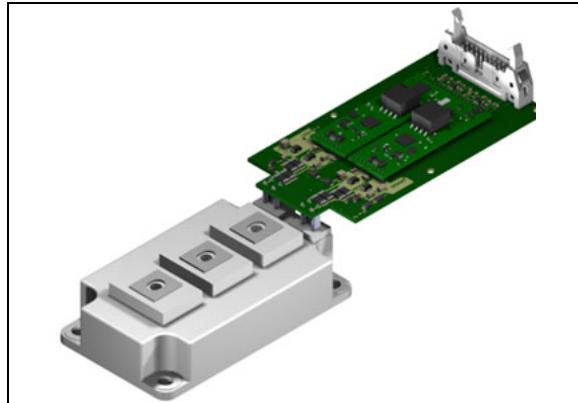


Characterization of a 62mm SiC Power Module with AgileSwitch® Augmented Switching Gate Drivers

ABSTRACT

Switching a SiC MOSFET Power Module creates two significant problems that need to be addressed in order to optimize the performance of the device: turn-off voltage overshoot and ringing. These two parasitic problems need to be controlled while maintaining efficient switching.

Microchip's AgileSwitch® line of patented Gate Drive products address these problems, controlling the turn-off di/dt by varying the gate voltage level and dwell time to one or more intermediate levels during turn-off. This process is typically referred to as Augmented Turn-Off™ or ATOff.


FIGURE 1: Conventional vs. Augmented Turn-Off.

Augmented Turn-Off provides benefits of:


1. Reduction in Switching Losses
2. Fine Control over Turn-On dv/dt
3. Reduced Turn-Off Overshoot Voltage
4. Robust Short Circuit Protection & Response

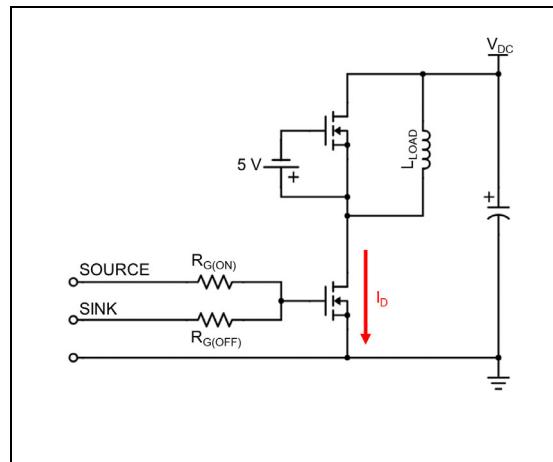
INTRODUCTION

This report outlines characterization of a 62mm SiC half-bridge module. Tests were performed using the AgileSwitch 2ASC-12A1HP Gate Driver core attached to the AgileSwitch 62CA1 module adapter board.

FIGURE 2: 2ASC-12A1HP SiC Driver Core with a 62CA1 Adapter Board on a 62mm Module.

FIGURE 3: Double Pulse Setup
Showing: (A) 2ASC-12A1HP, (B) 62CA1 Adapter Board, (C) FF6MR12KM1 Module, (D) V_{DS} Probes, (E) I_{VGS} Probes, (F) Current Probe, and (G) Inductor.

DOUBLE PULSE TEST


Hardware Setup

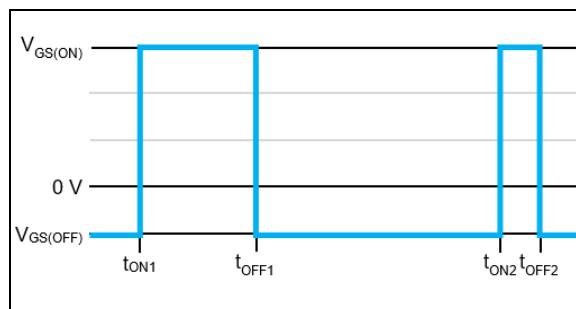
Double pulse testing was conducted using an inductor across the high-side MOSFET, as shown in Figure 4. The high-side MOSFET was held at -5 V for the duration of the test, and the low-side MOSFET was switched using the profile described in the [Abstract](#). A Rogowsky coil was placed around the source return bus on pin 2 of the module to measure current.

Tests were performed at 600 V, 250 A to replicate the operating conditions listed in the module datasheet. A smaller gate resistor is used because the 2ASC-12A1HP can digitally control switching edges, so a larger resistor would otherwise cause additional losses with few performance benefits.

TABLE 1: DOUBLE PULSE HARDWARE SETUP

Parameter	Symbol	Value	Unit
DC Link Voltage	V_{DC}	600	V
Pulsed Current	I_D	250	A
Inductive Load	L_{LOAD}	21.6	μ H
Turn-On Gate Resistor	$R_{G(ON)}$	1.1	Ω
Turn-Off Gate Resistor	$R_{G(OFF)}$	1.1	Ω
Ambient Temperature	T_{AMB}	30	$^{\circ}$ C

FIGURE 4: Double Pulse Schematic.

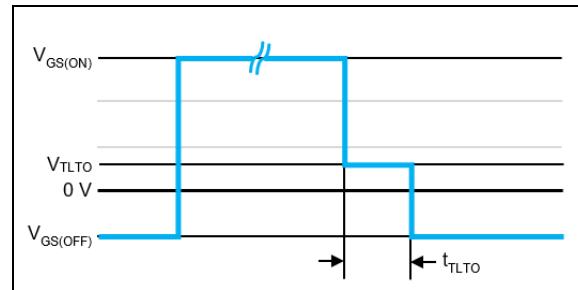

Software Setup

DOUBLE PULSE PROFILE

Timing of the double pulse profile was set based on the selected load inductor, DC link voltage and maximum required drain current. With $V_{DC} = 600$ V and $L_{LOAD} = 21.6$ μ H, a pulse of 9 μ s was required to reach 250 A. The full timing of the double pulse waveform is shown below in [Figure 5](#). The turn-on time of the first pulse is defined as time 0. Turn-off measurements were taken at t_{OFF1} , and turn-on measurements were taken at t_{ON2} . The width of the first pulse ($t_{OFF1} - t_{ON1}$) is set to reach the desired current; the width of the second pulse ($t_{OFF2} - t_{ON2}$) is mostly irrelevant, as long as it is wide enough to allow the system to stabilize following the turn-on moment for good measurements.

TABLE 2: DOUBLE PULSE SWITCHING PARAMETERS

Parameter	Symbol	Value	Unit
Pulse 1 On Time	t_{ON1}	0	μ s
Pulse 1 Off Time	t_{OFF1}	9	μ s
Pulse 2 On Time	t_{ON2}	28	μ s
Pulse 2 Off Time	t_{OFF2}	31	μ s
Full On Gate Voltage	$V_{GS(ON)}$	15	V
Full Off Gate Voltage	$V_{GS(OFF)}$	-5	V

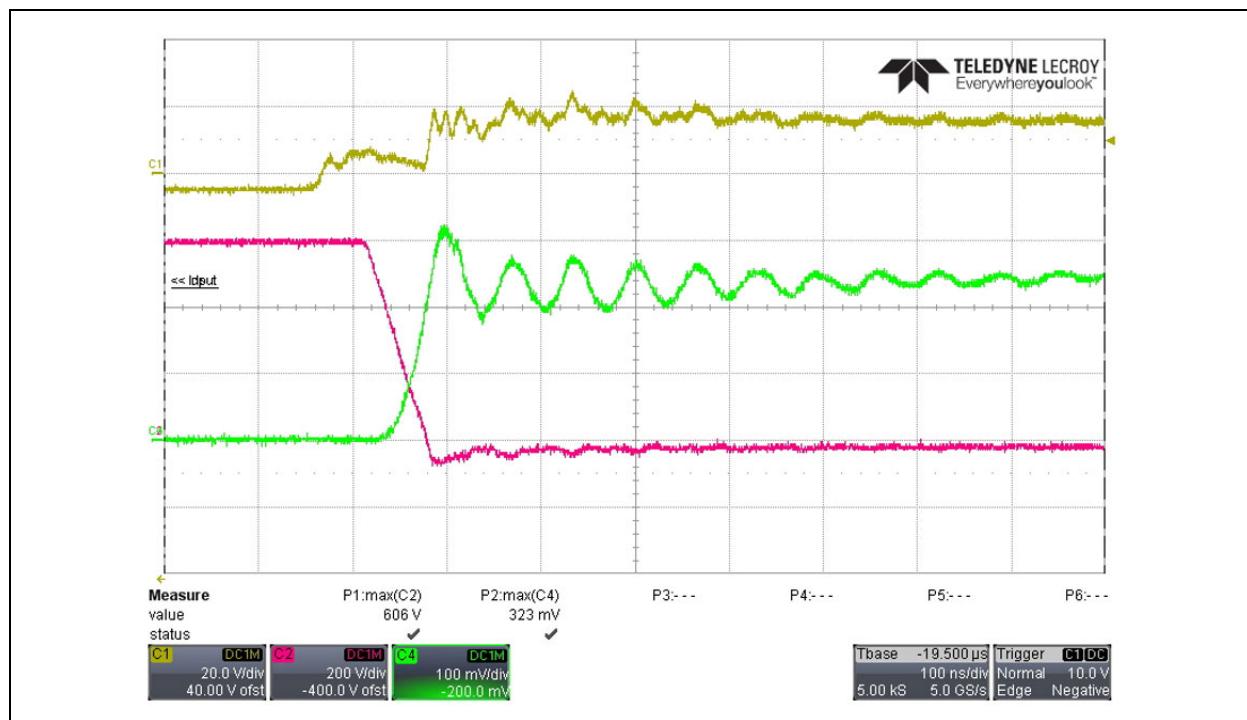

FIGURE 5: Double Pulse Switching Profile.

AUGMENTED SWITCHING PROFILE

For clarity, the switching profile in [Figure 5](#) shows simple turn-on and turn-off edges that switch directly between $V_{GS(ON)}$ and $V_{GS(OFF)}$. AgileSwitch Gate Drivers use Augmented Switching to digitally control these edges with precise timing and voltage steps. For these tests, the driver was programmed with no intermediate steps for turn-on (i.e. the turn-on waveform switches directly from $V_{GS(OFF)}$ to $V_{GS(ON)}$) and a single intermediate step for turn-off, as shown in [Figure 6](#); this setup is called Two-Level Turn-Off (TLTO). Multiple V_{TLTO} and t_{TLTO} settings were tested to observe the module's performance over various switching profiles.

TABLE 3: AUGMENTED SWITCHING PARAMETERS

	Symbol	Value	Unit
Full On Gate Voltage	$V_{GS(ON)}$	15	V
Full Off Gate Voltage	$V_{GS(OFF)}$	-5	V
Two-Level Turn-Off Voltage	V_{TLTO}	varies	V
Full Off Gate Voltage	t_{TLTO}	varies	ns


FIGURE 6: Augmented Switching Profile.

Results

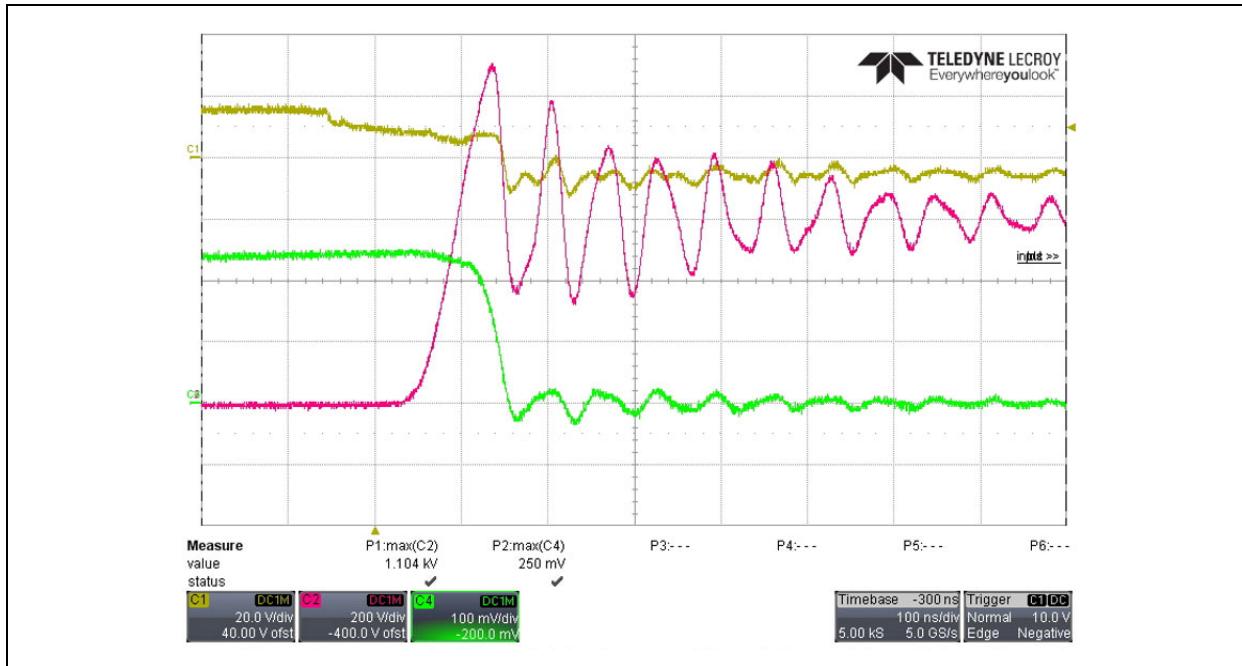
TURN-ON

Figure 7 shows the turn-on results from the oscilloscope. The current reaches a peak of 323 A before settling to its set point of 250 A.

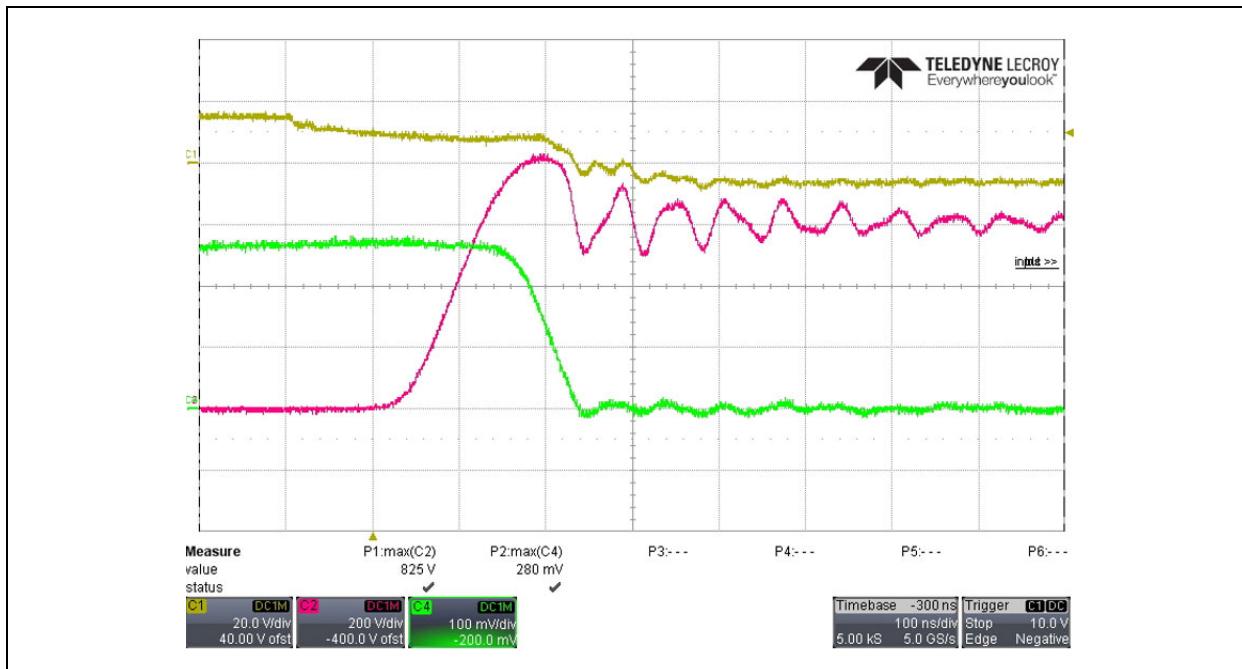
Table 4 shows summary values for this test; at 1.67 mJ, the turn-on energy loss is 68% less than the datasheet specification.

FIGURE 7: Turn-On Waveforms: V_{GS} (channel 1), V_{DS} (channel 2), I_D (channel 4, 1 A/mV).

TABLE 4: DOUBLE PULSE TEST RESULTS, TURN-ON


Parameter	Symbol	Value	Unit
Switching Loss	E_{ON}	1.67	mJ
Voltage Slope	dV/dt	9.06	kV/μs

Note 1: The current probe used for these tests has a delay that must be considered to calculate accurate loss numbers; the oscilloscope images in this document do not reflect the deskew routine used in post-processing.


TURN-OFF

[Figure 8](#) and [Figure 9](#) show the turn-off results for two different settings: one optimized for low switching loss, and the other for low overshoot voltage. In general, a longer intermediate step turns the device off more slowly, resulting in higher losses but less overshoot, as shown by the values given in [Table 6](#).

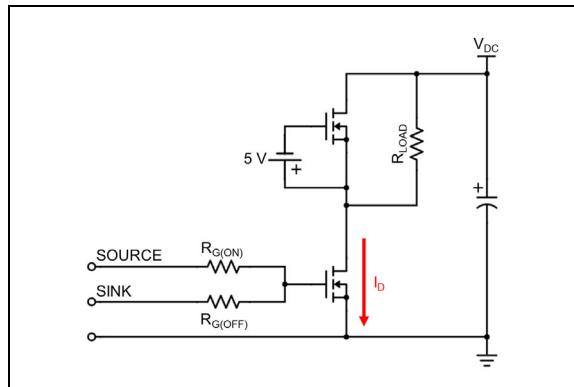
The lowest switching loss achieved during turn-off was 1.37 mJ (with an overshoot of 513 V), and the lowest overshoot was 228 V (with a loss of 4.94 mJ).

FIGURE 8: Turn-Off Waveforms Optimized for Switching Loss: V_{GS} (channel 1), V_{DS} (channel 2), I_D (channel 4, 1 A/mV).

FIGURE 9: Turn-Off Waveforms Optimized for Overshoot: V_{GS} (channel 1), V_{DS} (channel 2), I_D (channel 4, 1 A/mV).

TABLE 5: DOUBLE PULSE TEST RESULTS, TURN-OFF

V_{TLTO} (V)	t_{TLTO} (ns)	Switching Loss (mJ)	Comparison to Datasheet	V_{DS} Overshoot (V)
3	150	1.37	-73%	513
3	200	1.80	-65%	434
3	250	1.94	-62%	387
3	300	2.05	-60%	390
6	150	1.56	-69%	581
6	200	2.67	-48%	526
6	250	4.57	-10%	388
6	300	4.94	-3.1%	228


SHORT-CIRCUIT TESTING

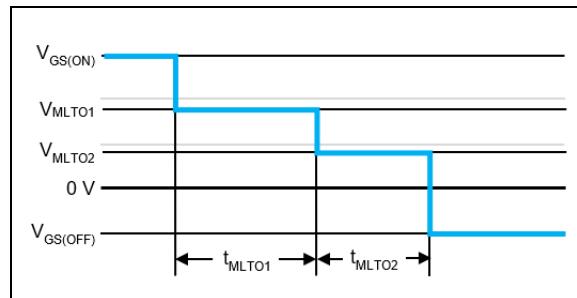
Hardware Setup

Short-circuit testing was performed using a similar setup to double pulse testing, except the inductor was replaced with a small resistor (330 mΩ). Additionally, the DC link voltage was increased to 800 V to match the parameters in the module datasheet.

TABLE 6: SHORT-CIRCUIT HARDWARE SETUP

Paramater	Symbol	Value	Unit
DC Link Voltage	V_{DC}	800	V
Response Time	t_{SC}	1.5	μs
Resistive Load	R_{LOAD}	330	μΩ
Turn-On Gate Resistor	$R_{G(ON)}$	1.1	Ω
Turn-Off Gate Resistor	$R_{G(OFF)}$	1.1	Ω
Ambient Temperature	T_{AMB}	30	°C

FIGURE 10: Short-Circuit Hardware Setup.


Software Setup

In addition to Two-Level Turn-Off (TLTO) during normal operation, the 2ASC-12A1HP features Multilevel Turn-Off (MLTO) following detection of a desaturation/short-circuit event. This is similar to TLTO but offers an additional intermediate step. The voltage levels and timing of these steps are configurable in software, so several combinations were tested to arrive at a setting to provide adequate turn-off speed while minimizing overshoot voltage; the final settings are listed in Table 7. The desaturation trip level is also configurable; this translates to a particular detection time, which was set at 1.5 μs to allow fast detection time while ensuring zero false positives.

Note 2: Turn-off energy loss is specified as 5.10 mJ (typical).

TABLE 7: MULTI-LEVEL TURN-OFF PARAMETERS

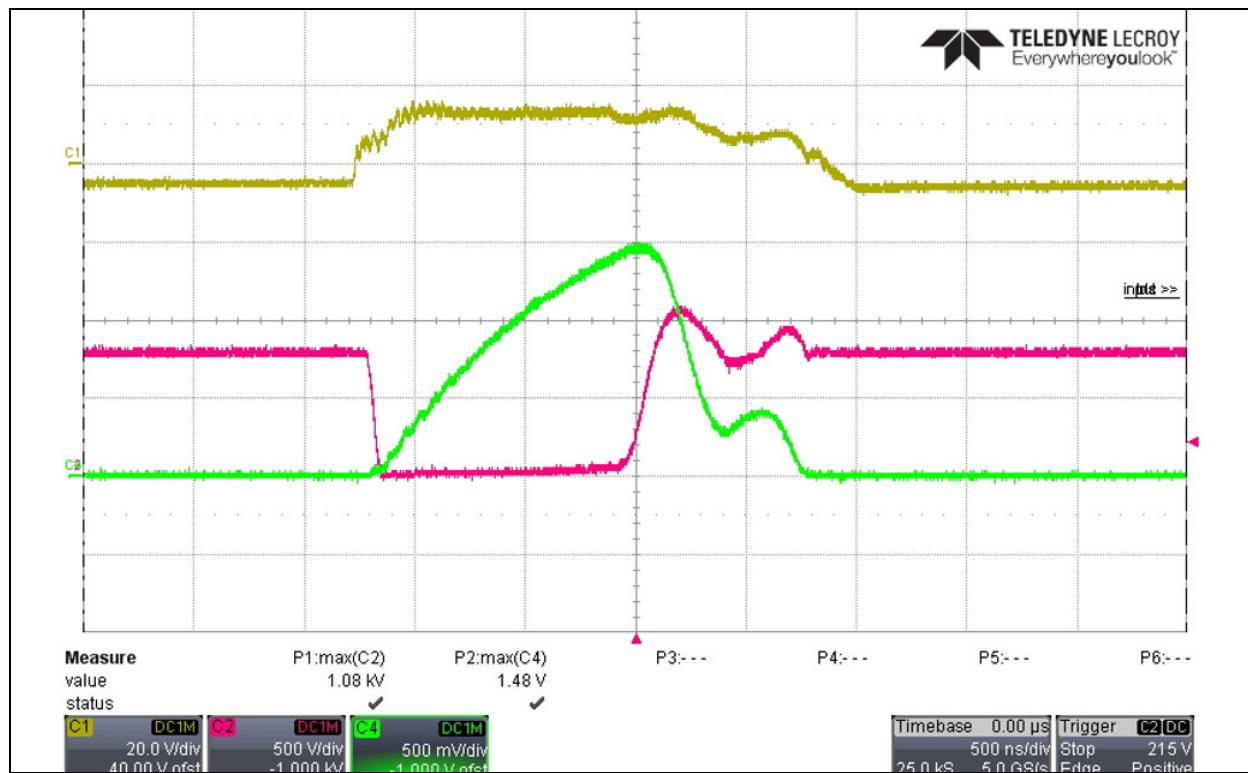

Paramater	Symbol	Value	Unit
Full On Gate Voltage	$V_{GS(ON)}$	15	V
Full Off Gate Voltage	$V_{GS(OFF)}$	-5	V
Multilevel Turn-Off Voltage 1	V_{MLTO1}	9	V
Multilevel Turn-Off Time 1	t_{MLTO1}	500	ns
Multilevel Turn-Off Voltage 2	V_{MLTO1}	4	V
Multilevel Turn-Off Time 2	t_{MLTO1}	400	ns

FIGURE 11: Multilevel Turn-Off Profile.

Results

Figure 12 shows three key waveforms during a short-circuit event: Channel 4 (green) shows the current rising quickly due to the 330 mΩ resistor across the high-side MOSFET; channel 1 (yellow) shows the gate signal with multi-level turn-off; and channel 2 (magenta) shows the voltage across the low-side MOSFET. The driver begins to shut off the gate signal after 1.5 µs, by which time the current has risen to a peak of 1.48 kA. Because of the controlled turn-off profile, voltage overshoot is limited to 280 V on an 800 V bus.

FIGURE 12: Short-Circuit Waveform: V_{GS} (channel 1), V_{DS} (channel 2), I_D (channel 4, 1 A/mV).

SUMMARY

The 62mm SiC module platform has shown to be a robust module through our double pulse tests. The Gate Resistors chosen by the manufacturer (R_g on/off = $3.9\ \Omega$) seems reasonable given the inductance in the package and assumed system.

The losses in the datasheet seem to be in line with comparative products from other manufacturers.

AgileSwitch's Augmented Switching technique is shown to provide performance benefits, as below:

1. Fine-tuning of the trade-off - switching loss vs. V_{ds} overshoot
 - a) 73% lower turn-off loss when optimized for lowest switching loss
 - b) 3% lower turn-off loss when optimized for lowest V_{ds} Overshoot
2. Robust short-circuit protection
 - a) Total short-circuit time of $<2\ \mu s$
 - b) Controlled V_{ds} overshoot and ringing

In conclusion, the Augmented Switching technique is a tool that allows engineers to fine-tune system performance.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
 - Microchip believes that its family of products is secure when used in the intended manner and under normal conditions.
 - There are dishonest and possibly illegal methods being used in attempts to breach the code protection features of the Microchip devices. We believe that these methods require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Attempts to breach these code protection features, most likely, cannot be accomplished without violating Microchip's intellectual property rights.
 - Microchip is willing to work with any customer who is concerned about the integrity of its code.
 - Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable". Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
-

Information contained in this publication is provided for the sole purpose of designing with and using Microchip products. Information regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad, SQL, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2020, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-7339-8

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

MICROCHIP

Worldwide Sales and Service

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
<http://www.microchip.com/support>
Web Address:
www.microchip.com

Atlanta

Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX

Tel: 512-257-3370

Boston

Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago

Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas

Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit

Novi, MI
Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983

Indianapolis

Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles

Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800

Raleigh, NC

Tel: 919-844-7510

New York, NY

Tel: 631-435-6000

San Jose, CA

Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto

Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra'anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7288-4388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820