
APPLICATION NOTE 7163

HOW TO PROGRAM MAX22000 CONFIGURABLE
ANALOG IO
By: Konrad Scheuer

Abstract:
The MAX22000 is a configurable analog IO device. It supports a 1-channel universal
voltage/current input output (IO) together with an RTD or thermocouple input as an
industry-standard 4-terminal interface. Alternatively, it can be used to create two-
channel differential analog inputs or six-channels of single-ended analog inputs. A
microcontroller-compatible serial peripheral interface (SPI) provides access to many
advanced features. This application note provides example C-code implementation
including setup, monitoring, and diagnostic functions.

Introduction
The MAX22000 integrates a 24-bit ADC, an 18-bit DAC, and an analog front-end (AFE)
to create a software-configurable IO that supports all standard industrial analog
interfaces: -10V to +10V analog input or output, -20mA to +20mA analog input or output,
as well as an RTD or thermocouple input for temperature measurement. When used as
an analog input (AI), the device supports either differential input channels with two single-
ended inputs or up to six single-ended input channels. Additionally, one differential input
channel (AI5 and AI6) has an integrated low-noise Programmable Gain Amplifier (PGA)
designed for thermocouple or RTD measurements.

If the analog output (AO) is used, then it needs one differential pair of analog inputs in
current-output mode, or one single-ended analog input channel in voltage-output mode.

This application note presents a series of functions to provide a faster and proven solution
to programming the MAX22000 (Figure 1). They are written in C and should prove easy
to port over to any common microcontroller. For detailed information regarding the
MAX22000 pins, operating modes, and control registers, refer to the MAX22000 data
sheet.

Figure 1. MAX22000 Functional Diagram

MAX22000 SPI
The MAX22000 SPI commands are 32 bits long (8-bit instruction + 24-bit data) with CRC
disabled, and if CRC is enabled this adds 8 more bits for the CRC8; for details about CRC
calculation, please see Application Note 7072: Guidelines to Implement CRC
Programming for the MAX22000 Configurable Analog IO, which shows CRC8 encoding
in more detail. The SPI command structure is shown in Table 1. SPI mode for the
MAX22000 is CPOL = 0 (CLK idle = 0), CPHA = 0 (rising/first edge samples the data),
the data/commands need to be clocked in MSB first.

Table 1. MAX22000 SPI Command Structure

Full details of SPI read and write cycles, along with register tables and instructions, can
be found in the MAX22000 data sheet.

Figure 1 shows the main function blocks of the MAX22000. Essentially, there are four
main parts to the device:

 Sigma-delta ADC with an internal voltage reference – the main function is to
convert the analog data that can be read using the SPI.

 DAC with internal voltage reference – the main function is to convert digital data to
an analog voltage.

 AFE with multiplexer – the main function is to select channels and switch modes
(i.e., current/voltage).

 Logic-side interface – SPI port for accessing all device registers and hardware
flags for diagnostic.

MAX22000—Application Examples Configurable, Multi-Range Analog
Input/Output
The MAX22000 is designed to support industrial applications in end equipment such as
programmable logic controllers (PLCs) that require configurable analog I/O. A typical
application circuit is shown in Figure 2.

Figure 2. Configurable Analog IO + 3 Single-Ended Analog Voltage Inputs.

The terminal labeled 'Universal Analog I/O' is the software-configurable and fully flexible
analog IO port, which in conjunction with the terminal labeled 'Return' provides either:

 Current Input ±20mA (nominal) full-scale range is ±25mA.
 Current Output ±20mA (nominal) full-scale range is ±25mA.
 Voltage Input ±10V (nominal), full-scale range is ±12.5V.
 Voltage Output ±10V (nominal), full-scale range is ±12.5V.

To simplify systems which require galvanic isolation, the MAX22000 supports six logic-
level GPIOs (GPIO[5:0]), which can be used in case external components
(MUXes/FETs/power supplies) need to be switched or digital signals need to be read
back through the isolation barrier.

Source Code
This application note provides C source code examples, essentially providing driver
functions to access the multiple registers within the MAX22000 for configuration, control,
and diagnostic features. All software has been implemented and tested using MAX22000
EVkit.

Globals to allow easy channel/mode selection:

 public enum Register_address

 {

 GEN_PROD = 0x00,

 GEN_REV = 0x01,

 GEN_CNFG = 0x02,

 GEN_CHNL_CTRL = 0x03,

 GEN_GPIO_CTRL = 0x04,

 GEN_GPI_INT = 0x05,

 GEN_GPI_DATA = 0x06,

 GEN_INT = 0x07,

 GEN_INTEN = 0x08,

 GEN_PWR_CTRL = 0x09,

 GEN_TST_MODE_1 = 0x1a,

 GEN_TST_ENTRY = 0x1c,

 GEN_TST69 = 0x1d,

 DCHNL_CMD = 0x20,

 DCHNL_STA = 0x21,

 DCHNL_CTRL1 = 0x22,

 DCHNL_CTRL2 = 0x23,

 DCHNL_DATA = 0x24,

 DCHNL_N_SEL = 0x25,

 DCHNL_N_SOC = 0x26,

 DCHNL_N_SGC = 0x27,

 AO_DATA_WR = 0x40,

 AO_OFFSET_CORR_WR = 0x41,

 AO_GAIN_CORR_WR = 0x42,

 AO_CNFG_WR = 0x43,

 AO_DATA_RD = 0x44,

 AO_OFFSET_CORR_RD = 0x45,

 AO_GAIN_CORR_RD = 0x46,

 AO_STA_RD = 0x47,

 };

 // DAC is 18bit, full-range = 262144; Half because bipolar: 131072, Theoretical facto

r = V(range) / half-range

 public const double phy_AO_25V_factor = (double) 25 / (double) 262144; //0.000095

36743164;

 public const double phy_AO_25V_offset = -131072;

 public const double phy_AO_12V_factor = (double) 25 / (double) 262144; //0.000095

36743164;

 public const double phy_AO_12V_offset = 0;

 // DAC is 18bit, full-range = 262144; Theoretical factor = mA(range) / half-range (bi

polar)

 public const double phy_AO_25mA_factor = (double) 50 / (double) 262144; // 0.000190

7348633;

 public const double phy_AO_25mA_offset = 0;

 public const double phy_AO_2mA_factor = (double) 5 / (double) 262144; // 0.000019

07348633;

 public const double phy_AO_2mA_offset = 0;

 public enum Channel_select

 {

 AI1_SE_b12V = 0x00,

 AI2_SE_b12V = 0x01,

 AI1_2_diff_b1V = 0x02,

 AI3_SE_b12V = 0x03,

 AI4_SE_b12V = 0x04,

 AI3_4_diff_b25V = 0x05,

 AI5_SE_b12V = 0x06,

 AI6_SE_b12V = 0x07,

 AI5_6_diff_b25V = 0x08,

 AI5_SE_b0p125V = 0x09,

 AI5_SE_b0p250V = 0x0a,

 AI5_SE_b0p500V = 0x0b,

 AI5_SE_b2p500V = 0x0c,

 AI6_SE_b0p125V = 0x0d,

 AI6_SE_b0p250V = 0x0e,

 AI6_SE_b0p500V = 0x0f,

 AI6_SE_b2p500V = 0x10,

 AI5_6_diff_b0p125V = 0x11,

 AI5_6_diff_b0p250V = 0x12,

 AI5_6_diff_b0p500V = 0x13,

 AI5_6_diff_b2p500V = 0x14,

 AUX1_SE_u2V = 0x15,

 AUX2_SE_u2V = 0x16,

 AUX1_2_diff_b2V = 0x17,

 };

 public enum AOut_Mode

 {

 high_impedance = 0,

 AO_25V = 1,

 AO_12V = 2,

 AO_6V = 3,

 AO_1V = 4,

 AO_0p6V = 5,

 AO_25mA = 6,

 AO_12mA = 7,

 AO_2mA = 8,

 AO_1mA = 9,

 out_of_range1 = 10

 }

public enum MAX22000_CIO_Mode

{

 Current_Input,

 Voltage_Input,

 Current_Output,

 Voltage_Output,

 RTD_Input,

 PGA_Input,

 PGA_Input_with_Current_sourcing,

 Off

};

//**

//*

//* Function: MAX22000_read_register

//* Description: Read one Register from MAX22000

//*

//* Input: Register-Address (take from definitions in header-file)

//* Output: 24bit register content

//*

//* if CRC is enabled, then crc8-Command is required

//*

//**/

public UInt32 MAX22000EVKIT_read_register(Register_address address)

{

 UInt32 result = 0;

 UInt32 CRC_read = 0;

 if (CRC_Enabled == false)

 {

 max22000_port.SPI_CS0Enable();

 max22000_port.SPI_W_transaction_8((address << 1) + 0x01);

 result = max22000_port.SPI_R_transaction_24();

 max22000_port.SPI_CS0Disable();

 }

 else

 {

 max22000_port.SPI_CS0Enable();

 max22000_port.SPI_W_transaction_8((address << 1) + 0x01);

 result = max22000_port.SPI_R_transaction_24();

 CRC_read = max22000_port.SPI_R_transaction_8(); // read the CRC

 max22000_port.SPI_CS0Disable();

 // calculate and check...

 byte CRC_TX1 = (address << 1) + 0x01; // TX byte (was sent)

 byte CRC_RX1 = (result >>16) & 0xff; // 1st RX byte

 byte CRC_RX2 = (result >>8) & 0xff; // 2nd RX byte

 byte CRC_RX3 = (result) & 0xff; // 3rd RX byte

 byte CRC_Calc = crc8(CRC_TX1, CRC_RX1, CRC_RX2, CRC_RX3);

 if (CRC_Calc != CRC_read) printf("CRC read from MAX22000 is incorrect.");

 }

 return result;

}

//**

//*

//* Function: MAX22000_write_register

//* Description: Write one Register to MAX22000

//*

//* Input: Register-Address (take from definitions in header-file)

//* 24bit data (new register content)

//*

//**/

public UInt32 MAX22000EVKIT_write_register(Register_address address, UInt32 data)

{

 if (CRC_Enabled == false)

 {

 max22000_port.SPI_CS0Enable();

 max22000_port.SPI_W_transaction_8((ushort) (((byte)address << 1)));

 max22000_port.SPI_W_transaction_24(data);

 max22000_port.SPI_CS0Disable();

 }

 else

 {

 byte CRC_TX1 = (address << 1);

 byte CRC_TX2 = ((data> >16) & 0xff);

 byte CRC_TX3 = ((data >>8) & 0xff);

 byte CRC_TX4 = (data & 0xff);

 byte CRC_Calc = crc8(CRC_TX1, CRC_TX2, CRC_TX3, CRC_TX4);

 max22000_port.SPI_CS0Enable();

 max22000_port.SPI_W_transaction_8(address << 1);

 max22000_port.SPI_W_transaction_24(data);

 max22000_port.SPI_W_transaction_8(CRC_Calc);

 max22000_port.SPI_CS0Disable();

 }

}

// **

//

// Function: MAX22000_CIO_Setup

// Description: Sets up MAX22000 for one of the CIO Modes

// Assuming HW is connected like the standard application diagram

//

// Input: Desired Mode

// Output: None (MAX22000 will be setup by this routine)

//

// **

uint32_t MAX22000_CIO_Setup (MAX22000_CIO_Mode mode)

{

 uint32_t ADC_result = 0;

 switch (mode)

 {

 case MAX22000_CIO_Mode.Current_Input:

 // set calibration factors for Current Input

 MAX22000_write_register(MAX22000_DCHNL_CMD, 0x100000); // Stop any potentially

running conversions

 MAX22000_write_register(MAX22000_GEN_CHNL_CTRL, 0x000000); // No channel selected

 MAX22000_write_register(MAX22000_DCHNL_N_SEL, 0x000003); // Select CH AI1-2 diff

calibration factor

 MAX22000_write_register(MAX22000_DCHNL_N_SOC, 0xFFFFE1); // Write Offset (regula

r low-side)

 MAX22000_write_register(MAX22000_DCHNL_N_SGC, 0xBD934B); // Write Gain (regula

r low-side)

 // END restore calibration

 uint32_t new_GEN_CNFG = 0;

 new_GEN_CNFG = (new_GEN_CNFG & 0xff1fff) + 0x008000; // AI1-2 diff (CSA-Mode

)

 new_GEN_CNFG = (new_GEN_CNFG & 0xf0ffff) + 0x020000; // AO voltage output mo

de +/- 12.5V range

 MAX22000_write_register(MAX22000_GEN_CNFG, new_GEN_CNFG); // Write new_GEN_CNFG_

value

 MAX22000_write_register(MAX22000_AO_DATA_WR, 0x000000); // Write AO Voltage to

0V so current can flow

 // Prepare ADC

 MAX22000_write_register(MAX22000_GEN_CHNL_CTRL, 0x000300); // AI1-2 diff channel s

elected

 MAX22000_write_register(MAX22000_DCHNL_CTRL1, 0x010000); // Continuous Single cy

cle conversions

 MAX22000_write_register(MAX22000_DCHNL_CTRL2, 0x000000); // Internal OSC, use co

efficients, ...

 MAX22000_write_register(MAX22000_GEN_CHNL_CTRL, 0x000300); // select AI1-2 diff mo

de

 MAX22000_write_register(MAX22000_DCHNL_CMD, 0x310000); // Start conversion (10sps

) (0x340000 = 50sps)

 ADC_result = MAX22000EVKIT_read_register(MAX22000_DCHNL_DATA);// read Data

 break;

 case MAX22000_CIO_Mode.Current_Output:

 // Set DAC calibration

 MAX22000_write_register(MAX22000_AO_OFFSET_CORR_WR, 0x00F5C0);

 MAX22000_write_register(MAX22000_AO_GAIN_CORR_WR, 0xFA3E80);

 // END restore calibration

 // Set AO Mode (Register 0x02: GEN_CNFG)

 uint32_t new_GEN_CNFG = 0;

 new_GEN_CNFG = (new_GEN_CNFG & 0xff1fff) + 0x008000; // AI1-2 diff (CSA-Mode

)

 new_GEN_CNFG = (new_GEN_CNFG & 0xf0ffff) + 0x060000; // AO current output mo

de +/- 25mA range

 new_GEN_CNFG = (new_GEN_CNFG & 0xeFffff) + 0x000000; // Set 4-wire Mode

 new_GEN_CNFG = (new_GEN_CNFG & 0xffefff) + 0x001000; // enable AI3 SE

 new_GEN_CNFG = (new_GEN_CNFG & 0xbfffff) + 0x000000; // Internal Referen

ce

 MAX22000_write_register(MAX22000_GEN_CNFG, new_GEN_CNFG); // Write new_GEN_CNFG_

value

 MAX22000_write_register(MAX22000_GEN_PWR_CTRL, 0x000000); // Normal operation (espe

cially make sure GEN_PD=0

 // Set Hex value / physical Value

 MAX22000_write_register(MAX22000_AO_DATA_WR, 0);//new_AO_value<<6); // Write n

ew DAC value

 break;

 case MAX22000_CIO_Mode.Voltage_Input:

 // restore calibration

 MAX22000_write_register(MAX22000_DCHNL_CMD, 0x100000); // Stop any potentially

running conversions

 MAX22000_write_register(MAX22000_GEN_CHNL_CTRL, 0x000000); // No channel selected

 MAX22000_write_register(MAX22000_DCHNL_N_SEL, 0x000003); // Select CH AI3 SE cal

ibration factor

 MAX22000_write_register(MAX22000_DCHNL_N_SOC, 0xFFFFE1); // Write Offset

 MAX22000_write_register(MAX22000_DCHNL_N_SGC, 0xBD934B); // Write Gain

 // END restore calibration

 uint32_t new_GEN_CNFG = 0;

 new_GEN_CNFG = (new_GEN_CNFG & 0xffefff) + 0x001000; // AI3 SE enabled

 new_GEN_CNFG = (new_GEN_CNFG & 0xf0ffff) + 0x000000; // AO High-Impedance mo

de

 new_GEN_CNFG = (new_GEN_CNFG & 0xeFffff) + 0x000000; // Set 4-wire Mode

 new_GEN_CNFG = (new_GEN_CNFG & 0xbfffff) + 0x000000; // Internal Referen

ce

 MAX22000_write_register(MAX22000_GEN_CNFG, new_GEN_CNFG); // Write new_GEN_CNFG_v

alue

 // Select Internal REFs, set all channels to single-ended leave as is

 MAX22000_write_register(MAX22000_DCHNL_CTRL1, 0x010000); // Continuous Single cy

cle conversions

 MAX22000_write_register(MAX22000_DCHNL_CTRL2, 0x000000); // Internal OSC, use co

efficients, ...

 MAX22000_write_register(MAX22000_GEN_CHNL_CTRL, 0x000400); // Select Channel AI3 /

Single Ended

 //MAX22000_write_register(MAX22000_DCHNL_CMD, 0x330000); // Start conversion (

30sps)

 MAX22000_write_register(MAX22000_DCHNL_CMD, 0x310000); // Start conversion (10

sps)

 break;

 case MAX22000_CIO_Mode.Voltage_Output:

 MAX22000_write_register(MAX22000_AO_OFFSET_CORR_WR, 0x00F5C0);

 MAX22000_write_register(MAX22000_AO_GAIN_CORR_WR, 0xFA3E80);

 // END restore calibration

 uint32_t new_GEN_CNFG = 0;

 new_GEN_CNFG = (new_GEN_CNFG & 0xf0ffff) + 0x020000; // 10V is 0b0010 -> 2

 new_GEN_CNFG = (new_GEN_CNFG & 0xeFffff) + 0x000000; // Set 4-wire Mode

 new_GEN_CNFG = (new_GEN_CNFG & 0xbfffff) + 0x000000; // Internal Reference

 MAX22000_write_register(MAX22000_GEN_CNFG, new_GEN_CNFG); // Write new_GEN_CNFG_

value

 // Set Hex value / physical Value

 MAX22000_write_register(MAX22000_AO_DATA_WR, 0);//new_AO_value<<6); // Write ne

w DAC value

 break;

 case MAX22000_CIO_Mode.Off:

 // Make AO high-impedance, Stop ADC, Disable all Amplifiers

 MAX22000_write_register(MAX22000_DCHNL_CMD, 0x100000); // Stop any potenti

ally running conversions

 MAX22000_write_register(MAX22000_GEN_CHNL_CTRL, 0x000000); // No channel selec

ted

 MAX22000_write_register(MAX22000_GEN_CNFG, 0x000000); // Write new_GEN_CN

FG_value

 break;

 case default:

 // Make AO high-impedance, Stop ADC, Disable all Amplifiers

 MAX22000_write_register(MAX22000_DCHNL_CMD, 0x100000); // Stop any potent

ially running conversions

 MAX22000_write_register(MAX22000_GEN_CHNL_CTRL, 0x000000); // No channel sele

cted

 MAX22000_write_register(MAX22000_GEN_CNFG, 0x000000); // Write new_GEN_C

NFG_value

 break;

 }

}

// **

//

// Function: MAX22000_ADC_Setup

// Description: Sets up MAX22000 for to read one of the ADC Channels in selected Mode

// Assuming all ADCs (at least the selected one) is open / connected to a voltage so

urce

//

// Input: Desired ADC-Channel +Mode

// Output: None (MAX22000 will be setup by this routine, Conversion will be started)

//

// **

uint32_t MAX22000_ADC_Setup (ADC_CH_Mode CH_and_Mode)

{

 switch(CH_and_Mode)

 {

 case ADC_CH_Mode.AI1_SE:

 // Setup Channel 1 for Single Ended and continuous sampling

 uint32_t new_GEN_CNFG = 0;

 new_GEN_CNFG = (new_GEN_CNFG & 0xff1fff) + 0x006000; // make AI1 and AI2

SE active

 MAX22000_write_register(MAX22000_GEN_CNFG, new_GEN_CNFG); // Write new_GEN_CNF

G_value

 // Select Internal REFs, set all channels to single-ended leave as is

 MAX22000_write_register(MAX22000_DCHNL_CTRL1, 0x010000); // Continuous Single

cycle conversions

 MAX22000_write_register(MAX22000_DCHNL_CTRL2, 0x000000); // Internal OSC, use

coefficients, ...

 MAX22000_write_register(MAX22000_GEN_CHNL_CTRL, 0x000100); // Select Channel AI

1 / Single Ended

 //MAX22000_write_register(MAX22000_DCHNL_CMD, 0x330000); // Start conversio

n (30sps)

 MAX22000_write_register(MAX22000_DCHNL_CMD, 0x310000); // Start conversion

(10sps)

 break;

 case ADC_CH_Mode.AI2_SE:

 // Setup Channel 2 for Single Ended and continuous sampling

 uint32_t new_GEN_CNFG = 0;

 new_GEN_CNFG = (new_GEN_CNFG & 0xff1fff) + 0x006000; // make AI1 and AI2

SE active

 MAX22000_write_register(MAX22000_GEN_CNFG, new_GEN_CNFG); // Write new_GEN_CNF

G_value

 // Select Internal REFs, set all channels to single-ended leave as is

 MAX22000_write_register(MAX22000_DCHNL_CTRL1, 0x010000); // Continuous Single

cycle conversions

 MAX22000_write_register(MAX22000_DCHNL_CTRL2, 0x000000); // Internal OSC, use

coefficients, ...

 MAX22000_write_register(MAX22000_GEN_CHNL_CTRL, 0x000200); // Select Channel AI

1 / Single Ended

 //MAX22000_write_register(MAX22000_DCHNL_CMD, 0x330000); // Start conversio

n (30sps)

 MAX22000_write_register(MAX22000_DCHNL_CMD, 0x310000); // Start conversion

(10sps)

 break;

 case ADC_CH_Mode.AI3_SE:

 // Setup Channel 3 for Single Ended and continuous sampling

 uint32_t new_GEN_CNFG = 0;

 new_GEN_CNFG = (new_GEN_CNFG & 0xff1fff) + 0x001800; // make AI3 and AI4

SE active

 MAX22000_write_register(MAX22000_GEN_CNFG, new_GEN_CNFG); // Write new_GEN_CNF

G_value

 // Select Internal REFs, set all channels to single-ended leave as is

 MAX22000_write_register(MAX22000_DCHNL_CTRL1, 0x010000); // Continuous Single

cycle conversions

 MAX22000_write_register(MAX22000_DCHNL_CTRL2, 0x000000); // Internal OSC, use

coefficients, ...

 MAX22000_write_register(MAX22000_GEN_CHNL_CTRL, 0x000400); // Select Channel AI

3 / Single Ended

 //MAX22000_write_register(MAX22000_DCHNL_CMD, 0x330000); // Start conversio

n (30sps)

 MAX22000_write_register(MAX22000_DCHNL_CMD, 0x310000); // Start conversion

(10sps)

 break;

 case ADC_CH_Mode.AI4_SE:

 // Setup Channel 4 for Single Ended and continuous sampling

 uint32_t new_GEN_CNFG = 0;

 new_GEN_CNFG = (new_GEN_CNFG & 0xff1fff) + 0x000800; // make AI4 SE activ

e

 MAX22000_write_register(MAX22000_GEN_CNFG, new_GEN_CNFG); // Write new_GEN_CNF

G_value

 // Select Internal REFs, set all channels to single-ended leave as is

 MAX22000_write_register(MAX22000_DCHNL_CTRL1, 0x010000); // Continuous Single

cycle conversions

 MAX22000_write_register(MAX22000_DCHNL_CTRL2, 0x000000); // Internal OSC, use

coefficients, ...

 MAX22000_write_register(MAX22000_GEN_CHNL_CTRL, 0x000500); // Select Channel AI

4 / Single Ended

 //MAX22000_write_register(MAX22000_DCHNL_CMD, 0x330000); // Start conversio

n (30sps)

 MAX22000_write_register(MAX22000_DCHNL_CMD, 0x310000); // Start conversion

(10sps)

 break;

 case ADC_CH_Mode.AI12_DIFF:

 // Setup Channel 1-2 for Differeential and continuous sampling

 uint32_t new_GEN_CNFG = 0;

 new_GEN_CNFG = (new_GEN_CNFG & 0xff1fff) + 0x008000; // enable AI1-2 diff

(CSA) mode

 MAX22000_write_register(MAX22000_GEN_CNFG, new_GEN_CNFG); // Write new_GEN_CNF

G_value

 // Select Internal REFs, set all channels to single-ended leave as is

 MAX22000_write_register(MAX22000_DCHNL_CTRL1, 0x010000); // Continuous Single

cycle conversions

 MAX22000_write_register(MAX22000_DCHNL_CTRL2, 0x000000); // Internal OSC, use

coefficients, ...

 MAX22000_write_register(MAX22000_GEN_CHNL_CTRL, 0x000300); // Select Channel AI

1-2 / Differential

 //MAX22000_write_register(MAX22000_DCHNL_CMD, 0x330000); // Start conversio

n (30sps)

 MAX22000_write_register(MAX22000_DCHNL_CMD, 0x310000); // Start conversion

(10sps)

 break;

 case ADC_CH_Mode.AI34_DIFF:

 // Setup Channel 3-4 for Differeential and continuous sampling

 uint32_t new_GEN_CNFG = 0;

 new_GEN_CNFG = (new_GEN_CNFG & 0xff1fff) + 0x001800; // enable AI3-AI4 di

ff

 MAX22000_write_register(MAX22000_GEN_CNFG, new_GEN_CNFG); // Write new_GEN_CNF

G_value

 // Select Internal REFs, set all channels to single-ended leave as is

 MAX22000_write_register(MAX22000_DCHNL_CTRL1, 0x010000); // Continuous Single

cycle conversions

 MAX22000_write_register(MAX22000_DCHNL_CTRL2, 0x000000); // Internal OSC, use

coefficients, ...

 MAX22000_write_register(MAX22000_GEN_CHNL_CTRL, 0x000600); // Select Channel AI

3-4 / Differential

 //MAX22000_write_register(MAX22000_DCHNL_CMD, 0x330000); // Start conversio

n (30sps)

 MAX22000_write_register(MAX22000_DCHNL_CMD, 0x310000); // Start conversion

(10sps)

 break;

 case ADC_CH_Mode.AI56_DIFF:

 // Setup Channel 5-6 for Differeential and continuous sampling

 uint32_t new_GEN_CNFG = 0;

 new_GEN_CNFG = (new_GEN_CNFG & 0xff1fff) + 0x000400; // enable AI5-6 diff

+/- 25V range

 MAX22000_write_register(MAX22000_GEN_CNFG, new_GEN_CNFG); // Write new_GEN_CNF

G_value

 // Select Internal REFs, set all channels to single-ended leave as is

 MAX22000_write_register(MAX22000_DCHNL_CTRL1, 0x010000); // Continuous Single

cycle conversions

 MAX22000_write_register(MAX22000_DCHNL_CTRL2, 0x000000); // Internal OSC, use

coefficients, ...

 MAX22000_write_register(MAX22000_GEN_CHNL_CTRL, 0x000900);// Select Channel AI5-6

/ Differential +/-25V

 //MAX22000_write_register(MAX22000_DCHNL_CMD, 0x330000); // Start conversio

n (30sps)

 MAX22000_write_register(MAX22000_DCHNL_CMD, 0x310000); // Start conversion

(10sps)

 break;

 case ADC_CH_Mode.AI56_PGA_2p500V:

 // Setup Channel 5-6 for Differeential and continuous sampling (PGA Path +/-2.5V r

ange)

 uint32_t new_GEN_CNFG = 0;

 new_GEN_CNFG = (new_GEN_CNFG & 0xff1fff) + 0x000400; // enable AI5-6 diff +/- 2.

5V range (in PGA Mode)

 MAX22000_write_register(MAX22000_GEN_CNFG, new_GEN_CNFG); // Write new_GEN_CNF

G_value

 // Select Internal REFs, set all channels to single-ended leave as is

 MAX22000_write_register(MAX22000_DCHNL_CTRL1, 0x010000); // Continuous Single

cycle conversions

 MAX22000_write_register(MAX22000_DCHNL_CTRL2, 0x000000); // Internal OSC, use

coefficients, ...

 MAX22000_write_register(MAX22000_GEN_CHNL_CTRL, 0x000c00); // Select Channel AI5-6

/ Differential PGA Path

 //MAX22000_write_register(MAX22000_DCHNL_CMD, 0x330000); // Start conversio

n (30sps)

 MAX22000_write_register(MAX22000_DCHNL_CMD, 0x310000); // Start conversion

(10sps)

 break;

 case ADC_CH_Mode.AI56_PGA_0p500V:

 // Setup Channel 5-6 for Differeential and continuous sampling (PGA Path +/-0.5V r

ange)

 uint32_t new_GEN_CNFG = 0;

 new_GEN_CNFG = (new_GEN_CNFG & 0xff1fff) + 0x000440; // enable AI5-6 diff

+/- 0.5V range

 MAX22000_write_register(MAX22000_GEN_CNFG, new_GEN_CNFG); // Write new_GEN_CNF

G_value

 // Select Internal REFs, set all channels to single-ended leave as is

 MAX22000_write_register(MAX22000_DCHNL_CTRL1, 0x010000); // Continuous Single

cycle conversions

 MAX22000_write_register(MAX22000_DCHNL_CTRL2, 0x000000); // Internal OSC, use

coefficients, ...

 MAX22000_write_register(MAX22000_GEN_CHNL_CTRL, 0x000c00); // Select Channel AI5-6

/ Differential PGA Path

 //MAX22000_write_register(MAX22000_DCHNL_CMD, 0x330000); // Start conversio

n (30sps)

 MAX22000_write_register(MAX22000_DCHNL_CMD, 0x310000); // Start conversion

(10sps)

 break;

 case ADC_CH_Mode.AI56_PGA_0p250V:

 // Setup Channel 5-6 for Differeential and continuous sampling (PGA Path +/-0.250V

range)

 uint32_t new_GEN_CNFG = 0;

 new_GEN_CNFG = (new_GEN_CNFG & 0xff1fff) + 0x000480; // enable AI5-6 diff

+/- 0.250V range

 MAX22000_write_register(MAX22000_GEN_CNFG, new_GEN_CNFG); // Write new_GEN_CNF

G_value

 // Select Internal REFs, set all channels to single-ended leave as is

 MAX22000_write_register(MAX22000_DCHNL_CTRL1, 0x010000); // Continuous Single

cycle conversions

 MAX22000_write_register(MAX22000_DCHNL_CTRL2, 0x000000); // Internal OSC, use

coefficients, ...

 MAX22000_write_register(MAX22000_GEN_CHNL_CTRL, 0x000c00); // Select Channel AI5-6

/ Differential PGA Path

 //MAX22000_write_register(MAX22000_DCHNL_CMD, 0x330000); // Start conversio

n (30sps)

 MAX22000_write_register(MAX22000_DCHNL_CMD, 0x310000); // Start conversion

(10sps)

 break;

 case ADC_CH_Mode.AI56_PGA_0p125V:

 // Setup Channel 5-6 for Differeential and continuous sampling (PGA Path +/-0.250V

range)

 uint32_t new_GEN_CNFG = 0;

 new_GEN_CNFG = (new_GEN_CNFG & 0xff1fff) + 0x0004c0; // enable AI5-6 diff

+/- 0.125V range

 MAX22000_write_register(MAX22000_GEN_CNFG, new_GEN_CNFG); // Write new_GEN_CNF

G_value

 // Select Internal REFs, set all channels to single-ended leave as is

 MAX22000_write_register(MAX22000_DCHNL_CTRL1, 0x010000); // Continuous Single

cycle conversions

 MAX22000_write_register(MAX22000_DCHNL_CTRL2, 0x000000); // Internal OSC, use

coefficients, ...

 MAX22000_write_register(MAX22000_GEN_CHNL_CTRL, 0x000c00); // Select Channel AI5-6

/ Differential PGA Path

 //MAX22000_write_register(MAX22000_DCHNL_CMD, 0x330000); // Start conversio

n (30sps)

 MAX22000_write_register(MAX22000_DCHNL_CMD, 0x310000); // Start conversion

(10sps)

 break;

 case ADC_CH_Mode.AUX1_SE:

 // Setup Channel AUX1 for Single Ended and continuous sampling

 // Select Internal REFs, set all channels to single-ended leave as is

 MAX22000_write_register(MAX22000_DCHNL_CTRL1, 0x010000); // Continuous Single

cycle conversions

 MAX22000_write_register(MAX22000_DCHNL_CTRL2, 0x000000); // Internal OSC, use

coefficients, ...

 MAX22000_write_register(MAX22000_GEN_CHNL_CTRL, 0x000d00); // Select Channel AU

X1 / Single Ended

 //MAX22000_write_register(MAX22000_DCHNL_CMD, 0x330000); // Start conversio

n (30sps)

 MAX22000_write_register(MAX22000_DCHNL_CMD, 0x310000); // Start conversion

(10sps)

 break;

 case ADC_CH_Mode.AUX2_SE:

 // Setup Channel AUX2 for Single Ended and continuous sampling

 // Select Internal REFs, set all channels to single-ended leave as is

 MAX22000_write_register(MAX22000_DCHNL_CTRL1, 0x010000); // Continuous Single

cycle conversions

 MAX22000_write_register(MAX22000_DCHNL_CTRL2, 0x000000); // Internal OSC, use

coefficients, ...

 MAX22000_write_register(MAX22000_GEN_CHNL_CTRL, 0x000e00); // Select Channel AU

X2 / Single Ended

 //MAX22000_write_register(MAX22000_DCHNL_CMD, 0x330000); // Start conversio

n (30sps)

 MAX22000_write_register(MAX22000_DCHNL_CMD, 0x310000); // Start conversion

(10sps)

 break;

 case ADC_CH_Mode.AUX12_DIFF:

 // Setup Channel AUX1-2 for Differential and continuous sampling

 // Select Internal REFs, set all channels to single-ended leave as is

 MAX22000_write_register(MAX22000_DCHNL_CTRL1, 0x010000); // Continuous Single

cycle conversions

 MAX22000_write_register(MAX22000_DCHNL_CTRL2, 0x000000); // Internal OSC, use

coefficients, ...

 MAX22000_write_register(MAX22000_GEN_CHNL_CTRL, 0x000f00); // Select Channel AU

X1-2 / Differential

 //MAX22000_write_register(MAX22000_DCHNL_CMD, 0x330000); // Start conversio

n (30sps)

 MAX22000_write_register(MAX22000_DCHNL_CMD, 0x310000); // Start conversion

(10sps)

 break;

 case default:

 // Make AO high-impedance, Stop ADC, Disable all Amplifiers

 MAX22000_write_register(MAX22000_DCHNL_CMD, 0x100000); // Stop any potentia

lly running conversions

 MAX22000_write_register(MAX22000_GEN_CHNL_CTRL, 0x000000); // No channel select

ed

 MAX22000_write_register(MAX22000_GEN_CNFG, 0x000000); // Write new_GEN_CNF

G_value

 break;

 }

}

// **

//

// Function: MAX22000_ADC_Read

// Description: Reads the currently selected and running ADC Channel

// as setup per MAX22000_ADC_Setup

//

// Input: None

// Output: Current ADC Reading in LSB (24bit wide)

//

// **

uint32_t MAX22000_ADC_Read (void)

{

 uint32_t adc_result = 0;

 wait_for_RDYB(); // When RDYB pin is low, the ADC finished conversion.

 adc_result = MAX22000EVKIT_read_register(MAX22000_DCHNL_DATA);// read Data

 return adc_result;

}

// **

//

// Function: MAX22000_DAC_Setup

// Description: Sets up the DAC for the selected Mode

// after this the DAC can be updated with DAC_Set_LSB or DAC_Ser_PHY

//

// Input: DAC range

// Output: None, DAC in MAX22000 will be setup according to setting

//

// **

void MAX22000_DAC_Setup (DAC_Range range)

{

 switch (range)

 {

 case DAC_Range.AO_25V:

 uint32_t new_GEN_CNFG = 0;

 new_GEN_CNFG = (new_GEN_CNFG & 0xf0ffff) + 0x010000; // AO_CNFG = 0001: AO Cur

rent Mode, 25V setting

 MAX22000_write_register(MAX22000_GEN_CNFG, new_GEN_CNFG); // Write new_GEN_CN

FG_value

 // Restore Calibration

 MAX22000_write_register(MAX22000_AO_OFFSET_CORR_WR, 0x00F5C0);

 MAX22000_write_register(MAX22000_AO_GAIN_CORR_WR, 0xFA3E80);

 break;

 case DAC_Range.AO_12V:

 uint32_t new_GEN_CNFG = 0;

 new_GEN_CNFG = (new_GEN_CNFG & 0xf0ffff) + 0x020000; // AO_CNFG = 0010: AO Cur

rent Mode, 12.5V setting

 MAX22000_write_register(MAX22000_GEN_CNFG, new_GEN_CNFG); // Write new_GEN_CN

FG_value

 // Restore Calibration

 MAX22000_write_register(MAX22000_AO_OFFSET_CORR_WR, 0x00F5C0);

 MAX22000_write_register(MAX22000_AO_GAIN_CORR_WR, 0xFA3E80);

 break;

 case DAC_Range.AO_25mA:

 uint32_t new_GEN_CNFG = 0;

 new_GEN_CNFG = (new_GEN_CNFG & 0xf0ffff) + 0x060000; // AO_CNFG = 0110: AO Cur

rent Mode, 25mA setting

 new_GEN_CNFG = (new_GEN_CNFG & 0xff1fff) + 0x008000; // AI1-2 diff (CSA-

Mode)

 MAX22000_write_register(MAX22000_GEN_CNFG, new_GEN_CNFG); // Write new_GEN_CN

FG_value

 // Restore Calibration

 MAX22000_write_register(MAX22000_AO_OFFSET_CORR_WR, 0x00F5C0);

 MAX22000_write_register(MAX22000_AO_GAIN_CORR_WR, 0xFA3E80);

 break;

 case DAC_Range.AO_2mA:

 uint32_t new_GEN_CNFG = 0;

 new_GEN_CNFG = (new_GEN_CNFG & 0xf0ffff) + 0x080000; // AO_CNFG = 1000: AO Cur

rent Mode, 2.5mA setting

 new_GEN_CNFG = (new_GEN_CNFG & 0xff1fff) + 0x008000; // AI1-2 diff (CSA-

Mode)

 MAX22000_write_register(MAX22000_GEN_CNFG, new_GEN_CNFG); // Write new_GEN_CN

FG_value

 // Restore Calibration

 MAX22000_write_register(MAX22000_AO_OFFSET_CORR_WR, 0x00F5C0);

 MAX22000_write_register(MAX22000_AO_GAIN_CORR_WR, 0xFA3E80);

 break;

 default:

 // In case invalid range select, do nothing

 break;

 }

}

// **

//

// Function: MAX22000_DAC_Set_LSB

// Description: Writes a new LSB value to the DAC,

// assuming it is already setup in a specific mode, use DAC_Setup first

// If LDAC-pin is high, it must be toggled after setting up update the output

//

// Input: new DAC value in LSB

// Output: None

//

// **

void MAX22000_DAC_Set_LSB (uint32_t data)

{

 // DAC must be setup before using this function

 // Below will simply write the new Value to the DAC

 MAX22000_write_register(MAX22000_AO_DATA_WR, data);

}

// **

//

// Function: MAX22000_DAC_Set_PHY

// Description: Writes a new PHY value (Volt or mA) to the DAC,

// assuming it is already setup in a specific mode, use DAC_Setup first

// If LDAC-pin is high, it must be toggled after setting up update the output

//

// Input: new DAC value in physical value (either Volt or Miliampere, NOT AMPERE)

// Output: None

//

// **

void MAX22000_DAC_Set_PHY (float volt_V_or_current_mA, DAC_Range range)

{

 // DAC must be setup before using this function

 // Calculate new LSB Value

 uint32_t DAC_LSB_value = 0;

 switch (range)

 {

 case DAC_Range.AO_25V:

 if (volt_V_or_current_mA < 25)

 { DAC_LSB_value = 0x1ffff + ((volt_V_or_current_mA / (phy_AO_25V_factor))) + phy_A

O_25V_offset + 1; }

 else

 { DAC_LSB_value = -0x1ffff + ((volt_V_or_current_mA / (phy_AO_25V_factor)) + phy_A

O_25V_offset - 0); }

 break;

 case DAC_Range.AO_12V:

 if (volt_V_or_current_mA < 0)

 { DAC_LSB_value = 0x3ffff - ((-volt_V_or_current_mA / (phy_AO_12V_factor))) + phy_

AO_12V_offset + 1; }

 else

 { DAC_LSB_value = ((volt_V_or_current_mA / (phy_AO_12V_factor)) + phy_AO_12V_offse

t - 0); }

 break;

 case DAC_Range.AO_25mA:

 if (volt_V_or_current_mA < 0)

 { DAC_LSB_value = 0x3ffff - ((-volt_V_or_current_mA / (phy_AO_25mA_factor))) + phy

_AO_25mA_offset + 1; }

 else

 { DAC_LSB_value = ((volt_V_or_current_mA / (phy_AO_25mA_factor)) + phy_AO_25mA_off

set - 0); }

 break;

 case DAC_Range.AO_2mA:

 if (volt_V_or_current_mA < 0)

 { DAC_LSB_value = 0x3ffff - ((-volt_V_or_current_mA / (phy_AO_2mA_factor))) + phy_

AO_2mA_offset + 1; }

 else

 { DAC_LSB_value = ((volt_V_or_current_mA / (phy_AO_2mA_factor)) + phy_AO_2mA_offse

t - 0); }

 break;

 default:

 DAC_LSB_value = 0; // default means non-existend range selected

 break;

 }

// **

//

// Function: MAX22000_GPIO_Setup

// Description: Sets up all 6 GPIO Pins, bit0=GPIO0, bit1=GPIO1, ...

// Since the command includes everything Enable/Disable as well as

// GPIO Direction, this function is faster than GPO_Set

// because it doesn't have to read back the setup from the part

//

// Input: GPIO_enable (byte) Bit0 = GPIO0, Bit1 = GPIO1, ... (0 = Off, 1 = On)

// GPIO_direction (byte) Bit0 = GPIO0, Bit1 = GPIO1, ... (0 = Input, 1 = Output)

// GPO_Setting (byte) Bit0 = GPIO0, Bit1 = GPIO1, ... (0 = Low, 1 = High)

// Output: None

//

// **

void MAX22000_GPIO_Setup (uint8_t GPIO_enable, uint8_t GPIO_direction, uint8_t GPO_Setting)

{

 uint32_t new_gpio_value = ((GPIO_enable & 0x3f)<<16) + ((GPIO_direction & 0x3f)<<8) + (GPO_Se

tting & 0x3f);

 MAX22000_write_register(MAX22000_GEN_GPIO_CTRL, new_gpio_value); // Write new_GEN_CNFG_va

lue

}

// **

//

// Function: MAX22000_GPO_Set

// Description: Sets GPOs high or low, bit0=GPIO0, bit1=GPIO1, ...

// GPOs must be setup and enabled prior this use MAX22000_GPIO_Setup

//

// Input: GPO Setting, bit0=GPIO0, bit1=GPIO1, ... (0 = Low, 1 = High)

// Output: None

//

// **

void MAX22000_GPO_Set (uint8_t GPO_Setting)

{

 uint32_t gpio_setup = MAX22000EVKIT_read_register(MAX22000_GEN_GPIO_CTRL); // read Setup

 gpio_setup = gpio_setup & 0xffff00; // Mask out previ

ous GPO settings

 MAX22000_write_register(MAX22000_GEN_GPIO_CTRL, gpio_setup); // Write new_GEN_

CNFG_value

}

// **

//

// Function: MAX22000_GPI_Get

// Description: Gets all GPI readings high or low, bit0=GPIO0, bit1=GPIO1, ...

// GPIs must be setup and enabled prior this use MAX22000_GPIO_Setup

//

// Input: None

// Output: GPI Setting, bit0=GPIO0, bit1=GPIO1, ... (0 = Low, 1 = High)

//

// **

uint8_t MAX22000_GPI_Get (void)

{

 uint32_t gpi_result = MAX22000EVKIT_read_register(MAX22000_GEN_GPI_DATA); // read GPI Data

 return gpi_result & 0x3f;

}

CRC Function

Please note, the below CRC function is described in more detail in Application Note 7072, but since some
of above functions depend on CRC, the code is provided here as well for more convenience.

 public byte crc8(byte BYTE1, byte BYTE2, byte BYTE3, byte BYTE4)

 {

 byte crc8_start = 0x00;

 byte crc8_poly = 0x8c; // rotated 0x31, which is our polinomial

 byte crc_result = crc8_start;

 // BYTE1

 for (int i=0; i<8; i++)

 {

 if((((BYTE1>>i) ^ (crc_result)) & 0x01) > 0)

 { crc_result = (byte) (crc8_poly ^ crc_result>>1); }

 else

 { crc_result = (byte) (crc_result>>1); }

 }

 // BYTE2

 for (int i=0; i<8; i++)

 {

 if((((BYTE2>>i) ^ (crc_result)) & 0x01) > 0)

 { crc_result = (byte) (crc8_poly ^ crc_result>>1); }

 else

 { crc_result = (byte) (crc_result>>1); }

 }

 // BYTE3

 for (int i=0; i<8; i++)

 {

 if((((BYTE3>>i) ^ (crc_result)) & 0x01) > 0)

 { crc_result = (byte) (crc8_poly ^ crc_result>>1); }

 else

 { crc_result = (byte) (crc_result>>1); }

 }

 // BYTE4

 for (int i=0; i<8; i++)

 {

 if((((BYTE4>>i) ^ (crc_result)) & 0x01) > 0)

 { crc_result = (byte) (crc8_poly ^ crc_result>>1); }

 else

 { crc_result = (byte) (crc_result>>1); }

 }

 crc8_2_for_testing(BYTE1, BYTE2, BYTE3, BYTE4);

 return crc_result;

 }

