ANALOG
DEVICES

AN-1419
APPLICATION NOTE

One Technology Way « P.O. Box 9106 « Norwood, MA 02062-9106, U.S.A. « Tel: 781.329.4700 - Fax: 781.461.3113 - www.analog.com

ADuCM4050 SPI Flow Control Modes

INTRODUCTION

The serial peripheral interface (SPI) is an industry standard,
synchronous serial link that allows full duplex operation to
other SPI-compatible devices, which include analog-to-digital
converters (ADCs), digital-to-analog converters (DACs), digital
potentiometers, nonvolatile memories (NVMs), sensors, and
microcontroller units (MCUs). Some of these devices have
special features for specific purposes, such as achieving a high

speed, event notification, and command response mechanisms.

The enhanced modes of operation of the ADuCM4050 SPI has
provide the user the flexibility of half-duplex operation and
flow control options, which automatically enable the SPI block
to use most of these specific characteristics of the peripherals in
hardware. Therefore, user code is simplified and energy
efficiency can be improved.

This application note describes the SPI flow control modes
available in the ADuCM4050 MCU and shows several examples
of use.

Rev.0|Page 1 0f 8

AN-1479

TABLE OF CONTENTS

Introduction

Revision HiStory ...

Background

Pin-Based Flow Controlccccoevevereveererennnnen.

Timer-Based Flow Control

Source Code

Timer-Based Flow Control Example

Pin-Based Flow Control Example

Conclusion

REVISION HISTORY
5/2019—Revision 0: Initial Version

Rev.0|Page 2 of 8

AN-1479

BACKGROUND

Flow control is necessary to synchronize the data flow between
a master and a slave. The ADuCM4050 MCU provides flow control
as a differentiating feature in the SPI. Along with read command
mode, flow control can be used to receive multiple data bytes.

With flow control, the data transfer between the SPI master and
slave is controlled based on the application requirements in
terms of periodic data or demand-based data read.

The SPI master in the ADuCM4050 supports the following
modes of flow control:

e Pin-based flow control, controlled by the SPI slave.
e Based on the MISO pin.
e Based on the RDY pin.
e Timer-based flow control, controlled by the SPI master.

The flow control modes are described in the following sections
in more detail. The mode field in the SPI flow control register
(SPI_FLOW_CTL) configures the flow control mode to any one
of the three modes. Figure 1 shows the SPI_FLOW_CTL register.

Note that flow control mechanisms can be used only when the
ADuCM4050 is configured as an SPI master.

PIN-BASED FLOW CONTROL

Using a Separate RDY Pin

Some SPI slaves have a dedicated RDY pin that is connected to
the SPI_RDY pin of the SPI master, in this case, the ADuCM4050.

The SPI_RDY pin is a dedicated pin (as an alternate functionality
to a general-purpose input/output (GPIO)) for every SPI instance.

For example, the ON Semiconductor® CAT64LC40 serial flash
uses a dedicated RDY pin to signal the availability of data to the
SPI master.

The RDY pins of the ADuCM4050 can be wired to an interrupt
pin of the SPI slave in case the slave does not support a dedicated
RDY pin. The slave uses the RDY pin to indicate that the
acquisition and data processing is complete. The master does
not provide SPI clock until it sees an active level on this pin.

The user can configure the number of bytes to be read when the
RDY pin is asserted. Perform this configuration by setting the
RDBURSTSZ field in the SPI flow control register (SPI_FLOW _
CTL). After receiving this burst of bytes on MISO, the SPI master
continues to wait for the next RDY pin assertion to receive the
next set of bytes. This process is repeated until all bytes as set in
the SPI count register (SPI_CNT) are received.

Note that when using read command mode, a maximum of

16 bytes can be transmitted. This transmission is configured using
the TXBYTES field of the SPI read control register (SPL_RD_CTL).
The number of bytes received in one burst when using flow
control is set in the RDBURSTSZ field of the SPI flow control
register (SPI_FLOW_CTL). However, the total number of bytes
to be received does not have an imposed maximum limit.

Using the MISO Pin

Some SPI slaves do not have a dedicated RDY pin but have a
provision to reuse the MISO pin to inform the SPI master that
the data is ready to be sent on MISO. This is typical in some
ADCs, like the AD7798.

The ADuCM4050 SPI master waits for an active level transition on
the MISO line and, when this is detected, reads RDBURSTSZ + 1
number of bytes and then returns to a wait state until another
active level is detected on MISO.

The polarity of the MISO/RDY pin can be configured using the
RDYPOL field of the SPI flow control register (SPI_FLOW_CTL).

TIMER-BASED FLOW CONTROL

For slaves that do not have a dedicated pin to inform the availability
of data to the master, the MCU uses a 16-bit timer to introduce wait
states while reading data. When the timer triggers, the master reads
a burst of bytes (RDBURSTSZ + 1) and then restarts the timer.
The timer is clocked at the SPI clock rate (SCK), and the number
of SCK cycles to wait before the timer is triggered can be set using
the SPI_WAIT_TMR register. See Figure 2 for an example.

When this scheme is used to stall and drive SCK for flow control,
ensure that the last SCK edge is a sampling edge. After the stall
period is over, an SCK driving edge causes the next data transfer.

151413121110 9 8 7 6 5 4 3 2 1 0

[ofofofoJoJofoJofooJo]oofo]o]o]

RDBURSTSZ (R/W) R

READ DATA BURST SIZE - 1

MODE (R/W)
FLOW CONTROL MODE

RDYPOL (R/W)
POLARITY OF RDY/MISO LINE

14165-001

Figure 1. SPI_FLOW_CTL Register

OX9F | 0x00 | 0x00

| 0x00 | 0x05

SPI_WAIT_TMR

SPI_WAIT_TMR

L SCK CYCLES . SCK CYCLES
SCK |- L

for

MOSI l \ ’ \

| OXFF | OXEF | 0x40

| 0x16 |OxFF

MISO J _/

7 I W I

14165-002

Figure 2. Software Flow Control with Timer

Rev.0|Page 3 of 8

AN-1479

SOURCE CODE

This section uses the hardware flow control mode to
demonstrate how the flow control feature can simplify the user
code and power savings in a system.

This section contains two examples: one to show the timer-
based concept, and another to show a pin-based example.

TIMER-BASED FLOW CONTROL EXAMPLE

The first method to control a device automatically via SPI flow
options is a timer. As discussed in the Timer-Based Flow
Control section, the SPI block adds a configurable delay
between successive transfers. This method is typical of some
ADCs and sensors, which offer a data stream with a fixed
frequency sampling and data rate.

The SPI flow method is indicated through the SPI_FLOW_CTL
register. In this case, the timer option is set to 1 at the SPL_FLOW_
CTL.MODE bit field.

The delay depends on the PCLK frequency and the SPI_WAIT_
TMR register. The value of this registers specifies the number of

SPI_CLK cycles (PCLK/SPI_DIV) to wait before a new SPI
operation can be performed.

Other options to take into account are the following:

e SPI_CTL.CONTINUOUS bit field: the working sequence
continues until all data are transferred.

e SPI_CNT register: the number of bytes to be transferred.

e SPI_FLOW_CTL.RDBURSTSZ bit field: the number of
bytes to be read minus 1 per transfer.

The effect of those fields is shown in Figure 5.

In this example, the program reads a fixed number of words
and, when it completes the task, the program finishes. The code
is shown in the Code Sample 1 section.

Incoming data are read in the interrupt handler, where the read
buffer is full and the values variable is increased (see the Code
Sample 2 section).

The result is shown in Figure 3 and Figure 4. These figures have
been generated by changing the WAIT_TMR register value,
which controls the delay between one burst and the next.

B}

[2 i k| =

Bl
2.00V CH22.00 M2.00ms A CH3L 115V g
[&E 2.00v CH4 2.00v - v 3.92000ms g

Figure 3. WAIT_TMR = 200
B
B

2.00V CH2 2.00V M2.00ms A CH3T\L 115V §
2.00V CH4 2.00V - v 3.92000ms S

Figure 4. WAIT_TMR = 20

READ COMMAND WITH CPHA =1, CPOL =0, TXBYTES =0, CNT = 4, RDBURSTSZ = 1, WAIT_TMR = 10 (USING TIMER)

cs

—

mosi | xz | Tx0 | Xz
mso [x| X [reo | rRa | X [e | rea [x|
setx (A MAAATAATAAAR MAAAATAAAMANAT

~%-10 SCLK CYCLES —»

14165-003

~#-10 SCLK CYCLES —*

Figure 5. SPI Flow Example in ADuCM4050 Hardware Reference Manual

Rev.0|Page 4 of 8

AN-1479

Code Sample 1
#define NUM_VALUES

volatile uintl6_t values

50
= 0;

uintl6_t buffer[NUM_VALUES] = {0}:

L1

NVIC_EnablelRQ(SPI0_EVT_IRQN);

pADI1_SP10->CS_OVERRIDE = 0;

pADI_SP10->CTL =

pADI_SP10->1EN
pADI_SP10->CNT
pADI_SP10->RD_CTL

(1 << BITP_SPI_CTL_CON) | //continuous
(1 << BITP_SPI_CTL_CPOL) | //polarity
(1 << BITP_SPI_CTL_CPHA) | //phase
(1 << BITP_SPI_CTL_MASEN) | //master
(1 << BITP_SPI_CTL_SPIEN); //enable
(1 << BITP_SPI_IEN_IRQMODE); //tx interrupt every 2 bytes
NUM_VALUES * 2; //bytes to be transferred (2 pe
= (0 << BITP_SPI_RD_CTL_TXBYTES) | //tx -1 for read command
(1 << BITP_SPI_RD_CTL_CMDEN); //command mode
= (1 << BITP_SPI_FLOW_CTL_RDBURSTSZ) | //burst -1

pADI_SP10->FLOW_CTL

pADI_SPI0->WAIT_TM

R

tmp = pADI_SPI10->RX;

while(values < NUM_VALUES);

Code Sample 2

(1 << BITP_SPI_FLOW_CTL_MODE); //flow control based on WAIT_TM

void SPI0_Int_Handler(){

uintl6é_t aux = O;

= 20; //number of cycles to wait

//dummy read to initiate a Xfer

//wait for all the samples

iF((PADI_SPI10->STAT & 0x20) == 0x20){ //TX done
pADI_SPI0->STAT = 0x22;
Yelse if((pPADI_SPI0->STAT & Ox40) == 0x40){ //RX

PADI_SPI0->STAT = OXFFFF;

// clear the interrupt

aux = (pADI_SPI0->RX << 8);
aux |= pADI_SPI10->RX;

buffer[values++]

aux;

Rev.0 | Page 5 of 8

r sample)

R

AN-1479

PIN-BASED FLOW CONTROL EXAMPLE

The second SPI flow method is the signaling of a new transfer.
In this example, the MISO line is used as the ready signal.

This example implements an interface to the AD7798 ADC.
This ADC can be configured to work in an autonomous mode,
which consists of sending samples automatically. The availability of
a new sample is notified through the MISO line. Configuration
to select the continuous mode is made by writing a value of 0x5C,
which indicates in the COM register that the data register is the
next one to be read in continuous mode.

Continuous mode is a means of continuously reading samples feeoee el [
from the AD7798. Each sample is a 16-bit word available only - |
after the MISO line is tied to ground by the ADC. The workflow i I

is shown in Figure 7.

The ADuCM4050 SPI must be configured in MISO mode as the i
SPI flow option by writing a 3 in the SPI_FLOW_CTL.CTL_ 2\ SR UUREE SRS VVPYY VYO

The code is shown in the Code Sample 3 section.

configuration (the green line).

The reading can also be done in the interrupt handler function
(see the Code Sample 4 section).

The result is a data stream, as shown in Figure 6. The AD7798
ADC signals that a new sample is available and puts this data on
the MISO line (the yellow line). In each of the reads, the
ADuCM4050 generates the clock (the blue line) and keeps the
chip select line to low (the pink line) until the end of the entire
transference. The MOSI line is not needed after the initial

MODE bit field. This method also takes into account the "] f

RDYPOL bit field in the same register. In this case a low - \
value is the trigger, so a 1 must be written. ¥

Because each transfer is a 16-bit width word, a 1 value is needed
in SPI_CTL.IRQMODE, which is used to notify an interrupt

VIV

AP

when two bytes are available at the RX buffer. Furthermore, a 1 G 200V CH2 2.00v A
in SPI_FLOW_CTL.RDBUSTSZ indicates that 16-bit clock 200V CH4 2.00v

cycles are completed per transfer.

M2.00ms

- v 3.92000ms

A CH3"\ 115V

14165-007

Figure 6. SPI Transfer to the AD7798 in Continuous Mode

Finally, the configuration word (0x5C) must be written to the

AD7798 to properly configure the device.

CS) b)Y)l)) b)Y)
U (S (4 (4 1§ (4 (4
N\ 0x5C PN

b)))l)) b))})
DIN (4 (4 (4 (¢ (4 (4

)) Y

I (S (S

DOUT/RDY

I

[[

Figure 7. AD7798, Continuous Mode

Rev.0|Page 6 of 8

1

14165-006

AN-1479

Code Sample 3
NVIC_EnablelRQ(SP10_EVT_IRQN);

pADI_SP10->CS_OVERRIDE = 0;

pADI_SP10->CTL = (1 << BITP_SPI_CTL_CON) | //continuous
(1 << BITP_SPI_CTL_CPOL) | //polarity
(1 << BITP_SPI_CTL_CPHA) | //phase
(1 << BITP_SPI_CTL_MASEN) | //master
(1 << BITP_SPI_CTL_SPIEN); //enable
pADI_SPI10->1EN = (1 << BITP_SPI_IEN_IRQMODE); //tx interrupt every 2 bytes
pADI_SPI10->CNT = NUM_VALUES * 2; //bytes to be transferred
pADI_SP10->RD_CTL = (0 << BITP_SPI_RD_CTL_TXBYTES) | //tx -1 for read command
(1 << BITP_SPI_RD_CTL_CMDEN); //command mode
pADI_SPI10->FLOW_CTL = (1 << BITP_SPI_FLOW_CTL_RDBURSTSZ) | //burst -1
(1 << BITP_SPI_FLOW_CTL_RDYPOL) | //ready signal polarization: LOW
(3 << BITP_SPI_FLOW_CTL_MODE); //flow control based on MISO
pADI_SP10->TX = Ox5C; //configure AD7798 in continuous mode
tmp = pADI_SPI10->RX; //dummy read to initiate a Xfer

while(values < NUM_VALUES);

Code Sample 4
void SPI0_Int_Handler(){
uintl6é_t aux = O;
i F((pADI_SP10->STAT & 0x20) == 0x20){ //TX done
pPADI_SPI10->STAT = 0x22;
Yelse if((pPADI_SP10->STAT & 0x40) == 0x40){ //RX

pADI_SP10->STAT = OxFFFF; // clear the interrupt

aux = (pADI_SPI0->RX << 8);
aux |= pADI_SPI10->RX;

buffer[values++] = aux;

Rev.0|Page 7 of 8

AN-1479

CONCLUSION

The different features of the ADuCM4050 SPI, such as read
command mode and flow control, make the device ideal for use in
battery-powered systems where the SPI peripheral offloads the
MCU and can be independently used for data collection.

Implementing these characteristics in hardware simplifies the
user code because it is not required to program some actions,
for example, delays or pulling a line. The characteristics of the
ADuCM4050 provide efficient energy consumption because an
MCU is not necessary.

The implementation of the characteristics of the ADuCM4050
in conjunction with the direct memory access (DMA) and flexi
mode allow the user to drastically improve energy efficiency
and productivity.

©2019 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
AN16298-0-5/19(0)

ANALOG
DEVICES

Rev.0 | Page 8 of 8

www.analog.com

	INTRODUCTION
	TABLE OF CONTENTS
	REVISION HISTORY

	BACKGROUND
	PIN-BASED FLOW CONTROL
	Using a Separate RDY Pin
	Using the MISO Pin

	TIMER-BASED FLOW CONTROL

	SOURCE CODE
	TIMER-BASED FLOW CONTROL EXAMPLE
	Code Sample 1
	Code Sample 2

	PIN-BASED FLOW CONTROL EXAMPLE
	Code Sample 3
	Code Sample 4

	CONCLUSION

