
© Semiconductor Components Industries, LLC, 2019

December, 2019 − Rev. 0
1 Publication Order Number:

AND9985/D

AND9985/D

Battery Fuel Gauging LSI
[Smart LiB Gauge] for 1-Cell
Lithium-ion/Polymer with
LC709204F

LC709204F is a Fuel Gauge for 1−Cell Lithium−ion/
Polymer batteries. It is a part of our Smart LiB Gauge family
of Fuel Gauges which measure the battery RSOC (Relative
State Of Charge) using its unique algorithm called
HG−CVR2. The HG−CVR2 algorithm provides accurate
RSOC information even under unstable conditions (e.g.
changes of battery; temperature, loading, aging and
self−discharge).

This application note will explain how to initialize various
parameters for the selected battery to start a higher accuracy
gauging. Users can set various registers based on their
application requirement using the notes, guidelines and
examples given in this note. Sample program codes
explained at the end of the note will provide various
guideline on how this LSI communicates with the host side
application processors.

Figure 1. An Example of an Application Schematic using LC709204F

Application

LC709204F

Battery Pack

Application

processor

P
ro

te
ct

io
n

IC

PACK+

PACK −

N
T

C
 T

he
rm

is
to

r

T

V
S

S

REG

TSENSE1

V
D

D

SCL

SDA

ALARMB

10
 k
�

10
 k
�

10
 k
�

1 �F

2.2 �F

T
S

E
N

S
E

2

N
T

C
 T

he
rm

is
to

r

SCL

SDA

ALARMB

V
D

D

V
S

S

Power

management IC

Charger IC

VBAT

IN

VSS

VSS

OUT

System−VSS

System−VDD

VBUS
VBUS

www.onsemi.com

APPLICATION NOTE

http://www.onsemi.com/

AND9985/D

www.onsemi.com
2

Application Circuit Diagram
Figure 1 shows the application circuit diagram for

LC709204F There are two thermistor sense inputs
TSENSE1 and TSENSE2.

TSENSE1 thermistor should be placed in battery pack or
made contact with battery to measure the temperature.
Application can use TSENSE2 thermistor for any other
temperature measurement.

Evaluation Board
Evaluation board and GUI tools are available for

evaluation of the Fuel Gauge and Battery. By using these
tools, Fuel Gauge and Batteries can be evaluated before
creating an application board. It is also possible to connect
this board to an existing application board to evaluate them.
Please refer to the documents given in Table 1 for further
details about this evaluation board.

Table 1. EVALUATION BOARD AND DOCUMENTS FOR THE TARGET DEVICE AND BATTERY

Evaluation Board Target Device Battery Type Related Documents

LC709204FXE−01−GEVB LC709204FXE−01TBG 01, 04, 05, 06, 07 LC709204FXE−01−GEVB_Test Procedure.pdf
LC709204FXE−01−GEVB_SCHEMATIC.pdf
LC709204FXE−01−GEVB_GERBER.zip
LC709204FXE−01−GEVB_BOM.pdf

NOTE: https://www.onsemi.jp/products/power−management/battery−management/battery−fuel−gauges.

Parameter Initialization
In order to start the RSOC measurement with this LSI, it

is necessary to initialize some basic parameters in advance.
Table 2 shows the parameters and the corresponding
registers name with their command code to set them
individually. The parameters specified as Mandatory in
Table 2 are the basic parameters required to measure the
RSOC. Optional parameters can be initialized if the user’s
application requires given functionality. The detail method
on how to set the required parameters is given below.

Battery profile (0x12)
The LSI is installed with five types of Battery profiles.

Users must select an appropriate profile for their
applications based on the type of battery used. Please check
the battery nominal voltage and charging voltage as shown
in Table 3 for a better profile selection. Select the Battery
type that matches either of them as given in the Table. To set
the Battery type to be used to LSI, write the value specified
in Table 3 to Change of The Parameter register (0x12). For
example write 0x01 to Change of The Parameter to select the
Battery Type−04.

APA value to improve RSOC accuracy
APA values are parameter to fit installed battery profiles

in a target battery characteristics. Appropriate APA value for
the target battery will improve RSOC accuracy. The APA
values are set in APA register (0x0B).

Typical APA values can be taken from the design capacity
of the battery in Table 4. The table shows relations of typical
APA value and the design capacity. Use capacity per 1−cell
of the table if some batteries are connected in parallel.
Calculate APA values using linear supplement if there is not
a requested design capacity in the table. See eq. 1 to calculate
APA value manually. An example for 1500 mAh battery
with corresponding DEC value for their HEX is also shown.

APA value � Lower_APA � (Upper_APA � Lower_APA)

(eq. 1)�
Capacity � Lower_Cap.

Upper_Cap. � Lower_Cap.

Calculation e.g in case of 1500 mAh Battery Type−01.

APA value � 45 : 0x2D � (58 : 0x3A � 45 : 0x2D)

(eq. 2)

� (1500 � 1000)�(2000 � 1000) � 52 : 0x34

The upper 8−bits and the lower 8−bits of APA register are
for charging and discharging adjustment parameters each.
See Table 5 for bit configuration. Table 4 shows both the bits
with similar value. For example: set your value in APA
register as 0x0D0D for 0x0D APA value.

But RSOC accuracy can be improved by setting different
APA values for each bits depending on the target battery
characteristics.

Please contact ON Semiconductor if you don’t satisfy the
RSOC accuracy. The deeper adjustment of APA for charging
and discharging will increase the calculation accuracy.

http://www.onsemi.com/
https://www.onsemi.jp/products/power-management/battery-management/battery-fuel-gauges

AND9985/D

www.onsemi.com
3

Table 2. PARAMETER VS REGISTER

Command Code Register Name Parameter Mandatory or Option Unit

0x06 TSENSE1 Thermistor B B−constant of a TSENSE1 thermistor Mandatory K

0x0B APA Adjustment parameter for RSOC
measurement

Mandatory −

0x0C APT Delay time to temperature sampling Option −

0x0E TSENSE2 Thermistor B B−constant of a TSENSE2 thermistor Option K

0x12 Change Of The
Parameter

Battery profile Mandatory −

0x1C Termination Current Rate Termination current rate at the end of
charging

Option 0.01C

0x1D Empty Cell Voltage Empty Cell Voltage Option mV

Table 3. BATTERY PROFILE VS REGISTER

IC Type Battery Type
Nominal / Rated

Voltage
Charging

Voltage
Number of

The Parameter (0x1A)
Change of

The Parameter (0x12)

LC709204F 01 3.7 V 4.2 V 0x1001 0x00

04 UR18650ZY (Panasonic) 0x01

05 ICR18650−26H (SAMSUNG) 0x02

06 3.8 V 4.35 V 0x03

07 3.85V 4.4V 0x04

Table 4. TYPICAL APA VALUE FOR CHARGING AND DISCHARGING ADJUSTMENT

Design
Capacity / Cell

(Note 1)

APA[15:8], APA[7:0] Design
Capacity / Cell

(Note 1)

APA[15:8], APA[7:0]

Type−01 Type−06 Type−07 Type−04 Type−05

50 mAh 0x13, 0x13 0x0C, 0x0C 0x03, 0x03 2600 mAh 0x10, 0x10 0x06, 0x06

100 mAh 0x15, 0x15 0x0E, 0x0E 0x05, 0x05

200 mAh 0x18, 0x18 0x11, 0x11 0x07, 0x07

500 mAh 0x21, 0x21 0x17, 0x17 0x0D, 0x0D

1000 mAh 0x2D, 0x2D 0x1E, 0x1E 0x13, 0x13

2000 mAh 0x3A, 0x3A 0x28, 0x28 0x19, 0x19

3000 mAh 0x3F, 0x3F 0x30, 0x30 0x1C, 0x1C

4000 mAh 0x42, 0x42 0x34, 0x34 −

5000 mAh 0x44, 0x44 0x36, 0x36 −

6000 mAh 0x45, 0x45 0x37, 0x37 −

1. Use capacity per 1−cell if some batteries are connected in parallel.

http://www.onsemi.com/

AND9985/D

www.onsemi.com
4

Figure 2. Typical APA of Type−01/06/07

Table 5. BIT CONFIGURATION OF APA REGISTER
(0X0B)

Bit Function

APA[15:8] APA value for charging adjustment

APA[7:0] APA value for discharging adjustment

B Constant of NTC Thermistor (0x06/0x0E)
This section explains how to find an appropriate B

constant value to set in the Thermistor B register (0x06 and
0x0E). The types of thermistor that this LSI can support is
10 k� NTC thermistor. It is possible to measure two NTC
thermistors while setting different B constant value for each
in LSI register. Cell temperature (TSENSE1) is an essential
parameter used for the battery measurement. It is required
to set an appropriate value to TSENSE1 Thermistor B
(0x06) unless the application processor provides the battery
temperature directly to this LSI (using I2C mode).
Application processor can use TSENSE2 (Ambient
temperature) parameter for other purposes.

The LSI calculates temperature assuming that the
resistance value of the thermistor follows eq. 3.

R � R0 � exp B(1�T � 1�T0)
(eq. 3)

R: Thermistor resistance in T (K)
R0: 10 k�
B: B constant (K)
T: Temperature (K)
T0: 298.2 K (25°C)

Table 6 shows an example for the relationship between
resistance and temperature of an available 10 k� thermistor.
If similar values are given in the data sheet for the thermistor
used, please substitute the thermistor resistance at each
temperature into eq. 4 to calculate temperature.

T � 1 ��1�T0 � 1�B � ln(R�R0)	 (eq. 4)

A sample plots using eq. 4 is shown in Figure 3. The
horizontal axis shows the actual temperature and the vertical
axis shows the difference between the temperatures
calculated from the resistance value of a thermistor (eq. 4)
with the actual temperature. Three B constant values are
used to calculate the vertical axis. Select a B constant value
that minimizes the absolute value of the vertical axis in the

temperature range where RSOC accuracy is required. In
Figure 3, B constant = 3400 K will give higher RSOC
accuracy for the given range of temperature.

Another example is shown in Table 7. If only the
temperature range and B constant is specified in the
thermistor datasheet, select a B constant value that fits with
the user’s application temperature range so that higher
RSOC accuracy can be obtained.

Table 6. 10 k� NTC THERMISTOR EXAMPLE (1)

Temperature Resistance Temperature Resistance

−20�C 71 kΩ 30�C 8.3 kΩ

−10�C 44 kΩ 40�C 5.8 kΩ

0�C 28 kΩ 50�C 4.1 kΩ

10�C 18 kΩ 60�C 3.0 kΩ

20�C 12 kΩ 70�C 2.2 kΩ

Figure 3. An Example of Temperature Error which is
Calculated from a Thermistor Resistance

Table 7. 10 k� NTC THERMISTOR EXAMPLE (2)

R0 or R25

B constant

25−50�C 25−80�C 25−100�C

10.0 k� 3435 K 3474 K 3595 K

Thermistor Measurement Delay (0x0C)
This section explains about the APT (Adjustment Pack

Thermistor) delay and the behavior of TSENSE1 and
TSENSE2 pins while measuring temperature with a NTC
thermistor. This LSI optimizes the temperature
measurement interval automatically based on the battery
current flow. The measurement interval ranges between a
few seconds to a minute. Two 10 k� pull−up resistors are
integrated with TSENSE1 and TSENSE2 in LSI as shown
in Figure 4. These resistors are connected to the REG supply
only during the temperature measurement. Both pins remain
in a high impedance state except while measuring the
temperature. Figure 5 shows an example of TSENSE1 and

http://www.onsemi.com/

AND9985/D

www.onsemi.com
5

TSENSE2 waveforms during the temperature
measurement. When the voltage on TSENSE1 and

TSENSE2 gets stabilized while thermistors are connected
to the pins, the voltage on these pins is measured in turn for
finding the target temperature. The pull−up resistors
automatically gets disconnected from REG power supply
after a successful temperature measurement.

The APT delay is shown in Figure 5, it shows the time
delay until voltage measurement starts when REG power is
supplied to the thermistors. The APT register shown in
Table 2 is used to change the APT delay. APT delay is
calculated using eq. 5 based on the value set in the APT
register.

APT delay � 0.167 �s � (200 � APT) (eq. 5)

To improve the accuracy of temperature measurement, the
voltage on TSENSE1 and TSENSE2 must be stabilized
before the measurement starts. The APT delay parameter
provides a delay time for the system to wait for voltage
stability. For most of the applications, initially defined APT
delay time on LSI is sufficient for the voltage stability.
However, for the battery pack examples like shown in
Figure 6 need to consider the APT delay. The capacitive
element is placed in parallel with the thermistor in given
example. It is assumed that it will take longer time for the
voltage of TSENSE1 and TSENSE2 to stabilize. It also takes
longer time to stabilize at lower temperatures as thermistor
resistance increases when temperature decreases.
Therefore, APT delay should be considered according to the
thermistor resistance at low temperature.

Figure 4. TSENSE1/TSENSE2 Port Block Diagram

ADC
TSENSE1

REG

A
na

lo
g

F
ro

nt
E

nd

TSENSE2

Regulator
VDD

T1 T2

T1: Thermistor 1
T2: Thermistor 2

Figure 5. TSENSE1/TSENSE2 pulse at 25�C
(APT = 0x0190)

Figure 6. An Example of a Capacitor Across the
Thermistor

Application

LC709204F

V
D

D
V

S
S

Battery Pack

A capacitor across a thermistor

PACK+

PACK−

TTSENSE

N
T

C
 T

he
rm

is
to

r

Termination Current Rate (0x1C)
Termination current rate is manually calculated by

dividing Termination current with Design capacity.
Termination current is given on the datasheet of the battery
used. Further, Termination current rate can be calculated
using higher values than that of datasheet defined value for
higher safety. For example if termination current on
datasheet is 0.02C, users can select 0.02C or higher values
while calculating Termination current rate.

The LSI only supports battery types with 0.02C or higher
termination current values. Battery types that are lower than
0.02C must calculate Termination current rate using 0.02C
or higher values.

Empty Cell Voltage (0x1D)
The lowest cell voltage that the application requests. The

lower side of RSOC (0x0D) is adjusted by this value.

http://www.onsemi.com/

AND9985/D

www.onsemi.com
6

FUNCTIONAL DESCRIPTION

Get Initial RSOC after Power−on Reset
This LSI starts the initialization sequence automatically

when the power−on reset is released after a battery pack
insertion. Please refer to the LSI data sheet for the duration
of the initialization sequence. During the initialization
sequence, LSI acquires Cell voltage for the RSOC
initialization. Initial RSOC is obtained using Open Circuit
voltage (OCV) of the battery. OCV is the measurement of
battery voltage at no−load condition. The LSI has a built−in
OCV look−up table. Measured cell voltage is applied to the
table to get new Initial RSOC. After the completion of
initialization sequence, acquired initial RSOC is set in the
RSOC (0x0D) and ITE (0x0F) registers.

Obtaining an Initial RSOC using Before RSOC
A battery or charger may supply the power to the VDD of

LSI. If the RSOC value after the completion of initialization
sequence is not as expected, it is assumed that the battery
was charged or discharged during that period. If the charger
was not operating during the initialization sequence, Before
RSOC command can be used to get a more accurate RSOC.

Voltage sampling is performed four times during the
initialization sequence as shown in Figure 7. 1st sampled
Cell voltage is referenced to get the Initial RSOC. Before
RSOC command can initialize RSOC using the other 2nd to
4th sampled voltage. To select the appropriate voltage for
initialization, write DATA as shown in Table 8 to 0x04
register. After writing 0x04, RSOC (0x0D) can be read again
for the expected RSOC value. Select the highest RSOC
value from the sampled RSOCs DATA. This is because the
highest RSOC is obtained using the highest voltage and that
voltage is closer to the OCV.

Figure 7. Sampling Order for Before RSOC Command

Table 8. BEFORE RSOC COMMAND

Command
Code DATA

Sampling Order of Battery
Voltage for RSOC Initialization

0x04 0xAA55 1st sampling

0xAA56 2nd sampling

0xAA57 3rd sampling

0xAA58 4th sampling

Power−on Using Charger
In general, Lib−protection IC disconnects the battery

when an overvoltage or overcurrent is detected. The power
supply to the LSI is also stopped at that time. General
Lib−protection IC reconnects the battery when it detects a
voltage supply from the charger. In such cases, charger starts
to supply power to this LSI first. Therefore, the voltage
acquired by the LSI in the initialization sequence is the
charging voltage of the charger. Depending on the charging
voltage, a higher RSOC is obtained. Therefore, accurate
initial RSOC cannot be obtained using the charge voltage.
Following two functions are explained to fix this problem.
• Initial RSOC Command (0x07)

• Automatic Convergence of the Error

Initial RSOC Command initializes the RSOC using the
Cell Voltage obtained after writing of the command. At this
time, application is running for I2C communication and so
on, so the battery is not completely unloaded. However, if
the load is 0.025C or less (i.e. less than 75 mA for 3000 mAh
design capacity battery), this command can get RSOC close
to the actual value.

Automatic Convergence of the Error is a function that
automatically corrects RSOC errors. This feature corrects
30% errors in around one hour regardless of the load
connected. Figures 8 and 9 are examples of modifications
made using this feature. This function can also fix the case
of lower RSOC problem during the battery discharging
conditions. To enable Automatic Convergence of the Error
function, set this LSI to Operational mode and set Current
Direction (0x0A) register to Auto mode.

http://www.onsemi.com/

AND9985/D

www.onsemi.com
7

Figure 8. An Example of RSOC Automatic
Convergence with 0.05C Load Current.

RSOC: 90% to 60%

Figure 9. An Example of RSOC Automatic Convergence
without Load Current.

RSOC: 90% to 58%

Selection and Initialization of Profile
The OCV look−up table for obtaining initial RSOC is

different for each Battery profile. The initial RSOC is
obtained using the Battery profile specified by the initial
value of Change of The Parameter (0x12).

In order to select an appropriate profile for your
applications, write the value for your profile in Change of
The Parameter register. RSOC initialization is performed
again as soon as the profile is changed. For the initialization
sequence, OCV look−up table of the selected profile and the
1st sampled cell voltage is used.

Use above−mentioned functions (i.e. Before RSOC
command, Initial RSOC command, and Automatic
Convergence of the Error) to correct the initial RSOC after
selecting an appropriate Profile for your applications.

Temperature Measurement
The Status Bit (0x16) controls temperature measurement

with the thermistor. Set the bit corresponding to TSENSE1
or TSENSE2 to 1 to measure the temperature with the
attached thermistor. The bit selection details is shown in
Table 9. Battery temperature information is an essential
parameter for the RSOC measurement. If the thermistor in
the battery pack is connected to another device, LSI cannot
measure the battery temperature using the thermistor. In that
case, set TSENSE1 to I2C mode. This LSI cannot update the
Cell temperature in I2C mode. Application processor must
write the battery temperature to Cell temperature (0x08).
For the high precision RSOC measurement, it is
recommended to update the cell temperature every time
when the temperature changes more than 1°C. Temperature
update is not required when the LSI is in Sleep mode.

Table 9. STATUS BIT

Register name
Status

BIT

Set value in Status Bit

0 1

Cell temperature
(TSENSE1)

BIT0 I2C Mode Thermistor
Mode

Ambient Temperature
(TSENSE2)

BIT1 Disable Thermistor
Mode

• Thermistor mode: The LSI measures thermistors
directly

• I2C mode: The LSI receives temperature information
via I2C

Alarm Functions
By using the alarm functions, application processor can

quickly detect a condition exceeding a preset threshold.
Table 10 shows the registers for setting alarm thresholds and
the monitored registers by the alarm function. The alarm
function is disabled if the threshold register have default
value. When an alarm condition occurs, this LSI outputs
Low to ALARMB to notify the application processor. The
processor can determine the exact cause of the alarm by
reading the Alarm bit in BatteryStatus (0x19). The
ALARMB low output is cleared if the alarm condition is
released. However, once the BatteryStatus Alarm bit is set,
it will not reset itself on releasing the alarm condition. The
reset must be performed by the processor.

The alarm function is only valid in Operational mode. In
Sleep mode, ALARMB output is canceled regardless of the
alarm status.

Log Functions
Table 11 shows the list of log register and the monitored

register by the log function. These log functions start
counting from the initial value and detects maximum and
minimum log values after the initialization sequence of LSI.
The log function is only effective in Operational mode. All
the log registers are Read/write enabled except CycleCount
(0x17).

http://www.onsemi.com/

AND9985/D

www.onsemi.com
8

If these registers are written with user’s value, counting
and detection operation will start from the defined value.
Figure 10 shows an example of cycle count measurement.
When RSOC reduction reaches 100%, CycleCount is
incremented by +1 count. The battery does not need to be in
a full charge or empty charge state to continue the cycle
count.

Figure 10. CycleCount (0x17) Report Example

Table 10. ALARM FUNCTIONS

Threshold Register Monitored Register BIT of Battery Status (0x19) Unit

Alarm High Cell Voltage (0x1F) Cell Voltage (0x09) 15 mV

Alarm High Temperature (0x21) (Note 2) Cell Temperature (TSENSE1) (0x08) 12 0.1 K

Alarm Low Cell Voltage (0x14) Cell Voltage (0x09) 11 mV

Alarm Low RSOC (0x13) RSOC (0x0D) 9 %

Alarm Low Temperature (0x20) (Note 2) Cell Temperature (TSENSE1) (0x08) 8 0.1 K

2. These alarms are enable when TSENSE1 is Thermistor mode.

Table 11. LOG FUNCTIONS

Log Register Monitored Register Unit Initial Value

CycleCount (0x17) RSOC (0x0D) count 0x0000

TotalRuntime (0x25,0x24) N/A minutes 0x0000

Accumulated Temperature (0x27,0x26) Cell Temperature (TSENSE1) (0x08) 2 K × minutes 0x0000

Accumulated RSOC (0x29,0x28) RSOC (0x0D) % × minutes 0x0000

Maximum Cell Voltage (0x2A) Cell Voltage (0x09) mV 0x0000

Minimum Cell Voltage (0x2B) Cell Voltage (0x09) mV 0x1388

Maximum Cell temperature (TSENSE1) (0x2C)
(Note 3)

Cell Temperature (TSENSE1) (0x08) 0.1 K 0x0980

Minimum Cell temperature (TSENSE1) (0x2D)
(Note 3)

Cell Temperature (TSENSE1) (0x08) 0.1K 0x0DCC

3. These logs are updated when TSENSE1 is Thermistor mode.

http://www.onsemi.com/

AND9985/D

www.onsemi.com
9

Detection of Battery Status
This LSI detects whether the battery is charged or

discharged and outputs that status to the Discharging Bit
(Bit 6 of BatteryStatus). Table 12 shows the relationship of
Discharging bit with the Battery status. Figure 11 shows an
example of Discharging Bit measurement when the battery
is charging, discharging, and at no load condition.

Table 12. DISCHARGING BIT
 (BIT 6 OF BATTERY STATUS REGISTER)

Discharging Bit Battery Status

0 Charge

1 Discharge or No load current

Figure 11. Discharging Bit and RSOC during Charge
and Discharge Cycle

Detection of System reset
This LSI is directly powered from the battery. If the

following situation occurs power supply is stopped and this
LSI is reset.

• The battery is removed

• The battery voltage falls below the reset release voltage
of this LSI due to excessive load current

• Lib protection IC disconnects the battery

In order to continue the battery measurement smoothly, it
is highly recommended to perform the control operation as
shown in Figure 12. This operation will be valid for those
applications that are expected to experience the above
situations.

Status bit 7 of BatteryStatus (0x19) or INITILIZED is
automatically set to 1 after a power−on reset. If the
application processor had set this bit to 0 immediately after
the last power−on reset, the processor can detect the LSI
reset operation by reading this bit again. If INITILAIZED is
1 then execute the Starting flow again.

Figure 12. Flow to Restart the Gauge after Excessive
Voltage Drop

No

Yes

Starting flow

Write BatteryStatus to 0x0040
(INITIALIZED=0)

Initial sequence
(INITIALIZED=1)

INITIALIZED=1

http://www.onsemi.com/

AND9985/D

www.onsemi.com
10

How to Estimate Time to Empty
This section describes how LSI estimates the battery

remaining time. Time to Empty register (0x03) provides
estimated remaining time until RSOC reach 0%. This LSI
automatically learns an average time that is required for 10%
RSOC decrease during each discharging operations. Time to
Empty is calculated by using the learned decreased rate
before RSOC reach 0%. See Figure 13 for details. If RSOC
increases after a charging operation, previously learned
decrease rate before charging is used to predict Time to
Empty.

Figure 13. How to Estimate Time to Empty

How to Estimate Time to Full
This section describes how LSI estimates the full time.

Time to Full register (0x05) provides estimated remaining

time until RSOC becomes 100%. In constant current
charging, this LSI continues learning RSOC increase rate.
The time until Cell voltage reaches the maximum charging
voltage (predefined) is calculated using the learned rate. In
constant voltage charging the charging current decreases to
the terminal current. Therefore, this LSI estimates that the
charging time for each 1% RSOC gradually gets longer.
Refer to Figure 15. Time to Full (TTF) register outputs the
total time for both the modes. Refer to Figure 14.

Figure 14. How to Estimate Time to Full

Figure 15. Time to Full (0x05) Report Example under CC−CV Charging

http://www.onsemi.com/

AND9985/D

www.onsemi.com
11

I2C Communication Protocol
This section describes I2C protocol and the actual

waveform. Refer to the datasheet about the characteristics.

Figure 16. Read Word Protocol

Read Waveform
Example: Read RSOC. RSOC = 98%.
I2C_ReadWord(0x0D);
Slave Address + Write: 0x16 (1)
Command Code: 0x0D
Slave Address + Read: 0x17 (2)
Data Byte Low: 0x62 (RSOC = 98%)
Data Byte High: 0x00
CRC−8: 0xEC (3)

Figure 17. Overview of Read Waveform

http://www.onsemi.com/

AND9985/D

www.onsemi.com
12

1. Slave Address + Write: 0x16
Command Code: 0x0D

Figure 18. Read Waveform (1)

Figure 19. Read waveform (1)

Slave Address + Write Command Code

Start ACK ACK

Red: Master to Slave
Blue: Slave to Master

2. Slave Address + Read: 0x17
Data Byte Low: 0x62 (RSOC = 98%)
Data Byte High: 0x00

Figure 19. Read Waveform (2)

Slave Address + Read DATA Byte Low
Repeated
Start

ACK ACK

Red: Master to Slave
Blue: Slave to Master

DATA Byte High

ACK

NOTE: The read data becomes 0xFFFF if Repeated Start Condition is not done.

http://www.onsemi.com/

AND9985/D

www.onsemi.com
13

3. CRC−8: 0xEC

Figure 20. Read Waveform (3)

Red: Master to Slave
Blue: Slave to Master

CRC−8 NACK

Stop

Figure 21. Write Word Protocol

http://www.onsemi.com/

AND9985/D

www.onsemi.com
14

Write Waveform
Example: Set IC Power Mode to Operational mode.
I2C_WriteWord (0x15 , 0x0001);
Slave Address + Write: 0x16 (1)
Command Code: 0x15
Data Byte Low: 0x01 (2)
Data Byte High: 0x00
CRC−8: 0x64 (3)

Figure 22. Overview of Write Waveform

1. Slave Address + Write: 0x16
Command Code: 0x15

Figure 23. Write Waveform (1)

Command Code: 0x15

Slave Address + Write Command Code

Start ACK ACK

Red: Master to Slave
Blue: Slave to Master

http://www.onsemi.com/

AND9985/D

www.onsemi.com
15

2. DATA Byte Low: 0x01
DATA Byte High: 0x00

Figure 24. Write Waveform (2)

DATA Byte Low DATA Byte High

ACK ACK

Red: Master to Slave
Blue: Slave to Master

3. CRC−8: 0x64

Figure 25. Write Waveform (3)

CRC−8
StopACK

Red: Master to Slave
Blue: Slave to Master

http://www.onsemi.com/

AND9985/D

www.onsemi.com
16

STARTING FLOW AND SAMPLE CODE

This section shows starting flow and the sample codes to
startup the gauge. The sample codes set only Mandatory
registers.

Sample code
• CRC−8 calculation

• LC709204F Starting flow with Thermistor mode

• LC709204F Starting flow with I2C mode

CRC−8 calculation
This code calculates CRC−8 to use in I2C communication.
/**
 *===
 * Calculate of CRC-8 by C-Language
 *===
 */

#define dPOLYNOMIAL8 0x8380

/*
 *===
 * Input data : previous data of CRC-8 , calculate data
 * Output data : CRC-8 data after calculate
 * Function : CRC-8 calculate
 *===
 */
static unsigned char u1_CRC_8_u1u1(unsigned char u1ArgBeforeData , unsigned char u1ArgAfterData)
{
 unsigned char u1TmpLooper = 0;
 unsigned char u1TmpOutData = 0;
 unsigned short u2TmpValue = 0;

 u2TmpValue = (unsigned short)(u1ArgBeforeData ^ u1ArgAfterData);
 u2TmpValue <<= 8;

 for(u1TmpLooper = 0 ; u1TmpLooper < 8 ; u1TmpLooper++){
 if(u2TmpValue & 0x8000){
 u2TmpValue ^= dPOLYNOMIAL8;
 }
 u2TmpValue <<= 1;
 }

 u1TmpOutData = (unsigned char)(u2TmpValue >> 8);

 return(u1TmpOutData);
}

int main(void)
{
 static unsigned char u1Calc = 0;
 static unsigned char u1CRC8 = 0;

 // Write Word Protocol
 u1Calc = u1_CRC_8_u1u1(0x00 , 0x16); // Address
 u1Calc = u1_CRC_8_u1u1(u1Calc , 0x07); // Command
 u1Calc = u1_CRC_8_u1u1(u1Calc , 0x55); // Data
 u1CRC8 = u1_CRC_8_u1u1(u1Calc , 0xAA); // Data

 // Read Word Protocol
 u1Calc = u1_CRC_8_u1u1(0x00 , 0x16); // Address
 u1Calc = u1_CRC_8_u1u1(u1Calc , 0x0D); // Command
 u1Calc = u1_CRC_8_u1u1(u1Calc , 0x17); // Address
 u1Calc = u1_CRC_8_u1u1(u1Calc , 0x20); // Data
 u1CRC8 = u1_CRC_8_u1u1(u1Calc , 0x00); // Data

 return(0); //
}

http://www.onsemi.com/

AND9985/D

www.onsemi.com
17

Starting Flow
This LSI starts initial sequence automatically after reset

release with power−on reset. I2C communication is enabled
after the sequence. Then set registers to start gauging
according to following sample codes.

Write and Read Register (Common)
void i2c_WriteWord(unsigned char u1ArgCommand , unsigned short u2ArgData)
{
 // H/W of I2C for Application Processor
}

unsigned short i2c_ReadWord(unsigned char u1ArgCommand)
{
 // H/W of I2C for Application Processor
}

LC709204F Starting Flow with Thermistor Mode

Figure 26. LC709204F Starting Flow with Thermistor Mode

No

Yes

Write IC Power mode

Write APA

Write Change Of The Parameter

Write Status Bit

Write TSENSE1 Thermistor B

Initialsequence

Read RSOC

After XX sec

Read RSOC

http://www.onsemi.com/

AND9985/D

www.onsemi.com
18

/**
 *===
 * Sample of Application Processor(LC709204F / Thermistor mode)
 *===
 */

void i2c_WriteWord(unsigned char u1ArgCommand , unsigned short u2ArgData)
{
 // H/W of I2C for Application Processor
}

unsigned short i2c_ReadWord(unsigned char u1ArgCommand)
{
 // H/W of I2C for Application Processor
}

int main(void)
{
 unsigned short u2RSOC;

 /*
 Battery connection
 ↓
 LC709204F Power ON
 ↓
 AP(Application Processor) Power On
 */

 // Initialization process from Application Processor
 i2c_WriteWord(0x0B , 0x3534); // Slave Function : APA(Adjustment Pack Application)
 // Command : 0x0B
 // Data : 0x3534 (ex. APA = 0x3534)

 i2c_WriteWord(0x12 , 0x0000); // Slave Function : Change Of The Parameter
 // Command : 0x12
 // Data : 0x0000 (ex. Battery profile = 0x0000)

 i2c_WriteWord(0x06 , 0x0D34); // Slave Function : TSENSE1 Thermistor B
 // Command : 0x06
 // Data : 0x0D34 (ex. B = 3380)

 i2c_WriteWord(0x16 , 0x0001); // Slave Function : Status Bit
 // Command : 0x16
 // Data : 0x0001 (Thermistor Mode)

 i2c_WriteWord(0x15 , 0x0001); // Slave Function : IC Power Mode
 // Command : 0x15
 // Data : 0x0001 (Operational Mode)

 u2RSOC = i2c_ReadWord(0x0D); // Slave Function : RSOC
 // Command : 0x0D

 // Control from Application Processor
 while(1){

 wait_XXs(); // wait XX s
 // EX 10s

 if(SmartPhone_PowerOn){
 // SmartPhone Power ON
 u2RSOC = i2c_ReadWord(0x0D); // Slave Function : RSOC
 // Command : 0x0D
 }else{
 // SmartPhone Power OFF
 while(SmartPhone_PowerOff){
 // AP Low Power Mode
 }
 }
 }

}

http://www.onsemi.com/

AND9985/D

www.onsemi.com
19

LC709204F Starting Flow with I2C Mode

Figure 27. LC709204F Starting Flow with I2C Mode

No

Yes

Write IC Power mode

Write APA

Write Change Of The Parameter

Initial sequence

Read RSOC

After XX sec

Read RSOC

Write Cell Temperature

http://www.onsemi.com/

AND9985/D

www.onsemi.com
20

/**
 *===
 * Sample of Application Processor(LC709204F / I2C mode)
 *===
 */

void i2c_WriteWord(unsigned char u1ArgCommand , unsigned short u2ArgData)
{
 // H/W of I2C for Application Processor
}
unsigned short i2c_ReadWord(unsigned char u1ArgCommand)
{
 // H/W of I2C for Application Processor
}

int main(void)
{
 unsigned short u2RSOC;

 /*
 Battery connection
 ↓
 LC709204F Power ON
 ↓
 AP(Application Processor) Power On
 */

 // Initialization process from Application Processor
 i2c_WriteWord(0x0B , 0x3534); // Slave Function : APA(Adjustment Pack Application)
 // Command : 0x0B
 // Data : 0x3534 (ex. APA = 0x3534)

 i2c_WriteWord(0x12 , 0x0000); // Slave Function : Change Of The Parameter
 // Command : 0x12
 // Data : 0x0000 (ex. Battery profile = 0x0000)

 i2c_WriteWord(0x15 , 0x0001); // Slave Function : IC Power Mode
 // Command : 0x15
 // Data : 0x0001 (Operational Mode)

 u2RSOC = i2c_ReadWord(0x0D); // Slave Function : RSOC
 // Command : 0x0D

 // Control from Application Processor
 while(1){

 wait_XXs(); // wait XX s
 // EX 10s

 if(SmartPhone_PowerOn){
 // SmartPhone Power ON
 u2RSOC = i2c_ReadWord(0x0D); // Slave Function : RSOC
 // Command : 0x0D

 i2c_WriteWord(0x08 , 0x0BA6); // Slave Function : Cell Temperature
 // Command : 0x08
 // Data : 0x0BA6 (ex. 25℃ → 25 * 10 + 2732 → 0x0BA6)
 }else{
 // SmartPhone Power OFF
 while(SmartPhone_PowerOff){
 // AP Low Power Mode
 }
 }
 }

}

http://www.onsemi.com/

AND9985/D

www.onsemi.com
21

User ID Writing Protocol
User ID (0x36, 0x37) provides 32−bits programmable

registers in LSI built−in NVM. These resisters can be used
for various purposes if required. User must program the
built−in NVM preliminarily to use this function. A master
device can program it using I2C commands. See Figure 28
for block diagram. The I2C communication protocol is
explained below.

Conditions for ID Writing
Following operating conditions must be satisfied during

programming User ID.

Allowable Operating Conditions during ID writing
♦ Supply voltage: 3.0 V to 5.0 V
♦ Ambient temperature: 10°C to 55°C

The re−writing cycle is confined to 100 cycles. Then the
master device should control to prevent multiple ID
programming. See Figure 29. Read User ID register before
programming. Start programming if the read data is not
same as the target data.

Figure 28. Block Diagram about User ID Writing

FlashWrite()

Built−in NVM

Master device LC709204F

NVM Writing

Protocol by I

User ID

User ID

0x36&0x37
Register Read

by I2C

Figure 29. Flow to Prevent Multiple ID Writing

1
st
. Power−On

Writing User ID

Is Read User ID
same as User ID?

Read User ID
(Register 0x36 & 0x37)

YES

NO

Writing User ID End

2C

Figure 30. Write N−bytes Data Protocol for ID Writing

http://www.onsemi.com/

AND9985/D

www.onsemi.com
22

Table 13. COMMAND LIST FOR USER ID WRITING PROTOCOL
2 bytes of all contents are little endian.

Ex1: 0x55AA −> data [0] = 0xAA, data [1] = 0x55
Ex2: instruction [2] = 0x8180 −> instruction [0] = 0x80, instruction [1] = 0x81

Command Code Function R/W Data size (Contents)

0x00 Enable Write mode W 2 byte (0x55AA)

0x01 Enter Write mode W 2 byte (0x55AA)

0x02 Set data W 130 byte (instruction[2], UID[4], data[124])

0x03 Set key1 W 2 byte (0x55AA)

0x04 Set key2 W 2 byte (0x00A0)

0x05 Write exe / Verify exe W 2 byte (0x55AA)

0x06 Start verify W 4 byte (instruction[4])

0x07 Read verify result R 2 byte (result[2])

0x08 Reset Write mode W 2 byte (0x55AA)

4. 0x03 to 0x08 commands are enable in Write mode.

Outline of User ID Writing Flow
Following process is required for a successful write

operation of User ID registers. Flow diagram is shown in
Figure 31.
• Change power mode

This process changes power mode to Test mode.
• Enter write mode

This process changes executing routine to “NVM Write
Routine” from “Normal Routine”

• Wait 300 ms
Waiting 300 ms is needed to change executing routine.

• Data transfer #1
This process sends 128 bytes data include 32bits User
ID with instruction of write to User ID of NVM

• Start Verify
This process sends notification of start of verify with
instruction of verify to NVM.

• Data transfer #2
This process sends 128 bytes data include 32 bits User
ID with instruction of verify to User ID of NVM

• Read result
This process receives result of verify

• Reset Write mode
This process does reset LC709204F

• Wait 1.5 s
Wait for 1.5 s if you operates the registers of
LC709204F continuously without power−off

Figure 31. Outline of User ID Writing Flow

Start

End

Change power mode

Enter write mode

Data transfer#1

Reset Write mode

Start Verify

Data transfer#2

Read result

Wait 300ms

Wait 1.5 s

http://www.onsemi.com/

AND9985/D

www.onsemi.com
23

Change Power Mode
• This command is Write Command • This command changes power mode to Test mode

Table 14.

Slave Address (W) Command Code Data[0] Data[1] CRC−8

IC Power Mode 0x16 0x15 0x00 0x00 0x71

Figure 32. Change Power Mode

Start

End

Write IC Power Mode

Enter Write Mode
• These commands are Write Command • This command changes executing routine to “NVM

Write Routine” from “Normal Routine”

Table 15.

Slave Address (W) Command Code Data[0] Data[1] CRC−8

Enable write mode 0x16 0x00 0xAA 0x55 0x25

Enter write mode 0x16 0x01 0xAA 0x55 0x4E

Figure 33. Enter Write Mode

Start

End

Write Enable Write mode

Write Enter Write mode

Data Transfer#1
• These commands are Write Command for User ID

Writing Protocol
• This command writes 128 bytes data to NVM

• Waiting 40 ms is needed to wait end of write to NVM

• “Set data” command’s CRC8 is changed by Data[2~5]

• Create UID data from 32bits User ID using the
following formula
♦ Lower 16bits UID = Lower 16bits User ID –

0x55AA
♦ Upper 16bits UID = Upper 16bits User ID –

0x55AA
ex.) In the case of 32bits User ID 0x12345678

− Lower 16bits UID = 0x5678 – 0x55AA
= 0x00CE … UID[0] = 0xCE, UID[1] = 0x00

− Upper 16bits UID = 0x1234 – 0x55AA
= 0xBC8A … UID[2] = 0x8A, UID[3] = 0xBC

• Data[0] = Fixed value 0x80

• Data[1] = Fixed value 0x81

• Data[2] = UID[0] data

• Data[3] = UID[1] data

• Data[4] = UID[2] data

• Data[5] = UID[3] data

http://www.onsemi.com/

AND9985/D

www.onsemi.com
24

Table 16.

Slave
Address(W)

Command
Code Data[0] Data[1] Data[2] Data[3] Data[4] Data[5]

Data
[6~129] CRC−8

Set data 0x16 0x02 0x80 0x81 UID[0] UID[1] UID[2] UID[3] 0x00 0xXX

Table 17.

Slave Address (W) Command Code Data[0] Data[1] CRC−8

Set key1 0x16 0x03 0xAA 0x55 0x98

Set key2 0x16 0x04 0xA0 0x00 0xA0

Write exe 0x16 0x05 0xAA 0x55 0xE5

Figure 34. Data Transfer#1

Start

End

Write Set key1

Write Set key2

Write Write exe

(CLK is held to zero for a maximumof
40ms, until last ACK returns.)

Write Set data

Start Verify
• This command is Write Command for User ID Writing

Protocol

Table 18.

Slave Address (W) Command Code Data[0] Data[1] Data[2] Data[3] CRC−8

Start verify 0x16 0x06 0x80 0x81 0x00 0x82 0xF5

Figure 35. Start Verify

Start

End

Write Start verify

http://www.onsemi.com/

AND9985/D

www.onsemi.com
25

Data Transfer#2
• These commands are Write Command for User ID

Writing Protocol
• This command writes 128 bytes data to NVM

• Waiting 40 ms is not needed to verify data

• “Set data” command’s CRC8 is changed by Data[2~5]

• Create UID data from 32bits User ID using the
following formula
♦ Lower 16bits UID = Lower 16bits User ID –

0x55AA
♦ Upper 16bits UID = Upper 16bits User ID –

0x55AA
ex.) In the case of 32bits User ID 0x12345678

− Lower 16bits UID = 0x5678 – 0x55AA
= 0x00CE … UID[0] = 0xCE, UID[1] = 0x00

− Upper 16bits UID = 0x1234 – 0x55AA
= 0xBC8A … UID[2] = 0x8A, UID[3] = 0xBC

• Data[0] = Fixed value 0x80

• Data[1] = Fixed value 0x81

• Data[2] = UID[0] data

• Data[3] = UID[1] data

• Data[4] = UID[2] data

• Data[5] = UID[3] data

Table 19.

Slave
Address(W)

Command
Code Data[0] Data[1] Data[2] Data[3] Data[4] Data[5]

Data
[6~129] CRC−8

Set data 0x16 0x02 0x80 0x81 UID[0] UID[1] UID[2] UID[3] 0x00 0xXX

Table 20.

Slave Address(W) Command Code Data[0] Data[1] CRC−8

Set key1 0x16 0x03 0xAA 0x55 0x98

Set key2 0x16 0x04 0xA0 0x00 0xA0

Verify exe 0x16 0x05 0xAA 0x55 0xE5

Figure 36. Data Transfer#2

Start

End

Write Set key1

Write Set key2

Write Verify exe

Write Set data

http://www.onsemi.com/

AND9985/D

www.onsemi.com
26

Read Result
• This command is Read Command for User ID Writing

Protocol
• Can read result of verification, by this command

• If verification was success, result is set to 0x0001

• If verification was failure, result is set to 0x0000

• This command’s CRC8 is changed by Data[0~1]

Table 21.

Slave Address (W) Command Code IC address (R) Data[0] Data[1] CRC−8

Read verify result 0x16 0x07 0x17 Result Low8bit Result High8bit 0xXX

Figure 37. Read Result

Start

End

Read verify result

Reset Write Mode
• This command is Write Command for User ID Writing

Protocol
• If this command was executed, LC709204F is reset.

Then all the registers are initialized. The initialized
values are the same as them after power on reset

Table 22.

Slave Address (W) Command Code Data[0] Data[1] CRC−8

Reset 0x16 0x08 0xAA 0x55 0x74

Figure 38. Reset Write Mode

Start

End

Write Reset Write mode

http://www.onsemi.com/

AND9985/D

www.onsemi.com
27

Retry by Error
• I2C Error at Change power mode

Retry from (A) point. Resetting LC709204F is
recommended when it becomes an error here

• I2C Error at after Change power mode
Retry from (B) point

• Result code is NG
Retry from (B) point

Figure 39. Retry by Error

Start

End

Change power mode

Enter write mode

Data transfer

Reset Write mode

Start Verify

Data transfer

Read result

(A)

(B)

http://www.onsemi.com/

AND9985/D

www.onsemi.com
28

This sample code writes User ID to built−in NVM. It includes the flow to prevent multiple ID writing.
/**
 *===
 * Sample of Application Processor(User ID writing)
 *===
 */

#define USERID_L (0x5678) // Definition of lower 16bits of User ID
#define USERID_H (0x1234) // Definition of upper 16bits of User ID

void i2c_WriteWord(unsigned char u1ArgCommand , unsigned short u2ArgData)
{
 // Implementation of I2C for Application Processor
}

unsigned short i2c_ReadWord(unsigned char u1ArgCommand)
{
 // Implementation of I2C for Application Processor
}

void i2c_WriteData(unsigned char u1ArgCommand , unsigned char *u1ArgData, unsigned short u2ArgSz)
{
 // Implementation of I2C for Application Processor
}

void i2c_DataTransfer(void)
{
 unsigned char u1Data[130];
 unsigned short u2UID_L;
 unsigned short u2UID_H;
 unsigned short n;

 u2UID_L = USERID_L - 0x55AA;
 u2UID_L = USERID_H - 0x55AA;

 u1Data[0] = 0x80;
 u1Data[1] = 0x81;
 u1Data[2] = (u2UID_L & 0x00FF);
 u1Data[3] = (u2UID_L & 0xFF00) >> 8;
 u1Data[4] = (u2UID_H & 0x00FF);
 u1Data[5] = (u2UID_H & 0xFF00) >> 8;
 for (n=6; n<130; n++){
 u1Data[n] = 0;
 }
 i2c_WriteData(0x02 , u1Data , 130); // Slave Function : Set data
 // Command : 0x02
 // Data[0] : 0x80 , Data[1] : 0x81 ,
 // Data[2] : UID0 , Data[3] : UID1 ,
 // Data[4] : UID2 , Data[5] : UID3 ,
 // Data[6] ... Data[129] : 0x00

 i2c_WriteWord(0x03 , 0x55AA); // Slave Function : Set key1
 // Command : 0x03
 // Data : 0x55AA

 i2c_WriteWord(0x04 , 0x00A0); // Slave Function : Set key2
 // Command : 0x04
 // Data : 0x00A0

 i2c_WriteWord(0x05 , 0x55AA); // Slave Function : Write/Verify exe
 // Command : 0x05
 // Data : 0x55AA
}

int main(void)
{
 unsigned short u2Result;
 unsigned char u1Data[4];
 unsigned short u2UserID_L;
 unsigned short u2UserID_H;

 /*
 Battery connection
 ↓
 LC709204F Power ON
 ↓
 AP(Application Processor) Power On
 */
 u2UserID_L = i2c_ReadWord(0x36); // Slave Function : User ID Lower 16bits
 // Command : 0x36

 u2UserID_H = i2c_ReadWord(0x37); // Slave Function : User ID Upper 16bits
 // Command : 0x37

http://www.onsemi.com/

AND9985/D

www.onsemi.com
29

This sample code writes User ID to built−in NVM. It includes the flow to prevent multiple ID writing. (continued)

 if((u2UserID_L != USERID_L) || (u2UserID_H != USERID_H)) {

 // User ID writing is done only once after the first power on.

 // User ID Writing process from Application Processor
 i2c_WriteWord(0x15 , 0x0000); // Slave Function : Change power mode
 // Command : 0x15
 // Data : 0x0000 (Test Mode)

 while(1){

 i2c_WriteWord(0x00 , 0x55AA); // Slave Function : Enable write mode
 // Command : 0x00
 // Data : 0x55AA

 i2c_WriteWord(0x01 , 0x55AA); // Slave Function : Enter write mode
 // Command : 0x01
 // Data : 0x55AA

 wait_300ms(); // wait 300 msec

 i2c_DataTransfer(); // Data Transfer#1 for User ID

 u1Data[0] = 0x80;
 u1Data[1] = 0x81;
 u1Data[2] = 0x00;
 u1Data[3] = 0x82;
 i2c_WriteData(0x06 , u1Data , 4); // Slave Function : Start verify
 // Command : 0x06
 // Data[0] : 0x80 , Data[1] : 0x81 ,
 // Data[2] : 0x00 , Data[3] : 0x82

 i2c_DataTransfer(); // Data Transfer#2 for User ID

 u2Result = i2c_ReadWord(0x07); // Slave Function : Read result
 // Command : 0x07

 if(u2Result == 0x00001){
 // User ID writing success
 i2c_WriteWord(0x08 , 0x55AA); // Slave Function : Reset write mode
 // Command : 0x08
 // Data : 0x55AA
 break;
 }else{
 // User ID writing failure
 }
 }
 }
}

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent
coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This
literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION
TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800−282−9855 Toll Free USA/Canada
Phone: 011 421 33 790 2910

ON Semiconductor is licensed by the Philips Corporation to carry the I2C bus protocol.

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421 33 790 2910
For additional information, please contact your local Sales Representative

◊

http://www.onsemi.com/
www.onsemi.com/site/pdf/Patent-Marking.pdf

