ill version 1.0 ©January 2020
www.we-online.com/wireless-connectivity 10



http://www.we-online.com/wireless-connectivity

UART Central | Bluetooth  Peripheral UART

CMD_CONNECT_REQ
b

CMD_CONNECT_CNF

- . . CMD_CONMNECT_IND
CMD CONNECT IND connection establishment
_ _ L.

pairing request

pairing response

CMD_SECURITY_IND - CMD_SECURITY_IND
- >
mtu request
F
mtu response
-
discovery
- >
notification enable CMD_CHANNELOPEN_RSP
CMD_CHANNELOPEN_RSP > - -
-

Figure 2: Just works pairing enabled

5.1.3 Static pass key pairing

If the Proteus-lll peripheral needs the static pass key pairing security level, we just have
to place a pairing request (keyboard only, mitm) after the connection step was run. The
Proteus-lll sends a pass key request, such that the static pass key of the Proteus-IIl periph-
eral has to be entered on the central side (app).

Afterwards a MTU request is necessary again to allow a higher payload size. After the
discovery of the characteristics, the notification of the RX characteristic has to be enabled.

ANROO09 Proteus-Ill version 1.0 ©January 2020
www.we-online.com/wireless-connectivity 11



http://www.we-online.com/wireless-connectivity

UART Central | Bluetooth Peripheral UART

CMD_CONNECT_REQ
>

CMD_COMNNECT_CNF

- connection establishment CMD_CONNECT_IND
CMD_CONNECT_IND - e F
-

pairing request

CMD_PASSKEY_IND <Loring response

-

CMD_PASSKEY_REQ
>

CMD_PASSKEY_CNF

-
CMD_SECURITY_IND CMD_SECURITY_IND
- F o

mtu request

mtu response
-

discovery
- -

notification enable
CMD CHANNELOPEN RSP > CMD CHAMNMNELOPEMN RSP

- F

Figure 3: Static pass key pairing enabled

5.1.4 Lesc passkey pairing

If the Proteus-Ill peripheral needs the lesc pass key pairing security level, we just have to
place a pairing request (keyboard only, mitm, lesc) after the connection step was run. The
Proteus-lll sends a lesc pass key request, such that the lesc pass key of the Proteus-lll
peripheral has to be entered on the central side (app). This key is not fix, but generated
on each connection setup and output on the peripheral side by a CMD_DISPLAYPASSKEY_IND
message.

Afterwards a MTU request is necessary again to allow a higher payload size. After the
discovery of the characteristics, the notification of the RX characteristic has to be enabled.

ANROO09 Proteus-Ill version 1.0 ©January 2020
www.we-online.com/wireless-connectivity 12



http://www.we-online.com/wireless-connectivity

UART Central  Bluetooth Peripheral UART

CMD_CONNECT_REQ
-

CMD_CONNECT_CNF

- connection establishment CMD_CONNECT_IND
CMD_CONNECT_IND - - -
-

pairing request

CMD_PASSKEY_IND Loring response CMD_DISPLAYPASSKEY_IND

-

CMD_PASSKEY_REQ
-

CMD_PASSKEY_CNF

-
CMD_SECURITY_IND CMD_SECURITY_IND
- -

mtu request

mtu response

-

discovery
- F

notification enable
- CMD_CHANNELOPEN_RSP

F

CMD_CHANNELOPEN_RSP
-

Figure 4: Lesc pass key pairing enabled

5.1.5 Lesc numeric comparison pairing

If the Proteus-Ill peripheral needs the lesc numeric comparison pairing security level, we just
have to place a pairing request (display yes/no, mitm, lesc) after the connection step was
run. The Proteus-Ill sends a lesc numeric comparison request, such that the lesc pass key
is output on central and peripheral side. Both, the central and peripheral need to confirm
that the displayed key on the central and peripheral device coincide.

Afterwards a MTU request is necessary again to allow a higher payload size. After the
discovery of the characteristics, the notification of the RX characteristic has to be enabled.

ANROO09 Proteus-Ill version 1.0 ©January 2020
www.we-online.com/wireless-connectivity 13



http://www.we-online.com/wireless-connectivity

more than you expect .

CMD_CONNECT_REQ
CMD_CONNECT_CNF

- connection establishment CMD_CONNECT_IND
CMD_CONNECT_IND - > >
-
pairing request
iri >
CMD_DISPLAYPASSKEY_IND pairing response CMD_DISPLAYPASSKEY_IND
- r
CMD_NUMERIC_COMP_REQ CMD_NUMERIC_COMP_REQ
- -
CMD_NUMERIC_COMP_CNF CMD_NUMERIC_COMP_CNF
P4 o
CMD_SECURITY_IND CMD_SECURITY_IND
- F
mtu request
mtu response
-
discovery
- >
notification enable
- F
Figure 5: Lesc numeric comparison pairing enabled
ANROOQ9 Proteus-Ill version 1.0 ©January 2020

www.we-online.com/wireless-connectivity 14


http://www.we-online.com/wireless-connectivity

5.2 Enable notifications

As described in the previous chapter 5.1 the final step for a successful connection set-
up is the enabling of the notification of the TX_CHARACTERISTIC. To do so, the Android’s
Bluetooth® LE stack offers the following function, that has to be called with the TX_CHARACTERISTIC.

IBluetoothGatt mService;

/++  TX NOTIFICATION

= Enable or disable notifications /indications for a given characteristic .
« <p>0nce notifications are enabled for a characteristic, a

« {@link BluetoothGattCallback#onCharacteristicChanged] callback will be
« triggered if the remote device indicates that the given characteristic

= has changed.

*

« <p>Requires {@link android.Manifest.permission#BLUE TOOTH]} permission.

= @param characteristic The characteristic for which to enable notifications

« @param enable Set to true to enable notifications/indications

« @return true, if the requested notification status was set successfully

+/

public boolean setCharacteristicNotification (BluetoothGattCharacteristic characteristic ,
boolean enable) {

if (DBG) {

Log.d(TAG, " setCharacteristicNotification () _,—_,uuid:_" + characteristic.getUuid()

+ "_enable: " + enable);

}

if (mService == null || mClientlf == 0) return false;

BluetoothGattService service = characteristic .getService();
if (service == null) return false;

BluetoothDevice device = service.getDevice();
if (device == null) return false;

try {
mService.registerForNotification (mClientlf, device.getAddress(),

characteristic .getinstanceld(), enable);
} catch (RemoteException e) {
Log.e(TAG, ", e);

return false;

}

return true;

}
Code 1: Example code to enable the TX characteristic notification

Please note that the iOS’s Bluetooth® LE stack calls the corresponding function automatical-
ly. Thus calling a notification enable function from the app’s application layer is not needed.

ANROOQ9 Proteus-Ill version 1.0 ©January 2020
www.we-online.com/wireless-connectivity 15



http://www.we-online.com/wireless-connectivity

5.3 Remote GPIO control

The Proteus-lll contains the feature to control its free GPIOs via remote access. To do so,
first of all the local host must configure the GPIOs of interested. Then the GPIOs can be

written or read by a remote device.

To use this feature via APP, the respective radio commands must be send via Bluetooth® LE.
To do so, the data to be send has the following structure:

Bluetooth® LE Payload

AMBER Header

Command Payload

0x02

x Bytes

Table 2: RF-packet command format

5.3.1 CMD_GPIO_REMOTE_WRITECONFIG_REQ

This command can be used to configure the free GPIOs of the remote device.

Format:

AMBER Header | Command | Block; Block,
0x02 0x28 x Bytes x Bytes
Response (CMD_GPIO_REMOTE_WRITECONFIG_CNF):
AMBER Header | Command | 0x40 | Block; Block,
0x02 0x68 x Bytes x Bytes
CMD_GPIO_REMOTE_WRITECONFIG_REQ block structure
Each Block has the following format:
Length | GPIO_ID | Function | Value
0x03 1 Byte 1 Byte | 1 Byte

Length: Length of the subsequent bytes in this block
GPIO_ID: ID of the GPIO, see Proteus-IIl manual

Function:

0x01: GPIO works as input
0x02: GPIO works as output

Value:

ANRO0O09 Proteus-IIl version 1.0

www.we-online.com/wireless-connectivity

©January 2020

16



http://www.we-online.com/wireless-connectivity

« if Function is input:
0x00: GPIO has no pull resistor
0x01: GPIO has pull down resistor
0x02: GPIO has pull up resistor

« if Function is output:
0x00: GPIO is output low
0x01: GPIO is output high

CMD_GPIO_REMOTE_WRITECONFIG_CNF block structure

Each Block has the following format:

Length | GPIO_ID | Status
0x02 1 Byte [ 1 Byte

Length: Length of the subsequent bytes in this block
GPIO_ID: ID of the GPIO, see Proteus-IIl manual

Status:

0x00: Success
0x01: Failed

OxFF: Remote configuration not allowed (blocked by the user setting CFG_Flags of the
remote device)

5.3.1.1 Example: Configure two GPIOs of the connected remote device to output
high

Configure the GPIOs with ID 0x01 and 0x02 to output high:

AMBER Header | Command Blockj Blocks
0x02 0x28 0x03 0x01 0x02 0x01 | 0x03 0x02 0x02 0x01
Response:
AMBER Header | Command | 0x40 Block; Block,
0x02 0x68 0x02 0x01 0x00 | 0x02 0x02 0x00

Configured both GPIOs with success.

ANROO09 Proteus-Ill version 1.0 ©January 2020
www.we-online.com/wireless-connectivity 17



http://www.we-online.com/wireless-connectivity

5.3.2 CMD_GPIO_REMOTE_READCONFIG_REQ

This command can be used to read the configuration of the free GP10s of the remote device.
Format:

AMBER Header | Command
0x02 0x2C

Response (CMD_GPI0O_REMOTE_READCONFIG_CNF):

AMBER Header | Command | 0x40 | Block; | ... | Block,
0x02 0x6C x Bytes x Bytes

CMD_GPIO_REMOTE_READCONFIG_CNF block structure

Each Block has the following format:

Length | GPIO_ID | Function | Value
0x03 1 Byte 1 Byte | 1 Byte

Length: Length of the subsequent bytes in this block
GPIO_ID: ID of the GPIO, see Proteus-IIl manual

Function:

0x00: GPIO is not configured yet (Length is 0x02 and Value is empty)
0x01: GPIO works as input
0x02: GPIO works as output

Value:

« if Function is input:
0x00: GPIO has no pull resistor
0x01: GPIO has pull down resistor
0x02: GPIO has pull up resistor

« if Function is output:
0x00: GPIO is output low
0x01: GPIO is output high

5.3.2.1 Example: Read the current GPIO configuration of the connected remote
device

Read the current GPIO configuration of the connected remote device:

ANROO09 Proteus-Ill version 1.0 ©January 2020
www.we-online.com/wireless-connectivity 18



http://www.we-online.com/wireless-connectivity

Response:

AMBER Header

Command

0x02

0x2C

AMBER Header

Command | 0x40

Blocks

0x02

0x6C

0x03 0x01 0x02 0x01
0x03 0x02 0x02 0x01
0x02 0x03 0x00
0x02 0x04 0x00
0x02 0x05 0x00
0x02 0x06 0x00

The GPIOs with GPIO_ID 0x01 and 0x02 are output high. The remaining GP1Os with GPI-
O_ID 0x03,0x04,0x05 and 0x06 are not configured.

ANROOQ9 Proteus-Ill version 1.0
www.we-online.com/wireless-connectivity

©January 2020
19



http://www.we-online.com/wireless-connectivity

5.3.3 CMD_GPIO_REMOTE_WRITE_REQ

This command can be used to write the free GPIOs of the remote device. This command
can be only run successfully if the respective pins of the remote device are configured as
output pins.

Format:

AMBER Header | Command | Block; | ... | Block,
0x02 0x29 x Bytes x Bytes

Response (CMD_GPIO_REMOTE_WRITE_CNF):

AMBER Header | Command | 0x40 | Block; | ... | Block,
0x02 0x69 x Bytes x Bytes

CMD_GPIO_REMOTE_WRITE_REQ block structure

Each Block has the following format:

Length | GPIO_ID | Value
0x02 1 Byte [ 1 Byte

Length: Length of the subsequent bytes in this block
GPIO_ID: ID of the GPIO, see Proteus-IIl manual

Value:

0x00: Set GPIO to low
0x01: Set GPIO to high

CMD_GPIO_REMOTE_WRITE_CNF block structure

Each Block has the following format:

Length | GPIO_ID | Status
0x02 1 Byte | 1 Byte

Length: Length of the subsequent bytes in this block
GPIO_ID: ID of the GPIO, see Proteus-IIl manual

Status:

0x00: Success
0x01: Failed

ANROO09 Proteus-Ill version 1.0 ©January 2020
www.we-online.com/wireless-connectivity 20


http://www.we-online.com/wireless-connectivity

5.3.3.1 Example: Set a remote output GPIO to low

Set the output GPIO (GPIO_ID 0x01) of the connected remote device to low:

AMBER Header [ Command

Blockj

0x02

0x29 0x02 0x01 0x00

Response:

AMBER Header

Command | 0x40

Block;

0x02

0x69

0x02 0x01 0x00

Successfully set GPIO with GPIO_ID

0x01 to low.

ANRO0O09 Proteus-IIl version 1.0

www.we-online.com/wireless-connectivity

©January 2020
21



http://www.we-online.com/wireless-connectivity

5.3.4 CMD_GPIO_REMOTE_READ_ REQ

This command can be used to read the free GPIOs of the remote device. This command
can be only run successfully if the respective pins of the remote device are configured as

output or input pins.
Format:

Amber Header

Command

Block;

Block,

0x02

0x2A

x Bytes

x Bytes

Response (CMD_GPIO_REMOTE_READ_CNF)

Amber Header

Command | 0x40

Blockj

Block,

0x02

Ox6A

x Bytes

x Bytes

CMD_GPIO_REMOTE_READ_ REQ block structure

Each Block has the following format:

Length

GPIO_ID+

GPIO_ID,

1 Bytes

1 Byte

1 Byte

Length: Length of the subsequent bytes in this block
GPIO_ID: ID of the GPIO, see Proteus-IIl manual

CMD_GPIO_REMOTE_READ_CNF block structure

Each Block has the following format:

Length

GPIO_ID

Value

0x02

1 Byte

1 Byte

Length: Length of the subsequent bytes in this block
GPIO_ID: ID of the GPIO, see Proteus-Ill manual

Value:

0x00: The remote GPIO is low.
0x01: The remote GPIO is high.

OxFF: Failed reading remote GPIO value.

5.3.4.1 Example: Read the values of remote GPIOs

Read the value of the GPIOs with GPIO_ID 0x01 and 0x02 of the connected remote device:

ANRO0O09 Proteus-IIl version 1.0

www.we-online.com/wireless-connectivity

©January 2020
22



http://www.we-online.com/wireless-connectivity

Response:

Amber Header | Command Block;
0x02 0x2A 0x02 0x01 0x02
Amber Header | Command | 0x40 Block; Blockz
0x02 Ox6A 0x02 0x01 0x00 | 0x02 0x02 0x01

Successfully read the values of the remote GPIOs with GPIO_ID 0x01 (GPIO is low) and
0x02 (GPIO is high).

5.3.5 CMD_GPIO_LOCAL_WRITE_IND

This message informs the connected remote device, that the radio module’s local host has

written the GPI1Os.

Format:

Please note that only the GPIOs are part of this message, that have been
updated successfully. Failed attempts of GPIO updates will not be indicated by

this message.

Amber Header

Command

Blockj

Block,

0x02

OxAS8

x Bytes

x Bytes

Each Block has the format of CMD_GPIO_REMOTE_READ_CNF block structure.

5.3.5.1 Example: GPIOs of the remote device have been written by its local host

Amber Header

Command

Block;

Blocks

0x02

OxAB6

0x02 0x01 0x00

0x02 0x02 0x01

The GPIOs with GPIO_ID 0x01 (GPIO is low) and 0x02 (GPIO is high) of the remote device
have been written by its local host.

ANROOQ9 Proteus-Ill version 1.0
www.we-online.com/wireless-connectivity

©January 2020

23



http://www.we-online.com/wireless-connectivity

5.4 Bonding development hints

The firmware of the Proteus-Ill provides the bonding feature that allows to re-pair without
repeating the authentication step (e.g. entering the static passkey). Thus, in the initial
connection all bonding data is stored in the devices’ flash to be used during the setup of
subsequent connections.

The function CMD_DELETEBONDS_REQ of the Proteus-lll allows to remove not needed bond-
ing data from the module’s flash. Thus in case of missing bonding data on one of the two
connection partners, a re-bonding has to be initiated by the central device! Otherwise, the
security level is not met to send the "notification enable" and thus the channel for data trans-
mission cannot be opened.

Please note that iOS devices do not run the re-bonding step by default, if bond-
ing data is missing on one of the two connection partners.

In certain cases, the bonding data on the iOS device has to be cleared first,
such that iOS starts the re-bonding step.

5.5 Nordic Bluetooth LE UART example app as base

Nordic Semiconductor provides source code to develop Android, iOS and Windows applica-
tions. To implement the AMBER SPP-like profile for your own app, these source codes can
be taken as a base for your own app development.

Please note that this app does not implement any authentication and security

features. Thus, the Proteus-Ill to connect to must have no security enabled
when using this provided example.

Furthermore, the request for data length extension is not part of the provided
source code.

The following few changes have to be applied to the Nordic UART-APP-example to imple-
ment the SPP-like profile:

* Replace the implemented UUIDs by the SPP-like profile UUID.
Android example:

private final static UUID UART_SERVICE_UUID = UUID.fromString("6E400001 —C352—11E5
—953D—-0002A5D5C51B");

private final static UUID UART_RX_CHARACTERISTIC_UUID = UUID.fromString("6E400002—
C352—11E5—-953D—0002A5D5C51B");

private final static UUID UART_TX_CHARACTERISTIC_UUID = UUID.fromString("6E400003—
C352—11E5-953D—-0002A5D5C51B");

Code 2: Update UUID

» When sending data, add the packet header in front of the payload.
Android example:

public void send(final String text) {
// Are we connected?

if (mRXCharacteristic == null)
return;

ANROO09 Proteus-Ill version 1.0 ©January 2020
www.we-online.com/wireless-connectivity 24



http://www.we-online.com/wireless-connectivity

if (! TextUtils .isEmpty(text) && mOutgoingBuffer == null) {
final char AMBER_RF_HEADER_TYPE_DATA = 0x01;
final byte[] buffer = mOutgoingBuffer = (AMBER_RF_HEADER_TYPE_DATA + text).getBytes();

mBufferOffset = 0;

}...
Code 3: Add packet header on sender side

public void onDataSent(final String data) {
if (AMBER_RF_HEADER_TYPE_DATA == data.charAt(0)) {
Logger.a(getLogSession(), "Valid_data_sent:\"" + data.substring(1) + "\"");

else {
Logger.w(getLogSession(), "Invalid_data,_sent:\"" + data + "\"");

Code 4: Check packet header in sender callback

» When receiving data, first interpret the header to detect the data type before any other
action (data output or command execution) is performed.
Android Example:
public void onDataReceived(final String data) {

if (AMBER_RF_HEADER_TYPE_DATA == data.charAt(0)) {
Logger.a(getLogSession(), "Valid_data_received:\"" + data.substring(1) + "\"");

1
else {
Logger.w(getLogSession(), "Invalid_data_received:\"" + data + "\"");

}

}...
Code 5: Remove packet header on receiver side

ANROO09 Proteus-Ill version 1.0 ©January 2020
www.we-online.com/wireless-connectivity 25


http://www.we-online.com/wireless-connectivity

6 Custom firmware development

Using the Proteus-Ill hardware a custom firmware can be developed to better fit the cus-
tomer’s needs. Based on the Nordic Semiconductor SDK and demo examples various
Bluetooth® LE profiles and custom applications can be realized and flashed on the Proteus-
[l module. The versatile and well documented Nordic stack ensures quick and easy re-
alization of various standard Bluetooth® LE profiles. Chapter 6.2 contains the information
needed to run Nordic standard examples on the Proteus-Ill hardware.

On the other hand, Wiirth Elektronik eiSos provides firmware development services for cus-
tomers that are not interested in writing their own firmware stack. Here, Wirth Elektronik
eiSos can quickly adapt the Proteus-Ill standard firmware to the customer’s need or com-
pletely develop a new firmware from scratch (see chapter 6.1).

SWD connector Hardware interfaces

UART, SPI, GPIO, CLK, NFC, I°C, Interrupts, ...

GPIO connectors

Antenna

Firmware
Option1or2

/N /\

Option 1: delivery state Option 2: via SWD interface

Option 1: AMBER SPP-like Firmware Option 2: Custom Development
nRF
User application code m Development b’
SPP-like Bluetooth profile, environment s5ves
OTA firmware updates, <> SoftDevice Keil, IAR or GCC, plus SoftDevice
command interface, BT Stack, J-Link flash adapter BT Stack,
edit user settings GAP, GATT (or compatible) GAP, GATT
Ewi—ﬁo_ NORDIC
WiIRTH ELEXTRONIK P ¥ SEMICONDUCTOR
free code demos,
Manual, )
all BLE profiles,
advanced user
clide, support flash software,
! developer forum

Figure 6: Options for running the Proteus-IIl with standard or custom firmware

6.1 Custom firmware services of Wiirth Elektronik eiSos

The Proteus-lll firmware as described in the Proteus-1ll manual includes the Softdevice, a
dual-bank bootloader and the application hosting the SPP-like protocol for RF communica-
tion. After flashing this firmware onto the chip, there are up to 150kB free memory for custom
applications that can be included into the firmware on request.

ANROO09 Proteus-Ill version 1.0 ©January 2020
www.we-online.com/wireless-connectivity 26



http://www.we-online.com/wireless-connectivity

If more memory is needed, the dual-bank bootloader can be replaced by a single-bank
bootloader or even completely removed. In this case, more than 600kB of memory can be
reserved for custom application code. As an alternative external Flash/EEPROM IC(s) can
be connected to the module (e.g. using SPI or I12C interface) on the customer PCB.

Source codes for the Proteus-11l SPP-like firmware are property of Wiirth Elek-
tronik eiSos and will not be provided to customers. Nonetheless, Wirth Elek-
tronik eiSos may consider different license models or exceptions for individual

customers.

Besides of this, Wirth Elektronik eiSos also provides custom firmware developments from
scratch. Please contact your local field sales engineer (FSE) or wireless-sales@we-online.com
to discuss further details.

6.2 Important information for custom firmware development

To start a custom firmware development on top of the Proteus-Ill hardware, the following
information must be considered:

« Chip
The Proteus-lll contains the Nordic Semiconductor nRF52840-CKAA SoC. The CPU
is a 64MHz ARM Cortex-M4F.

* Pinout
The Proteus-lll provides the following pins of the Nordic SoC with its pads. Only the
ANT, RF, GND, VDD, Reset, SWDCLK and SWDIO pins are fixed. All other pins
can be used for custom firmware development. For special functions like near field
communication (NFC), external low frequency quartz crystal XL or analog input (AIN)
the respective pins have to be used.

No. | Pad Name | No. | Pad Name
1 ANT 13 P1.08

2 RF 14 P1.09

3 GND 15 P0.11

4 SWDCLK 16 P0.12

5 SWDIO 17 | P0.03/AIN1
6 | PO.18/Reset | 18 GND

7 | P0.02/AINO | B1 | P0.09/NFCH1
8 VDD B2 | P0O.10/NFC2
9 P0.19 B3 P0.23

10 P0.22 B4 P1.00

11 P0.00/XL1 | B5 P0.21

12 | P0.01/XL2 | B6 P0.07

ANROO09 Proteus-Ill version 1.0 ©January 2020

www.we-online.com/wireless-connectivity 27



mailto:wireless-sales@we-online.com
http://www.we-online.com/wireless-connectivity

] Bl

ANT H@ ‘ |

rRF Y

ovp RNW L — 4@5‘0 GND
swoclk R XN WAKE_UP
swoio RNY w NY /cTs
JRESET @ @ @ IRTS

BOOT N N URXD

VDD oo@m- @w UTXD

L

7 Z

%

Z a3an 317'/// uga

ASNg
T a3l

©
<
@)
)
m
=

Figure 7: Pinout

» Hardware for development & debugging
Using Segger J-Link flasher and the SWD interface is required for firmware develop-
ment and debugging. Checkout the Proteus-IlI-EV board. It provides the easiest way
to develop software based on Proteus-Ill module or apps for the SPP-like profile.

» Software development environment
Nordic Semiconductor provides software packages for several compilers (KEIL, IAR,
GCC, Segger Embedded).
For example, the Keil SDK includes the required Bluetooth® LE stack ("Softdevice"),
many demo examples for Bluetooth® LE profiles and services to conveniently develop
a custom firmware on basis of the Nordic SoC. Further library’s for hardware periph-
eral (such as ADC, 12C, SPI, UART etc.) are also include in the SDK and examples.
More information and details about the chip and the operating system is bundled on
the Nordic Semiconductor Infocenter:
http://infocenter.nordicsemi.com/

Please check the tab "nRF52 Series" to access the newest information about the nR-
F52 radio chip and the software environment.

If available, use the examples for the Nordic evaluation platform (like PCA10040 or P-
CA10056) as a starting point. See also chapter 6.2. 1 for more information how to run
Nordic standard examples on top of the Proteus-IIl.

ANROO09 Proteus-Ill version 1.0 ©January 2020
www.we-online.com/wireless-connectivity 28


http://infocenter.nordicsemi.com/
http://www.we-online.com/wireless-connectivity

» Clock sources
The Proteus-Ill module contains a dedicated RF clock (HFCLK). The Proteus-Ill does
not contain a dedicated low frequency clock (LFCLK). Thus custom firmware must
use the internal RC-oscillator as long as no external clock crystal is connected to the
respective pins (XL1, XL2) on the customer PCB.
Example for enabling the internal RC oscillator for SDK 15.3.0:

// <o>NRF_SDH _CLOCK LF SRC — SoftDevice clock source.
// <0=>NRF _CLOCK LF SRC RC

// <1=>NRF _CLOCK LF SRC XTAL

// <2=>NRF _CLOCK LF SRC SYNTH

#ifndef NRF_SDH_CLOCK LF SRC

#define NRF_SDH_CLOCK _LF SRC 0

#endif

// <o>NRF_SDH CLOCK LF RC _CTIV — SoftDevice calibration timer interval.
#ifndef NRF_SDH_CLOCK LF RC_CTIV

#define NRF_SDH CLOCK LF RC_CTIV 16

#endif

// <o>NRF_SDH CLOCK LF RC TEMP_CTIV — SoftDevice calibration timer interval under
constant temperature.

// <i> How often (in number of calibration intervals) the RC oscillator shall be calibrated

// <i> if the temperature has not changed.

#ifndef NRF_SDH_CLOCK_LF_RC_TEMP_CTIV

#define NRF_SDH_CLOCK LF RC TEMP_CTIV 2

#endif

// <0>NRF_SDH_CLOCK_LF ACCURACY — External clock accuracy used in the LL to compute
timing.
// <0=>NRF CLOCK LF ACCURACY 250 PPM
// <1=>NRF_CLOCK LF ACCURACY 500 _PPM
// <2=>NRF _CLOCK LF ACCURACY 150 PPM
// <3=>NRF CLOCK LF ACCURACY 100 PPM
// <4=> NRF CLOCK LF ACCURACY 75 PPM
// <5=>NRF _CLOCK LF ACCURACY 50 PPM
// <6=>NRF _CLOCK LF ACCURACY _30_PPM
// <7=>NRF _CLOCK LF ACCURACY 20 _PPM
// <8=>NRF CLOCK LF ACCURACY 10 PPM
// <9=> NRF CLOCK LF ACCURACY 5 PPM
// <10=> NRF_CLOCK LF ACCURACY 2 PPM
// <11=>NRF_CLOCK LF ACCURACY _1_PPM
#ifndef NRF_SDH_CLOCK_LF _ACCURACY
#define NRF_SDH CLOCK LF ACCURACY 1
#endif

Code 6: sdk_config.h

Code may differ when using different SDK version.

* Voltage regulator
As internal voltage regulator, we recommend to use the DCDC instead of the LDO. The
DCDC has to be switched on explicitly in application code. Example for SDK 15.3.0:

ANROO09 Proteus-Ill version 1.0 ©January 2020
www.we-online.com/wireless-connectivity 29



http://www.we-online.com/wireless-connectivity

sd_power_dcdc_mode_set(NRF_POWER_DCDC_ENABLE);

Code may differ when using different SDK version.

Changing from LDO to DCDC reduces the current consumption of the module to meet
lowest power specifications.

» Certification
Custom firmware may require additional certification. Please contact your Bluetooth®
certified testing laboratory regarding this questions.

« Bluetooth®-Listing
Any (end-)device containing Bluetooth® IP must be listed by the Bluetooth® SIG which
requires membership and qualification. Please contact the Bluetooth® SIG or your pre-
ferred Bluetooth® certification laboratory for question. Further information are available
in the Proteus-Ill manual.

+ Serial number
The unique serial number (used for tracing and the generation of the Proteus-Ill BT-
MAC) is placed in the user information configuration register (UICR->Customer[0]) and
will be removed by flashing a customer firmware onto the SoC.

ANROO09 Proteus-Ill version 1.0 ©January 2020
www.we-online.com/wireless-connectivity 30


http://www.we-online.com/wireless-connectivity

6.2.1 How to adapt Nordic Semiconductor SDK examples to run on the Proteus-lll
hardware?

The following description is based on the SDK 15.3.0. Code may differ when
using a different Softdevice and/or SDK version.

Please perform the following steps to run a Nordic standard example on the Proteus-lll:
1. Open the example project of interest and compile.

2. In case of success', enable the DCDC by adding the following line at the end of the
stack init function.

static void ble_stack init (void){

// Enable DCDC
err_code = sd_power_dcdc_mode_set(NRF_POWER_DCDC_ENABLE);
APP_ERROR_CHECK(err_code);

}

3. If no external crystal has been connected to the radio module, enable the internal
RC-oscillator as shown in code example 6.

4. Go to the file board.h and add the include for the Proteus-Ill.h board file.

#if defined(BOARD_PCA10040)
#include "pca10040.h"

# elif defined(BOARD_PROTEUSI)
#include "Proteusl.h"

# elif defined(BOARD_PROTEUSII)
#include "Proteusll.h"

#elif defined(BOARD_PROTEUSIII)
#include " Proteuslll .h"

#else

#error "Board_is_not_defined"
#endif

'1f you have a Nordic evaluation board available, please check that the original example without modifications
runs successfully on the Nordic evaluation board.

ANROOQ9 Proteus-Ill version 1.0 ©January 2020
www.we-online.com/wireless-connectivity 31


http://www.we-online.com/wireless-connectivity

5. Then create the Proteus-lll board file. To do so, please copy the board file of the
Nordic evaluation board (like PCA10040 or PCA10056) and add the pinout, led button
numbering, button numbering and clock definition of the Proteus-lII:

#ifndef PROTEUSIII_H
#define PROTEUSIII_H

#ifdef __ cplusplus
extern "C" {
#endif

#include "nrf_gpio.h"

/+ PINS of the nRF52840 »

#define NRF_PIN_LED_1 NRF_GPIO_PIN_MAP(0,0)
#define NRF_PIN_LED_2 NRF_GPIO_PIN_MAP(0,1)
#define NRF_PIN_BOOT NRF_GPIO_PIN_MAP(0,2)
#define NRF_PIN_SLEEP NRF_GPIO_PIN_MAP(0,3)
#define NRF_PIN_SPICS NRF_GPIO_PIN_MAP(0,7)
#define NRF_PIN_B6 NRF_PIN_SPICS

#define NRF_PIN_NFC1 NRF_GPIO_PIN_MAP(0,9)
#define NRF_PIN_B1 NRF_PIN_NFC1

#define NRF_PIN_NFC2 NRF_GPIO_PIN_MAP(0,10)
#define NRF_PIN_B2 NRF_PIN_NFC2

#define NRF_PIN_UARTRTS NRF_GPIO_PIN_MAP(0,11)
#define NRF_PIN_UARTCTS NRF_GPIO_PIN_MAP(0,12)
#define NRF_PIN_RESET NRF_GPIO_PIN_MAP(0,18)
#define NRF_PIN_SPICLK NRF_GPIO_PIN_MAP(0,19)
#define NRF_PIN_OPERATIONMODE NRF_PIN_SPICLK
#define NRF_PIN_SPI1 NRF_GPIO_PIN_MAP(0,21)
#define NRF_PIN_B5 NRF_PIN_SPI1

#define NRF_PIN_SPI2 NRF_GPIO_PIN_MAP(0,22)
#define NRF_PIN_BUSY NRF_PIN_SPI2

#define NRF_PIN_SPI3 NRF_GPIO_PIN_MAP(0,23)
#define NRF_PIN_B3 NRF_PIN_SPI3

#define NRF_PIN_SPI4 NRF_GPIO_PIN_MAP(1,0)
#define NRF_PIN_B4 NRF_PIN_SPI4

#define NRF_PIN_UARTTX NRF_GPIO_PIN_MAP(1,8)
#define NRF_PIN_UARTRX NRF_GPIO_PIN_MAP(1,9)

// LEDs definitions for PROTEUSIII

#define LEDS_NUMBER 2

#define LEDS_LIST { NRF_PIN_LED_1, NRF_PIN_LED_2 }
#define BSP_LED_0 NRF_PIN_LED_1

#define BSP_LED_1 NRF_PIN_LED_2

/+ all LEDs are lit when GPIO is high +

#define LEDS_ACTIVE_STATE 1

#define LEDS_INV_MASK LEDS_MASK

// Buttons definitions for PROTEUSIII

#define BUTTONS NUMBER 1

#define BUTTONS_LIST { NRF_PIN_SLEEP}
#define BSP_BUTTON_0 NRF_PIN_SLEEP
#define BUTTON_PULL NRF_GPIO_PIN_PULLUP
#tdefine BUTTONS_ ACTIVE_STATE 0

ANROO09 Proteus-Ill version 1.0 ©January 2020
www.we-online.com/wireless-connectivity 32


http://www.we-online.com/wireless-connectivity

// UART definitions for PROTEUSIII

#define RX_PIN_NUMBER NRF_PIN_UARTRX
#define TX_PIN_NUMBER NRF_PIN_UARTTX
#define RTS_PIN_NUMBER NRF_PIN_UARTRTS
#tdefine CTS_PIN_NUMBER NRF_PIN_UARTCTS

#ifdef _ cplusplus
}

#endif
#endif / PROTEUSIII _H
Code 7: Content of the Proteuslll.h

6. In the project options, we need to link to the Proteus-lll hardware instead to the Nordic
evaluation board hardware. This can be done by adding "BOARD_PROTEUSI" macro
and by removing the respective macro of the Nordic platform in the precompiler options
of the project.

7. Then check that the application code uses the pins names defined in the Proteus-
[ll.h . Probably peripheral pins (UART, SPI,...), LED pins and/or button pins have to be
adapted to fit the pin definition of the Proteus-lil.h .

Please make sure that the selected pin number and its function matches the
underlying hardware (e.g. evaluation board Proteus-IlI-EV).

8. Now all necessary changes have been done. Thus recompile the whole project and
check for errors.

9. In case of success, erase the whole chip and flash ONLY the Softdevice onto the chip.
The J-Flash tool can be used to do so.

10. After this, flash the compiled project code onto the chip using Keil (or the IDE of your
choice) without erasing the flash area of the Softdevice.

11. Now, the whole code has been flashed and testing can start.

6.2.2 Firmware development hints
When creating a custom firmware the following hints may be useful during development:

« In standard Nordic examples, the Reset pin is hard coded. We recommend using the
pin definition of the board-file to guarantee that changes in the layout take effect.

+ After the chip was flashed or when a clock signal was applied to the SWCLK pin, the
chip is in debug mode. In this case, all chip states are simulated. Please repower the
chip to be in normal mode to test modes like the system off mode (especially when you
want to measure currents of a low power mode).

ANROOQ9 Proteus-Ill version 1.0 ©January 2020
www.we-online.com/wireless-connectivity 33


http://www.we-online.com/wireless-connectivity

» Reviewing the pin settings (direction, pull-up/-down resistors) of the firmware is the first
option when experiencing leakage current.

« The UART RX pin is quite sensitive towards wrong levels during UART start-up. A
floating UART RX pin of the SoC may result in unwanted behavior. In this case, an
internal or external pull-up resistor can be installed to prevent floating. Be aware that
this resistor will lead to leakage current.

» The NFC pins are optimized for NFC function and can lead to leakage current when
not used properly in GPIO mode.

» Checkout the errata sheet of the nRF52 SoC to have an overview of known issues with
the nRF52 SoC and possible software workarounds.

ANROOQ9 Proteus-Ill version 1.0 ©January 2020
www.we-online.com/wireless-connectivity 34



http://www.we-online.com/wireless-connectivity

7 Important notes

The following conditions apply to all goods within the wireless connectivity product range of
Wirth Elektronik eiSos GmbH & Co. KG:

7.1 General customer responsibility

Some goods within the product range of Wirth Elektronik eiSos GmbH & Co. KG contain
statements regarding general suitability for certain application areas. These statements
about suitability are based on our knowledge and experience of typical requirements con-
cerning the areas, serve as general guidance and cannot be estimated as binding statements
about the suitability for a customer application. The responsibility for the applicability and use
in a particular customer design is always solely within the authority of the customer. Due to
this fact, it is up to the customer to evaluate, where appropriate to investigate and to decide
whether the device with the specific product characteristics described in the product speci-
fication is valid and suitable for the respective customer application or not. Accordingly, the
customer is cautioned to verify that the documentation is current before placing orders.

7.2 Customer responsibility related to specific, in particular
safety-relevant applications

It has to be clearly pointed out that the possibility of a malfunction of electronic components
or failure before the end of the usual lifetime cannot be completely eliminated in the current
state of the art, even if the products are operated within the range of the specifications. The
same statement is valid for all software sourcecode and firmware parts contained in or used
with or for products in the wireless connectivity and sensor product range of Wirth Elektronik
eiSos GmbH & Co. KG. In certain customer applications requiring a high level of safety
and especially in customer applications in which the malfunction or failure of an electronic
component could endanger human life or health, it must be ensured by most advanced
technological aid of suitable design of the customer application that no injury or damage is
caused to third parties in the event of malfunction or failure of an electronic component.

7.3 Best care and attention

Any product-specific data sheets, manuals, application notes, PCN’s, warnings and cautions
must be strictly observed in the most recent versions and matching to the products firmware
revisions. This documents can be downloaded from the product specific sections on the
wireless connectivity homepage.

7.4 Customer support for product specifications

Some products within the product range may contain substances, which are subject to re-
strictions in certain jurisdictions in order to serve specific technical requirements. Necessary
information is available on request. In this case, the field sales engineer or the internal sales
person in charge should be contacted who will be happy to support in this matter.

ANROO09 Proteus-Ill version 1.0 ©January 2020
www.we-online.com/wireless-connectivity 35



http://www.we-online.com/wireless-connectivity

7.5 Product improvements

Due to constant product improvement, product specifications may change from time to time.
As a standard reporting procedure of the Product Change Notification (PCN) according to
the JEDEC-Standard, we inform about major changes. In case of further queries regarding
the PCN, the field sales engineer, the internal sales person or the technical support team
in charge should be contacted. The basic responsibility of the customer as per section 7.1
and 7.2 remains unaffected. All wireless connectivity module driver software “wireless con-
nectivity SDK™ and it's source codes as well as all PC software tools are not subject to the
Product Change Notification information process.

7.6 Product life cycle

Due to technical progress and economical evaluation we also reserve the right to discontin-
ue production and delivery of products. As a standard reporting procedure of the Product
Termination Notification (PTN) according to the JEDEC-Standard we will inform at an early
stage about inevitable product discontinuance. According to this, we cannot ensure that all
products within our product range will always be available. Therefore, it needs to be verified
with the field sales engineer or the internal sales person in charge about the current product
availability expectancy before or when the product for application design-in disposal is con-
sidered. The approach named above does not apply in the case of individual agreements
deviating from the foregoing for customer-specific products.

7.7 Property rights

All the rights for contractual products produced by Wrth Elektronik eiSos GmbH & Co. KG
on the basis of ideas, development contracts as well as models or templates that are subject
to copyright, patent or commercial protection supplied to the customer will remain with Wirth
Elektronik eiSos GmbH & Co. KG. Wirth Elektronik eiSos GmbH & Co. KG does not warrant
or represent that any license, either expressed or implied, is granted under any patent right,
copyright, mask work right, or other intellectual property right relating to any combination,
application, or process in which Wirth Elektronik eiSos GmbH & Co. KG components or
services are used.

7.8 General terms and conditions

Unless otherwise agreed in individual contracts, all orders are subject to the current ver-
sion of the "General Terms and Conditions of Wurth Elektronik eiSos Group", last version
available at www.we-online.com.

ANROO09 Proteus-Ill version 1.0 ©January 2020
www.we-online.com/wireless-connectivity 36



www.we-online.com
http://www.we-online.com/wireless-connectivity

8 Legal notice

8.1 Exclusion of liability

Warth Elektronik eiSos GmbH & Co. KG considers the information in this document to be
correct at the time of publication. However, Wirth Elektronik eiSos GmbH & Co. KG re-
serves the right to modify the information such as technical specifications or functions of
its products or discontinue the production of these products or the support of one of these
products without any written announcement or notification to customers. The customer must
make sure that the information used corresponds to the latest published information. Wrth
Elektronik eiSos GmbH & Co. KG does not assume any liability for the use of its products.
Wairth Elektronik eiSos GmbH & Co. KG does not grant licenses for its patent rights or for
any other of its intellectual property rights or third-party rights.

Notwithstanding anything above, Wirth Elektronik eiSos GmbH & Co. KG makes no repre-
sentations and/or warranties of any kind for the provided information related to their accuracy,
correctness, completeness, usage of the products and/or usability for customer applications.
Information published by Wirth Elektronik eiSos GmbH & Co. KG regarding third-party prod-
ucts or services does not constitute a license to use such products or services or a warranty
or endorsement thereof.

8.2 Suitability in customer applications

The customer bears the responsibility for compliance of systems or units, in which Wrth
Elektronik eiSos GmbH & Co. KG products are integrated, with applicable legal regulations.
Customer acknowledges and agrees that it is solely responsible for compliance with all le-
gal, regulatory and safety-related requirements concerning its products, and any use of
Warth Elektronik eiSos GmbH & Co. KG components in its applications, notwithstanding
any applications-related in-formation or support that may be provided by Wirth Elektronik
eiSos GmbH & Co. KG. Customer represents and agrees that it has all the necessary ex-
pertise to create and implement safeguards which anticipate dangerous consequences of
failures, monitor failures and their consequences lessen the likelihood of failures that might
cause harm and take appropriate remedial actions. The customer will fully indemnify Warth
Elektronik eiSos GmbH & Co. KGand its representatives against any damages arising out
of the use of any Wirth Elektronik eiSos GmbH & Co. KG components in safety-critical
applications.

8.3 Trademarks

AMBER wireless is a registered trademark of Wirth Elektronik eiSos GmbH & Co. KG. All
other trademarks, registered trademarks, and product names are the exclusive property of
the respective owners.

8.4 Usage restriction

Warth Elektronik eiSos GmbH & Co. KG products have been designed and developed for
usage in general electronic equipment only. This product is not authorized for use in equip-
ment where a higher safety standard and reliability standard is especially required or where

ANROOQ9 Proteus-Ill version 1.0 ©January 2020
www.we-online.com/wireless-connectivity 37



http://www.we-online.com/wireless-connectivity

a failure of the product is reasonably expected to cause severe personal injury or death,
unless the parties have executed an agreement specifically governing such use. Moreover,
Wiirth Elektronik eiSos GmbH & Co. KG products are neither designed nor intended for use
in areas such as military, aerospace, aviation, nuclear control, submarine, transportation
(automotive control, train control, ship control), transportation signal, disaster prevention,
medical, public information network etc. Wirth Elektronik eiSos GmbH & Co. KG must be
informed about the intent of such usage before the design-in stage. In addition, sufficient
reliability evaluation checks for safety must be performed on every electronic component,
which is used in electrical circuits that require high safety and reliability function or perfor-
mance. By using Wrth Elektronik eiSos GmbH & Co. KG products, the customer agrees to
these terms and conditions.

ANROO09 Proteus-Ill version 1.0 ©January 2020
www.we-online.com/wireless-connectivity 38



http://www.we-online.com/wireless-connectivity

9 License terms

This License Terms will take effect upon the purchase and usage of the Wirth Elektronik
eiSos GmbH & Co. KG wireless connectivity products. You hereby agree that this license
terms is applicable to the product and the incorporated software, firmware and source codes
(collectively, "Software") made available by Wirth Elektronik eiSos in any form, including but
not limited to binary, executable or source code form.

The software included in any Wirth Elektronik eiSos wireless connectivity product is pur-
chased to you on the condition that you accept the terms and conditions of this license
terms. You agree to comply with all provisions under this license terms.

9.1 Limited license

Warth Elektronik eiSos hereby grants you a limited, non-exclusive, non-transferable and
royalty-free license to use the software and under the conditions that will be set forth in this
license terms. You are free to use the provided Software only in connection with one of the
products from Wirth Elektronik eiSos to the extent described in this license terms. You are
entitled to change or alter the source code for the sole purpose of creating an application
embedding the Wirth Elektronik eiSos wireless connectivity product. The transfer of the
source code to third parties is allowed to the sole extent that the source code is used by
such third parties in connection with our product or another hardware provided by Wurth
Elektronik eiSos under strict adherence of this license terms. Wiirth Elektronik eiSos will not
assume any liability for the usage of the incorporated software and the source code. You
are not entitled to transfer the source code in any form to third parties without prior written
consent of Wirth Elektronik eiSos.

You are not allowed to reproduce, translate, reverse engineer, decompile, disassemble or
create derivative works of the incorporated Software and the source code in whole or in
part. No more extensive rights to use and exploit the products are granted to you.

9.2 Usage and obligations

The responsibility for the applicability and use of the Wirth Elektronik eiSos wireless con-
nectivity product with the incorporated Firmware in a particular customer design is always
solely within the authority of the customer. Due to this fact, it is up to you to evaluate and
investigate, where appropriate, and to decide whether the device with the specific product
characteristics described in the product specification is valid and suitable for your respective
application or not.

You are responsible for using the Wiirth Elektronik eiSos wireless connectivity product with
the incorporated Firmware in compliance with all applicable product liability and product
safety laws. You acknowledge to minimize the risk of loss and harm to individuals and bear
the risk for failure leading to personal injury or death due to your usage of the product.
Warth Elektronik eiSos’ products with the incorporated Firmware are not authorized for use
in safety-critical applications, or where a failure of the product is reasonably expected to
cause severe personal injury or death. Moreover, Wirth Elektronik eiSos’ products with the
incorporated Firmware are neither designed nor intended for use in areas such as military,
aerospace, aviation, nuclear control, submarine, transportation (automotive control, train
control, ship control), transportation signal, disaster prevention, medical, public information
network etc. You shall inform Wirth Elektronik eiSos about the intent of such usage before

ANROO09 Proteus-Ill version 1.0 ©January 2020
www.we-online.com/wireless-connectivity 39



http://www.we-online.com/wireless-connectivity

design-in stage. In certain customer applications requiring a very high level of safety and
in which the malfunction or failure of an electronic component could endanger human life or
health, you must ensure to have all necessary expertise in the safety and regulatory ramifi-
cations of your applications. You acknowledge and agree that you are solely responsible for
all legal, regulatory and safety-related requirements concerning your products and any use
of Wrth Elektronik eiSos’ products with the incorporated Firmware in such safety-critical ap-
plications, notwithstanding any applications-related information or support that may be pro-
vided by Wiirth Elektronik eiSos. YOU SHALL INDEMNIFY WURTH ELEKTRONIK EISOS
AGAINST ANY DAMAGES ARISING OUT OF THE USE OF WURTH ELEKTRONIK EISOS’
PRODUCTS WITH THE INCORPORATED FIRMWARE IN SUCH SAFETY-CRITICAL AP-
PLICATIONS.

9.3 Ownership

The incorporated Firmware created by Wurth Elektronik eiSos is and will remain the exclu-
sive property of Wirth Elektronik eiSos.

9.4 Firmware update(s)

You have the opportunity to request the current and actual Firmware for a bought wireless
connectivity Product within the time of warranty. However, Wirth Elektronik eiSos has no
obligation to update a modules firmware in their production facilities, but can offer this as a
service on request. The upload of firmware updates falls within your responsibility, e.g. via
ACC or another software for firmware updates. Firmware updates will not be communicated
automatically. It is within your responsibility to check the current version of a firmware in the
latest version of the product manual on our website. The revision table in the product manual
provides all necessary information about firmware updates. There is no right to be provided
with binary files, so called "Firmware images", those could be flashed through JTAG, SWD,
Spi-Bi-Wire, SPI or similar interfaces.

9.5 Disclaimer of warranty

THE FIRMWARE IS PROVIDED "AS IS". YOU ACKNOWLEDGE THAT WURTH ELEK-
TRONIK EISOS MAKES NO REPRESENTATIONS AND WARRANTIES OF ANY KIND
RELATED TO, BUT NOT LIMITED TO THE NON-INFRINGEMENT OF THIRD PARTIES’
INTELLECTUAL PROPERTY RIGHTS OR THE MERCHANTABILITY OR FITNESS FOR
YOUR INTENDED PURPOSE OR USAGE. WURTH ELEKTRONIK EISOS DOES NOT
WARRANT OR REPRESENT THAT ANY LICENSE, EITHER EXPRESS OR IMPLIED, IS
GRANTED UNDER ANY PATENT RIGHT, COPYRIGHT, MASK WORK RIGHT, OR OTHER
INTELLECTUAL PROPERTY RIGHT RELATING TO ANY COMBINATION, MACHINE, OR
PROCESS IN WHICH THE WURTH ELEKTRONIK EISOS’ PRODUCT WITH THE INCOR-
PORATED FIRMWARE IS USED. INFORMATION PUBLISHED BY WURTH ELEKTRONIK
EISOS REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTI-
TUTE A LICENSE FROM WURTH ELEKTRONIK EISOS TO USE SUCH PRODUCTS OR
SERVICES OR A WARRANTY OR ENDORSEMENT THEREOF.

ANROO09 Proteus-Ill version 1.0 ©January 2020
www.we-online.com/wireless-connectivity 40



http://www.we-online.com/wireless-connectivity

9.6 Limitation of liability

Any liability not expressly provided by Wurth Elektronik eiSos shall be disclaimed.

You agree to hold us harmless from any third-party claims related to your usage of the Wrth
Elektronik eiSos’ products with the incorporated Firmware, software and source code. Wrth
Elektronik eiSos disclaims any liability for any alteration, development created by you or your
customers as well as for any combination with other products.

9.7 Applicable law and jurisdiction

Applicable law to this license terms shall be the laws of the Federal Republic of Germany.
Any dispute, claim or controversy arising out of or relating to this license terms shall be
resolved and finally settled by the court competent for the location of Wirth Elektronik eiSos’
registered office.

9.8 Severability clause

If a provision of this license terms is or becomes invalid, unenforceable or null and void, this
shall not affect the remaining provisions of the terms. The parties shall replace any such
provisions with new valid provisions that most closely approximate the purpose of the terms.

9.9 Miscellaneous

Wirth Elektronik eiSos reserves the right at any time to change this terms at its own discre-
tion. It is your responsibility to check at Wiirth Elektronik eiSos homepage for any updates.
Your continued usage of the products will be deemed as the acceptance of the change.

We recommend you to be updated about the status of new firmware and software, which is
available on our website or in our data sheet and manual, and to implement new software in
your device where appropriate.

By ordering a wireless connectivity product, you accept this license terms in all terms.

ANROO09 Proteus-Ill version 1.0 ©January 2020
www.we-online.com/wireless-connectivity 41



http://www.we-online.com/wireless-connectivity

List of Figures

No ok~ wNh =

No securityenabled . . . . . . . . .. ... 10
Just works pairingenabled . . . ... ..o 11
Static pass key pairingenabled . . . . .. ... ... L L. 12
Lesc pass key pairingenabled . . . . ... .. ... ... o L. 13
Lesc numeric comparison pairingenabled . . . . . .. .. ... ... L. 14
Options for running the Proteus-1Il with standard or custom firmware . . . . . 26
Pinout . . . . . . 28

List of Tables

1 RF-packetformat . . . . . . . .. .. .. . 9
2 RF-packetcommandformat . . . . .. ... ... ... ... ... 16
ANROO09 Proteus-Ill version 1.0 ©January 2020

www.we-online.com/wireless-connectivity 42



http://www.we-online.com/wireless-connectivity

WE—-

WURTH ELEKTRONIK

more than you expect

i((—l—»i

% voé

Internet Monitoring Automated Meter
of Things & Control Reading

Contact:
Wirth Elektronik eiSos GmbH & Co. KG
Division Wireless Connectivity & Sensors

Max-Eyth-Stral3e 1
74638 Waldenburg
Germany

Tel.: +49 651 99355-0 e /
Fax.: +49 651 99355-69 R SRS -
www.we-online.com/wireless-connectivity L L) ¢

-----
-----
......



	Introduction
	Prerequisites
	Bluetooth profiles
	AMBER SPP-like profile
	Generic Access Protocol (GAP)
	Generic Attribute Profile (GATT)
	Data length extension
	Company identifier
	UUID
	Primary Service
	Characteristics


	Bluetooth LE packet content
	RF-Packet format
	Advertising packet content
	Scan response packet content


	App development
	Connection setup message charts
	No security and authentication
	Just works pairing
	Static pass key pairing
	Lesc passkey pairing
	Lesc numeric comparison pairing

	Enable notifications
	Remote GPIO control
	CMD_GPIO_REMOTE_WRITECONFIG_REQ
	Example: Configure two GPIOs of the connected remote device to output high

	CMD_GPIO_REMOTE_READCONFIG_REQ
	Example: Read the current GPIO configuration of the connected remote device

	CMD_GPIO_REMOTE_WRITE_REQ
	Example: Set a remote output GPIO to low

	CMD_GPIO_REMOTE_READ_REQ
	Example: Read the values of remote GPIOs

	CMD_GPIO_LOCAL_WRITE_IND
	Example: GPIOs of the remote device have been written by its local host


	Bonding development hints
	Nordic Bluetooth LE UART example app as base

	Custom firmware development
	Custom firmware services of Würth Elektronik eiSos
	Important information for custom firmware development
	How to adapt Nordic Semiconductor SDK examples to run on the Proteus-III hardware?
	Firmware development hints


	Important notes
	General customer responsibility
	Customer responsibility related to specific, in particular safety-relevant applications
	Best care and attention
	Customer support for product specifications
	Product improvements
	Product life cycle
	Property rights
	General terms and conditions

	Legal notice
	Exclusion of liability
	Suitability in customer applications
	Trademarks
	Usage restriction

	License terms
	Limited license
	Usage and obligations
	Ownership
	Firmware update(s)
	Disclaimer of warranty
	Limitation of liability
	Applicable law and jurisdiction
	Severability clause
	Miscellaneous


