APPLICATION NOTE 7163

HOW TO PROGRAM MAX22000 CONFIGURABLE
ANALOG IO

By: Konrad Scheuer

Abstract:

The MAX22000 is a configurable analog 10 device. It supports a 1-channel universal
voltage/current input output (I0) together with an RTD or thermocouple input as an
industry-standard 4-terminal interface. Alternatively, it can be used to create two-
channel differential analog inputs or six-channels of single-ended analog inputs. A
microcontroller-compatible serial peripheral interface (SPI) provides access to many
advanced features. This application note provides example C-code implementation
including setup, monitoring, and diagnostic functions.

Introduction

The MAX22000 integrates a 24-bit ADC, an 18-bit DAC, and an analog front-end (AFE)
to create a software-configurable 10 that supports all standard industrial analog
interfaces: -10V to +10V analog input or output, -20mA to +20mA analog input or output,
as well as an RTD or thermocouple input for temperature measurement. When used as
an analog input (Al), the device supports either differential input channels with two single-
ended inputs or up to six single-ended input channels. Additionally, one differential input
channel (AI5 and Al6) has an integrated low-noise Programmable Gain Amplifier (PGA)
designed for thermocouple or RTD measurements.

If the analog output (AO) is used, then it needs one differential pair of analog inputs in
current-output mode, or one single-ended analog input channel in voltage-output mode.

This application note presents a series of functions to provide a faster and proven solution
to programming the MAX22000 (Figure 1). They are written in C and should prove easy
to port over to any common microcontroller. For detailed information regarding the
MAX22000 pins, operating modes, and control registers, refer to the MAX22000 data
sheet.

| |

|

]

REF_DAC_EXT

HART_IN FB

HVDD HVDDO

™ il

DVDD AVDD BYP_DAC| REF.DAC
OSCILLATOR LDO ‘,_q [‘:
LDAC
INPUT
REGISTER || DAC
AGND_DAC |
AGND_DAC
NR
REF_OUT 2.5V REFERENCE
cs
SCLK
sDI
SDO DIGITAL | DELTA-SIGMA | |
5 Sisira FILTER ADC
INTERFACE
RST
RDY
SYNC '
LDO
CLK
DGND AGND BYP_ADC| REF_ADC| REF_ADC_EXT

GPIO
CTRL

GPIO[5:0]

o~ AQP
> > AON
— A
Alt
=
Al2
<
o—gw\«—< : Al3
11
& Al4
\
AlS
]
<>GA.
_| Al6
AUXI
AUX2

HVSS

HVSSO

I I

Figure 1. MAX22000 Functional Diagram

MAX22000 SPI

I

The MAX22000 SPI commands are 32 bits long (8-bit instruction + 24-bit data) with CRC
disabled, and if CRC is enabled this adds 8 more bits for the CRCS8; for details about CRC

calculation, please see Application Note 7072: Guidelines to

Implement CRC

Programming for the MAX22000 Configurable Analog 10, which shows CRC8 encoding
in more detail. The SPI command structure is shown in Table 1. SPI mode for the
MAX22000 is CPOL = 0 (CLK idle = 0), CPHA = 0 (rising/first edge samples the data),
the data/commands need to be clocked in MSB first.

Table 1. MAX22000 SPI Command Structure

Full details of SPI read and write cycles, along with register tables and instructions, can
be found in the MAX22000 data sheet.

Address

7-bits A[6:0], MSB to LSB

Control

RAW bit, Read =1, Write =0

Data

24-bits D[23:0], MSB to LSB

Figure 1 shows the main function blocks of the MAX22000. Essentially, there are four
main parts to the device:

e Sigma-delta ADC with an internal voltage reference — the main function is to
convert the analog data that can be read using the SPI.

« DAC with internal voltage reference — the main function is to convert digital data to
an analog voltage.

e AFE with multiplexer — the main function is to select channels and switch modes
(i.e., current/voltage).

e Logic-side interface — SPI port for accessing all device registers and hardware
flags for diagnostic.

MAX22000—Application Examples Configurable, Multi-Range Analog

Input/Output

The MAX22000 is designed to support industrial applications in end equipment such as
programmable logic controllers (PLCs) that require configurable analog I/O. A typical
application circuit is shown in Figure 2.

27VT036V 27VTO36V 5V TO 28V

4 4 NOTE: FOR 4

EXTERNAL
REFERENCE ONLY

IOOpF

OVDD AVDD BYP_DAC REF_DAC REF_DAC_EXT HART_IN FB HVDD HVDDO TS
DFLSN50
OR EQUIVALENT
AOP
J LDAC AON —F—9
Al B——ANA——@
4.7kQ
| AGND_DAC
'|[- 500
a2 MAX22000
OF Al2
] | 1 4.7k
0.JuF
9
Al3
REF.OUT ATKQ CONFIGURABLE
WF ANALOG I/0
—gCs
Ald
| 5CLK Y
ATKY ANALOG INPUT
—RSDI
Als f——ANN—)
—HS00 4.7k0
pe ANALOG INPUT
—HINT
F—HRST
Al6
——RRDY 47kQ ANALOG INPUT
SYNC AUX1
CLK AUX2
‘ ®
DGND AGND BYP_ADC REF_ADC REF_ADC_EXT GPIO5:0] HVSS HVSSO 1 RETURN
T - NOTE: FOR 1
X7 = EXTERNAL T
REFERENCE ONLY
\
-5V TO -24V

Figure 2. Configurable Analog IO + 3 Single-Ended Analog Voltage Inputs.

The terminal labeled 'Universal Analog I/O' is the software-configurable and fully flexible
analog 10 port, which in conjunction with the terminal labeled 'Return’ provides either:

Current Input £20mA (nominal) full-scale range is £25mA.
Current Output £20mA (nominal) full-scale range is +25mA.
Voltage Input £10V (nominal), full-scale range is £12.5V.
Voltage Output £10V (nominal), full-scale range is £12.5V.

To simplify systems which require galvanic isolation, the MAX22000 supports six logic-
level GPIOs (GPIO[5:0]), which can be used in case external components
(MUXes/FETs/power supplies) need to be switched or digital signals need to be read
back through the isolation barrier.

Source Code

This application note provides C source code examples, essentially providing driver
functions to access the multiple registers within the MAX22000 for configuration, control,
and diagnostic features. All software has been implemented and tested using MAX22000
EVKit.

Globals to allow easy channel/mode selection:

public enum Register_address

1
GEN_PROD = 0x00-
GEN_REV = OxOl-
GEN_CNFG = Ox02-
GEN_CHNL_CTRL = 0x03-
GEN_GPTIO_CTRL = OxOY-
GEN_GPI_INT = Ox05-
GEN_GPI_DATA = OxOb-
GEN_INT = 0x07-
GEN_INTEN = Ox08-
GEN_PWR_CTRL = Ox09-
GEN_TST_MODE_1 = Oxla-
GEN_TST_ENTRY = Oxlca
GEN_TSTES = Oxld-
DCHNL_CMD = Ox20-
DCHNL_STA = Ox2L-
DCHNL_CTRL1 = Ox22-
DCHNL_CTRLZ = Ox23-
DCHNL_DATA = Ox24-
DCHNL_N_SEL = Ox25-
DCHNL_N_S0C = Ox2hb-
DCHNL_N_SGC = Ox27-
AO_DATA_UR = Ox4O-

AO_OFFSET_CORR_WR = Ox4L-

AO_GAIN_CORR_WR = OxY2
AO_CNFG_UWR = Ox43-
AO_DATA_RD = Ox44-

AO_OFFSET_CORR_RD = Ox45-
AO_GAIN_CORR_RD = OxYka
AO_STA_RD = Ox47-

14

// DAC is l8bit. full-range = 2bk2l44i Half because bipolar: 131072- Theoretical facto
r = V(range) / half-range

public const double phy_A0_25V_factor = (double) 25 / (double) 2bk21l4u: //0.000095
367431k45

public const double phy_A0_25V_offset = =-1310723

public const double phy_A0_Ll2V_factor = (double) 25 / (double) 2k21l4u: //0.000095
36743LbY4Y5

public const double phy_A0_l2V_offset = 03

// DAC is l8bit. full-range = 2k2l443 Theoretical factor = mA(range) / half-range (bi
polar)

public const double phy_A0_25mA_factor = (double) 50 / (double) 2k21l44: // 0.000190
7348335

public const double phy_AO_25mA_offset = 03

public const double phy_A0_2mA_factor = (double) 5 / (double) 2k2luus // 0.00001L9
07348L335

public const double phy_AO0_2mA_offset = 03

public enum Channel_select

1
AT1L_SE_bl2V = Ox0O0-
AI2_SE_bl2V = OxDl-
ATl_2_diff_blV = Ox02-
AI3_SE_bl2V = Ox034
ATY_SE_bl2V = OxOY-
AI3_4_diff_b25V = OxD5-
AI5_SE_bl2V = OxOhb-
ATb_SE_bl2V = Ox07-
AI5_b_diff_b25V = OxO&-
AIS_SE_bOpl25V = 0x09-
AI5_SE_bOp250V = OxDa-
AI5_SE_bOp500V = OxOb-
AI5_SE_b2p500V = OxOca
AIb_SE_bOpl25V = OxOd-
ATb_SE_bOp250V = OxDe-
ATk_SE_bOp500V = OxOf-
AIb_SE_b2p500V = Ox10-

AI5_bk_diff_b0Opl25vV = 0Ox1lla
AI5_L_diff_b0Op250V = 0Oxl2-
AI5_L_diff_b0Op500V = 0Ox13-

AI5_b_diff_b2p500V = Ox1lh4a

AUXL_SE_u2V = 0x15,

AUX2_SE_u2V = 0Ox1lk-

AUX1_2_diff_b2V O0x174

T4

public enum AQut_Mode

{
high_impedance = DO,
AO_25V = 1-
AO_12V = B,
AO_LV = 3,
AO_1V = 4,
AO_OpkV = 5,
AO_25mA = ba
AO_L2mA = 7,
AO_2mA = &8,
AO_1mA = 9,
out_of_rangel = 10

¥

public enum MAX22000_CIO_Mode
{
Current_Inputa
Voltage_Inputa.
Current_Outputa.
Voltage_OQutputa
RTD_Input-
PGA_Input-
PGA_Input_with_Current_sourcing-
of f
}s
/7K KKK KKK KKK KKK KK K KK K KKK KK K KK KKK KK K K K K KK K KK K KK KK K KK K oK K K K K KK K KKK KK K KK K K
/ /%
//% Function: MAX22000_read_register

//% Description: Read one Register from MAX22000

//% Input: Register-Address (take from definitions in header-file)

//% Qutput: 24bit register content

//% if CRC is enabled- then crcé&-Command is required

/ /%% X % K X % 5K XK 5K 5K XK 3K 5K K %K 5K X % 5 5K %K 3 5K % 3 5 X 3 5 % 3 5 % 3 5 5% % 5 5K % 3 % X 3 K XK K K XK K K K KK KKK KKK KKKXkXKk%/

public UInt32 MAX22000EVKIT_read_register(Register_address address)

{

UInt32 result = 03

UInt32 CRC_read = 03

if (CRC_Enabled == false)

{
max22000_port.SPI_CSOEnable()s
max22000_port.SPI_W_transaction_8((address << 1) + 0Ox0Ll)3
result = max22000_port.SPI_R_transaction_g24 ()3
max22000_port-SPI_CSODisable()s

T

else

{
max22000_port.SPI_CSOEnable()s
max22000_port.SPI_W_transaction_8((address << 1) + 0Ox0Ll)3
result = max22000_port.-SPI_R_transaction_g24 ()3
CRC_read = max22000_port.SPI_R_transaction_&8()3 // read the CRC
max22000_port-SPI_CSODisable()3
// calculate and check...
byte CRC_TXL = (address << 1) + 0Ox0ls // TX byte (was sent)
byte CRC_RXL = (result >>1k) & Oxffs // 1lst RX byte
byte CRC_RX2 = (result >>8) & 0Oxffs // 2nd RX byte
byte CRC_RX3 = (result) & Oxffs // 3rd RX byte
byte CRC_Calc = crc8(CRC_TX1- CRC_RXL. CRC_RX2. CRC_RX3)3

if (CRC_Calc != CRC_read) printf("CRC read from MAX22000 is incorrect.™):3
}
return results
T

7/ KK KKK XK K K XK K K K K K K K 3K 5K 5 K 5K 3K 3K 3K 3K 3K 3K K 3K 3K 5K 3K 3K 5K K 3K 5K XK 3K 5K 3K 3K 3K XK 3K 3K XK K 3K K XK K K XK K K K K K K KKK KKK XKX

//% Function: MAX22000_write_register

//x Description: Write one Register to MAX22000

//% Input: Register-Address (take from definitions in header-file)

//% 24bit data (new register content)

/ /%

/ /%K XK K X K K XK K 5K XK K 5K K K 3K 5K 5 5 5K XK 3 5K X 3 5K X 3 3K X 3 5K X 3 3 X 5 5K K XK 3K K XK K K XK KK KKK KKK KKK KKKKXKKXKXKk%/

public UInt32 MAX22000EVKIT_write_register(Register_address addressa

{

//
//
//
//
//
//
//
//
//
//
uin

{

if (CRC_Enabled == false)
{

max22000_port.-SPI_CSOEnable()s

UInt32 data)

max22000_port-SPI_W_transaction_B8((ushort) (((byte)address << 1)))3

max22000_port-SPI_W_transaction_24(data)s

max22000_port.SPI_CSODisable()s

else

byte CRC_TX1 = (address << 1)3
byte CRC_TX2 = ((data> >1k) & Oxff)s
byte CRC_TX3 = ((data >>8) & Oxff)s

byte CRC_TX4 = (data & Oxff)s

byte CRC_Calc = crcB8(CRC_TXL~ CRC_TX2. CRC_TX3. CRC_TX4)3

max22000_port-SPI_CSOEnable()s
max22000_port-SPI_W_transaction_B8(address << 1)3
max22000_port-SPI_W_transaction_24(data)s
max22000_port-SPI_W_transaction_A8(CRC_Calc)3

max22000_port-SPI_CSODisable()3

3K 3K 5K 5K 3K 3K 3K 5K 3K 3K 3K 5K 5K 3K 3K K 3K 3K 3K % 5K 5K 3K 3K % 3K 3K 3K 3K XK 5K 5K 3K 3K K 3K 3K 3K XK K K K 3K K K K K K KKK KK KKKKKKKKKKKKKX%X

Function: MAX22000_CIO_Setup

Description: Sets up MAX22000 for one of the CI0 Modes

Assuming HW is connected like the standard application diagram

Input: Desired Mode

Output: None (MAX22000 will be setup by this routine)

3K 3K 5K 3K 3K 3K 3K 5K 3K 3K 3K 5K 5K 3K 3K 3K 3K 3K 3K K 3K 5K K 3K XK K 3K 3K K K K 5K 3K XK K 5K 3K 3K KK K K K KK KK KKK KK XK kKKK KKK KKK KKK X%

t32_t MAX22000_CIO0_Setup (MAX22000_CI0_Mode mode)

uint32_t ADC_result = 03

switch (mode)
{
case MAX22000_CIO0_Mode.Current_Input:

// set calibration factors for Current Input

MAX22000_write_register (MAX22000_DCHNL_CMD. 0x100000) 3 /7
running conversions

MAX22000_write_register (MAX22000_GEN_CHNL_CTRL. Ox000000)4 //

MAX22000_write_register (MAX22000_DCHNL_N_SEL. 0x000003) 5 //
calibration factor

MAX22000_write_register (MAX22000_DCHNL_N_S0C. OxFFFFEL) 3 /7
r low-side)

MAX22000_write_register (MAX22000_DCHNL_N_SGCa OxBD934B) 5 //

r low-side)

// END restore calibration

uint32_t new_GEN_CNFG = 03

Stop any potentially

No channel selected

Select CH AIl-2 diff

Write 0ffset (regula

Write Gain (regula

new_GEN_CNFG = (new_GEN_CNFG & Oxfflfff) + Ox0080004 // AIl-2 diff (CSA-Mode
)

new_GEN_CNFG = (new_GEN_CNFG & OxfOffff) + Ox0200003 // A0 voltage output mo
de +/- 12.5V range

MAX22000_write_register (MAX22000_GEN_CNFG- new_GEN_CNFG)5 // Write new_GEN_CNFG_
value

MAX22000_write_register (MAX22000_A0_DATA_UWRA Ox000000) 5 // Write A0 Voltage to

0OV so current can flow

// Prepare ADC

MAX22000_write_register (MAX22000_GEN_CHNL_CTRL. O0Ox000300) 3 //
elected

MAX22000_write_register (MAX22000_DCHNL_CTRLLA DxD010000) 5 //
cle conversions

AIl-2 diff channel s

Continuous Single cy

MAX22000_write_register (MAX22000_DCHNL_CTRLZA O0x000000) 5 // Internal 0SC. use co
efficients-

MAX22000_write_register (MAX22000_GEN_CHNL_CTRL. O0Ox000300) 3 // select AIl-2 diff mo
de

MAX22000_write_register (MAX22000_DCHNL_CMDA 0x310000)5 // Start conversion (10sps
) (0x340000 = 50Osps)

ADC_result = MAX22000EVKIT_read_register (MAX22000_DCHNL_DATA)s//

breaks

case MAX22000_CIO_Mode-Current_OQutput:
// Set DAC calibration
MAX22000_write_register (MAX22000_A0_OFFSET_CORR_WR. OxODOF5CO) 4

MAX22000_write_register (MAX22000_A0_GAIN_CORR_WR. OxFA3ESO0) 5

read Data

// END restore calibration

// Set A0 Mode (Register OxD2: GEN_CNFG)

uint32_t new_GEN_CNFG = 03

new_GEN_CNFG = (new_GEN_CNFG & Oxfflfff) +
)

new_GEN_CNFG = (new_GEN_CNFG & OxfOffff) +
de +/- 25mA range

new_GEN_CNFG = (new_GEN_CNFG & OxeFffff) +

new_GEN_CNFG = (new_GEN_CNFG & Oxffefff) +

new_GEN_CNFG = (new_GEN_CNFG & Oxbfffff) +
ce

MAX22000_write_register (MAX22000_GEN_CNFGA
value

0x008000%

0x0L0000A

Ox000000%
0x0010004

0x00D00004

new_GEN_CNFG) 35

MAX22000_write_register (MAX22000_GEN_PWR_CTRL. 0Ox000000) %

cially make sure GEN_PD=0

// Set Hex value / physical Value

MAX22000_write_register (MAX22000_A0_DATA_UWR.

ew DAC value

breaks

case MAX22000_CIO0_Mode-Voltage_Input:

// restore calibration

MAX22000_write_register (MAX22000_DCHNL_CMD. 0x1.00000) %

running conversions

MAX22000_write_register (MAX22000_GEN_CHNL_CTRL. Ox000000) 3

MAX22000_write_register (MAX22000_DCHNL_N_SEL. 0x000003) 5

ibration factor

MAX22000_write_register (MAX22000_DCHNL_N_S0C. OxFFFFEL) 3

MAX22000_write_register (MAX22000_DCHNL_N_SGCa 0xBDA34B) 5

// END restore calibration

uint32_t new_GEN_CNFG = 03

new_GEN_CNFG = (new_GEN_CNFG & Oxffefff) +

new_GEN_CNFG = (new_GEN_CNFG & OxfOffff) +
de

new_GEN_CNFG = (new_GEN_CNFG & OxeFffff) +

new_GEN_CNFG = (new_GEN_CNFG & Oxbfffff) +
ce

MAX22000_write_register (MAX22000_GEN_CNFGA
alue

0x0010004

0x000000%

O0x000000%

0x0000004

new_GEN_CNFG) 3

// AIl-g2 diff (CSA-Mode

// A0 current output mo

// Set Y-wire Mode
// enable AI3 SE

// Internal Referen

// Write new_GEN_CNFG_

// Normal operation (espe

0)3//new_A0_value<<k)s // WUrite n

// Stop any potentially

// No channel selected

// Select CH AI3 SE cal

// Write Offset

// Write Gain

// AI3 SE enabled

// A0 High-Impedance mo

// Set Y4-wire Mode

// Internal Referen

// Write new_GEN_CNFG_v

// Select Internal REFs. set all channels to single-ended leave as is

MAX22000_write_register (MAX22000_DCHNL_CTRL1A Ox010000) 5 // Continuous Single cy
cle conversions

MAX22000_write_register (MAX22000_DCHNL_CTRLZA Ox00000D0) 5 // Internal 0SC. use co
efficients-

MAX22000_write_register (MAX22000_GEN_CHNL_CTRL. Ox000400) 3 // Select Channel AI3 /
Single Ended

//MAX22000_write_register (MAX22000_DCHNL_CMD- O0x330000) 5 // Start conversion (
30sps)

MAX22000_write_register (MAX22000_DCHNL_CMD. 0x310000) 5 // Start conversion (10
sps)

breaks

case MAX22000_CI0_Mode.Voltage_Output:

MAX22000_write_register (MAX22000_A0_OFFSET_CORR_WR. OxOOF5CO) 3

MAX22000_write_register (MAX22000_A0_GAIN_CORR_WRA OxFA3ESD) 5

// END restore calibration

uint32_t new_GEN_CNFG = 03

new_GEN_CNFG = (new_GEN_CNFG & OxfOffff) + Ox0D20000% // 10V is 0ObDOO1O0 -> 2

new_GEN_CNFG = (new_GEN_CNFG & OxeFffff) + 0Ox00D00D04 // Set 4-wire Mode

new_GEN_CNFG = (new_GEN_CNFG & Oxbfffff) + Ox0ODDDDDO5 // Internal Reference

MAX22000_write_register (MAX22000_GEN_CNFG+ new_GEN_CNFG) 3 // Write new_GEN_CNFG_
value

// Set Hex value / physical Value

MAX22000_write_register (MAX22000_A0_DATA_UWR- 0)3//new_A0_value<<k)’ // Write ne
w DAC value

breaks

case MAX22000_CI0_Mode.Off:

// Make A0 high-impedance. Stop ADC. Disable all Amplifiers

MAX22000_write_register (MAX22000_DCHNL_CMD. Ox100000) 5 // Stop any potenti
ally running conversions
MAX22000_write_register (MAX22000_GEN_CHNL_CTRL. Ox000000) 4 // No channel selec
ted
MAX22000_write_register (MAX22000_GEN_CNFG- OxD0DO0D) & // Write new_GEN_CN
FG_value
breaks

case default:
// Make A0 high-impedance. Stop ADC. Disable all Amplifiers

MAX22000_write_register (MAX22000_DCHNL_CMDA O0x100000) 5 // Stop any potent
ially running conversions

MAX22000_write_register (MAX22000_GEN_CHNL_CTRL- Ox000000) A // No channel sele

cted
MAX22000_write_register (MAX22000_GEN_CNFG- 0x000000) 5 // WUrite new_GEN_C
NFG_value
breaks
¥
I

/7 KXXEKKEKKK KK KKK KKK KKK KKK KK KKK

//

// Function: MAX22000_ADC_Setup

// Description: Sets up MAX22000 for to read one of the ADC Channels in selected Mode

// Assuming all AD(Cs (at least the selected one) is open / connected to a voltage so
urce

//
// Input: Desired ADC-Channel +Mode
// OQutput: None (MAX22000 will be setup by this routine. Conversion will be started)
//
/7 KXXEKKEKK KK KKK KKK KKK KKK KKK KX
uint32_t MAX22000_ADC_Setup (ADC_CH_Mode CH_and_Mode)
{
switch(CH_and_Mode)
{
case ADC_CH_Mode.AIl_SE:
// Setup Channel 1 for Single Ended and continuous sampling
uint32_t new_GEN_CNFG = D3

new_GEN_CNFG = (new_GEN_CNFG & OxfflLfff) + OxO00kLDODDs // make AIL and AIZ
SE active

MAX22000_write_register (MAX22000_GEN_CNFGA new_GEN_CNFG) 5 // Write new_GEN_CNF
G_value

// Select Internal REFs. set all channels to single-ended leave as is

MAX22000_write_register (MAX22000_DCHNL_CTRLLA Ox010000) 5 // Continuous Single
cycle conversions

MAX22000_write_register (MAX22000_DCHNL_CTRL2A 0x00000D0) 5 // Internal 0SC. use
coefficientsa

MAX22000_write_register (MAX22000_GEN_CHNL_CTRL- Ox000100) 3 // Select Channel AI
1 / Single Ended

//MAX22000_write_register (MAX22000_DCHNL_CMD- 0x330000) 5 // Start conversio
n (30sps)

MAX22000_write_register (MAX22000_DCHNL_CMD. Ox310000) 5 // Start conversion
(10sps)

break3

case ADC_CH_Mode.AIZ2_SE:

// Setup Channel 2 for Single Ended and continuous sampling

uint32_t new_GEN_CNFG = D&

new_GEN_CNFG = (new_GEN_CNFG & Oxfflfff) + OxO00kL00OA // make AIL and AIZ
SE active

MAX22000_write_register (MAX22000_GEN_CNFGA new_GEN_CNFG) 5 // Write new_GEN_CNF
G_value

// Select Internal REFs. set all channels to single-ended leave as is

MAX22000_write_register (MAX22000_DCHNL_CTRLLA Ox010000) 5 // Continuous Single
cycle conversions

MAX22000_write_register (MAX22000_DCHNL_CTRL2A 0x00000D0) 5 // Internal 0SC. use
coefficients

MAX22000_write_register (MAX22000_GEN_CHNL_CTRL. Ox000200) 3 // Select Channel AI
1 / Single Ended

//MAX22000_write_register (MAX22000_DCHNL_CMD- 0x330000) 5 // Start conversio
n (30sps)

MAX22000_write_register (MAX22000_DCHNL_CMD, O0x310000) 5 // Start conversion
(10sps)

break3

case ADC_CH_Mode-AI3_SE:
// Setup Channel 3 for Single Ended and continuous sampling
uint32_t new_GEN_CNFG = D3

new_GEN_CNFG = (new_GEN_CNFG & Oxfflfff) + Ox0018004 // make AI3 and AIn4
SE active

MAX22000_write_register (MAX22000_GEN_CNFG- new_GEN_CNFG) 5 // Write new_GEN_CNF
G_value

// Select Internal REFs. set all channels to single-ended leave as is

MAX22000_write_register (MAX22000_DCHNL_CTRLLA Ox010000) 5 // Continuous Single
cycle conversions

MAX22000_write_register (MAX22000_DCHNL_CTRL2A 0x000000) 5 // Internal 0SC. use
coefficients-

MAX22000_write_register (MAX22000_GEN_CHNL_CTRL- Ox000400) 5 // Select Channel AI
3 / Single Ended

//MAX22000_write_register (MAX22000_DCHNL_CMD- 0x330000) 5 // Start conversio
n (30sps)

MAX22000_write_register (MAX22000_DCHNL_CMD, 0x310000) 4 // Start conversion
(10sps)

break3

case ADC_CH_Mode-AIY4_SE:

// Setup Channel 4 for Single Ended and continuous sampling

uint32_t new_GEN_CNFG = D&

new_GEN_CNFG = (new_GEN_CNFG & Oxfflfff) + Ox0008004 // make AI4 SE activ
e

MAX22000_write_register (MAX22000_GEN_CNFGA new_GEN_CNFG) 5 // Write new_GEN_CNF
G_value

// Select Internal REFs. set all channels to single-ended leave as is

MAX22000_write_register (MAX22000_DCHNL_CTRLLA Ox010000) 5 // Continuous Single
cycle conversions

MAX22000_write_register (MAX22000_DCHNL_CTRLZA Ox00000D) 5 // Internal 0SC. use
coefficientsa

MAX22000_write_register (MAX22000_GEN_CHNL_CTRL- Ox000500) 3 // Select Channel AI
4 / Single Ended

//MAX22000_write_register (MAX22000_DCHNL_CMD- 0x330000) 5 // Start conversio
n (30sps)

MAX22000_write_register (MAX22000_DCHNL_CMD. O0x310000) 5 // Start conversion
(10sps)

break3

case ADC_CH_Mode-AIl2_DIFF:

// Setup Channel 1-2 for Differeential and continuous sampling

uint32_t new_GEN_CNFG = D3

new_GEN_CNFG = (new_GEN_CNFG & Oxfflfff) + Ox0080004 // enable AIl-2 diff
(CSA) mode

MAX22000_write_register (MAX22000_GEN_CNFGA new_GEN_CNFG) 5 // Write new_GEN_CNF
G_value

// Select Internal REFs. set all channels to single-ended leave as is

MAX22000_write_register (MAX22000_DCHNL_CTRLLA OxD010000) 5 // Continuous Single
cycle conversions

MAX22000_write_register (MAX22000_DCHNL_CTRL2A Ox00000D) 5 // Internal 0SC. use
coefficientsa

MAX22000_write_register (MAX22000_GEN_CHNL_CTRL- Ox000300) 3 // Select Channel AI
1-2 / Differential

//MAX22000_write_register (MAX22000_DCHNL_CMD- 0x330000) 5 // Start conversio
n (30sps)

MAX22000_write_register (MAX22000_DCHNL_CMD. O0x310000) 5 // Start conversion
(10sps)

breaks:

case ADC_CH_Mode-AI34_DIFF:

// Setup Channel 3-4 for Differeential and continuous sampling

uint32_t new_GEN_CNFG = D3
e new_GEN_CNFG = (new_GEN_CNFG & Oxfflfff) + Ox0018004 // enable AI3-AIY di
. . MAX22000_write_register (MAX22000_GEN_CNFG- new_GEN_CNFG) 5 // Write new_GEN_CNF

value

// Select Internal REFs. set all channels to single-ended leave as is

MAX22000_write_register (MAX22000_DCHNL_CTRLLA Ox010000) 5 // Continuous Single
cycle conversions

MAX22000_write_register (MAX22000_DCHNL_CTRL2A O0x00000D) 5 // Internal 0SC. use
coefficientsa

MAX22000_write_register (MAX22000_GEN_CHNL_CTRL- Ox000LOO) A // Select Channel AI
3-4 / Differential

//MAX22000_write_register (MAX22000_DCHNL_CMD- 0x330000) 5 // Start conversio
n (30sps)

MAX22000_write_register (MAX22000_DCHNL_CMDA O0x310000) 5 // Start conversion
(10sps)

break3

case ADC_CH_Mode-AI5L_DIFF:
// Setup Channel 5-k for Differeential and continuous sampling
uint32_t new_GEN_CNFG = D3

new_GEN_CNFG = (new_GEN_CNFG & Oxfflfff) + Ox0004004 // enable AI5-L diff
+/- 25V range

MAX22000_write_register (MAX22000_GEN_CNFGA new_GEN_CNFG) 3 // Write new_GEN_CNF
G_value

// Select Internal REFs. set all channels to single-ended leave as is

MAX22000_write_register (MAX22000_DCHNL_CTRLLA O0x010000) 5 // Continuous Single
cycle conversions

MAX22000_write_register (MAX22000_DCHNL_CTRL2A Ox00000D) 5 // Internal 0SC. use
coefficients-

MAX22000_write_register (MAX22000_GEN_CHNL_CTRL. 0x000900)5// Select Channel AI5-k
/ Differential +/-25V

//MAX22000_write_register (MAX22000_DCHNL_CMD- 0x330000) 5 // Start conversio
n (30sps)

MAX22000_write_register (MAX22000_DCHNL_CMD- 0x310000) 5 // Start conversion
(10sps)

break3

case ADC_CH_Mode.AISk_PGA_g2p500V:

// Setup Channel 5-b for Differeential and continuous sampling (PGA Path +/-2.5V r

ange)

uint32_t new_GEN_CNFG = D3

new_GEN_CNFG = (new_GEN_CNFG & OxffLfff) + Ox0004OOA // enable AI5-L diff +/- 2.
5V range (in PGA Mode)

MAX22000_write_register (MAX22000_GEN_CNFGA new_GEN_CNFG) 5 // Write new_GEN_CNF
G_value

// Select Internal REFs. set all channels to single-ended leave as is

MAX22000_write_register (MAX22000_DCHNL_CTRLLA Ox010000) 5 // Continuous Single
cycle conversions

MAX22000_write_register (MAX22000_DCHNL_CTRL2A Ox00000D0) 5 // Internal 0SC. use
coefficientsa

MAX22000_write_register (MAX22000_GEN_CHNL_CTRL. Ox000cD0)3 // Select Channel AI5S-k
/ Differential PGA Path

//MAX22000_write_register (MAX22000_DCHNL_CMD- 0x330000) 5 // Start conversio
n (30sps)

MAX22000_write_register (MAX22000_DCHNL_CMD. Ox310000) 5 // Start conversion
(10sps)

break3

case ADC_CH_Mode.AI5L_PGA_QOp500V:

// Setup Channel 5-k for Differeential and continuous sampling (PGA Path +/-0.5V r

ange)

uint32_t new_GEN_CNFG = 03

new_GEN_CNFG = (new_GEN_CNFG & OxfflLfff) + Ox0004404 // enable AI5-L diff
+/- 0.5V range

MAX22000_write_register (MAX22000_GEN_CNFG- new_GEN_CNFG) 5 // Write new_GEN_CNF
G_value

// Select Internal REFs. set all channels to single-ended leave as is

MAX22000_write_register (MAX22000_DCHNL_CTRLLA Ox010000) 5 // Continuous Single
cycle conversions

MAX22000_write_register (MAX22000_DCHNL_CTRL2A O0x00000D0) 5 // Internal 0SC. use
coefficients

MAX22000_write_register (MAX22000_GEN_CHNL_CTRL. Ox000cD0)3 // Select Channel AIS-k
/ Differential PGA Path

//MAX22000_write_register (MAX22000_DCHNL_CMD. 0x330000) 5 // Start conversio
n (30sps)

MAX22000_write_register (MAX22000_DCHNL_CMD, O0x310000) 5 // Start conversion
(10sps)

break3

case ADC_CH_Mode.AISk_PGA_Op250V:

// Setup Channel 5-b for Differeential and continuous sampling (PGA Path +/-0.250V

range)

uint32_t new_GEN_CNFG = D03

new_GEN_CNFG = (new_GEN_CNFG & Oxfflfff) + Ox0004804 // enable AI5-L diff
+/- 0.250V range

MAX22000_write_register (MAX22000_GEN_CNFG- new_GEN_CNFG) 5 // Write new_GEN_CNF
G_value

// Select Internal REFs. set all channels to single-ended leave as is

MAX22000_write_register (MAX22000_DCHNL_CTRLLA 0x010000) 5 // Continuous Single
cycle conversions

MAX22000_write_register (MAX22000_DCHNL_CTRLZA Ox00000D) 5 // Internal 0SC. use
coefficientsa .

MAX22000_write_register (MAX22000_GEN_CHNL_CTRL- Ox000cOO0)3 // Select Channel AIS-k
/ Differential PGA Path

//MAX22000_write_register (MAX22000_DCHNL_CMD- 0x330000) 5 // Start conversio
n (30sps)

MAX22000_write_register (MAX22000_DCHNL_CMD. Ox310000) 5 // Start conversion
(10sps)

break3

case ADC_CH_Mode.AI5kL_PGA_QOpl25Vv:

// Setup Channel 5-b for Differeential and continuous sampling (PGA Path +/-0.250V

range)

uint32_t new_GEN_CNFG = D&

new_GEN_CNFG = (new_GEN_CNFG & Oxfflfff) + Ox0004cOs // enable AI5-L diff
+/- 0.125V range

MAX22000_write_register (MAX22000_GEN_CNFG- new_GEN_CNFG) 5 // Write new_GEN_CNF
G_value

// Select Internal REFs. set all channels to single-ended leave as is

MAX22000_write_register (MAX22000_DCHNL_CTRLLA Ox010000) 5 // Continuous Single
cycle conversions

MAX22000_write_register (MAX22000_DCHNL_CTRL2A O0x00000D0) 5 // Internal 0SC. use
coefficientsa

MAX22000_write_register (MAX22000_GEN_CHNL_CTRL. Ox000cD0)5 // Select Channel AIS-kb
/ Differential PGA Path

//MAX22000_write_register (MAX22000_DCHNL_CMD- 0x330000) 5 // Start conversio
n (30sps)

MAX22000_write_register (MAX22000_DCHNL_CMD, 0x310000) 5 // Start conversion
(10sps)

break3

case ADC_CH_Mode.AUX1_SE:
// Setup Channel AUX1 for Single Ended and continuous sampling
// Select Internal REFs. set all channels to single-ended leave as is

MAX22000_write_register (MAX22000_DCHNL_CTRLLA 0x010000) 5 // Continuous Single
cycle conversions

MAX22000_write_register (MAX22000_DCHNL_CTRLZA Ox00000D) 5 // Internal 0SC. use
coefficientsa

MAX22000_write_register (MAX22000_GEN_CHNL_CTRL. Ox000d00) 4 // Select Channel AU
X1 / Single Ended

//MAX22000_write_register (MAX22000_DCHNL_CMD- 0x330000) 5 // Start conversio
n (30sps)

MAX22000_write_register (MAX22000_DCHNL_CMD, 0x310000) 5 // Start conversion
(10sps)

break3

case ADC_CH_Mode.AUX2_SE:
// Setup Channel AUX2 for Single Ended and continuous sampling
// Select Internal REFs. set all channels to single-ended leave as is

MAX22000_write_register (MAX22000_DCHNL_CTRLLA Ox010000) 5 // Continuous Single
cycle conversions

MAX22000_write_register (MAX22000_DCHNL_CTRLZA 0x00000D) & // Internal 0SC. use
coefficients-

MAX22000_write_register (MAX22000_GEN_CHNL_CTRL- Ox000eD0) 5 // Select Channel AU
X2 / Single Ended

//MAX22000_write_register (MAX22000_DCHNL_CMD- 0x330000) 5 // Start conversio
n (30sps)

MAX22000_write_register (MAX22000_DCHNL_CMD, 0x310000) 5 // Start conversion
(10sps)

breaks

case ADC_CH_Mode.AUXL2_DIFF:
// Setup Channel AUXLl-2 for Differential and continuous sampling

// Select Internal REFs. set all channels to single-ended leave as is

MAX22000_write_register (MAX22000_DCHNL_CTRLLA Ox010000) 5 // Continuous Single
cycle conversions

MAX22000_write_register (MAX22000_DCHNL_CTRL2A 0x00000D0) 5 // Internal 0SC. use
coefficients-

MAX22000_write_register (MAX22000_GEN_CHNL_CTRL- Ox000f00)5 // Select Channel AU

X1-2 / Differential

//MAX22000_write_register (MAX22000_DCHNL_CMD- 0x330000) 5 // Start conversio
n (30sps)

MAX22000_write_register (MAX22000_DCHNL_CMD. 0x310000) 5 // Start conversion
(10sps)

breaks

case default:

// Make A0 high-impedance. Stop ADC. Disable all Amplifiers

MAX22000_write_register (MAX22000_DCHNL_CMD, 0x100000) & // Stop any potentia
lly running conversions

MAX22000_write_register (MAX22000_GEN_CHNL_CTRL. Ox000000) 5 // No channel select
ed

MAX22000_write_register (MAX22000_GEN_CNFG- 0x000000) 5 // Write new_GEN_CNF
G_value

break3

T

i

[/ KXXEKKEKK KKK KKK KKK KKK KKK KK KKK
//

// Function: MAX22000_ADC_Read

// Description: Reads the currently selected and running ADC Channel

// as setup per MAX22000_ADC_Setup

//

// Input: None

// Output: Current ADC Reading in LSB (24bit wide)

//

/7 XXXEKKEKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK KKK KKKKKKKKKKK KKK KKK KKK KKK KK KK X

uint32_t MAX22000_ADC_Read (void)

{
uint32_t adc_result = 03
wait_for_RDYB()3 // When RDYB pin is low. the ADC finished conversion.
adc_result = MAX22000EVKIT_read_register (MAX22000_DCHNL_DATA)3// read Data
return adc_results:

b

/7 KKKKK KKK KKK KK KK oK K K K 5K K 3K K K K K 5K K K K K K K K 5K 3K 5K 3K 5K 3 5K 3 5K 3K 5K 3K 3K K K K K K K oK K oK K oK K K K K K K K K K X
//

// Function: MAX22000_DAC_Setup

// Description: Sets up the DAC for the selected Mode

// after this the DAC can be updated with DAC_Set_LSB or DAC_Ser_PHY

//
// Input: DAC range
// Output: None- DAC in MAX22000 will be setup according to setting
/7
[/ KXKEKKEKKKKKKKKKKKKKKKKKKKKKKKKKKK KKK KKK KKK KKKKK KKK KKK KKK KKK KKK KK KKK
void MAX22000_DAC_Setup (DAC_Range range)
{

switch (range)

{

case DAC_Range-A0_g25V:
uint32_t new_GEN_CNFG = O3

new_GEN_CNFG = (new_GEN_CNFG & OxfOffff) + Ox0LOOOOA // AO_CNFG = 0001: A0 Cur
rent Mode. 25V setting

MAX22000_write_register (MAX22000_GEN_CNFGA new_GEN_CNFG) 5 // Write new_GEN_CN
FG_value

// Restore Calibration
MAX22000_write_register (MAX22000_A0_OFFSET_CORR_WR. Ox0O0F5CO0)4
MAX22000_write_register (MAX22000_A0_GAIN_CORR_WR. OxFA3ESD) 5
breaks

case DAC_Range-.A0_12V:
uint32_t new_GEN_CNFG = 03

new_GEN_CNFG = (new_GEN_CNFG & OxfOffff) + Ox0200004 // AO_CNFG = 0010: A0 Cur
rent Mode- 12-5V setting

MAX22000_write_register (MAX22000_GEN_CNFG- new_GEN_CNFG) 3 // Write new_GEN_CN
FG_value

// Restore Calibration
MAX22000_write_register (MAX22000_A0_OFFSET_CORR_WR. OxOOF5CO) 3
MAX22000_write_register (MAX22000_A0_GAIN_CORR_WRA OxFA3ES&D) 5

break3

case DAC_Range.A0_25mA:

uint32_t new_GEN_CNFG = O3

new_GEN_CNFG = (new_GEN_CNFG & OxfOffff) + OxOkLOOOOA // AO_CNFG = 0110: A0 Cur
rent Mode. 25mA setting

new_GEN_CNFG = (new_GEN_CNFG & Oxfflfff) + Ox0080003 // AIl-2 diff (CSA-
Mode)

MAX22000_write_register (MAX22000_GEN_CNFG- new_GEN_CNFG) 3 // Write new_GEN_CN
FG_value

// Restore Calibration
MAX22000_write_register (MAX22000_A0_OFFSET_CORR_WR- OxOOF5CO) 4
MAX22000_write_register (MAX22000_A0_GAIN_CORR_WRA OxFA3EBD) 5

break3

case DAC_Range-.A0_2mA:

uint32_t new_GEN_CNFG = 03

new_GEN_CNFG = (new_GEN_CNFG & OxfOffff) + Ox0800004 // AO_CNFG = 1000: A0 Cur
rent Mode- 2.5mA setting
new_GEN_CNFG = (new_GEN_CNFG & Oxfflfff) + Ox0080004 // AIl-2 diff (CSA-
Mode)
MAX22000_write_register (MAX22000_GEN_CNFG- new_GEN_CNFG) 5 // Write new_GEN_CN
FG_value
// Restore Calibration
MAX22000_write_register (MAX22000_A0_OFFSET_CORR_WR- OxOOF5CO)5
MAX22000_write_register (MAX22000_A0_GAIN_CORR_WR- OxFA3ESBO) 5
breaks:
default:
// In case invalid range select. do nothing
breaks
T
T
/7 KXXEKKEKK KK KKK KKK KKK KKK KKK KX
//
// Function: MAX22000_DAC_Set_LSB
// Description: Writes a new LSB value to the DA(C,
// assuming it is already setup in a specific mode- use DAC_Setup first
// If LDAC-pin is high. it must be toggled after setting up update the output
//
// Input: new DAC value in LSB
// Output: None
//
[/ KXXEEKKKKKKKKKKKKKKKKKKKIKKKKK KKK KK KKKKKKKKKKKKKKKKKKKK K KKK K KKK KKK
void MAX22000_DAC_Set_LSB (uint32_t data)
{

/7
/7
/7
/7
/7
/7

// DAC must be setup before using this function
// Below will simply write the new Value to the DAC

MAX22000_write_register (MAX22000_A0_DATA_UWR- data) s

3K 3K 5K K 3K 3K K %k K K 3K 5k K K K XK 3k 3K K XK 3K 3K K K XK K 3K K K XK K 5K K K K 5K K 3K K K 5K K K XK 5k K K K Kk K K KKk Kk K KOk Kk Kk kK kX Xk

Function: MAX22000_DAC_Set_PHY
Description: Writes a new PHY value (Volt or mA) to the DACa.
assuming it is already setup in a specific mode- use DAC_Setup first

If LDAC-pin is high. it must be toggled after setting up update the output

//
// Input: new DAC value in physical value (either Volt or Miliampere. NOT AMPERE)
// OQutput: None
/7
// KXKEKKEKKKKKKKKKKKKKKKKKKKKKKKKKKK KKK KKKKKKKKKKK KKK KKK KKK KK KKK KKK KKK
void MAX22000_DAC_Set_PHY (float volt_V_or_current_mA. DAC_Range range)
{
// DAC must be setup before using this function
// Calculate new LSB Value

uint32_t DAC_LSB_value = 03

switch (range)
{
case DAC_Range-A0_g25V:
if (volt_V_or_current_mA < 25)

{ DAC_LSB_value = OxLffff + ((volt_V_or_current_mA / (phy_AO0_25V_factor))) + phy_A
0_25V_offset + 15 %

else

{ DAC_LSB_value = -OxLffff + ((volt_V_or_current_mA / (phy_A0_25V_factor)) + phy_A
0_25V_offset - 0)3

break3

case DAC_Range-AQ_12V:
if (volt_V_or_current_mA < 0)

{ DAC_LSB_value = Ox3ffff - ((-volt_V_or_current_mA / (phy_A0_12V_factor))) + phy_
A0_12V_offset + 13 }

else

{ DAC_LSB_value = ((volt_V_or_current_mA / (phy_A0_1l2V_factor)) + phy_A0_L2V_offse
t -0Ds 3}

break3

case DAC_Range-AQ_cZ25mA:
if (volt_V_or_current_mA < 0)

{ DAC_LSB_value = Ox3ffff - ((-volt_V_or_current_mA / (phy_A0_25mA_factor))) + phy
_AO_25mA_offset + 15 1}

else

{ DAC_LSB_value = ((volt_V_or_current_mA / (phy_AO0_25mA_factor)) + phy_A0_25mA_off

set - 0)5 %}

break3

case DAC_Range-A0_cmA:

if (volt_V_or_current_mA < 0)

{ DAC_LSB_value = Ox3ffff - ((-volt_V_or_current_mA / (phy_A0_2mA_factor)))
AO_2mA_offset + 13

else

+ phy_

{ DAC_LSB_value = ((volt_V_or_current_mA / (phy_AO0_2mA_factor)) + phy_A0_ZmA_offse

t -0s 3}

break3

default:
DAC_LSB_value = 03 // default means non-existend range selected

break3

/7 KKKKKK KKK KKK K K K K K K K K K K KK K K K K K K K K K K K K 3K K K 3K K 3K K K K K 3K K K KK K K K K K KK K KK K K KK K X K
//
// Function: MAX22000_GPIO_Setup

// Description: Sets up all b GPIO Pins. bitD=GPIOD- bitl=GPI0L-

// Since the command includes everything Enable/Disable as well as

// GPI0 Direction- this function is faster than GPO_Set

// because it doesn't have to read back the setup from the part

//

// Input: GPIO_enable (byte) Bit0D = GPIOD- Bitl = GPIOL- ... (O = Off. 1 = 0n)

// GPIO_direction (byte) BitO = GPIOO. Bitl = GPIOL. ... (0 = Input. 1 = Qutput)
// GPO_Setting (byte) BitO = GPIOO. Bitl = GPIOL- ... (0 = Low- 1 = High)

// Output: None
//

/ /7 RXK KKK K K K K K K K K K K K K K K 3K 3K K K K K 3K 5K 5K 3K 3K 3K K 3K K 3K K 5K 5K 5K 3K K K K 3K 3K 3K 5K 5K 5K K K K K K K K K K XK XK K K K Kk Kk X

void MAX22000_GPIO_Setup (uintd_t GPIO_enable. uintd_t GPIO_direction. wuintd_t GPO_Setting)

{

uint32_t new_gpio_value = ((GPI0_enable & Ox3f)<<lk) + ((GPI0_direction & Ox3f)<<8) + (GPO_Se

tting & Ox3f)3

MAX22000_write_register (MAX22000_GEN_GPIO_CTRLA new_gpio_value)s // Write new_GEN_CNFG_va

lue

I

/7 KKKKK KK KKK KK K K K K K K K K K K K K K K K K K 3K K 3K K K 3K 3K 3K 5K 3K 3K 5K 3K 3K 3K 3K 3K 3K K 3K 3K 0K K K 3K K K 3K K K K K K K K K K X K
//
// Function: MAX22000_GPO_Set

// Description: Sets GPOs high or low- bit0=GPI0D0. bitl=GPI0L.

// GP0Os must be setup and enabled prior this use MAX22000_GPIO_Setup
//
// Input: GPO Setting. bit0=GPI00. bitl=GPI0L- ... (0 = Lowa 1 = High)

// OQutput: None

/7

/7 K XKK KKK XK K K K K K K K 3K 5K K 5K 5K XK 3K 5K 5K 3K 5K K 3 3K K 3K 3K X 3 5K XK 3 5K X 3 3 5K X 3 5K X 3 3 X 3 3 X 3K K X X % X X K K K K K X kKX
void MAX22000_GPO0_Set (uint8_t GPO_Setting)

{

uint32_t gpio_setup = MAX22000EVKIT_read_register (MAX22000_GEN_GPIO_CTRL)S // read Setup

gpio_setup = gpio_setup & OxffffOO3 // Mask out previ
ous GPO settings

MAX22000_write_register (MAX22000_GEN_GPIO_CTRLA gpio_setup)a // Write new_GEN_
CNFG_value

¥

[/ KXXEKKEKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK KKK KKKKKKKK KKK KKK KKK KKK KKK KK KKK
//
// Function: MAX22000_GPI_Get
// Description: Gets all GPI readings high or low. bit0=GPIO0O0- bitl=GPIOL.
// GPIs must be setup and enabled prior this use MAX22000_GPIO_Setup
//
// Input: None
// Output: GPI Setting. bit0=GPI00. bitl=GPI0Ll. ... (0 = Low- 1 = High)
//
/7 KXKEKKKKKKKK KK KKK KKK KKK KKK KKK KK KKK KKK KKK KKKKK KKK KKK KKK KKK KKK KKK KK KKK
uint8_t MAX22000_GPI_Get (void)
{
uint32_t gpi_result = MAX22000EVKIT_read_register (MAX22000_GEN_GPI_DATA)3 // read GPI Data

return gpi_result & Ox3f3

CRC Function

Please note, the below CRC function is described in more detail in Application Note 7072, but since some
of above functions depend on CRC, the code is provided here as well for more convenience.

public byte crc8(byte BYTEL. byte BYTE2. byte BYTE3. byte BYTEWY)
{

0x004

byte crcl_start
byte crcé_poly = Ox8c3 // rotated O0x3l. which is our polinomial

byte crc_result = crc8_starts

// BYTEL
for (int i=03 i<83 i++)
{
ifC ¢ (C BYTEL1>>1) A (crc_result)) & 0Ox01L) > 0)

{ crc_result = (byte) (crc8_poly A crc_result>>1)5 }

else

{ crc_result = (byte) (crc_result>>1)3

// BYTERZ

for (int i=03 i<83 i++)

{
ifC ¢ (C BYTEE>>1) A (crc_result)) & 0Ox01L) > 0)
{ crc_result = (byte) (crcd_poly A crc_result>>1l)3
else
{ crc_result = (byte) (crc_result>>1)3

}

// BYTE3

for (int i=03 i<83% i++)

{
ifC ¢ ¢C BYTE3>>1) A (crc_result)) & Ox01L) > 0)
{ crc_result = (byte) (crc8_poly A crc_result>>1)3
else
{ crc_result = (byte) (crc_result>>1)3

T

// BYTEY

for (int i=03 i<83 i++)

{
ifC ¢ (C BYTE4>>1) A (crc_result)) & 0Ox01L) > 0)
{ crc_result = (byte) (crcB_poly A crc_result>>1)3
else
{ crc_result = (byte) (crc_result>>1)3

}

crcd_2_for_testing(BYTEL. BYTEZ2- BYTE3. BYTEW)S

return crc_results:

