|
y

'
A

Freescale Semiconductor
Application Note

Document Number: AN3779
Rev. 0, 09/2008

Ethernet Plus USB Applications
Based on the MCF52259

HTTP/TFTP Server Plus USB Mass Storage Host

by: LiKan
32-Bit Application Team

1 Introduction

This application note describes implementation of a
HTTP/TFTP server based on the ColdFire MCF5225x
processor with a USB file system where web pages or
other files are stored. It details how to integrate a USB
stack with a NicheTask and accessing the USB file
system through a HTTP/TFTP server.

2 MCF52259

The MCF52259 is a highly-integrated 32-bit
microcontroller based on the V2 ColdFire
micro-architecture. Featuring 64 Kbytes of internal
SRAM, 512 Kbytes of flash memory, a fast Ethernet
controller, a USB on-the-go controller, an external bus
interface, four 32-bit timers, a 4-channel DMA
controller, two 11C modules, three UARTS, and a queued
SPI. The MCF52259 family has been designed for
general-purpose industrial control applications.

© Freescale Semiconductor, Inc., 2008. All rights reserved.

W N =

Contents

Introduction 1

MCF52259.o 1

StacK . .. e 2

3.1 Interniche......... il 2
32 CMXUSB-Lite...........coiiiiiiiinn. 2
HTTP Server Implementation 2

4.1 ProjectArchtecture 2
4.2 Implementation 3
4.3 Running HTTP Web Server on the MCF52259EVB 8
4.4 Connecting to the Web Page on the USB Flash . . . 8
TFTP Server Implementation 10

5.1 Software Architecture 10
5.2 Implementation 10
5.3 ProjectCompile......... 12
5.4 Running the TFTP Server on the MCF52259EVB. 12
5.5 Uploading a File to TFTP Server. 13
5.6 Downloading a File from TFTP Server 14
Conclusion.o 15

freescale*

semiconductor

Stack

3 Stack

The applications detailed in this document use the fast ethernet controller and USB on-the-go controller
receiving full support from the InterNiche and CMX.

3.1 InterNiche

This ColdFire® TCP/IP stack is a public source stack provided for use with the ColdFire line of
processors. It can be divided into two parts; a mini-TCP layer library and a mini-1P layer library. It also
includes a virtual file system (VFS) that supports the american standard code for information interchange
(ASCII) and binary data, integrated with a round-robin tasking system named NicheTask. For more details
on the ColdFire TCP/IP stack refer to application notes AN3470—ColdFire TCP/UDP/IP Stack and RTOS
and AN3455—ColdFire Lite HTTP Server.

3.2 CMX USB-Lite

The CMX USB-Lite is provided by Freescale and CMX for ColdFire and S08 USB microcontrollers. It
supports a USB device, host, and on-the-go (OTG) functionality to meet various design requirements.
Included are high-level class drivers for keyboards, mouse devices, and generic human interface devices
(HID). Communication device classes (CDC) to universal asynchronous receivers and transmitters
(UART) provide communication between UART and USB (mass storage demos for the host mode). The
stacks can be accessed at www.freescale.com/USB.

4 HTTP Server Implementation

4.1 Project Architecture

This project is created with CodeWarrior 7.0. The architecture is listed in Table 1.
Table 1. HTTP Web Server Project Architecture

Module Description

CodeWarrior specific Linker file for the M52259EVB.

ColdFirelite InterNiche stack containing multiple folders for the Ethernet TCP/IP
stack, supported protocols, and RTOS processor independent files.

Common Standard C functions and UART input and output support.

CPU Contains respective processor dependent files.

Drivers Drivers for Ml interface.

Freescale_Web_Server Applications for HTTP web server.

Project files Main and interrupts source files.

CMXUSB_LITE CMX USB stack containing multiple folders for USB mass host
support.

Ethernet Plus USB Applications Based on the MCF52259, Rev. 0

2 Freescale Semiconductor

HTTP Server Implementation

4.2 Implementation
This project is implemented based on the MCF52259EVB.

4.2.1 Integration of InterNiche and CMX USB Stack

In this project InterNiche is used to manage network protocols and the CMX stack is used to manage file
operations based on the USB file system. The key point of this project is to combine the two stacks to work
concurrently.

4211 Creating usb-mass-host-task.c for NicheTask

The InterNiche also provides a RTOS named NicheTask which is a cooperative multi-tasking scheduler.
In this architecture each task has its own call-stack. Voluntarily manages control back to the master
scheduler. The integrating method is to invoke APIs from CMX stack as tasks through the NicheTask. This
is achieved by a source file named usbh-mass-host-task.c where a state machine is created for a USB mass
host. This file provides several APIs for a NicheTask listed in Table 2.

Table 2. CMX APIs for InterNiche

Function Description
void demo_process(void) State machine for the usb mass host
int cmd_dir(void * pio) Commands for struct menu_op* usbmassmenu

int cmd_dump(void * pio)

int cmd_type(void * pio)

TK_ENTRY (tk_cmxmasshosttask) Task object defined by nicheTask, using APIs
from CMX-USB-LITE and InterNiche
void create_cmxusb_task(void) Add CMX task the NicheTask’s TCB table and

gets executed once per loop

4.2.1.2 Invoking APIs from the usb-mass-host-task.c in NicheTask

In ush-mass-host-task.c a function named create_cmxusb_task() is created to support NicheTask. It is
invoked in the task object tk_keyboard that supports the standard 1/0 in NicheTask and added to the task
control block (TCB) table after reset.

TK_ENTRY (tk_keyboard)

{
for (53)
{
TK_SLEEP(1); /* make keyboard yield some time */
kbdio(Q); /* let Iniche menu routines poll for char */
keyboard_wakes++; /* count wakeups */

#ifdef MCF52259
iT((usbmst_attach == 1)&&(usbtsk_created == 0))
{

create_cmxusb_task();

usbtsk_created = 1;

}
else if((usbmst_attach == 0)&&(usbtsk_created == 1))

Ethernet Plus USB Applications Based on the MCF52259, Rev. 0

Freescale Semiconductor 3

|
y

'
A

HTTP Server Implementation
{
tk_kill(to_cmxmasshosttask);
usbtsk_created = 0;
}
#endif
if (net_system_exit)

break;

ks
TK_RETURN_OKQ);

}

421.3 Adding a Timer for Integration from CMX and OS

NicheTask tk_sleep(tick) is used to delay tasks and in the CMX host_ms_delay(ms) is used for almost the
same purpose. The time delayed is different between them. One tick equals 5 ms. For integration,
host_ms_delay(ms) is replaced with tk_sleep(tick) and modified in the usb_host.c.

void host_ms_delay(hcc_u32 delay)

#ifdef MCF52259

delay/=5; // 5 ms is used for 1 tick
delay+=1; //there might be a decimal fraction cut as 0 after the division, add 1
tk_sleep(delay);
#else
start_mS_timer((hcc_ul6)delay);
do {
} while(Ycheck_mS_timer(Q));
#endif
}

4.2.2 Adding File Operation for the USB File Type

The Freescale_Web_Server module file operation supports only html and text files. In this project web
pages can be stored in the USB device. Therefore, a new file type definition is added in
freescale_http_server.h that supports a USB file type named FILE_TYPE_DYANMIC3.

// File types scanned for dynamic HTML content

#define FILE_TYPE_DYANMIC1 "html*
#define FILE_TYPE_DYANMIC2 "text”
#ifdef MCF52259

#define FILE_TYPE_DYANMIC3 "usbf*
#endif

The function emg_web_open() is used to open web pages. Codes are now inserted in it to support the new
file type defined as FILE_TYPE_DYANMIC3. To avoid destroying the original code structure, the
inserted codes are enclosed by a macro defined as MCF52259 MST.

void emg_web_open(unsigned char session, unsigned char *filename)

{

#ifdef MCF52259 MST
if(usbmst_attach == 1)
{

F_FIND find;

int ret;

volatile unsigned char* fname;

Ethernet Plus USB Applications Based on the MCF52259, Rev. 0

4 Freescale Semiconductor

HTTP Server Implementation
F_FILE *File;

if(Filename[0] == 0)
fname = (volatile unsigned char*)"index._htm";
else
fname = filename;
#i1Ff HTTP_VERBOSE>4
printf(*'open session %d, %s\n\r",session,fname);

#endif
file=f_open((const char*)fname, "r');
if(file!=0)
{

freescale_http_sessions[session].file_type = FILE_TYPE_DYANMIC3;

freescale_http_sessions[session].file_size = f_filelength((const char*)fname);

freescale_http_sessions[session].file_pointer =(void *)file; //used here is a file pointer
to pass the file handle

freescale_http_sessions[session].file_index = 0;

freescale_http_sessions[session].state = EMG_HTTP_STATE_SEND_FILE;

found = 1;

return;

}
}//if(usbmst_attach == 1)
#endif

The html/text file read operation is supported by a function named emg_web_read(). A function named
usb_web_read() is created to support reading data from a USB file. These functions are located in
freescale_file_api.c.

unsigned long usb_web_read(unsigned char session, unsigned char *buffer_out, unsigned long
max_bytestoread)

{
unsigned long i, k, J;
unsigned long read_index, bytes to _read, last_read, read_size;
unsigned char *data;

unsigned long r;

iT(freescale_http_sessions[session].file_index>=freescale_http_sessions[session].file_size)

{
}

if((freescale_http_sessions[session].file_index + max_bytestoread) >
freescale_http_sessions[session].file_size)

return(0);

{

max_bytestoread = freescale_http_sessions[session].file_size -

freescale_http_sessions[session].file_index;

}

r=Ff_read(buffer_out,1,max_bytestoread, (F_FILE*)(freescale_http_sessions[session].file_pointer
);

//#if HTTP_VERBOSE>4

printf(*'session %d read %d\n\r',session,r);

//#endi f

freescale_http_sessions[session].file_index+=r;

Ethernet Plus USB Applications Based on the MCF52259, Rev. 0

Freescale Semiconductor 5

|
y

'
A

HTTP Server Implementation
return r;

}

#endif

4.2.3 Adding a USB Detecting Device in CMX

This HTTP web server also contains a web page in the internal flash. The application can also provide a
web page in case there is no USB device attached. An application knows if a USB device is attached by
adding a variable named usbmst_attach in the USB interrupt service routine, this tells the application that
a USB device is attached or not.
extern unsigned char usbmst_attach;
__declspec(interrupt)
void usb_it_handler(void)//
{

unsigned char istr;

/* Save irq USB status. */

//istr=MCF_USB_INT_STAT;

i F(MCF_USB_INT_STAT & MCF_USB_INT_STAT_ATTACH)

{
MCF_USB_INT_ENB &= ~MCF_USB_INT_ENB_ATTACH;//clear interrupt flag

usbmst_attach = 1; //tell applications that a usb flash is attached
}

}
The device attach interrupt is disabled after reset and needs to be enabled in main(). To achieve this, two
registers need be configured. One is MCF_USB_INT_STAT, the other is MCF_USB_INT_ENB.

int main(void)

{

MCF_USB_INT_STAT = MCF_USB_INT_STAT ATTACH; //write to clear it
MCF_USB_INT_ENB |= MCF_USB_INT_ENB_ATTACH;

4.2.4 Displaying Sensor Data and Network Status on a Web Page

This project is implemented on the MCF52259EVB. On the board there is a rheostat connected to the ADC
port that can be used to collect data and provide the web server with it. The server also places network
statistic data on the web page. The codes to collect data are located in a function named
evb_specific_collect_sensor_data() that can be referenced in MCF52259 evb.c. The ADC collecting data
is achieved by a function named read_AD(). Information about the network status comes from a data
structure ip_mib used by the InterNiche stack to store IP status for simple network management protocol
(SNMP).

void evb_specific_collect_sensor_data(void) //FSL new function for evb specific implementation

{

html_vars[3] = read_AD(0);
html_vars_flags[3] = 1;

html_vars[4] = read_AD(1);
html_vars_flags[4] = 1;

Ethernet Plus USB Applications Based on the MCF52259, Rev. 0

6 Freescale Semiconductor

4.2.5

html_vars[5] = read_AD(2);
html_vars_flags[5] = 1;

html_vars[6] = read_AD(3);
html_vars_flags[6] = 1;

html_vars[7] = read_AD(4);
html_vars_flags[7] = 1;

html_vars[8] = read_AD(5);
html_vars_flags[8] = 1;

html_vars[9] = read_AD(6);
html_vars_flags[9] = 1;

html_vars[10] = read_AD(7);
html_vars_flags[10] = 1;

html_vars[14] = ip_mib.ipInReceives;
html_vars_flags[14] = 1;

html_vars[15] = ip_mib.iplnHdrErrors;
html_vars_flags[15] = 1;

html_vars[16] = ip_mib.ipInAddrErrors;
html_vars_flags[16] = 1;

html_vars[17] = ip_mib.ipUnknownProtos;

html_vars_flags[17] = 1;

html_vars[18] = ip_mib.ipInDelivers;
html_vars_flags[18] = 1;

html_vars[19] = ip_mib.ipOutRequests;
html_vars_flags[19] = 1;

html_vars[20] = ip_mib.ipOutDiscards;
html_vars_flags[20] = 1;

html_vars[21] = ip_mib.ipOutNoRoutes;
html_vars_flags[21] = 1;

Project Compiling

/*

/*

/*

/*

/*

/*

/*

/*

HTTP Server Implementation

total received datagrams (bad too) */

Header Err (xsum, ver, ttl, etc) */

nonsense IP addresses */

unknown protocol types */

delivered receive packets */

sends (not including routed) */

sends dropped (no buffer) */

dropped, does not route */

Modifications listed in “Section 4.2.1, 4.2.2 and 4.2.3” are inserted in the original codes. To avoid
destroying the original code structure they are all enclosed by a macro named MCF52259. Please predefine
this macro before compiling the project.

#define MCF52259

Ethernet Plus USB Applications Based on the MCF52259, Rev. 0

Freescale Semiconductor

HTTP Server Implementation

4.3 Running HTTP Web Server on the MCF52259EVB

Before running the HTTP web server, the evaluation board (EVB) must be connected to a PC through a
UARTO port. The baudrate of the HyperTerminal must be set to 115200-8N1. After power on reset,
information appears as in Figure 1.

#g 115200-8N1 - HyperTerminal 10O x|
File Edit View Cal Transfer Help

Copyright 2008 by Freescale Semiconductor Inc.

Use of this software is controlled by the agreement
found in the project LICENSE.H file.

Built on RAug 22 2008 10:41:43

IP Address = 0 —> 0.0.0.0
Mask =0 ->0.0.0.0
Gateway =0 > 0.0.0.0

InterNiche ColdFirelite TCP/IP for ColdFire, v3.0

Copyright 1997-2006 by InterNiche Technologies.
All rights reserved.

Preparing device for networking

Ethernet started on Iface: 0

Acquired IP address via DHCP client for interface:
IP address : 10.192.221.30

Subnet Mask: 255.255.254.0

Gateway :10.192.221.254

INET> Device connection detected.

Mass-storage driver started.

N £l

[connected 0:03:01 [Autodetect [1152008MN-1 |[SCROLL [CAPS |NUM |Capture |Printecho

Figure 1. HyperTerminal

The HTTP web server also has a DHCP client, therefore it can automatically obtain an IP address. In
Figure 1 the IP address for the server is 10.192.221.30. If a USB device is plugged in, information about
this is output.

Ethernet Plus USB Applications Based on the MCF52259, Rev. 0

8 Freescale Semiconductor

HTTP Server Implementation

4.4 Connecting to the Web Page on the USB Flash

Because the IP address is obtained, the HTTP web server can be visited through Internet Explorer by
typing http://10.192.221.30 in the address bar.

a Coldfire MCF5225x - Microsoft Internet Explorer provided by Freescale — |EI|£|
File Edit WView Favorites Tools Help ,;:'-"
O - O 1) B (] Lo Fgrooms B3 1% @ - LB
AddressI@ht-q:.:..-'..-'ln.192.221.30; j Go |Links | W&y -
=

ColdFire® MCF5225Xx

Flash
BAKEytes
SRAM

256KBytes
Flash

System
Integration

Click on each section to open anather page with mare information |

Thizs web page is locateg st USE flash stice If you want to browss the web page locstea st VFS of WMCFEZZER internsl flash, plesss pull cut
the USE flash stick and refresh the web browser. j
| @] pore |4 Internet 4

Figure 2. Internet Web Page

Ethernet Plus USB Applications Based on the MCF52259, Rev. 0

Freescale Semiconductor 9

TFTP Server Implementation

5 TFTP Server Implementation

5.1 Software Architecture

This architecture is similar to the HTTP web server. The architecture includes source files supporting
TFTP protocol instead of HTTP server support, as in Table 3.
Table 3. TFTP Server Project Architecture

Module Description
CodeWarrior specific Linker file for the M52259EVB
ColdFirelite InterNiche stack containing multiple folders for the

Ethernet TCP/IP stack, supported protocols, and
RTOS processor independent files

Common Standard C functions and UART input/output support
CPU Contains respective processor dependent files
Drivers Drivers for Mll interface

Project files Main and interrupts source files

CMXUSB_LITE CMX USB stack containing multiple folders for USB

mass host support

5.2 Implementation

This project is also implemented based on the MCF52259EVB. The TFTP server has been already
provided by InterNiche. That particular example accesses files stored in the internal flash through VFS and
therefore there is a critical file size limitation. In this project, files are stored in a USB device that allows
for a larger file size. The key point is to make the TFTP server access the USB files through the CMX file
system instead of VFS.

5.2.1 Adding File Operation Support for a USB File
In this project, the APIs regarding file operation are all replaced by the CMX file system.

5.2.1.1 Replacing File Descriptor in VFS with the CMX File

The file descriptor is an important parameter used by the file system. The VFILE is defined for VFS and
now replaced by the CMX file system.
#ifdef MCF52259_MST
F_FILE*tf_fd;
#else

VFILE * tf _fd; /* Tile descriptor for xfer */
#endi

Ethernet Plus USB Applications Based on the MCF52259, Rev. 0

10 Freescale Semiconductor

TFTP Server Implementation

5.2.1.2 Replacing File Open Function in VFS with CMX File

The function vfopen() is used as a file open function in VFS and is replaced by f_open() from the CMX
file system.

#ifdef MCF52259_ MST
#include "thin_usr._h"
#endif

#ifdef MCF52259_MST //

cn->tf_fd = f_open(fname, "w');
#else

cn->tf_fd = vfopen(fname, "w'");
#endif

else if(mode == OCTET)

#ifdef MCF52259 MST
cn->tf_fd = f_open(fname, "w');
#else

cn->tf_fd = vfopen(fname, "wb'™);
#endif

if(mode == ASCII)
#ifdef MCF52259_ MST
cn->tf_fd = f_open(fname,'r');
#else
cn->tf_fd = vfopen(fname, "'r');
#endif
else if(mode == OCTET)
#ifdef MCF52259_ MST
cn->tf_fd = f_open(fname,"'r');
#else
cn->tf_fd = vfopen(fname, '"'rb™);
#endif
else
return("Invalid mode™);

5.2.1.3 Replacing File Close Function in VFS with CMX File

The function vfclose() is used as the file close function in VFS and is replaced by f_close() from the CMX
file system.

if(cn->tf_fd = NULL)
#ifdef MCF52259 MST
T_close(cn->tf_fd);
#else
vfclose(cn->tf_fd);
#endif

Ethernet Plus USB Applications Based on the MCF52259, Rev. 0

Freescale Semiconductor 11

TFTP Server Implementation

5.2.1.4 Replacing File Write Function in VFS with CMX File

The function viwrite() is used as a file write function in VFS, and is replaced by f_write() from the CMX
file system.
#ifdef MCF52259_MST
if(Gint)f_write(data,1,len,cn->tf_fd)!I=(Cint)len)
#else
if((int)vfwrite(data, 1, len, cn->tf_fd) != (int)len)
#endif

5.2.1.5 Replacing File Read Function in VFS with CMX File

The function vfread() is used as a file read function in VFS and is replaced by f_read() from the CMX file
system.
/* load file data into tftp buffer */

if(lcn->tf_NR) /* if this is NOT a retry, read in new data */

{
#ifdef MCF52259_MST

bytes = f_read(tfdata->tf_data, 1, NORMLEN, cn->tf_fd);

#else
bytes = vfread(tfdata->tf_data, 1, NORMLEN, cn->tf_fd); /* read next block from file */
#endi f
if(bytes < NORMLEN) /* end of file? */
{
#ifndef MCF52259 MST
if(vferror(cn->tf_fd)) /* check if it is an error */
{
if(cn->callback)
cn->cal lback(TFC_FILEREAD, cn, "file read error');
return FALSE;
}
#endif
/* else at End Of File; fall through to do the last send */
b
cn->tf_flen = bytes; /* bytes in last packet sent */
cn->tf_size += bytes; /* total bytes sent so far */

}

5.2.2 Adding the TFTP Server Task in the NicheTask

Predefining the TFTP_SERVER to activate the TFTP server codes. Do not forget to comment out the
macro defined for including VFS.

#ifdef TFTP_PROJECT

#define TFTP_SERVER 1 /* include TFTP server code */
//#define VFS_FILES 1 /* include Virtual File System */
#endif

Ethernet Plus USB Applications Based on the MCF52259, Rev. 0

12 Freescale Semiconductor

TFTP Server Implementation

5.3 Project Compile

Similar to the HTTP project, predefines must be executed before compiling this porject.

#define TFTP_PROJECT
#define MCF52259_MST

5.4 Running the TFTP Server on the MCF52259EVB

Before running the TFTP server, the EVB must be connected to the PC through the UARTO port. The
baudrate of the HyperTerminal must be set to 115200-8N1. After power on reset, information is displayed
as in Figure 3.

4 115200-8N1 - HyperTerminal ol x|
. File Edit View Cal Transfer Help

found in the project LICENSE.H file.
Built on Aug 22 2008 10:41:20

All rights

Gateway

i| |[IP Address = 0 -> 0.0.0.0
| '|Hask =0 ->0.0.0.0
| |Gateway =0 —>0.0.0.0
InterNiche ColdFirelLite TCP/IP for ColdFire, v3.0

Copvright 1997-2006 by InterNiche Technologies.

reserved.

Preparing device for networking
Ethernet started on Iface: 0

Acquired IP address wia DHCP client for interface:
IP address :
Subnet Mask: 255.255.254.0

10.192.221.38
1 10.192.221.254

INET> Device connection detected.
Mass-storage driver started.

INET> tfsrv
tftp server ON
INET> _

Connected 0:00:55 [futodetect [1152008-N-1 [SCROLL [CAPS [nUM [Capture [Printecho

4

Figure 3. HyperTerminal

The TFTP server also has a DHCP client. It can obtain the IP address automatically. In Figure 3 the IP

address for the server is 10.192.221.30. If a USB device is plugged in information is output. After, type

the command tfsrv to activate the TFTP server.

Ethernet Plus USB Applications Based on the MCF52259, Rev. 0

Freescale Semiconductor

13

TFTP Server Implementation

5.5 Uploading a File to the TFTP Server

After the IP address for the TFTP server is obtained files can be uploaded to this server by DOS command
tftp —i <dst_addr> put filename.xx. The dst_addr is 10.192.221.30 and the filename can be any file in the
opened folder.

NOTE
Never forget the option —i.

e C\WINDOWS\system32\cmd.exe
CC) Copyright 1985-2801 Microsoft Corp.

D:“Profiles ~hl??77>dir
Volume in drive D iz DATA
Uolume Serial Mumbher iz B4CC-—9388

Directory of D:“Profiles“hl7977

20B8-A8—14 13:34 <DIR> .
2008-@A8—14 13:34 <DIR> .-
18:42 <DIR> Contacts
11:24 <DIR> Desktop
16:58 <DIR> Favorites
16:=14 <DIR> Hy Documents
a2 :-a7 <DIR> Start Menu
11:82 <DIR> WINDOWSE
17:89 16 .gtk—hookmarks
15:52 5928 install.log
2 File<s> 686 bhytes
8 Dird<s> 23.600,.000.0008 bhytes free

D:“Profiles~bhl17?77>tftp —1i 18.1922_221_.380 put install.log
Tranzfer successful: 578 bytes in 1 second. 598 hytesrs

D:“Profiles bhl17??77>

Figure 4. Uploading Files to the TFTP Server

5.6 Downloading a File from the TFTP Server

The same as uploading the file. Files can be downloaded from this server with a DOS command tftp —i
<dst_addr> get filename.xx.

Ethernet Plus USB Applications Based on the MCF52259, Rev. 0

14 Freescale Semiconductor

Conclusion

e C\WINDOWS \system32 \cmd.exe
Uolume Serial Number iz B4CC-2308

Directory of D:stest

2088-A8-22 14:88 <DIR>
2088-0B-22 14:88 <DIR> .-
B Filedz> 8 bytes
2 Dir(s> 23.598.246.712 bhytes free

D:stestxtftp —1 18.1922.221.38 get install.loyg
Transfer successful: 598 bhytez in 1 second, 598 bhytesss

D:xtest>dir
Uolume in drive D is DATA
Uolume Serial Mumbher is B4CC-2388

Directory of D:ivtest

14:81 <DIR>
14:81 <DIR> .
14:81 598 install.logy
1 Filed{s>» 598 hytes
2 Dird=sd 23.598.246.912 hytes free

Figure 5. Downloading Files from the TFTP Server

6 Conclusion

The HTTP/TFTP server projects are implemented based on the FEC and USB module MCF52259 that
provide not only high performance but also flexible connectivity. Applications based on the MCF52259
are not limited in the HTTP/TFTP server. If a USB camera is connected to the MCU instead of a flash a
web monitor is achieved with minimal changes to the HTTP/TFTP server. It can monitor what is
happening through the web page. The MCF52259 is ideal for applications in the industrial controlling
field. Further developement regarding Network applications can be achieved functionality based on this
application note.

Ethernet Plus USB Applications Based on the MCF52259, Rev. 0

Freescale Semiconductor 15

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road

Tempe, Arizona 85284

1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F

No. 118 Jianguo Road

Chaoyang District

Beijing 100022

China

+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center
P.O. Box 5405

Denver, Colorado 80217

1-800-441-2447 or +1-303-675-2140

Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

freescale

semiconductor

Freescale™ and the Freescale logo are trademarks of

Freescale Semiconductor, Inc. All other product or service names
are the property of their respective owners.

© Freescale Semiconductor, Inc. 2008. All rights reserved.
AN3779

Rev. 0
09/2008

	1 Introduction
	2 MCF52259
	3 Stack
	3.1 InterNiche
	3.2 CMX USB-Lite

	4 HTTP Server Implementation
	4.1 Project Architecture
	4.2 Implementation
	4.2.1 Integration of InterNiche and CMX USB Stack
	4.2.1.1 Creating usb-mass-host-task.c for NicheTask
	4.2.1.2 Invoking APIs from the usb-mass-host-task.c in NicheTask
	4.2.1.3 Adding a Timer for Integration from CMX and OS

	4.2.2 Adding File Operation for the USB File Type
	4.2.3 Adding a USB Detecting Device in CMX
	4.2.4 Displaying Sensor Data and Network Status on a Web Page
	4.2.5 Project Compiling

	4.3 Running HTTP Web Server on the MCF52259EVB
	4.4 Connecting to the Web Page on the USB Flash

	5 TFTP Server Implementation
	5.1 Software Architecture
	5.2 Implementation
	5.2.1 Adding File Operation Support for a USB File
	5.2.1.1 Replacing File Descriptor in VFS with the CMX File
	5.2.1.2 Replacing File Open Function in VFS with CMX File
	5.2.1.3 Replacing File Close Function in VFS with CMX File
	5.2.1.4 Replacing File Write Function in VFS with CMX File
	5.2.1.5 Replacing File Read Function in VFS with CMX File

	5.2.2 Adding the TFTP Server Task in the NicheTask

	5.3 Project Compile
	5.4 Running the TFTP Server on the MCF52259EVB
	5.5 Uploading a File to the TFTP Server
	5.6 Downloading a File from the TFTP Server

	6 Conclusion

