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SCOPE 
This user guide is the main source of information for system engineers and software developers using the Analog Devices, Inc., ADRV9026 
software defined radio transceiver. Updates to this user guide can be expected after additional ADRV902x products are added to this 
family of radio transceivers. This user guide must be used in conjunction with the ADRV9026 data sheet. 
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GENERAL OVERVIEW 
There are several sections to this user guide, organized to make it easier for users to find the information pertinent to their area of 
interest. A synopsis of each section follows: 

System Overview section: explains the capability of the ADRV9026 and provides an introduction to all the subsystems and functions, 
including block diagrams and interfaces.  

System Architecture Description section: explains the software design approach using APIs and all details required to develop code to 
operate the device. 

Software Integration section: explains the structure of the API developed by Analog Devices and how to integrate the API into the code of 
the customer. 

Serial Peripheral Interface (SPI) section: explains the main control interface between the baseband processor (also referred to as BBIC) 
and the device. 

System Initialization section: explains the sequence of steps required at startup. 

Serializer/Deserializer (SERDES) Interface section: describes the high speed digital interface that transfers data to/from a baseband 
processor. 

Synthesizer Configuration section: describes the design, control, and versatility of the synthesizer subsystem. 

Arm Processor and Device Calibrations section: explains the calibrations scheduled and controlled by the internal Arm® processor. 

Stream Processor and System Control section: explains the stream processor functions and how these functions are implemented. 

Transmitter Overview and Path Control section: describes operation of the transmitter attenuation settings and available software API 
used for control. 

Transmitter Power Amplifier Protection: describes the protection circuitry and how it works in conjunction with the general-purpose 
interrupt feature to enable transmitter attenuation and notify the baseband processor that such an event has taken place. 

Receiver Gain Control and Gain Compensation section: describes automatic and manual gain control options that the API uses for 
making adjustments. 

Digital Filter Configuration section: describes the digital processing portion of each receiver and transmitter and provides details on 
configuration options. 

General-Purpose Input/Output Configuration section: describes the different GPIO capabilities provided by the ADRV9026 device and 
how to configure those capabilities for various functions. 

General-Purpose Interrupt section: describes the various interrupt options that can be routed to the GPINT pins for monitoring 
purposes. 

Auxiliary Converters and Temperature Sensor section: describes the implementation and functionality of the AuxDAC, AuxADC, and 
internal temperature sensor. 

SPI2 Description section: explains the implementation and functionality of the SPI2 bus using designated GPIO pins. 

RF Port Interface Overviewsection: describes the RF port impedance matching process and explains different topologies that can be used 
to achieve proper impedance matching. 

Power Management Considerations section: explains how to connect power supplies to the device, the inputs that supply the various 
blocks, and precautions to take when completing a schematic and layout for power routing implementation. 

PCB Layout Considerations section: provides guidelines for proper printed circuit board (PCB) layout and techniques for maximizing 
performance and minimizing channel-to-channel interference. 

Transceiver Evaluation Software (TES) Operation section: explains setup and control of the device using the graphical user interface 
(GUI) software. 

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
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SYSTEM OVERVIEW 
The ADRV9026 is part of a family of highly integrated RF agile transceivers designed for use in small cell, massive MIMO, and macro 
base station equipment used in advanced communications systems. The device contains four independently controlled transmitters, 
dedicated observation receiver inputs for monitoring transmitter channel outputs, four independently controlled receivers, integrated 
synthesizers, and digital signal processing functions to provide a complete transceiver solution. The device provides the high radio 
performance and low power consumption demanded by cellular infrastructure applications such as macro 2G/3G/4G/5G and massive 
MIMO base stations. This document is designed to encompass description of all functions available in the ADRV9026. Note that some 
variants may be developed for specific design targets that do not encompass all available functions, so refer to the data sheet for the 
specific device to determine which features are included. To avoid confusion, the term “device” is used throughout this user guide to refer 
to any variant that employs a specific function. When a function that applies to a specific part is described, the device part number is used 
to delineate which device is being described.  

The ADRV9026 is designed to operate over the wide frequency ranges of 650 MHz to 6 GHz. The receiver channels support bandwidth 
up to 200 MHz with data transfer across (up to) four JESD204B/JESD204C lanes at rates up to 16.22 Gbps. The transmitter channels 
operate over the same frequency range as the receivers. Each transmitter channel supports up to 450 MHz synthesis bandwidth with data 
input across (up to) four JESD204B/JESD204C lanes. In addition, local oscillator (LO) routing allows the transmitters to operate at 
different frequencies than the receivers for additional flexibility. Two observation receiver channels are included to provide the capability 
to monitor feedback from the transmitter outputs. The feedback loops can be used to implement error correction, calibration, and signal 
enhancing algorithms. These receivers operate in the same frequency range as the transmitter channels, and they support up to 450 MHz 
channel bandwidth to match the output synthesis bandwidth of the transmitter channels. These channels provide digital data paths to the 
internal Arm processor for use in calibration and signal enhancement algorithms. 

Multiple fully integrated PLLs are included in the device to provide a high level of flexibility and performance. Two are high performance, 
low power fractional-N RF synthesizers that can be configured to supply the transmitters and receivers in different configurations. A 
third fractional-N PLL supports an independent frequency for the observation receiver channels. Other clock PLLs are included to 
generate the converter and digital clocks for signal processing and communication interfaces. 

Power supply for each block is distributed across four different voltage supplies: 3 analog and 1 digital. The analog supplies are 1.8 V, 
1.3 V, and 1.0 V. These supplies are fed directly to the power inputs for some blocks and buffered by internal low dropout (LDO) 
regulators for other functions for maximum performance. The digital processing blocks are supplied by a 1.0 V source. In addition, a 
1.8 V supply supplies all GPIO and interface ports that connect with the baseband processor.  

See the functional block diagram in the ADRV9026 data sheet for a high level view of the functions in the ADRV9026. Descriptions of 
each block with setup and control details are provided in subsequent sections. 
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SYSTEM ARCHITECTURE DESCRIPTION 
Analog Devices developed a proprietary application programming interface (API) software for the ADRV9026 transceiver device. 
Whereas this section outlines the overall architecture, folder structure, and methods for using API software on the customer platform, 
this section does not explain the API library functions. Detailed information regarding the API functions is in the doxygen document 
included with the API software (adrv9025.chm) located at /c_src/doc. This file can also be viewed in the Help tab on the ADRVTRX 
transceiver evaluation software (TES) used for controlling the evaluation platform. Note that the ADRV9025 is the baseline device for the 
ADRV902x family; all API and evaluation systems use the ADRV9025 product number to delineate the product. With respect to this user 
guide, the ADRV9025 and ADRV9026 product numbers are interchangeable.  

SOFTWARE ARCHITECTURE 
Figure 2 illustrates the software architecture for the system evaluation platform. 

This architecture can be broadly divided into three main layers: 

 Hardware abstration layer: consists of device drivers and device specific code. 
 Middleware layer: consists of device APIs and other auxiliary layer functions, and resides in the platform layer. 
 Application layer: consists of radio application software running on a baseband processor. The baseband processor can be an 

embedded processor or a PC running a digital signal processing application, such as MATLAB® that processes baseband data. 

API FOLDER STRUCTURE 
Source files are provided by Analog Devices in the folder structure shown in Figure 1. Note that the baseline device, ADRV9025, is used 
in the source file folder structure. Each subfolder is explained in the following sections. Analog Devices understands that the developer 
may desire to use a different folder structure. Whereas Analog Devices provides API source code releases in the folder structure shown in 
Figure 1, the developer may organize the API into a custom folder organization. Creating a new folder structure, however, does not 
permit the developer the right to modify the content of the API source code. Modifying the content of any API source file is not allowed 
because such modification causes issues with supporting the API and complicates updates to future API code releases. 

22
7

70
-0

03

 
Figure 1. API Folder Structure 
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Figure 2. ADRV9025 API Software Architecture (Analog Devices Evaluation Platform) 

Devices Folder (/c_src/devices) 

The devices folder (/c_src/devices) includes the main API code for the transceiver as well as the Analog Devices clock chip AD9528 
(/ad9528 folder). The /adrv9025 folder contains the high level function prototypes, data types, macros, and source code to build the final 
user software system. The user is strictly forbidden to modify the files contained in the /adrv9025 and /ad9528 folders. Note that 
software support cannot be provided if these files have been modified. Analog Devices maintains this code. The only exception is that the 
developer may modify user-selectable #define macros such as ADI_ADRV9025_VERBOSE mode to enable or disable API logging, and 
user configurable macros defined in /adrv9025/public/include/adi_adrv9025_user.h. 

Platforms Folder (/c_src/platforms) 

The platforms folder, named /c_src/platforms, provides the means for a developer to insert custom platform hardware driver code for 
system integration with the API. The adi_platform.c/.h files contain function pointers and the required prototypes necessary for the API 
to work correctly. It is important that the function prototypes in adi_platform.c do not change. The developer is responsible for 
implementing the code for each adi_platform.c function to insure the correct hardware drivers are called for the platform hardware of 
the user. In the example code provided by Analog Devices in adi_platform.c, the function pointers are assigned to call the Analog 
Devices ADS9 platform functions. To allow for easy platform swapping, Analog Devices maintains a generic implementation of 
adi_platform.c. To support another platform, assign the function pointers in adi_platform.c to call the platform functions specific for 
the platform hardware of the user. 

API doxygen (adrv9025.chm) File (/c_src/doc) 

This folder contains the device API doxygen (adrv9025.chm) file for user reference. It is in compressed HTML format. For security 
reasons, .chm files can only be opened from a local drive. If you attempt to open from a network drive, the file may look empty. 

PRIVATE vs. PUBLIC API FUNCTIONS 
The API is made up of multiple .c and .h files. The API is written in C, so there are no language modifiers to identify a function as private 
or public as commonly used in object-oriented languages. Per the Analog Devices coding standard, public API functions are denoted by 
the function name prepended with adi_adrv9025_FunctionName(). The application layer is free to use any API function prepended with 
the adi_adrv9025_ naming. Private helper functions lack the adi_ prefix, and are not intended to be called by the customer application.  

Most functions in the API are prefixed with adi_adrv9025_ and are for public use. However, many of these functions are never called 
directly from the application layer of the developer. Utility functions that abstract some common operations, specifically initialization of 
the device, are provided in adi_adrv9025_utility.c. For this reason, the majority of the initialization and other helper functions have been 
separated from the top level adi_adrv9025.c/adi_adrv9025.h files to help the developer focus on the most commonly and widely used 
functions by the application layer program. 
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HARDWARE ABSTRACTION LAYER 
The hardware abstraction layer (HAL) interface is a library of functions that the transceiver API uses when it needs to access the target 
platform hardware. The implementation of this interface is platform dependent and needs to be implemented by the end user in 
adi_platform.c. The current adi_platform.c provides example code that calls the HAL functions for the ADS9 evaluation platform 
specific functions. 

The adi_platform.c HAL functions are function pointers that must be initialized by creating a customer supplied, platform specific 
function and pointing the associated HAL function pointer to the customer supplied function.  

A snippet is given here from the adi_platform.c provided for the ADS9 mother board demonstrating assignment of adi_hal_ function 
pointers to ADS9 specific functions: 

adi_hal_HwOpen = ads9_HwOpen; 

adi_hal_HwClose = ads9_HwClose; 

adi_hal_HwReset = ads9_HwReset; 

adi_hal_DevHalCfgCreate = ads9_DevHalCfgCreate; 

adi_hal_DevHalCfgFree = ads9_DevHalCfgFree; 

         

adi_hal_SpiInit = ads9_SpiInit; 

adi_hal_SpiWrite = ads9_SpiWrite_v2; 

adi_hal_SpiRead = ads9_SpiRead_v2; 

 

adi_hal_LogFileOpen = ads9_LogFileOpen; 

adi_hal_LogLevelSet = ads9_LogLevelSet; 

adi_hal_LogLevelGet = ads9_LogLevelGet; 

adi_hal_LogWrite = ads9_LogWrite; 

adi_hal_LogFileClose = ads9_LogFileClose; 

         

         

adi_hal_Wait_us = ads9_TimerWait_us; 

adi_hal_Wait_ms = ads9_TimerWait_ms; 

 

/* only required to support the ADI FPGA*/ 

adi_hal_BbicRegisterRead   = ads9_BbicRegisterRead; 

adi_hal_BbicRegisterWrite  = ads9_BbicRegisterWrite; 

adi_hal_BbicRegistersRead  = ads9_BbicRegistersRead; 

adi_hal_BbicRegistersWrite = ads9_BbicRegistersWrite; 

Hardware Functions 

Access to the SPI controller that communicates with the Analog Devices transceiver is required. The SPI details are illustrated in the 
Serial Peripheral Interface (SPI) section of this document. In addition, control of the hardware reset signal that controls the RESET pin is 
required. This is usually implemented using a platform processor GPIO. Refer to the target platform schematic and transceiver data sheet 
for more details of the RESET pin.  

Logging Functions 

The API provides a simple logging feature function that may be enabled for debugging purposes. This feature requires an implementation 
for the adi_hal_LogWrite function. The APIs optionally call to send debug information to the system via the HAL. The function 
adi_hal_LogLevelSet, may be used to configure HAL flags to configure how the HAL processes the various message types from the API 
layer. Analog Devices transceiver open-hardware function, adi_hal_HwOpen calls this function to set the desired logging operation. 
Available logging levels are given by adi_common_LogLevel_e, as shown in Table 1. 
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Table 1. Logging Levels 
Function Name Purpose 
ADI_COMMON_LOG_NONE All types of log messages not selected 
ADI_COMMON_LOG_MSG Log message type 
ADI_COMMON_LOG_WARN Warning message type 
ADI_COMMON_LOG_ERR Error message type 
ADI_COMMON_LOG_API API function entry for logging purposes 
ADI_COMMON_LOG_API_PRIV Private API function entry for logging purposes 
ADI_COMMON_LOG_BF BF function entry for logging purposes 
ADI_COMMON_LOG_HAL Analog Devices HAL function entry for logging purposes 
ADI_COMMON_LOG_SPI SPI transaction type 
ADI_COMMON_LOG_ALL All types of log messages selected 

Multiple Device Support 

For applications with multiple transceivers, the HAL layer requires a reference to the targeted device and its hardware particulars, for 
example SPI chip select, reset signal. The HAL function prototypes first parameter, void* devHalCfg, provides the platform layer 
functions with device specific settings such as SPI chip select, log file names, and so forth. The devHalCfg pointer is void to the device 
API layer because the device API layer has no knowledge of the platform. This allows each platform to use a different devHalCfg structure 
that properly represents the specific hardware on the platform. 

Note for the Analog Devices transceiver API: there is a requirement that only one thread may control and configure a specific device 
instance at any given time.  

devHalInfo 

To pass a target device information from the application to the adi_platform.c HAL functions, the API layer passes a void pointer 
parameter, called devHalInfo. This void pointer shall act as a state container for the relevant hardware information for a particular device. 
Note that within the platform layer (adi_platform.h), this is the same as devHalCfg. 

The API user must define this state container as per system HAL implementation requirements. User may implement any structure to 
pass any hardware configuration information that the hardware requires between application layer and platform layer. This state 
container may be used to transfer device reference information in multi-threaded and multi-transceiver systems. 

The application passes the device state container, devHalInfo, via the API transceiver device structure, for example the adi_adrv9025_Device_t. 
The API function does not read or write the (void *) devHalInfo but passes it as a parameter to all HAL function calls.  

Table 2. HAL Interface Functions for User Integration 
Function Name Purpose 
adi_hal_HwOpen Open and initialize all platform drivers/resources and peripherals required to control the transceiver device 

(for example, SPI, timer, and logging) 
adi_hal_HwClose Close any resources opened by adi_hal_HwOpen 
adi_hal_HwReset Toggle the hardware reset signal for the transceiver device 
adi_hal_SpiWrite Write an array of data bytes on a targeted SPI device (address bytes are packed into the byte array before 

calling this function) 
adi_hal_SpiRead Read an array of data bytes from a targeted SPI device (address bytes are provided by a TxData array, which 

are packed into the byte array before calling this function) 
adi_hal_Wait_us Perform a wait/thread sleep in units of microseconds 
adi_hal_Wait_ms Perform a wait/thread sleep in units of milliseconds 
adi_hal_LogFileOpen Open a file for logging 
adi_hal_LogLevelSet Mask to set the severity of information to write to the log (Error/Warning/Message) 
adi_hal_LogLevelGet Get the current log level setting 
adi_hal_LogWrite Log a debug message (message, warning, error) from the API to the platform log 
adi_hal_LogFileClose Function to close the log file 
adi_hal_DevHalCfgCreate This function allows the platform to allocate and configure the devHalCfg structure  
adi_hal_DevHalCfgFree This function allows the platform to deallocate the devHalCfg structure 
adi_hal_BbicRegisterRead This function is used to communicate with the baseband processor (FPGA) 
adi_hal_BbicRegisterWrite This function is used to communicate with the baseband processor (FPGA) 
adi_hal_BbicRegistersRead This function is used to communicate with the baseband processor (FPGA) 
adi_hal_BbicRegistersWrite This function is used to communicate with the baseband processor (FPGA) 
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SOFTWARE INTEGRATION 
The ADRV9025 API package was developed on the Analog Devices ADS9 reference platform utilizing a Xilinx MicroZed running a 
Linux variant. This section describe how to use the provided API in a custom hardware/software environment. This is readily 
accomplished because the API was developed abiding by ANSI C constructs while maintaining Linux system call transparency. The ANSI 
C standard was followed to ensure agnostic processor and operating system integration with the API code. 

SOFTWARE INTEGRATION PROCESS OVERVIEW 
The following steps can be followed to integrated Analog Devices API into functioning system software.  

 Transceiver Device API Integration: The API source code can be integrated into the radio system software deployed on the baseband 
processor to control the Analog Devices transceiver operations. 

 Integration of Transceiver Specific Files: Platform files which are necessary for the Analog Devices transceiver to function are added 
to the system software. 

 Integration of Drivers in Hardware Abstraction Layer: The API software provided by Analog Devices communicates with the 
transceiver through a SPI interface, accessed via Hardware Abstraction Layer (HAL). The references to the SPI driver need to be 
updated by the user in the HAL. 

 Compilation and Programming: Once the files required for software integration are available, the device API can be compiled, and 
the transceiver specific platform files programmed into the transceiver. 

TRANSCEIVER DEVICE
API INTEGRATION

INTEGRATION OF
TRANSCEIVER SPECIFIC

FILES (FW, STREAM,
GAIN TABLES, PROFILE)

INTEGRATION OF
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Figure 3. Software Integration Process Steps 

SOFTWARE PACKAGE FOLDER STRUCTURE OVERVIEW 
The software package delivered follows the structure shown in Figure 4. The software package consists of 4 main folders: 

 API—contains the API C source code for the ADRV902x family of transceiver devices. 
 Firmware—contains the firmware binaries generated for the embedded Arm processor core in the ADRV902x family devices. 
 Gain Tables—contains the receiver gain table, receiver gain compensated gain table, and the transmit path attenuation table used by 

the ADRV902x family devices. 
 GUI—contains an installation package for the Transceiver Evaluation Software, which can be used to evaluate the transceiver, and 

generate important platform files such as the stream and the use case profile used to initialize the device. 

 
Figure 4. Software Package Folder Structure 
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API SOFTWARE ARCHITECTURE 
The API architecture is implemented as 3 main layers as shown in Figure 5. This section describes how to use the API in a custom 
hardware/software environment. This is readily accomplished because the API was developed abiding by ANSI C constructs while 
maintaining Linux system call transparency. The ANSI C standard was followed to ensure agnostic processor and operating system 
integration with the ADRV902x transceiver family-based API code. 
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Figure 5. Software Integration 

IMPLEMENTING HARDWARE ABSTRACTION INTERFACE 
Users who develop code to target custom hardware platforms use different drivers for the peripherals such as the SPI and GPIO compared 
to the drivers chosen for the Analog Devices evaluation platform. The Analog Devices HAL interface is a library of functions that the API 
uses when it needs to access the target platform hardware. The Analog Devices HAL is defined by adi_platform.h. The implementation of 
this interface is platform dependent and shall be implemented by the developer in a platform specific subfolder. The prototypes of the 
required functions defined in adi_platform.h may not be modified, as this breaks the API.  

Refer to Table 2 for the functions required by the HAL interface for integration.  

DEVELOPING THE APPLICATION 
The /c_src/app/main.c file provides a user example demonstrating top-level initialization. The example application was written to 
demonstrate initialization of one device, initialize the transmitter, and provide examples of calling the HAL functions and key 
initialization functions such as adi_adrv9025_PreMcsInit_v2. Initialization of the transmitter and loading of the adi_adrv9025_Init_t 
structure are omitted from the example code contained here for brevity. The example project also demonstrates how to load the 
adi_adrv9025_Init_t structure from a JSON file or using initdata.c files. 

The user application needs to allocate and clear the device and init structures. The adi_adrv9025_Device_t data structure is used to 
describe or point to a particular device. The adi_adrv9025_Init_t structure is used to contain the init profile of the user.  

An adi_adrv9025_Device_t pointer to the specific device instance is as follows:  

typedef struct adi_adrv9025_Device 

{ 

    adi_common_Device_t       common;  

    adi_adrv9025_Info_t       devStateInfo;  

    adi_adrv9025_SpiSettings_t  spiSettings;  

} adi_adrv9025_Device_t; 

 

typedef struct adi_adrv9025_Init 

{ 

    adi_adrv9025_ClockSettings_t   clocks;             

    adi_adrv9025_GpInterruptSettings_t    gpInterrupts;  

    adi_adrv9025_RxSettings_t        rx; 
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    adi_adrv9025_TxSettings_t        tx; 

    adi_adrv9025_DataInterfaceCfg_t  dataInterface;  

} adi_adrv9025_Init_t; 

To support multiple ADRV9026 devices, the application layer code needs to instantiate multiple adi_adrv9025_Device_t structures to 
describe each physical device. Multiple devices can have their own adi_adrv9025_Init_t structure instance, or share a common init 
structure if they are configured the same.  

The devHalInfo is defined as a void pointer and allows the user to define and pass any platform hardware settings to the platform HAL 
layer functions. For example, devHalInfo might contain information such as the SPI chip select to be used for the physical ADRV9026 
device. The API does not use the devHalInfo member, and therefore does not define the information it contains. Note that the API 
functions are shared across all instances of physical ADRV9026 devices. The devHalInfo structure defined by the developer identifies 
which physical ADRV9026 device is targeted (SPI chip select) when a particular API function is called. The developer may need to store 
other hardware information unique to a particular ADRV9026 device in this structure such as timer instances, log file information to 
allow for multithreading. It is expected that only one thread uses the API to a particular ADRV9026 device. 

The devStateInfo member is of type adi_adrv9025_Info_t and is a runtime state container for the API. The application layer must allocate 
memory for this structure, but only the API writes to the structure. The application layer allocates the devStateInfo structure with all 
zeroes. The API uses the devStateInfo structure to keep up with the current state of the API (for example, has it been initialized and Arm 
loaded), as well as a debug store for any run-time data, such as error codes and error sources. It is not intended for the application layer to 
access the devStateInfo member directly, as API functions are provided to access the last error code and source information. 

The adi_adrv9025_Init_t structure is used to contain the customer profile initialization settings to configure an ADRV9026 device. This 
init structure is passed to the API init functions during the initialization phase. This structure contains the 
receiver/transmitter/observation receiver profile settings, system clock settings, JESD204B/JESD204C settings, and transceiver specific 
SPI slave controller settings. The application layer passes a pointer to an instance of the adi_adrv9025_Init_t structure for a particular 
ADRV9026 device to handle the majority of the device core initialization. After initialization is complete, the adi_adrv9025_Init_t 
structure may be disposed of or deallocated if desired.  

 

#include <stdio.h> 

 

#include "adi_platform.h" 

#include "adi_adrv9025_utilities.h" 

#include "adi_adrv9025.h" 

#include "adi_adrv9025_radioctrl.h" 

 

static void adi_LoadADRV9025InitStructUseCase24(adi_adrv9025_Init_t *init); 

static int32_t adi_ADRV9025InitExample(adi_adrv9025_Device_t *adrv9025Device); 

static int32_t adi_ADRV9025EnableTxExample(adi_adrv9025_Device_t *adrv9025Device); 

int main() 

{ 

     int32_t recoveryAction = 0; 

     adi_adrv9025_Device_t adrv9025Device = {0} ;       

     adi_ADRV9025InitExample(&adrv9025Device); 

     adi_ADRV9025EnableTxExample(&adrv9025Device_) ;    

     recoveryAction = adi_adrv9025_HwClose(&adrv9025Device); 

     if (recoveryAction != ADI_ADRV9025_ACT_NO_ACTION) 

     { 

           printf("Failed closing platform hardware drivers\n"); 

           return -1; 

     } 

    adi_hal_DevHalCfgFree(adrv9025Device.devHalInfo); 

   return 0; 

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
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} 

 

static int32_t adi_ADRV9025InitExample(adi_adrv9025_Device_t *adrv9025Device) 

{ 

                int32_t recoveryAction = 0; 

                 

                printf("Example Init sequence for ADRV9025\n"); 

                 

                if (adrv9025Device == NULL) 

                { 

                                printf("NULL ADRV9025 device pointer\n"); 

                                return -1 

                } 

                 

                adi_adrv9025_Init_t adrv9025Init = {0}; 

                 

                /* Platform layer function adi_hal_DevHalCfgCreate allocates platform specific 
settings structure for SPI               

                     driver, logging, etc (per device)*/ 

               void *adrv9025hal = adi_hal_DevHalCfgCreate((ADI_HAL_INTERFACE_SPI | 
ADI_HAL_INTERFACE_LOG |                   

                                                    ADI_HAL_INTERFACE_HWRESET | 
ADI_HAL_INTERFACE_TIMER), 0, "adrv9025Log.txt"); 

                if (adrv9025hal == NULL) 

                { 

                                printf("Failed allocating platform hardware settings 
structure\n"); 

                                return -1; 

                } 

                adrv9025Device->devHalInfo = adrv9025hal; 

                 

                /* Load ADRV9025 init structure */ 

                adi_LoadADRV9025InitStructUseCase24(&adrv9025Init); 

                 

                recoveryAction = adi_adrv9025_HwOpen(adrv9025Device); 

                if (recoveryAction != ADI_ADRV9025_ACT_NO_ACTION) 

                { 

                                printf("Failed opening platform hardware drivers\n"); 

                                return -1; 

                } 

                 

                /* Initialize ADRV9025 */ 

                recoveryAction = adi_adrv9025_PreMcsInit_v2(adrv9025Device, 

                                             &adrv9025Init, 

                                             
"/home/analog/adrv9025_server/resources/Tokelau_M4.bin",  

                                             "/home/analog/adrv9025_server/resources/stream_imag
e.bin", 
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"/home/analog/adrv9025_server/resources/RxGainTable.csv", 

                                             
"/home/analog/adrv9025_server/resources/TxAttenTable.csv"); 

                 

                recoveryAction = adi_adrv9025_PllFrequencySet(adrv9025Device, 
ADI_ADRV9025_LO1_PLL, 3500000000); 

                 

                return 0; 

} 

Include Files 

For each major function block, there are generally three files: adi_feature.c, adi_feature.h, and adi_feature_types.h. For core API 
functionality, Table 3 shows the mandatory .h header files that must be included in the application layer program. Optional add-on API 
functions can be included if the application of the developer requires those features. Note: the API places typedef definitions in files with 
_types postfix such as ADRV9025_types.h. These _types.h files are included within their corresponding .h files and do no need to be 
manually included in the application layer code. 

Note that the ADRV9025_user.h contain the #defines for API timeouts and SPI read intervals which may be set as needed by the 
customer platform. The user files are the only API files that the developer may change.  

Table 3. API Mandatory .h Header Files 
Mandatory Include Files Description 
adi_adrv9025.h Core init functions 
adi_adrv9025_error.h Error extension from common error 
adi_adrv9025_arm.h Arm related functions 
adi_adrv9025_cals.h Calibration related functions 
adi_adrv9025_gpio.h General-purpose input/output (GPIO) related functions 
adi_adrv9025_data_interface.h Data interface related functions, JESD204B/JESD204C 
adi_adrv9025_hal.h Contains prototypes and macro definitions for transceiver specific HAL wrapper functions 
adi_adrv9025_radioctrl.h Functions for controlling the Radio 
adi_adrv9025_rx.h Receiver related functions 
adi_adrv9025_tx.h Transmitter related functions 
adi_adrv9025_user.h API timeout and retry definitions 
adi_adrv9025_utilities.h Higher level utility functions for init, loading Arm and Stream binaries, loading Rx Gain Table, Tx 

attenuation table (Most require file system support) 
adi_adrv9025_version.h Version structure 

Table 4. API Optional .h Files 
Optional (Add On) Include Files Description 
adi_adrv9025_agc.h Add-on receiver AGC functionality 
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API Error Handling and Debug 

Each API function returns an int32_t value representing a recovery action. Recovery actions are divided into: 

 Warning actions are those that don’t have an impact at the time of executing the device API, but can cause performance issues or 
logging problems. The value of this actions are positive. 

 Error actions are those that cause API not to be able to run and an action is required for API to go back to a good state. The value of 
this actions are negative. 

The API error structure that is accessed via device.error contains various members to narrow the action to be taken. 

 errSource: current source of error detected, indicating the source file where the error. 
 errCode: current error code,  
 errLine: line of the source code where the error was returned  
 errFunc: function name where the error occurred  
 errFile: file name where the error occurred 
 varName: variable name which has the error 
 errorMessage: error message to describe the error 
 lastAction: last action detected  
 newAction: new action detected 

API functions respond by telling the application layer what action needs to be taken due to a possible error in the API function call. The 
error structure contains further information in order to take the adequate action. The possible recovery action return values are listed in 
Table 5. 

Table 5. API Recovery Actions 
Recovery Action Name Value Description 
ADI_COMMON_ACT_WARN_CHECK_PARAM +3 API OK: parameter exceeds the range of values allowed 
ADI_COMMON_ACT_WARN_RERUN_FEATURE  +2 API OK: rerun device feature (Arm init cals) 
ADI_COMMON_ACT_WARN_CHECK_INTERFACE +1 API OK: log not working, this is a warning device programing can continue, 

upper layer must decide action to be taken 
ADI_COMMON_ACT_NO_ACTION 0 API function completed: no error handling action is required. 
ADI_COMMON_ACT_ERR_CHECK_TIMER −1 API OK: timer not working 
ADI_COMMON_ACT_ERR_CHECK_PARAM  −2 API OK: invalid parameter detected in API 
ADI_COMMON_ACT_ERR_RESET_INTERFACE  −3 API NG: interface Not Working, device cannot be program or access, 

timer/I2C/SPI/data interface 
ADI_COMMON_ACT_ERR_RESET_FEATURE −4 API NG: reset device feature (for example, arm init cals)  
ADI_COMMON_ACT_ERR_RESET_MODULE  −5 API NG: module of device not working (arm not accessible) 
ADI_COMMON_ACT_ERR_RESET_FULL −6 API NG: full system reset required 

The actions can be divided into different blocks: parameter, feature, module, interface, and device. 

Parameter: 

 Parameter either passed to function or member of structure 
 This action can be assigned when we want to set a feature/Module/Interface and it is not configure correctly  

Feature: (parts of a module or device) 

 GPIO control for transmitter attenuation 
 GP interrupt 
 Arm initial calibrations 
 Arm tracking calibrations 
 Arm control 
 AGC control 
 PA protection 
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Module: (individual blocks that are contained in the device that are to contain features) 

 Arm 
 Caching/merging/streaming… 

Interface: 

 Devices interface 
 SPI/I2C/data interface 
 Log 

Device: 

 Target device 

API Recovery Action: ADI_COMMON_ACT_NO_ACTION  

The ADI_COMMON_ACT_NO_ACTION API recovery action is returned when an API function completes. There is no recovery action 
to be performed. 

API Recovery Action: ADI_COMMON_ACT_WARN_RERUN_FEATURE 

The ADI_COMMON_ACT_WARN_RERUN_FEATURE recovery action is returned when the API detects a failure in any of the device 
features. 

If a tracking calibration error is detected, it usually is not a catastrophic error, usually resulting in degraded radio performance. The 
application layer attempts to recover by resetting the tracking calibration.  

If the API detects an error with the transceiver init calibrations, at this point the error severity is high enough that re-running all init 
calibrations is required. A full transceiver device reset is not required. It is also not required to reload the Arm firmware of the device. 

Suggested application layer action: 

1. Set PA and other RF front-end components in powered down / init state. 
2. Call adi_adrv9025_ErrorCodeGet() to determine the specific ADIHAL error code and verify ADIHAL is the error source. Log error 

code and source. 
3. Read Arm calibration status to log debug information on calibration failure - call adi_adrv9025_InitCalDetailedStatusGet() 
4. Call adi_adrv9025_InitCalsRun() to re-run the init calibrations. 
5. Call adi_adrv9025_InitCalsWait () and adi_adrv9025_InitCalDetailedStatusGet () to confirm that there is no error in init 

calibrations. 

API Recovery Action: ADI_COMMON_ACT_WARN_CHECK_INTERFACE 

The ADI_COMMON_ACT_WARN_CHECK_INTERFACE API recovery action is returned if the adi_platform has return an error in 
any interface. Further information can be extracted by reading the error structure which contains extended information about the error.  

The following are possible scenarios for a check interface action. 

Issue: Logging Interface When the Log File Cannot Be Opened Or Written to  

The API layer does not return this as an error because it does not directly affect transceiver performance. In addition, this recovery action 
does not prevent the API function from completing. Analog Devices suggests that the application layer attempt to close the log file and 
reopen to resolve the log file access issue. 

Issue: Baseband Processor GPIO Failed to Operate Correctly, but the API Circumvented the Error by Using the SPI port or 
Other Control Mechanism  

Because the API was able to complete the API function, the issue is not critical, but the application layer attempts to debug and fix the 
issue reported by the adi_common layer with respect to the baseband processor GPIO control. The device.common.error contains the 
information for decoding the error, the application layer can use it to debug the root cause of the error further. 

Issue: adi_common Returns an Error Reporting that the Timer Is Not Working as Expected 

The API uses the timer adi_common functions to perform thread blocking waits to insure that the API does not poll the SPI bus with 
100% utilization.  

If the timer is reporting an error from the adi_common, it is possible that the API function works correctly, but there may be an impact 
on the system due to incorrect usage of system resources.  
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Issue: adi_common layer reports a HAL error while attempting to control the baseband processor GPIO pins 

If the API function cannot circumvent the error, this action is returned. If the API can circumvent the error, only a warning is returned. 
Currently, the only baseband processor GPIO pin used in the adi_common is to reset the transceiver device (RESET pin).  

If this error is reported, the application layer attempts to reset the baseband processor GPIO pins that are used within the adi_common 
layer of code. If the application layer can resolve the GPIO hardware driver issue, normal operation of the API can resume by retrying the 
failed API function. 

Suggested application layer actions: 

 Attempt to reset interface. 
 Continue use of API monitoring for future check interface recovery action reports. 
 If continued reports of ADI_COMMON_ACT_WARN_ CHECK_INTERFACE, a system diagnostic may be required for the 

particular hardware. 

API Recovery Action: ADI_COMMON_ACT_ERR_CHECK_PARAM 

The ADI_COMMON_ACT_ERR_CHECK_PARAM API recovery action is returned if an API parameter range check or null parameter 
check failed. In the event that this recovery action is returned, the API function did not complete. It is expected that this recovery action 
is only found during the debug phase of development. During application software development, this recovery action informs the 
developer to double check the value passed into the API function parameters. Once the parameters are corrected to be in the valid range, 
or null pointers are corrected, recalling the function allows the API function to complete. 

For debug, the developer may access further information located in the error structure, like error code, file name, function name or 
variable name, a message is stored in the error message variable describing the error in more detail. 

If the application SW passes development test but this recovery action is returned in the field, a bug in the application layer is highly 
possible causing an out of range or NULL pointer error. 

API Recovery Action: ADI_COMMON_ACT_ERR_CHECK_DEVICE 

The ADI_COMMON_ACT_ERR_CHECK_DEVICE recovery action is returned when the device detected is not compatible with the 
API being executed. 

API Recovery Action: ADI_COMMON_ACT_ERR_RESET_INTERFACE 

The ADI_COMMON_ACT_ERR_RESET_INTERFACE API recovery action is returned if the ADIHAL layer reports a HAL error while 
attempting a SPI read or write transaction. If the ADIHAL function returns a timeout error due to SPI hardware being busy or used by 
another thread, the API attempts to retry the SPI operation once. If the SPI transaction fails again, the API reports this recovery action. 
This action is also returned if an ADIHAL error is returned due to inability to access the driver.  

Suggested application layer action: 

1. Call to determine the specific ADIHAL error code and verify that ADIHAL is the error source. 
2. Log error code and source. 
3. If the ADIHAL error is a timeout, the API function may be retried. 
4. If the ADIHAL error is not a timeout, application tries resetting the SPI driver and retrying the function call. 
5. If recovery action persists, verify SPI communication with other SPI devices and assess the need for a baseband processor system 

reset. 

If an API function has detected a condition, only the baseband processor can determine if it is a true error or not. An example is a data 
interface error counter threshold overflow. If a data interface counter were to overflow once an hour or once a month, only the baseband 
processor can determine if the counter overflow constituted an actual error condition. 

Suggested application layer action: 

1. Record the error. 
2. Perform any baseband processor determined recovery actions. 
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API Recovery Action: ADI_COMMON_ACT_ERR_RESET_FEATURE  

The ADI_COMMON_ACT_ERR_RESET_FEATURE API recovery action is returned by the API when an error has been detected that 
required the reset of a feature of the device. To reset the feature a reconfiguration of same has to be performed. 

API Recovery Action: ADI_COMMON_ACT_ERR_RESET_MODULE 

The ADI_COMMON_ACT_ERR_RESET_MODULE API recovery action is returned if the API detects an issue any of the modules: 

 Arm processor module that requires a complete reset and reload of the Arm firmware. This type of action might be required if the 
communication interface to the ADRV9026 Arm processor fails or the Arm watchdog timer reports an error. These events are not 
expected in production code, but are failsafe mechanisms in the event of a catastrophic error. 
 Issue adi_adrv9025_RxTxEnableSet() to disable transmitter to keep hardware in a safe state. If this fails, a full transceiver reset is 

required. 
 Set PA and other RF front-end components in powered down / init state. 
 Call adi_adrv9025_ErrorCodeGet() to determine the specific error code and verify the error source. Log error code and source. 
 Dump Arm memory if necessary for debug. 

 Dump SPI registers if necessary for debug. 
 Reload the stream processor and Arm binary firmware files. 
 Continue with normal init sequence to run init calibrations and enable tracking calibrations. 

API Recovery Action: ADI_COMMON_ACT_ERR_RESET_DEVICE 

The ADI_COMMON_ACT_ERR_RESET_DEVICE recovery action is returned if an API function cannot complete due to a detected 
error. If the API cannot correct or circumvent the error, and the severity of the error requires a complete reset of the transceiver device, 
this action is returned.  

Suggested application layer action: 

1. Put system hardware in safe state. 
a. Set PA and other RF front end components in powered down / init state 
b. Hard reset ADRV9026 device (adi_adrv9025_HwReset()) 

2. Read API error code information for debug. 
a. Dump Arm memory if necessary 
b. Dump SPI registers if necessary 

3. Reinitialize transceiver using normal full initialization sequence. 

Restrictions 

Developers may not modify any code located in /c_src/devices/* folder other than changing the adi_platform.c, adi_platform.h code 
bodies for hardware driver insertion. Analog Devices maintains the code in /c_src/devices/adrv9025 and /c_src/devices/ad9528. Analog 
Devices provides new releases to fix any code bugs in these folders.  

No direct SPI read/write operation is permitted when configuring the transceiver or Analog Devices clock chip device. Only use the high-
level API functions defined in /c_src/devices/ad9528/ad9528.h or other public .h files. Do not directly use any SPI read/write functions in 
the application layer code for transceiver configuration or control. Analog Devices does not support any customer code containing SPI 
writes reverse-engineered from the original API. 

Multiple Thread and Multiple Transceiver Application Considerations 

For applications with multiple transceivers, the API requires a reference to the targeted device and its hard and soft particulars – for 
example, SPI chip-select, reset and configuration status. The adi_adrv9025_Device_t structure is used to identify each instance of a 
physical transceiver device.  

For multi-threaded applications, there is a requirement that a particular device may only be controlled and configured by a single thread. 
Concurrent thread configuration of the same instance of a physical transceiver device is not supported by the API. 

Delays, Waits and Sleeps  

A small number of APIs require some time to allow the hardware to complete internal configurations, for example, 
adi_adrv9025_PllFrequencySet(). These APIs request the system to perform a wait or sleep by calling the HAL interface function 
adi_hal_Wait_us/adi_hal_Wait_ms. If the HAL interface implementation of the target platform chooses to implement a thread sleep, it is 
not permitted for the application to call another API targeting the same transceiver device. The application is required to wait/sleep and 
the API to complete before continuing with the configuration of the device.  

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
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Table 6 lists the wait/sleep period used by the API. They are defined in adi_adrv9025_user.h. The timeout period values are the 
recommended period required to complete the operation. Modifying these values is not recommended and may impact performance. 
During this time-out period, the status of the transceiver is polled. The frequency of the polling the status during this timeout period may 
be modified by the user by adjusting the value of the polling interval. 

Note that these recommendations may change once evaluation of the device is fully complete. 

Table 6. API internal Wait/Sleep Intervals  

Wait/Sleep Reference Purpose 
Recommended Timeout 
Period Per μs 

Recommended Poll 
Interval Per μs 

VERIFY_ARM_CHKSUM_XXX Calculation of arm checksum 200000 5000 
CLKPLL_CPCAL_XXX Internal clock and PLL configuration 1000000 100000 
CLKPLL_LOCK_XXX Internal clock and PLL locking period 1000000 100000 
SETARMGPIO_XXX Update arm information on GPIOs for 

TDD pin control 
1000000 100000 

SETRFPLL_XXX Configure RF PLL frequency 1000000 100000 
GETRFPLL_XXX Retrieve RF PLL frequency 1000000 100000 
ABORTINITCALS_ XXX Abort initial calibrations 1000000 100000 
GETINITCALSTATUS_XXX Retrieving initial calibrations status 1000000 100000 
RADIOON_XXXS Enabling radio transmit and receive 1000000 100000 
READARMCFG_XXX Reading arm configurations 1000000 100000 
WRITEARMCFG_XXX Updating arm configurations 1000000 100000 
RADIOOFF_XXX Disabling radio transmit and receive  1000000 100000 
ENTRACKINGCALS_XXX Enabling tracking calibrations 1000000 100000 
RESCHEDULETRACKINGCALS_XXX Schedule a tracking calibration to run 1000000 100000 
SETTXTOORXMAP_ Set Tx to ORx external signal routing 1000000 100000 
GETTXLOLSTATUS_ Status of TxLOL external tracking cal 1000000 100000 
GETTXQECSTATUS_ Status of Tx QEC tracking cal 1000000 100000 
GETRXQECSTATUS_ Status of Rx QEC tracking cal 1000000 100000 
GETORXQECSTATUS_ Status of ORx QEC tracking cal 1000000 100000 
GETRXHD2STATUS_ Status of Rx HD2 tracking cal 1000000 100000 
SENDARMCMD_XXX Sending requests to arm firmware 2000000 100000 
GETTEMPERATURE_ Read current temperature  1000000 100000 
GETARMBOOTUP_ Waiting for arm to boot up 1000000 100000 
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SERIAL PERIPHERAL INTERFACE (SPI) 
The SPI bus provides the mechanism for digital control by a baseband processor. Each SPI register is 8 bits wide, and each register 
contains control bits, status monitors, or other settings that control all functions of the device. This section is mainly an information-only 
section meant to give the user an understanding of the hardware interface used by the baseband processor to control the device. All 
control functions are implemented using the API detailed within this document. The following sections explain the specifics of this 
interface.  

SPI BUS SIGNALS  
The SPI bus consists of the following signals: 

CS 

CS is the active-low chip select that functions as the bus enable signal driven from the baseband processor to the device. This signal is an 
input to the SPI_EN pin. CS is driven low before the first SCLK rising edge and is normally driven high again after the last SCLK falling 
edge. The device ignores the clock and data signals while CS is high. CS also frames communication to and from the device and returns 
the SPI interface to the ready state when it is driven high.  

Forcing CS high in the middle of a transaction aborts part or all of the transaction. If the transaction is aborted before the instruction is 
complete or in the middle of the first data word, the state machine returned to the ready state. Any complete data byte transfers prior to 
CS deasserting is valid, but all subsequent transfers in a continuous SPI transaction are aborted. 

SCLK 

SCLK is the serial interface reference clock driven by the baseband processor. This signal is an input to the SPI_CLK pin. It is only active 
while CS is low. The minimum SCLK frequency is 10 MHz and the maximum SCLK frequency is 25 MHz. These limits are determined 
based on the practical timing requirements of the transceiver system and the physical limitations of the device. 

SDIO and SDO 

When configured as a 4-wire bus, the SPI utilizes two data signals: SDIO and SDO. SDIO is the data input line driven from the baseband 
processor. The signal input to the device is the SPI_DIO pin. SDO is the data output from the device to the baseband processor in this 
configuration. The output signal is driven by the SPI_DO pin. When configured as a 3-wire bus, SDIO is used as a bidirectional data 
signal that both receives and transmits serial data. The SDO port is disabled in this mode.  

The data signals are launched on the falling edge of SCLK and sampled on the rising edge of SCLK by both the baseband processor and 
the device. SDIO carries the control field from the baseband processor to the device during all transactions, and it carries the write data 
fields during a write transaction. In a 3-wire SPI configuration, SDIO carries the returning read data fields from the device to the 
baseband processor during a read transaction. In a 4-wire SPI configuration, SDO carries the returning data fields to the baseband 
processor. 

The SPI_SDO and SPI_SDIO pins transition to a high impedance state when the CS input is high. The device does not provide any weak 
pull-ups or pull-downs on these pins. When SPI_SDO is inactive, it is floated in a high impedance state. If a valid logic state on SPI_SDO 
is required at all times, add an external weak pull-up/down (10 kΩ value) on the PCB.  

SPI DATA TRANSFER PROTOCOL 
The SPI is a flexible, synchronous serial communication bus allowing seamless interfacing to many industry standard microcontrollers 
and microprocessors. The serial I/O is compatible with most synchronous transfer formats, including both the Motorola SPI and Intel 
SSR protocols. The control field width for this device is limited to 16 bits, and multi-byte IO operation is allowed. This device cannot be 
used to control other devices on the bus – it only operates as a slave.  

There are two phases to a communication cycle. Phase 1 is the control cycle, which is the writing of a control word into the device. The 
control word provides the serial port controller with information regarding the data field transfer cycle, which is Phase 2 of the 
communication cycle. The Phase 1 control field defines whether the upcoming data transfer is read or write. It also defines the register 
address being accessed.  
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Phase 1 Instruction Format 

The 16-bit control field contains the following information in Table 8. 

Table 7. 16-Bit Control Field 
MSB D14:D0 

R/W A[14:0] 

R/W—Bit 15 of the instruction word determines whether a read or write data transfer occurs after the instruction byte write. Logic high 
indicates a read operation; logic zero indicates a write operation. 

D14:D0—Bits A[14:0] specify the starting byte address for the data transfer during Phase 2 of the IO operation.  

All byte addresses, both starting and internally generated addresses, are assumed to be valid. That is, if an invalid address (undefined 
register) is accessed, the IO operation continues as if the address space were valid. For write operations, the written bits are discarded, and 
read operations result in logic zeros at the output. 

SPI CONFIGURATION USING API FUNCTION 
SPI operation is configured via calling adi_adrv9025_SpiCfgSet(). This function is called by the adi_adrv9025_Initialize(), which is called 
by adi_adrv9025_PreMcsInit_v2().  

The input parameters for adi_adrv9025_PreMcsInit_v2() include the init structure which is of type adi_adrv9025_Init_t. The 
adi_ADRV9025InitExample() function shows an example of configuring a hard-coded init function which includes the SPI related 
parameters.  

Users can configure SPI settings for the device with different SPI controller configurations by configuring member values of the 
adi_adrv9025_SpiSettings_t data structure. The adi_adrv9025_ SpiSettings_t data structure contains the following:  

The parameters for this structure are listed in Table 8. Any value that is not listed in the table is invalid. 

typedef struct adi_adrv9025_SpiSettings 

{ 

    uint8_t msbFirst;                            

    uint8_t enSpiStreaming;                      

    uint8_t autoIncAddrUp;                       

    uint8_t fourWireMode;                        

    adi_adrv9025_CmosPadDrvStr_e cmosPadDrvStrength;    

} adi_adrv9025_SpiSettings_t; 

Table 8. SPI Bus Setup Parameters 
Structure Member Value Function  Default 
MSBFirst 0x00 Least significant bit first 0x01 

0x01 Most significant bit first 
enSpiStreaming 0x00 Enable single-byte data transfer mode. All communication between the baseband processor 

and the device uses this mode. Note: not implemented in the Analog Devices platform layer. 
0x00 

0x01 Enable streaming to improve SPI throughput for indirect data transfer using an internal DMA 
controller. Note: not implemented in the Analog Devices platform layer. 

autoIncAddrUp 0x00 Auto-increment. Functionality intended to be used with SPI streaming. Sets address auto-
increment -> next addr = addr − 4. Note: not implemented in the Analog Devices platform 
layer. 

0x01 

0x01 Auto-decrement. Functionality intended to be used with SPI streaming. Sets address auto-
decrement -> next addr = addr + 4. Note: not implemented in the Analog Devices platform 
layer. 

fourWireMode 0x00 SPI hardware implementation. Use 3-wire SPI (SDIO pin is bidirectional). Figure 8 shows 
example of SPI 3-wire mode of operation. Note: Analog Devices FPGA platform always uses 
4-wire mode. 

0x01 

0x01 SPI hardware implementation. Use 4-wire SPI. Figure 6 and Figure 7 show examples of SPI 4-wire 
mode of operation. The default mode for Analog Devices FPGA platform is 4-wire mode. 

cmosPadDrvStrength 0x00 5 pF load at 75 MHz 0x01 
0x01 100 pF load at 100 MHz 
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Single-Byte Data Transfer 

When enSpiStreaming = 0, a single-byte data transfer is chosen. In this mode, CS goes active-low, the SCLK signal activates, and the 
address is transferred from the baseband processor to the device. This mode is always used in direct communication between the 
baseband processor and the device. 

In LSB mode, the LSB of the address is the first bit transmitted from the baseband processor, followed by the next 14 bits in order from 
next LSB to MSB. The next bit signifies if the operation is read (set) or write (clear). If the operation is a write, the baseband processor 
transmits the next 8 bits LSB to MSB. If the operation is a read, the device transmits the next 8 bits LSB to MSB.  

In MSB mode, the first bit transmitted is the R/W bit that determines if the operation is a read (set) or write (clear). The MSB of the 
address is the next bit transmitted from the baseband processor, followed by the remaining 14 bits in order from next MSB to LSB. If the 
operation is a write, the baseband processor transmits the next 8 bits MSB to LSB. If the operation is a read, the device transmits the next 
8 bits MSB to LSB.  

Single-byte data transfer can continue in either mode for multiple byte transfers using the transfer format of address followed by data (A 
D A A D …) until the CS signal is driven high. The address must be written for each data byte transfer when using this mode. 

Multiple Byte Data Transfer (SPI Streaming) 

Multiple byte data transfer (also called SPI streaming) is not utilized in standard communication between the baseband processor and the 
device. When enSpiStreaming = 1, data is transferred in multibyte packets, depending on the streaming mode that is enabled. This mode 
is used to transfer data indirectly to internal Arm memory using a direct memory access (DMA) controller.  

TIMING DIAGRAMS 
The diagrams in Figure 6 and Figure 7 illustrate the SPI bus waveforms for a single-register write operation and a single-register read 
operation, respectively. In the first figure, the value 0x55 is written to register 0x00A. In the second value, register 0x00A is read and the 
value returned by the device is 0x55. If the same operations are performed with a 3-wire bus, the SDO line in Figure 6 is eliminated, and 
the SDIO and SDO lines in Figure 7 are combined on the SDIO line. Note that both operations use MSB-first mode and all data is latched 
on the rising edge of the SCLK signal. 
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Figure 6. Nominal Timing Diagram, SPI Write Operation 

READ REGISTER 0x00A  – VALUE = 0x55
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Figure 7. Nominal Timing Diagram, SPI Read Operation 
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Table 9 lists the timing specifications for the SPI bus. The relationship between these parameters is shown in Figure 8. This diagram 
shows a 3-wire SPI bus timing diagram with the device returning a value of 0xD4 from register 0x00A and timing parameters marked. 
Note that this is a single read operation, so the bus-ready parameter after the data is driven from the device (tHZS) is not shown in the 
diagram.  

Table 9. SPI Bus Timing Constraint Values 
Parameter Min Typ Max Description 
tCP 40 ns  100 ns SCLK cycle time (clock period) 
tMP 10 ns   SCLK pulse width 
tSC 4 ns   CS setup time to first SCLK rising edge 

tHC 0 ns   Last SCLK falling edge to CS hold 

tS 4 ns   SDIO data input setup time to SCLK 
tH 0 ns   SDIO data input hold time to SCLK 
tCO 10 ns  16 ns SCLK falling edge to output data delay (3-wire or 4-wire mode) 
tHZM tH  tCO (max) Bus turnaround time after baseband processor drives the last address bit 
tHZS 3 ns  tCO (max) Bus turnaround time after device drives the last data bit 
tINT   400 ns Byte to byte delay time during any single read or write operation 
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Figure 8. 3-Wire SPI Timing with Parameter Labels 
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SYSTEM INITIALIZATION 
This section provides information about the initialization process for the device utilizing the API developed by Analog Devices. The 
following sections describe the developer preparation requirements and the initialization sequence. This section does not explain the API 
library functions. Detailed information regarding the API functions can be found in the API doxygen document (adrv9025.chm) located 
at /src/doc. This section does not describe API integration and the hardware abstraction Interface. Details of such can be found in the 
Software Integration section and the Hardware Abstraction Layer section. 

INITIALIZATION SEQUENCE 
The initialization sequence is comprised of API calls intermixed with user defined function calls specific to the hardware platform. The 
API functions perform all of the necessary tasks for device configuration, calibration, and control. The user is required to insert their 
code into the initialization sequence specific to the hardware platform requirements. These platform requirements include but are not 
limited to: user clock device, user FPGA\ASIC\baseband processor JESD204B interface, data path control, and various system checks 
governed by the application.  

The initialization process consist of the following steps. Some of the steps are done by the Arm. All functions before loading the stream 
must be write only (use SPI write or bit field write, no SPI read). 

Pre MCS initialization: 

1. adi_adrv9025_Initialize 
a. Set SPI controller settings 
b. Set master bias 
c. Enable pin pads  
d. Set device clock hsdig divider 
e. Load PFIRs per channel  
f. Load gain tables 
g. Load Tx attenuation tables 
h. Load stream binary 
i. Load arm binary 
j. Write init struct/Rx/Tx profile info into Arm mem 
k. Arm run = 1 
l. Wait for Arm boot to complete 
m. Verify Arm checksum 

Arm configuration: 

1. Rx/Tx channel configuration (all half-band filter enables, clock dividers) 
2. CLKPLL/SERDES PLL configuration 
3. JESD204 configuration 
4. Arm switches to CLKPLL output once PLL locked  

Post MCS initialization: 

1. MCS: 
a. Set Arm run = 0 
b. Enable MCS state machine to listen for new SYSREF pulses  
c. Customer sends SYSREF pulses 
d. When MCS state machine complete, Arm run = 1 

2. Pass License /cap info to Arm 
3. Request Capabilities from Arm 
4. Create function vector table (for optional /licensed features) 
5. Load factory cal data 
6. Run Arm init cals 
7. Enable tracking cals 

a.  Enable radio control pin mode or not 
Setup any GPIO for Arm/streams  

The system is now ready.  
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SERIALIZER/DESERIALIZER (SERDES) INTERFACE 
The ADRV9026 employs a SERDES high speed serial interface based on the JESD204B/JESD204C standards to transfer ADC and DAC 
samples between the device and a baseband processor. The device can support high-speed serial lane rates up to 16.22 Gbps. An external 
clock distribution solution provides a device clock and SYSREF to both the device and the baseband processor. The SYSREF signal 
ensures deterministic latency between the device and the baseband processor. 

Note that the initialization sequence of the part is critical to guarantee deterministic latency. Specifically, the Arm init calibrations must 
be run before the JESD links are established, as described in the initialization sequence section of this document. It is also imperative to 
check the FIFO depth after the link has been established, as described in this section. 

Major blocks in the interface include clock distribution, SERDES framer, and SERDES deframer.  

JESD204 STANDARD 
The JESD204 specification defines four key layers that implement the protocol data stream, as shown in Figure 9. The transport layer 
maps the conversion between samples and framed, unscrambled octets. The optional scrambling layer scrambles/descrambles the octets, 
spreading the spectral peaks to reduce EMI. The data link layer handles link synchronization, setup, and maintenance, and encodes/decodes the 
optionally scrambled octets to/from 10-bit characters in the case of JESD204B (8-bit/10-bit encoding) and 66-bit characters in the case of 
JESD204C (64-bit/66-bit encoding). The physical layer is responsible for transmission and reception of characters at the bit rate. 
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Figure 9. Key Layers of the JESD 204B/C standard 

Figure 10 and Figure 11 illustrate how the JESD204 transmit and receive protocols are implemented. 

The data interface blocks in the ADRV9026 can operate in either 204B or 204C modes. Fewer number of lanes may be needed when 
operating in JESD204C, which results in simpler PCB layout and less power consumption.  
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Figure 10 JESD 204B/C Framer (JTX) 
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Figure 11 JESD 204 B/C Deframer (JRX) 

 

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf


UG-1727 Preliminary Technical Data
 

Rev. PrA | Page 26 of 267 

DIFFERENCES BETWEEN JESD204B AND JESD204C 
The initial revision of the interface provided support both single and multiple lanes per convertor device. Revision B added programmable 
deterministic latency, usage of device clock as main clock source and data rate up to 12.5 Gbps. In the Revision C specification the data rate is 
increased up to 32 Gbps and three link layers are defined as 8-bit/10-bit, 64-bit/66-bit and 64B/80B where the 8-bit/10-bit link layer is 
same as JESD204B link layer.  

In 8-bit/10-bit link layer, the data is organized into multiframes where in 64-bit/66-bit link layer data is organized into multiblocks of 
32 blocks where each block contains 8 octets. In 8-bit/10-bit link layer, phase synchronization is done by Local Multiframe clock (LMFC) 
where 64-bit/66-bit uses the Local Extended Multiblock Clock (LEMC). In 8-bit/10-bit link layer, LMFC marks multiframe boundaries 
where in 64-bit/66-bit link layer LEMC is used to mark extended multiblock boundaries. Deterministic latency can be achieved by both 
local multiframe clock (LMFC) or local extended multiblock clock (LEMC) as per the link layer used. 

The 8-bit/10-bit link layer does the alignment between multiple converters by the alignment of their LMFCs to an external signal SYSREF. 
In 64-bit/66-bit link layer, the alignment between multiple converter devices is done by the alignment of their LEMC to an external signal 
SYSREF/MULTIREF in Subclass 1. Each converter device can then adjust its LEMC phase to match with the common LEMC of the logic 
device. The 64-bit/66-bit link layer only supports subclass 1 based LEMC alignment. In this case, the RBD adjustment resolution must not 
be greater than 255 steps, and if more than one multiframe or multiblock per lane fits in the buffer, the RBD adjustment resolution must 
be at least 16 steps per multiframe or multiblock. The 64-bit/66-bit link layer also defines a sync header stream, which transmits the 
information parallel to the user data. This information is encoded using the sync header portion of the 66-bit word block. One sync 
header per block is decoded to a single bit, and 32 of these bits across a multiblock makes a 32-bit sync word. The sync word can contain 
the following information: 

 Pilot signal (used to mark the borders of the multiblocks and extended multiblocks) 
 CRC-3 signal (used for error detection) 
 CRC-12 signal (used for error detection) 
 FEC signal (used for error detection and correction) 
 Command channel (used for transmitting commands and status information) 

With the 8-bit/10-bit link layer, JESD204 uses the SYNC interface for synchronization and error reporting where as in 64-bit/66-bit 
encoding sync headers within the encoded data are used for the synchronization process and the reporting of errors is left to the 
application layer. 

CLOCK DISTRIBUTION 
The clock distribution in the ADRV9026 allows the SERDES to be driven by the either by the SERDES PLL or the Clock PLL depending 
on the use case. Analog Devices provides tested predefined profiles with the appropriate settings so that each use case has a known 
working setup configurations. For other profile configurations, a Profile Generator application is planned for future release allowing 
customers to change bandwidths and sampling rates for custom configuration support. 

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
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RECEIVER (ADC) DATAPATH 
Figure 12 is a block diagram of the transceiver receive side (SERDES framer).  
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Figure 12. High Level JESD204B/JESD204C Interface Block Diagram (Rx Only) 

The framers take care of all the encoding functions of the interface and is highly configurable with regard to interface rates and 
combinations of RF receiver/observation receiver data streams, either separately or utilizing link sharing (Rx/ORx data time multiplexed 
on the same lane according to the receiver-transmitter frame timing) for up to four lanes. To assist in debugging it contains an internal 
data generator allowing a number of test patterns and PBRS patterns to be sent across the link.  

There are three framers in the ADRV9026 to allow flexibility in configuring the output data streams. Data samples from the receivers and 
observation receivers can be routed through a cross bar to put specific data on a particular lane. The framer supports separate lanes for 
receiver and observation receiver, as well supporting link sharing in TDD mode that reduces the number of physical lanes needed by 
putting receiver data on the lanes during the receiver slot and observation receiver data on the same lanes during the transmitter slot. 
Figure 13 shows the configuration for use case 83C with link sharing (UC83C-LS) where all the signals are routed into Framer0. Framer1 
and Framer2 are not needed and are unused. This profile is a 25G 204C profile. 

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
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Figure 13. Example Framer Configuration for UC83C-LS 
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Figure 14. Example Framer Configuration for UC26C-NLS 

Figure 14 shows a configuration for a non-link sharing use case UC26C-NLS. This profile has a unique configuration where the datalink 
on the ORx must have the data in a specific format (IIQQ). Framer0 has more flexibility that the other two framers. For this case Framer0 
is used to format the ORx data as needed, and the other two framers are used to route the RX data on the lanes. This is a 16G 204C 
profile. 

The transport and link layers for JESD204B/JESD204C are performed in the framers. This device has three JESD204B/JESD204C framers 
that get OR’ed together into four serial lanes. There are 20 logical converters to choose from, and samples from any of the logical 
converters can be connected to any framer using the sample crossbar. Each framer has its own SYNC signal. This allows links to be 
brought up/down for reconfiguration without interrupting the other links.  

The three framers are capable of operating at different sample rates. The highest sample rate must be a power of two multiple of the lower 
sample rates (2×, 4×, 8×, and so forth). There are two options to make this work: oversample at the framer input or bit repeat at the 
framer output.  
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Oversample mode samples the same converter samples of the lower sample rate multiple time, essentially oversampling the converter 
output. This allows for all serializers to run at the same bit rate. In oversample mode, the baseband processor must decimate the data after 
the transport layer to remove the extra samples. 

Bit repeat mode repeats each bit at the framer output on the lane or lanes that carry the slower data, before it enters the serializer. Because 
this is after the 8B10B/64B66B encoding, it appears as if the lane is running at a slower data rate than the other lanes. This essentially 
expands the eye of the signal in the horizontal direction. In bit repeat mode, the baseband processor must be able to configure the lane 
rates on the individual lanes independently as the lanes with the slower link must be sampled at a slower lane rate than the lanes with the 
faster link. 

All framers must share the four serializer lanes. Each framer must be configured for 0, 1, 2 or 4 lanes such that at a time all framers 
combine for no more than 4 lanes.  

Each framer is capable of generating a pseudo-random bit sequence (PRBS) on the enabled lanes. Once the PRBS is enabled, errors can be 
injected. Enabling the PRBS generator disables the normal JESD204B/JESD204C framing, and causes the link to drop. 

The serializers can be configured to adjust the amplitude and pre-emphasis of the physical signal to help combat bit errors due to various 
PCB trace lengths. 

Supported Framer Link Parameters 

This device supports a subset of possible JESD204B/JESD204C link configurations. The number of virtual converters and the number of 
serial lanes implemented in the silicon limit these configurations.  

Table 10. JESD204B/JESD204C Framer Parameters 
JESD204B/JESD204C Parameter Description 
M Number of converters. Framer 0 supports M maximum of 8, Framers 1 and 2 support M maximum of 4.  
L Number of lanes (L can be 1, 2, or 4).  
S Number of samples per converter per frame cycle (S can be 1, 2, or 4).  
N Converter resolution (N can be 12, 16, or 24). 
N’ Total number of bits per sample (N’ can be 12, 16, or 24). 
CF Number of control words/frame clock. Cycle/converter device. 
CS Number of control bits/conversion sample. 
K JESD204B only: Number of frames in 1 multiframe, (20 ≤ F*K ≤ 256), F*K must be a multiple of 4. 
E JESD204C only: Number of multiblocks in an extended multiblock. 

For the JESD204B/JESD204C configuration to be valid, the lane rate must be within the range 3686.4 Mbps to 16220.16 Mbps. The lane 
rate is the serial bitrate for one lane of the JESD204B/JESD204C link. The lane rates can be calculated using Equation 1 for JESD204B 
configurations and using Equation 2 for JESD204C configurations. 

10
8

JESD204B Lane Rate = IQ Sample Rate M N L     (1) 

66
64

JESD204C Lane Rate = IQ Sample Rate M N L    (2) 

Serializer Configuration 

The amplitude of the serializer is represented by a 3-bit number that is not linearly weighted. The JESD204B/JESD204C transmitter mask 
requires a differential amplitude greater than 360 mV and less than 770 mV.  

Table 11. Serializer Amplitude Settings 
Serializer Amplitude (Decimal) Average Differential Amplitude (VTT = 1 V) 
0 1 × VTT 
1 0.85 × VTT 
2 0.75 × VTT 
3 0.5 × VTT 

It is always recommended to verify the eye diagram in the system after building a PCB to verify any layout related performance 
differences. If possible verify the eye using an internal eye monitor after the equalizer circuit of the receiver as this shows the true eye that 
the receiver circuit receives. 

A three-tap FIR equalizer is implemented in the serializer as shown in Figure 15. Here, the cursor, or largest tap weight multiplying ak is in 
the center. There is a precursor tap, b−1, multiplying ak+1 and a postcursor tap, b1, multiplying ak−1 to realize the following difference 
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equation for yk. Transmit pre-emphasis is used because it is simpler to realize bit delays with flip flops than trying to implement analog 
delays at the receiver.  
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Figure 15. Serializer Emphasis implementation 

This serializer pre-emphasis circuit allows boosting the amplitude anytime the serial bit changes state. If no bit transition occurs, the 
amplitude is left unchanged. Pre-emphasis helps open the eye for longer PCB traces or when the parasitic loading of connectors has a 
noticeable effect. In most cases, to find the best setting, a simulation or measurement of the eye diagram with a high-speed scope at the 
receiver is recommended, or as mentioned above an internal eye monitor after the equalizer is the optimum solution. The serializer pre-
emphasis is controlled by setting a precursor and a postcursor setting, which are listed in Table 12 and Table 13, respectively. 

Table 12. Precursor Amplitude Settings 
Emphasis (Decimal) Emphasis (dB) 
0 0 
1 3 
2 6 

Table 13. Postcursor Amplitude Settings 
Emphasis (Decimal) Emphasis (dB) 
0 0 
1 3 
2 6 
3 9 
4 12 

 

The adi_adrv9025_SerCfg_t data structure contains the information required to properly configure the serializer. Details of each member 
can be found in API documentation (/c_src/doc). The Transceiver Evaluation Software has the option to output example data structures 
with values chosen from the configuration tab of the software. 

typedef struct adi_adrv9025_SerCfg 

{ 

    uint8_t serAmplitude;   

    uint8_t serPreEmphasis;                     

    uint8_t serPostEmphasis;                    

    uint8_t serInvertLanePolarity;               

} adi_adrv9025_SerCfg_t; 

Framer 

Each framer receives logical converter samples and maps them to high speed serial lanes. The mapping changes depending on the 
JESD204B/JESD204C configuration chosen, specifically the number of lanes, the number of converters, and the number of samples per 
converter. Figure 16 provides one valid framer configuration for this device.  

The converter samples are passed into the framer through a sample crossbar. The sample crossbar allows any of the 20 logical converters 
to be mapped to any input of any framer. For example, this can be used to swap I and Q samples or to mix and match different receivers’ 
data across different logical lanes. The framer lane data outputs also pass through a lane crossbar. This allows mapping any framer output 
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lane (internal to the silicon) to any physical JESD204B/JESD204C lane at the package pin. The framer packs the converter samples into 
lane data following the JESD204B/JESD204C specification. Figure 16 shows the data packing for M = 2, L = 1, S = 1 as an example.  
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Figure 16. Framer Data Packing for M = 2, L = 1, S = 1 

Other Useful Framer IP Features 

PRBS Generator 

Each framer has a built in PRBS test pattern generator to aid in debugging the JESD204B/JESD204C serial link. The pattern generator is 
capable of generating PRBS7, PRBS9, PRBS15, PRBS23, or PRBS31 patterns. If errors caused by signal integrity exist, it may be difficult to 
get the JESD204B/JESD204C framer-to-deframer link to work properly. The PRBS generator built into the framer allows the device to 
output serial data even when the link cannot be established. With this mode enabled, the serializer amplitude and pre-emphasis can be 
adjusted to find the best setting to minimize bit errors seen by the PRBS checker at the receiver side of the link. For this mode to be 
utilized, the baseband processor must have a PRBS checker to check the PRBS sequence for errors. 

Typical usage sequence:  

1. Initialize the device as outlined in the link establishment section 
2. Run the adi_adrv9025_FramerTestDataSet(…) with the required framer, test data source set to desired PRBS order, and injection 

point to serializer input 
3. Enable PRBS checker on the baseband processor and reset its error count 
4. Wait a specific amount of time to allow a good number of samples to be transmitted, and then check the PRBS error count of the 

baseband processor. 
5. Adjust framer amplitude and pre-emphasis settings and/or deframer equalization settings and repeat steps 3 and 4 to find the 

optimum settings. 

Pattern Generator 

The framer also has the capability to generate some other patterns that can be used during debug like RAMP, CHECKERBOARD. There 
is also a way the user can load a custom pattern into the framer which can be verified on the baseband processor. The pattern can sent 
once, or be repeated continuously. 
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API Software Integration 

Configuration of the serializer and framers are all handled by the adi_adrv9025_Initialize(…) API function. Set all JESD204B/JESD204C 
link options for the framer in the adi_adrv9025_FrmCfg_t data structure before calling adi_adrv9025_Initialize(…). After initialization, 
there are some other API functions to aid in debug and monitoring the status of the JESD204B/JESD204C link. 

JESD204B/JESD204C Framer API Data Structures 

adi_adrv9025_FrmCfg_t  

The adi_adrv9025_FrmCfg_t data structure contains the information required to properly configure each framer. Details of each member 
can be found in API documentation. The transceiver evaluation software has the option to output example data structures with values 
chosen from the configuration tab of the software. 

typedef struct adi_adrv9025_FrmCfg 

{ 

    uint8_t enableJesd204C;              

    uint8_t bankId;                      

    uint8_t deviceId;                    

    uint8_t lane0Id;                  

    uint8_t jesd204M;                    

    uint16_t jesd204K;                  

    uint8_t jesd204F;                    

    uint8_t jesd204Np;              

    uint8_t jesd204E;                   

    uint8_t scramble;               

    uint8_t externalSysref;        

    uint8_t serializerLanesEnabled;    

    uint16_t lmfcOffset;         

    uint8_t reserved;   

    uint8_t syncbInSelect;       

    uint8_t overSample;  

    uint8_t syncbInLvdsMode;             

    uint8_t syncbInLvdsPnInvert;         

    uint8_t enableManualLaneXbar;        

    adi_adrv9025_SerLaneXbar_t serializerLaneCrossbar;  

    adi_adrv9025_AdcSampleXbarCfg_t adcCrossbar; 

    uint8_t newSysrefOnRelink; 

    uint8_t sysrefForStartup; 

    uint8_t sysrefNShotEnable; 

    uint8_t sysrefNShotCount; 

    uint8_t sysrefIgnoreWhenLinked; 

} adi_adrv9025_FrmCfg_t; 
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Table 14. JESD204B/JESD204C Framer Configuration Structure Member Description 
Structure Member Valid Values Description 
enableJesd204C 0, 1 0 = enable JESD204B framer; 1 = enable JESD204C framer 
bankId 0..15 JESD204B/JESD204C configuration Bank ID—extension to device ID 
deviceId 0..255 JESD204B/JESD204C configuration Device ID—link identification number 
lane0Id 0..31 JESD204B/JESD204C configuration Lane ID—if more than one lane is used, each subsequent 

lane increments from this number 
jesd204M 0, 1, 2, 4, 8 Number of converters—typically two converters per receive chain 
jesd204K 1 to 32 Number of frames in a multiframe—default is 32; F × K must be a multiple of 4 
jesd204F 1, 2, 3, 4, 6, 

8, 12, 16 
Number of octets per frame 

jesd204Np 12, 16, 24 Number of bits per sample 
Scramble (JESD204B Only) 0, 1 Scrambling enabled 
  If scramble = 0, then scrambling is disabled 
  If scramble = 1, then scrambling is enabled 
externalSysref 0, 1 External SYSREF enabled 
  If externalSysref = 0, then use internal SYSREF  
  If externalSysref = 1, then use external SYSREF 
serializerLanesEnabled 0x0 to 0x0F Serializer lane enabled—one bit per lane  
serializerLaneCrossbar 0x0 to 0xFF Serializer lane crossbar—two bits per lane 
lmfcOffset 0 to 31 LMFC Offset—set the local multiframe counter offset value for deterministic latency setting, 

such that 0 ≤ lmfcOffset ≤ (K-1) 
reserved   
syncinbSelect 0, 1, 2 SYNC selection – selects which SYNC input is connected to the framer 

  If syncinbSelect = 0, then SYNCIN0 is connected to the framer 

  If syncinbSelect = 1, then SYNCIN1 is connected to the framer 

  If syncinbSelect = 2, then SYNCIN2 is connected to the framer 

overSample 0, 1 Oversample mode—selects which method is chosen when oversample or bit repeat is needed 
  If oversample = 0, then bit repeat mode is selected 
  If oversample = 1, then oversample is selected 
enableManualLaneXbar 0, 1 0 = automatic lane crossbar mapping; 1 = manual lane crossbar mapping (using 

serializerLaneCrossbar value) 
syncbInLvdsMode 0, 1 1 = Enables LVDS input pad; 0 = enables CMOS input pad 
syncbInLvdsPnInvert 0, 1 0 = SYNC LVDS PN not inverted; 1 = SYNC LVDS PN inverted 

newSysrefOnRelink 0, 1 Set the flag for determining if SYSREF on relink. Where, if > 0 = set, 0 = not set 
sysrefForStartup 0, 1 1 = framer: require a SYSREF before CGS is output from serializer, 0: Allow CGS to output before 

SYSREF occurs (recommended on framer to allow deframer CDR to lock and EQ to train) 
sysrefNShotEnable 0, 1 1 = enable SYSREF NShot (ability to ignore first rising edge of SYSREF to ignore possible runt 

pulses) 
sysrefNShotCount 0..15 Count value of which SYSREF edge to use to reset LMFC phase 
sysrefIgnoreWhenLinked 0, 1 When JESD204 link is up and valid, 1 = ignore any SYSREF pulses 
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JESD204B/JESD204C Framer Enumerated Types 

adi_adrv9025_FramerDataSource 

The adi_adrv9025_FramerDataSource_e is an enumerated data type to select the Framer test data source. The allowable values are listed 
in Table 15. 

Table 15. Framer Data Source Enumeration Description 
Enumeration Value Description 
FTD_ADC_DATA Framer test data ADC data source – this is used for normal operation 
FTD_CHECKERBOARD Framer test data checkerboard data source 
FTD_TOGGLE0_1 Framer test data toggle 0 to 1 data source 
FTD_PRBS31 Framer test data PRBS31 data source 
FTD_PRBS23 Framer test data PSRB23 data source 
FTD_PRBS15 Framer test data PRBS15 data source 
FTD_PRBS9 Framer test data PRBS9 data source 
FTD_PRBS7 Framer test data PRBS7 data source 
FTD_RAMP Framer test data ramp data source 
FTD_PATTERN_REPEAT Framer test data 16-bit programmed pattern repeat source 
FTD_PATTERN_ONCE Framer test data 16-bit programmed pattern executed once source 

adi_adrv9025_FramerDataInjectPoint 

The adi_adrv9025_FramerDataInjectPoint is an enumerated data type to select the Framer test data injection point. The allowable values 
are listed in Table 16. 

Table 16. Framer Injection Point Enumeration Description 
Enumeration Value Description 
FTD_FRAMERINPUT Framer test data injection point at framer input 
FTD_SERIALIZER Framer test data injection point at serializer input 
FTD_POST_LANEMAP Framer test data injection point after lane mapping 

adi_adrv9025_FramerSel 

The adi_adrv9025_FramerSel is an enumerated data type to select the desired Framer. The allowable values are listed in Table 17. 

Table 17. Framer Selection Enumeration Description 
Enumeration Value Description 
ADI_ADRV9025_FRAMER_0  Framer 0 selection 
ADI_ADRV9025_FRAMER_1 Framer 1 selection 
ADI_ADRV9025_FRAMER_2 Framer 2 selection 
ADI_ADRV9025_ ALL_FRAMERS All Framers selected 

API Functions 

adi_adrv9025_FramerSysrefCtrlSet(…) 
adi_adrv9025_FramerSysrefCtrlSet(adi_adrv9025_Device_t *device, uint8_t framerSelMask, uint8_t 
enable); 

This function enables or disables the external SYSREF JESD204B/JESD204C signal connection to the framers.  

For the framer to retime its LMFC/LEMF (local multi frame clock/local extended multiblock clock), a SYSREF rising edge is required. 
The external SYSREF signal at the pin can be gated off internally so the framer does not see a potentially invalid SYSREF pulse before it is 
configured correctly. 

By default the device has the SYSREF signal ungated. However, the multichip sync state machine still does not allow the external SYSREF 
to reach the framer until the other stages of multichip sync have completed. As long as the external SYSREF is correctly configured before 
performing MCS, this function may not be needed by the BBP, because the MCS state machine gates the SYSREF to the framer. 

Precondition 

This function is called after the device has been initialized and the JESD204B/JESD204C framer is enabled. 
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Dependencies 

device->devHalInfo 

Parameters 

Table 18.  
Parameter Description 
*device is a pointer to the device settings structure  
framerSelMask Select framer to enable/disable SYSREF input for (Valid Any OR’ed combination of enums ADI_ADRV9025_FRAMER_0, 

ADI_ADRV9025_FRAMER_1, ADI_ADRV9025_FRAMER_2 or ADI_ADRV9025_ALL_FRAMERS) 
enable = 1 enables SYSREF to framer, '0' disables SYSREF to framer 

Return Values 

Table 19.  
Return Value Description 
ADI_ADRV9025_ACT_WARN_RESET_LOG Recovery action for log reset  
ADI_ADRV9025_ACT_ERR_CHECK_PARAM Recovery action for bad parameter check  
ADI_ADRV9025_ACT_ERR_RESET_SPI Recovery action for SPI reset required  
ADI_ADRV9025_ACT_NO_ACTION Function completed, no action required  

adi_adrv9025_FramerStatusGet(…) 
adi_adrv9025_FramerStatusGet(adi_adrv9025_Device_t *device, adi_adrv9025_FramerSel_e framerSel, 
adi_adrv9025_FramerStatus_t *framerStatus); 

This function reads back the status of the selected framer to determine the state of the JESD204B/JESD204C link. The framer status 
return value is an 8-bit status word as shown in Table 20. It also returns the qbfStateStatus and sync signal used by the selected framer. 

Table 20. Framer Status Return Value 
framerStatus Description 
[7]  Reserved  
[6]  Reserved  
[5]  Reserved  
[4]  Reserved  
[3]  Current SYNCIN level(1 = high, 0 = low)  

[2]  SYSREF phase error. Is set when a new SYSREF had different timing than the first that set the LMFC 
timing.  

[1]  SYSREF phase established by framer  
[0]  Flag indicating that configuration parameters are not supported when set(1)  

Precondition 

The Rx JESD204B/JESD204C link(s) needs to be configured and running to use this function 

Dependencies 

device->devHalInfo 

Parameters 

Table 21.  
Parameter Description 
*device is a pointer to the device settings structure  
framerSel Read back the framer status of the selected framer (Framer0, Framer1 or Framer2)  
framerStatus is the framer status structure read 
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Return Values 

Table 22.  
Return Value Description 
ADI_ADRV9025_ACT_WARN_RESET_LOG Recovery action for log reset  
ADI_ADRV9025_ACT_ERR_CHECK_PARAM Recovery action for bad parameter check  
ADI_ADRV9025_ACT_ERR_RESET_SPI Recovery action for SPI reset required  
ADI_ADRV9025_ACT_NO_ACTION Function completed, no action required  

adi_adrv9025_FramerTestDataSet(…) 

adi_adrv9025_FramerTestDataSet(adi_adrv9025_Device_t *device, adi_adrv9025_FrmTestDataCfg_t 
*frmTestDataCfg);  

This function selects the PRBS type and enables or disables Rx Framer PRBS generation. This is a debug function to be used for debug of 
the Rx JESD204B/JESD204C lanes. Rx data transmission on the JESD204B/JESD204C link(s) is not possible when the framer test data is 
activated. 

Precondition 

This function may be called any time after device initialization. 

Dependencies 

device->devHalInfo 

Parameters 

Table 23.  
Parameter Description 
*device is a pointer to the device settings structure  
frmTestDataCfg is a pointer to a structure which contains the framer(s) of interest, testDataSource and injectPoint 

Return Values 

Table 24.  
Return Value Description 
ADI_ADRV9025_ACT_WARN_RESET_LOG Recovery action for log reset  
ADI_ADRV9025_ACT_ERR_CHECK_PARAM Recovery action for bad parameter check  
ADI_ADRV9025_ACT_ERR_RESET_SPI Recovery action for SPI reset required  
ADI_ADRV9025_ACT_NO_ACTION Function completed, no action required  

adi_adrv9025_FramerTestDataInjectError (…) 
adi_adrv9025_FramerTestDataInjectError(adi_adrv9025_Device_t *device, adi_adrv9025_FramerSel_e 
framerSelect, uint8_t laneMask);  

This function injects an error into the Framer test data by inverting the data. This is a debug function to be used for debug of the receiver 
JESD204B/JESD204C lanes. Receiver data transmission on the JESD204B/JESD204C link(s) is not possible when the framer test data is 
activated. 

Precondition 

This function is called after the framer test data is enabled. 

Dependencies 

device->devHalInfo 

Parameters 

Table 25.  
Parameter Description 
*device is a pointer to the device settings structure  
framerSelect Select the desired framer ADI_ADRV9025_FRAMER_0, ADI_ADRV9025_FRAMER_1, ADI_ADRV9025_FRAMER_2  
laneMask is an four bit mask allowing selection of lanes 0-3 for the selected framer 
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Return Values 

Table 26.  
Return Value Description 
ADI_ADRV9025_ACT_WARN_RESET_LOG Recovery action for log reset  
ADI_ADRV9025_ACT_ERR_CHECK_PARAM Recovery action for bad parameter check  
ADI_ADRV9025_ACT_ERR_RESET_SPI Recovery action for SPI reset required  
ADI_ADRV9025_ACT_NO_ACTION Function completed, no action required  

adi_adrv9025_FramerLinkStateSet (…) 
adi_adrv9025_FramerLinkStateSet(adi_adrv9025_Device_t *device, uint8_t framerSelMask, uint8_t 
enable);  

This function enables and disables the JESD204B/JESD204C Framer. This function is normally not necessary. In the event that the link 
needs to be reset, this function allows a framer to be disabled and reenabled. . 

Precondition 

This function may be called any time after device initialization. 

Dependencies 

device->devHalInfo 

Parameters 

Table 27.  
Parameter Description 
*device is a pointer to the device settings structure  
framerSelMask Desired framer(s) to set/reset.  
enable 0 = Disable the selected framers, 1 = enable the selected framer link 

Return Values 

Table 28.  
Return Value Description 
ADI_ADRV9025_ACT_WARN_RESET_LOG Recovery action for log reset  
ADI_ADRV9025_ACT_ERR_CHECK_PARAM Recovery action for bad parameter check  
ADI_ADRV9025_ACT_ERR_RESET_SPI Recovery action for SPI reset required  
ADI_ADRV9025_ACT_NO_ACTION Function completed, no action required  
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TRANSMITTER (DAC) DATAPATH 
Figure 17 shows a block diagram of the transceiver transmit side (SERDES deframer). 

The SERDES deframer receives the transmitter data from the baseband processor, decodes it and distributes the data streams to the 
transmitters. The ADRV9026 includes two deframers that share up to four lanes that can operate at up to 25G. Figure 18 shows the 
configuration for UC26C-NLS that uses Deframer0 and utilizes four lanes at 16G to support 4 Tx at maximum bandwidth. 
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Figure 17. High Level JESD204B/JESD204C Interface Block Diagram (Tx Only) 
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Figure 18. Example Deframer Configuration for UC26C-NLS 

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
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Figure 19 shows the configuration for UC83C-LS that uses Deframer0. Only two lanes are needed to realize the maximum chip RF 
bandwidth (450 MHz) across all four Tx. This device has two JESD204B/JESD204C deframers that share four physical lanes. The two 
deframers feed a sample crossbar that connects to eight DACs. All converters must run at the same sample rate. Likewise, all lanes must 
run at the same data rate. Each deframer is capable of receiving a PRBS sequence and accumulating error counts. The deserializers have 
adjustable equalization circuits to counteract the insertion loss due to various PCB trace lengths and material. 
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Figure 19. Example Deframer Configuration for UC83C-LS 

SUPPORTED DEFRAMER LINK PARAMETERS 
The product supports a subset of possible JESD204B/JESD204C link configurations. The modes are limited by the number of DACs and 
the number of serial lanes implemented in the silicon.  

Table 29. JESD204B/JESD204C Deframer Parameters 
JESD204B/JESD204C 
Parameter Description 
M Number of converters (M can be 1, 2, 4 or 8) 
L Number of lanes ( L can be 1, 2, or 4) 
S Number of samples per converter per frame cycle 
N Converter resolution (N can be 12 or 16) 
N’ Total number of bits per sample (N’ can be 12 or 16) 
CF Number of control words/frame clock cycle/converter device 
CS Number of control bits/conversion sample 
HD High density mode.  
K JESD204B only: Number of frames in 1 multiframe, (20 ≤ F × K ≤ 256), F × K must be a multiple of 4, K ≤ 32 
E JESD204C only: Number of multiblocks in an extended multiblock. 

For a particular converter sample rate, not all combinations listed in the above table are valid. Calculate the JESD204B or JESD204C lane 
rate using the equations described in the Supported Framer Link Parameters section.  

The deserializer link is allowed to run at a different lane rate than the serializer link, under the condition that both lane rates are possible 
with respect to the clock divider settings. Both the deserializer and serializer link rates are derived from the same PLL, but there are 
separate dividers to generate the deserializer clock and the serializer clock.  
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Deserializer Configuration 

The deserializer includes a non-adaptive, programmable equalizer. This helps in compensating for signal integrity distortions for each 
channel due to PCB trace length and impedance. The table below summarizes the amount of insertion loss each EQ setting can overcome. 
Equalizer boost settings can range from 0 (maximum boost) to 3 (default).  

Table 30. Deserializer EQ Boost Correction 
EQ BoostSettings Boost (dB) 
0 0 
1 −3 
2 −6 
3 −12 

If the insertion loss is greater than this, one of the other settings may be appropriate. Note that any setting can be used in conjunction 
with transmitter pre-emphasis to ensure functionality and/or to optimize for power. The equalizer setting can be changed in the API 
using desEqGainSetting parameter in the data structure adi_adrv9025_DesCfg_t. 

The adi_adrv9025_DesCfg_t data structure contains the information required to properly configure the deserializer. Details of each 
member can be found in API documentation. The Transceiver Evaluation Software has the option to output example data structures with 
values chosen from the configuration tab of the software. 

typedef struct adi_adrv9025_DesCfg 

{  

    uint8_t desInvertLanePolarity;   

    uint8_t desEqBoostSetting;                     

    uint8_t desEqGainSetting;                    

    uint8_t desEqFeedbackSetting;               

} adi_adrv9025_ DesCfg_t; 

In JESD204B mode, the ADRV9026 uses passive equalizer architecture that de-emphasizes low frequencies in relation to the high 
frequencies and then amplifies the signal. This provides the required equalization or ‘boost’ to properly capture the signal. A brief 
description of the data members in adi_adrv9025_DesCfg_t is given in Table 31. 

Table 31. Deserializer EQ Data Members 
Structure Member Description 
desInvertLanePolarity Deserializer lane PN inversion select. Bit 0 = invert PN of Lane 0, Bit 1 = invert PN of Lane 1, and so on. 
desEqBoostSetting It sets how much high frequency attenuation you are trying to compensate. 
desEqGainSetting Gain is setting the number of stages of limiting amplifier. This compensates for the amount of EqBoost added 

above. 
desEqFeedbackSetting This is the amount of feedback set for each gain stage. It works as a basic op amp, where the feedback network 

can be tuned depending on the feedback setting in the equalizer. This feedback setting is applied to each of the 
limiting amplifiers (depending on number of stages). It causes peaking in the total channel response. It is not 
recommended to tune this data member while compensating for insertion losses. 

When operating in JESD 204C mode, the equalization is done with a CTLE (continuous time linear equalizer) that is configured during 
device initialization with a SERDES INIT calibration. 

Deframer 

The active deframers receive 8B10B/64B66B encoded data from the deserializer and decode the data into converter samples. The 
deserializer-to-converter sample mapping changes depending on the JESD204B/JESD204C link configuration setting. Responsibilities of 
the deframer are: 

1. Monitor the health of the JESD204B/JESD204C link 
2. Control the JESD204B/JESD204C Interrupt signal (can output on General Purpose Interrupt pin) to signal baseband processor when 

certain JESD204B/JESD204C error conditions arise. 
3. Remove character replacement (valid for only JESD204B). 
4. Perform 8B10B/64B66B decoding. 
5. Map JESD204B/JESD204C lane data to converter samples. 

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
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A lane crossbar provides the ability to reorder the lanes into each deframer input. A sample crossbar provides the ability to reorder the 
converter samples at the output of the deframers. The lane and sample crossbars enable flexiblity on which physical lanes are used and 
which data is on each link.  

The deframer unpacks the converter samples from lane data following the JESD204B/JESD204C specification. Figure 20 shows the data 
unpacking for M = 4, L = 2, S = 1 as an example.  
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Figure 20. JESD204B Deframer Configuration (M = 4, L = 2) 
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Other Useful Deframer IP Features 

PRBS Checker 

The deframer has a built in pseudo random bit sequence (PRBS) checker. The PRBS checker can self synchronize and check for PRBS 
errors on a PRBS7, PRBS15, or PRBS31 sequence. Since this mode works even in the midst of potential bit errors on each lane, the 
physical link can be debugged even when the JESD204B/JESD204C link cannot be established. This mode can be used to check the 
robustness of the physical link during initial testing and/or factory test. For this mode to be fully utilized, the BPP must have a PRBS 
generator capable of creating PRBS7, PRBS15, or PRBS31 data. 

A typical usage sequence is as follows: 

1. Initialize the device as outlined in the link establishment section. 
2. Enable the PRBS generator on the baseband processor with the desired PRBS sequence. 
3. Call the API adi_adrv9025_DfrmPrbsCheckerStateSet(…) passing the actual device being evaluated, the PRBS sequence to check, 

and the location at which to check the PRBS sequence. 
4. After some amount of time, call the API function to check the PRBS errors. This can be done by calling the API function 

adi_adrv9025_DfrmPrbsErrCountGet(…) passing the actual device being evaluated, the counter selection lane to be read and the 
error count is returned in the third parameter passed. 

To prove an error count of 0 is valid, the baseband processor may have a PRBS error inject feature. Alternatively, the baseband processor 
amplitude and emphasis settings can be set to a setting where errors occur. To reset the error count call the API function that clears the 
counters: adi_adrv9025_DfrmPrbsCountReset(…). 

API Software Configuration 

Configuration of the deserializer and deframers are handled by the adi_adrv9025_Initialize(…) API function. Set all 
JESD204B/JESD204C link options for the framer in the adi_adrv9025_DfrmCfg_t data structure before calling 
adi_adrv9025_Initialize(…). After initialization, there are some other API functions to aid in debug and monitoring the status of the 
JESD204B/JESD204C link. 

JESD204B/JESD204C Deframer API Data Structures 

adi_adrv9025_DfrmCfg_t  

The adi_adrv9025_DfrmCfg_t data structure contains the information required to properly configure each deframer. Details of each 
member can be found in API documentation. The transceiver evaluation software has the option to output example data structures with 
values chosen from the configuration tab of the software. 

typedef struct adi_adrv9025_DfrmCfg 

{ 

    uint8_t enableJesd204C; 

    uint8_t bankId;                          

    uint8_t deviceId;                        

    uint8_t lane0Id;                         

    uint8_t jesd204M;                        

    uint16_t jesd204K;                        

    uint8_t jesd204Np;                      

    uint8_t jesd204E;                        

    uint8_t scramble;                        

    uint8_t externalSysref;                 

    uint8_t deserializerLanesEnabled;        

    uint16_t lmfcOffset;           

    uint8_t reserved;            

    uint8_t syncbOutSelect;                  

    uint8_t syncbOutLvdsMode;             

    uint8_t syncbOutLvdsPnInvert;           

    uint8_t syncbOutCmosSlewRate;           

    uint8_t syncbOutCmosDriveLevel;         
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    uint8_t enableManualLaneXbar;         

    adi_adrv9025_DeserLaneXbar_t deserializerLaneCrossbar; 

    adi_adrv9025_DacSampleXbarCfg_t dacCrossbar; 

    uint8_t newSysrefOnRelink; 

    uint8_t sysrefForStartup; 

    uint8_t sysrefNShotEnable; 

    uint8_t sysrefNShotCount; 

    uint8_t sysrefIgnoreWhenLinked; 

 

} adi_adrv9025_DfrmCfg_t; 

Table 32. JESD204B/JESD204C Deframer Configuration Structure Member Description 
Structure Member Valid Values Description 
enableJesd204C 0, 1 0 = Enable JESD204B framer; 1= Enable JESD204C framer 
bankId 0..15 JESD204B/JESD204C Configuration Bank ID (extension to device ID) 
deviceId 0..255 JESD204B/JESD204C Configuration Device ID (link identification number) 
lane0Id 0..31 JESD204B/JESD204C Configuration Lane ID (if more than one lane is used, each subsequent 

lane increments from this number) 
jesd204M 0, 2, 4, 8 Number of converters: 2 converters per transmit chain 
jesd204K (JESD204B Only) 1..32 Number of frames in a multiframe (default is 32); F × K must be a multiple of 4 
jesd204Np 12, 16 Number of bits per sample 
jesd204E 0..255 JESD204C E parameter 
Scramble (JESD204B Only) 0, 1 Scrambling enabled 
  If scramble = 0, then scrambling is disabled 
  If scramble = 1, then scrambling is enabled 
externalSysref 0, 1 External SYSREF enabled 
  If externalSysref = 0, then use internal SYSREF  
  If externalSysref = 1, then use external SYSREF 
deserializerLanesEnabled 0x0 to 0xF Deserializer lane enabled: one bit per lane  
deserializerLaneCrossbar 0x0 to 0xFF Deserializer lane crossbar: three bits per lane 
lmfcOffset 0 to 31 LMFC offset: Set the Local Multi Frame Counter Offset value for deterministic latency setting, 

such that 0 ≤ lmfcOffset ≤ (K-1) 
syncbOutSelect 0,1 New SYSREF on Relink: flag to indicate that a SYSREF is required to re-establish the link 
  if newSysrefOnRelink = 0, then no SYSREF is required 
  if newSysrefOnRelink = 1, then SYSREF is required 
enableManualLaneXbar 0, 1 SYNC Selection: selects which SYNCOUT output is driven by the deframer 

  If syncbOutSelect = 0, then the deframer drives SYNCOUT0 

  If syncbOutSelect = 1, then the deframer drives SYNCOUT1 

syncbInLvdsMode 0, 1 0 = automatic lane crossbar mapping; 1 = Manual lane crossbar mapping (using 
deserializerLaneCrossbar value) 

syncbInLvdsPnInvert 0, 1 1 = enables LVDS input pad; 0 = enables CMOS input pad 
syncbOutCmosSlewRate 0 to 3 0 = SYNC LVDS PN not inverted; 1 = SYNC LVDS PN inverted 

syncbOutCmosDriveLevel 0, 1 0 = fastest rise/fall times, 3 = slowest rise/fall times 
newSysrefOnRelink 0, 1 Set the flag for determining if SYSREF on relink. 1 = set, 0 = not set 
sysrefForStartup 0, 1 1 = framer: requires a SYSREF before CGS outputs from serializer, 0: allow CGS to output 

before SYSREF occurs (recommended on framer to allow deframer CDR to lock and EQ to 
train) 

sysrefNShotEnable 0, 1 1 = enable SYSREF NShot (ability to ignore first rising edge of SYSREF to ignore possible runt 
pulses) 

sysrefNShotCount 0 to 15 Count value of which SYSREF edge to use to reset LMFC phase 
sysrefIgnoreWhenLinked 0, 1 When JESD204 link is up and valid, 1= ignore any sysref pulses 
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adi_adrv9025_ DataInterfaceCfg _t 

The adi_adrv9025_ DataInterfaceCfg_t data structure contains the information required to properly configure each framer, each 
deframer, the serializers, and deserializers. Details of each member can be found in API documentation (/c_src/doc). 

typedef struct adi_adrv9025_DataInterfaceCfg 

{ 

    adi_adrv9025_FrmCfg_t framer[3];       

    adi_adrv9025_DfrmCfg_t deframer[2];    

    adi_adrv9025_SerCfg_t serCfg[8];       

    adi_adrv9025_DesCfg_t desCfg[8];       

    uint8_t sysrefLvdsMode;                

    uint8_t sysrefLvdsPnInvert; 

    adi_adrv9025_LinkSharingCfg_t linkSharingCfg;           

} adi_adrv9025_DataInterfaceCfg_t; 

Table 33. JESD204B/JESD204C Settings Structure Member Description 
Structure Member Valid Values Description 
framer0 data structure Framer 0 configuration data structure 
framer1 data structure  Framer 1 configuration data structure 
framer2 data structure Framer 2 configuration data structure  
deframer0 data structure Deframer 0 configuration data structure  
deframer1 data structure Deframer 1 configuration data structure  
serAmplitude 0 to 3 Serializer amplitude setting. Default = 1. 
serPreEmphasis 0 to 2 Serializer pre-emphasis setting. Default = 0. 
serInvertLanePolarity 0x0 to 0x0F Serializer Lane Polarity Inversion Select – one bit per lane  
desInvertLanePolarity 0x0 to 0x0F Deserializer Lane Polarity Inversion Select – one bit per lane  
desEqSetting 0 to 3 Deserializer Equalizer setting. Applied to all deserializer lanes. 

JESD204B/JESD204C Deframer Enumerated Types 

adi_adrv9025_ DeframerSel 

The adi_adrv9025_DeframerSel is an enumerated data type to select the desired Deframer. The allowable values are listed in Table 34. 

Table 34. Deframer Selection Enumeration Description 
Enumeration Value Description 
ADI_ADRV9025_DEFRAMER_0  Deframer 0 selection 
ADI_ADRV9025_DEFRAMER_1 Deframer 1 selection 
ADI_ADRV9025_DEFRAMER_0_AND_1 Deframer 0 and 1 selection 

adi_adrv9025_ DeframerPrbsOrder 

The adi_adrv9025_DeframerPrbsOrder is an enumerated data type to select the desired Deframer PRBS pattern. The allowable values are 
listed in Table 35. 

Table 35. Deframer PRBS Polynomial Order Enumeration Description 
Enumeration Value Description 
ADI_ADRV9025_PRBS_DISABLE  Deframer PRBS pattern disable  
ADI_ADRV9025_PRBS7  Deframer PRBS7 pattern select  
ADI_ADRV9025_PRBS15  Deframer PRBS15 pattern select  
ADI_ADRV9025_PRBS31  Deframer PRBS31 pattern select  
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adi_adrv9025_DeframerPrbsCheckLoc 

The adi_adrv9025_DeframerPrbsCheckLoc is an enumerated data type to select the desired location within the Deframer to check the PRBS 
pattern. The allowable values are listed in Table 36. 

Table 36. Deframer PRBS Check Location Enumeration Description 
Enumeration Value Description 
ADI_ADRV9025_PRBSCHECK_LANEDATA  Check PRBS at deserializer lane output (does not allow JESD204B/JESD204C link to be 

established)  
ADI_ADRV9025_PRBSCHECK_SAMPLEDATA  Check PRBS at output of deframer (JESD204B/JESD204C deframed sample)  

API Functions 

adi_adrv9025_DeframerSysrefCtrlSet(…) 
adi_adrv9025_DeframerSysrefCtrlSet(adi_adrv9025_Device_t *device, adi_adrv9025_DeframerSel_e 
deframerSel, uint8_t enable) 

This function enables or disables the external SYSREF to the deframers of the transceiver.  

For the deframer to retime its LMFC /LEMC (local multi frame clock/local extended multiblock clock), a SYSREF rising edge is required. 
The external SYSREF signal at the pin can be gated off internally so the deframer does not see a potential invalid SYSREF pulse before it is 
configured correctly. 

By default the device has the SYSREF signal ungated, however, the Multichip Sync state machine still does not allow the external SYSREF 
to reach the deframer until the other stages of multichip sync have completed. As long as the external SYSREF is correctly configured 
before performing MCS, this function may not be needed by the baseband processor, since the MCS state machine gates the SYSREF to 
the deframer. 

Precondition 

This function is called after the device has been initialized and the JESD204B/JESD204C deframer is enabled. 

Dependencies 

device->devHalInfo 

Parameters 

Table 37.  
Parameter Description 
*device Pointer to the device settings structure  
deframerSel Select deframer to enable/disable SYSREF input for (Valid ADI_ADRV9025_DEFRAMER_0, ADI_ADRV9025_DEFRAMER_1 or 

ADI_ADRV9025_DEFRAMER_0_AND_1)  
enable 1 = enable SYSREF to deframer, 0 = disable SYSREF to deframer 

Return Values 

Table 38.  
Return Value Description 
ADI_ADRV9025_ACT_WARN_RESET_LOG Recovery action for log reset  
ADI_ADRV9025_ACT_ERR_CHECK_PARAM Recovery action for bad parameter check  
ADI_ADRV9025_ACT_ERR_RESET_SPI Recovery action for SPI reset required  
ADI_ADRV9025_ACT_NO_ACTION Function completed, no action required  

adi_adrv9025_DfrmLinkStateSet (…) 
adi_adrv9025_DfrmLinkStateSet(adi_adrv9025_Device_t *device, uint8_t deframerSelMask, uint8_t 
enable) 

This function is normally not necessary. In the event that the link needs to be reset, this function allows a deframer to be disabled and re-
enabled.  

During disable, the lane FIFOs for the selected deframer are also disabled. When the deframer link is enabled, the lane FIFOs for the 
selected deframer are reenabled (reset). The baseband processor sends valid serializer data before enabling the link so the device CDR 
(recovered clock) is locked.  
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Precondition 

This function may be called any time after device initialization. 

Dependencies  

device->devHalInfo 

Parameters 

Table 39.  
Parameter Description 
*device Pointer to the device settings data structure  
deframerSelMask Desired deframer to reset. Valid ADI_ADRV9025_DEFRAMER_0, ADI_ADRV9025_DEFRAMER_1 or 

ADI_ADRV9025_DEFRAMER_0_AND_1  
enable 0 = disable the selected deframer, 1 = enable the selected deframer link 

Return Values 

Table 40. 
Return Value Description 
ADI_ADRV9025_ACT_WARN_RESET_LOG Recovery action for log reset  
ADI_ADRV9025_ACT_ERR_CHECK_PARAM Recovery action for bad parameter check  
ADI_ADRV9025_ACT_ERR_RESET_SPI Recovery action for SPI reset required  
ADI_ADRV9025_ACT_NO_ACTION Function completed, no action required  

adi_adrv9025_DeframerStatusGet(…) 
adi_adrv9025_DeframerStatusGet(adi_adrv9025_Device_t *device, adi_adrv9025_DeframerSel_e 
deframerSel, adi_adrv9025_DeframerStatus_t *deframerStatus) 

After bringing up the deframer JESD204B/JESD204C link, the baseband processor can check the status of the deframer for the 
parameters shown in Table 41. 

Table 41. Deframer Status Parameters 
deframerStatus Bit Name Description 
7 Valid checksum  1 if the checksum calculated by the device matched the one sent in the ILAS data.  
6 EOF Event  This bit captures the internal status of the End of Frame event of the deframer. Value =1 if framing 

error during ILAS  
5 EOMF Event  This bit captures the internal status of the End of Multiframe event of the deframer. Value = 1 if 

framing error during ILAS  
4 FS Lost  This bit captures the internal status of the Frame Symbol event of the deframer. Value = 1 if framing 

error during ILAS or user data (invalid replacement characters) 
3 Reserved  
2 User Data Valid = 1 when in user data (deframer link is up and sending valid DAC data) 
1 SYSREF 

Received 
Deframer has received the external SYSREF signal 

0 Syncb level Current level of SYNC signal internal to deframer (= 1 means link is up) 

Precondition 

The Tx JESD204B/JESD204C link(s) needs to be configured and running to use this function. 

Dependencies 

device->devHalInfo 

Parameters 

Table 42.  
Parameter Description 
*device is a pointer to the device settings structure  
deframerSel Select the Deframer to read back the status of ADI_ADRV9025_DEFRAMER_0, ADI_ADRV9025_DEFRAMER_1 or 

ADI_ADRV9025_DEFRAMER_0_AND_1 
deframerStatus 8 bit deframer status word return value 
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Return Values 

Table 43.  
Return Value Description 
ADI_ADRV9025_ACT_WARN_RESET_LOG Recovery action for log reset  
ADI_ADRV9025_ACT_ERR_CHECK_PARAM Recovery action for bad parameter check  
ADI_ADRV9025_ACT_ERR_RESET_SPI Recovery action for SPI reset required  
ADI_ADRV9025_ACT_NO_ACTION Function completed, no action required 

adi_adrv9025_DfrmPrbsCheckerStateSet(…) 
adi_adrv9025_DfrmPrbsCheckerStateSet(adi_adrv9025_Device_t *device, adi_adrv9025_DfrmPrbsCfg_t 
*dfrmPrbsCfg) 

This function configures and enables or disables the transceiver lane or sample PRBS checker. This is a debug function to be used for 
debug of the Tx JESD204B/JESD204C lanes. 

If the checkerLocation is ADI_ADRV9025_PRBSCHECK_LANEDATA, the PRBS is checked at the output of the deserializer. If the 
checkLocation is ADI_ADRV9025_PRBSCHECK_SAMPLEDATA the PRBS data is expected to be framed JESD204B/JESD204C data 
and the PRBS is checked after the JESD204B/JESD204C data is deframed. For the sample data, there is only a PRBS checker on DAC 0 
input. The lane PRBS has a checker on each deserializer lane. 

Precondition 

This function may be called any time after device initialization. 

Dependencies 

device->devHalInfo 

Parameters 

Table 44.  
Parameter Description 
*device is a pointer to the device settings structure  
polyOrder selects the PRBS type based on enum values (ADI_ADRV9025_PRBS_DISABLE, ADI_ADRV9025_PRBS7, 

ADI_ADRV9025_PRBS15, ADI_ADRV9025_PRBS31)  
checkerLocation Check at deserializer (deframer input) or sample (deframer output). 

Return Values 

Table 45.  
Return Value Description 
ADI_ADRV9025_ACT_WARN_RESET_LOG Recovery action for log reset  
ADI_ADRV9025_ACT_ERR_CHECK_PARAM Recovery action for bad parameter check  
ADI_ADRV9025_ACT_ERR_RESET_SPI Recovery action for SPI reset required  
ADI_ADRV9025_ACT_NO_ACTION Function completed, no action required  

adi_adrv9025_DfrmPrbsCountReset(…) 
adi_adrv9025_DfrmPrbsCheckerStateSet(adi_adrv9025_Device_t *device, adi_adrv9025_DfrmPrbsCfg_t 
*dfrmPrbsCfg) 

This function allows the baseband processor to clear the Deframer PRBS counters. It resets the PRBS error counters for all lanes. It is 
recommended to clear the error counters after enabling the deframer PRBS checker. 

Precondition 

The Tx JESD204B/JESD204C link(s) needs to be configured to use this function. 

Dependencies 

device->devHalInfo 
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Parameters 

Table 46.  
Parameter Description 
*device is a pointer to the device settings structure 

Return Values 

Table 47.  
Return Value Description 
ADI_ADRV9025_ACT_WARN_RESET_LOG Recovery action for log reset  
ADI_ADRV9025_ACT_ERR_CHECK_PARAM Recovery action for bad parameter check  
ADI_ADRV9025_ACT_ERR_RESET_SPI Recovery action for SPI reset required  
ADI_ADRV9025_ACT_NO_ACTION Function completed, no action required  

adi_adrv9025_DfrmPrbsErrCountGet(…) 
adi_adrv9025_DfrmPrbsErrCountGet(adi_adrv9025_Device_t *device, 
adi_adrv9025_DfrmPrbsErrCounters_t *counters) 

After enabling the deframer PRBS checker and clearing the PRBS error counters, use this function to read back the PRBS error counters. 
The lane parameter allows the baseband processor to select which lane error counter to read. Only one lane error counter can be read at a 
time. To read error counters for all four lanes, the baseband processor calls this function four times. 

In the case that the PRBS checker is set to check at the deframer output sample, there is only a checker on the DAC 0 input. In this case 
the lane function parameter is ignored and the sample 0 PRBS counter is returned. The sample crossbar can be used to switch all 
deframer outputs to DAC0 in turn. 

Precondition 

The Tx JESD204B/JESD204C link(s) needs to be configured to use this function. 

Dependencies  

device->devHalInfo 

Parameters 

Table 48.  
Parameter Description 
*device Pointer to the device settings structure  
counters Pointer to PRBS Error counter structure to be returned 

Return Values 

Return Value Description 
ADI_ADRV9025_ACT_WARN_RESET_LOG Recovery action for log reset  
ADI_ADRV9025_ACT_ERR_CHECK_PARAM Recovery action for bad parameter check  
ADI_ADRV9025_ACT_ERR_RESET_SPI Recovery action for SPI reset required  

ADI_ADRV9025_ACT_NO_ACTION Function completed, no action required  
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API SOFTWARE INTEGRATION 
Configuration of the JESD204B/JESD204C circuitry is handled by the adi_adrv9025_Initialize(…) API function. Set all 
JESD204B/JESD204C link options in the adi_adrv9025_Init_t data structure before calling adi_adrv9025_Initialize(…).  

JESD204B/JESD204C API Data Structures 

adi_adrv9025_ DataInterfaceCfg _t 

The adi_adrv9025_ DataInterfaceCfg_t data structure contains the information required to properly configure each framer, each 
deframer, the serializers, and deserializers. Details of each member can be found in API documentation (/c_src/doc). 

typedef struct adi_adrv9025_DataInterfaceCfg 

{ 

    adi_adrv9025_FrmCfg_t framer[3];       

    adi_adrv9025_DfrmCfg_t deframer[2];    

    adi_adrv9025_SerCfg_t serCfg[8];       

    adi_adrv9025_DesCfg_t desCfg[8];       

    uint8_t sysrefLvdsMode;                

    uint8_t sysrefLvdsPnInvert; 

    adi_adrv9025_LinkSharingCfg_t linkSharingCfg;           

} adi_adrv9025_DataInterfaceCfg_t; 

 

Table 49. JESD204B/JESD204C Settings Structure Member Description 
Structure Member Valid Values Description 
framer0 data structure Framer 0 configuration data structure 
framer1 data structure  Framer 1 configuration data structure 
framer2 data structure Framer 2 configuration data structure  
deframer0 data structure Deframer 0 configuration data structure  
deframer1 data structure Deframer 1 configuration data structure  
serAmplitude 0..3 Serializer amplitude setting. Default = 1. 
serPreEmphasis 0..2 Serializer pre-emphasis setting. Default = 0. 
serInvertLanePolarity 0x0 to 0x0F Serializer Lane Polarity Inversion Select – one bit per lane  
desInvertLanePolarity 0x0 to 0x0F Deserializer Lane Polarity Inversion Select – one bit per lane  
desEqSetting 0 to 3 Deserializer Equalizer setting. Applied to all deserializer lanes. 

IMPLEMENTATION RECOMMENDATIONS 

 SYSREF must be dc-coupled. If SYSREF is generated by GPIO pins for example, both pins being in the low state at startup is not 
valid. Ensure that the signals are active and/or in a known valid state prior to enabling the MCS gate. 

 For 25G operation, it is recommended to use deframer Lane A and Lane C to minimize crosstalk possibilities. 
 Deframer input amplitude is on the order of 500 mV p-p to 700 mV p-p if insertion loss is on the order of 5 dB at room temp. 
 Minimizing data link uncertainty: 

 Ensure setup and hold times are met for each SYSREF/DCLK pair 
 Separate the SYSREF/DCLK pairs for each device in the system 
 Match the trace length within each pair so that the propagation time is the same 
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LINK INITIALIZATION AND DEBUGGING 
Link initialization occurs during the post MCS phase of device initialization. The link bringup procedure in general follows the following 
steps: 

JESD204B 

For the deframer side, follow these steps: 

1. Initialize and bring up the baseband processor framer side. 
2. Deframer is held in reset state until INIT command, then deframer issues a synchronization request by asserting the SYNC signal. 
3. Framer starts sending K28.5 characters, then deframer is brought out of reset. 
4. Deframer identifies four consecutive K28.5 characters then deasserts SYNC and goes into ILAS phase. 
5. If SYNC stays asserted, this indicates it is stuck in CGS phase. Check that the link parameters match. If they do, check the signal 

integrity (refer to the Sample Iron Python Code for PRBS Testing section). 

For the framer side, link establishment follows the same flow. First the framer is enabled and the baseband processor deframer 
synchronizes to the signal. 

JESD204C 

For the deframer side, follow these steps: 

1. Initialize and bring up the baseband processor framer side. 
2. Send the JESD204C initialization calibration command. This brings the link up since it is now protocol based. 
3. Enable the JESD204C tracking calibrations. This maintains the link parameters on a 60 second schedule.  

For the framer side, link establishment follows the same flow. First the framer is enabled and then the baseband processor deframer 
synchronizes to the signal. 

The API function adi_board_adrv9025_JesdBringup is used to configure and establish the datalinks. The overall detailed sequence 
including the MCS is in the file adi_adrv9025_daughter_board.c. 

FIRST TIME SYSTEM BRING UP—CHECKING LINK INTEGRITY 
1. For ease of debug during bring up, it is recommended to start with single lane on both sides and with minimum possible link speed. 
2. Check that the parameters are configured the same at both ends transceiver and FPGA. The adi_adrv9025_DfrmCfg_t data structure 

contains the information required to properly configure each deframer. 
3. There is a PRBS checker available that can be used to check signal integrity related issues. Initialize the device as outlined in the link 

establishment section. Enable the PRBS generator on the baseband processor with the desired PRBS sequence. 
4. Confirm that the lanes baseband processor is transmitting PRBS on are the actually configured in the ADRV9026. Start with the 

PRBS errors. Ensure baseband processor and the ADRV9026 are both using the same PRBS signal and ADRV9026 expects the same 
PRBS 7 from baseband processor.  

5. Call the API adi_adrv9025_DfrmPrbsCheckerStateSet(…) passing the actual device being evaluated, the PRBS sequence to check, 
and the location at which to check the PRBS sequence. 

6. After some amount of time, call the API function to check the PRBS errors. This can be done by calling the API function 
adi_adrv9025_DfrmPrbsErrCountGet(…) passing the actual device being evaluated, the counter selection lane to be read and the 
error count is returned in the third parameter passed. 

7. The user can use adi_adrv9025_DeframerSysrefCtrlSet(…) API so that The external SYSREF signal at the pin can be gated off 
internally so the deframer does not see a potential invalid SYSREF pulse before it is configured correctly. 

8. After bringing up of JESD204B link or for debugging the deframer, the baseband processor can check the status of the deframer 
using adi_adrv9025_DeframerStatusGet(…). 

 

 

 

 

 

 

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
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SAMPLE IRON PYTHON CODE FOR PRBS TESTING 
The following Iron Python script can be loaded into the Iron Python tab in the GUI to run the PRBS test. To use this code, select File 
→New and place this code just after the ##### YOUR CODE GOES HERE ##### note. 

#Create an Instance of the Class 

link = AdiEvaluationSystem.Instance  

connect = False 

adrv9025 = link.Adrv9025Get(1) 

 

FrmTestDataCfg=Types.adi_adrv9025_FrmTestDataCfg_t() 

FrmTestDataCfg.framerSelMask=int(Types.adi_adrv9025_FramerSel_e.ADI_ADRV9025_FRAMER_0) 

print FrmTestDataCfg.framerSelMask 

FrmTestDataCfg.testDataSource=Types.adi_adrv9025_FramerDataSource_e.ADI_ADRV9025_FTD_PRBS7 

FrmTestDataCfg.injectPoint=Types.adi_adrv9025_FramerDataInjectPoint_e.ADI_ADRV9025_FTD_SERIALIZE
R 

adrv9025.DataInterface.FramerTestDataSet(FrmTestDataCfg) 

 

#Enable Deserializer 

link.platform.board.Fpga.Prbs.PrbsDeserializerEnable(0xF,0x1) #1:PRBS7;2:PRBS9;3:PRBS15;5:PRBS31 

link.platform.board.Fpga.Prbs.PrbsDeserializerEnable(0xF,0x1) #1:PRBS7;2:PRBS9;3:PRBS15;5:PRBS31 

#clear PRBS error 

link.platform.board.Fpga.Prbs.PrbsErrorClear(0xF) 

#Read PRBS error 

#adrv9025.DataInterface.FramerTestDataInjectError(Types.adi_adrv9025_FramerSel_e.ADI_ADRV9025_FR
AMER_0,0x0) 

time.sleep(1) 

 

errCounts=Array[System.UInt32]([0,0,0,0,0,0,0,0]) 

errCounts=link.platform.board.Fpga.Prbs.PrbsErrorCountsRead(errCounts)[1] 

errCounts=[int(data) for data in errCounts] 

print errCounts   #[0,0,0,0,0,0,0,0] 

When this script is run, it results in the number of errors per enabled lane. Note only the first 4 positions are valid and the last four 
positions is always be 0. To create errors as a test, change the 0x1 in the line immediately below “Enable Deserializer” comment to one of 
the other values indicated. The enabled lanes show errors by enabled lane position. 

PRBS ERRORS 
When the baseband processor is transmitting PRBS, confirm that the active lanes are also configured properly in the ADRV9026. Start 
with the PRBS errors. Ensure the baseband processor and the ADRV9026 are both using the same PRBS signal and the ADRV9026 
expects the same PRBS 7 from baseband processor. The following are some scenarios that might occur and how to resolve issues. 

If stuck in CGS mode, or if SYNC stays at logic low level or pulses high for less than four multiframes, take the following steps: 

1. Check the board, unpowered for the following: 
a. SYSREF and SYNC signaling is dc-coupled. 
b. Check that the pull-down or pull-up resistors are not dominating the signaling, for example if values are too small or shorted 

and therefore cannot be driven correctly. 
c. Verify that the differential-pairs traces are length matched. 
d. Verify differential impedance of the traces is 100 Ω. 

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
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2. Check the board, powered: 
a. If there is a buffer/translator in the SYNC path, make sure it is functioning properly. 
b. Check that SYNC source is properly configured to produce compliant logic levels.  

3. Check SYNC signaling: 
a. If SYNC is static and logic low, the link is not progressing beyond the CGS phase. There is either an issue with the data being 

sent or the JESD204 receiver is not decoding the samples properly. Verify /K/ characters are being sent, verify receive 
configuration settings, verify SYNC source. Consider overdriving SYNC signal and attempt to force link into ILAS mode to 
isolate link Rx vs. Tx issues.  

b. If SYNC is static and logic high, verify the SYNC logic level is configured correctly in the source device. Check pull-up and pull-
down resistors. 

c. If SYNC pulses high and returns to logic-low state for less than six multiframe periods, the JESD204 Link is progressing beyond 
the CGS phase but not beyond ILAS phase. This suggests the /K/ characters are okay and the basic function of the CDR are 
working. Proceed to ILAS troubleshooting. 

d. If SYNC pulses high for a duration of more than six multiframe periods, the Link is progressing beyond the ILAS phase and is 
malfunctioning in the data phase; see the data phase section for troubleshooting tips. 

4. Checking Serial Data 
a. Verify the transmitter data rate and the receiver expected rate are the same. 
b. Measure lanes with high-impedance probe (differential probe, if possible); if characters appear incorrect, make sure lane 

differential traces are matched, the return path on the PCB is not interrupted, and devices are properly soldered on the PCB. 
CGS characters are easily recognizable on a high speed scope. 

c. Verify /K/ characters with high impedance probe. (If /K/ characters are correct, the Tx side of the link is working properly. If /K/ 
characters are not correct, the Tx device or the board lanes signal have an issue. 

d. Verify the transmitter CML differential voltage on the data lanes  
e. Verify the receiver CML differential voltage on the data lanes  
f. Verify that the configuration parameters M and L values match between the baseband processor and the transceiver, otherwise 

the data rates may not match. For example, M = 2 and L = 2 expect ½ the data rate over the serial interface as compared to the 
M = 2 and L = 1 case.  

g. Ensure the device clock is phase locked and at the correct frequency. 

If the user is stuck in ILAS mode, or if SYNC pulses high for approximately four multiframes, take the following steps: 

1. Link parameter conflicts 
a. Verify ILAS multiframes are transmitting properly, verify link parameters on the Tx device, the Rx device and those transmitted 

in ILAS second multiframe. 
b. Calculate expected ILAS length (tframe, tmultiframe, 4xtmultiframe), verify ILAS is attempted for approximately four 

multiframes. 
2. Verify all lanes are functioning properly. Ensure there are no Multilane/Multilink conflicts. 

If the interface enters data phase but occasionally link resets (returns to CGS and ILAS before returning to data phase), take the following 
steps: 

1. Invalid setup and hold time of periodic or gapped periodic SYSREF or SYNC signal. 
2. Link parameter conflicts 
3. Character replacement conflicts 
4. Scrambling problem, if enabled 
5. Lane data corruption, noisy or jitter can force the eye diagram to close 
6. Spurious clocking or excessive jitter on device clock 



Preliminary Technical Data UG-1727
 

Rev. PrA | Page 53 of 267 

SPO (STATIC PHASE OFFSET) TEST TO VERIFY EYE WIDTH 
High speed data rates present a tougher challenge because signal integrity is required for reliable error free data transfer. See the PCB 
Layout Considerations section for differential line layout recommendations. 

When debugging lane errors, it can be useful to understand how large the ‘eye’ of the waveform is to determine how reliable the link is. In 
the case of the Deframer, in 204C mode the channel is estimated during an initialization cal that configures the CTLE (continuous time 
linear equalizer) and automatically adjusts the sampling position on the waveform. To gain confidence in the link stability, the opening of 
the eye over the operating conditions is one measure of robustness. A method of determining the opening size is to sweep the sampling 
position, searching for ‘dead space’ where no transitions are occurring therefore the sampling point is in the eye. This is called a SPO 
(Static Phase Offset) test that offsets the clocks to move the sampling edge left or right on the waveform and the resulting ‘dead’ steps total 
at least 4 steps left and right from center, over all operating conditions the link is considered ‘good’. The SPO test requires PRBS 
transmission in the FPGA and setup of the PRBS pattern checker in the TRX.  

A typical test output report is shown below. In this case, two lanes are in use. The phase is swept in 128 steps The resolution is of course 
dependent on the lane rate, but in general this result shown is considered good with approximately 16 phase steps open in the center of 
the eye as shown in the resulting output files.  

SPO Test Example Python Script 

The SPO test code can be run in the GUI and works for both JESD204B and for JESD204C. The user needs to set the first line 
appropriately and also configure the output file path to a folder on the PC. Insert these functions in the def section of the New Script, as 
follows:  

def FpgaWrite(address, data): 

    link.platform.board.Fpga.Hal.RegisterWrite(address, data) 

    #print "FPGA Write Address " + hex(address) + ": " + hex(data) 

 

def FpgaRead(address): 

    data = link.platform.board.Fpga.Hal.RegisterRead(address, 0) 

    print "FPGA Read Address " + hex(address) + ": " + hex(data[1]) 

 

          

def FPGAPRBSSetup(mode_is_204c=0): 

    enablePRBS_ch1 = link.platform.board.Fpga.Hal.RegisterRead(0x43400220,0)            
   #Read the value in PRBS control register (FPGA ch1 testmodes register) 

    disablePRBS = enablePRBS_ch1[1] & 0xF0ffFFFF          
       #Zero bits 27-24 without affecting the other bits 
in the register. 

    enablePRBS7 = disablePRBS | 0x01000000                
       #Set the enablePRBS variable bits 27-24 to 0001 
to enable PRBS7 

    enablePRBS23 = disablePRBS | 0x05000000                
      #Set the enablePRBS variable bits 27-24 to 0101 to 
enable PRBS23 

 

    for fpgaregister in range (0x43400100, 0x43400900, 0x100):          
     #Update all FPGA ch0-7 

        if (mode_is_204c == 1): 

            FpgaWrite(fpgaregister, 0x00000004)               
      #Puts the lane transmit side in reset 

            FpgaWrite(fpgaregister + 0x48, 0x20800080)        
      #Sets the data and data mask for the DRP write to enable 
the buffer and disable the gearbox 

            FpgaWrite(fpgaregister + 0x40, 0x0003007C)        
      #Initiates the write to the DRP 
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            FpgaWrite(fpgaregister + 0x10, 0x02015233)        
      #Sets the transmit clock source to the PMA clock 

        FpgaWrite(fpgaregister + 0x20, enablePRBS7)        
       #Write the new value back to the FPGA to enable PRBS7 - 
ch1(fpga) to ch7 =serdinA to H 

        if (mode_is_204c): 

            FpgaWrite(fpgaregister, 0x00000000)         
       #Remove reset 

 

    print "PRBS7 is enabled", hex(disablePRBS), hex(enablePRBS7), hex(enablePRBS23)                 
                         

 

    ErrorCount = Types.adi_adrv9025_DfrmPrbsErrCounters_t()             

    dfrmPrbsCfg = Types.adi_adrv9025_DfrmPrbsCfg_t() 

    dfrmPrbsCfg.deframerSel = dfrm_sel 

    dfrmPrbsCfg.polyOrder = Types.adi_adrv9025_DeframerPrbsOrder_e.ADI_ADRV9025_PRBS7 

    dfrmPrbsCfg.checkerLocation = 
Types.adi_adrv9025_DeframerPrbsCheckLoc_e.ADI_ADRV9025_PRBSCHECK_LANEDATA  

    adrv9025.DataInterface.DfrmPrbsCheckerStateSet(dfrmPrbsCfg) 

    #check config matches what you've written 

    dfrmPrbsCfgRead = Types.adi_adrv9025_DfrmPrbsCfg_t() 

    adrv9025.DataInterface.DfrmPrbsCheckerStateGet(dfrmPrbsCfgRead) 

    print "PRBS config setup, Poly, location,drmrSel", dfrmPrbsCfgRead.polyOrder, 
dfrmPrbsCfgRead.checkerLocation, dfrmPrbsCfgRead.deframerSel 

 

    adrv9025.DataInterface.DfrmPrbsCountReset()       

    adrv9025.DataInterface.DfrmPrbsErrCountGet(ErrorCount)           #api method to read error 
counters + flags 

         

    for lanes in range(len(ErrorCount.laneErrors)): 

        print "Initial laneError count for lane", lanes, "is :", ErrorCount.laneErrors[lanes] 

        print "Initial ErrorStatus for lane", lanes, "is :", ErrorCount.errorStatus[lanes]  #Bit 
0 = Lane inverted, bit 1 = invalid data flag, bit 2 = sample/lane error flag  

 

    if ErrorCount.laneErrors[0] == 0: 

        print "No Errors detected as expected in PRBS7 mode. Will switch to PRBS23 now" 

    else:    

        print "Errors detected!! Link not good, please check link"  

 

    for fpgaregister in range (0x43400100, 0x43400900, 0x100):          
     #Update all FPGA ch0-7 

        link.platform.board.Fpga.Hal.RegisterWrite(fpgaregister + 0x20, enablePRBS23)        
       #Write to the FPGA to enable PRBS23 on all Ch 

    print "Changing to PRBS23"                    
            

    adrv9025.DataInterface.DfrmPrbsCountReset() 

    adrv9025.DataInterface.DfrmPrbsErrCountGet(ErrorCount)    

 

    for lanes in range(len(ErrorCount.laneErrors)): 

        print "PRBS23 laneError count for lane", lanes, "is :", ErrorCount.laneErrors[lanes] 
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        print "PRBS23 ErrorStatus for lane", lanes, "is :", ErrorCount.errorStatus[lanes]   

 

    if ErrorCount.laneErrors[0] != 0: 

        print "Errors detected as expected with PRBS mismatch. Will switch back to PRBS7 now" 

    else: 

        print "Errors not detected with PRBS mismatch !! Please verify PRBS generator in FPGA" 

 

    for fpgaregister in range (0x43400100, 0x43400900, 0x100):          
     #Update all FPGA ch0-7 

        link.platform.board.Fpga.Hal.RegisterWrite(fpgaregister + 0x20, enablePRBS7)     

    print "PRBS7 is enabled again on all channels"  

    adrv9025.DataInterface.DfrmPrbsCountReset() 

    adrv9025.DataInterface.DfrmPrbsErrCountGet(ErrorCount) 

    if ErrorCount.laneErrors[0] == 0: 

       print "No Errors detected after switching back to PRBS7 mode. Will move onto phase/amp 
eye sweep" 

    else:    

       print "Errors detected!! please check setup - may need to reboot"  

     

Insert the following in the Iron Python tab after the line: ##### YOUR CODE GOES HERE ##### (approximately Line 40). See Figure 21 for 
the SPO test measurement result. 

 

mode_is_204c = 0                    # need to setup FPGA differently for 204c vs. 204b mode, so 
set this bit appropriately. 

foldername = "C:\\tmp" 

 

errorTimeDuration = 0.001           #time duration to allow PRBS errors to accumulate 

LaneErrorFlag = []                  #containers to store ErrorFlag Data for each lane to print 
to file 

LaneErrorCntr= [] 

 

dfrmPrbsCfg = Types.adi_adrv9025_DfrmPrbsCfg_t() 

ErrorCount = Types.adi_adrv9025_DfrmPrbsErrCounters_t()       

dfrm_sel = Types.adi_adrv9025_DeframerSel_e.ADI_ADRV9025_DEFRAMER_0 

 

FPGAPRBSSetup(mode_is_204c)     #Setup PRBS TestMode on FPGA side  

 

dfrmPrbsCfg.deframerSel = dfrm_sel 

dfrmPrbsCfg.polyOrder = Types.adi_adrv9025_DeframerPrbsOrder_e.ADI_ADRV9025_PRBS7       #can 
configure PRBS mode on Madura 

dfrmPrbsCfg.checkerLocation = 
Types.adi_adrv9025_DeframerPrbsCheckLoc_e.ADI_ADRV9025_PRBSCHECK_LANEDATA  

adrv9025.DataInterface.DfrmPrbsCheckerStateSet(dfrmPrbsCfg) 

 

adrv9025.DataInterface.DfrmPrbsCountReset()                             

adrv9025.DataInterface.DfrmPrbsErrCountGet(ErrorCount)          #Run initial PRBS error check - 
should have zero errors initially 

 

for lanes in range(len(ErrorCount.laneErrors)): 
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    print "Initial laneError count for lane", lanes, "is :", ErrorCount.laneErrors[lanes] 

    print "Initial ErrorStatus for lane", lanes, "is :", ErrorCount.errorStatus[lanes]  #Bit 0 = 
Lane inverted, bit 1 = invalid data flag, bit 2 = sample/lane error flag  

 

             

for phase in range (64,192,1):  

    phase = phase % 128                             #Offset the phase to centre the eye          

    spiWrite(0x6805, 0xD)           # Write the serdes submap addr 

    spiWrite(0x6808, phase | 0x80)  # Write the phase data 

    spiWrite(0x6806, 0x0F)          # Latch in phase data for all lanes 

    spiWrite(0x6806, 0x00)          #clear latch 

    adrv9025.DataInterface.DfrmPrbsCountReset()                         
    

    time.sleep(errorTimeDuration)                               #Set a wait time to allow errors 
to accumulate  

    adrv9025.DataInterface.DfrmPrbsErrCountGet(ErrorCount) 

     

    for lanes in range(len(ErrorCount.laneErrors)):             #readback errors from each lanes 
and store in an array 

        LaneErrorFlag.append(int(ErrorCount.errorStatus[lanes] >> 2) & 0x1) 

        LaneErrorCntr.append(ErrorCount.laneErrors[lanes]) 

 

# Print ErrorFlag & ErrorCounter data to files         

filename = "{0}\\eyedata_lane.txt".format(foldername) 

filename2 = "{0}\\cntrdata_lane.txt".format(foldername) 

with open(filename, 'w') as f1, open(filename2, 'w') as f2: 

    f1.write("LaneErrorFlag[0]\tLaneErrorFlag[1]\tLaneErrorFlag[2]\tLaneErrorFlag[3]\n") 

    f2.write("LaneErrorCntr[0]\tLaneErrorCntr[1]\tLaneErrorCntr[2]\tLaneErrorCntr[3]\n") 

    for i in range(0, len(LaneErrorFlag),4):                #print out the eye diagram ascii 
symbols to file 

        f1.write("{0}\t{1}\t{2}\t{3}\n".format(LaneErrorFlag[i], 
LaneErrorFlag[i+1],LaneErrorFlag[i+2],LaneErrorFlag[i+3])) 

        f2.write("{0}\t{1}\t{2}\t{3}\n".format(LaneErrorCntr[i], 
LaneErrorCntr[i+1],LaneErrorCntr[i+2],LaneErrorCntr[i+3])) 
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Figure 21. SPO Test Measurement Result 

The test reported in Figure 21 was run on UC14C-LS on the evaluation board platform with the result indicating that initially there are no 
PRBS errors. Then errors are injected with the resulting error counts, and the eye sweep is run with no errors being reported. In this use 
case only two deframer lanes are in use: Lane A and Lane C. Data for the unused lanes are 0. 

Two files are also generated by the script: cntrdata_lane.txt and eyedata_lane.txt. 

The cntrdata_lane.txt indicates the number of errors counted as the phase is adjusted, and the count goes to 0 in the center of the eye.  

In the eyedata_lane.txt file, errors are represented by 1 and the eye indicated by 0. Similarly, the 0s occur toward the center of the 
waveform indicating and acceptable eye width. Following, in Figure 22 and Figure 23, are excerpts from the center of the files. 
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Figure 22. cntrdata_lane.txt Showing PRBS Error Counts About the Eye Center 
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Figure 23. eyedata_lane.txt Showing Center of the Eye 
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CHECKING JESD204C LINK STATUS 
The API for checking the link status is currently not available. Until it is, the registers can be read directly with SPI commands. 

Address: 0x6B2B to Address 0x6B2E are for Deframer 0 for Lane A, Lane B, Lane C, and Lane D, respectively. 

Address: 0x6D2B to Address 0x6D2E are for Deframer 1 for Lane A, Lane B, Lane C, and Lane D, respectively. 

It is only necessary to check as many lanes as the deframer is using. For example, if both deframers are in use and each one uses two lanes, 
then it is only necessary to check the first two registers in each deframer, not all four. 

Table 50.  
Bits Name Description 
7:3 Reserved Reserved 
2:0 Jrx_dl_204c_state Current Lock State  

Table 51.  
Bits[2:0] Description 
0 Reset 
1 Unlocked  
2 Block (blocks aligned)  
3 M_Block (lanes aligned)  
4 E_M_Block (multiblock aligned) 
5 FEC_BUF  
6 FEC_READY (good state)  
7 Reserved  

 

SELECTING THE OPTIMAL LMFC/LEMC OFFSET FOR A DEFRAMER 
This section describes how to set the LMFC/LEMC offset for a deframer, how to read back the corresponding elastic buffer depth, and 
how to select the optimal LMFC/LEMC offset value for a given system. 

Deterministic latency in JESD 204B mode 

In JESD204B mode, the ADRV9026 digital data interface follows the JESD204B Subclass 1 standard, which has provisions to ensure 
repeatable latencies across the link from power-up to power-up or over link re-establishment by using the SYSREF signal.  

To achieve this deterministic latency, the ADRV9026 deframers include elastic buffers for each of their lanes. The elastic buffers are also 
used to de-skew each lane before aligning them with the LMFC signal. The depth of the elastic buffers can therefore be different for each 
lane of a given deframer.  

A deframer starts outputting data out of its elastic buffers on the next LMFC (that is, multiframe) boundary following the reception of the 
first characters in the ILA sequence by all the active lanes. It is therefore possible to adjust when the data is output from the elastic buffers, 
and therefore how much data is stored in those buffers (called buffer depth), by adjusting the phase relationship between the external 
SYSREF signal and the internally generated LMFC signal. This phase relationship is adjustable by using the LMFC offset parameter, 
which is programmable for each of the deframers. This is illustrated on Figure 24 and Figure 25. 
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Figure 24. Elastic Buffers in the Deframers 

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
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Figure 25. Impact of LMFC Offset on Elastic Buffer Depth in JESD204B Mode 
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Deterministic Latency in JESD204C Mode 

In JESD204C mode, deterministic latency can also be achieved thanks to the elastic buffers in the deframers. The elastic buffers are still 
used to de-skew each lane before aligning them with the LEMC signal. The depth of the elastic buffers can, therefore, be different for each 
lane of a given deframer.  

A deframer starts outputting data from its elastic buffers on the next LEMC (extended multiblock) boundary following the reception of 
the first multiblock in an extended multiblock by all the active lanes. As a result, it is possible to adjust when the data is output from the 
elastic buffers and, therefore, how much data is stored in those buffers (the buffer depth) by adjusting the phase relationship between the 
external SYSREF signal and the internally generated LEMC signal. This phase relationship is adjustable by using the LEMC offset 
parameter, which is programmable for each of the deframers. This is illustrated on Figure 24 and Figure 26. 

It is important to note that the size of each elastic buffer is 512 octets. When the JESD204C E parameter (number of multiblocks in an 
extended multiblock) is bigger than 2, the elastic buffer is not able to store enough data for some LEMC offset values.  
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Figure 26. Impact of LEMC Offset on Elastic Buffer Depth in JESD204C Mode 
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Programming the LMFC Offset for a Deframer 

There are three ways to program the LFMC offset for a given deframer.  

1. By modifying the profile file being used 
2. By using the adi_adrv9025_DfrmCfg data structure 
3. By writing directly to the relevant SPI registers 

Each method is addressed in the following sections. 

Setting the LMFC/LEMC Offset in the Profile File 

There is an lmfcOffset field for each of the two deframers in the profile file. This field corresponds to the LMFC offset in JESD 204B 
mode, and to the LEMC offset in JESD 204C mode. It can be set to a decimal value between 0 and (K × S) − 1 (where K is the number of 
frames per multiframe/extended multiblock, and S is the number of samples per converter per frame cycle). For example, for the 
ADRV9025Init_StdUseCase26C_nonLinkSharing.profile file, the “lmfcOffset” field is located around Line 189 for Deframer 0 and 
around Line 229 for Deframer 1 (see Figure 27). 
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Figure 27. Deframer 0 lmfcOffset Field for the ADRV9025Init_StdUseCase26C_nonLinkSharing.profile File 

Note that the device must be reprogrammed after changing an LMFC/LEMC offset in the profile file and loading it into Arm memory for 
the change to take effect. Also note that if the goal is to sweep the LMFC/LEMC offset values for test purposes without any need for RF 
performance (for example, to determine the optimal LMFC/LEMC value), it is not necessary to run the init cals when programming the 
device. Not running the init cals make the programming process quicker. 
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Setting the LMFC/LEMC Offset in the adi_adrv9025_DfrmCfg Data Structure 

An alternative way of programming the LMFC/LEMC offset consists in using the lmfcOffset field of the adi_adrv9025_DfrmCfg data 
structure for the relevant deframer (see Figure 28). Note that the device must be reprogrammed after changing the LMFC/LEMC offset 
for a given deframer in the adi_adrv9025_DfrmCfg data structure for the change to take effect. Also note that if the goal is to sweep the 
LMFC/LEMC offset values for test purposes without any need for RF performance (for example, to determine the optimal LMFC/LEMC 
value), it is not necessary to run the init cals when programming the device. Not running the init cals make the programming process 
quicker. 
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Figure 28. LMFC Offset Field in adi_adrv9025_DfrmCfg Data Structure 

It is possible to set the LMFC/LEMC offset value by writing to the following SPI registers: Deframer 0 and Deframer 1. 

Deframer 0:  

 Register 0x6A8E, Bits[7:0]: jrx_tpl_phase_adjust[7:0]. Bits[7:0] of the LMFC/LEMC phase adjustment 16-bit word for Deframer 0. 
The valid range of phase adjustment values is 0 to (K × S) − 1 (where K is the number of frames per multiframe/extended multiblock, 
and S is the number of samples per converter per frame cycle). 

 Register 0x6A8F, Bits[7:0]: jrx_tpl_phase_adjust[15:8]. Bits[15:8] of the LMFC/LEMC phase adjustment 16-bit word for Deframer 0. 
The valid range of phase adjustment values is 0 to (K × S) − 1 (where K is the number of frames per multiframe/extended multiblock, 
and S is the number of samples per converter per frame cycle). 

Deframer 1: 

 Register 0x6C8E, Bits[7:0]: jrx_tpl_phase_adjust[7:0]. Bits[7:0] of the global LMFC/LEMC phase adjustment 16-bit word for 
Deframer 1. The valid range of phase adjustment values is 0 to (K × S) − 1 (where K is the number of frames per 
multiframe/extended multiblock, and S is the number of samples per converter per frame cycle). 

 Register 0x6C8F, Bits[7:0]: jrx_tpl_phase_adjust[15:8]. Bits[15:8] of the global LMFC/LEMC phase adjustment 16-bit word for 
Deframer 1. The valid range of phase adjustment values is 0 to (K × S) − 1 (where K is the number of frames per 
multiframe/extended multiblock, and S is the number of samples per converter per frame cycle). 

Note that a SYSREF pulse must be applied and then the link between the JESD framer and JESD deframer of the transceiver must be 
reestablished after changing the LMFC/LEMC offset through SPI writes for a given deframer for the change to take effect. 
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Setting the LMFC/LEMC Offset Through SPI Registers Controls 

It is possible to set the LMFC/LEMC offset value by writing to the following SPI registers: 

Deframer 0: 

 Register 0x6A50, Bits[7:0]: jrx_tpl_phase_adjust[7:0]. Bits[7:0] of the LMFC/LEMC phase adjustment 16-bit word for deframer 0. 
The valid range of phase adjustment values is 0 to (K × S) − 1 (where K is the number of frames per multiframe/extended multiblock, 
and S is the number of samples per converter per frame cycle). 

 Register 0x6A51, Bits[7:0]: jrx_tpl_phase_adjust[15:8]. Bits[15:8] of the LMFC/LEMC phase adjustment 16-bit word for deframer 0. 
The valid range of phase adjustment values is 0 to (K × S) − 1 (where K is the number of frames per multiframe/extended multiblock, 
and S is the number of samples per converter per frame cycle). 

Deframer 1: 

 Register 0x6C50, Bits[7:0]: jrx_tpl_phase_adjust[7:0]. Bits[7:0] of the global LMFC/LEMC phase adjustment 16-bit word for 
deframer 1. The valid range of phase adjustment values is 0 to (K × S) − 1 (where K is the number of frames per 
multiframe/extended multiblock, and S is the number of samples per converter per frame cycle). 

 Register 0x6C51, Bits[7:0]: jrx_tpl_phase_adjust[15:8]. Bits[15:8] of the global LMFC/LEMC phase adjustment 16-bit word for 
deframer 1. The valid range of phase adjustment values is 0 to (K × S) − 1 (where K is the number of frames per 
multiframe/extended multiblock, and S is the number of samples per converter per frame cycle). 

Note that a SYSREF pulse must be applied and then the link between the JESD framer and the transceiver JESD deframer must be 
reestablished after changing the LMFC/LEMC offset through SPI writes for a given deframer for the change to take effect. 

Reading Back the Buffer Depths for Each Deframer Lanes 

It is possible to read back the depths of the elastic buffers for each deframer lanes in the following SPI registers: Deframer 0 and Deframer 1. 

Deframer 0: 

 Register 0x6A8A, Bits[7:0]: buffer depth for Lane 0 of Deframer 0 
 Register 0x6A8B, Bits[7:0]: buffer depth for Lane 1 of Deframer 0 
 Register 0x6A8C, Bits[7:0]: buffer depth for Lane 2 of Deframer 0 
 Register 0x6A8D, Bits[7:0]: buffer depth for Lane 3 of Deframer 0 

Deframer 1: 

 Register 0x6C8A, Bits[7:0]: buffer depth for Lane 0 of Deframer 1 
 Register 0x6C8B, Bits[7:0]: buffer depth for Lane 1 of Deframer 1 
 Register 0x6C8C, Bits[7:0]: buffer depth for Lane 2 of Deframer 1 
 Register 0x6C8D[7:0]: buffer depth for Lane 3 of Deframer 1 

In JESD204B mode, the unit of the values read back in those registers is 4 octets. In other words, an increment of the buffer depth value 
read back by 1 unit corresponds to an actual increment by 4 octets. The values read back range from 0 to (K × F)/4 (where K is the 
number of frames per multiframe, and F is the number of octets per lane in a frame cycle). 

In JESD204C mode, the unit of the values read back in those registers is 8 octets. In other words, an increment of the buffer depth value 
read back by 1 unit corresponds to an actual increment by 8 octets. The values read back range from 0 to E × 32 (where E is the number 
multiblocks in an extended multiblock). Note that the size of the elastic buffer is 512 octets. When E > 2, the maximum buffer depth 
values read back are therefore limited to 64, which corresponds to 512 octets. 

Note that the values reported in each of those registers correspond to a value based on the positions of the elastic buffer read and write 
pointers. The value has a fixed offset and does not represent the exact number of octets in the elastic buffer. 

Buffer Protection 

By default, an automatic buffer protection is enabled for the elastic buffers. This automatic buffer protection prevents the read and write 
pointers from being too close, which can lead to corrupted data being read out of the elastic buffers, as data can be read at the same time 
it is being written. When the automatic buffer protection detects that the read and write pointers are too close to each other for any of the 
elastic buffers, a pre-determined buffer depth is used, the data out of the elastic buffer no longer aligns to the LMFC/LEMC output signal, 
and deterministic latency is lost.  
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Checking if the Buffer Protection Is Active 

It is possible to read back if the buffer protection is active in the following SPI register bits: Deframer 0 and Deframer 1. 

Table 52. Deframer 0—Register 0x6A89, Bit 7: jrx_tpl_buf_protection 
Bit Setting Description 
0 Buffer protection not active for Deframer 0 
1 Buffer protection active for Deframer 0. Buffer read and write pointers were too close with the chosen LMFC/LEMC 

offset setting. A predetermined buffer depth is used. Deterministic latency is lost. 

Table 53. Deframer 1—Register 0x6C89, Bit 7: jrx_tpl_buf_protection 
Bit Setting Description 
0 Buffer protection not active for Deframer 1. 
1 Buffer protection active for Deframer 1. Buffer read and write pointers were too close with the chosen LMFC/LEMC 

offset setting. A predetermined buffer depth is used. Deterministic latency is lost. 

 

Disabling the Automatic Buffer Protection 

It is possible to disable the automatic buffer protection by using the following SPI register bits: Deframer 0 and Deframer 1. 

Table 54. Deframer 0—Register 0x6A89, Bit 6: jrx_tpl_buf_protection_en 
Bit Setting Description 
0 Automatic buffer protection disabled for Deframer 0 
1 Automatic buffer protection enabled for Deframer 0 

Table 55. Deframer 1— Register 0x6C89, Bit 6: jrx_tpl_buf_protection_en 
Bit Setting Description 
0 Automatic buffer protection disabled for Deframer 1 
1 Automatic buffer protection enabled for Deframer 1 

 

Following is an example of buffer depth values vs. LMFC offset values in JESD 204B mode with buffer protection enabled: 

Figure 29 corresponds to the elastic FIFO buffer depths for Lane 0 and Lane 1 vs. the LMFC offset setting measured for Deframer 0 on 
the ADRV9026 customer evaluation (CE) board with the ADRV9025Init_StdUseCase50_nonLinkSharing profile. In this example, the 
buffer protection activated for LMFC offset values between 23 and 26, and the buffer depths were fixed to values between 7 and 9 
independently of the LMFC offset. For other LMFC offset values, the buffer depths read back changed with the LMFC offset. 

During the measurement, the link between the JESD framer and JESD deframer of the transceiver was reestablished 10 times (with 
application of a new SYSREF pulse each time) for each LMFC offset value and each time the buffer depth was read. That is why several 
buffer depth values can be seen for a given LMFC offset. This variation in buffer depth is due to the variance in, for example, 
synchronization delays and physical lane skews, during the JESD link establishments that the elastic buffers are correcting for. 

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
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Figure 29. Buffer Depths for Lane 0 and Lane 1 vs. LMFC Offset on the ADRV9026 CE Board with the ADRV9025Init_StdUseCase50_nonLinkSharing Profile and Buffer 

Protection Enabled 

Selecting the optimal LMFC/LEMC offset for a system 

The buffer depths are expected to slightly change from power up to power up or from one JESD link establishment to another due to the 
variance in, for example, synchronization delays and physical lane skews. They are also expected to slightly change from system to system 
due to process, voltage and temperature (PVT) variations.  

It is therefore recommended to select an LMFC/LEMC offset value resulting in optimal buffer depths to account for those variations and 
maintain deterministic latency on all boards for a given system. The LMFC/LEMC offset to be selected depends on whether buffer 
protection is enabled or not. 

Selecting the Optimal LMFC Offset for a System in JESD204B Mode with Buffer Protection Enabled 

To ensure deterministic latency when buffer protection is enabled, it is recommended to select an LMFC offset value that gives buffer 
depths values as close as possible to the center of the linear part of the buffer depth vs. LMFC Offset plot for all the lanes used. To find the 
LMFC offset corresponding to those optimal buffer depths, read back the buffer depth values for all the used lanes for all LMFC offset 
values with buffer protection enabled on a sample board for a given system. Measuring the buffer depths per LMFC offset for 10 power 
cycles or JESD link establishments (with application of a new SYSREF pulse each time) provides a good indication of the buffer depths 
spread for each LMFC offset values. Select an LMFC offset value giving buffer depths as close as possible to the center of the linear part of 
the buffer depth vs. LMFC Offset plot for all the used lanes. 

Figure 29 illustrates this process using the ADRV9026 CE board programmed with the ADRV9025Init_StdUseCase50_nonLinkSharing 
profile, with automatic buffer protection enabled. In that example, an LMFC offset value of 9 is a good choice because it results in a buffer 
depth around 37 or 38 for each lane, which is in the middle of the linear part of the plot and therefore guarantees deterministic latency.  

If the goal for the system is to achieve deterministic latency with a latency as short as possible, it may be desirable to select an LMFC offset 
value giving buffer depths as small as possible. In that case, an LMFC offset value above the highest LMFC offset resulting in the 
automatic buffer protection being active with some additional headroom to account for PVT variations can be selected. In that situation, 
carry out thorough system testing over all possible temperature, supply and board variations to ensure that the automatic buffer 
protection never gets activated and that deterministic latency is maintained in all possible operating conditions for the system. 

Avoid LMFC offset values giving large buffer depths (that is, near a value of (K × F)/4) because, for some combinations of JESD 
parameters, it can lead to the write and read pointers being too close and therefore can result in data corruption. 

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
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Selecting the Optimal LMFC Offset for a System in a JESD 204B Mode with Buffer Protection Disabled 

When buffer protection is disabled, it is recommended to select an LMFC offset value that gives buffer depths as close as possible to (K × 
F)/8 to account for variations and maintain deterministic latency on all boards for a given system. 

To find the LMFC offset corresponding to that optimal buffer depth, read back the buffer depth values for all LMFC offset values for all 
the used lanes with buffer protection disabled on a sample board for a given system. Measuring the buffer depths per LMFC offset for 
10 power cycles or JESD link establishments (with application of a new SYSREF pulse each time) provides a good indication of the buffer 
depth spread for each LMFC offset values.  

Select an LMFC offset value giving buffer depths as close as possible to (K × F)/8 for all lanes. 

Figure 30 illustrates this process using the same ADRV9026 CE board with the ADRV9025Init_StdUseCase50_nonLinkSharing profile 
example with automatic buffer protection disabled. 
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Figure 30. Buffer Depths Read Back for Lane 0 and Lane 1 vs. LMFC Offset on the ADRV9026 CE Board with ADRV9025Init_StdUseCase50_nonLinkSharing Profile and 

Buffer Protection Disabled 

In this example, an LMFC offset value of 6 or 7 is a good choice because the result is buffer depths around 31 and 34 for all the used lanes, 
guaranteeing deterministic latency with no chance of data corruption due to the read and write pointers being too close.  

If the goal for the system is to achieve deterministic latency with a latency as short as possible, it may be desirable to select an LMFC offset 
value giving buffer depths as small as possible but still well above a small number (for example, 10 or 12) to avoid data corruption due to 
the read and write pointers being too close. Note that in that situation, carry out thorough system testing over all possible temperature, 
supply and board variations to ensure that data corruption never occurs in all possible operating conditions for the system. 

Avoid LMFC offset values giving a large buffer depth (that is, near a value of (K × F)/4) because, for some combinations of JESD 
parameters, it can lead to the write and read pointers being too close and therefore can result in data corruption. 

Selecting the Optimal LEMC Offset for a System in JESD 204C Mode When E ≤ 2 with Buffer Protection Enabled 

In JESD 204C mode when E ≤ 2, it is also recommended to select an LEMC offset that gives buffer depths values as close as possible to the 
center of the linear part of the buffer depth vs. LEMC Offset plot for all the lanes used. To find that LEMC offset, read back the buffer 
depth values for all the used lanes for all LEMC offset values with buffer protection enabled on a sample board for a given system. 
Measuring the buffer depths per LEMC offset for 10 power cycles or JESD link establishments (with application of a new SYSREF pulse 
each time) provides a good indication of the buffer depths spread for each LEMC offset. Select an LEMC offset value giving buffer depths 
as close as possible to the center of the linear part of the buffer depth vs. LEMC Offset plot for all the used lanes. 

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
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Figure 31 illustrates this process using the ADRV9026 CE board programmed with the ADRV9025Init_StdUseCase26C_nonLinkSharing 
profile, with automatic buffer protection enabled. 

In this example, LEMC offset values between 36 and 40 are good choices because the result is a buffer depth around 24 for each lane, 
which is in the middle of the linear part of the plot and, therefore, guarantees deterministic latency.  

If the goal for the system is to achieve deterministic latency with a latency as short as possible, it may be desirable to select an LEMC 
offset value giving buffer depths as small as possible. In that case, an LEMC offset value above the highest LEMC offset resulting in the 
automatic buffer protection being active with some additional headroom to account for PVT variations can be selected. In that situation, 
carry out thorough system testing over all possible temperature, supply and board variations to ensure that the automatic buffer 
protection never gets activated and that deterministic latency is maintained in all possible operating conditions for the system. 

Avoid LEMC offset values giving large buffer depths (near a value of E × 32) because, for some combinations of JESD parameters, it can 
lead to the write and read pointers being too close and therefore can result in data corruption. 
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Figure 31. Buffer Depths for Lane 0, Lane 1, Lane 2, and Lane 3 vs. LEMC Offset on the ADRV9026 CE Board with the ADRV9025Init_StdUseCase26C_nonLinkSharing 

Profile and Buffer Protection Enabled 

Selecting the Optimal LEMC Offset for a System in JESD 204C Mode When E ≤ 2 with Buffer Protection Disabled 

When buffer protection is disabled, it is recommended to select an LEMC offset value that gives buffer depths as close as possible to (E × 
32)/2 to account for variations and maintain deterministic latency on all boards for a given system. To find the LEMC offset 
corresponding to that optimal buffer depth, read back the buffer depth values for all LEMC offset values for all the used lanes with buffer 
protection disabled on a sample board for a given system. Measuring the buffer depths per LEMC offset for 10 power cycles or JESD link 
establishments (with application of a new SYSREF pulse each time) provided a good indication of the buffer depth spread for each LEMC 
offset values. Select an LEMC offset value giving buffer depths as close as possible to (E × 32)/2 for all lanes. 

Figure 32 illustrates this process using the same ADRV9026 CE board with the ADRV9025Init_StdUseCase26C_nonLinkSharing profile 
and automatic buffer protection disabled. 

In this example, an LEMC offset value between 21 and 24 is a good choice because it results in buffer depths around 16 for all the used 
lanes, guaranteeing deterministic latency with no chance of data corruption due to the read and write pointers being too close.  

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
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If the goal for the system is to achieve deterministic latency with a latency as short as possible, it may be desirable to select an LEMC 
offset value giving buffer depths as small as possible but still well above a small number (for example, 10 or 12) to avoid data corruption 
due to the read and write pointers being too close. Note that in that situation, carry out thorough system testing over all possible 
temperature, supply and board variations to ensure that data corruption never occurs in all possible operating conditions for the system. 

Avoid LEMC offset values giving a large buffer depth (near a value of E × 32) because, for some combinations of JESD parameters, it can 
lead to the write and read pointers being too close and therefore can result in data corruption. 
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Figure 32. Buffer Depths for Lane 0, Lane 1, Lane 2, and Lane 3 vs. LEMC Offset on the ADRV9026 CE Board with the ADRV9025Init_StdUseCase26C_nonLinkSharing 

Profile and Buffer Protection Disabled 

Selecting the Optimal LEMC Offset for a System in JESD204C Mode When E > 2 

As mentioned previously, the size of each elastic buffer is 512 octets. When E is bigger than 2, there is some LEMC offset values for which 
more than 512 octets are needed to be stored in the elastic buffer to be able to release the data on the next LEMC edge. As this is not 
possible due to the elastic buffer size, buffer protection gets activated for such LEMC offset values when it is enabled. It is therefore 
recommended to have buffer protection enabled when E > 2. 

In JESD204C mode when E >2, it is recommended to select an LEMC offset that gives buffer depths values as close as possible to the 
center of the linear part of the buffer depths vs. LEMC Offset plot for all the lanes used. 

To find that LEMC offset, read back the buffer depths values for all the used lanes for all LEMC offset values with buffer protection 
enabled on a sample board for a given system. Measuring the buffer depths per LEMC offset for 10 power cycles or JESD link 
establishments (with application of a new SYSREF pulse each time) provides a good indication of the buffer depths spread for each LEMC 
offset.  

Select an LEMC offset value giving buffer depths as close as possible to the center of the linear part of the buffer depth vs. LEMC Offset 
plot for all the used lanes. 

Figure 33 illustrates this process using an ADRV9026 CE board programmed with the ADRV9025Init_StdUseCase14C_LinkSharing 
profile, with automatic buffer protection enabled. 

In this example, LEMC offset values between 87 and 89 are good choices because it results in a buffer depth around 41 for each lane, 
which is in the middle of the linear part of the plot and therefore guarantees deterministic latency.  

If the goal for the system is to achieve deterministic latency with a latency as short as possible, it may be desirable to select an LEMC 
offset value giving buffer depths as small as possible. In that case, an LEMC offset value above the highest LEMC offset resulting in the 
automatic buffer protection being active with some additional headroom to account for PVT variations can be selected. In that situation, 

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
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carry out thorough system testing over all possible temperature, supply and board variations to ensure that the automatic buffer 
protection never gets activated and that deterministic latency is maintained in all possible operating conditions for the system. 

Avoid LEMC offset values giving large buffer depths (near a value of 64) because, for some combinations of JESD parameters, it can lead 
to the write and read pointers being too close and therefore can result in data corruption. 
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Figure 33. Buffer Depths for Lane 0 and Lane 1 vs. LEMC Offset on the ADRV9026 CE Board with the ADRV9025Init_StdUseCase14C_LinkSharing Profile and Buffer 

Protection Enabled 
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SYNTHESIZER CONFIGURATION 
OVERVIEW 
The ADRV9026 employs four phase-locked loop (PLL) synthesizers: Clock, RF (×2), and Auxiliary. Each PLL is based on a fractional-N 
architecture and consists of a common block made up of a reference clock divider, phase frequency detector, charge pump, loop filter, 
feedback divider, and digital control block and either a 1 or 4 core voltage-controlled oscillator (VCO). The AuxPLL and CLKPLL VCO 
have a tuning range of 6.5 GHz to 13 GHz. The RFPLL1 and RFPLL2 VCO have a tuning range of 6.4 GHz to 12.8 GHz. Each PLL drives 
its own local oscillator (LO) generator: RF LOGEN, Aux LOGEN, and CLKGEN. The output of the LOGEN block is a divided version of 
the VCO frequency. No external components are required to cover the entire frequency range of the device. This configuration allows the 
use of any convenient reference frequency for operation on any channel with any sample rate. The reference frequency for the PLL is 
scaled from the reference clock applied to the device. Figure 35 below illustrates the common PLL block used in the ADRV9026.  

CONNECTIONS FOR EXTERNAL REFERENCE CLOCK (DEVCLK) 
The external clock is used as a reference clock for the clock synthesizer, two RF synthesizers, and auxiliary synthesizer in the device and 
thus needs to be a very clean clock source with respect to noise. Connect the external clock inputs to the DEVCLK+ (C8) and DEVCLK− 
(C9) pins via ac coupling capacitors and terminate them with 100 Ω close to the device as shown in Figure 34. The device clock receiver is 
a noise sensitive differential RF receiver. The frequency range of the DEVCLK signal must be between 10 MHz and 1 GHz. Ensure that 
the external clock peak to peak amplitude does is not less than 50 mV or greater than 1 V. 
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Figure 34. Reference Clock Input Connections  
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Figure 35. Synthesizer Interconnection and Clock/LO Distribution Block Diagram 
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EXTERNAL REFERENCE CLOCK (DEVCLK) REQUIREMENTS 
Each RF synthesizer takes a lower frequency reference and multiplies it up to a higher frequency. The phase noise performance at the final 
frequency subsequently has some dependency on the phase noise of the input reference clock. This section discusses the impact of the 
reference (DEVCLK input) on the phase noise performance of the RF synthesizers. In general, the reference clock requirements are 
derived from the desired LO frequencies, PLL loop bandwidths, and somewhat on the phase margin.  

The phase noise plots provided in the ADRV9026 data sheet are taken with a nearly ideal reference clock. An example is shown in Figure 36. 
Any noise on the reference is an additional noise source and can be RSS (root square sum) added to the phase noise specified in the data 
sheet. 
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Figure 36. LO Phase Noise vs. Frequency Offset, FLO =2600 MHz, Loop Bandwidth = 500 kHz, Phase Margin = 60°, DEVCLK Supplied by a Wenzel VCXO 

The LO frequency is related to the reference clock by the following equation:  

fLO = N × fREF 

Loop Gain = 20 × log10(N) 

where N is the multiplier applied to the reference clock frequency (fREF) to generate the desired LO frequency.  

Noise power from the reference sees a multiplication factor equal to the loop gain. What is missing from this equation is the transfer 
function of the PLL that depends on the PLL loop bandwidth and somewhat on the loop phase margin. The loop bandwidth and phase 
margin are provided in the caption of the phase noise figures provided in the data sheet (as shown in Figure 36). 

Figure 37 illustrates several closed loop responses with different loop bandwidths and phase margins listed. Each response is normalized 
to 0 dB using the loop gain calculation value for each to factor in the amount of gain that each response shifts. For example, for a fLO of 
2600 MHz and a fREF of 245.76 MHz the gain is 20.5 dB. With the reference clock noise, the data sheet RF LO phase noise, and this 
transfer function the total noise can be calculated. 
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Figure 37. Normalized PLL Closed Loop Response 
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A 245.76 MHz reference with relatively high noise content is shown in Figure 38. This can be used to calculate the reference clock noise 
impact to the RF PLL using the following process: 

 Multiply the phase noise of the reference clock by the PLL closed loop transfer function. 
 RSS add this product to the corresponding RF PLL phase noise response for the given LO frequency provided in the data sheet. 

The result of this process using the example data in Figure 36 through Figure 38 is illustrated by the plot shown in Figure 39. Note that the 
data sheet reference has much better phase noise at low frequency because it was measured during device characterization testing using 
an extremely low phase noise VCXO as the reference clock. 
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Figure 38. Phase Noise Plot for a Noisy 245.76 MHz Reference Clock 
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Figure 39. Example of Measured Phase Noise vs. Calculated Phase Noise—High Phase Noise Reference Clock 

CLOCK SYNTHESIZER 
The clock synthesizer is used to generate all the clocking signals necessary to run the device. The synthesizer uses a single core VCO 
block. The reference frequency for the clock PLL is scaled from the device clock by the reference clock generator. Although the clock PLL 
is a fractional-N architecture, the signal sampling relationships to the JESD interface rates typically require that the synthesizer operates in 
integer mode. Profiles that are included in the ADRVTRX TES configure the clock synthesizer appropriately. Reconfiguration of the clock 
synthesizer is typically not necessary after initialization. The most direct approach to configuration is to follow the recommended 
programming sequence and utilize provided API functions to set the clock synthesizer to the desired mode of operation. The clock 
generation block of the clock synthesizer provides clock signals for the high speed digital clock, Rx ADC sample and interface clocks, 
ORx ADC sample and interface clocks, and Tx DAC sample and interface clocks.  

RF SYNTHESIZER 
The device contains two RF PLLs. Each RF PLL uses the PLL block common to all synthesizers in the device and employ a 4 core VCO 
block which provides a 6 dB phase noise improvement over the single core VCO. As with the other synthesizers in the device, the 
reference for RF PLL 1 and 2 are sourced from the reference generation block of the device. The RF PLLs are also fractional-N 
architectures with a programmable modulus. The default modulus of 8386560 is programmed to provide an exact frequency on at least a 
2 kHz raster using reference clocks that are integer multiples of 122.88 MHz. More details of the divider options are given in Table 56. 
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The RF LO frequency is derived by dividing down the VCO output in the LOGEN block. The tunable range of the RF LO is 400-6400 MHz. The 
LO divider boundaries are given in Table 57. Note that it is recommend to rerun the init cals when crossing a divide by 2 boundary or when 
changing the LO frequency by ±100 MHz or more from the frequency at which the init cals were performed. 

Table 56. RF Synthesizer Divider Ranges 
 LO Frequency Limits (MHz) 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

AuxPLL 203.125 406.25 406.25 812.5 812.5 1625 1625 3250 3250 6500 
RFPLL1/2 200 400 400 800 800 1600 1600 3200 3200 6400 
Div by 32 16 8 4 2 

 

Table 57. RF Synthesizer LO Boundaries 
 

DEV_CLK_IN 
(MHz) 

PLL 
PFD 
(MHz) 

Desired LO Frequency Ranges (MHz) 
Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

200 400 400 800 800 1600 1600 3200 3200 6400 
LO Step Size 
(Hz) 

491.52, 
245.76 

245.76 0.92 1.83 3.66 7.33 14.65 

307.2 307.2 1.14 2.29 4.58 9.16 18.32 
122.88 122.88 0.46 0.92 1.83 3.66 7.33 
153.6 153.6 0.57 1.14 2.29 4.58 9.16 

Exact 
Decimal 
Frequency 
Raster (Hz) 

491.52, 
245.76 

245.76 250 500 1000 2000 4000 

307.2 307.2 312.5 625 1250 2500 5000 
122.88 122.88 125 250 500 1000 2000 
153.6 153.6 156.25 312.5 625 1250 2500 

A switching network is implemented in the device to provide flexibility in LO assignment for the two RF LO sources. The switching 
network is diagrammed in Figure 40. Note that it is not recommended to set RFLO1 = RFLO2; this cab cause unwanted coupling between 
the two PLLs. To set RFLO1 = RFLO2, then set either RFPLL1 or RFPLL2 to the desired frequency and mux that PLL to both TxLO and 
RxLO. That is, set either TXLO = RXLO = RFLO1 or TXLO = RXLO = RFLO2 and power down the unused RFLO. 
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AUXILIARY SYNTHESIZER 
An auxiliary synthesizer is integrated to generate the signals necessary to calibrate the device. This synthesizer utilizes a single core VCO. 
The reference frequency for the AUX synthesizer is scaled from the device clock via the reference clock generation system. The output 
signal is connected to a switching network and injected into the various circuits to calibrate filter bandwidth corners, or into the Rx signal 
chain as an offset LO. Calibrations are executed during the initialization sequence at startup. There is no signal present at the Rx/ORx 
input during tone calibration time. Calibrations are fully autonomous. During the calibration, the auxiliary synthesizer is controlled solely 
by the internal Arm processor and does not require any user interactions. The AUX LO signal is also available as an LO source for the 
observation receiver mixers.  
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Figure 40. LO Switching Network 

SETTING THE LO FREQUENCIES 
There are two commands that the user can execute to select the LO frequency in the device. One is used when the user does not have 
special phase requirements between the Tx LO and the AUX LO; the other is used when the user has special phase requirements. When 
no phase requirements exist, the user can run the following API command: 
int32_t adi_adrv9025_PllFrequencySet(adi_adrv9025_Device_t* device, adi_adrv9025_PllName_e 
pllName, uint64_t pllLoFrequency_Hz) 

If the user has special phase requirements, relies on their own LOL/QEC tracking calibrations, or requires a faster lock time, the user can 
use the following function which provides more control over these settings.  

int32_t adi_adrv9025_PllFrequencySet_v2(adi_adrv9025_Device_t* device, adi_adrv9025_PllConfig_t 
*pllConfig) 

An example of this situation involves placing the AUX LO at a user defined offset from the TX LO that is normally defaulted to 
+(bandwidth/2 + 5) MHz. If the user has no specific requirements on the phase or frequency of the auxiliary LO, use the 
adi_adrv9025_PllFrequencySet(…) command. More details about these commands are in the API Functions section of this chapter. 

Both commands can be run any time after device initialization, and neither has any prerequisite commands or requirements. The 
structures and enumerators for these API commands are detailed in Table 58 through Table 62. 

Table 58. adi_adrv9025_PllConfig_t Structure 
Data Type Parameter Range Description 
PllName_e pllName Table 59 Name of the PLL the user wants to control. 
PllModeSel_e pllModeSel Table 60 The user can select between Slow locking or fast locking mode. 
PllAuxLoResyncSel_e pllAuxLoResyncSel Table 61 The user can select between resyncing and not resyncing the AUX LO to 

the TX LO after a frequency change. 
PllAuxLoOffsetProgSel pllAuxLoOffsetProgSel Table 62 The user can select whether the auxiliary LO frequency is changed to be 

+(bandwidth/2 + 5) MHz or to not be changed after a frequency change. 
Uint64_t pllLoFrequency_Hz 400 × 106 to 

6000 × 106 
The LO frequency which the customer wants to set in Hz. 
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Table 59. adi_adrv9025_PllName_e Enumerator 
Enum Enum Values Description 
PllName_e ADI_ADRV9025_LO1_PLL Selects LO1 PLL for Tx/Rx/ORx 
 ADI_ADRV9025_LO2_PLL Selects LO2 PLL for Tx/Rx/ORx. 
 ADI_ADRV9025_AUX_PLL Selects AUX PLL for ORx. 
 

Table 60. adi_adrv9025_Pll_ModeSel_e Enumerator 
Enum Enum Values Description 
pllModeSel_e ADI_ADRV9025_PLL_SLOW_MODE Slow lock mode. This mode skips some calibrations in order to lock the PLL faster. 

Table 61. adi_adrv9025_pllAuxLoResyncSel_e Enumerator 
Enum Enum Values Description 
pllAuxLoResyncSel_e ADI_ADRV9025_PLL_AUX_LO_RESYNC_ENABLE Resyncs the AUX LO to the Tx LO after a frequency change. 
 ADI_ADRV9025_PLL_AUX_LO_RESYNC_DISABLE Does not resync the AUX LO to the Tx LO after a frequency 

change. 

Table 62. adi_adrv9025_pllAuxLoOffsetProgSel_e Enumerator 
Enum Enum Values Description 
pllAuxLoOffsetProgSel_e ADI_ADRV9025_PLL_AUX_LO_OFFSET_PROG_ENABLE Programs the AUX LO to be +(bandwidth/2 + 5) MHz 

from the Tx LO after every frequency change. 
 ADI_ADRV9025_PLL_AUX_LO_OFFSET_PROG_DISABLE Does not set the AUX LO after a frequency change. 

API Functions 

adi_adrv9025_PllFrequencySet(…) 
int32_t adi_adrv9025_PllFrequencySet(adi_adrv9025_Device_t* device, adi_adrv9025_PllName_e 
pllName, uint64_t pllLoFrequency_Hz) 

Description  

This function sets the LO frequency of the chosen PLL.  

Precondition 

After device initialization. 

Parameters  

Table 63.  
Parameter Description 
*device  Pointer to device structure. 
pllName The PLL selected for setting the frequency. 
pllLoFrequency_Hz Frequency of the LO the user wants to set in Hz. 

adi_adrv9025_PllFrequencyGet(…) 
int32_t adi_adrv9025_PllFrequencyGet(adi_adrv9025_Device_t* device, adi_adrv9025_PllName_e 
pllName, uint64_t *pllLoFrequency_Hz) 

Description 

This function gets the LO frequency of the chosen PLL. 

Precondition  

After device initialization. 

Parameters  

Table 64.  
Parameter Description 
*device  Pointer to device structure. 
pllName The PLL selected for getting the frequency. 
*pllLoFrequency_Hz Pointer to the frequency of the LO the user wants to set in Hz. 
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adi_adrv9025_PllFrequencySet_v2(…) 
int32_t adi_adrv9025_PllFrequencySet_v2(adi_adrv9025_Device_t* device, adi_adrv9025_PllConfig_t 
*pllConfig); 

Description 

Use this function when the user has special phase constraints that they need to put on certain PLLs to meet system requirements. 
adi_adrv9025_PllFrequencySet_v2(…) is equivalent to adi_adrv9025_PllFrequencySet(…) with the following parameters set in the 
adi_adrv9025_PllConfig_t structure: 

Table 65.  
Parameter Description 
pllModeSel  ADI_ADRV9025_PLL_SLOW_MODE 
pllAuxLoResyncSel ADI_ADRV9025_PLL_AUX_LO_RESYNC_ENABLE 
pllAuxLoOffsetProgSel ADI_ADRV9025_PLL_AUX_LO_OFFSET_PROG_ENABLE 

Precondition  

After device initialization. 

Parameters 

Parameter Description 
*device  Pointer to device structure. 
*pllConfig Pointer to PLL configuration structure. 

adi_adrv9025_PllLoopFilterSet(…) 
int32_t adi_adrv9025_PllLoopFilterSet(adi_adrv9025_Device_t* device, adi_adrv9025_PllName_e 
pllName, adi_adrv9025_PllLoopFilterCfg_t *pllLoopFilterConfig); 

Description 

This function allows the user to set the PLL loop filter bandwidth, phase margin, and power scale of the device. 

Precondition  

After device initialization. 

Parameters 

Table 66.  
Parameter Description 
*device  Pointer to device structure. 
pllName PLL selected for changing settings. 
*pllLoopFilterConfig Pointer to loop filter configuration structure passed to the device. 

adi_adrv9025_PllLoopFilterGet(…) 
int32_t adi_adrv9025_PllLoopFilterGet(adi_adrv9025_Device_t* device, adi_adrv9025_PllName_e 
pllName, adi_adrv9025_PllLoopFilterCfg_t *pllLoopFilterConfig); 

Description 

This function allows the user to get the PLL loop filter bandwidth, phase margin, and power scale of the device. 

Precondition 

After device initialization. 

Parameters 

Table 67.  
Parameter Description 
*device  Pointer to device structure. 
pllName PLL selected for getting settings. 
*pllLoopFilterConfig Pointer to loop filter configuration structure passed to the device, returns the current 

configuration. 
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EXTERNAL LO 
The device is provisioned with 2 external LO ports. These ports share a pair of balls and can be configured to be input or output for LO 
signals. In an input configuration, they provide the option to drive the LO with another device in order to synchronize multiple devices in 
the same system or to provide an LO with better phase noise performance in order to meet stringent requirements as in the case of 
multicarrier GSM receivers. In an output configuration, the LO of one device can drive the LO input of another device. Refer to Figure 40 
for illustration of EXT LO connection in reference to the RF LO sources. 

EXT LO IN 

External LO in can receive a signal between 200 MHz and 13 GHz through a matched differential impedance of 100 Ω and delivers a 
programmable signal between 25 MHz and 6.5 GHz as the LO for transmitters and receivers in the device. Amplitude must be maintained 
between ±6 dBm. 

EXT LO OUT 

In the output mode, the port delivers the internal LO divided by 1 to 128 providing a frequency range of 25 MHz to 6.5 GHz. 

LOCK STATUS 
Lock status of the clock, RF and auxiliary PLLs is provided through the following API command: 
adi_adrv9025_PllStatusGet(adi_adrv9025_Device_t* device, uint32_t *pllLockStatus); 

 

Table 68. pllLockStatus Return Values 
Variable Bit Position Return Values 
 *pllLockStatus D0 1 = CLK PLL Locked; 0 = Unlocked 
 D1 1 = LO1 PLL Locked; 0 = Unlocked 
 D2 1 = LO2 PLL Locked; 0 = Unlocked 
 D3 1 = AUX (LO3) PLL Locked; 0 = Unlocked 

Additionally, PLL lock status can be set to assert via a general purpose interrupt pin. For monitoring the lock status over the GPINT 
signal, see the General-Purpose Interrupt section.  

API Functions 

Adi_adrv9025_PllStatusGet(…) 
int32_t adi_adrv9025_PllStatusGet(adi_adrv9025_Device_t* device, uint32_t *pllLockStatus) 

Description 

This function gets the PLL lock status of Clock, LO1, LO2 and AUX PLLs and returns them in the parameter *pllLockStatus. 

Precondition 

After device initialization. 

Parameters 

Table 69.  
Parameter Description 
*device  Pointer to device structure. 
*pllLockStatus Pointer to structure element that contains the PLL Lock Status. 
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RF PLL PHASE SYNCHRONIZATION 
The RFPLL Phase Sync description is included at this time for prototyping and evaluation purposes only. Consult Analog Devices for 
function availability.  

This function has been added to allow the internally generated LO to be phase synchronized and aligned to the applied reference clock. In 
multiple transceiver systems, this function allows all devices to align the RFPLL to the same point, and therefore the phase between each 
device is aligned at startup so that phasing between devices is repeatable and fixed. At startup, the standard JESD204B multi-chip 
synchronization mechanism (MCS) implemented with the device clock (DEVCLK) and system reference signal (SYSREF) are used to 
reset the data converter clocks and all other clocks at the baseband rate. These same signals are also used to initialize an on-chip counter 
which is later used during PLL programming to synchronize the LO phase. No additional signals are required to take advantage of the LO 
phase synchronization mechanism. From the on-chip counter and a PLL fractional word programming, a digital representation of the 
desired LO phase can be computed at each PLL reference clock edge and is remembered in the digital phase accumulator (DPA).  

The LO phase sync hardware operates by directly sampling the LO signal (in quadrature) using the PLL reference clock signal (DEVCLK). 
Averaging is required to increase the accuracy of the LO phase measurement, so at every sample, the observed LO phase is de-rotated by 
the digitally desired phase. This is done by performing a vector multiplication of the complex conjugate of the digital phase. The result is a 
vector representing the phase difference between the LO and the digitally desired phase, and these vectors can be averaged over many 
DEVCLK cycles to obtain an accurate measurement of the phase adjustment required.  

After the phase difference has been measured, the adjustment can be applied into the first stage Σ-Δ modulator (SDM) of the PLL by 
adding it to the first stage modulator input. The total adjustment amount is added over many reference clock cycles in order to stay within 
the PLL loop bandwidth and not cause the PLL to come unlocked. To counteract temperature effects after calibration, a PLL phase 
tracking mode can be activated. Figure 41 is a block diagram of the phase synchronization system. 
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Figure 41. LO Phase Sync Functional Diagram 
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System Level Considerations 

Overall phase synchronization is determined by a number of factors, including the board level clock routing (tCLK), the on-chip reference 
path routing (tREFPATH), the PLL and LO divider path (tPLL), and the RF and antenna paths (tRF). These time delays are illustrated in Figure 42. In a 
beam forming/MIMO system, there is a system level antenna calibration that is performed to equalize the sum of these paths between all 
channels. The goals of this transceiver mechanism are: 

 Reduce the complexity of the antenna calibration by initializing to a more consistent startup condition with deterministic PLL phase 
and LO divider state,  

 Reduce the temperature dependence of the system phase synchronization to allow the antenna calibration to run less frequently 
during operation,  

 Allow transceivers to be stopped and started in an operational system and “hot synchronize” with the other transceiver elements.  

The LO phase synchronization method addresses the initial PLL phase and LO divider state and reduces their temperature dependence to 
a negligible amount compared to other sources of phase drift in the system.  
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Figure 42. High Level Contributions to System Phase Per Antenna 
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ARM PROCESSOR AND DEVICE CALIBRATIONS 
The ADRV9026 is equipped with a built in Arm M4 processor. The firmware for this Arm processor is loaded during the initialization 
process. The firmware memory size is 224 kB, and the Arm has access to a further 160 kB of data memory to utilize. The Arm is tasked 
with configuring the device for the selected use case, performing initial calibrations of the signal paths and maintaining device 
performance over time through tracking calibrations.  

ARM STATE MACHINE OVERVIEW 
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Figure 43. Arm State Machine 

State 0: When the arm core is powered up, the Arm moves into its power-up/reset state. The Arm firmware image is loaded at this point. 
Once the Arm image has been loaded, the Arm is enabled and begins its boot sequence. 

State 1: After the arm has been booted, it enters its ready/idle state. In this state, it can receive configuration settings or commands 
(instructions), such as performing the initial calibrations of the device or enabling tracking calibrations. 

SYSTEM INITIALIZATION 
The System Initialization section of this document provides a detailed description of the initialization procedure. There are three main 
sections to the initialization procedure. 

Pre MCS Init initializes the device up to the multichip sync procedure. The Pre-MCS init sequence is split into two commands that the 
application layer function calls. These are adi_adrv9025_PreMcsInit_v2(…) and adi_adrv9025_PreMcsInit_NonBroadCast(…). 
adi_adrv9025_PreMcsInit_v2(…) is a broadcastable command that can simultaneously issue commands to multiple transceivers to save 
time during system initialization for systems with multiple transceivers. Arm and Stream binaries are programmed to the chip during this 
step. The broadcast functionality is realized by issuing SPI write commands only. The adi_adrv9025_PreMcsInit_NonBroadCast(…) 
verifies that the Arm is programmed properly by verifying the Arm checksum and that the Arm is in the Ready/Idle state.  

The multichip sync (MCS) step uses SYSREF pulses to synchronize internal clocks within the transceiver. Required for deterministic 
latency.  

Post-MCS Init continues initialization following MCS. The application layer command that performs the post-MCS initialization is 
adi_adrv9025_PostMcsInit(…). This command programs the PLLs, configures the radio control initialization structure and instructs the 
Arm to perform initialization calibrations. 

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
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PRE MCS INITIALIZATION 
This section explains the Arm related function calls in adi_adrv9025_PreMcsInit_v2( ). Run adi_adrv9025_PreMcsInit_v2(…) as part of 
the initialization sequence.  

adi_adrv9025_PreMcsInit_v2(adi_adrv9025_Device_t *device, 

                           adi_adrv9025_Init_t *init, 

                           const char *armImagePath,  

                           const char *streamImagePath, 

                           adi_adrv9025_RxGainTableFile_t rxGainTableFileArr[], 

                           uint8_t rxGainTableFileArrSize, 

                           adi_adrv9025_TxAttenTableFile_t txAttenTableFileArr[], 

                           uint8_t txAttenTableFileArrSize); 

Of importance from the perspective of the Arm is the armImagePath, a file system location where the Arm binary is stored, which is 
required for the Arm to be loaded. 

The adi_adrv9025_PreMcsInit_v2(…) function is in the adi_adrv9025_utilities.c/h file. It performs a sizeable part of the full chip 
initialization. From the point of view of the Arm, it performs a number of tasks. The first step is to load the Arm image: 
adi_adrv9025_ArmImageLoad(device, armImagePath), where device is the transceiver device structure. 

armImagePath is the path to the Arm image binary passed as a parameter to adi_adrv9025_PreMcsInit_v2( )  

The Arm image is provided in the Resources/ArmFiles folder of the GUI installation folder. 

Following the Arm firmware image being loaded, the next step is to load the device configuration into data memory using 
adi_adrv9025_ArmProfileWrite(adi_adrv9025_Device_t *device, const adi_adrv9025_Init_t *init). 

*init is the initialization settings data structure. 

The Arm is then started and begins its boot sequence. This process is initiated by: 

adi_adrv9025_ArmStart(adi_adrv9025_Device_t *device, const adi_adrv9025_Init_t *init) 

As part of the boot sequence, the Arm configures the device for the required profile (Tx/Rx/ORx path configuration as determined by the 
use case), configures and enables the clock PLL (the device starts initialization on the device clock), and configures the JESD framers and 
deframers. The Arm also computes a checksum for the Arm firmware image loaded, for each of the streams loaded and the profiles 
loaded (determining if they are valid profiles). The following API function waits for the Arm boot to complete, compares the computed 
checksums during booth to precomputed checksums, for example comparing the Arm firmware checksum vs. the Arm checksum which 
is calculated upon compilation of the Arm firmware and stored within the Arm firmware image: 
adi_adrv9025_ArmStartStatusCheck(adi_adrv9025_Device_t *device, uint32_t timeout_us), where timeout_us is a timing parameter that 
dictates the longest time that the function waits for arm booting to complete  

If a checksum is found not to be valid, this function returns an error. 

POST MCS INITIALIZATION 
After the MCS sequence has been completed, the Arm is ready to configure the radio, perform its initialization calibrations and bring up 
the JESD link. Once complete, the tracking calibrations can be enabled. The RF data paths can then be enabled using either SPI or pin 
modes. 

Note that there is no absolute requirement to follow this sequence. The initialization calibrations and tracking calibrations do not need to 
be run in order for the paths to be enabled in the device. It is ultimately up to the user to ensure that the paths have been correctly 
configured prior to operation. 

DEVICE CALIBRATIONS 
The Arm is tasked with performing calibrations for the device to achieve its performance specifications. These are split into two 
categories: initial calibrations which are run either before the device is operational or after LO frequency change; and tracking calibrations 
which are used to maintain performance during runtime. 

A number of Tx calibrations use an observation path to observe the signal at the output of the Tx. For the most part, they use an internal 
loopback path from Tx to ORx. The exception is the external LOL initialization and tracking algorithms that require the use of an 
external path connection between the Rx output and an ORx input (typically the DPD feedback path).  
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A requirement for this device is that the ORx channel used to calibrate a Tx channel must be on the same side of the chip as that Tx 
channel. Table 70 provides the possible feedback combinations. For example, it is not possible for LO Leakage tracking to calibrate Tx4 by 
providing its output to ORx1 or ORx2.  

Table 70. External Feedback Path Possibilities 
Channel Available Feedback Channels 
Tx1 ORx1 or ORx2 
Tx2 ORx1 or ORx2 
Tx3 ORx3 or ORx4 
Tx4 ORx3 or ORx4 

Figure 44 shows an example of four feedback paths, each Tx going back to an ORx, obeying the principle of each Tx being fed back to an 
ORx on the same side of the device. It is also possible to have both Tx1 and Tx2 going back to a single ORx input (either ORx1 or ORx2) 
through a switch, likewise Tx3 and Tx4 can go back to a single ORx input (either ORx3 or ORx4).  

Note: for the diagrams outlining the operation of individual calibrations, the Tx and ORx inputs are not numbered. Instead it is assumed 
that the principle of a Tx being fed back to an ORx on the same side of the device is being obeyed. 

22
7

70
-0

45

 
Figure 44. External Feedback for Tx Tracking Calibrations 

INITIAL CALIBRATIONS 
The Arm processor in the device is tasked with scheduling/performing initial calibrations to optimize the performance of the signal paths 
prior to device operation. These calibrations are run as part of the utility API function adi_adrv9025_PostMcsInit( ). To correctly 
perform the initial calibrations, this utility function needs to be called. This section also provides details of the procedure invoked in 
adi_adrv9025_PostMcsInit( ) to perform the initial calibrations, principally for further information, but also in case there is a need to run 
initial calibrations outside of the post MCS initialization procedure. The function definition for the post MCS initialization is: 

adi_adrv9025_PostMcsInit(adi_adrv9025_Device_t *device, adi_adrv9025_PostMcsInit_t *utilityInit) 

*utilityInit is a structure containing a structure determining the initial calibrations to be run as part of the post MCS initialization routine  

In some cases, it is required to run an initial calibration outside of adi_adrv9025_PostMcsInit(…). This following command instructs the 
Arm to perform the requested calibrations: 
adi_adrv9025_InitCalsRun(adi_adrv9025_Device_t *device, adi_adrv9025_InitCals_t *initCals) 

*initCals is the initial calibration structure, passed to adi_adrv9025_PostMcsInit as part of utilityInit, that informs the Arm processor 
which calibrations to run on which enabled path. initCals is composed of a uint32_t calMask and a uint8_t channelMask. calMask 
indicates which calibrations are to run in this call of adrv9025_InitCalsRun( ). 

Table 71 shows the bit assignments of the calibration mask. Note that Table 71 provides a full list of initialization calibrations for the 
device. Some initial calibrations are not available for certain variants of the ADRV9026 device.  

The channelMask parameter, a member of the adi_adrv9025_InitCals_t structure, advises which channels the selected calibrations run. 
Each bit of the bitmask refers to an individual channel as shown in Table 72. The mask is universally applied to all calibrations selected in 
the current call of adi_adrv9025_initCalsRun( ), regardless of the paths that the calibrations are being run for. For example, if 0xF is 

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
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chosen as a mask and both Rx and Tx calibrations are selected in the calMask, then when the Arm runs an Rx calibration it does so on all 
four Rx channels. Likewise, when it runs a Tx calibration it does so on all four Tx channels. 

Table 71. calMask Bit Assignments 
Bits Corresponding Enum Calibration Description 
D0 ADI_ADRV9025_TX_BB_FILTER Tx baseband filter 

calibration 
This is used to tune the corner frequency of the Tx Baseband 
filter. 

D1 ADI_ADRV9025_ADC_TUNER ADC tuner 
calibration 

This is used to configure the ADC for the required profile 
bandwidth. 

D2 ADI_ADRV9025_RX_TIA Rx TIA filter 
calibration 

This is used to tune the corner frequency of the Rx TIA Filter. 

D3 ADI_ADRV9025_ORX_TIA ORx TIA filter 
calibration 

This is used to tune the corner frequency of the ORx TIA 
Filter. 

D4 ADI_ADRV9025_LBRX_TIA Loopback Rx TIA 
Filter calibration 

This is used to tune the corner frequency of the Loopback Rx 
TIA Filter. 

D5 ADI_ADRV9025_RX_DC_OFFSET Rx dc offset 
calibration 

This is used to correct for dc Offset within the Rx chain. 

D6 ADI_ADRV9025_ORX_DC_OFFSET ORx dc offset 
calibration 

This is used to correct for dc Offset within the ORx chain. 

D7 ADI_ADRV9025_LBRX_DC_OFFSET Loopback Rx dc 
offset calibration 

This is used to correct for dc Offset within the loopback Rx 
chain. 

D8 ADI_ADRV9025_FLASH_CAL ADC flash 
calibration 

This is used to optimally configure the ADC Flash converters. 

D9 ADI_ADRV9025_INTERNAL_PATH_DELAY Internal path delay 
calibration 

This computes the Tx to internal loopback path delay, which 
is required for the TxQEC initial calibration and tracking. 

D10 ADI_ADRV9025_TX_LO_LEAKAGE_ INTERNAL Tx LO leakage 
initial calibration 

This performs an initial LO leakage calibration for the Tx path. 
It utilizes the Tx path and the internal loopback path (see 
Figure 47). 

D11 ADI_ADRV9025_TX_LO_LEAKAGE_EXTERNAL Tx LO leakage 
external initial 
calibration 

This performs an initial external LO leakage calibration for 
the Tx path. It utilizes the Tx path, a required external 
loopback path and the ORx path (see Figure 48). The external 
loop must be enabled such that the Tx output is observable 
by the ORx. 

D12 ADI_ADRV9025_TX_QEC_INIT Tx QEC initial 
calibration 

This performs an initial QEC calibration for the Tx path. It utilizes 
the Tx path and an internal loopback path (see Figure 47). 

D13 ADI_ADRV9025_LOOPBACK_RX_LO_DELAY Loopback Rx LO 
delay calibration 

This is used to perform an LO delay calibration for the 
loopback path. 

D14 ADI_ADRV9025_LOOPBACK_RX_RX_QEC_INIT Loopback RxQEC 
initial calibration 

This performs an initial QEC calibration for the Rx path. 

D15 ADI_ADRV9025_RX_LO_DELAY Rx LO delay 
calibration 

This is used to perform an LO delay calibration for the 
receiver path.  

D16 ADI_ADRV9025_RX_QEC_INIT Rx QEC initial 
calibration 

This performs an initial QEC calibration for the Rx path. 

D17 ADI_ADRV9025_ORX_LO_DELAY ORx LO delay 
calibration 

This is used to perform an LO delay calibration for the 
observation receiver path. 

D18 ADI_ADRV9025_ORX_QEC_INIT ORx QEC initial 
calibration 

This performs an initial QEC calibration for the observation 
receiver path. 

D19 ADI_ADRV9025_TX_DAC Tx DAC initial 
calibration 

This performs a calibration of the Tx DAC. 

D20 Reserved   
D21 ADI_ADRV9025_EXTERNAL_PATH_DELAY External Tx to ORx 

path delay initial 
calibration  

This acquires an estimation of the Tx to ORx path delay (not 
required if CLGC tracking is not used) 

D22 Reserved   
D23 ADI_ADRV9025_HD2 HD2 initial 

calibration 
This performs an initial calibration of the HD2 product in the 
Rx path (typically required only in GSM applications). 
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Bits Corresponding Enum Calibration Description 
D24 ADI_ADRV9025_TX_ATTENUATION_DELAY Tx attenuation 

delay calibration 
This is used to calculate the path delay between the Tx 
analog and digital attenuation blocks. This delay is then used 
to delay the onset of Tx analog attenuation when the Tx 
attenuation changes. This synchronizes the attenuation 
change at the Tx output.  

D25 ADI_ADRV9025_TX_ATTEN_TABLE Tx attenuation 
table linearization 
calibration 

This is used to correct for phase changes between different 
attenuation indices in the Tx attenuation table. 

D26 ADI_ADRV9025_RX_GAIN_DELAY Rx gain delay 
calibration 

This is used to calculate the path delay between the Rx 
analog and digital attenuation blocks. This delay is then used 
to delay the onset of Rx analog attenuation when the Rx gain 
index is changed. This synchronizes the gain change in the 
baseband data. 

D27 ADI_ADRV9025_RX_GAIN_PHASE Rx gain phase 
calibration 

This is used to correct for phase changes between different 
gain indices in the Rx gain table. 

D28 Reserved   
D29 ADI_ADRV9025_CFR_INIT Crest factor 

reduction 
initialization 
calibration 

This performs an initialization calibration for the ADRV9026 
CFR hardware. 

D30 ADI_ADRV9025_SERDES_INIT SERDES 
initialization cal 

This performs an initialization calibration for the ADRV9026 
JESD 204C data interface. 

D31 Reserved   

Table 72. channelMask Bit Assignments 
Bits Channel 
D0 Channel 1 (either Rx1/Tx1/ORx1 depending on calibration being performed) 
D1 Channel 2 (either Rx2/Tx2/ORx2 depending on calibration being performed) 
D2 Channel 3 (either Rx3/Tx3/ORx3 depending on calibration being performed) 
D3 Channel 4 (either Rx4/Tx4/ORx4 depending on calibration being performed) 

The Arm sequences the initial calibrations as required, not necessarily in the bit order presented above. It is mandatory that the user wait 
for calibrations to complete before continuing with the initialization of the device. The following API command is used to verify that the 
initial calibrations are complete: 

adi_adrv9025_InitCalsWait(adi_adrv9025_Device_t *device, uint32_t timeoutMs, uint8_t *errorFlag) 

timeoutMs is the time in milliseconds (ms) that the function must wait for the calibrations to complete before returning an error  

errorFlag indicates if there was an Arm error when the running the initialization calibrations 

This function implements a blocking wait until the initial calibrations have been completed. An alternative function can be used instead 
which determines if the initial calibrations are still running using the following API: 

adi_adrv9025_InitCalsCheckCompleteGet(adi_adrv 9025_Device_t *device, uint8_t *areCalsRunning, 
uint8_t *errorFlag); 

*areCalsRunning is a value to indicate if calibrations are still running (0 = initial calibrations have completed, 1 = initial calibrations are 
still running) 

errorFlag indicates if there was an Arm error when the running the initialization calibrations. 

In the case when an initial calibration error occurs, information about the error can be obtained with the following command: 

adi_adrv9025_InitCalsDetailedStatusGet(adi_adr v9025_Device_t *device, 
adi_adrv9025_InitCalStatus_t *initStatus); 

*initStatus is a pointer to a data structure that contains initial calibration status information. The adi_adrv9025_InitCalStatus_t data 
structure details are described in Table 73. 

 

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
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Table 73. Definition of adi_adrv9025_InitCalStatus_t 
Parameter Interpretation 
initErrCode Returns the Object ID and error code reported for the initialization calibration failure. The object ID is contained 

within Bits[D15:D8] and error bits are contained within Bits[D7:D0].  
initErrCal Returns the object ID of the calibration reporting an error. 
calsDurationUsec Time duration in microseconds of the most recent InitCalsRun invocation.  
calsSincePowerUp[4] A 4-element array indicating the bitmask of initial calibrations run since power up. Each element of the array 

corresponds to calibrations performed on each channel. 
calsLastRun[4] A 4-element array indication the bitmask of initial calibrations run in the most recent invocation of InitCalsRun. Each 

element of the array corresponds to calibrations performed on each channel. 

SYSTEM CONSIDERATIONS FOR INITIAL CALIBRATIONS 
The following diagrams are used to show how the device is configured for notable calibrations with external system requirements, such as 
the QEC and LOL calibrations. In all diagrams, gray lines and blocks are not active in the calibration. Lines showing the path of the LOs 
are shown in color to distinguish them from the signal paths. A brief explanation of the calibration is provided. Note that as the Arm 
performs each of the calibrations, it is tasked with configuring the device as per Figure 45, with respect to enabling/disabling paths, for 
example. No user input is required in this regard.  

It is important that the user ensures that external conditions are met, such as having the PA off for all calibrations other than the external 
LOL initialization calibration, or having the Rx input properly terminated for an Rx QEC initialization calibration. 

Rx QEC Initial Calibration 

The Rx QEC initialization calibration algorithm is utilized to improve the Rx path QEC performance. The Rx QEC calibration routine 
sweeps a number of internally generated test tones across the desired frequency band, measuring quadrature performance and calculating 
correction coefficients. Tone generation is performed by the CAL PLL in the figure above, which is the AUX PLL. When the Rx QEC 
initialization calibration runs, the Arm configures the Rx to the maximum gain index (255).  

System requirement: The input port must be isolated from incoming signals or the calibration may fail to complete. The calibration tones 
appear on the Rx pins and, therefore, must be prevented from reaching the antenna through the Rx port being properly terminated into a 
50 Ω load. If an LNA is present at the Rx input, it is recommended to disable the LNA during the calibration. 
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Figure 45. Rx QEC Initial Calibration System Configuration 

ORx QEC Initial Calibration 

The ORx QEC calibration functions by sweeping a number of internally generated test tones across the band measuring quadrature 
performance and calculating correction coefficients. The Arm determines which PLL is free for use as a calibration source given the LO 
selections. In the figure above, the Tx LO is the LO source for the ORx channel and the AUX PLL acts as the CAL PLL.  

System Requirement: For optimum performance, the ORx QEC initialization must run at the same attenuation setting as described in the 
External Tx LOL Init Cal system requirement, that is, it is recommended to set the internal ORx attenuation to 10 dB for TXLO ≤ 
2.8 GHz or 14 dB to 16 dB for TXLO > 2.8 GHz.  

Isolate the ORx input from incoming signals and be properly terminated into a 50 Ω load while the calibration is running. The calibration 
tones appear on the ORx pins and, therefore, must be prevented from reaching the antenna. 

Rx/ORx TIA Initial Calibration 

The Rx/ORx TIA calibration is used to calibrate the corner frequency of the analog baseband TIA filter in the Rx/ORx signal path. The 
signal path used for this calibration is the same as the Rx QEC initialization calibration shown in Figure 45. The calibration applies two 
tones sequentially, one in-band and another at the TIA corner frequency, and compares the amplitude of both of these signals to ensure 
that the corner frequency produces the appropriate roll-off.  
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System requirement: Isolate the input port from incoming signals or the calibration may fail to complete. 
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Figure 46. ORx QEC Initial Calibration System Configuration 

Internal Tx LO Leakage and Tx QEC Initial Calibrations 

The Tx LO Leakage and Tx QEC Initial calibrations utilize the internal loopback path and the baseband section of the ORx path to 
calculate its initial correction factors. During these calibrations, test signals (tones and wideband signals) are output. These appear at the 
Tx output, so it is important that the PA connected to the device output be switched off. Both calibrations sweep through a series of 
attenuation values, creating a table of initial calibration values over attenuation. Then during operation and upon application of a new Tx 
attenuation setting, the corresponding QEC and LOL correction values are applied to the Tx channel by the Arm. The device 
configuration for this calibration is shown in Figure 47. 

System requirement: The PA in the Tx path must be powered off during these calibrations to prevent potential damage to the PA. When 
the PA is disabled, ensure the load seen at the Tx output is 50 Ω. 
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Figure 47. Device Path Configuration for Tx LOL and QEC Initial Calibrations 

External Tx LO Leakage Initial Calibration  

The external LOL initialization calibration requires that the PA be enabled such that a full external loop is made between the Tx outputs 
and the ORx inputs. The purpose of this calibration is to obtain a good estimate (gain/phase) of the external loop channel conditions 
prior to operation. The device configuration is shown in Figure 48. The calibration utilizes a pseudo-random noise signal to estimate the 
channel conditions. This is a broadband signal with a nominal level of -78 dBFS out of the DAC. 

It is important that a suitable attenuator be chosen between the PA output and the ORx input. This is to prevent Tx data from saturating 
the ORx input. This is also necessary from the perspective of DPD operation. 

Note: If the ORx receives an input signal larger than the ADC full scale, the channel overloads and calibration results are poor. The arm 
does not issue a warning or error condition in this case. Similarly the arm does not issue a warning if the physical Tx to ORx mapping 
does not match the programmed Tx to ORx mapping. 

System requirement: The output of the Tx channel to be calibrated must be routed to the utilized ORx path to properly observe the 
calibration signal. If there is a PA in the path, it must be enabled during this calibration. The Tx to ORx mapping must be configured (via 
API or GPIO) prior to the calibration to indicate which Tx is routed back to which ORx (see the Tx to ORx Feedback section). 
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Choose the combined external coupler plus attenuation to provide a peak input power close to PHIGH at the ORx input pin such that the 
peak power is close to −2 dBFS at the digital output with the programmed internal attenuation. For optimal external LOL initial 
calibration and LOL tracking calibration, it is recommended to set the internal ORx attenuation to 10 dB for TXLO ≤ 2.8 GHz or 14 dB to 
16 dB for TXLO > 2.8 GHz.  
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Figure 48. External LOL System Configuration (grayed-out circuitry not in use) 

Rx Gain Delay Initial Calibration 

The Rx datapath features an analog and a digital gain/attenuation element. If the analog and digital gain changed simultaneously, then the 
received baseband data shows a two-step change in the gain index. The first gain change seen in the baseband is from the digital gain 
change and the second gain change is from the analog gain change. This is due to the non-zero data path latency between the analog and 
digital gain/attenuation elements.  

The Rx gain delay calibration measures the latency between the analog and digital gain/attenuation elements in order to delay the onset of 
digital gain. This ensures that when the analog and digital gain change that the baseband data shows a single coordinated gain change 
between these two elements. Because the analog gain change is not delayed there are no consequences to AGC timing due to this 
calibration.  

Rx Gain Phase  

The Rx gain phase calibration is used to minimize the phase differences between different gain indices. This calibration scans the gain 
table for unique analog attenuation settings and applies a phase shift for each setting to minimize the phase difference between gain index 
settings. The AUX PLL is used to transmit a tone at the Rx input and measure the phase difference. The phase shift is introduced by a 
digital phase shifting element.  

Tx Attenuation Phase Initial Calibration 

This calibration is called ADI_ADRV9025_TX_ATTEN_TABLE in the API enumerations. This calibration corrects for phase differences 
between different attenuation settings in the Tx attenuation table. A tone is transmitted during this calibration at -12 dBFS and it is 
advised to disable the PA during this calibration. No external loopback is necessary during the operation of this calibration.  

Run this calibration run prior to any LO Leakage initial calibrations. When combined in the initial calibration mask with LO Leakage 
calibrations, the Arm sequences this cal before LO Leakage initial calibrations.  

The attenuation phase calibration supports up to 20 dB of attenuation. 

This calibration has known performance issues below 1 GHz LO frequency operation.  

Tx Attenuation Delay 

Similar to the Rx, the Tx datapath features an analog and digital gain/attenuation element. The Tx attenuation delay calibration helps to 
ensure that when a change in attenuation occurs in both analog and digital that the Tx output only sees a single change in output power 
rather than a two-step effect. This is done by delaying the onset of the analog attenuator change, unlike the Rx Gain Delay calibration, 
which delays the onset of digital gain/attenuator changes.  

Tx to ORx Feedback 

For the external Tx LO leakage initial calibration to complete, the Arm must be advised of the current Tx to ORx feedback paths through 
the external circuitry. Specify this at initialization, through the adi_adrv9025_PostMcsInit_t structure that is passed to 
adi_adrv9025_PostMcsInit( ). In this structure, there are four variables which indicate which Tx is being fed back to each ORx. These are 
shown in Table 74. 
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Table 74. Definition of adi_adrv9025_TxToOrxMappingConfig_t 
ORx Permissible Values 
orx1Map ADI_ADRV9025_MAP_NONE_ORX1 
 ADI_ADRV9025_MAP_TX1_ORX1 
 ADI_ADRV9025_MAP_TX2_ORX1 
orx2Map ADI_ADRV9025_MAP_NONE_ORX2 
 ADI_ADRV9025_MAP_TX1_ORX2 
 ADI_ADRV9025_MAP_TX2_ORX2 
orx3Map ADI_ADRV9025_MAP_NONE_ORX3 
 ADI_ADRV9025_MAP_TX3_ORX3 
 ADI_ADRV9025_MAP_TX4_ORX3 
orx4Map ADI_ADRV9025_MAP_NONE_ORX4 
 ADI_ADRV9025_MAP_TX3_ORX4 
 ADI_ADRV9025_MAP_TX4_ORX4 

Note: In the case of multiple Tx channels being fed back to a single ORx, a multiple pass is required for the External Tx LO Leakage initial 
calibration. During the first pass when adi_adrv9025_PostMcsInit( ) is called, the current feedback paths must be advised to the device. 
When the external LOL initial calibration is run, the Arm performs the calibration on Tx paths that have a feedback path to an ORx. In a 
second pass, the feedback paths are modified and advised to the device, and the external LOL initial calibration must be called again. 

Note Regarding AUX LO Settings During Initialization Calibrations 

For users who intend to use an AUX LO frequency other than the default AUX LO frequency for their given use case, note that initial 
calibrations must run with the default AUX PLL frequency. Therefore, the user must use the following procedure if a non default AUX 
PLL frequency is used in their application. This procedure is as follows:  

1. Set the Tx PLL frequency to the desired frequency.  
a. If the user uses adi_adrv9025_PllFrequencySet(…), the AUX PLL is configured to the default offset frequency when the Tx PLL is 

programmed. 
b. If the user uses adi_adrv9025_PllFrequencySet_v2(…), the AUX PLL is configured to the default offset frequency if the 

adi_adrv9025_PllConfig_t->pllAuxLoOffsetProgSel parameter is set to 
ADI_ADRV9025_PLL_AUX_LO_OFFSET_PROG_ENABLE. 

2. Run initialization calibrations. 
3. After all initialization calibrations are complete, the user can set the AUX PLL frequency to the desired application frequency. 

If the user sets the AUX PLL to a different frequency and requires initial calibrations to be rerun, follow this procedure. 

Summary of Initial Calibration Requirements 

Table 75 summarizes initial calibration requirements and other related details as mentioned previously.  

Table 75. Recommended Initial Calibrations 
Initial Calibration Recommendations 
Rx QEC ADI_ADRV9025_MAP_NONE_ORX1 
 ADI_ADRV9025_MAP_TX1_ORX1 
 ADI_ADRV9025_MAP_TX2_ORX1 
Rx TIA ADI_ADRV9025_MAP_NONE_ORX2 
 ADI_ADRV9025_MAP_TX1_ORX2 
 ADI_ADRV9025_MAP_TX2_ORX2 
ORx TIA ADI_ADRV9025_MAP_NONE_ORX3 
 ADI_ADRV9025_MAP_TX3_ORX3 
 ADI_ADRV9025_MAP_TX4_ORX3 
orx4Map ADI_ADRV9025_MAP_NONE_ORX4 
 ADI_ADRV9025_MAP_TX3_ORX4 
 ADI_ADRV9025_MAP_TX4_ORX4 
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TRACKING CALIBRATIONS 
The Arm processor is tasked with ensuring that QEC and LOL (and HD2 for GSM applications) corrections are optimal throughout 
device operation over time, attenuation, and temperature. It achieves this by performing calibrations at regular intervals. These 
calibrations are termed “tracking calibrations”, and utilize normal traffic data to update the path correction coefficients. 

The following API function enables the tracking calibrations in the Arm: 

adi_adrv9025_TrackingCalsEnableSet(adi_adrv9025_Device_t *device, uint32_t enableMask, 
adi_adrv9025_TrackingCalEnableDisable_e enableDiasbleFlag) 

enableMask is a mask that informs the Arm processor which tracking calibrations to run (Table 76 shows the bit assignments of the 
enable mask (Presently only Rx/ORx QEC calibrations are available)) 

enableDiasbleFlag is an enable or disable parameter (valid enums are shown in Table 77) 

Based on the enum chosen for enableDiasbleFlag, the selected tracking calibrations in enableMask is enabled or disabled. 

Table 76. Tracking Calibrations Enable Mask Bit Assignments 
Cal Mask Bits Function 
D0 Rx1 QEC Tracking 
D1 Rx2 QEC Tracking 
D2 Rx3 QEC Tracking 
D3 Rx4 QEC Tracking 
D4 ORx1 QEC Tracking 
D5 ORx2 QEC Tracking 
D6 ORx3 QEC Tracking 
D7 ORx4 QEC Tracking 
D8 Tx1 LOL Tracking 
D9 Tx2 LOL Tracking 
D10 Tx3 LOL Tracking 
D11 Tx4 LOL Tracking 
D12 Tx1 QEC Tracking 
D13 Tx2 QEC Tracking 
D14 Tx3 QEC Tracking 
D15 Tx4 QEC Tracking 

Table 77. adi_adrv9025_TrackingCalEnableDisable_e Definition 
ENUM Description 
ADI_ADRV9025_TRACKING_CAL_DISABLE When used, the selected tracking calibrations in enableMask is disabled upon the call to 

adi_adrv9025_TrackingCalsEnableSet. 
ADI_ADRV9025_TRACKING_CAL_ENABLE When used, the selected tracking calibrations in enableMask is enabled upon the call to 

adi_adrv9025_TrackingCalsEnableSet. 

The arm is tasked with the scheduling of the tracking calibrations. No user input is required to initiate a tracking calibration. 

System Considerations for Tracking Calibrations 

This section describes the operation of the tracking calibrations. Diagrams are used to show how the device is configured for each 
calibration, and a brief explanation of the calibration is provided. In all diagrams, grayed-out lines and blocks are not active in the 
calibration. Lines showing the path of the LOs are shown in color to distinguish them from the signal paths. As the Arm performs each of 
the calibrations, it is tasked with configuring the feedback path or ORx input as per the following diagrams. No user input is required in 
this regard. However, for external LOL tracking the user must ensure that the feedback path is available to use. 

The following sections show the requirements for GPIO and enable pins during each of the tracking calibrations. These calibrations may 
need many milliseconds of observation to calculate an update. The Arm reduces the total time needed by splitting up this time into 
batches such that observations do not need to be continuous. The Arm algorithms are optimized to process batches of 100 μs, but smaller 
batches are acceptable.  

The Rx/ORx tracking algorithms run while the channels are in normal use, using the data in the channel to calculate updates to the 
correction coefficients. The Tx correction algorithms utilize the ORx path when they are run, feeding back transmission data for 
observation to calculate updates to the correction coefficients. Thus ORx paths must be time shared with other uses of the ORx path. 
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Given the device has two observation paths, the expectation is that the calibrations always have access to a single ORx path, an equal 
amount of time for ORx paths on either side of the device (that is, an equal amount of time on ORx1/ORx2 and ORx3/ORx4). When an 
ORx on one side of the device is being assigned to calibrations, the other ORx(s) on the other side of the device are available to the user 
for observation. 

Rx QEC Tracking Calibration 

The Rx QEC tracking algorithm improves the Rx path QEC performance during operation. It utilizes normal traffic data to calculate 
updated corrected coefficients. It runs continuously while the receivers are active.  

System requirement: Rx channels must be enabled. For example, in TDD mode Rx QEC tracking only runs during Rx periods. If only one 
channel is enabled, the Rx QEC only runs on this channel. 

Note: In FDD modes, Rx Enable is high at all times. Rx Enable refers to the enable of any of Rx1-4. 
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Figure 49. Rx QEC Tracking 
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Figure 50. Timing Diagram Showing When RxQEC Can Run in TDD Mode 

ORx QEC Tracking Calibration 

The ORx QEC tracking algorithm improves the ORx path QEC performance during operation. It utilizes normal traffic data to calculate 
updated corrected coefficients. It runs continuously in the background while the observation receiver is active.  

System Requirement: ORx channels must be enabled. For example, in TDD mode ORx QEC tracking only runs during ORx periods. If 
only one channel is enabled, the ORx QEC only runs on this channel. 

Do not change the ORx gain index while the tracking cal runs. If the ORx gain index changes, re-run the ORx QEC initial calibration. 
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Figure 51. ORx QEC Tracking 
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Figure 52. Timing Diagram Showing When ORx QEC Can Run in TDD Mode (ORx Enable Refers to the Internal Enable Control of ORx1 to ORx4) 

Tx QEC Tracking Calibration 

The Tx QEC tracking is an online calibration that is run to improve the QEC performance using transmit data. It utilizes the loopback 
(feedback) path for operation. Therefore, the Tx QEC tracking must be interleaved with normal other captures that utilize the ORx path. 
This tracking determines optimal coefficients for the current gain setting, updating the table stored during the Tx QEC initialization to make 
sure this table has the best values for the current operating conditions. Figure 53 shows the device configuration for Tx QEC tracking 
calibration. 

System Requirement: Tx channel(s) must be enabled. To run, the ORx path must be available for the Arm to use (ORx enable low). That 
means the required ORx path cannot be required by the user for other (or VSWR and so forth) captures. 

Note: In FDD modes, Tx Enable is high at all times. Tx Enable refers to the enable of any of Tx1-Tx4. ORx Enable refers to the internal 
enable signal for the selected ORx channel. 

QEC tracking uses an offset LO on the feedback path during tracking. This ensures that the quadrature errors of the Tx path are not 
aligned with those of the ORx path. This frequency is set to  

fOFFSET = ((Primary Tx Bandwidth/4) + 5 MHz 

Continuous wave tones placed at ±fOFFSET, or 2× (±fOFFSET), show reduced QEC performance. However, modulated signals centered at these 
frequencies do not have reduced performance. 
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Figure 53. Tx QEC Tracking Calibration Configuration 
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Figure 54. Timing Diagram Showing When TxQEC Can Run in TDD Mode  

Tx LOL Tracking Calibration 

The Tx LO leakage tracking calibration uses an external path between the Tx output and ORx input to measure LO leakage and calculate 
correction factors. This calibration is run while user data is being transmitted (with the PA operational). For this calibration, the AuxLO 
is used in the ORx path to offset the Tx LO leakage from the ORx LO. Figure 55 shows the device configuration for the TX LO leakage 
tracking calibration with the Tx output looped back to the ORx input (an ORx on the same side of the chip as the Tx being calibrated). 

Note: If the observation receiver receives an input signal larger than the ADC full scale, the channel is overloads and calibration results 
are poor. The arm does not issue a warning or error condition in this case.  

System Requirement: Tx channel(s) must be enabled. The ORx path must be available for the Arm to use (that is, not required by the user 
for DPD (or VSWR) captures). The ORx path must be connected to the appropriate Tx to be calibrated, and the Arm must be advised 
which Tx output has a connection to which ORx.  

A proper channel estimate is required for optimal LOL tracking performance. A new initial channel estimate must be acquired when the 
LO frequency changes or ORx gain index changes. There are two methods to achieve this as follows; however, it is highly recommended 
to follow the first procedure.  

1. Run External Tx LO Leakage Initial Calibration. Ensure that mapping is setup properly, PA is enabled, and all tracking calibrations 
are disabled.  

2. If not running External Tx LO Leakage Initial Calibration, follow the procedure below.  
a. Recommended Sequence to run Tx LOL Tracking calibration if either skip Ext Tx LOL Init Cal, change LO Frequency or ORx 

attenuation: Disable Tx LOL tracking (if it is running) 
b. If Tx traffic has content at dc, disable data transmission. If data is offset from dc it can be left on. 
c. Reset the desired channels using the ExtTxLolchannelReset() command 
d. Call TrackingCalTxLolStatusGet() and note the value of iterCount 
e. Enable Tx LOL tracking 
f. Call TrackingCalTxLolStatusGet() again and note the value of iterCount 
g. If the iterCount value has increased by at least 1, enable Tx data transmission 
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Figure 55. Tx LOL Tracking Configuration 

CALIBRATION GUIDELINES AFTER PLL FREQUENCY CHANGES 
Some applications require changing the PLL frequency for Tx, Rx, or ORx signal paths after the transceiver has started normal operation 
and tracking calibrations have improved performance. Some tracking calibrations require re-running initial calibrations after the PLL 
frequency change in order to relearn the new channel conditions. It is important that certain procedures are followed in order to maintain 
proper operation of the tracking cals.  

The LO frequency changes fall into one of two types:  

Type 1: LO frequency change that is described by both of the following criteria:  

 The LO frequency change is less than 100 MHz. 
 The LO frequency change does not step over an LO divider boundary as explained in the Synthesizer Configuration section. Note the 

table that describes the “Div by” settings.  

Type 2: LO Frequency change that is described by either of the following criteria:  

 The LO frequency change is greater than 100 MHz.  
 The LO frequency change steps over an LO divider boundary. 

Type 1 Frequency Change Procedure 

If the LO frequency change falls into Type 1 described in the Calibration Guidelines after PLL Frequency Changes section, implement the 
following procedure:  

1. Disable all tracking calibrations 
2. Disable all RF channels. If TX_EN/RX_EN/ORX_CTRL pins cannot stop toggling, put the device into command control mode via 

adi_adrv9025_RadioCtrlCfgSet(…), then call adi_adrv9025_RxTxEnaleSet(…) to disable all channels.  
3. Rerun the following initial calibrations. Make sure to follow system considerations as described in System Considerations for Initial 

Calibrations. Please ensure that INTERNAL_PATH_DELAY is run prior to TX_QEC_INIT if calibrations are run one at a time. The 
Arm sequences the calibrations properly when  
a. ADI_ADRV9025_INTERNAL_PATH_DELAY (if Tx QEC Tracking is used) 
b. ADI_ADRV9025_LO_LEAKAGE_EXTERNAL. This step is optional but highly recommended. The PA must be enabled in this 

step. Ensure that the external calibration is run for all Tx to ORx mappings used in the application.  
If the previous step is not executed, it is mandatory to call adi_adrv9025_ExtTxLolChannelReset(…) command for each Tx 
channel. It must be called one Tx channel at a time. Then a special procedure must be followed to relearn the channel estimate 
described in the Tx LOL Tracking Calibration section. 

c. Enable relevant tracking calibrations. 
d. Transition back to pin control mode, if necessary.  
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Type 2 Frequency Change Procedure 

If the LO frequency change falls into Type 2 described in the Calibration Guidelines after PLL Frequency Changes section, implement a 
similar procedure to the Type 1 frequency change procedure while adding the ADI_ADRV9025_LOOPBACK_RX_LO_DELAY and 
ADI_ADRV9025_TX_QEC_INIT calibrations.  

Initialization Calibrations Durations 

In order to achieve best performance, the device features autonomous internal calibrations that are performed during device initialization. 
The calibrations are run in the Post-MCS section of device initialization. The majority of the calibrations are run with a single API call 
once the calibration structure is set. These are the internal calibrations that utilize internal loopback paths. Those that utilize external 
paths (such as External Tx LOL calibration) are run separately afterward. 

All of the calibrations are overseen and scheduled by the Arm processor so the user does not need to be concerned about what order the 
calibrations are run. The sequence is defined such that those calibrations that depend on others are scheduled appropriately. The amount 
of time it takes for the calibrations to complete are related to the internal high speed clock and the resulting IQ rates of the Rx, Tx and 
ORx paths. The Arm clock is derived from the clock PLL.  

In the following diagram the slices show the relative timing of each common initialization calibration relative to the total time. Some of 
the calibrations are very short and mostly involve for example loading coefficients and initializing for operation, or measuring the delay of 
the calibration path. Some others require observation of either internally generated calibration tones or pseudo-random noise to calculate 
the required coefficients that are used to define the characteristics of the channel. Still others for example the Tx QEC calibration use an 
algorithm to determine the correction factors which can be influenced by the actual load conditions the transmitter is connected to. For 
these reasons, the amount of time each of the calibrations needs to complete may vary slightly.  
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Figure 56. Relative Time Distribution of Initialization Calibrations 
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The following tables are measured calibration times of the device for a number of different use cases using the standard calibration mask 
of 0xD73FF. These results can be used as guidelines as to what the typical expected times are for a particular configuration. The columns 
in the table show the calibration timing results in milliseconds for 1, 2, 3, and 4 enabled Rx or Tx channels. In the case of ORx 
calibrations, because there are just two shared paths, the entries for ORX_DC_OFFSET are different for 1 and 2 channels enabled, but 
remain the same for 3 and 4 enabled channels. Other ORx calibrations do show differences from 1 to 4 channels because the paths from 
each of the transmitters is calibrated individually. 

Table 78. ADRV9025Init_StdUseCase13_nonLinkSharing 

Use Case 
Tx 
Bandwidth 

TX Input 
Rate 

TX DAC 
Rate 

ORx 
Bandwidth 

ORX Output 
Rate 

ORx ADC 
Rate 

Rx 
Bandwidth 

Rx Output 
Rate 

Rx ADC 
Rate 

UC13_NLS 225 MHz 245.76 MHz 1.966 GHz 225 MHz 245.76 MHz 4.915 GHz 100 MHz 122.88 MHz 1.966 GHz  

Table 79.  
Calibration 1 Channel 2 CHANNELS 3 Channels 4 Channels 
TX_DAC  4 8 12 17 
TX_BB_FILTER  2 2 4 5 
ADC_TUNER  1 1 1 1 
FLASH_CAL  219 263 324 365 
RX_TIA  84 125 166 207 
ORX_TIA  64 86 108 128 
LBRX_TIA  64 86 107 129 
RX_DC_OFFSET  451 451 451 451 
ORX_DC_OFFSET  451 899 899 899 
LBRX_DC_OFFSET  8 14 14 14 
LOOPBACK_RX_LO_DELAY  175 345 510 679 
RX_QEC_INIT  756 1508 2262 3013 
ORX_QEC_INIT  787 1570 2354 3137 
INTERNAL_PATH_DELAY  1 1 3 3 
TX_LO_LEAKAGE_INTERNAL  892 1781 2671 3560 
TX_QEC_INIT  584 1162 1730 2323 
Total Calibration time (ms) 4545 8302 11616 14932 

Table 80. ADRV9025Init_StdUseCase14_LinkSharing 
Use 
Case 

Tx 
Bandwidth 

TX Input 
Rate 

TX DAC 
Rate 

ORx 
Bandwidth 

ORX Output 
Rate 

ORx ADC 
Rate 

Rx 
Bandwidth 

Rx Output 
Rate 

Rx ADC 
Rate 

UC14_LS 450 MHz 491.52 MHz 1.966 GHz 450 MHz 491.52 MHz 4.915 GHz 200 MHz 245.76 MHz 4.915 GHz  

Table 81.  
Calibration 1 Channel 2 Channels 3 Channels 4 Channels 
TX_DAC 4 9 12 17 
TX_BB_FILTER 1 2 4 4 
ADC_TUNER 1 1 1 1 
FLASH_CAL 219 263 324 365 
RX_TIA 64 85 106 126 
ORX_TIA 54 65 76 88 
LBRX_TIA 54 65 77 87 
RX_DC_OFFSET 451 451 451 450 
ORX_DC_OFFSET 467 899 898 899 
LBRX_DC_OFFSET 7 14 14 14 
LOOPBACK_RX_LO_DELAY 163 324 484 644 
RX_QEC_INIT 787 1570 2354 3138 
ORX_QEC_INIT 785 1566 2347 3127 
INTERNAL_PATH_DELAY 1 2 2 3 
TX_LO_LEAKAGE_INTERNAL 876 1748 2622 3494 
TX_QEC_INIT 293 595 908 1197 
Total Calibration time (ms) 4226 7658 10680 13654 
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Table 82. ADRV9025Init_StdUseCase14C_LinkSharing 

Use Case 
Tx 
Bandwidth 

TX Input 
Rate 

TX DAC 
Rate 

ORx 
Bandwidth 

ORX Output 
Rate 

ORx ADC 
Rate 

Rx 
Bandwidth 

Rx Output 
Rate 

Rx ADC 
Rate 

UC14C_LS 450 MHz 491.52 MHz 1.966 GHz 450 MHz 491.52 MHz 4.915GHz 200 MHz 245.76 MHz 4.915 GHz  

Table 83.  
Calibration 1 Channel 2 Channels 3 Channels 4 Channels 
TX_DAC  3 6 11 15 
TX_BB_FILTER  2 3 3 4 
ADC_TUNER  1 1 1 1 
FLASH_CAL  219 262 325 368 
RX_TIA  64 85 105 126 
ORX_TIA  54 65 76 87 
LBRX_TIA  55 65 76 87 
RX_DC_OFFSET  451 451 450 451 
ORX_DC_OFFSET  450 899 899 899 
LBRX_DC_OFFSET  7 15 14 14 
LOOPBACK_RX_LO_DELAY  166 325 484 645 
RX_QEC_INIT  786 1569 2354 3138 
ORX_QEC_INIT  784 1567 2350 3130 
INTERNAL_PATH_DELAY  1 2 2 2 
TX_LO_LEAKAGE_INTERNAL  876 1749 2622 3495 
TX_QEC_INIT  307 593 902 1188 
Total Calibration time (ms) 4226 7657 10674 13649 

 

Table 84. ADRV9025Init_StdUseCase23C_LinkSharing 

Use Case 
Tx 
Bandwidth 

TX Input 
Rate 

TX DAC 
Rate 

ORx 
Bandwidth 

ORX 
Output 
Rate 

ORx ADC 
Rate 

Rx 
Bandwidth 

Rx Output 
Rate 

Rx ADC 
Rate 

UC23C_LS 337.5 MHz 368.64 MHz 1.475 GHz 337.5 MHz 368.64 MHz 3.686 GHz 150 MHz 184.32 MHz 3.686 GHz 

Table 85.  
Calibration 1 Channel 2 Channels 3 Channels 4 Channels 
TX_DAC  4 5 9 11 
TX_BB_FILTER  1 2 3 5 
ADC_TUNER  1 1 1 1 
FLASH_CAL  285 343 426 482 
RX_TIA  84 111 139 172 
ORX_TIA  72 86 100 114 
LBRX_TIA  72 85 100 115 
RX_DC_OFFSET  450 451 451 451 
ORX_DC_OFFSET  451 899 898 898 
LBRX_DC_OFFSET  7 14 14 15 
LOOPBACK_RX_LO_DELAY  210 419 628 835 
RX_QEC_INIT  863 1728 2583 3443 
ORX_QEC_INIT  861 1718 2574 3430 
INTERNAL_PATH_DELAY  1 2 3 4 
TX_LO_LEAKAGE_INTERNAL  883 1765 2645 3526 
TX_QEC_INIT  401 800 1192 1607 
Total Calibration time (ms) 4645 8429 11767 15108 
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Table 86. ADRV9025Init_StdUseCase26C_LinkSharing 

Use Case 
Tx 
Bandwidth 

TX Input 
Rate 

TX DAC 
Rate 

ORx 
Bandwidth 

ORX Output 
Rate 

ORx ADC 
Rate 

Rx 
Bandwidth 

Rx Output 
Rate 

Rx ADC 
Rate 

UC26C_LS 450 MHz 491.52 MHz 1.966 GHz 450 MHz 491.52 MHz 4.915 GHz 200 MHz 245.76 MHz 4.915 GHz 

Table 87.  
Calibration 1 Channel 2 Channels 3 Channels 4 Channels 
TX_DAC  4 7 10 15 
TX_BB_FILTER  1 2 3 4 
ADC_TUNER  1 1 1 1 
FLASH_CAL  220 263 324 367 
RX_TIA  64 84 106 125 
ORX_TIA  54 66 76 88 
LBRX_TIA  55 65 75 86 
RX_DC_OFFSET  451 450 451 450 
ORX_DC_OFFSET  451 900 899 899 
LBRX_DC_OFFSET  7 14 14 14 
LOOPBACK_RX_LO_DELAY  163 323 485 645 
RX_QEC_INIT  787 1571 2354 3137 
ORX_QEC_INIT  783 1564 2346 3125 
INTERNAL_PATH_DELAY  1 2 2 3 
TX_LO_LEAKAGE_INTERNAL  876 1748 2622 3494 
TX_QEC_INIT  291 597 892 1201 
Total Calibration time (ms) 4210 7657 10660 13654 

Table 88. ADRV9025Init_StdUseCase26C_nonLinkSharing 

Use Case 
Tx 
Bandwidth 

TX Input 
Rate 

TX DAC 
Rate 

ORx 
Bandwidth 

ORX Output 
Rate 

ORx ADC 
Rate 

Rx 
Bandwidth 

Rx Output 
Rate 

Rx ADC 
Rate 

UC26C_NLS 450 MHz 491.52 MHz 1.966 GHz 450 MHz 491.52 MHz 4.915 GHz 200 MHz 245.76 MHz 4.915 GHz 

Table 89.  
Calibration 1 Channel 2 Channels 3 Channels 4 Channels 
TX_DAC  3 7 13 14 
TX_BB_FILTER  1 2 3 4 
ADC_TUNER  1 1 1 1 
FLASH_CAL  220 261 324 368 
RX_TIA  64 85 105 125 
ORX_TIA  54 65 77 87 
LBRX_TIA  54 65 76 87 
RX_DC_OFFSET  451 451 451 451 
ORX_DC_OFFSET  450 899 899 899 
LBRX_DC_OFFSET  7 14 14 15 
LOOPBACK_RX_LO_DELAY  164 325 485 645 
RX_QEC_INIT  786 1570 2355 3138 
ORX_QEC_INIT  785 1565 2346 3128 
INTERNAL_PATH_DELAY  1 1 2 2 
TX_LO_LEAKAGE_INTERNAL  876 1749 2621 3494 
TX_QEC_INIT  293 598 891 1192 
Total Calibration time (ms) 4211 7658 10663 13649 
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Table 90. ADRV9025Init_StdUseCase50_LinkSharing 
Use 
Case 

Tx 
Bandwidth 

TX Input 
Rate 

TX DAC 
Rate 

ORx 
Bandwidth 

ORX Output 
Rate 

ORx ADC 
Rate 

Rx 
Bandwidth 

Rx Output 
Rate 

Rx ADC 
Rate 

UC50_LS 450 MHz 122.88 MHz 1.966 GHz 450 MHz 245.76 MHz 4.915 GHz 100 MHz 122.88 MHz 1.966 GHz  

Table 91.  
Calibration 1 Channel 2 Channels 3 Channels 4 Channels 
TX_DAC  5 7 12 13 
TX_BB_FILTER  1 2 3 4 
ADC_TUNER  1 1 1 1 
FLASH_CAL  218 261 324 369 
RX_TIA  85 126 166 207 
ORX_TIA  54 65 76 88 
LBRX_TIA  54 66 75 87 
RX_DC_OFFSET  451 452 451 452 
ORX_DC_OFFSET  450 899 899 899 
LBRX_DC_OFFSET  7 15 14 14 
LOOPBACK_RX_LO_DELAY  172 342 506 663 
RX_QEC_INIT  793 1583 2373 3161 
ORX_QEC_INIT  784 1564 2347 3126 
INTERNAL_PATH_DELAY  1 2 2 3 
TX_LO_LEAKAGE_INTERNAL  876 1749 2621 3494 
TX_QEC_INIT  299 588 899 1186 
Total Calibration time (ms) 4251 7721 10771 13766 

 

Table 92. ADRV9025Init_StdUseCase50_nonLinkSharing 
Use 
Case 

Tx 
Bandwidth 

TX Input 
Rate 

TX DAC 
Rate 

ORx 
Bandwidth 

ORX Output 
Rate 

ORx ADC 
Rate 

Rx 
Bandwidth 

Rx Output 
Rate 

Rx ADC 
Rate 

UC50_LS 450 MHz 122.88 MHz 1.966 GHz 450 MHz 245.76 MHz 4.915 GHz 100 MHz 122.88 MHz 1.966 GHz  

Table 93.  
Calibration 1 Channel 2 Channels 3 Channels 4 Channels 
TX_DAC  4 8 10 15 
TX_BB_FILTER  1 3 3 4 
ADC_TUNER  1 1 1 1 
FLASH_CAL  219 262 324 367 
RX_TIA  84 125 167 208 
ORX_TIA  54 65 77 87 
LBRX_TIA  54 66 76 87 
RX_DC_OFFSET  451 451 451 452 
ORX_DC_OFFSET  451 899 899 898 
LBRX_DC_OFFSET  7 14 15 14 
LOOPBACK_RX_LO_DELAY  174 343 507 663 
RX_QEC_INIT  757 1508 2261 3012 
ORX_QEC_INIT  785 1564 2347 3129 
INTERNAL_PATH_DELAY  1 1 2 2 
TX_LO_LEAKAGE_INTERNAL  875 1749 2622 3494 
TX_QEC_INIT  301 605 890 1200 
Total Calibration time (ms) 4219 7663 10651 13634 
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Table 94. ADRV9025Init_StdUseCase51_LinkSharing 
Use 
Case 

Tx 
Bandwidth 

TX Input 
Rate 

TX DAC 
Rate 

ORx 
Bandwidth 

ORX Output 
Rate 

ORx ADC 
Rate 

Rx 
Bandwidth 

Rx Output 
Rate 

Rx ADC 
Rate 

UC51_LS 450 MHz 245.76 MHz 1.966 GHz 450 MHz 245.76 MHz 4.915 GHz 200 MHz 245.76 MHz 4.915 GHz  

Table 95.  
Calibration 1 Channel 2 Channels 3 Channels 4 Channels 
TX_DAC  3 9 11 13 
TX_BB_FILTER  1 3 3 4 
ADC_TUNER  1 1 1 1 
FLASH_CAL  219 262 324 367 
RX_TIA  63 84 105 126 
ORX_TIA  54 65 76 87 
LBRX_TIA  54 64 75 87 
RX_DC_OFFSET  450 451 451 451 
ORX_DC_OFFSET  451 898 899 899 
LBRX_DC_OFFSET  7 14 14 14 
LOOPBACK_RX_LO_DELAY  165 328 488 647 
RX_QEC_INIT  786 1571 2353 3139 
ORX_QEC_INIT  783 1564 2347 3126 
INTERNAL_PATH_DELAY  1 1 2 2 
TX_LO_LEAKAGE_INTERNAL  873 1742 2612 3482 
TX_QEC_INIT  291 598 921 1191 
Total Calibration time (ms) 4203 7656 10682 13637 

 

Table 96. ADRV9025Init_StdUseCase51_nonLinkSharing 

Use Case 
Tx 
Bandwidth 

TX Input 
Rate 

TX DAC 
Rate 

ORx 
Bandwidth 

ORX Output 
Rate 

ORx ADC 
Rate 

Rx 
Bandwidth 

Rx Output 
Rate 

Rx ADC 
Rate 

UC51_NLS 450 MHz 245.76 MHz 1.966 GHz 450 MHz 245.76 MHz 4.915 GHz 200 MHz 245.76 MHz 4.915 GHz  

Table 97.  
Calibration 1 Channel 2 Channels 3 Channels 4 Channels 
TX_DAC  4 9 10 16 
TX_BB_FILTER  2 2 3 5 
ADC_TUNER  1 1 1 1 
FLASH_CAL  219 263 325 367 
RX_TIA  64 85 106 127 
ORX_TIA  54 65 77 87 
LBRX_TIA  54 65 76 87 
RX_DC_OFFSET  451 450 451 450 
ORX_DC_OFFSET  451 899 898 898 
LBRX_DC_OFFSET  7 14 14 14 
LOOPBACK_RX_LO_DELAY  164 326 486 646 
RX_QEC_INIT  790 1573 2358 3142 
ORX_QEC_INIT  783 1564 2346 3128 
INTERNAL_PATH_DELAY  1 1 2 3 
TX_LO_LEAKAGE_INTERNAL  872 1743 2612 3482 
TX_QEC_INIT  293 600 921 1210 
Total Calibration time (ms) 4210 7659 10686 13664 
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Table 98. ADRV9025Init_StdUseCase54_nonLinkSharing 

Use Case 
Tx 
Bandwidth 

TX Input 
Rate 

TX DAC 
Rate 

ORx 
Bandwidth 

ORX Output 
Rate 

ORx ADC 
Rate 

Rx 
Bandwidth 

Rx Output 
Rate 

Rx ADC 
Rate 

UC54_NLS 450 MHz 122.88 MHz 1.966 GHz 450 MHz 245.76 MHz 4.915 GHz 200 MHz 122.88 MHz 4.915 GHz  

Table 99.  
Calibration 1 Channel 2 Channels 3 Channels 4 Channels 
TX_DAC  86 89 92 97 
TX_BB_FILTER  83 84 85 86 
ADC_TUNER  82 81 82 81 
FLASH_CAL  301 344 560 603 
RX_TIA  146 167 228 250 
ORX_TIA  136 147 199 210 
LBRX_TIA  136 147 199 210 
RX_DC_OFFSET  532 532 980 980 
ORX_DC_OFFSET  532 980 1428 1877 
LBRX_DC_OFFSET  89 96 102 109 
LOOPBACK_RX_LO_DELAY  99 115 283 447 
RX_QEC_INIT  870 1655 2440 3223 
ORX_QEC_INIT  865 1647 2430 3211 
INTERNAL_PATH_DELAY  82 83 85 84 
TX_LO_LEAKAGE_INTERNAL  957 1850 2703 3576 
TX_QEC_INIT  447 724 1022 1326 
Total Calibration time (ms) 5443 8742 12917 16370 

 

Table 100. ADRV9025Init_StdUseCase55_nonLinkSharing 

Use Case 
Tx 
Bandwidth 

TX Input 
Rate 

TX DAC 
Rate 

ORx 
Bandwidth 

ORX Output 
Rate 

ORx ADC 
Rate 

Rx 
Bandwidth 

Rx Output 
Rate 

Rx ADC 
Rate 

UC55_NLS 450 MHz 122.88 MHz 1.966 GHz 450 MHz 245.76 MHz 4.915 GHz 160 MHz 122.88 MHz 4.915 GHz  

Table 101.  
Calibration 1 Channel 2 Channels 3 Channels 4 Channels 
TX_DAC  86 89 93 119 
TX_BB_FILTER  83 84 85 86 
ADC_TUNER  81 82 81 81 
FLASH_CAL  300 344 561 604 
RX_TIA  146 166 227 248 
ORX_TIA  136 160 199 209 
LBRX_TIA  136 146 199 210 
RX_DC_OFFSET  533 532 981 982 
ORX_DC_OFFSET  532 980 1428 1877 
LBRX_DC_OFFSET  89 96 103 110 
LOOPBACK_RX_LO_DELAY  99 115 284 449 
RX_QEC_INIT  656 1229 1799 2370 
ORX_QEC_INIT  866 1658 2431 3211 
INTERNAL_PATH_DELAY  82 83 84 85 
TX_LO_LEAKAGE_INTERNAL  958 1831 2703 3576 
TX_QEC_INIT  404 720 1017 1336 
Total Calibration time (ms) 5186 8315 12274 15552 
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Table 102. ADRV9025Init_StdUseCase61_LinkSharing 
Use 
Case 

Tx 
Bandwidth 

TX Input 
Rate 

TX DAC 
Rate 

ORx 
Bandwidth 

ORX Output 
Rate 

ORx ADC 
Rate 

Rx 
Bandwidth 

Rx Output 
Rate 

Rx ADC 
Rate 

UC61_LS 300 MHz 368.64 MHz 1.843 GHz 337.5 MHz 368.64 MHz 3.686 GHz 300 MHz 368.64 MHz 3.686 GHz  

Table 103.  
Calibration 1 Channel 2 Channels 3 Channels 4 Channels 
TX_DAC  7 11 15 20 
TX_BB_FILTER  4 5 6 8 
ADC_TUNER  2 3 3 3 
FLASH_CAL  292 342 435 491 
RX_TIA  73 88 102 117 
ORX_TIA  74 88 103 118 
LBRX_TIA  74 88 103 117 
RX_DC_OFFSET  453 453 452 453 
ORX_DC_OFFSET  453 901 901 902 
LBRX_DC_OFFSET  11 21 22 21 
LOOPBACK_RX_LO_DELAY  242 480 721 967 
RX_QEC_INIT  861 1718 2573 3430 
ORX_QEC_INIT  862 1717 2574 3431 
INTERNAL_PATH_DELAY  4 5 5 7 
TX_LO_LEAKAGE_INTERNAL  885 1763 2642 3521 
TX_QEC_INIT  403 807 1231 1631 
Total Calibration time (ms) 4701 8489 11889 15236 

 

Table 104. ADRV9025Init_StdUseCase82C_LinkSharing 

Use Case 
Tx 
Bandwidth 

TX Input 
Rate 

TX DAC 
Rate 

ORx 
Bandwidth 

ORX Output 
Rate 

ORx ADC 
Rate 

Rx 
Bandwidth 

Rx Output 
Rate 

Rx ADC 
Rate 

UC82C_LS 450 MHz 491.52 MHz 1.966 GHz 450 MHz 491.52 MHz 4.915 GHz 200 MHz 245.76 MHz 4.915 GHz  

Table 105.  
Calibration 1 Channel 2 Channels 3 Channels 4 Channels 
TX_DAC  5 7 10 15 
TX_BB_FILTER  2 2 3 5 
ADC_TUNER  1 1 1 1 
FLASH_CAL  219 263 324 366 
RX_TIA  63 84 105 127 
ORX_TIA  54 65 76 87 
LBRX_TIA  54 65 76 87 
RX_DC_OFFSET  451 451 450 451 
ORX_DC_OFFSET  451 899 899 898 
LBRX_DC_OFFSET  7 14 14 14 
LOOPBACK_RX_LO_DELAY  166 330 485 650 
RX_QEC_INIT  787 1569 2354 3138 
ORX_QEC_INIT  785 1564 2346 3126 
INTERNAL_PATH_DELAY  1 2 2 3 
TX_LO_LEAKAGE_INTERNAL  876 1749 2622 3495 
TX_QEC_INIT  302 589 907 1188 
Total Calibration time (ms) 4224 7654 10676 13652 
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Table 106. ADRV9025Init_StdUseCase83C_LinkSharing 

Use Case 
Tx 
Bandwidth 

TX Input 
Rate 

TX DAC 
Rate 

ORx 
Bandwidth 

ORX Output 
Rate 

ORx ADC 
Rate 

Rx 
Bandwidth 

Rx Output 
Rate 

Rx ADC 
Rate 

UC83C_LS 337.5 MHz 368.64 MHz 1.475 GHz 337.5 MHz 368.64 MHz 3.686 GHz 200 MHz 368.64 MHz 3.686G Hz  

Table 107.  
Calibration 1 Channel 2 Channels 3 Channels 4 Channels 
TX_DAC  2 5 8 13 
TX_BB_FILTER  1 3 3 5 
ADC_TUNER  1 1 1 1 
FLASH_CAL  285 343 425 483 
RX_TIA  71 84 99 112 
ORX_TIA  71 85 99 115 
LBRX_TIA  71 85 100 114 
RX_DC_OFFSET  451 451 450 451 
ORX_DC_OFFSET  450 899 898 899 
LBRX_DC_OFFSET  7 14 14 14 
LOOPBACK_RX_LO_DELAY  208 416 625 830 
RX_QEC_INIT  547 1094 1638 2184 
ORX_QEC_INIT  860 1717 2572 3437 
INTERNAL_PATH_DELAY  1 2 3 4 
TX_LO_LEAKAGE_INTERNAL  883 1764 2645 3525 
TX_QEC_INIT  419 818 1202 1639 
Total Calibration time (ms) 4328 7781 10782 13826 

 

INITIALIZATION CALIBRATIONS TO BE RUN AFTER DEVICE INITIALIZATION 
The device requires a few additional initialization calibrations to be run after the standard set because they require external signal routing. 
An External TXLOL initialization calibration is available where the observation point is moved from inside the device to the selected 
observation receiver input. In this case it is typically connected to a directional coupler after the PA in the antenna path. This 
configuration results in the best possible performance because the correction observation point is moved to the PA output. The 
calibration is run on each transmitter individually after the correct observation input path has been set. Similarly, CFR calibrations are 
also run separately and sequentially. Refer to Table 71 for the appropriate cal mask. 

The following table addresses the typical times for these INIT calibrations. Note the CFR initialization calibration is mostly coefficient 
setting and, therefore, completes quickly. 

Table 108.  
INIT Calibration Time 
TX_LO_LEAKAGE_EXTERNAL 122.88 MHz IQ Rate 320 ms 
TX_LO_LEAKAGE_EXTERNAL 245.76 MHz IQ Rate and higher 230 ms 
CFR Initialization calibration <1 ms 
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TRACKING CALIBRATION TIMING 
Tracking calibrations are provided to maintain performance over the device operating conditions. The Arm processor periodically runs 
the enabled tracking calibrations according to the tracking calibration scheduler. 

On the receive side, there are RX QEC, ORX QEC and on some devices RX HD2 tracking calibrations. These calibrations, when enabled 
constantly observe the RX (or ORX) spectrum and update the correction parameters as the computations are completed. They are 
triggered on a 7 ms schedule, but are essentially running continuously in the background whenever the channel is enabled. 

The transmitter tracking calibrations include TXLOL, TXQEC and for some versions of the device also include CLGC tracking 
calibration. When the tracking calibrations are enabled on the transmitter, the spectrum is observed based upon the available observation 
path and correction parameters are applied to each transmitter as the computations are completed.  

TXLOL tracking calibration runs on a 6 sec schedule. The samples are collected in batches of 20 μs duration for a total sample size of 
approximately 30 ms. TXQEC runs on a 30 sec schedule and also collects batches of 20 μs duration. TXQEC captures as many batches as 
necessary to obtain good correlator results. The time to finish can vary and can be from 100 μs up to 55 ms. However because they run in 
the background, the absolute time is not of concern to the user. Even though these cals run at fixed intervals (6 sec and 30 sec), any 
change in Tx attenuation causes both cals to be restarted. This is done to quickly correct any channel impairments. 

The CLGC tracking calibration runs on a 1 sec schedule with similar batch sizes. 

In the case of JESD204C, an additional tracking calibration is run to maintain the link parameters on a 60 sec schedule. 
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STREAM PROCESSOR AND SYSTEM CONTROL 
A stream processor is a processor within the device tasked with performing a series of configuration tasks based on some event. Upon a 
request from the user, the stream processor performs a series of pre-defined actions which are loaded into the stream processor during 
device initialization. This processor takes full advantage of the speed of the internal register buses for efficient execution of commands. 
The stream processor can access and modify registers independently, avoiding the need for Arm interaction.  

The stream processor executes streams, or series of tasks for the following: 

 Tx1/Tx2/Tx3/Tx4 Enable/Disable  
 Rx1/Rx2/Rx3/Rx4 Enable/Disable 

ORx1/ORx2/ORx3/ORx4 Enable/Disable 

The device flexibility is maintained by implementing the stream processors with similar flexibility. The stream processor image changes 
with configuration similar to how the initialization structures change with the selected profiles. For example, the stream that enables the 
receivers differs depending on the JESD configuration. For this reason, it is necessary to save a stream image for each device 
configuration. When the user saves the configuration files (.c) using the GUI, a stream binary image is generated automatically. Then use 
this stream file when initializing the device with the profile in question.  

The following are examples of how the stream files can differ: 

 The framer choices for ORx and Rx 
 For link sharing purposes 
 If floating point formatting is being used on Rx and ORx paths, the stream image can change 

Eleven separate stream processors exist in the device, each of which is responsible for the execution of some dedicated functionality 
within the device. These can be divided into two broad categories: slice stream processors and the core stream processor. 

SLICE STREAM PROCESSORS 
There are ten slice stream processors, one each for the four Tx, Rx data paths, and two for the ORx data paths. Note that even though 
there are four distinct RF front ends for the ORx, the device only supports two digital data paths—one shared between ORx1/ORx2 and 
another shared between ORx3/ORx4. These ORx data paths are also shared with the internal Tx channel loopback paths in order to 
facilitate data collection during the various Tx calibrations. The existence of individual slice stream processors for each data path enables 
true real-time parallel operation of all unique Tx and Rx data paths. The ORx data paths still need to be managed based on the various 
system operation use cases detailed in this section. 

Since each slice stream processor is limited to some dedicated part of the transceiver, a given slice stream processor may only access the 
digital register sub maps corresponding to its specific functionality. For example, the Tx slice stream processors can only access the Tx 
digital sub maps.  

Core Stream Processor 

There is also a core stream processor that has access to the entire device. The core stream processor services GPIO pin-based streams and 
any custom streams that are cross domain.  

SYSTEM CONTROL 
The signal paths within the device can be controlled by either the API or through pin control. In the case of API control, control relies on 
the SPI communication bus and its inherent unpredictable timing with respect to register access. For critical time alignment when 
powering on/off signal chains, pin control is recommended. The device defaults to API mode upon power up.  
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API Control 

The following API function is used to control the data paths when the device is in API control:  

adi_adrv9025_RxTxEnableSet 
adi_adrv9025_RxTxEnableSet(adi_adrv9025_Device_t *device, uint32_t rxChannelMask, uint32_t 
txChannelMask) 

Description 

Controls and configures the Tx and Rx data paths. 

Parameters 

Table 109.  
Parameter Description 
*device  Pointer to device structure. 
rxChannelMask The desired Rx/ORx signal chain to power up. See Table 110 for list of enums. 
txChannelMask The desired Tx signal chain to power up. See Table 111 for list of enums. 

The enums are used (OR’ed) to create a value for the channel masks that determine the paths enabled when this API is called. The selected 
channels remain active until further instruction from this API command. It is important to note that if an ORx channel is enabled 
continuously and not returned to ADI_ADRV9025_RXOFF for any time, then the Tx tracking calibrations are able to function. 

Table 110. adi_adrv9025_RxChannels_e Enum Definition 
adi_adrv9025_RxChannels_e Enum Enabled Channels 
ADI_ADRV9025_RXOFF No Rx or ORx channels enabled 
ADI_ADRV9025_RX1 Rx1 Enabled 
ADI_ADRV9025_RX2 Rx2 Enabled 
ADI_ADRV9025_RX3 Rx3 Enabled 
ADI_ADRV9025_RX4 Rx4 Enabled 
ADI_ADRV9025_ORX1 ORx1 Enabled 
ADI_ADRV9025_ORX2 ORx2 Enabled 
ADI_ADRV9025_ORX3 ORx3 Enabled 
ADI_ADRV9025_ORX4 ORx4 Enabled 
ADI_ADRV9025_LB12 Tx1 or Tx2 internal loopback into ORx1/2 channel enabled 
ADI_ADRV9025_LB34 Tx3 or Tx4 internal loopback into ORx3/4 channel enabled 

Table 111. adi_adrv9025_TxChannels_e Enum Definition 
adi_adrv9025_TxChannels_e Enum Enabled Channels 
ADI_ADRV9025_TXOFF No Tx channels enabled 
ADI_ADRV9025_TX1 Tx1 Enabled 
ADI_ADRV9025_TX2 Tx2 Enabled 
ADI_ADRV9025_TX3 Tx3 Enabled 
ADI_ADRV9025_TX4 Tx4 Enabled 
ADI_ADRV9025_TXALL All Tx Enabled 
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Pin Control 

The individual channels can also be controlled using a series of enable pins. In pin control mode, the Rx and Tx signal chains are 
controlled using dedicated pins, one RX_ENABLE pin per receiver and one TX_ENABLE pin per transmitter. When these pins are 
toggled high, the relevant signal chain is enabled. When these pins are toggled low, the relevant signal chain is disabled. 

The ORx paths can be controlled in various modes, as indicated in Table 112. 

Table 112. ORx Select Mechanisms 
ORx Pin Mode ORx Select Mechanism 

Single Channel 
1-Pin Mode 

In this mode a single channel is selected through the API (over SPI). ORX_CTRL_A is the enable/disable control pin, 
when high the selected ORx is enabled, when low, all ORx paths are disabled. Figure 57 illustrates Single Channel 1 Pin 
Mode. Note that ORx1 has been shown in this example, however any of ORx1 to ORx4 can be chosen. 

Single Channel 
2-Pin Mode 

In this mode, ORX_CTRL_A is the enable/disable control pin, when high the selected ORx is enabled, when low, all ORx 
paths are disabled. The ORX_CTRL_B pin is used for to select the ORx path, allowing the user to choose between two 
different ORx paths. These paths are predetermined through the API (over SPI), with one path selected when 
ORX_CTRL_B is high and another when it is low. This mode is illustrated in Figure 58. Note where ORx2 on and ORx3 on 
are shown. Any of the other ORx can be configured to turn on at this time instead of ORx2 or ORx3.  

Single Channel 
3-Pin Mode 

ORX_CTRL_A is the enable/disable control. ORx select is accomplished by ORX_CTRL_B and ORX_CTRL_C. The mapping 
of which path is selected is as follows: 

 ORX_CTRL_C ORX_CTRL_B Path Selected 
 0 0 ORx1 
 0 1 ORx2 
 1 0 ORx3 
 1 1 ORx4 
 This mode is illustrated in Figure 59. 

Dual Channel 
2-Pin Mode 

In this mode ORX_CTRL_A and ORX_CTRL_C are the enable/disable control allowing the user to choose between two 
different ORx paths. These paths are predetermined through the API (over SPI). This mode is illustrated in Figure 60.  

Dual Channel 
4-Pin Mode 

In this mode In this mode ORX_CTRL_A and ORX_CTRL_C are the enable/disable control while ORX_CTRL_B and 
ORX_CTRL_D selects which channel is to be enabled allowing the user to choose between four different ORx paths. This 
mode is illustrated in Figure 61.  
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Figure 57. Single Channel 1-Pin Mode 
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Figure 58. Single Channel 2-Pin Mode 
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Figure 59. Single Channel 3-Pin Mode 
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Figure 60. Dual Channel 2-Pin Mode 
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Figure 61. Dual Channel 4-Pin Mode 
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The user can set the channel control mode (API/Pin) with the post multi-chip sequence API function: 

adi_adrv9025_PostMcsInit 
adi_adrv9025_PostMcsInit(adi_adrv9025_Device_t *device, adi_adrv9025_PostMcsInit_t *utilityInit) 

Description 

Sets the channel control mode (API or Pin). 

Parameters 

Table 113.  
Parameter Description 
*device  Pointer to device structure. 
*utilityInit Structure of type adi_adrv9025_PostMcsInit_t containing all relevant settings for the post MCS initialization routines. 

This command contains a structure of type adi_adrv9025_ RadioctrlInit_t for setting up how the device is controlled. Inside this structure 
is the structure adi_adrv9025_ RadioCtrlModeCfg_t that contains the radio control mode configuration for the Tx, Rx and ORx channels.  

This structure is defined in Table 114 and, depending on how the user configures this structure before the call to 
adi_adrv9025_PostMcsInit(), the part is configured in either pin or API mode. 

Table 114. adi_adrv9025_RadioCtrlModeCfg_t Definition 
Name Description 
txRadioCtrlModeCfg Tx signal path enable mode configuration. See Table 115 for description. 
rxRadioCtrlModeCfg Rx signal path enable mode configuration. See Table 116 for description. 
orxRadioCtrlModeCfg ORx signal path enable mode configuration. See Table 117 for description. 
 

Table 115. adi_adrv9025_TxRadioCtrlModeCfg_t Definition 
Name Value Description 
txEnableMode A value of type adi_adrv9025_TxEnableMode_e, options are:  

ADI_ADRV9025_TX_EN_SPI_MODE Setting this mode selects API (or SPI) mode to control 
the Tx signal path 

ADI_ADRV9025_TX_EN_PIN_MODE Setting this mode does not modify the currently set 
mode to control the Tx signal path 

ADI_ADRV9025_TX_EN_INVALID_MODE Setting this mode selects no mode to control the Tx 
signal path 

txChannelMask Bit mask, one bit per channel ([D0] = Tx1, [D1] = Tx2, [D2] = 
Tx3, [D3] = Tx4). For example, to apply this to all four 
transmitters, txChannelMask is set to 15. 

Set this to the Tx channels you want to configure with 
the selected txEnableMode 

Table 116. adi_adrv9025_RxRadioCtrlModeCfg_t Definition 
Name Value Description 
rxEnableMode A value of type adi_adrv9025_RxEnableMode_e, options are:  

ADI_ADRV9025_RX_EN_SPI_MODE Setting this mode selects API (or SPI) mode to control the 
Rx signal path 

ADI_ADRV9025_RX_EN_PIN_MODE Setting this mode selects the Pin mode to control the Rx 
signal path 

ADI_ADRV9025_RX_EN_INVALID_MODE Setting this mode does not modify the currently set 
mode to control the Rx signal path 

rxChannelMask Bit mask, one bit per channel ([D0] = Rx1, [D1] = Rx2, [D2] = 
Rx3, [D3] = Rx4). For example, to apply this to all four 
receivers, rxChannelMask is set to 15. 

Set this to the Rx channels you want to configure with 
the selected rxEnableMode 
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Table 117. adi_adrv9025_ORxRadioCtrlModeCfg_t Definition 
Name Value Description 
orxEnableMode A value of type adi_adrv9025_OrxEnableMode_e, options 

are: 
 

ADI_ADRV9025_ORX_EN_SPI_MODE Setting this mode selects API (or 
SPI) mode to control the ORx 
signal path 

ADI_ADRV9025_ORX_EN_SINGLE_CH_3PIN_MODE Setting this mode puts the 
device in Single Channel 3  
pin mode as described in  
Table 112 

ADI_ADRV9025_ORX_EN_SINGLE_CH_2PIN_MODE Setting this mode puts the 
device in Single Channel 2  
pin mode as described in 
Table 112 

ADI_ADRV9025_ORX_EN_SINGLE_CH_1PIN_MODE Setting this mode puts the 
device in Single Channel 1  
pin mode as described in 
Table 112 

ADI_ADRV9025_ORX_EN_DUAL_CH_4PIN_MODE Setting this mode puts the 
device in Dual Channel 4 
pin mode as described in 
Table 112 

ADI_ADRV9025_ORX_EN_DUAL_CH_2PIN_MODE Setting this mode puts the 
device in Dual Channel 2  
pin mode as described in  
Table 112 

ADI_ADRV9025_ORX_EN_INVALID_MODE Setting this mode does not 
modify the currently set mode 
to control the ORx signal path 

orxPinSelectSettlingDelay_armClkCycles MinValue: 0, MaxValue: 16 Amount of time for the 
firmware to wait before 
sampling pins used for ORx 
selection; minimum is 2 Arm 
clock cycles, maximum is 
18 Arm clock cycles 

singleChannel1PinModeOrxSel A value of type adi_adrv9025_ 
SingleChannelPinModeOrxSel_e, options are: 

 

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX1_FE Selects ORx1 when in single 
channel 1 pin ORx enable mode 

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX2_FE Selects ORx2 when in single 
channel 1 pin ORx enable mode 

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX3_FE Selects ORx3 when in single 
channel 1 pin ORx enable mode 

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX4_FE Selects ORx4 when in single 
channel 1 pin ORx enable mode 

ADI_ADRV9025_SINGLE_CH_PIN_MODE_INVALID_ORX_SEL Does not modify the current 
mode of ORx when in single 
channel 1 pin ORx enable mode 
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Name Value Description 
singleChannel2PinModeLowOrxSel A value of type 

adi_adrv9025_SingleChannelPinModeOrxSel_e, options are: 
 

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX1_FE Selects ORx1 when the 
ORX_CTRL_B pin is low in single 
channel 2 pin ORx enable mode 

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX2_FE Selects ORx2 when the 
ORX_CTRL_B pin is low in single 
channel 2 pin ORx enable mode 

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX3_FE Selects ORx3 when the 
ORX_CTRL_B pin is low in single 
channel 2 pin ORx enable mode 

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX4_FE Selects ORx4 when the 
ORX_CTRL_B pin is low in single 
channel 2 pin ORx enable mode 

ADI_ADRV9025_SINGLE_CH_PIN_MODE_INVALID_ORX_SEL Does not modify the current 
mode of ORx when the 
ORX_CTRL_B pin is low in single 
channel 2 pin ORx enable mode 

singleChannel2PinModeHighOrxSel A value of type 
adi_adrv9025_SingleChannelPinModeOrxSel_e, options are: 

 

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX1_FE Selects ORx1 when the 
ORX_CTRL_B pin is high in 
single channel 2 pin ORx enable 
mode 

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX2_FE Selects ORx2 when the 
ORX_CTRL_B pin is high in 
single channel 2 pin ORx enable 
mode 

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX3_FE Selects ORx3 when the 
ORX_CTRL_B pin is high in 
single channel 2 pin ORx enable 
mode 

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX4_FE Selects ORx4 when the 
ORX_CTRL_B pin is high in 
single channel 2 pin ORx enable 
mode 

ADI_ADRV9025_SINGLE_CH_PIN_MODE_INVALID_ORX_SEL Does not modify the current 
mode of ORx when the 
ORX_CTRL_B pin is high in 
single channel 2 pin ORx enable 
mode 

dualChannel2PinModeOrxSel A value of type 
adi_adrv9025_DualChannelPinModeOrxSel_e, options are: 

 

 ADI_ADRV9025_DUAL_CH_PIN_MODE_ORX1_ORX3_SEL Selects ORx1 and ORx3 when 
the part is in dual channel 2 pin 
mode 

 ADI_ADRV9025_DUAL_CH_PIN_MODE_ORX1_ORX4_SEL Selects ORx1 and ORx4 when 
the part is in dual channel 2 pin 
mode 

 ADI_ADRV9025_DUAL_CH_PIN_MODE_ORX2_ORX3_SEL Selects ORx2 and ORx3 when 
the part is in dual channel 2 pin 
mode 

 ADI_ADRV9025_DUAL_CH_PIN_MODE_ORX2_ORX4_SEL Selects ORx2 and ORx4 when 
the part is in dual channel 2 pin 
mode 

 ADI_ADRV9025_DUAL_CH_PIN_MODE_INVALID_ORX_SEL Does not modify the current 
mode of ORx when the part is in 
dual channel 2 pin mode 
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ADC Crossbar Control 

There are two control modes for the ADC crossbar (Xbar) switches that feed the JESD serializers during link sharing mode. In the default 
mode, the Rx channel is connected to the serializer when the enable pin of the channel is active, and the ORx channel is connected to the 
serializer when the ORX_CTRL pins are driven to select the ORx channel. A second mode called ADC Xbar toggling exists that assigns 
the path control solely to the ORx channel control signals.  

When ADC Xbar toggling is enabled, the ADC sample crossbar connects the desired ORx channel to the serializer when that channel is 
enabled using the ORX_CTRL pins. When the ORX_CTRL pins disable the ORx channel, the Rx channel is automatically connected to 
the serializer. This allows the system to keep the Rx channel enabled during link sharing operation and limit toggling to the ORX_CTRL 
inputs. 

This feature can be enabled in a stream file by selecting ADC Xbar control in the TES Stream Settings window before generating the 
stream. The appropriate selection is shown in Figure 62. 
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Figure 62. Stream Settings Window for Selecting ADC Xbar Control Mode 

USE CASES 
This section details example use cases for the device that show how the device is typically operated to ensure that calibrations are run. 

4 Tx/4 Rx/2 ORx Input Use Case 

In this use case the device is configured such that two Tx feed back into one ORx for each side of the device. The ORX_CTRL signals are 
configured in single channel 2 pin mode, with ORX_CTRL_A and ORX_CTRL_B used to determine which ORx is enabled and selected 
for the observation purposes of the user. ORX_CTRL_A is high at all the time, as an ORx path is always being used. When 
ORX_CTRL_A goes low, regardless of the state of ORX_CTRL_B, no ORx channel is enabled. ORX_CTRL_B determines which ORx 
channel the user is observing. For this example, ORx2 and ORx3 are being used. Note that ORx1 can be used in place of ORx2 or ORx4 in 
place of ORx3. At least one ORx from each side of the device must be used; that is, either ORx1 or ORx2 must be used for calibrations on 
Tx1 and Tx2. The ORx from one side of the device cannot be used to calibrate the Tx on the other side of the device. That is, ORx1 or 
ORx2 cannot be used to calibrate Tx3 and Tx4. 

The ORX_TX_SEL and ORX2_TX_EN signals are used to indicate the external routing of the feedback paths, allowing the arm to know 
which transmitter is being looped back to which observation receiver at a given time and whether a calibration may be run or not. As a 
transmitter is always available at an observation receiver on its own side of the chip, ORX2_TX_EN and ORX3_TX_EN are defaulted 
high over SPI as they remain fixed. ORX2_TX_SEL and ORX3_TX_SEL indicate the external routing of a transmitter to a given 
observation receiver. When ORX2_TX_SEL is low, it indicates the Tx1 path is routed back to ORx2. Likewise, when ORX2_TX_SEL is 
high, this indicates PA2 is available at the ORx2 input. This is similar for ORX3_TX_SEL, such that when this signal is low it indicates 
PA3 is available at the ORx3 input, and, likewise, when it is high PA4 is available at the observation receiver input.  

For this use case, internal calibrations can be performed on the inactive ORx channel while an external calibration is running on the 
active channel. In the first time slot of the timing diagram in Figure 64, it can be seen that ORx2 is enabled by the user. PA1 and PA3 have 
been routed back to ORx2 and ORx3, respectively. The device can perform an external LOL tracking calibration for Tx3 via ORx3, or a 
QEC tracking calibration on Tx3 or Tx4, while the system is performing calculations for PA1. The QEC tracking calibration is performed 
via an internal routing between each Tx channel and its corresponding ORx channel. The external LOL tracking calibration, however, can 
only be performed when an external loopback path is available. In the second time slot in Figure 64, ORx2 is still enabled for the user 
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with PA2 and PA4 being made available to ORx2 and ORx3. The system can perform calculations for PA2 via ORx2 while performing a 
QEC tracking calibrations on Tx3 or Tx4, or an external LOL tracking calibration on Tx4.  

Note that calibrations are not automatically run in a designated time slot. The Arm scheduler of the device schedules which calibrations 
run at any given time. For more information on the scheduler, refer to the Arm Processor and Device Calibrations section of this user 
guide. In addition, the same JESD link can be used for ORx2 and ORx3 in the scenario above because only one ORx is used at any given 
time.  
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Figure 63. 4 Tx, 4 Rx, 2 ORx Configuration 
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Figure 64. ORx Enable and Tx Select Signals: 4 Tx, 4 Rx, 2 ORx Configuration 
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4 Tx/4 Rx/4 ORx Input Use Case 

In this use case, each Tx is routed back to its own ORx input. The device is configured in Single Channel 3 Pin Mode for this use case. 
ORX_CTRL_A is principally high all the time, meaning an ORx path is always being used. ORX_CTRL_B and ORX_CTRL_C determine 
what ORx channel is enabled and selected for the observation purposes of the user. Refer to Table 118 for how each ORx is selected via 
the two ORx select signals.  

Table 118. ORx Select Logic 
Logic of ORX_CTRL_C (MSB) and ORX_CTRL_B (LSB) ORx Selected 
00 ORx1 
01 ORx2 
10 ORx3 
11 ORx4 

Because each Tx is routed back to a separate ORx input, there is no need for external switching in this use case and each of the 
ORX_TX_SEL signals can be set to a default value via the SPI. ORX2_TX_SEL and ORX4_TX_SEL are both defaulted to a high state, and 
ORX1_TX_SEL and ORX3_TX_SEL are both defaulted to a low state. ORX1_TX_EN, ORX2_TX_EN, ORX3_TX_EN, and 
ORX4_TX_EN are all defaulted to a high state.  

The first time slot in the timing diagram in Figure 66 shows that the ORX_CTRL_B and ORX_CTRL_C signals are set to a 00 value, 
enabling ORx1 to the user. In this scenario, calculations can be performed on PA1. ORx2 is on this side of the chip, so the device cannot 
use it for any calibrations during this time slot. The other side of the chip can be utilized via ORx3/ORx4 for calibrations. Note that 
calibrations can be performed on either Tx3 or Tx4 and it is up to the scheduler to determine what calibration for which Tx is to run in a 
given time slot. Because each Tx is permanently routed back to its own ORx, the external path always exists for external LOL tracking to run.  

Because only one ORx is used at any given time, the same JESD link for ORx1, ORx2, ORx3 and ORx4 can be used in this scenario.  

Macro TDD/Massive MIMO
4T, 4R, 4ORx

TX4

RX4

ORX3/4

RX3

TX3 LO1

TX1

RX1

ORX1/2

RX2

TX2

SERDES

PA

LNA

Antenna 4

PA

LNA

Antenna 3

Balun

Balun

Balun

Balun

Balun

Balun

PA

LNA

Antenna 1

PA

LNA

Antenna 2

Balun

Balun

Balun

Balun

Balun

BalunLO1

LO1

LO1

LO1

LO1

LO1

LO1

LO1

LO1

22
7

70
-0

66

 
Figure 65. 4 Tx, 4 Rx, 4 ORx Configuration 
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Figure 66. ORx Enable and Tx Select Signals: 4 Tx, 4 Rx, 4 ORx Configuration 
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4 Tx/4 Rx/2 ORx input – Single Point of Feedback from 4 Tx to ORx Use Case 

This use case shows an example where all the ORx paths are shared through one common feedback point. As there are two sides to the 
device from a calibration perspective, the user must route Tx1 and Tx2 to either ORx1 or ORx2. Similarly, Tx3 and Tx4 need a path back 
to ORx3 or ORx4 for the purpose of calibrations. To allow calibrations to run in parallel with PA observation captures, the opposite side 
of the device to that required for calibrations is used to capture observation data; that is, if Tx2 is being fed back through this single 
feedback point, then ORx2 is used for device calibrations while ORx3 can be used to capture observation data. A resistive splitter is used 
to route the signal to both sides of the device. 

For this use case, we use single channel 2 pin mode. ORX_CTRL_A is set high all the time because an ORx path is always being used. 
ORX_CTRL_B selects which ORx the user is observing in a given time slot. For this example, ORx2 and ORx3 are used. ORx3 is selected 
for observation when ORX_CTRL_B is high and ORx2 is selected for observation when ORX_CTRL_B is low.  

ORX2_TX_SEL and ORX2_TX_EN together tell the Arm which external path (either Tx1 or Tx2) is routed back to ORx2. When 
ORX2_TX_SEL and ORX2_TX_EN are both high, the PA2 path is routed back to both ORx2 and ORx3. When ORX2_TX_SEL is low 
and ORX2_TX_EN is high, the PA1 path is routed back to both ORx2 and ORx3. When ORX2_TX_EN is low, this tells the device that 
there is no external feedback path between this ORx input and a Tx on the same side of the device. In this scenario, the external LOL 
calibration cannot be performed. Likewise, the ORX3_TX_SEL and ORX3_TX_EN perform the same function for the Tx paths on the 
other side of the chip. If ORX3_TX_SEL is low and ORX3_TX_EN is high, the PA3 path is routed back to both ORx2 and ORx3. If 
ORX3_TX_SEL and ORX3_TX_EN are both high, the PA4 path is routed back to both ORx2 and ORx3. Finally, if ORX3_TX_EN is low, 
this tells the device that there is no external feedback path between this ORx input and a Tx on the same side of the device. In this 
scenario, the external LOL calibration cannot be performed. 

Unlike the other use cases previously described, the device can perform both calculations on a given PA and calibrations with the other 
ORx input for the same side of the chip. While the Tx calibrations have to be performed with an ORx from the same side of the chip, the 
PA calculations do not have that constraint. The first time slot in Figure 68 shows that calculations are being performed on PA1 via ORx3 
while calibrations are performed on Tx1/Tx2 via ORx2. Note at the first time slot in this diagram that the external LOL calibration can be 
performed for Tx1 as the path is routed back to ORx2. In time slot two, the external LOL calibration can be performed for Tx2 but not 
Tx1 as there is no external feedback path. QEC calibrations are performed though an internal feedback path and do not require an 
external feedback path to run. It is up to the Arm scheduler to determine what calibration is due to run in any given slot. The same JESD 
link can be used for ORx2 and ORx3 in this scenario because only one ORx is used at any given time. 
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Figure 67. Observation Channel Routing: 4 Tx to 2 ORx Channels 
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Figure 68. ORx Enable and Tx Select Signals: 4 Tx to 2 ORx Multiplexed Configuration  
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TRANSMITTER OVERVIEW AND PATH CONTROL 
The ADRV9026 uses an accurate and efficient method of transmit power control (Tx attenuation control) that involves a minimum of 
interaction with the baseband processor. The power control in the transmit chain is implemented with two variable attenuations, one in 
the digital domain and one in the analog domain. Furthermore, the maximum output level of the transmitter can be adjusted between 
two levels, allowing a tradeoff between linearity and LOL performance.  

There are three different modes available to control the attenuation setting of the transmitter. The attenuation can be set immediately via 
the API, incremented or decremented using GPIO pins to trigger the increment or decrement, or set through a SPI2 mode that enables 
real time operation using a GPIO pin. The choice of attenuation mode is set by attenMode. 

The attenuation is controlled via a lookup table, which is programmed into the product during initialization. The lookup table maps a 
desired value in dB to the appropriate analog and digital attenuation settings to be applied in the data path. The default table provides a 
range of 0 dB to 41.95 dB of attenuation, with a step size of 0.05 dB, resulting in 840 available attenuation settings.  

The Tx path allows the maximum output of the DAC to be increased by 3 dB adjusting the parameter dacFullScale. This results in the 
baseband signal (the desired signal) increasing by 3 dB while RF output components (such as LO leakage) remain unchanged, giving a net 
improvement of 3 dB in LOL performance. There is a reduction in linearity performance in this mode. Therefore, the setting is a trade-off 
based on the system requirements of the user.  

The Tx datapath can be configured to automatically ramp the attenuation to the maximum level under certain conditions, such as the 
JESD link dropping (rampJesdDfrm) or the Tx PLL unlocking (disTxDataIfPllUnlock), to prevent spurious transmission in the event of 
these types of system errors. 

Test tones may be generated digitally in the Tx baseband path. This function is useful for testing/debugging before the JESD link has been 
established. The frequency can be set from −TxInputRate/2 to +TxInputRate/2. The Tx attenuation is manually overridden when this 
function is enabled. When test tones are selected as the Tx input, the analog portion of the Tx attenuation is set to 0 dB (max output 
power), and the digital portion is set by txToneGain.  

API COMMANDS 
Several API commands are available to adjust the Tx paths after initialization and during normal operation. The following descriptions 
detail these commands and how they are used. 

adi_adrv9025_TxAttenCfgSet 

adi_adrv9025_TxAttenCfgSet(adi_adrv9025_Device_t* device, adi_adrv9025_TxAttenCfg_t 
txAttenCfg[], uint8_t attenCfgs); 

Description 

Configures Tx power control. 

Parameters 

Table 119.  
Parameter Description 
*device  Pointer to device structure. 
txAttenCfg[] An array of structures of type adi_adrv9025_TxAttenCfg_t detailed in Table 120. 
attenCfgs The number of configurations passed in the array. 

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
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Table 120. adi_adrv9025_TxAttenCfg_t Parameters 
Parameter Comments 
txChannelMask This selects the channels upon which the API acts. It is a bit mask with each bit corresponding to a channel. The 

desired mask can be generated by OR’ing the desired channel enums as listed below. Data type: uint32_t 

Parameter Tx Channel 
ADI_ADRV9025_TXOFF No Tx channels selected 
ADI_ADRV9025_TX1 Tx1 channel selected 
ADI_ADRV9025_TX2 Tx2 channel selected 
ADI_ADRV9025_TX3 Tx3 channel selected 
ADI_ADRV9025_TX4 Tx4 channel selected 
ADI_ADRV9025_TXALL All Tx channels selected 

txAttenStepSize This parameter sets the attenuation step size; Data type: adi_adrv9025_TxAttenStepSize_e 

Parameter Step Size (dB) 
ADI_ADRV9025_TXATTEN_0P05_DB 0.05 
ADI_ADRV9025_TXATTEN_0P1_DB 0.1 
ADI_ADRV9025_TXATTEN_0P2_DB 0.2 
ADI_ADRV9025_TXATTEN_0P4_DB 0.4 

disTxDataIfPllUnlock Option to ramp Transmit attenuation to max if the RFPLL unlocks ; Data type: adi_adrv9025_TxDataIfUnlock_e 

Parameter Action 
ADI_ADRV9025_TXUNLOCK_TX_NOT_DISABLED Do not alter Tx attenuation in an unlock event. 
ADI_ADRV9025_TXUNLOCK_TX_RAMP_DOWN_TO_MIN_ATTEN Ramp Tx attenuation to maximum in an unlock 

event. 
rampJesdDfrm Ramp up attenuation when a deframer link unlocks. Note this field is not being used actively. If user enables at least 

one deframer event with adi_adrv9025_PaPllDfrmEventRampDownEnableSet, the gain ramp down on the deframer 
event is automatically enabled. Data type: adi_adrv9025_TxDataIfUnlock_e 

attenMode Selects the Tx attenuation mode; Data type: adi_adrv9025_TxAttenMode_e 

Parameter Mode 
ADI_ADRV9025_TXATTEN_BYPASS_MODE Tx attenuation mode Bypass: zero total 

attenuation 
ADI_ADRV9025_TXATTEN_SPI_MODE Tx attenuation set by 10-bit index programmed 

over SPI 
ADI_ADRV9025_TXATTEN_GPIO_MODE Tx attenuation is incremented/decremented 

using GPIO pins 
ADI_ADRV9025_TXATTEN_SPI2_MODE Attenuation is controlled using the SPI2 mode 

dacFullScale Sets the full scale of the Tx DAC; Data type: adi_adrv9025_DacFullScale_e 

Parameter Description 
ADI_ADRV9025_TX_DACFS_0DB No Full Scale Boost 
ADI_ADRV9025_TX_DACFS_3DB Full scale boost = 3 dB 
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adi_adrv9025_TxAttenCfgGet 

adi_adrv9025_TxAttenCfgGet(adi_adrv9025_Device_t* device, adi_adrv9025_TxChannels_e txChannel, 
adi_adrv9025_TxAttenCfg_t *txAttenCfg) 

Description 

Reads Tx power control configuration one channel at a time. 

Parameters 

Table 121.  
Parameter Description 
*device  Pointer to device structure. 
txChannel The Tx channel to be read back using an enum as described in Table 120. 
*txAttenCfgs The pointer to the readback structure of the queried Tx channel as defined in Table 120.  

 

adi_adrv9025_TxAttenSet 

adi_adrv9025_TxAttenSet(adi_adrv9025_Device_t* device, adi_adrv9025_TxAtten_t txAttenuation[], 
uint8_t numTxAttenConfigs); 

Description 

Sets Tx attenuation when Tx attenuation mode is set to ADI_ADRV9025_TXATTEN_SPI_MODE. 

Parameters 

Table 122.  
Parameter Description 
*device  Pointer to device structure. 
txAttenuation[] An array of structures of type adi_adrv9025_TxAtten_t detailed in Table 123. 
numTxAttenConfigs The number of configurations passed in the array. 

Table 123. adi_adrv9025_TxAtten_t Parameters 
Parameter Comments 
txChannelMask This selects the channels upon which the API acts. It is a bit mask with each bit corresponding to a channel. The 

desired mask can be generated by ORing the desired channel enums as listed below. Data type: uint32_t 

Parameter Tx Channel 
ADI_ADRV9025_TXOFF No Tx channels selected 
ADI_ADRV9025_TX1 Tx1 channel selected 
ADI_ADRV9025_TX2 Tx2 channel selected 
ADI_ADRV9025_TX3 Tx3 channel selected 
ADI_ADRV9025_TX4 Tx4 channel selected 
ADI_ADRV9025_TXALL All Tx channels selected 

txAttenuation_mdB This parameter specifies the attenuation in mdB. Data type: uint16_t 
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adi_adrv9025_TxAttenGet 

adi_adrv9025_TxAttenGet(adi_adrv9025_Device_t* device, adi_adrv9025_TxChannels_e txChannel, 
adi_adrv9025_TxAtten_t* txAttenuation) 

Description 

Reads Tx attenuation when the Tx attenuation mode is set to ADI_ADRV9025_TXATTEN_SPI_MODE or 
ADI_ADRV9025_TXATTEN_GPIO_MODE. 

Parameters 

Table 124.  
Parameter Description 
*device  Pointer to device structure. 
txChannel The Tx channel to be read back using an enum as described in Table 123. 
*txAttenuation Pointer to the readback structure of the queried Tx channel as defined in Table 123.  

adi_adrv9025_TxAttenModeSet 

adi_adrv9025_TxAttenModeSet(adi_adrv9025_Device_t* device, adi_adrv9025_TxChannels_e txChannel, 
adi_adrv9025_TxAttenMode_e *txAttenMode); 

Description 

Sets the Tx attenuation mode independent of the init structure. 

Parameters 

Table 125.  
Parameter Description 
*device  Pointer to device structure. 
txChannel Tx channel upon which the API acts as described in Table 126. 
*txAttenMode Pointer to the desired mode of attenuation using an enum as described in Table 126. 

Table 126. adi_adrv9025_TxAttenModeSet Parameters 
Parameter Comments 
txChannelMask This selects the channels upon which the API acts. It is a bit mask with each bit corresponding to a channel. The desired 

mask can be generated by ORing the desired channel enums as listed below. Data type: uint32_t 

Parameter Tx Channel 
ADI_ADRV9025_TXOFF No Tx channels selected 
ADI_ADRV9025_TX1 Tx1 channel selected 
ADI_ADRV9025_TX2 Tx2 channel selected 
ADI_ADRV9025_TX3 Tx3 channel selected 
ADI_ADRV9025_TX4 Tx4 channel selected 
ADI_ADRV9025_TXALL All Tx channels selected 

txAttenMode Selects the Tx attenuation mode; Data type: adi_adrv9025_TxAttenMode_e 

Parameter Mode 
ADI_ADRV9025_TXATTEN_BYPASS_MODE Tx attenuation mode Bypass: zero total attenuation 
ADI_ADRV9025_TXATTEN_SPI_MODE Tx attenuation set by 10-bit index programmed over SPI 
ADI_ADRV9025_TXATTEN_GPIO_MODE Tx attenuation is incremented/decremented using GPIO pins 
ADI_ADRV9025_TXATTEN_SPI2_MODE Attenuation is controlled using the SPI2 mode 
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Adi_adrv9025_TxTestToneSet 

adi_adrv9025_TxTestToneSet(adi_adrv9025_Device_t* device, adi_adrv9025_TxTestToneCfg_t 
txNcoTestToneCfg[], uint8_t arraySize); 

Description 

Generates test tones in the Tx baseband path. 

Parameters 

Table 127.  
Parameter Description 
*device  Pointer to device structure. 
txNcoTestToneCfg[] An array of structures of type adi_adrv9025_TxAttenCfg_t as detailed in Table 128. 
arraySize The number of configurations passed in the array. 

Table 128. adi_adrv9025_TxTestToneCfg_t Parameters 
Parameter Comments 
txChannelMask This selects the channels upon which the API acts. It is a bit mask with each bit corresponding to a channel. The desired 

mask can be generated by OR’ing the desired channel enums as listed below. 
Data type: uint_8 

Parameter Tx channel 
ADI_ADRV9025_TXOFF No Tx channels selected 
ADI_ADRV9025_TX1 Tx1 channel selected 
ADI_ADRV9025_TX2 Tx2 channel selected 
ADI_ADRV9025_TX3 Tx3 channel selected 
ADI_ADRV9025_TX4 Tx4 channel selected 
ADI_ADRV9025_TXALL All Tx channels selected 

enable Sets whether the test tones are enabled or disabled; Data type: uint_8 

Parameter Mode 
0 Test tones disabled 
1 Test tones enabled 

txToneFreq_Hz Sets the frequency of the test tone in Hz. Range is ±245.76 MHz. Data type: uint_32 
txToneGain Sets the amplitude of the test tone in dBFS; Data type: adi_adrv9025_TxNcoGain_e 

Parameter Gain 
ADI_ADRV9025_TX_NCO_NEG18_DB −18 dBFS test tone 
ADI_ADRV9025_TX_NCO_NEG12_DB −12 dBFS test tone 
ADI_ADRV9025_TX_NCO_NEG6_DB −6 dBFS test tone 
ADI_ADRV9025_TX_NCO_0_DB 0 dBFS test tone 
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DAC FULL-SCALE FUNCTION (DAC BOOST) 
The DAC Full Scale function is an analog 3 dB gain stage that can be used primarily to help systems that have marginal system 
performance to the TX LO leakage (Tx LOL) specification. As shown in the figure, the gain is realized in the DAC output but before the 
Tx predistortion (LPF) filters which is where the majority of the flicker noise observed on Tx LOL is added to the signal chain. When 
enabled, it provides an additional 3 dB of signal gain. By increasing the signal level by 3 dB it provides an additional 3 dB of separation to 
the noise/Tx LOL. The 3 dB gain factor is achieved by shifting the bias point of the DAC. 

Increasing the signal level through the chain can potentially result in reduced linearity and spurious. The user is cautioned when 
transmitting signals with very low PAR for these reasons. When the mode is enabled, signal PAR does not allow the DAC to be driven 
above −3 dBFS. Normally, however for LTE signals or similar with PAR of about 12 dB, the signal chain has enough headroom for 
minimal performance impact. The measurements that follow show this. 

Since the Tx signal level is increased when enabled, the configuration must be done prior to device initialization so that the internal 
calibrations see the appropriate gain through the signal chain. It is not possible to change it after the part has been configured. 

The Tx predistortion (LPF) filters are the main contributors of flicker noise to the Tx signal chain. Because the gain occurs before them, 
the amount of Tx LOL emitted from the device is not changed by enabling the 3 dB mode. The transmitter Tx attenuators follow the 
filters in the signal chain. For this reason Tx LOL reduces at the output with each attenuator step, dB for dB. The Tx LOL measurement 
for both enabled and disabled modes along with the margin gained when the function is enabled is presented in Figure 69. 
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Figure 69. TxLO Leakage with dacFullScale Enabled/Disabled 
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Figure 70. TX Datapath with dacFullScale Function 
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The Tx LOL specification is defined in terms of dBFS and is measured in a 1 MHz bandwidth. Tx LOL in dBFS is determined by applying 
a known signal level (-12 dBFS tone in this case) then measuring the resulting output power to determine 0 dBFs. Then the difference in 
power levels results in Tx LOL (dBFS).  

The improvement shown in Table 85 is close to the 3 dB gain added. There is a small amount of variability due to the effects of flicker 
noise and the stability/accuracy of measuring the noise. 

To meet data sheet performance levels, adjust the input signal to compensate for the 3 dB increase so that the resulting power levels are 
equivalent and therefore the OIP3 is equivalent as well. This is presented in the second OIP3 column in Table 130. In general, the OIP3 is 
only slightly affected by enabling the Boost with the same input tone levels (both tones level= −15 dBFS as per the data sheet). Typical 
performance shown on the data sheet is approximately 30 dBm, and measurements of the device in both modes are consistent. Impact on 
linearity is shown in Table 130.  

EVM was measured with Boost in 0 dB mode and with Boost in 3 dB mode. There is no significant impact to EVM as a result of enabling 
the 3 dB mode. The impact on EVM is presented in Table 131. 

System requirement: The desired DAC Boost mode must be configured prior to device initialization. The Tx signal level is increased 
which impacts internal calibrations, therefore it is not able to be modified during device operation. 

Table 129. dacFullScale TxLOL and Tx Output Power Comparison 0dB Mode and 3dB Mode 
DAC Full Scale 
Setting 

TX Attn 
(dB) TxLOL (dBm/MHz) Tone Power (dBm) 0 dBFS in dBm Tx LOL (dBFS) Improvement (dB) 

dacFullScale 0dB 
Mode 

0 −77.2 −6 6 −83.2  
5 −81.6 −10.8 1.2 −82.8  
10 −86.5 −16 −4 −82.5  

dacFullScale 3dB 
Mode 

0 −76.6 −2.8 9.2 −85.8 2.6 
5 −81.5 −7.8 4.2 −85.7 2.9 
10 −85.9 −13 −1 −84.9 2.4 

Table 130. dacFullScale Tx Linearity 0 dB Mode and 3 dB Mode 

F1 Tone MHz 
F2 Tone MHz,  
(F1 + 5 MHz) 

OIP3 dBm, 0 dB Mode, 
Tones = −15 dBFS 

OIP3 dBm, 3 dB Mode, Tones = −18 dBFS 
(Data Sheet Equivalent Output Power) 

OIP3 dBm, 3 dB mode, 
(Tones = −15 dBFs) 

10 15 32.6 36.0 33.1 
30 35 35.3 34.9 36.0 
50 55 38.0 37.7 40.0 
70 70 33.9 34.8 33.2 
90 95 35.7 31.1 30.0 

Table 131. dacFullScale EVM vs. Mode Selection 

TX Attenuator (dB) 
0 dB mode 3 dB mode 

Signal Power (dBm) EVM (dB) Signal Power (dBm) EVM (dB) 
0 −17.9 −45.28 −15.0 −45.86 
5 −22.9 −45.09 −20.0 −45.72 
10 −27.9 −43.73 −25.0 −44.97 
15 −32.8 −43.38 −30.0 −43.06 
20 −37.8 −43.08 −34.9 −43.64 
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ADI_ADRV9025_TXCHANNELCFG API STRUCTURE 
The dacFullScale enum is stored in the adi_adrv9025_TxChannelCfg structure. This structure is stored within the 
adi_adrv9025_TxSettings_t structure, which is stored in the overall device initialization structure (adi_adrv9025_Init_t). The parameters 
are described in Table 132 and Table 133. The dacFullScale parameter is also found in the json (profile) file. 

Table 132. adi_adrv9025_TxChannelCfg Structure Parameters 
Data Fields Description 
adi_adrv9025_TxProfile_t profile 
adi_adrv9025_DacFullScale_e dacFullScale 

Table 133. adi_adrv9025_DacFullScale_e enum Parameters 
Data Fields Description Value 
ADI_ADRV9025_TX_DACFS_0DB DAC full scale = 0 dB (default mode) 0x0 
ADI_ADRV9025_TX_DACFS_3DB DAC full scale = 3 dB 0x1 
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TRANSMITTER POWER AMPLIFIER PROTECTION 
The ADRV9026 features four transmitters with independent power amplifier (PA) protection circuitry. The PA protection circuitry 
operates in conjunction with other interrupt sources within the transceiver. This section describes both PA protection and the other 
interrupt sources that can trigger a Tx attenuation ramp to set the Tx attenuation to 40 dB to protect the PA device.  

Note that it is recommended to use these features in conjunction with the GP_INTERRUPT feature so that the baseband processor 
receives information over GP_INTERRUPT pins that an attenuation ramp down may have occurred. This is achieved by unmasked 
relevant GP_INTERRUPT sources described within this document. 

PA PROTECTION DESCRIPTION 
The PA protection circuitry is designed to alert the user that the digital signal power within the Tx datapath exceeds a programmable 
threshold. The GPINT1 and GPINT2 pins can be configured to assert when the PA protection block detects an ‘error.’ In this context, 
error means that a power threshold has been exceeded. If PA protection is used, it is recommended that the user unmask the PA 
protection interrupts for one of the GPINT pins to give the baseband processor an indication that a PA protection error has occurred. Set 
up the power thresholds at a level appropriate for their system given the PA damage power level and Tx RF attenuation.  

There are two types of thresholds in the PA protection circuit: peak power threshold and average power threshold.  

 Peak Power Threshold: When the peak signals detected by PA protection exceed the peak power threshold (peakThreshold) a 
programmable number of times (peakCount) within a period (peakDuration), this leads to a peak power threshold error 
(peakPowerErr = 1). 

 Average Power Threshold: When the signal power calculated by PA protection exceeds the programmable average power threshold 
(powerThreshold) within a period (avgDuration), this leads to an average power threshold error (avgPowerErr = 1) 

When PA protection is enabled and a PA protection error occurs, a ramp down of the Tx attenuation can be executed. The attenuation is 
set to 40 dB after the ramp down, if enabled. This feature can be used to protect PA devices in scenarios where the baseband processor 
executes algorithms that affect the power of the transmitted signal. The attenuation ramp down is configured with the 
adi_adrv9025_PaPllDfrmEventRamp DownEnableSet(…) command.  

PA Protection Configuration 

The PA protection feature is setup with the API command adi_adrv9025_TxPaProtectionCfgSet(…).  

adi_adrv9025_TxPaProtectionCfgSet 

adi_adrv9025_TxPaProtectionCfgSet(adi_adrv9025_Device_t* device, adi_adrv9025_TxPaProtectCfg_t 
txPaProtectCfg[], uint8_t arraySize); 

Description 

Sets up the PA protection feature. 

Parameters 

Table 134.  
Parameter Description 
*device  Pointer to device structure. 
txPaProtectCfg[] An array of PA protection configurations of data type adi_adrv9025_TxPaProtectCfg_t. This data structure is explained in 

further detail in Table 135. 
arraySize The array length of txPaProtectCfg[]. 

 

Table 135. adi_adrv9025_TxPaProtectCfg_t Data Structure Parameters 
Data Type Parameter Name Parameter Description 
adi_adrv9025_TxChannels_e txChannel Tx channel select based on adi_adrv9025_TxChannel_e. PA protection 

configuration is applied to channels selected by this parameter 
uint8_t avgDuration Sets the duration for which average power is accumulated and compared 

with powerThreshold. Range = 0 to 15. Duration in time is given by 
(sample rate in Hz, duration in seconds): 

51
2avgDuration

avgDurationt
txSampleRate

    

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
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Data Type Parameter Name Parameter Description 
uint8_t peakDuration Sets the duration for which peaks are compared against peakThreshold. At 

the end of this duration, the number of counted peaks resets to zero. 
Range = 0 to 15. Duration in time is given by (sample rate in Hz, duration in 
seconds): 

51
2peakDuration

peakDurationt
txSampleRate

   

uint16_t powerThreshold Sets the powerThreshold for average power measurements. If the average 
power exceeds this threshold, the avgPowerErr signal is asserted. 

10 log
8192dBFS

powerThreshold
powerThreshold    

 
 

uint8_t peakCount Sets a limit for the number of peaks detected within a peakDuration. When 
this limit is exceeded, the PA protection peakPowerErr signal is asserted. 

uint16_t peakThreshold Sets the peak threshold power limit for counting a peak. If a peak exceeds 
this threshold, it is counted. When this counter value exceeds peakCount, 
peakPowerErr signal is asserted.  

10 log
8192dBFS

peakThreshold
peakThreshold    

 
 

uint8_t avgPowerEnable When set = 1, the PA protection average power measurement block is 
enabled. Allows avgPowerErr signal assertion. 

  When set = 0, the PA protection average power measurement block is 
disabled. 

uint8_t peakPowerEnable When set = 1, the PA protection peak power measurement block is 
enabled. Allows peakPowerErr signal assertion. 

  When set = 0, the PA protection peak power measurement block is 
disabled. 

adi_adrv9025_PaProtectionInputSel_e inputSel Determines the data path location for peak and average power measurement. 
Options are given by the enumeration described in Table 136. 

uint8_t avgPeakRatioEnable When set = 1, this enables the average to peak power ratio block. 
avgPowerEnable and peakPowerEnable need to be enabled. 

  When set = 0, average to peak power calculations are not performed. 

Table 136 describes the adi_adrv9025_PaProtectionInputSel_e enumeration. These measurement locations are shown in Figure 71.  

Table 136. adi_adrv9025_PaProtectionInputSel_e Enumeration Options 
Enumeration Enum Value Description 
ADI_ADRV9025_COMPLEX_MULT_OUTPUT 0 Input data to PA protection block comes from the complex multiplier output. 
ADI_ADRV9025_TXQEC_ACTUATOR_OUTPUT 1 Input data to PA protection block comes from the Tx QEC actuator output. 
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Figure 71. Tx Datapath Showing PA Protection Measurement Locations 
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PA Protection Runtime Commands 

This section describes commands that can be used to check the status of the PA protection blocks. The GP_INTERRUPT represents a real 
time interface to notify the baseband processor that a PA protection error has occurred. When the interrupt asserts, call the 
GP_INTERRUPT handler command. If it is indicated that a PA protection error has occurred, the commands in this section describe 
what the user can do to acquire more information or clear the error.  

adi_adrv9025_TxPaProtectionErrFlagsGet 
adi_adrv9025_TxPaProtectionErrFlagsGet(adi_adrv9025_Device_t* device, adi_adrv9025_TxChannels_e 
txChannel, adi_adrv9025_TxPaProtectionErr_t* errorFlags); 

Description 

Gets information about which PA protection error flag has been asserted and the associated power level. Do not call this command before 
adi_adrv9025_TxPaProtectionCfgSet(…). 

Parameters 

Table 137.  
Parameter Description 
*device  Pointer to device structure. 
txChannel The Tx channel mask that selects which transmitter to retrieve error flag information from. 
errorFlags A data structure containing the error flag information for selected Tx channel. 

Table 138. adi_adrv9025_TxPaProtectionErr_t Data Structure Parameters 
Data 
Type 

Parameter 
Name Parameter Description 

uint8_t peakPowerErr If value = 1, then the peak power error bit has been asserted. If value = 0, the peak power error has not been 
asserted. This bit is sticky depending on configuration applied in 
adi_adrv9025_TxAttenuationRampUpStickyModeEnable(…) 

uint8_t avgPowerErr If value = 1, then the average power error bit has been asserted. If value = 0, the average power error has not 
been asserted. This bit is sticky depending on configuration applied in 
adi_adrv9025_TxAttenuationRampUpStickyModeEnable(…) 

uint16_t powerErr When avgPowerErr asserts, this parameter contains the average power level that triggered the error 
condition. 

Clearing PA Protection Error Flags 

In the case a PA protection error has occurred, it is useful to obtain specific information whether it is a peak power error or an average 
power error. To obtain information about which PA protection error flag has been asserted use 
adi_adrv9025_TxPaProtectionStatusGet(…). Once this information has been obtained and the cause of the error has been resolved, the 
user must clear the error flag manually when the errors are configured in sticky mode. This can be done with the 
adi_adrv9025_PaPllDfrmEventClear(…) command or the command described below. Note that adi_adrv9025_PaPllDfrmEventClear(…) 
can clear a PA protection error, a PLL unlock interrupt, or a deframer interrupt. The following command is specific only to PA protection 
errors. 

adi_adrv9025_TxPaProtectionErrFlagsReset 
adi_adrv9025_TxPaProtectionErrFlagsReset(adi_adrv9025_Device_t* device, 
adi_adrv9025_TxChannels_e txChannel, adi_adrv9025_TxPaProtectErrFlags_e errorFlags); 

Description 

Clears PA Protection error flags for specified channels. 

Parameters 

Table 139.  
Parameter Description 
*device  Pointer to device structure. 
txChannel The Tx channel mask that selects which transmitter to clear/reset PA protection errors. 
errorFlags An enumerated data type describing which error flags need to be cleared. 
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Table 140 describes the adi_adrv9025_TxPaProtectErrFlags_e enumeration. 

Table 140. adi_adrv9025_TxPaProtectErrFlags_e Enumeration Options 
Enumeration Enum value Meaning 
ADI_ADRV9025_TXPA_PROTECT_FLAGS_AVG_POWER_ERR 1 Reset average power error flag 
ADI_ADRV9025_TXPA_PROTECT_FLAGS_PEAK_POWER_ERR 2 Reset peak power error flag 
ADI_ADRV9025_TXPA_PROTECT_FLAGS_ALL 3 Reset both average and peak power error flags 

Adi_adrv9025_TxPaProtectionStatusGet 

The PA protection status data structure provides information regarding the power in the data path. After the PA protection configuration 
has been applied, the following command can be called. 

adi_adrv9025_TxPaProtectionStatusGet(adi_adrv9025_Device_t* device, adi_adrv9025_TxChannels_e 
txChannel, adi_adrv9025_TxPaProtectStatus_t* status); 

Description 

Reads back the Tx average IQ sample power. 

Parameters 

Table 141.  
Parameter Description 
*device  Pointer to device structure. 
txChannel The Tx channel mask that selects from which transmitter to retrieve PA protection status information. 
status A data structure containing the PA protection status information for selected Tx channel.  

The data structure type adi_adrv9025_TxPaProtectionStatus_t is described in Table 142.  

Table 142. adi_adrv9025_TxPaProtectionStatus_t Data Structure Parameters 
Data 
Type 

Parameter 
Name Parameter Description 

uint16_t avgPower Result of the most recently completed average power measurement. Result in dBFS is provided by the 
formula: 

1610 log
2AVG

avgPower
P    

 
  

uint16_t avgPeakRatio Measurement describing the average to peak ratio as measured by PA protection. Enable peak and average 
power measurement for meaningful results.  

1610 log
2

avgPeakRatio
PAR    

 
 

uint16_t avgErrorPower When avgPowerErr asserts, this parameter contains the average power level that triggered the error 
condition. This parameter only updates when an average power error occurs. 

1610 log
2avgErrPow

avgErrorPower
P    

 
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adi_adrv9025_PaPllDfrmEventRampDownEnableSet 
adi_adrv9025_ PaPllDfrmEventRampDownEnableSet(adi_adrv9025_Device_t* device, uint32_t  
txChannelMask, uint32_t irqMask, uint8_t enable); 

Description 

Configures which interrupts can trigger a Tx attenuation ramp down event. 

Parameters 

Table 143.  
Parameter Description 
*device  Pointer to device structure. 
txChannelMask The Tx channel mask for selecting which transmitters to configure based on adi_adrv9025_TxChannels_e enumeration. 
irqMask The bit mask that selects which interrupts are enabled or disabled based on the enable parameter. If a bit within this 

mask is set, then the value of enable is applied for each bit set. The value must not be zero. A description of the irqMask 
bit field is provided in Table 144. 

enable Bit that controls ramp down for the events selected by irqMask. If set to 0, the function is disabled for all selections. 

Table 144. Bitwise Description of irqMask 
Bit 
Position Description Command to Clear Interrupt 
D7 PA protection error flag has been asserted. If Slew 

Rate Limiter (SRL) interrupt (IRQ) has been enabled, 
this bit also allows attenuation ramp down based on 
the SRL IRQ.  

adi_adrv9025_adrv9025_PaPllDfrmEventClear(…) or 
adi_adrv9025_adrv9025_TxPaProtectionErrFlagsReset(…) 

D6 SERDES PLL Unlock adi_adrv9025_adrv9025_PaPllDfrmEventClear(…) 
D5 RF PLL 2 Unlock 
D4 RF PLL 1 Unlock 
D3 AUX PLL Unlock 
D2 CLK PLL Unlock 
D1 Deframer 1 Interrupt/IRQ 
D0 Deframer 0 Interrupt/IRQ 

 

While the irqMask is a uint32_t data type value, the enumeration adi_adrv9025_PaPllDfrmRampDownEnSel_e can be used to form the 
irqMask.  

Sticky Control for Tx Attenuation Ramp Down 

If a Tx attenuation ramp down interrupt is asserted, there are two modes of interrupt behavior pertaining to when attenuation is restored. 
These modes of behavior control how the attenuation level ramp up is performed.  

 Sticky Interrupt (Default operation): The attenuation ramp down remains in effect until the API command 
adi_adrv9025_PaPllDfrmEventClear(…) is called and the interrupt is no longer asserted. These two conditions need to be true for 
attenuation to return to its former level before the interrupt. This mode requires user intervention. 

 Auto clear Interrupt: The attenuation ramp down remains in effect until the interrupt is no longer asserted. This mode only depends 
on the status of the interrupt. 

The user can select between these modes through the following API command.  

adi_adrv9025_TxAttenuationRampUpStickyModeEnable 
adi_adrv9025_ TxAttenuationRampUpStickyModeEnable(adi_adrv9025_Device_t* device, uint32_t 
channelMask, uint8_t txPllJesdProtClrReqd, uint8_t txPaProtectionAvgpowerErrorClearRequired,  
uint8_t txPaProtectionPeakpowerErrorClearRequired) 

Description 

Configures Tx attenuation ramp up sticky mode for the selected Tx channel. 
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Parameters 

Table 145.  
Parameter Description 
*device  Pointer to device structure. 
channelMask The Tx channel mask for selecting which transmitters to configure based on 

adi_adrv9025_TxChannels_e enumeration. 
txPllJesdProtClrReqd Determines if the user is required to manually clear PLL/deframer attenuation 

ramp down events after assertion. Setting 1 requires user to clear, 0 does not 
require user to clear.  

txPaProtectionAvgpowerErrorClearRequired Determines if the user is required to manually clear PA protection average power 
error flag after assertion. Setting 1 requires user to clear, 0 does not require user to 
clear.  

txPaProtectionPeakpowerErrorClearRequired Determines if the user is required to manually clear PA protection peak power 
error flag after assertion. Setting 1 requires user to clear, 0 does not require user to 
clear. 

The command adi_adrv9025_adrv9025_PaPllDfrmEventClear(…) can be used to clear the error. 

Determining the Interrupt Source of an Attenuation Ramp Down 

The GPINT1 and GPINT2 pins can be configured to alert the baseband processor that a PA protection error, PLL unlock event, or 
deframer interrupt has occurred. When the interrupt has occurred, the user is expected to call adi_adrv9025_GpInt1Handler or 
adi_adrv9025_GpInt0Handler depending on which GPINT pin has asserted. GpInt1Handler is linked to the GPINT2 pin and 
GPInt0Handler is linked to the GPINT1 pin. The handler returns information relevant to which interrupts have been asserted. This is one 
method to determine which interrupts have asserted. However, note that the GP_INTERRUPT bitmask description does not specify 
whether a peak or average power PA protection error has occurred. To obtain more specificity regarding the error source, call 
adi_adrv9025_PaPllDfrmEventGet(…). 

adi_adrv9025_PaPllDfrmEventGet 
adi_adrv9025_PaPllDfrmEventGet (adi_adrv9025_Device_t* device, adi_adrv9025_TxChannels_e 
txChannelSelect, uint8_t eventBits); 

Description 

Reads the status of events causing Tx attenuation ramp down rather than any signal that has asserted GP_INTERRUPT. 

Parameters 

Table 146.  
Parameter Description 
*device  Pointer to device structure. 
txChannelSelect The Tx channel mask for selecting which transmitters to configure based on adi_adrv9025_TxChannels_e enumeration. 
eventBits Selects which interrupt source to clear based on the bit description in Table 147. If a bit position in this value is set high, 

the associated interrupt has asserted to cause a Tx attenuation ramp down. 

The command adi_adrv9025_adrv9025_PaPllDfrmEventClear(…) can be used to clear the error. 

Table 147. Bitwise Description of eventBits Parameter 
Bit Position Description 
D3 to D7 Unused 
D2 Any PLL unlock or deframer error 
D1 PA protection peak power error 
D0 PA protection average power error 
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Clearing Tx Attenuation Ramp Down Events 

There are two commands available to clear attenuation ramp down events. In the case that the interrupts are configured as sticky 
interrupts, the user needs to call the appropriate function to clear the error. Note that these commands do not execute corrective 
measures to remove the error source. For example, calling adi_adrv9025_TxPaProtectionErrFlagsReset(…) after a PA protection average 
power error does not mean that the cause of the error is gone. If the datapath power is still greater than the PA protection average power 
threshold after this command is called, then the interrupt persists. In some cases, the baseband processor must take an action to resolve 
the interrupt/error. The following command can be used to clear such interrupts. 

adi_adrv9025_PaPllDfrmEventClear 
adi_adrv9025_PaPllDfrmEventClear(adi_adrv9025_Device_t* device, adi_adrv9025_TxChannels_e 
txChannelSelect, uint8_t eventBits); 

Description 

Clears the Tx attenuation ramp down interrupts caused by the deframer or PLL unlock events. 

Parameters 

Table 148.  
Parameter Description 
*device  Pointer to device structure. 
txChannelSelect The Tx channel mask for selecting which transmitters to configure based on adi_adrv9025_TxChannels_e enumeration. 
eventBits Selects which interrupt source to clear based on the bit description in Table 147. If a bit position in this value is set high, 

the command attempts to clear the interrupt. 
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RECEIVER GAIN CONTROL AND GAIN COMPENSATION 
OVERVIEW 
The ADRV9026 receivers (Rx1/Rx2/Rx3/Rx4) feature automatic and manual gain control modes allowing for flexible gain control in a 
wide array of applications. Automatic gain control (AGC) allows for receivers to autonomously adjust the receiver gain depending on 
variations of the input signal, such as the onset of a strong interferer that can overload the receiver data path. It controls the gain of the 
device based on the information from a number of signal detectors (peak/power detectors). The AGC can control the gain with very fine 
resolution if required. The receivers are also capable of operating in Manual Gain Control (MGC) mode where changes in gain are 
initiated by the baseband processor. The gain control blocks are configured by means of the API data structures and several API functions 
exist to allow for user interaction with the gain control mechanisms. 

The AGC is highly flexible and can be configured in a number of ways. For BTS receivers, the received signal is a multicarrier signal in 
most cases. Perform a gain change only under large overrange or underrange conditions, and gain changes typically do not occur very 
often for typical 3G/4G operation. Therefore, the Peak Detect Mode operation is sufficient. Nevertheless, if an asynchronous blocker does 
appear, a fast attack mode exists that is able to reduce the gain at a fast rate.  

Alternatively, to manage GSM blockers and radar pulses that have fast rise and rapid fall times, a mode with fast attack, fast recovery, peak 
detect only is provided. This mode can recover receiver gain quickly in addition to the fast attack capability mentioned earlier.  

This section contains the following functional descriptions: 

Receiver Data Path: This section outlines the gain control and signal observation elements of the receiver chain. It then describes the 
concept of the receiver gain table. 

Gain Control Modes: This section advises how to select between the gain control modes. 

Manual Gain Control (MGC): This section describes how to operate the device in manual gain control mode. 

Automatic Gain Control (AGC): This section describes the two principal modes of AGC operation, peak detect mode and peak/power 
detect mode. 

AGC Clock and Gain Block Timing: This section describes the speed of the AGC clock and the various gain event and delay timers. 

Peak and Power Detectors: This section outlines the operation and configuration of the gain control detectors in the device. 

API Programming: This section outlines how to configure the AGC using the API, explaining each parameter of the AGC API structures. 
It also provides details of gain control utility functions within the API. 

Sample Scripts: Sample scripts are provided in this section which can be used in the Iron Python tab of the TES, allowing AGC to be 
tested on the evaluation platform. 

Gain Compensation, Floating Point Formatter and Slicer: This section outlines the various forms of gain compensation available in the 
ADRV9026.  

This document contains a full description of the gain control functionality available in the device. Some features may not be available 
depending on the software version.  

Glossary of Important Terms 

Automatic Gain Control (AGC): This term is used to refer to the internal AGC of the device, where the device is in control of the receiver 
gain settings. If the user does not use the internal AGC, then it is expected that an AGC runs in the baseband processor. 

Manual Gain Control (MGC): This term is used to refer to a use case when the user is in control of the currently applied gain settings in 
the receiver chain. 

Gain Attack: This term is used to indicate the reduction of the receiver gain due to an overloaded signal path.  

Gain Recovery: This term is used to indicate the increase of the receiver gain due to a reduction in the power of the signal being received. 

Gain Compensation: The process of compensating for the analog attenuation in the device (prior to the ADC) with a corresponding 
amount of digital gain before the digital signal is sent to the user. 

High Threshold: Each peak detector has multiple threshold levels. The highest level is referred to as the high threshold. High thresholds 
set an upper bound to the signal input level above which the gain can be decreased. 

Low Threshold: A level in a peak detector which is lower than the high threshold. Some detectors have multiple low thresholds. Low 
thresholds set a lower bound to the signal input level below which the gain can be increased. 

Threshold Overload: When a threshold is exceeded in a peak detector, this is referred to as an overload.  

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
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Over-Range Condition: An over-range condition exists when the AGC is required to reduce the gain. This can either be a peak condition, 
where a programmable number of individual overloads of a high threshold have occurred within a defined period of time, or a power 
condition, where the measured power exceeds a high power threshold.  

Under-Range Condition: An under-range condition exists when the AGC is required to increase the gain. This can either be a peak 
condition, where a lower threshold is not exceeded a programmable number of times within a defined period of time, or a power 
condition, where the measure power does not exceed a low power threshold. 

RECEIVER DATA PATH 
Figure 72 shows the Rx data path and gain control blocks. The receivers have front end attenuators prior to the mixer stage that are used 
to attenuate the signal in the RF domain to ensure the signal does not overload the receiver chain. In the digital domain, there is the 
option of digital attenuation or digital gain. This digital gain block is also utilized for gain compensation. 

The receiver chain also has multiple observation elements that can monitor the incoming signal. These can be used in either MGC or 
AGC modes. Firstly, an Analog Peak Detector (APD) exists prior to the ADC. Being in the analog baseband, this peak detector sees 
signals first, and also has blocker signal visibility, which can overload the ADC but be filtered as they progress through the digital chain. 
Note that the APD is located after the TIA filter. The second peak detector is called the HB2 overload detector, so called because it 
monitors the data at the HB2 filter in the receiver chain.  

A power measurement detection block is also provided in the receiver chain, which takes the rms power of the received signal over a 
configurable period. The power measurement location in the data path is user configurable.  

This device can also control an external gain element through use of the receiver gain table and the GPIO_ANA pins.  
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Figure 72. Rx Data Path and Gain Control Blocks 

The gain control block is shown with multiple inputs providing information. Overload (Peak) detectors are shown in red, while the power 
measurement block is shown in blue. The gain control block controls the gain of the signal chain using a gain table.  

This table is user programmable, and each row of the table provides a combination of front end attenuator, external gain element (if used) 
and digital gain settings. Based on the row of this table selected, either by the user in MGC mode, or automatically by the device in AGC 
mode, the gain control block updates the variable gain elements depicted by the green arrows. Finally, the user can control the gain 
control block using the SPI bus (configuration of AGC, MGC) and GPIOs.  

Table 149 shows a sample gain table. 

Table 149. Sample Rows from the Default Rx Gain Table 
Gain Table 
Index 

Front-End 
Attenuator[7:0] 

External Gain 
Control[3:0] 

TIA/ADC 
Gain 

Signed Digital 
Gain/Attenuation[10:0] 

Phase 
Offset 

255 0 0 0 0 0 
254 14 0 0 0 0 
253 28 0 0 0 0 

 

The gain table index is the reference for each unique combination of gain settings in the programmable gain table. It is possible to have 
different gain tables for each receiver, though typically the same one is used. The possible range of the gain table is 255 to 0, however 
typically only a subset of this range is used. The gain table must be assigned in order of decreasing gain, starting with the highest gain in 
the maximum gain index, such as 255, and the lowest gain in the minimum gain index. 
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The front end attenuator has an 8-bit control word. The amount of attenuation applied depends on the value set in the front-end 
attenuator column of the selected gain table index. The following equation provides an approximate relationship between the internal 
attenuator and the front-end attenuation value programmed in the gain table, N: 

10
256

( ) 20 log
256

N
Attenuation dB

 
  

 
  

The external gain control column controls two analog GPIOs for each Rx. Table 150 shows which analog GPIOs are used for which Rx. 

Table 150. Analog GPIOs for External Gain Element Control 
Receiver GPIO Pins to Control External Gain Element 
Rx1 GPIO_ANA[1:0] 
Rx2 GPIO_ANA[3:2] 
Rx3 GPIO_ANA[5:4] 
Rx4 GPIO_ANA[7:6] 

 

These analog GPIOs must be enabled as outputs and set for external gain functionality. The 2-bit value programmed is directly related to 
the status of these GPIO pins, for example if the external gain word of the Rx1 gain table is programmed to 3 in selected gain index, then 
analog GPIO0 and 1 is high. 
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Figure 73. GPIO Control of an External Gain Element to Rx1 

The signed digital gain/attenuation is used to apply gain or attenuation digitally. The range of the digital gain is 0 to 50 dB. The range of 
the digital attenuation is 0 to 18 dB. The resolution of the steps is 0.05 dB. As an example, a value of 14 results in 0.7 dB gain, and a value 
of −14 results in 0.7 dB of attenuation. 

The TIA/ADC gain must be zero in all rows because this functionality is not used. 

GAIN CONTROL MODES 
The gain control mode is selected with the following API function. 

adi_adrv9025_RxGainCtrlModeSet 

adi_adrv9025_RxGainCtrlModeSet(adi_adrv9025_Device_t* device, adi_adrv9025_RxAgcMode_t 
gainMode[], uint8_t arraySize) 

Description 

Selects the gain control mode. 

Parameters 

Table 151.  
Parameter Description 
*device  Pointer to device structure. 
gainMode An array of type adi_adrv9025_RxAgcMode_t indicating which gain mode is to be used for which Rx channel 
arraySize The size of the array 
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Each adi_adrv9025_RxAgcMode_t instance contains agcMode, an enum selecting the chosen gain mode. The possible options are shown 
in Table 152. 

Table 152. Definition of adi_adrv9025_RxAgcMode_e 
Enum Gain Mode 
ADI_ADRV9025_MGC Manual Gain Mode 
ADI_ADRV9025_AGCSLOW Automatic Gain Control Mode 
ADI_ADRV9025_HYBRID Not currently supported 

rxChannelMask 

This selects the channels upon which to enable this gain control mode. It is a bit mask with each bit corresponding to a channel, [D0] = 
Rx1, [D1] = Rx2, [D2] = Rx3, [D3] = Rx4. Setting the rxChannelMask = 15 means that all Rxx are configured with the same agcMode. 

MANUAL GAIN CONTROL (MGC) 
The gain control block applies the settings from the selected gain index in the gain table. In MGC mode, the baseband processor is in 
control of the selecting the gain index. There are two options: 1) API commands; and 2) pin control. By default, if MGC is chosen the part 
is configured for API commands. The following commands can be used when in API command mode. 

adi_adrv9025_RxGainSet 

adi_adrv9025_RxGainSet(adi_adrv9025_Device_t* device, adi_adrv9025_RxGain_t rxGain[], uint8_t 
arraySize) 

Description 

Selects the gain index in the gain table when in API command mode. 

Parameters 

Table 153.  
Parameter Description 
*device  Pointer to device structure. 
rxGain An array of type adi_adrv9025_RxGain_t that determines the gain setting and the channels using the chosen setting 
arraySize The size of the array 

Each adi_adrv9025_RxGain_t instance contains: 

 gainIndex—the selected gain index from the gain table 
 rxChannelMask—this selects the channels upon which to apply the gainIndex setting. It is a bit mask with each bit corresponding to 

a channel, [D0] = Rx1, [D1] = Rx2, [D2] = Rx3, [D3] = Rx4. Setting the rxChannelMask = 15 applies this gain index to all four 
receivers. 

adi_adrv9025_RxGainGet 

adi_adrv9025_RxGainGet(adi_adrv9025_Device_t* device, adi_adrv9025_RxChannels_e rxChannel, 
adi_adrv9025_RxGain_t *rxGain) 

Description 

Reads back the gain index in the gain table for the selected channel when in API command mode. 

Parameters 

Table 154.  
Parameter Description 
*device  Pointer to device structure. 
rxChannel An enum as shown in Table 155. 
*rxGain Of type adi_adrv9025_RxGain_t, pointer to the current gain of the channel and a mask indicating which gain of the channel is 

contained within the structure.  
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Table 155. Definition of adi_adrv9025_RxChannels_e 
Receiver ENUM 
Rx1 ADI_ADRV9025_RX1 
Rx2 ADI_ADRV9025_RX2 
Rx3 ADI_ADRV9025_RX3 
Rx4 ADI_ADRV9025_RX4 

 

The pin control MGC mode is useful when real time control of gain is required. In this mode 2 GPIO pins per receiver are used, two for 
each receiver, one increasing, the other decreasing the gain table index. The user specifies both the increment and decrement step size in 
terms of number of gain indices. A pulse is applied to the relevant GPIO pin to trigger an increment of decrement in gain as shown in 
Figure 74. This pulse must be held high for at least 2 AGC clock cycles for a gain change to occur (see the AGC Clock and Gain Block 
Timing section for details). 

22
7

70
-0

7
5

Rx3
GPIO1.8V e

GPIO1.8V f

GPIO1.8V g

GPIO1.8V h

GPIO1.8V a

GPIO1.8V b

GPIO1.8V c

GPIO1.8V d

Rx3

Rx4

Rx4

Rx1

Rx1

Rx2

Rx3

 
Figure 74. MGC Pin Mode: GPIO1.8V(a-h) Represent Any of GPIO0-15  

adi_adrv9025_RxGainPinCtrlCfgSet 
adi_adrv9025_RxGainPinCtrlCfgSet(adi_adrv9025_Device_t* device, adi_adrv9025_RxGainPinCfg_t 
*rxGainPinCtrlCfg, adi_adrv9025_RxChannels_e rxChannel) 

Description 

Configures pin control MGC mode. 

Parameters 

Table 156.  
Parameter Description 
*device  Pointer to device structure. 
rxChannel An enum indicating which Rx channel to configure as shown in Table 155. 
*rxGainPinCtrlCfg A configuration structure pointer for the pin control MGC mode containing members shown in Table 157. 

Table 157. Definition of ADRV9025_RxGainCtrlPin_t 
Member Description 
uint8_t incStep Increment in gain index applied when the increment gain is pulsed. Acceptable values for this 

parameter are 0 to 7, however one is added to what is programmed into this parameter, resulting in 
step sizes of 1 to 8. 

uint8_t decStep Decrement in gain index applied when the decrement gain is pulsed. Acceptable values for this 
parameter are 0 to 7, however one is added to what is programmed into this parameter, resulting in 
step sizes of 1 to 8. 

adi_adrv9025_GpioPinSel_e 
rxGainIncPin 

GPIO used to increment gain. Any of GPIO0-15 can be used. Acceptable values: 
ADI_ADRV_9025_GPIO00 to ADI_ADRV9025_GPIO15. 

adi_adrv9025_GpioPinSel_e 
rxGainDecPin 

GPIO used to decrement gain. Any of GPIO0-15 can be used. Acceptable values: 
ADI_ADRV_9025_GPIO00 to ADI_ADRV9025_GPIO15. 
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The peak detector outputs can be monitored using GPIO pins by configuring them as outputs that are activated when an upper or lower 
threshold has been exceeded by the APD or HB2 detectors. More details can be found in the General-Purpose Input/Output 
Configuration section of this document. More details on what causes an over-range condition are provided in the Peak Detect Mode 
section of this guide. 

AUTOMATIC GAIN CONTROL 
In Automatic Gain Control (AGC) mode, a built-in state machine automatically controls the gain based on a user defined configuration. 
The AGC can be configured in one of two modes: 

 Peak Detect mode, where only the peak detectors are used to make gain changes. 
 Peak/Power Detect mode, where information from the power detector and the peak detectors are used to make gain changes. 

The agcPeakThreshGainControlMode parameter of the AGC configuration structure adi_adrv9025_AgcCfg_t is used to select the 
individual modes of the AGC operation as shown in Table 158. 

Table 158. agcPeakThreshGainControlMode Settings 
agcPeakThreshGainControlMode  Description 
0 AGC in peak/power mode 
1 AGC in peak detect mode 

Peak Detect Mode 

In this mode, the peak detectors alone are used to inform the AGC to make gain changes. The APD and HB2 detector both have a high 
threshold and a low threshold. These are set with the parameters apdHighThresh, apdLowThresh, hb2HighTresh and 
hb2UnderRangeHighThresh. These levels are user programmable, as is the limit for the number of times a threshold needs to be crossed 
for an over range or under range condition to be flagged. The high thresholds are used as limits on the incoming signal level and typically 
are set based on the maximum input of the ADC. When an over range condition occurs, the AGC reduces the gain (gain attack). 

The low thresholds are used as lower limits on signal level. When the signal peaks are not exceeding the lower threshold, then this is 
indicative of a low power signal, and the AGC increases gain (gain recovery). This is termed an under range. The AGC stable state (where 
it does not adjust gain) occurs when neither an under range nor over range condition is occurring (the signal peaks are less than the high 
threshold and greater than the lower level). 

Each overrange/underrange condition has its own attack and recovery gain step as shown in Table 159. 

Table 159. Peak Detector Gain Steps 
Overload/Under Range Gain Step 
apdHighThresh over range Reduce gain by apdGainStepAttack 
apdLowThresh under range Increase gain by apdGainStepRecovery 
hb2HighThresh over range Reduce gain by hb2GainStepAttack 
hb2UnderRangeHighThresh under range Increase gain by hb2GainStepHighRecovery 

An overrange condition occurs when the high thresholds have been exceeded a configurable number of times within a configurable 
period. An under range condition occurs when the low thresholds have not been exceeded a configurable number of times within the 
same configurable period. These counters make the AGC more or less sensitive to peaks in the input signal, ensuring that a single peak 
exceeding a threshold does not necessarily cause the AGC to react, allowing the user to trade off bit-error rate with signal to noise ratio. 
Table 160 outlines the counter parameters for the individual overload/under range conditions. 

Table 160. Peak Detector Counter Values 
Overload/Under Range Counter 
apdHighTresh over range apdUpperThreshPeakExceededCnt 
apdLowThresh under range apdLowerThreshPeakExceededCnt 
hb2HighThresh over range hb2UpperThreshPeakExceededCnt 
hb2UnderRangeHighThresh under range hb2UnderRangeHighThreshExceededCnt 
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The AGC uses a gain update counter to time gain changes, with gain changes made when the counter expires. The counter value, and 
therefore the time spacing between possible gain changes, is user programmable through the agcGainUpdateCounter parameter. The user 
specifies the period, in AGC clock cycles, that gain changes can be made. Typically, this might be set to frame or sub-frame boundary 
periods. The total time between gain updates is the combination of the agcSlowLoopSettlingDelay and the agcGainUpdateCounter. 

Once the gain update counter expires, all the peak threshold counters are reset. The gain update period is therefore a decision period. The 
overload thresholds and counters are therefore set based on the number of overloads considered acceptable for the application within the 
gain update period. 

Figure 75 shows an example of the AGC response to a signal vs. the APD threshold levels. For ease of explanation, the APD is considered 
in isolation. The green line is representative of the peaks of the signal. Initially the peaks of the signal are within the apdHighThresh and 
apdLowThresh. No gain changes are made. An interferer suddenly appears whose peaks now exceed apdHighThresh. On the next expiry 
of the gain update counter (assuming a sufficient number of peaks occurred to exceed the counter), the AGC decrements the gain index 
(reduces the gain) by apdGainStepAttack. This is not sufficient to obtain the signal peaks within the threshold levels, and thus the gain is 
decremented once more, with the peaks now between the two thresholds. The gain is stable in this current gain level until the interfering 
signal is removed, and the peaks of the signal are below the apdLowThresh, resulting in an under range condition. The AGC increases 
gain by the apdGainStepRecovery at the next expiry of the gain update counter, continuing to do so until the peaks of the signal are 
within the two thresholds once more. 
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Figure 75. APD Thresholds and Gain Changes Associated with Underrange and Overrange Conditions 
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Figure 76 shows the same scenario but from the viewpoint of the HB2 detector considered in isolation.  
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Figure 76. HB2 Thresholds and Gain Changes Associated with Under Range and Over Range Conditions 

It is possible to enable a fast attack mode whereby the AGC is instructed to reduce gain immediately when an over range condition 
occurs, instead of waiting until the next expiry of the gain update counter using agcGainChangeIfThreshHigh. This parameter has 
independent controls for the APD and HB2 detectors. Values from 0-3 are valid as shown in Table 161. 

Table 161. agcGainChangeIfThreshHigh Settings 
agcChangeGainIfThreshHigh[1:0] Gain Change Following APD Overrange Gain Change Following HB2 Overrange 
00 After expiry of agcGainUpdateCounter After expiry of agcGainUpdateCounter 
01 Immediately After expiry of agcGainUpdateCounter 
10 After expiry of agcGainUpdateCounter Immediately 
11 Immediately Immediately 
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Figure 77 shows how the AGC reacts when the agcChangeGainIfThreshHigh is set for APD. In this case when the interferer appears, the 
gain is updated as soon as the number of peaks exceed the peak counter. It does not wait for the next expiry of the gain update counter. A 
number of gain changes can be made in quick succession providing a much faster attack than the default operation. The assumption here 
is that if the ADC is overloaded then it is best to decrease the gain quickly rather than wait for a suitable moment in the received signal in 
order to change the gain.  
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Figure 77. APD Gain Changes with Fast Attack Enabled 

Figure 78 shows the same scenario but from the viewpoint of agcChangeGainIfThreshHigh being set for HB2. 
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Figure 78. HB2 Gain Changes with Fast Attack Enabled 
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It is also possible to enable a fast recovery mode whereby a gain recovery event occurs at the expiry of the gain update period as shown in 
Figure 79. This functionality is enabled with the ableFastRecoveryLoop parameter. This fast recovery mode enables the HB2 overload 
detector. The operation is illustrated in Figure 80. When the signal level falls below hb2UnderRangeLowThresh, the gain is incremented 
by hb2GainStepLowRecovery following the expiry of the gain update period. Note that in the fast recovery mode the 
agcUnderRangeLowInterval is used instead of the gain update counter to set the gain update period. After sufficient gain increases are 
implemented to bring the signal level above hb2UnderRangeLowThresh, the gain is incremented by hb2GainStepMidRecovery after the 
expiry of a number of gain update periods as set by hb2GainStepMidRecovery. Finally, when the signal level is increased above 
hb2UnderRangeMidThresh, the gain is incremented by hb2GainStepHighRecovery following the expiry of a number of gain update 
periods as set by agcUnderRangeHighInterval. The multiple threshold and interval parameters allow for a gain recovery whereby as the 
wanted signal level is approached, the magnitude of the gain adjustments is reduced and the time interval between gain changes is 
increased. However recovery events remain periodic as shown in Figure 79 because all gain updates occur at the expiry of the gain update 
period. 
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Figure 79. AGC Sequence with HB2 Detector in Fast Recovery Mode 
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Figure 80. AGC operation with HB2 Detector in Fast Recovery Mode 
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Priorities and Overall Operation 

It is highly recommended that the apdHighThresh and hb2HighThresh are set to an equivalent dBFS value. Likewise, it is highly 
recommended that the apdLowThresh and the hb2UnderRangeHighThresh are set to equivalent values. This equivalence is approximate 
because these thresholds have unique threshold settings that are not exactly equal. This section discusses the relevant priorities between 
the detectors and how the AGC reacts when multiple threshold detectors have been exceeded. Table 162 shows the priorities between the 
detectors when multiple overranges occur.  

Table 162. Priorities of Attack Gain Steps 
apdHighThresh Over Range hb2HighThresh Over Range Gain Change 
No No No Gain Change 
No Yes Gain Change by hb2GainStepAttack 
Yes No Gain Change by apdGainStepAttack 
Yes Yes Gain Change by apdGainStepAttack 

 

For recovery, the number of thresholds is dependent on whether fast recovery is enabled or not. Considering the fast recovery scenario, 
the priority of the thresholds is: 

1. hb2UnderRangeLowThresh underrange condition 
2. hb2UnderRangeMidThresh underrange condition 
3. hb2UnderRangeHighThresh underrange condition 
4. apdLowThresh underrange condition 

Upon one under range condition, the AGC changes the gain by the corresponding gain step size of this condition. However, if multiple 
conditions occur simultaneously, then the AGC prioritizes based on the priorities indicated; that is, if hb2UnderRangeLowThresh is 
reporting an under range condition then the AGC adjusts the gain by hb2GainStepLowRecovery with two exceptions. 

The apdLowThresh has priority in terms of preventing recovery. If apdLowThresh reports an over range condition (sufficient signal peaks 
have exceeded its threshold in a gain update counter period), then no further recovery is allowed. Configure apdLowThresh and 
hb2UnderRangeHighThresh to be as close to the same value of dBFS. However, assuming some small difference between the thresholds, 
then as soon as apdLowThresh is exceeded, recovery no longer occurs. The reverse is not true, hb2UnderRangeHighThresh does not 
prevent the gain recovery towards the apdLowThresh. Given the strong recommendation that apdLowThresh and 
hb2UnderRangeHighThresh be set equally, then a condition whereby apdLowThresh is at a lower dBFS level to 
hb2UnderRangeLowThresh or hb2UnderRangeMidThresh does not occur. 

Another exception is if the recovery step size for a detector is set to zero. If so, the AGC makes the gain change of the highest priority 
detector with a non-zero recovery step. Figure 81 provides a flow diagram of the decisions of the AGC when recovering the gain in peak 
detect mode. 
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Figure 81. Flow Diagram for AGC Recovery in Peak Detect AGC Mode 

Power Detect Mode 

In this mode, the power detector measurement is also used to control the gain of the Rx chain. In the event of an over-range condition, 
then both the peak detectors and the power detector can instantiate a gain decrement. In the event of an under-range, only the power 
detector can increment the gain. The power detector changes gain solely at the expiry of the gain update counter. The peak detectors can 
be set in one of two modes (depending on the setting of agcGainChangeIfThreshHigh) whereby the AGC waits for the gain update 
counter to expire before initiating a gain change, or immediately updates the gain as soon as the overrange condition occurs (see Figure 75 to 
Figure 80). 

The power measurement block provides the RMS power of the receiver data at the measurement location. It can be configured to monitor 
the signal in one of three locations as shown in Figure 72. In power detect mode, the AGC compares the measured signal level to 
programmable thresholds which provide a second-order control loop, whereby gain can be changed by larger amounts when the signal 
level is further from the target level, and make smaller gain changes when the signal is closer to the target level. 
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Figure 82 shows the operation of the AGC when using the power measurement detector. Considering the power measurement detector in 
isolation from the peak detectors, the AGC does not modify the gain when the signal level is between overRangeLowPowerThresh and 
underRangeHighPowerThresh. This range is the target range for the power measurement.  

When the signal level goes below underRangeLowPowerThresh, the AGC waits for the next gain update counter expiry and then 
increments the gain by underRangeLowPowerGainStepRecovery. When the signal level is greater than underRangeLowPowerThresh but 
below underRangeHighPowerThresh, the AGC increments the gain by underRangeHighPowerGainStepRecovery. Likewise, when the 
signal level goes above overRangeHighPowerThresh, the AGC decreases the gain by overRangeHighPowerGainStepAttack, and when the 
signal level is between overRangeHighPowerThresh and overRangeLowPowerThresh, the AGC decreases the gain by 
overRangeLowPowerGainStepAttack. 

2
27

7
0-

0
83

 
Figure 82. PMD Thresholds and Gain Changes for Under-range and Over-range Conditions 

It is possible for the AGC to get contrasting requests from the power and peak detectors. An example is a blocker that is visible to the 
analog peak detector but is quite significantly attenuated by the power measurement block. In this case the APD can be requesting a gain 
decrement, while the power measurement block can be requesting a gain increment. The AGC has the following priority scheme in power 
detect mode: 

1. APD Overrange (upper level) 
2. HB2 Overrange (upper level) 
3. APD lower level peak exceeded 
4. HB2 lower level peak exceeded 
5. Power measurement 

In this example, the gain is decremented because the APD overrange has a higher priority than the power measurement. Of note are the 
APD and HB2 lower level overloads. In peak detect mode, the lower level thresholds for these detectors were used to indicate an under-
range condition which caused the AGC to increase the gain. In power detect more, these detectors are not used for gain recovery, but can 
be used to control gain recovery by setting the API parameter, agcLowThreshPreventGain. If this parameter is set, and if the signal level is 
exceeding a lower level threshold, the AGC is prevented from increasing the gain regardless of the power measurement.  

This prevents an oscillation condition that may otherwise occur to a blocker visible to a peak detector but filtered before the power 
measurement block. In such a case, the peak detector can cause the AGC to decrease gain. It does this until the blocker is no longer 
exceeding the defined threshold. At this point, the power measurement block can request an increase in gain and does so until the peak 
threshold of the detector is exceeded. This decreases gain. By using these lower level thresholds, the AGC is prevented from increasing 
gain as the signal level approaches an overload condition, providing a stable gain level for the Rx chain under such a condition. 
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AGC CLOCK AND GAIN BLOCK TIMING 
The AGC clock is the clock which drives the AGC state machine. A number of the programmable counters used by the AGC are clocked 
at this rate. Its maximum frequency is 500 MHz. The clock is the greatest 2N multiple of the IQ rate less than 500 MHz. For example, for 
an Rx profile with an IQ output rate of 245.76 MSPS, the AGC clock is 491.52 MHz. 

The AGC state machine contains 3 states: Gain Update Counter, followed by the Slow Loop Settling (SLS) delay, and a constant 5 AGC 
clock cycles delay. The total time between gain updates (gain update period) is a combination of agcSlowLoopSettlingDelay and 5 AGC 
clock cycles.  
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Figure 83. Gain Update Period 

Figure 83 outlines the operation of the AGC state machine. The diagram outlines possible gain change scenarios rather than a practical 
example of AGC operation. The possible gain change scenarios are described as follows: 

 AGC Gain Attack within gain update counter, but more than an SLS delay before the gain update counter expiry. Because slow loop 
settling (SLS) is typically several orders of magnitude smaller than gain update counter, this is the most common gain decrement 
scenario.  

 AGC Gain Attack within gain update counter, but within a SLS delay before the gain update counter expiry. This is a special case, but 
rarely occurs in applications per the reasoning described in the previous scenario).  

 AGC Gain Recovery at the end of the gain update counter. Note that when fast recovery is enabled, the gain update counter is 
substituted with the low under range interval, per Figure 79.  

A gain attack may occur within the gain update counter period when fast attack is enabled. A gain recovery event may only occur at the 
end of gain update counter period. After a gain attack, a gain change counter with a value equal to the SLS delay is started. No further 
gain attacks are possible while in this counter is running. This allows the minimum time to be set between gain changes. However the 
gain change counter also prevents the AGC from moving from the gain update counter state to the slow loop settling delay state. 
Therefore if a gain attack occurred very close to end of the gain update counter state, the gain change counter delays the start of the SLS 
state and shift the gain recovery event. To prevent this happening and maintain a perfectly periodic gain recovery event, gain attacks are 
prevented from happening towards the end of gain update counter state as shown in Figure 83. If a gain attack happens in this period, it is 
delayed until the start of the next gain update counter state. This can cause gain attacks to be held off for up to 2× SLS delay, therefore it is 
recommended to keep SLS delay as short as possible to minimize the gain attack delay. Note that it is possible to disable this blocking 
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feature, thus allowing gain attacks to occur anywhere within the gain update counter state, however the periodicity of the gain recovery 
event is no longer guaranteed as gain attacks towards the end of the gain update counter state causes the gain recovery event to be delayed.  

At the expiry of the gain update counter, all measurement blocks are reset and any peak detector counts is reset back to zero. When the Rx 
is enabled, the counter begins. This may mean that its expiry is at an arbitrary phase to the slot boundaries of the signal. The expiry of the 
counter can be aligned to the slot boundaries by setting the parameter agcEnableSyncPulseForGainCounter. While this bit is set, the AGC 
monitors a GPIO pin to find a synchronization pulse. This pulse causes the reset of the counter at this point in time. Therefore, if the user 
supplies a GPIO pulse time aligned to these slot boundaries, the expiry of the counter is aligned to slot boundaries. Any of GPIO_0-15 
can be used for this purpose. 

For example, considering 100 μs gain update period and a 491.52 MHz AGC clock, a total of 49,152 AGC clocks exist in the gain update 
period: 

Gain Update Period (AGC Clocks) = 491.52 MHz ×100 μs = 49,152 

As noted, the full gain update period is the sum of the agcGainUpdateCounter, the agcSlowLoopSettlingDelay and 5 clock cycles. If the 
agcSlowLoopSettlingDelay is set to 4, the gain update counter must be set to 49,139. 

Gain Update Period (AGC Clocks) = agcGainUpdateCounter ×2(agcSlowLoopSettingDelay) + 5 

Gain Update Period (AGC Clocks) = 49,139 +2(4) + 5 = 49,152 

When Rx is enabled, the AGC can be kept inactive for a number of AGC clock cycles by using agcRxAttackDelay. This means the user can 
specify one delay for AGC reaction when entering Rx mode, and another for after a gain change occurs (agcSlowLoopSettlingDelay).  

ANALOG PEAK DETECTOR (APD) 
The analog peak detector is located in the analog domain following the TIA filter and prior to the ADC input (see Figure 72). It functions 
by comparing the signal level to programmable thresholds. When a threshold has been exceeded a programmable number of times in a 
gain update period, then the detector flags that the threshold has been overloaded. 
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Figure 84. Analog Peak Detector Thresholds 

There are two APD thresholds as shown in Figure 84. These thresholds are contained in the agcPeak API structure, apdHighThresh and 
apdLowThresh, respectively.  
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To determine the setting of the APD thresholds in terms of the closest possible setting in terms of dBFS of the ADC (ADCdBFS), the 
following equations can be used: 
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Note that the APD is an analog circuit located after the TIA filter. The equations above assume that the TIA does not attenuate the signal, 
but the receiver path is typically configured to have some analog roll-off within the pass band compensated by the programmable FIR 
filter. The TIA provides filtering that attenuates the signal seen at the APD, which means that a larger signal is required to assert the APD. 
There is a known issue with the APD where it is more sensitive to signals near dc (<5 MHz, generally). This increased sensitivity 
(typically on the order of 1 dB to 2 dB) is accounted for with the introduction of a secondary digital threshold that prevents the APD from 
making a gain change when the input signal is detected in-band. This prevents the sensitivity from causing unnecessary changes to the 
gain index. The APD acts mostly as an out-of-band blocker detector.  

The APD threshold must be exceeded a programmable number of times within a gain update counter period before an over range 
condition occurs. Both the upper and lower thresholds have a programmable counter in the agcPeak API structure, as indicated in Table 163. 

Table 163. APD Programmable Threshold Counters 
Threshold Counter 
Upper Threshold (apdHighThresh) apdUpperThreshPeakExceededCnt 
Lower Threshold (apdLowThresh) apdLowerThresPeakExceededCnt 

As described in the earlier section on AGC control, the APD is used for both gain attack and gain recovery in peak detect mode. In power 
detect mode, the APD is used for gain attack, and is used to prevent overloading during gain recovery. For more details, refer to the 
relevant sections of this document. 

In AGC mode, the APD has programmable gain attack and gain recovery step sizes.  

Table 164. APD Attack and Recovery Step Sizes 
Gain Change Step Size 
Gain Attack apdGainStepAttack 
Gain Recovery apdGainStepRecovery 

Step size refers to the number of indices of the gain table the gain is changed. As explained earlier, the gain table is programmed with the 
largest gain in the Max Gain Index (typically Index 255), with ever decreasing gain for decreasing gain index. Thus, if the APD gain attack 
step size was programmed to 6, then this means that the gain index is reduced by 6 when the apdHighThresh has been exceeded more 
than apdUpperThreshPeakExceededCnt times. For example, if the gain index had been 255 before this over range condition, then the 
gain index is reduced to 249. The amount of gain reduction this equates to is dependent on the gain table in use. The default table has 
0.5 dB steps, which in this example equates to a 3 dB gain reduction upon an APD over range condition. 

The APD is held in reset for a configurable amount of time following a gain change to ensure that the receiver path is settled at the new 
gain setting before monitoring the paths for over-ranges. This is configured using the agcPeakWaitTime API parameter. 

HALF-BAND 2 PEAK DETECTOR 
The HB2 peak detector is located in the digital domain at the output of the Half-Band filter 2. It can therefore also be referred to as the 
Decimated Data Overload Detector because it works on decimated data. Like the APD detector, it functions by comparing the signal level 
to programmable thresholds. It monitors the signal level by observing individual I2 + Q2 samples (or peak I and peak Q if 
hb2OverloadPowerMode = 0) over a period of time and compares these samples to the threshold. If a sufficient number of samples 
exceed the threshold in the period of time, then the threshold is noted as exceeded by the detector. The duration of the HB2 measurement 
is controlled by hb2OverloadDurationCnt, whereas the number of samples that exceeds the threshold in that period is controlled by 
hb2OverloadThreshCnt.  

Once the required number of samples exceed the threshold in the duration required, then the detector records that the threshold was 
exceeded. Like the APD detector, the HB2 detector requires a programmable number of times for the threshold to be exceeded in a gain 
update period before it flags an overrange condition.  



UG-1727 Preliminary Technical Data
 

Rev. PrA | Page 150 of 267 

Figure 85 shows the two-level approach. It shows the gain update counter period, with the time being broken into subsets of time based 
on the setting of hb2OverloadDurationCnt. Each of these periods of time is considered separately, and hb2OverladThreshCnt individual 
samples must exceed the threshold within hb2OverloadDurationCnt for an overload to be declared. These individual samples greater 
than the threshold are shown in red, while those less than the threshold are shown in green. Two examples are shown, one where the 
number of samples exceeding the threshold was sufficient for the HB2 peak detector to declare an overload (this time period is shown as 
red in the gain update counter timeline), and a second example where the number of samples exceeding the threshold was not sufficient 
to declare an overload (this time period is shown as green in the gain update counter timeline). The number of overloads are counted, and 
if the number of overloads of the hb2HighThresh exceed hb2UpperThreshPeakExceededCnt in a gain update counter period, then an 
over range condition is called. Likewise, if the number of overloads of the hb2UnderRangeHighThresh does not exceed 
hb2LowerThreshPeakExceededCnt, then an under-range condition is called. 
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Figure 85. HB2 Detector Two-Level Approach for an Overload Condition 

The HB2 detector has a number of programmable thresholds. Some of these thresholds are only used in the fast recovery mode of the 
peak detect AGC configuration, as summarized in Table 165. 

Table 165. HB2 Overload Thresholds 
HB2 Threshold Usage 
hb2HighThresh Used for gain attack in both peak and power detect AGC modes. 
hb2UnderRangeHighThresh Used for gain recovery in peak detect AGC mode. In power detect AGC mode it is used to prevent overloads 

during gain recovery. 
hb2UnderRangeMidThresh Used only when the fast recovery option of the peak detect AGC mode is being utilized. 
hb2UnderRangeLowThresh Used only when the fast recovery option of the peak detect AGC mode is being utilized. 

For more details of how these thresholds are used by the AGC, refer to the relevant sections of the AGC overview in this document 
(specifically Figure 76, Figure 78 and Figure 80). 

The thresholds are related to an ADC dBFS value using the following equations: 
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Each threshold has an associated counter such that an over-range condition is not flagged until the threshold has been exceeded this 
amount of times in a gain update period.  
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Table 166. Gain Steps for HB2 Over-range and Underrange Conditions 
HB2 Threshold Counter 
hb2HighThresh hb2UpperThreshPeakExceededCnt 
hb2UnderRangeHighThresh hb2UnderRangeHighThreshExceededCnt 
hb2UnderRangeMidThresh Hb2UnderRangeMidThreshExceededCnt 
hb2UnderRangeLowThresh Hb2UnderRangeLowThreshExceededCnt 

 

In AGC mode, the HB2 has programmable gain attack and gain recovery step sizes.  

Table 167. HB2 Attack and Recovery Step Sizes 
Gain Change Step Size 
Gain Attack hb2GainStepAttack 
Gain Recovery (hb2UnderRangeHighThresh) hb2GainStepHighRecovery 
Gain Recovery (hb2UnderRangeMidThresh) hb2GainStepMidRecovery 
Gain Recovery (hb2UnderRangeLowThresh) hb2GainStepLowRecovery 

The HB2 peak detector is held in reset for a configurable amount of time following a gain change to ensure that the receiver path is settled 
at the new gain setting before monitoring the paths for over-range conditions. This duration is configured using the agcPeakWaitTime 
API parameter. 

POWER DETECTOR 
The power measurement block measures the RMS power of the incoming signal. It can monitor the signal level at different locations, 
namely the HB2 output, the RFIR output and the output of the dc correction block. To choose a location, the powerInputSelect API 
parameter is utilized as described in Table 168. 

Table 168. Location of the Decimated Power Measurement 
powerInputSelect Value 
RFIR Output 0 
HB1 1 
HB2 2 

The number of samples that are used in the power measurement calculation is configurable using the powerMeasurementDuration API 
parameter: 

PowerMeasDuration (Rx Sample Clocks) = 8 × 2powerMeasurementDuration 

where Rx Sample Clocks is the number of clocks at the power measurement location. It is important that this duration not exceed the gain 
update counter. The gain update counter resets the power measurement block and therefore a valid power measurement must be available 
before this event. In the case of multiple power measurements occurring in a gain update period, the AGC uses the last fully completed 
power measurement, any partial measurements being discarded. 

The power measurement block has a dynamic range of 60 dB by default. Power measured in the receiver data path can be readback with 
the following command. 

adi_adrv9025_RxDecPowerGet 

adi_adrv9025_RxDecPowerGet(adi_adrv9025_Device_t* device, adi_adrv9025_RxChannels_e rxChannel, 
uint16_t *rxDecPower_mdBFS) 

Description 

Readback for receiver power measurement. 

Parameters 

Table 169.  
Parameter Description 
*device  Pointer to device structure. 
rxChannel An enum indicating which Rx channel to configure as shown in Table 155. 
*rxDecPower_mdBFS pointer to the variable through which the power measurement reading is returned. 
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API PROGRAMMING 
The API programming sequence for the gain control blocks is detailed in Figure 86. The configuration of these blocks is one of the last 
steps before making the device operational. The structures are defined before initialization of the device begins. Once device initialization 
has proceeded up to the configuration of the JESD, then the gain control configuration begins.  

The following API is used to configure the gain control blocks within the device such as the peak detectors, the power detector, and the 
AGC if used. It is required to call this command in applications that require AGC. 

adi_adrv9025_AgcCfgSet 

adi_adrv9025_AgcCfgSet(adi_adrv9025_Device_t* device, adi_adrv9025_AgcCfg_t agcConfig[], uint8_t 
arraySize) 

Description 

Configures the gain control blocks within the device such as peak detectors, power detector, and AGC settings. 

Parameters 

Table 170.  
Parameter Description 
*device  Pointer to device structure. 
agcConfig An array of gain control configuration structures of type adi_adrv9025_AgcCfg_t. 
arraySize The number of configuration structures in agcConfig[]. 

The composition of the gain control configuration structure is detailed in the next section. Once agcConfig[] has been configured, the 
desired gain control mode can be enabled by using the adi_adrv9025_RxGainCtrlModeSet( ) API function, which was detailed earlier in 
this user guide. 

The final step is to configure any GPIOs as necessary, be it monitor outputs which allow real-time monitoring of the peak detector 
outputs, or GPIO inputs which allow the AGC gain update counter to be synchronized to a slot boundary, or GPIOs to directly control 
the gain index. The operation of these has been described above.  
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adi_adrv9010_PostMcsInit( )
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Figure 86. Gain Control Programming Flowchart 
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AGC HOLDOVER FUNCTION 
The ADRV9026 AGC uses counters to keep track off any over range or under range events. These events are used to increment a counter 
that accumulates and triggers the AGC state machine if it exceeds the desired count value. For a TDD case, the counters get reset every 
time the Rx enable goes low. This reset of the over range and under range counters can potentially cause the AGC state machine to never 
trigger if the gainUpdateCounter is larger than the Rx TDD slot duration. The AGC holdover function has been implemented to avoid 
this situation by preventing the counters from getting reset when Rx enable is toggled. 

To enable this function, the user needs to create a stream file using the Transceiver Evaluation Software with the AGC state persist box 
checked in the Stream Settings section as shown in Figure 89. Once this box is checked, a stream file can be created with the AGC 
holdover function enabled to prevent AGC counter resets during TDD operation. 
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Figure 87. TES Stream Settings Control Window to Enable AGC Holdover 

RX GAIN MODE SWITCHING USING GPIO 
This feature allows use of a GPIO pin to force Rx gain index changes and move to MGC mode. This feature is beneficial if the user wants 
to run a quick RF calibration for the entire Rx signal chain. Such a cal requires a fixed Rx gain index, which is not possible to guarantee if 
the part is in AGC mode. The user can change the mode to MGC and then change the Rx gain index, but the duration of this switch is a 
few ms, which is not feasible in a 5G NR TDD platform. 

When this feature is employed, the user can enable a GPIO pin to change the Rx gain index to a fixed predetermined value and move the 
Rx to MGC mode. This action sets the gain index and avoids the issue of the AGC state machine modifying the index. The user can then 
run the desired function (for example, RF calibration) and then toggle the GPIO low to restore the original Rx state. When the GPIO is 
low, the gain control mode is restored back to AGC to resume normal Rx operation. 

To enable Rx GPIO gain mode switching, the use needs to create a stream file using the TES with the Rx Gain Gpio Pin set to the desired 
GPIO pin as shown in Figure 88.  
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Figure 88. TES Stream Settings Control Window to Enable Rx Gain Mode Switching using GPIO 

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
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The user also needs to use the StreamGpioConfigSet API function to unmask the stream GPIO source so as to allow the stream to be 
triggered on the desired GPIO. The steps to set up this feature are the following: 

1. Generate the stream with the correct GPIO set to the Rx Gain GPIO tag as shown in Figure 88. 
2. Use StreamGpioConfigSet function (called during postMcsInit) with the correct GPIO pin selected as shown in the 

StreamGpioConfigSet Function section. 
3. Set the Rx manual gain to the desired value to be used during the calibration. 

By following these steps, the user can more Rx to MGC mode when the GPIO goes high and move back to AGC mode when the GPIO 
goes low. Not that this function affects all four Rx channels if utilized. 

StreamGpioConfigSet Function 
streamGpioCfg = Types.adi_adrv9025_StreamGpioPinCfg_t() 

 

streamGpioCfg.streamGpInput0  = Types.adi_adrv9025_GpioPinSel_e. ADI_ADRV9025_GPIO_INVALID 

streamGpioCfg.streamGpInput1  = Types.adi_adrv9025_GpioPinSel_e.ADI_ADRV9025_GPIO_INVALID 

streamGpioCfg.streamGpInput2  = Types.adi_adrv9025_GpioPinSel_e. ADI_ADRV9025_GPIO_INVALID 

streamGpioCfg.streamGpInput3  = Types.adi_adrv9025_GpioPinSel_e.ADI_ADRV9025_GPIO_INVALID 

streamGpioCfg.streamGpInput4  = Types.adi_adrv9025_GpioPinSel_e.ADI_ADRV9025_GPIO_INVALID 

streamGpioCfg.streamGpInput5  = Types.adi_adrv9025_GpioPinSel_e. ADI_ADRV9025_GPIO_05 

streamGpioCfg.streamGpInput6  = Types.adi_adrv9025_GpioPinSel_e.ADI_ADRV9025_GPIO_INVALID 

streamGpioCfg.streamGpInput7  = Types.adi_adrv9025_GpioPinSel_e.ADI_ADRV9025_GPIO_INVALID 

streamGpioCfg.streamGpInput8  = Types.adi_adrv9025_GpioPinSel_e.ADI_ADRV9025_GPIO_INVALID 

streamGpioCfg.streamGpInput9  = Types.adi_adrv9025_GpioPinSel_e.ADI_ADRV9025_GPIO_INVALID 

streamGpioCfg.streamGpInput10 = Types.adi_adrv9025_GpioPinSel_e.ADI_ADRV9025_GPIO_INVALID 

streamGpioCfg.streamGpInput11 = Types.adi_adrv9025_GpioPinSel_e.ADI_ADRV9025_GPIO_INVALID 

streamGpioCfg.streamGpInput12 = Types.adi_adrv9025_GpioPinSel_e.ADI_ADRV9025_GPIO_INVALID 

streamGpioCfg.streamGpInput13 = Types.adi_adrv9025_GpioPinSel_e.ADI_ADRV9025_GPIO_INVALID 

streamGpioCfg.streamGpInput14 = Types.adi_adrv9025_GpioPinSel_e.ADI_ADRV9025_GPIO_INVALID 

streamGpioCfg.streamGpInput15 = Types.adi_adrv9025_GpioPinSel_e.ADI_ADRV9025_GPIO_INVALID 

 

link.platform.board.Adrv9025Device.RadioCtrl.StreamGpioConfigSet(streamGpioCfg) 
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GAIN CONTROL DATA STRUCTURES 
Figure 89 shows the member structure of adi_adrv9025_AgcCfg_t, and of its substructures, adi_adrv9025_AgcPeak_t and 
adi_adrv9025_AgcPower_t. Each of the parameters are briefly explained in Table 171, Table 172, and Table 173, and the wider context of 
these parameter settings are outlined in the relevant gain control/peak detector sections. 
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Figure 89. Member Listing of adi_adrv9025_AgcCfg_t Data Structure 
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Table 171. ADRV9025_AgcCfg_t Structure Definition 
Parameter Description Min Value Max Value 
rxChannelMask This selects the channels upon which to enable this gain control 

mode. It is a bit mask with each bit corresponding to a channel, [D0] = 
Rx1, [D1] = Rx2, [D2] = Rx3, [D3] = Rx4. Therefore, setting the 
rxChannelMask = 15 means that all Rx channels are configured with 
the same AGC configuration. 

0 15 

agcPeakWaitTime Number of AGC clock cycles to wait before enable peak/overload 
detectors after a gain change. 

0 31 

agcRxMaxGainIndex Maximum gain index allowed in AGC mode. Must be greater than 
agcMinGainIndex and be a valid gain index. 

0 255 

agcRxMinGainIndex Minimum gain index allowed in AGC mode. Must be less than 
agcRxMaxGainIndex and be a valid gain index. 

0 255 

agcGainUpdateCounter Is used as a decision period, with the peak detectors reset on this 
period. Gain changes in AGC mode can also be synchronized to this 
period (the expiry of this counter). The full period is a combination of 
the agcGainUpdateCounter and agcSlowLoopSettlingDelay. 

Depends on 
Overload 
Detector 
Settings 

4194303 
AGC_CLK 
Cycles 

agcRxAttackDelay Hold the duration the AGC should be held in reset when the Rx path is 
enabled.  

0 63 

agcSlowLoopSettlingDelay Number of AGC clock cycles to wait after a gain change before the 
AGC changes gain again. 

0 127 

agcLowThreshPreventGain Only relevant in Peak/Power Detect AGC operation. 0 1 
 1: If AGC is in Peak Power Detect Mode, then gain increments 

requested by the power detector are prevented if there are sufficient 
peaks (APD/HB2 Low Threshold Exceeded Count) above the 
apdLowThresh or hb2UnderRangeHighThresh.  

  

 0: apdLowThresh and hb2UnderRangeHighThresh are don’t cares for 
gain recovery. 

  

agcChangeGainIfThreshHigh Applicable in both peak and peak/power detect modes. 0 3 
 0: Gain changes wait for the expiry of the gain update counter if a 

high threshold count has been exceeded on either the APD or HB2 
detector. 

  

 1: Gain changes occur immediately when initiated by HB2. Gain 
changes initiated by the APD wait for the gain update to expire. 

  

 2: Gain changes occur immediately when initiated by APD. Gain 
changes initiated by HB2 want for the gain update to expire. 

  

 3: Gain changes occur immediately when initiated by APD or HB2 
detectors. 

  

agcPeakThreshGainControlMode 1: AGC in Peak AGC mode, power-based gain changes are disabled.  0 1 
 0: AGC in Peak/Power AGC mode where both Peak Detectors and 

Power Detectors are utilized. 
  

agcResetOnRxon 1: AGC state machine is reset when Rx is disabled. The AGC gain 
setting is returned to the maximum gain.  

0 1 

 0: AGC state machine maintains its state when Rx is disabled.   
agcEnableSyncPulseForGainCounter 1: Allows synchronization of AGC Gain Update Counter to the time-

slot boundary. GPIO setup required.  
0 1 

 0: AGC Gain Update Counter free runs.   
agcEnableFastRecoveryLoop 1: Enables the fast recovery AGC functionality using the HB2 overload 

detector. Only applicable in Peak Detect Mode. 
0 1 

 0: AGC fast recovery is not enabled.   
agcPower Structure containing all the power detector settings.  N/A N/A 
agcPeak Structure containing all the peak detector settings.  N/A N/A 
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Table 172. ADRV9025_AgcPeak_t Structure Definition 
Parameter Description Min Value Max Value 
agcUnderRangeLowInterval This sets the time constant (in AGC clock cycles) that the AGC 

recovers when the signal peaks are less than 
hb2UnderRangeLowThresh. Only applicable when the fast 
recovery option is enabled in Peak Detect AGC mode.  

Depends on 
HB2 detector 
settings 

65535 

agcUnderRangeMidInterval This sets the time constant (in AGC clock cycles) that the AGC 
recovers when the signal peaks are less than 
hb2UnderRangeMidThresh. Calculated as  

0 63 

 (agcUnderRangeMidInterval + 1) × agcUnderRangeLowInterval   
 Only applicable when the fast recovery option is enabled in Peak 

Detect AGC mode. 
  

agcUnderRangeHighInterval This sets the time constant (in AGC clock cycles) that the AGC 
recovers when the signal peaks are less than 
hb2UnderRangeHighThresh. Calculated as  

0 63 

 (agcUnderRangeHighInterval + 1) × agcUnderRangeMidInterval   
 Only applicable when the fast recovery option is enabled in Peak 

Detect AGC mode. 
  

apdHighThresh This sets the upper threshold of the analog peak detector. When 
the input signal exceeds this threshold a programmable number 
of times (set by its corresponding overload counter) within a gain 
update period, the overload detector flags. In AGC modes, the gain 
is reduced when this overload occurs. 

apdLowThresh 63 

 adpdHighThresh (mV) = (apdHighThresh + 1) × 16 mV   
apdLowGainModeHighThresh This parameter is not utilized.   
apdLowThresh This sets the lower threshold of the analog peak detector. When 

the input signal exceeds this threshold a programmable number 
of times (set by its corresponding overload counter) within a gain 
update period, the overload detector flags. In Peak AGC mode, the 
gain is increased when this overload is not occurring. In Power 
AGC mode, this threshold can be used to prevent further gain 
increases if the agcLowThreshPreventGain bit is set. 

7 apdHighThresh 

 adpdLowThresh (mV) = (apdLowThresh + 1) × 16 mV   
apdLowGainModeLowThresh This parameter is not utilized.   
apdUpperThreshPeakExceededCnt Sets number of peaks to detect above apdHighThresh to cause an 

APD High Over Range Event. In AGC modes, this results in a gain 
decrement set by apdGainStepAttack.  

0 255 

apdLowerThreshPeakExceededCnt Sets number of peaks to detect above apdLowThresh to cause an 
APD Low Overload Event. In Peak Detect AGC mode, if an APD Low 
Overload Event is not occurring then this results in a gain 
increment set by apdGainStepRecovery. 

0 255 

apdGainStepAttack The number of indices that the gain index pointer must be 
decreased in the event of an APD High Over Range in AGC modes. 
The step size in dB depends on the gain step resolution of the gain 
table (default 0.5 dB per index step). 

0 31 

apdGainStepRecovery The number of indices that the gain index pointer must be 
increased in the event of an APD Under range event occurring in 
Peak Detect AGC mode. The step size in dB depends on the gain 
step resolution of the gain table (default 0.5 dB per index step). 

0 31 

enableHb2Overload 1: HB2 Overload Detector enabled. 0: HB2 Overload Detector 
disabled 

0 1 

hb2OverloadDurationCnt The number of clock cycles (at the HB2 output rate) within which 
hb2OverloadThreshCnt must be exceeded for an overload to 
occur. A HB2 overload flag is only raised when the number of these 
overloads exceeds hb2UpperThreshPeakExceededCnt or 
hb2LowerThreshPeakExceededCnt within a gain update period. 
The number of clocks is: 2(hb2OverloadDurationCnt + 1) 

0 6 

hb2OverloadThreshCnt Sets the number of individual samples exceeding hb2HighThresh 
or hb2LowThresh necessary within hb2OverloadDurationCnt for 
an overload to occur. The HB2 overload flag is only raised when 
the number of these overloads exceeds 
hb2UpperThreshPeakExceededCnt or 
hb2LowerThreshPeakExceededCnt within a gain update period. 

1 15 
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Parameter Description Min Value Max Value 
hb2HighThresh This sets the upper threshold of the HB2 detector.  0 16383 
 2

202  16,384 10
hb HighdBFS

hb HighThresh
 
 
     

  

hb2UnderRangeLowThresh This sets the lower threshold of the HB2 under range threshold 
detectors. Used only when the fast recovery option of the peak 
detect AGC mode is being utilized. 

0 16383 

 2
202  16,384 10

hb UnderRangeLowdBFS

hb UnderRangeLowThresh
 
 
    

  

hb2UnderRangeMidThresh This sets the middle threshold of the HB2 under range threshold 
detectors. Used only when the fast recovery option of the peak 
detect AGC mode is being utilized. 

0 16383 

 2
202  16,384 10

hb UnderRangeMiddBFS

hb UnderRangeMidThresh
 
 
    

  

hb2UnderRangeHighThresh; Peak Detect Mode: Threshold used for gain recovery. 0 16383 
 Peak Detect with Fast Recovery Mode: This sets the highest 

threshold of the HB2 under range threshold detectors. 
  

 Power Detect Mode: Threshold used to prevent further gain 
increases if agcLowThreshPreventGain is set. 

  

 2
202  16,384 10

hb UnderRangeHIghdBFS

hb UnderRangeHighThresh
 
 
    

  

hb2UpperThreshPeakExceededCnt Sets number of individual overloads above hb2HighThresh 
(number of times hb2OverloadThreshCnt was exceeded in 
hb2OverloadDuractionCnt) to cause an HB2 High Over Range 
event. In AGC modes, this results in a gain decrement set by 
hb2GainStepAttack.  

0 255 

hb2UnderRangeHighThreshExceededCnt Sets number of individual overloads above 
hb2UnderRangeHighThresh (number of times 
hb2OverloadThreshCnt was exceeded in 
hb2OverloadDurationCnt) to cause an HB2 Under Range High 
Threshold Overload Event. In Peak Detect AGC mode, not having 
sufficient peaks to cause the overload is flagged as an underrange 
event and the gain is recovered by hb2GainStepHighRecovery. 

0 255 

hb2GainStepHighRecovery The number of indices that the gain index pointer must be 
increased in the event of an HB2 Under Range High Threshold 
Under Range Event. 

0 31 

hb2GainStepLowRecovery Only applicable in fast recovery mode of peak detect AGC. This 
sets the number of indices that the gain index pointer must be 
increased in the event of an HB2 Under Range Low Threshold 
Under Range Event. 

0 31 

hb2GainStepMidRecovery Only applicable in fast recovery mode of peak detect AGC. This 
sets the number of indices that the gain index pointer must be 
increased in the event of an HB2 Under Range Mid Threshold 
Under Range Event. 

0 31 

hb2GainStepAttack The number of indices that the gain index pointer must be 
decreased in the event of an HB2 High Threshold Over Range 
event in AGC modes. The step size in dB depends on the gain step 
resolution of the gain table (default 0.5 dB per index step). 

0 31 

hb2OverloadPowerMode Sets the measurement mode of the HB2 detector. 0 1 
hb2ThreshConfig Set to 3. 3 3 
hb2UnderRangeMidThreshExceededCnt Only applicable in fast recovery mode of peak detect AGC. Sets 

number of individual overloads above hb2UnderRangeMidThresh 
(number of times hb2OverloadThreshCnt was exceeded in 
hb2OverloadDurationCnt) to cause an HB2 Under Range Mid 
Threshold Overload Event. In Peak Detect AGC mode, not having 
sufficient peaks to cause the overload is flagged as an under-range 
event and the gain is recovered by hb2GainStepMidRecovery. 

0 255 
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Parameter Description Min Value Max Value 
hb2UnderRangeLowThreshExceededCnt Only applicable in fast recovery mode of peak detect AGC. Sets 

number of individual overloads above hb2UnderRangeLowThresh 
(number of times hb2OverloadThreshCnt was exceeded in 
hb2OverloadDurationCnt) to cause an HB2 Under Range Low 
Threshold Overload Event. In Peak Detect AGC mode, not having 
sufficient peaks to cause the overload is flagged as an under-range 
event and the gain is recovered by hb2GainStepLowRecovery. 

0 255 

Table 173. ADRV9025_AgcPower_t Structure Definition 
Parameter Description Min Value Max Value 
powerEnableMeasurement 1: Power Measurement block enabled. 0: Power Measurement block 

disabled. 
0 1 

powerInputSelect This parameter sets the location of the power measurement. 0 = 
RFIR output; 1 = HB1 Output, 2 = HB2 Output. 

0 3 

underRangeHighPowerThresh Threshold in dBFS (negative sign assumed) which defines the lower 
boundary on the stable region of the power detect gain control 
mode.  

0 127 

underRangeLowPowerThresh Offset (negative sign assumed) from underRangeHighPowerThresh 
which defines the outer boundary of the power based AGC 
convergence. Typically, recovery is set to be larger steps than when 
the power measurement is less than this threshold. 

0 31 

underRangeHighPowerGainStepRecovery The number of indices that the gain index pointer must be 
increased (gain increase) in the event of the power measurement 
being less than underRangeHighPowerThresh but greater than 
underRangeLowPowerThresh. 

0 31 

underRangeLowPowerGainStepRecovery The number of indices that the gain index pointer must be 
increased (gain increase) in the event of the power measurement 
being less than underRangeLowPowerThresh. 

0 31 

powerMeasurementDuration Number of IQ samples on which to perform the power 
measurement. The number of samples corresponding to the 4-bit 
word is 8 × 2(pmdMeasDuration[3:0]). This value must be less than AGC Gain 
Update Counter.  

0 31 

rxTddPowerMeasDuration Following an Rx Enable, the power measurement block can be 
requested to perform a power measurement for a specific period of 
a frame. This is applicable in TDD modes. This parameter sets the 
duration of this power measurement. A value of 0 causes the power 
measurement to run until the next gain update counter expiry. 

0 65535 
AGC clock 
cycles 

rxTddPowerMeasDelay Following an Rx Enable, the power measurement block can be 
requested to perform a power measurement for a specific period of 
a frame. This is applicable in TDD modes. This parameter sets the 
delay between the Rx Enable and the power measurement starting 
on Rx1. 

0 65535 
AGC clock 
cycles 

overRangeHighPowerThresh Threshold in dBFS (negative sign assumed) which defines the 
upper boundary on the stable region (no gain change based on 
power measurement) of the power detect gain control mode. 

0 127 

overRangeLowPowerThresh Offset (positive sign assumed) from upper0PowerThresh which 
defines the outer boundary of the power based AGC convergence. 
Typically attack is set to be larger steps than when the power 
measurement is greater than this threshold. 

0 15 

powerLogShift Enable increase in dynamic range of the power measurement from 
40 dB to ~60 dB. 

0 1 

overRangeHighPowerGainStepAttack The number of indices that the gain index pointer must be 
decreased (gain reduction) in the event of the power measurement 
being greater than overRangeHighPowerThresh. 

0 31 

overRangeLowPowerGainStepAttack The number of indices that the gain index pointer must be 
decreased (gain decrease) in the event of the power measurement 
being less than OverRangeHighPowerThresh but greater than 
OverRangeLowPowerThresh. 

0 31 
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SAMPLE PYTHON SCRIPT—PEAK DETECT MODE WITH FAST ATTACK 
The following is a sample python script to enable the AGC in peak detect mode. The user can use this sample script as a starting point to 
enable AGC on the evaluation platform.  

#Import Reference to the DLL 

import System 

import clr 

from System import Array 

clr.AddReferenceToFileAndPath("C:\\Program Files (x86)\\Analog Devices\\ADRV9025 Transceiver 
Evaluation Software\\adrv9025_dll.dll") 

from adrv9025_dll import AdiEvaluationSystem 

from adrv9025_dll import Types 

 

#Create an Instance of the Class 

Link = AdiEvaluationSystem.Instance  

connect = False 

 

if (Link.IsConnected() == False): 

    connect = True 

    Link.Ads8.board.Client.Connect("192.168.1.10", 55556) 

    print "Connecting" 

 

if (Link.IsConnected()): 

    adrv9025 = Link.Adrv9025Get(1) 

 

    # Create an instance of the rxGainMode , agcConfig classes 

    rxGainMode = Types.adi_adrv9025_RxAgcMode_t() 

    agcConfig = Types.adi_adrv9025_AgcCfg_t() 

 

    # General Rx Gain Mode Configuration 

    rxGainMode.rxChannelMask = 0xF 

    rxGainMode.agcMode = Types.adi_adrv9025_RxAgcMode_e.ADI_ADRV9025_AGCSLOW  

 

    # General AGC Configuration 

    agcConfig.rxChannelMask = 0xF 

    agcConfig.agcPeakWaitTime = 4 

    agcConfig.agcRxMaxGainIndex = 255 

    agcConfig.agcRxMinGainIndex = 195 

    agcConfig.agcGainUpdateCounter = 921600 

    agcConfig.agcRxAttackDelay = 10 

    agcConfig.agcSlowLoopSettlingDelay = 16 

    agcConfig.agcLowThreshPreventGainInc = 1 

    agcConfig.agcChangeGainIfThreshHigh = 1 

    agcConfig.agcPeakThreshGainControlMode= 1 

    agcConfig.agcResetOnRxon = 0 

    agcConfig.agcEnableSyncPulseForGainCounter = 0 

    agcConfig.agcEnableFastRecoveryLoop = 0 
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    #adi_adrv9025_AgcPeak_t agcPeak; 

    agcConfig.agcPeak.agcUnderRangeLowInterval = 205000 / 245;         

    agcConfig.agcPeak.agcUnderRangeMidInterval = 2; 

    agcConfig.agcPeak.agcUnderRangeHighInterval = 4; 

    agcConfig.agcPeak.apdHighThresh = 38; 

    agcConfig.agcPeak.apdLowThresh = 25; 

    agcConfig.agcPeak.apdUpperThreshPeakExceededCnt = 10; 

    agcConfig.agcPeak.apdLowerThreshPeakExceededCnt = 3; 

    agcConfig.agcPeak.enableHb2Overload = 1; 

    agcConfig.agcPeak.hb2OverloadDurationCnt = 1; 

    agcConfig.agcPeak.hb2OverloadThreshCnt = 1; 

    agcConfig.agcPeak.hb2HighThresh = 11598; #-3dBFS 

    agcConfig.agcPeak.hb2UnderRangeLowThresh = 8211;  

    agcConfig.agcPeak.hb2UnderRangeMidThresh = 5813;    

    agcConfig.agcPeak.hb2UnderRangeHighThresh = 2913; 

    agcConfig.agcPeak.hb2UpperThreshPeakExceededCnt = 10; 

    agcConfig.agcPeak.hb2UnderRangeHighThreshExceededCnt = 3; 

    agcConfig.agcPeak.hb2UnderRangeMidThreshExceededCnt = 3; 

    agcConfig.agcPeak.hb2UnderRangeLowThreshExceededCnt = 3; 

    agcConfig.agcPeak.hb2OverloadPowerMode = 0; 

    agcConfig.agcPeak.hb2ThreshConfig = 3;     

 

    agcConfig.agcPeak.apdGainStepAttack = 4; 

    agcConfig.agcPeak.apdGainStepRecovery = 2; 

    agcConfig.agcPeak.hb2GainStepAttack = 4; 

    agcConfig.agcPeak.hb2GainStepHighRecovery =2; 

    agcConfig.agcPeak.hb2GainStepMidRecovery = 4; 

    agcConfig.agcPeak.hb2GainStepLowRecovery = 8; 

 

    #adi_adrv9025_AgcPower_t agcPower; 

    agcConfig.agcPower.powerEnableMeasurement = 0; 

    agcConfig.agcPower.powerInputSelect = 0; 

    agcConfig.agcPower.underRangeHighPowerThresh = 9; 

    agcConfig.agcPower.underRangeLowPowerThresh = 2; 

    agcConfig.agcPower.underRangeHighPowerGainStepRecovery = 0; 

    agcConfig.agcPower.underRangeLowPowerGainStepRecovery = 0; 

    agcConfig.agcPower.powerMeasurementDuration = 5; 

    agcConfig.agcPower.rxTddPowerMeasDuration = 5; 

    agcConfig.agcPower.rxTddPowerMeasDelay = 1; 

    agcConfig.agcPower.overRangeHighPowerThresh = 2; 

    agcConfig.agcPower.overRangeLowPowerThresh = 0; 

    agcConfig.agcPower.powerLogShift = 1;  # Force to 1 

    agcConfig.agcPower.overRangeHighPowerGainStepAttack = 0; 

    agcConfig.agcPower.overRangeLowPowerGainStepAttack = 0; 

     

    # Make agcConfig and rxGainMode into array types (necessary for syntax reasons) 

    agcConfigArr = Array[Types.adi_adrv9025_AgcCfg_t]([agcConfig]) 
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    rxGainModeArr = Array[Types.adi_adrv9025_RxAgcMode_t]([rxGainMode]) 

 

    # Write settings to device 

    adrv9025.Agc.AgcCfgSet(agcConfigArr, 1) 

 

    # Enable AGC Mode 

    adrv9025.Rx.RxGainCtrlModeSet(rxGainModeArr, 1) 

 

    print "Finished Programming Device"   

else: 

    print "Not Connected" 

 

if (connect == True): 

    Link.Ads8.board.Client.Disconnect() 

    print "Disconnecting" 

GAIN COMPENSATION, FLOATING POINT FORMATTER AND SLICER 
The user has the option of enabling gain compensation in the device. In gain compensation mode, the digital gain block is utilized to 
compensate for the analog front-end attenuation. The cumulative gain across the device is thus 0 dB; for example, if 5 dB analog 
attenuation is applied at the front end of the device then 5 dB of digital gain is applied. This ensures that the digital data is representative 
of the RMS power of the signal at the Rx input port; any internal front-end attenuation changes in device in order to prevent ADC 
overloading are transparent to the baseband processor. In this way, the AGC of the device can be used to react quickly to incoming 
blockers without the need for the baseband processor to track the current gain index the level of the received signal at the input to the 
device for received signal strength measurements.  

The digital gain block is controlled by the gain table, and a compensated gain table is required to operate in this mode.  Analog Devices 
provides an example compensated gain table in the software package. Such a gain table has a unique front-end attenuator setting with a 
corresponding amount of digital gain programmed at each index of the table.  

Gain compensation can be used in either AGC or MGC modes. The maximum amount of gain compensation is 50 dB. This allows for 
compensation of both the internal analog attenuator and an external gain component (such as a DSA or LNA).  

Large amounts of digital gain increase the bit width of the path. There are a number of ways in which this expanded bit-width data can be 
sent to the baseband processor, which are detailed below. Figure 90 is a block diagram of the gain compensation portion of the Rx chain, 
showing the locations of the various blocks. 
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Figure 90. Gain Compensation, Floating Point Formatter, and Slicer Section of the Receiver Datapath 
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Mode 1: No Digital Gain Compensation 

This is the mode that the chip is configured to by default. In this mode the digital gain block is not used for gain compensation. Instead 
the digital gain block may be utilized to apply small amounts of digital gain/attenuation to provide consistent gain steps in a gain table. 
The premise is that because the analog attenuator does not have consistent stops in dB across its range then the digital gain block can be 
utilized to even out the steps for consistency (the default table utilizes the digital gain block to provide consistent 0.5 dB steps). 

Nether the slicer nor floating-point formatter block is utilized. As no gain compensation are applied, there is no bit-width expansion of 
the digital signal. The signal is provided to the JESD port which sends it to the baseband processor in either 12-bit, 16-bit or 24-bit format 
depending on the use case. 

Mode 2: Digital Gain Compensation with Slicer GPIO Outputs 

In this mode gain compensation is used. Load the device with a gain table that compensates for the analog front-end attenuation applied. 
Thus, as the analog front-end attenuation is increased, and equal amount of digital gain is applied. Considering 16-bit data at the input to 
the digital compensation block, then as more digital gain is applied the bit-width of the signal is increased. With every 6 dB of gain, the 
bit-width increases by 1. Figure 91 outlines this effect, with yellow boxes indicating the valid (used) bits in each case. 
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Figure 91. Bit Width of Received Signal for Increasing Gain Compensation 

The slicer is used to attenuate the data after the digital gain block such that it can fit into the resolution of the JESD data path. It then 
advises the user how much attenuation is being applied in real time, so that the user can compensate on the baseband processor side. In 
this mode, the current slicer setting (amount of attenuation) is provided real time over GPIO pins.  

Note that this slicer setting information is not necessarily time aligned to the data at the baseband processor side. As soon as the slicer 
value changes, this information is provided on the GPIO pins. However, there is some latency between this and when the corresponding 
data arrives across the JESD link. It is up to the user to determine an appropriate way of accounting for this latency. 

This slicer can be configured for a number of attenuation resolutions, namely 1 dB, 2 dB, 3 dB, 4 dB, 6 dB or 8 dB steps. Higher resolution 
(smaller steps) allows the user to follow the actual signal amplitude with finer resolution, while lower resolution (larger steps) allows for 
more compensation range. 

The slicer can use up to 4 GPIOs per receiver. The GPIOs used to output the slicer position are shown in Table 174. These require these 
pins to be enabled as outputs and configured for slicer output mode (see the General-Purpose Input/Output Configuration section). 

Table 174. GPIOs Used for Slicer Output Mode 
Receiver GPIOs Utilized (MSB to LSB) 
Rx1 GPIO11, GPIO10, GPIO9, GPIO8 
Rx2 GPIO15, GPIO14, GPIO13, GPIO12 
Rx3 GPIO7, GPIO6, GPIO5, GPIO4 
Rx4 GPIO3, GPIO2, GPIO1, GPIO0 

The following example explains the operation of the slicer in detail. In this use case, the JESD is configured for 16-bit data resolution. The 
slicer is configured to 6 dB resolution. 

Figure 92 explains the operation. Initially the analog attenuator is applying no attenuation (0 dB) and thus there is 0 dB digital gain 
applied to the signal. The slicer is in its default (0000) position. As the attenuation increases (0 dB to 6 dB), a corresponding amount of 
digital gain is applied to the signal. With any digital gain applied to the signal, the bit-width of the signal has increased (the ADC can 
output 16-bits, further gain allows a maximum input to go beyond 16-bits). In this case the signal has now a bit-width of 17. The slicer 
therefore applies 6 dB of attenuation, and the slicer position information across the GPIOs is updated to advise the user of this change (in 
this case 0001). This 6 dB attenuation ensures that the bit-width of the signal is 16 once more; that is, the 16 MSBs have been selected 
(sliced) with the LSB dropped. When the compensation increases beyond 6 dB, it is now possible that the signal resolution in the digital 
path can be 18-bit. The slicer then attenuates by 12 dB (or slices the 16 MSBs dropping the 2 LSBs). 



UG-1727 Preliminary Technical Data
 

Rev. PrA | Page 164 of 267 

2
2

77
0-

0
9

3

0dB GAIN
COMPENSATION D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0dB < GAIN
COMPENSATION < 6dB

6dB ≤ GAIN
COMPENSATION < 12dB

D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

MSB

SLICER
OUTPUTS
TO BBP

LSB

0 0 0 0

0 0 0 0

0 0 0 0

 
Figure 92. Slicer Bit Selection with Digital Gain 

The baseband processor receives these 16-bits and uses the slicer output to scale the power of the received signal to determine the power 
at the input to the device (or at the input to an external gain element if considered part of the digital gain compensation).  

The slicer position vs. digital gain for this 6 dB example is described in Table 175. Equivalent tables can be inferred for the other 
attenuation options. 

Table 175. Slicer GPIO Output vs. Digital Gain Compensation 
Digital Gain Compensation (dB) Slicer Position (Value output on GPIOs) 
0 0 
0 < Dig_Gain < 6 1 
6 ≤ Dig_Gain < 12 2 
12 ≤ Dig_Gain < 18 3 
18 ≤ Dig_Gain < 24 4 
24 ≤ Dig_Gain < 30 5 
30 ≤ Dig_Gain < 36 6 
36 ≤ Dig_Gain < 42 7 
42 ≤ Dig_Gain < 48 8 
48 ≤ Dig_Gain ≤ 50 9 

 

Mode 3: Digital Gain Compensation with Embedded Slicer Position 

This mode is similar to Mode 2. The slicer is used to select the 16 MSBs based on the amount of digital gain used by the currently selected 
gain index in the gain table. However, in this mode the GPIO slicer outputs are not used. Instead the slicer position (or attenuation 
applied) is embedded into the data.  

There are a number of permissible ways in which this can be configured, controlled by the intEmbeddedBits API parameter. The options 
are to place the slicer setting as 1 bit on both I and Q, or 2 bits on both I and Q. These can be placed at the MSBs or LSBs. For the case 
where 2 bits are embedded onto both I and Q data, there are further options of using 3 slicer bits or 4. If 3 is used, there is a further option 
of inserting a 0 to fill the 4th bit, or to insert a parity bit (by adjusting the intParity API parameter). Table 176 shows the various modes 
selectable by intEmbeddedBits. 

Table 176. adi_adrv9025_RxSlicerEmbeddedBits_e Description 
intEmbeddedBits Description 
ADI_ADRV9025_EMBED_1_SLICERBIT_AT_MSB Embeds 1 slicer bit on both I and Q at the MSB position. See Figure 93. 
ADI_ADRV9025_EMBED_1_SLICERBIT_AT_LSB Embeds 1 slicer bit on both I and Q at the LSB position. See Figure 94. 
ADI_ADRV9025_EMBED_2_SLICERBITS_AT_MSB_3_BIT_SLICER Embeds 2 slicer bits on both I and Q at the MSB positions. See Figure 95. 

Given this is a 3-bit mode, an extra bit is inserted denoted as P in Figure 95. 
This can either be a parity bit or a zero can always be inserted alternatively. 

ADI_ADRV9025_EMBED_2_SLICERBITS_AT_LSB_3_BIT_SLICER Embeds 2 slicer bits on both I and Q at the LSB position. See Figure 96. 
Given this is a 3-bit mode, an extra bit is inserted denoted as P in Figure 96. 
This can either be a parity bit or a zero can always be inserted alternatively. 

ADI_ADRV9025_EMBED_2_SLICERBITS_AT_MSB_4_BIT_SLICER Embeds 2 slicer bits on both I and Q at the MSB positions. See Figure 97. 
ADI_ADRV9025_EMBED_2_SLICERBITS_AT_LSB_4_BIT_SLICER Embeds 2 slicer bits on both I and Q at the LSB positions. See Figure 98. 
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Figure 93. Encoding of Slicer Information as Control Bits (intEmbeddedBits = ADI_ADRV9025_EMBED_1_SLICERBIT_AT_MSB) 
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Figure 94. Encoding of Slicer Information as Control Bits (intEmbeddedBits = ADI_ADRV9025__EMBED_1_SLICERBIT_AT_LSB) 
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Figure 95. Encoding of Slicer Information as Control Bits (intEmbeddedBits = ADI_ADRV9025_EMBED_2_SLICERBITS_AT_MSB_3_BIT_SLICER) 
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Figure 96. Encoding of Slicer Information as Control Bits (intEmbeddedBits = ADI_ADRV9025_EMBED_2_SLICERBITS_AT_LSB_3_BIT_SLICER) 
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Figure 97. Encoding of Slicer Information as Control Bits (intEmbeddedBits = ADI_ADRV9025_EMBED_2_SLICERBITS_AT_MSB_4_BIT_SLICER) 
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Figure 98. Encoding of Slicer Information as Control Bits (intEmbeddedBits = ADI_ADRV9025_EMBED_2_SLICERBITS_AT_LSB_4_BIT_SLICER) 
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Mode 4: Digital Gain Compensation and Slicer Input 

In this mode, the slicer position is controlled by the user. In modes 2 and 3, the slicer can be viewed as an attenuator which reduces the 
signal level a certain dB with each slicer position step such that it can be sent across the JESD link. This mode is similar, except the 
position (amount of attenuation) is controlled externally. The valid step sizes are between 1 and 6 dB and controlled by the extPinStepSize 
API parameter as outlined in Table 177. 

Table 177. adi_adrv9025_ExtSlicerStepSizes_e Description 
extPinStepSize Slicer Gain Step (dB) 
ADI_ADRV9025_EXTSLICER_STEPSIZE_1DB 1  
ADI_ADRV9025_TAL_EXTSLICER_STEPSIZE_2DB 2  
ADI_ADRV9025_TAL_EXTSLICER_STEPSIZE_3DB 3  
ADI_ADRV9025_TAL_EXTSLICER_STEPSIZE_4DB 4  
ADI_ADRV9025_TAL_EXTSLICER_STEPSIZE_6DB 6  

The slicer has 3 input pins. The valid options are shown in Table 178. Each channel can be set to any one of the options using the API 
parameters, rx1ExtSlicerGpioSelect, rx2ExtSlicerGpioSelect, rx3ExtSlicerGpioSelect, rx4ExtSlicerGpioSelect. The value of these pins and 
the step size chosen set the level of slicer attenuation applied to the data before transmission across the JESD link.  

Slicer Attenuation = Slicer Input Pin Values × extPinStepSize  

For example, if the value on the slicer input pins was 0’b111, and the step size was 2 dB, then the slicer applies 14 dB (7 × 2 dB) of 
attenuation to the data. 

Table 178. adi_adrv9025_RxExtSlicerGpioSel_e Description 
Value of RxExtSlicerGpioSelect GPIOs Utilized (MSB to LSB) 
ADI_ADRV9025_EXTSLICER_RX_GPIO_2_DOWNTO_0 GPIO2, GPIO1, GPIO0 
ADI_ADRV9025_EXTSLICER_RX_GPIO_5_DOWNTO_3 GPIO5, GPIO4, GPIO3 
ADI_ADRV9025_EXTSLICER_RX_GPIO_8_DOWNTO_6 GPIO8, GPIO7, GPIO6 
ADI_ADRV9025_EXTSLICER_RX_GPIO_11_DOWNTO_9 GPIO11, GPIO10, GPIO9 
ADI_ADRV9025_EXTSLICER_RX_GPIO_14_DOWNTO_12 GPIO14, GPIO13, GPIO12 
ADI_ADRV9025_EXTSLICER_RX_GPIO_17_DOWNTO_15 GPIO17, GPIO16, GPIO15 

 

Mode 5: Digital Gain Compensation and Floating-Point Formatting 

The floating-point formatter offers an alternative way of encoding the digitally compensated data onto the JESD204B link. In this mode, 
the data is converted to IEEE754 half precision floating point format (binary 16). There is a slight loss in resolution when using the 
floating-point formatter, though resolution is distributed such that smaller numbers have higher resolution.  

In binary 16 floating point format the number is composed on a sign-bit (S), an exponent (E) and a significand (T). There are a number 
of options in terms of the number of bits that can be assigned to the exponent. More bits in the exponent result in higher range, and thus 
can allow for more digital compensation to the represented, whereas more bits in the significand provides higher resolution. The available 
options for the floating point formatter of the device include the following: 

 5-bit exponent, 10-bit significand 
 4-bit exponent, 11-bit significand 
 3-bit exponent, 12-bit significand 
 2-bit exponent, 13-bit significand 

It is also possible to pack the data in the following different formats (as shown in Figure 99): 

 Sign, exponent, significand 
 Sign, significand, exponent 
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Figure 99. Floating Point Number Representation 

In Figure 99, S is the sign bit, E is the value of the exponent, T is the value of the significand, w is the bit width of the exponent, and t is 
the bit width of the significand. 

Upon receipt of an encoded floating-point formatter, the user breaks up the binary 16 number into its constituent parts. For the purposes 
of this explanation, consider a 3-bit exponent. In IEEE754, the maximum exponent (0’b111 in this case) is reserved for NaN. The 
minimum exponent (0’b000) is used for a signed zero (E = 0, T = 0) and subnormal numbers (E = 0, T ≠ 0). To decode a received 
floating-point sample, the following equations are used: 

If E = 0 and T = 0,  

Value = 0 

If E = 0 and T ≠ 0: 

Value = (−1)S × 2E – bias+1 × (0 + 21 – p × T) 

If E ≠ 0: 

Value = (−1)S × 2E − bias × (1 + 21 – p × T) 

where bias is used to convert the positive binary values to exponents which allow for values both less than and greater than the full-scale 
of the ADC and p is the precision of the mode (p = t + 1, because you have t significand bits coupled with a sign bit). Table 179 provides 
the values to use in these equations for the various IEEE754 supported modes. 

Table 179. Floating Point Formatter—Supported IEEE 754 Modes 
Exponent Bit Width (w) Significand Bit Width (t) Precision (p) bias 
5 10 11 15 
4 11 12 7 
3 12 13 3 
2 13 14 1 

Figure 100 provides a visual representation of how the values of a waveform are encoded in floating point format. In this case the 
maximum exponent (E-bias) is 3, meaning that data up to 24 dBFS of the ADC can be represented. As the signal reduces, the exponent 
required to represent each value differs. This is a different concept to the slicer that instead bit-shifted the data solely based on the applied 
digital attenuation and had a constant value for a constant digital gain. Instead the floating-point formatter interprets each data value after 
the digital gain compensation separately. Given the fixed precision of the significand and the sign bit, it can also be interpreted from this 
plot that there is higher resolution at lower signal levels then there is at higher signal levels, preserving SNR when the received signal 
strength is low. 
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Figure 100. Visualization of the Floating-Point Formatter Values 

The floating-point formatter also supports non-IEEE754 modes, referred to as Analog Devices modes, where the largest exponent is not 
used to express NaN in accordance with IEEE754. It is unnecessary for the device to encode NaN as none of the data values can be NaN, 
and therefore using this extra exponent value increases the largest value representable for a given exponent bit-width. 

Table 180. Exponent Bit Widths of IEEE-754 and Analog Devices Modes 
Exponent Bit Width (w) IEE-754 Mode Exponent Range (After Unbiasing) Analog Devices Mode Exponent Range (After Unbiasing) 
5 +15 to −14 +16 to −14 
4 +7 to −6 +8 to −6 
3 +3 to −2 +4 to −2 
2 +1 to −1 +2 to −1 

 

In the default floating point format, the leading one is inferred and not encoded (for normal numbers). It is possible to enable a mode 
where the leading one is encoded and stored in the MSB of the significand. This reduces the precision of the values however. 

If the user knows that the range of attenuation required for the worst case blocker (and therefore the digital gain required to compensate 
for it) exceeds the correction range allowed by the exponent width chosen, then it is also possible to enable a fixed digital attenuation 
(from 6 to 42 dB) prior to the floating point formatter to ensure that the signal never exceeds the maximum range encodable over the 
JESD link. 
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RECEIVER DATA FORMAT DATA STRUCTURE 
The configuration parameters for the floating-point formatter and slicer are set up in a data structure of type 
adi_adrv9025_RxDataFormat_t. 

Table 181. adi_adrv9025_RxDataFormat Definition 
Parameter Comments 
rxChannelMask This selects the channels upon which to enable this gain control mode. It is a bit mask with each bit 

corresponding to a channel, [D0] = Rx1, [D1] = Rx2, [D2] = Rx3, [D3] = Rx4. Therefore, setting the 
rxChannelMask = 15 means that all Rxx are configured with the same agcMode. Data type: uint32 

formatSelect This selects the format of the data received from the receive path. Data type: adirx9025_RxDataFormatModes_e 

formatSelect Format 
ADI_ADRV9025_GAIN_COMPENSATION_DISABLED No gain compensation (Mode 1) 
ADI_ADRV9025_GAIN_WITH_FLOATING_POINT Gain compensation and floating-point formatter 

enabled (Mode 5) 
ADI_ADRV9025_GAIN_WITH_INTERNAL_SLICER_NOGPIO Gain Compensation and slicer bits embedded on 

JESD signal (mode 3) 
ADI_ADRV9025_GAIN_WITH_INTERNAL_SLICER Gain compensation and slicer bits output on 

GPIOs (Mode 2) 
ADI_ADRV9025_GAIN_WITH_EXTERNAL_SLICER Gain compensation and slicer position input from 

GPIOs (Mode 4) 
floatingPointConfig A configuration structure for floating point format. See Table 182. To be used when floating point formatter is 

utilized. Data type: adi_adrv9025_FloatingPointConfigSettings_t 
integerConfigSettings A configuration structure for the data resolution across the JESD link. See Table 183. Data type: 

adi_adrv9025_IntegerConfigSettings_t 
slicerConfigSettings A configuration structure for the slicer functionality. See Table 184. Data type: adi_adrv9025_SlicerConfigSettings_t 
externalLnaGain For use in Dual Band Modes. Not currently supported. 
tempCompensationEnable Not currently supported. 

 

Table 182. adi_adrv9025_FloatingPointCOnfigSettings_t 
Parameter Comments 
fpDataFormat This parameter sets the format of the 16-bit output on the JESD204B interface. Data type: 

adi_adrv9025_FpFloatDataFormat_e 

fpDataFormat Floating Point Data Format 
ADI_ADRV9025_FP_FORMAT_SIGN_EXP_SIGNIFICAND Sign, Exponent, Significand 
ADI_ADRV9025_FP_FORMAT_SIGN_SIGNIFICAND_EXP Sign, Significand, Exponent 

fpRoundMode This parameter sets the round mode for the significand. The following settings are defined in the IEEE754 
specification. For more information, consult Section 4.3 in IEEE 754-2008. Data type: adi_adrv9025_FpRoundModes_e 

fpRoundMode Floating Point Rounding Mode 
ADI_ADRV9025_ROUND_TO_EVEN Floating point ties to an even value 
ADI_ADRV9025_ROUNDTOWARDS_POSITIVE Round floating point toward the positive direction 
ADI_ADRV9025_ROUNDTOWARDS_NEGATIVE Round floating point toward the negative direction 
ADI_ADRV9025_ROUNDTOWARDS_ZERO Round floating point toward the zero direction 
ADI_ADRV9025_ROUND_FROM_EVEN Round floating point away from the even value 

fpNumExpBits This parameter is used to indicate the number of exponent bits in the floating-point number. Data type: 
adi_adrv9025_FpExponentModes_e 

fpNumExpBits No. of Exponent Bits 
ADI_ADRV9025_2_EXPONENTBITS 2 
ADI_ADRV9025_3_EXPONENTBITS 3 
ADI_ADRV9025_4_EXPONENTBITS 4 
ADI_ADRV9025_5_EXPONENTBITS 5 
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Parameter Comments 
fpAttenSteps Attenuates integer data before floating point conversion when floating point mode enabled. Data type: 

adi_adrv9025_FpAttenSteps_e 
fpRx1Atten Attenuation (dB) 
ADI_ADRV9025_FPATTEN_0DB 0 
ADI_ADRV9025_FPATTEN_MINUS6DB −6 
ADI_ADRV9025_FPATTEN_MINUS12DB −12 
ADI_ADRV9025_FPATTEN_MINUS18DB −18 
ADI_ADRV9025_FPATTEN_24DB 24 
ADI_ADRV9025_FPATTEN_18DB 18 
ADI_ADRV9025_FPATTEN_12DB 12 
ADI_ADRV9025_FPATTEN_6DB 6 

fpHideLeadingOne It is possible to hide the leading one in the significand to be compatible to the IEEE754 specification (IEEE mode). 
Alternatively, a leading one can be inserted at the MSB of the significand. Data type: adi_adrv9025_FpHideLeadingOne_e 

fpHideLeadingOne Setting 
ADI_ADRV9025_FP_FORMAT_HIDE_LEADING_ONE_DISABLE Leading one at start of significand 
ADI_ADRV9025_FP_FORMAT_HIDE_LEADING_ONE_ENABLE No leading one at start of the significand 

fpEncodeNan This parameter is used to configure whether the floating-point formatter reserves the highest value of exponent for 
NaN (not a number) to be compatible with the IEEE754 specification or whether to use the highest value of the 
exponent to extend the representable signal range. Data type: adi_adrv9025_FpNanEncode_e 
fpHideLeadingOne Setting 
ADI_ADRV9025_FP_FORMAT_NAN_ENCODE_DISABLE Do not reserve the highest exponent for NaN 
ADI_ADRV9025_FP_FORMAT_NAN_ENCODE_ENABLE Reserve highest exponent for NaN 

 

Table 183. adi_adrv9025_IntegerConfigSettings_t Definition 
Parameter Comments 
intEmbdeddedBits For use in slicer modes. This parameter sets the integer number of embedded slicer bits to embed in Rx data sample 

and bit position to embed them (see mode 3). Data type: adi_adrv9025_RxSlicerEmbeddedBits_e 
intEmbeddedBits Slicer bit Embedded position in Data Frame 
ADI_ADRV9025_NO_EMBEDDED_SLICER_BITS Disabled all embedded slicer bits 
ADI_ADRV9025_EMBED_1_SLICERBIT_AT_MSB Embeds 1 slicer bits on I and 1 slicer bits on Q 

and the MSB position 
ADI_ADRV9025_EMBED_1_SLICERBIT_AT_LSB Embeds 1 slicer bits on I and 1 slicer bits on Q 

and the LSB position 
ADI_ADRV9025_EMBED_2_SLICERBITS_AT_MSB_3_BIT_SLICER Embeds 2 slicer bits on I and 2 slicer bits on Q 

and the MSB position in 3-bit slicer mode 
ADI_ADRV9025_EMBED_2_SLICERBITS_AT_LSB_3_BIT_SLICER Embeds 2 slicer bits on I and 2 slicer bits on Q 

and the LSB position in 3-bit slicer mode 
ADI_ADRV9025_EMBED_2_SLICERBITS_AT_MSB_4_BIT_SLICER Embeds 2 slicer bits on I and 2 slicer bits on Q 

and the MSB position in 4-bit slicer mode 
ADI_ADRV9025_EMBED_2_SLICERBITS_AT_LSB_4_BIT_SLICER Embeds 2 slicer bits on I and 2 slicer bits on Q 

and the LSB position in 4-bit slicer mode 
intSampleResolution This parameter sets the integer sample resolution selecting either 12, 16, 24 bits data with either twos complement 

or signed magnitude. Data type: adi_adrv9025_RxIntSampleResolution_e 

intSampleResolution Resolution of Integer sample 
ADI_ADRV9025_INTEGER_12BIT_2SCOMP 12-bit resolution with twos complement 
ADI_ADRV9025_INTEGER_12BIT_SIGNED 12-bit resolution with signed magnitude 
ADI_ADRV9025_INTEGER_16BIT_2SCOMP 16-bit resolution with twos complement 
ADI_ADRV9025_INTEGER_16BIT_SIGNED 16-bit resolution with signed magnitude 
ADI_ADRV9025_INTEGER_24BIT_2SCOMP 24-bit resolution with twos complement 
ADI_ADRV9025_INTEGER_24BIT_SIGNED 24-bit resolution with signed magnitude 
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Parameter Comments 
intParity In the embedded 3-bit slicer mode (mode 3), it is possible to enable a parity mode. The device can support even 

parity (whereby the number of 1s in the bit sequence is always even) or odd parity (whereby the number of 1s in the 
bit sequence is always odd). Data type: adi_adrv9025_RxIntParity_e 

  intParity Setting 

  ADI_ADRV9025_3BIT_SLICER_EVEN_PARITY Even parity enabled 

  ADI_ADRV9025_3BIT_SLICER_ODD_PARITY Odd parity enabled 

  ADI_ADRV9025_NO_PARITY Parity disabled 

 

Table 184. adi_adrv9025_SlicerConfigSettings_t Definition 
Parameter Comments 
extSlicerStepSize This parameter is used in gain compensation with external slicer control (Mode 4). This parameter sets the slicer 

step value that is used with this external control mechanism. Data type: adi_adrv9025_ExtSlicerStepSizes_e 
extSlicerStepSize Slicer Step Size 
ADI_ADRV9025_EXTSLICER_STEPSIZE_1DB 1 dB 
ADI_ADRV9025_EXTSLICER_STEPSIZE_2DB 2 dB 
ADI_ADRV9025_EXTSLICER_STEPSIZE_3DB 3 dB 
ADI_ADRV9025_EXTSLICER_STEPSIZE_4DB 4 dB 
ADI_ADRV9025_EXTSLICER_STEPSIZE_6DB 6 dB 

intSlicerStepSize This parameter is used in gain compensation with internal (automatic) slicer control (Mode 2). This parameter sets 
the slicer step value. Data type: adi_adrv9025_IntSlicerStepSizes_e 

intSlicerStepSize Slicer Step Size 
ADI_ADRV9025_INTSLICER_STEPSIZE_1DB 1 dB 
ADI_ADRV9025_INTSLICER_STEPSIZE_2DB 2 dB 
ADI_ADRV9025_INTSLICER_STEPSIZE_3DB 3 dB 
ADI_ADRV9025_INTSLICER_STEPSIZE_4DB 4 dB 
ADI_ADRV9025_INTSLICER_STEPSIZE_6DB 6 dB 
ADI_ADRV9025_INTSLICER_STEPSIZE_8DB 8 dB 

rx1ExtSlicerGpioSelect This parameter selects the GPIOs used for external slicer control (Mode 4) on Rx1. The choice must be unique to 
Rx1. Data type: adi_adrv9025_RxExtSlicerGpioSel_e 

rx1ExtSlicerGpioSelect GPIOs Utilized 
ADI_ADRV9025_EXTSLICER_RX_GPIO_DISABLE  
ADI_ADRV9025_EXTSLICER_RX_GPIO_2_DOWNTO_0 2, 1, 0 
ADI_ADRV9025_EXTSLICER_RX_GPIO_5_DOWNTO_3 5, 4, 3 
ADI_ADRV9025_EXTSLICER_RX_GPIO_8_DOWNTO_6 8, 7, 6 
ADI_ADRV9025_EXTSLICER_RX_GPIO_11_DOWNTO_9 11, 10, 9 
ADI_ADRV9025_EXTSLICER_RX_GPIO_14_DOWNTO_12 14, 13, 12 
ADI_ADRV9025_EXTSLICER_RX_GPIO_17_DOWNTO_15 17, 16, 15 
ADI_ADRV9025_EXTSLICER_RX_GPIO_INVALID  

rx2ExtSlicerGpioSelect This parameter selects the GPIOs used for external slicer control (Mode 4) on Rx2. The choice must be unique to 
Rx2. Data type: adi_adrv9025_RxExtSlicerGpioSel_e 

rx2ExtSlicerGpioSelect GPIOs Utilized 
ADI_ADRV9025_EXTSLICER_RX_GPIO_DISABLE  
ADI_ADRV9025_EXTSLICER_RX_GPIO_2_DOWNTO_0 2, 1, 0 
ADI_ADRV9025_EXTSLICER_RX_GPIO_5_DOWNTO_3 5, 4, 3 
ADI_ADRV9025_EXTSLICER_RX_GPIO_8_DOWNTO_6 8, 7, 6 
ADI_ADRV9025_EXTSLICER_RX_GPIO_11_DOWNTO_9 11, 10, 9 
ADI_ADRV9025_EXTSLICER_RX_GPIO_14_DOWNTO_12 14, 13, 12 
ADI_ADRV9025_EXTSLICER_RX_GPIO_17_DOWNTO_15 17, 16, 15 
ADI_ADRV9025_EXTSLICER_RX_GPIO_INVALID  
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Parameter Comments 
rx3ExtSlicerGpioSelect This parameter selects the GPIOs used for external slicer control (Mode 4) on Rx3. The choice must be unique to 

Rx3. Data type: adi_adrv9025_RxExtSlicerGpioSel_e 

  rx3ExtSlicerGpioSelect GPIOs Utilized 

  ADI_ADRV9025_EXTSLICER_RX_GPIO_DISABLE  
  ADI_ADRV9025_EXTSLICER_RX_GPIO_2_DOWNTO_0 2, 1, 0 

  ADI_ADRV9025_EXTSLICER_RX_GPIO_5_DOWNTO_3 5, 4, 3 

  ADI_ADRV9025_EXTSLICER_RX_GPIO_8_DOWNTO_6 8, 7, 6 

  ADI_ADRV9025_EXTSLICER_RX_GPIO_11_DOWNTO_9 11, 10, 9 

  ADI_ADRV9025_EXTSLICER_RX_GPIO_14_DOWNTO_12 14, 13, 12 

  ADI_ADRV9025_EXTSLICER_RX_GPIO_17_DOWNTO_15 17, 16, 15 

  ADI_ADRV9025_EXTSLICER_RX_GPIO_INVALID  
rx4ExtSlicerGpioSelect This parameter selects the GPIOs used for external slicer control (Mode 4) on Rx4. The choice must be unique to 

Rx4. Data type: adi_adrv9025_RxExtSlicerGpioSel_e 

rx4ExtSlicerGpioSelect GPIOs Utilized 
ADI_ADRV9025_EXTSLICER_RX_GPIO_DISABLE  
ADI_ADRV9025_EXTSLICER_RX_GPIO_2_DOWNTO_0 2, 1, 0 
ADI_ADRV9025_EXTSLICER_RX_GPIO_5_DOWNTO_3 5, 4, 3 
ADI_ADRV9025_EXTSLICER_RX_GPIO_8_DOWNTO_6 8, 7, 6 
ADI_ADRV9025_EXTSLICER_RX_GPIO_11_DOWNTO_9 11, 10, 9 
ADI_ADRV9025_EXTSLICER_RX_GPIO_14_DOWNTO_12 14, 13, 12 
ADI_ADRV9025_EXTSLICER_RX_GPIO_17_DOWNTO_15 17, 16, 15 

 

adi_adrv9025_RxDataFormatSet 

adi_adrv9025_RxDataFormatSet(adi_adrv9025_Device_t* device, adi_adrv9025_RxDataFormat_t 
rxDataFormat[],uint8_t arraySize); 

Description 

Configure the Rx data format. 

Parameters 

Table 185.  
Parameter Description 
*device  Pointer to device structure. 
rxDataFormat[] An array of Rx data format structures. 
arraySize The number of Rx data format structures in rxDataFormatarray length of txPaProtectCfg[]. 
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DIGITAL FILTER CONFIGURATION 
OVERVIEW 
This section describes the digital filters within the transceiver. It provides a description of each of the filters in terms of their filter 
coefficients and position within the signal chain. The API structures are also described, and an example profile specific configuration is 
provided for each of the signal chains. Finally, the API functions that are used to configure the filters are discussed.  

RECEIVER SIGNAL PATH 
Each receiver input has an independent signal path including separate I/Q mixers that feed into programmable analog transimpedance 
amplifiers (TIA) that serve as low pass filters (LPF) in the analog data path. The signals are then converted by the sigma-delta ADCs and 
filtered in half-band decimation stages and the programmable finite impulse response filter (PFIR). The fixed coefficient half-band filters 
(FIR1, FIR2, RHB1(HR), RHB1(LP), RHB2, RHB3, DEC5) and the PFIR are designed to prevent data wrapping and over-range 
conditions. 

Each receiver channel can convert signals down to zero-IF real data using the standard I/Q configuration or a low-IF complex data 
configuration. The digital filtering stage allows the configuration flexibility and decimation options to operate in either mode. 

Figure 101 shows the signal path for the Rx1, Rx2, Rx3 and Rx4 signal chain. Blocks that are not discussed in this section are faded. 
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Figure 101. Rx Signal Path (Filter Blocks Highlighted in Blue) 

Transimpedance Amplifier (TIA) 

The Rx transimpedance amplifier is a low pass filter with a single real pole frequency response. The device supports bandwidths up to 200 
MHz and thus each TIA supports a pass-band of 100 MHz on the I and Q paths. The TIA is calibrated during device initialization to 
ensure a consistent frequency corner across all devices. The TIA 3dB bandwidth is set within the device data structure and is profile 
dependent. Roll off within the Rx pass band is compensated by the PFIR to ensure a maximally flat pass-band frequency response. 

Decimation Stages 

The signal path can be configured so that either the decimate-by-5 filter (DEC5) or the combination of FIR2, FIR1, and RHB3 is used in 
the Rx digital path. The DEC5 decimates by a factor of 5 while the other filter combination can be configured to decimate by factors of 2, 
4, or 8.  

DEC5 

DEC5 filter coefficients: 0.000976563, 0.001220703, 0.001953125, 0.001953125, −0.00390625, −0.0078125, −0.014648438, −0.018798828, 
−0.019042969, -0.007568359, 0.010742188, 0.041748047, 0.079101563, 0.1171875, 0.146972656, 0.165527344, 0.165527344, 0.146972656, 
0.1171875, 0.079101563, 0.041748047, 0.010742188, −0.007568359, −0.019042969, −0.018798828, −0.014648438, −0.0078125, 
−0.00390625, 0.001220703, 0.001953125, 0.001953125, 0.001220703, 0.000976563 

Finite Impulse Response 2 (FIR2) 

The FIR2 filter is a fixed coefficient decimating filter. The FIR2 decimates by a factor of 2 or it may be bypassed.  

FIR2 filter coefficients: 0.0625, 0.25, 0.375, 0.25, 0.0625 

Finite Impulse Response 1 (FIR1) 

The FIR1 filter is a fixed coefficient decimating filter. The FIR1 decimates by a factor of 2 or it may be bypassed.  

FIR1 filter coefficients: 0.0625, 0.25, 0.375, 0.25, 0.0625 
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Receive Half Band 3 (RHB3) 

The RHB3 filter is a fixed coefficient decimating filter. The RHB3 decimates by a factor of 2. 

RHB3 filter coefficients: −0.033203125, 0, 0.28125, 0.49609375, 0.28125, 0, −0.033203125 

Receive Half Band 2 (RHB2) 

The RHB2 filter is a fixed coefficient decimating filter. The RHB2 decimates by a factor of 2 or it may be bypassed. 

RHB2 filter coefficients: −0.000244141, 0, 0.001708984, 0, −0.0078125, 0, 0.026855469, 0, −0.078369141, 0, 0.30859375, 0.501220703, 
0.30859375, 0, −0.078369141, 0, 0.026855469, 0, −0.0078125, 0, 0.001708984, 0, −0.000244141 

Receive Half Band High Rejection 1 (RHB1 (HR)) 

The RHB1 (HR) filter is a fixed coefficient decimating filter. The RHB1 (HR) can decimate by a factor of 2, or it may be bypassed. 

RHB1 (HR) filter coefficients: 0.000106812, 0, −0.000289917, 0, 0.00062561, 0, −0.001205444, 0, 0.002120972, 0, −0.003494263, 0, 
0.005493164, 0, −0.008300781, 0, 0.012207031, 0, −0.01763916, 0, 0.025421143, 0, −0.03717041, 0, 0.057250977, 0, −0.101608276, 0, 
0.314498901, 0.495956421, 0.314498901, 0, −0.101608276, 0, 0.057250977, 0, −0.03717041, 0, 0.025421143, 0, −0.01763916, 0, 
0.012207031, 0, −0.008300781, 0, 0.005493164, 0, −0.003494263, 0, 0.002120972, 0, −0.001205444, 0, 0.00062561, 0, −0.000289917, 0, 
0.000106812 

Receive Half Band Low Power 1 (RHB1 (LP)) 

The RHB1 (LP) filter is a fixed coefficient decimating filter. The RHB1 (LP) can decimate by a factor of 2, or it may be bypassed. 

RHB1 (LP) filter coefficients: −0.002685547, 0, 0.017333984, 0, −0.068359375, 0, 0.304443359, 0.501708984, 0.304443359, 0, 
−0.068359375, 0, 0.017333984, 0, −0.002685547 

Rx Programmable Finite Impulse Response (PFIR) 

The Rx PFIR filter acts as a decimating filter. The PFIR may decimate by a factor of 1, 2, or 4, or it can be bypassed. The RFIR is used to 
compensate for the roll-off of the analog TIA LPF. The PFIR can use either 24, 48, or 72 filter taps. The PFIR also has programmable gain 
settings of +6 dB, 0 dB, −6 dB or −12 dB. 

The maximum number of taps is limited by the FIR Clock Rate (Data Processing Clock − DPCLK). The maximum DPCLK is 1 GHz. The 
DPCLK is the ADC Clock Rate divided by either 4 or 5. The divider is 4 when using the FIR2, FIR1 and HB3 filters, and it is 5 when using 
the DEC5 filter. The DPCLK affects the maximum number of PFIR filter taps that can be used according to the following: 

24
_ _

max
max

DPCLKRx PFIR filter taps
Rx IQ DataRate

   

IF Conversion 

The IF conversion stage provides the user with the ability to change how the received data is presented to the JESD port. Figure 102 shows 
a block diagram of the IF conversion stage. There are two parallel paths where data can be processed, referred to as Band A and Band B. 
In the circuitry of each band there are two mixer stages, allowing for upshifting or downshifting, interpolation and decimation stages, and 
a half band filter with a pass band of 0.4 × SampleRate. The coefficients of the HB filter in this IF conversion stage are as follows: 

HB filter coefficients: −9.1553 × 10−5, 0, 2.4414e-4, 0, −5.7983e-4, 0, 0.0012, 0, −0.0023, 0, 0.0040, 0, −0.0065, 0, 0.0103, 0, −0.0157, 0, 
0.0236, 0, −0.0357, 0, 0.0563, 0, −0.1015, 0, 0.3168, 0.5000, 0.3168, 0, -0.1015, 0, 0.0563, 0, -0.0357, 0, 0.0236, 0, -0.0157, 0, 0.0103, 0, 
−0.0065, 0, 0.0040, 0, −0.0023, 0, 0.0012, 0, −5.7983 × 10−4, 0, 2.4414× 10−4, 0, −9.1553 10×−5 

The following use cases provide an example of the types of functionality supported by this block (note that currently only the Low-IF to 
Zero-IF conversion mode is supported in a released profile): 

Complex Low-IF to Zero-IF 

In this use case the received signal is offset from LO such that the entire signal of interest is on one side of the LO. The Band A NCO1 is 
used to downshift the signal such that it is centered at 0 Hz. There is a half-band filter and decimate by 2 stage, which if used, decreases 
the bandwidth and the subsequently the IQ rate. This reduces the number of JESD lanes required, or the rate that they need to be run at. 

Figure 103 shows a conceptual case of a 200 MHz Rx bandwidth (IQ rate 245.76 MSPS) profile being used to receive a 75 MHz MC-GSM 
offset from the LO, the center frequency is 52.5 MHz offset from the LO, such that the band occupies from ±15 MHz to ±90 MHz. It then 
uses the IF conversion stage to shift the signal such that it is centered about 0 Hz, filters with the half-band filter, and decimates the output 
by two, such that the IQ rate sent over the JESD is 122.88 MSPS. 
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Complex Low-IF to Real-IF 

In this use case the signal is shifted using NCO1 or NCO2 (or both/none) such that exists solely on one side of the LO. Once this is the 
case, the signal no longer needs to be complex represented and only I data is sent across the link, Q data being dropped. The interpolate 
by 2 stage may also need to be used to achieve this. 
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Figure 102. Block Diagram of the IF Conversion Stage (Note that all circuitry is implemented in quadrature as indicated) 

Zero- IF to Real-IF 

In this use case the received signal is centered around the LO. The signal is interpolated by 2, and half-band filtered. The Band A NCO2 is 
used to upshift or downshift the data to generate a signal that is symmetrical about 0 Hz. The result is that the spectrum no longer 
requires a complex representation, and only I data is sent across the link, Q data being dropped. 

Dual Band Mode 

In this use case there are multiple signals being received, referred to as Signal 1 and Signal 2. Band A circuitry can be used to process 
Signal 1, and Band B to process Signal 2. Band A NCO1 is used to shift Signal 1 such that it is placed within the pass band of the half band 
Filter such that it filters out signal 2. The decimate by 2 stage can also be used if the final composite bandwidth allows for a lower data rate 
across the JESD link. The Band A NCO2 stage is then used to offset the signal to the required position in the spectrum. Likewise, the 
same procedure is performed on Signal 2. The result is that the two signals originally located far apart in the spectrum, and thus requiring 
a high data rate, can be moved closer together with this IF conversion circuitry, and represented by a lower IQ rate. 

Dual Band Mode (Real IF) 

In this use case the signals are processed separately using Band A and Band B. The NCO2 stages are used to shift both signals so they exist 
on the same side of LO. At this point the spectrum no longer needs a complex representation and only I data can be sent across the link, 
Q data being dropped. The interpolate by 2 stage may also need to be used to achieve this. 

HB Filter Only Mode 

If there is a blocker to one side of the signal, it is possible to use the IF conversion stage to obtain further rejection of the blocker. Band A 
NCO1 is used to offset the signal such that the signal is positioned close to the edge of the pass band of the half-band filter, and that the 
blocker is positioned in the transition or stopband of the filter. The Band A NCO2 can be used to position the desired signal to its 
previous position within the spectrum if required. 

 



UG-1727 Preliminary Technical Data
 

Rev. PrA | Page 176 of 267 

2
27

70
-1

08

 
Figure 103. Block Diagram of the IF Conversion Stage in Zero-IF MC- GSM Configuration. The red line indicates the path of the signal through the IF conversion stage. 

The spectrums above show how the signal is shifted, filtered and decimated. 

RECEIVER SIGNAL PATH EXAMPLE 
The Transceiver Evaluation Software provides an example depicting how the baseband filtering stages are used in profile configurations 
for a signal pathway. In this example, the ADRV9025Init_StdUseCase26_nonLinkSharing profile is selected for the Rx channels. This is a 
200 MHz profile with an IQ rate of 245.76 MSPS. 

Figure 104 shows the filter configuration for this profile. The signal rate after the PFIR block is equal to the IQ rate of the profile. 
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Figure 104. Filter Configuration for the Rx 200 MHz, IQ Rate 245.76 MSPS 
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The Transceiver Evaluation Software also provides a graph of the complete signal chain transfer function for this profile in the Rx tab 
under the ChipConfig dropdown. This is shown in Figure 105. 
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Figure 105. Rx Signal Transfer Function 

RECEIVER FILTER API STRUCTURE 
The filter configuration is stored in the adi_adrv9025_RxProfile_t structure. This structure is stored within the adi_adrv9025_RxSettings 
structure, which is stored in the overall device initialization structure (adi_adrv9025_Init_t). It contains the parameters listed in Table 186. 

Table 186. adi_adrv9025_RxProfile_t Structure Parameters 
Name Value Description 
channelType A value of type adi_adrv9025_RxChannels_e Choose what channel to configure the filters described in 

Table 187 
rxFirDecimation 1, 2, 4 Rx FIR Decimation setting 
rxDec5Decimation 4 = Use combination of FIR1, FIR2, and/or RHB3; 

5 = Use Dec5 
Setting to use either the Dec5 or HB3 and HB2 in the ORx path 

rhb1Decimation 1 = bypass , 2 = in use Rx HB1 Decimation setting 
rhb1WideBandMode 0 – HB1 is narrow, 1 – HB1 is wider ORx and loopback profiles ignore this field 
rhb2Decimation 1, 2 RX Half-Band 2 (HB2) decimation factor 
rhb3Decimation 1, 2 RX Half-Band 3 (HB3) decimation factor 
rxFir1Decimation 1, 2 Rx FIR1 decimation factor 
rxFir2Decimation 1, 2 Rx FIR2 decimation factor; ORx and loopback profiles ignore 

this field 
rxOutputRate_kHz 30720 to 368640 (based on currently defined 

use cases) 
IQ data rate specified in kHz (to the input of the JESD block) 

rfBandwidth_kHz 20000 to 200000 (based on currently defined 
use cases) 

The RF bandwidth specified in kHz 

rxBbf3dBCorner_kHz 20000 to 200000 (based on currently defined 
use cases) 

The BBF 3 dB corner frequency specified in kHz 

rxAdcBandWidth_kHz 10000 to 100000 (based on currently defined 
use cases) 

Rx ADC bandwidth tunes the bandwidth of the pass band and 
noise transfer functions of the ADC 

rxFir A value of type adi_adrv9025_RxFir_t The Rx FIR filter structure is described in Table 188 
rxDdcMode A value of type adi_adrv9025_RxDdc_e The Rx DDC mode settings are described in Table 189 
rxNcoShifterCfg A value of type adi_adrv9025_RxNcoShifterCfg_t The Rx NCO Shifter Configuration structure is described in 

Table 190 
tiaPowerMode 0, 1, 2, 3 4 options for TIA power reduction modes (range 0-3) 
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Table 187. adi_adrv9025_RxChannels_e Enum Definition 
adi_adrv9025_RxChannels_e Enum Enabled Channels 
ADI_ADRV9025_RXOFF No Rx or ORx channels enabled 
ADI_ADRV9025_RX1 Rx1 Enabled 
ADI_ADRV9025_RX2 Rx2 Enabled 
ADI_ADRV9025_RX3 Rx3 Enabled 
ADI_ADRV9025_RX4 Rx4 Enabled 
ADI_ADRV9025_ORX1 ORx1 Enabled 
ADI_ADRV9025_ORX2 ORx2 Enabled 
ADI_ADRV9025_ORX3 ORx3 Enabled 
ADI_ADRV9025_ORX4 ORx4 Enabled 
ADI_ADRV9025_LB12 Tx1 or Tx2 internal loopback into ORx1/2 channel enabled 
ADI_ADRV9025_LB34 Tx3 or Tx4 internal loopback into ORx3/4 channel enabled 

 

Rx PFIR Settings 

The Rx PFIR is specified in signed coefficients from +32767 to -32768. The gain block allows for more flexibility when designing a digital 
filter. For example, a FIR can be designed with 6dB gain in the pass band, and then this block can be set to −6 dB gain to give an overall 
0 dB gain in the pass band. The gain of the filter coefficients can be calculated as follows: 

152 1
FIR Coefficients
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Table 188. adi_adrv9025_RxFir_t Structure Parameters 
Name Value Description 
gain_dB −12, −6, 0, +6 The setting (in dB) for the gain block within the Rx FIR 
numFirCoefs 24, 48, 72 Number of taps to be used in the Rx FIR 
coefs[ADI_ADRV9025_MAX_RXPFIR_COEFS] A pointer to an array of filter coefficients of size ADI_ADRV9025_MAX_RXPFIR_COEFS 

Rx DDC Mode 

The Rx DDC Mode is defined within the adi_adrv9025_RxProfile_t structure as an enumerated type from the adi_adrv9025_RxDdc_e 
type definition. Permissible values are listed in Table 189. 

Table 189. adi_adrv9025_RxDdc_e Enum Definition 
adi_adrv9025_RxDdc_e Enum Description 
ADI_ADRV9025_RXDDC_BYPASS In this mode, the half-band filter and interpolation/decimation stages are bypassed. 
ADI_ADRV9025_RXDDC_FILTERONLY In this mode, the half-band filter stage is used, but the interpolation and decimation stages 

are bypassed. 
ADI_ADRV9025_RXDDC_INT2 In this mode, the interpolate by 2 and half-band filter stages are utilized. 
ADI_ADRV9025_RXDDC_DEC2 In this mode, the half-band filter and decimate by 2 stages are utilized. 
ADI_ADRV9025_RXDDC_BYPASS_REALIF In this mode, the half-band filter and interpolation/decimation stages are bypassed. At the 

input to the JESD core, Q data is dropped. 
ADI_ADRV9025_RXDDC_FILTERONLY_REALIF In this mode, the half-band filter stage is used, but the interpolation and decimation stages 

are bypassed. At the input to the JESD core, Q data is dropped. 
ADI_ADRV9025_RXDDC_INT2_REALIF In this mode, the interpolate by 2 and half-band filter stages are utilized. At the input to the 

JESD core, Q data is dropped. 
ADI_ADRV9025_RXDDC_DEC2_REALIF In this mode, the half-band filter and decimate by 2 stages are utilized. At the input to the 

JESD code, Q data is dropped. 
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Rx NCO Shifter Configuration 

The adi_adrv9025_RxNcoShifterCfg_t structure is contained within the adi_adrv9025_RxProfile_t structure. It contains the settings of 
the NCO stages of Band A and Band B, as well as the bandwidth and baseband center frequency of the desired signal(s). This allows the 
API to ensure that the IF conversion stage has been correctly setup, and that the signal(s) post NCO shifting is falling within the 
bandwidth provided by the IQ rate being utilized, and the pass-band bandwidth of the half-band filter if utilized. 

The NCOs are able to be configured according to the following rules:  

 bandwidthDiv2 = (bandAInputBandwidth_kHz/2) × 1000 
 inputCenterFreq = (bandAInputCenterFreq_kHz) × 1000 
 nco1OutputCenterFreq = (bandAInputCenterFreq_kHz + bandANco1Freq_kHz) × 1000 
 nco2OutputCenterFreq = nco1OutputCenterFreq + (bandANco2Freq_kHz) × 1000 
 outputRateHz = IQ Data rate of the Rx UseCase 
 primaryBwHz = Primary Rx signal bandwidth of the Rx UseCase 
 ddcHbCorner depends on the mode used:  

 If RXDDC_FILTERONLY, RXDDC_FILTERONLY_REALIF, RXDDC_INT2, RXDDC_INT2_REALIF at the ddcHbCorner = 
outputRateHz × 0.2 

 If RXDDC_DEC2, RXDDC_DEC2_REALIF at the ddcHbCorner = outputRateHz × 0.4  

Range Checks (Total of 6 rules) 

Rule 1: Input Center Frequency Setup 

 inputCenterFreq + bandWidthDiv2 > primaryBwHz/2 
 inputCenterFreq − bandWidthDiv2 < −primaryBwHz/2 

Rule 2: Output Center Frequency Setup NCO1. If DDC HB is enabled,  

 nco1OutputCenterFreq + bandWidthDiv2 > ddcHbCorner 
 nco1OutputCenterFreq − bandWidthDiv2 < −ddcHbCorner 

Rule 3: Output Center Frequency Setup NCO2 

 nco2OutputCenterFreq + bandWidthDiv2 > outputRateHz/2 
 nco2OutputCenterFreq − bandWidthDiv2 < −outputRateHz/2 

Table 190. adi_adrv9025_RxNcoShifterCfg_t Structure Parameters 
adi_adrv9025_RxNcoShifterCfg_t Description 
bandAInputBandWidth_kHz The bandwidth of the received signal being processed in Band A specified in kHz. 
bandAInputCenterFreq_kHz The center frequency, in terms of baseband frequencies, of the received signal being process in Band 

A, specified in kHz. 
bandANco1Freq_kHz The frequency shift to be provided by NCO1 of Band A specified in kHz. Positive values shift the 

spectrum up in frequency; negative values shift the spectrum down in frequency. 
bandANco2Freq_kHz The frequency shift to be provided by NCO2 of Band B specified in kHz. Positive values shift the 

spectrum up in frequency; negative values shift the spectrum down in frequency. 
bandBInputBandWidth_kHz The bandwidth of the received signal being processed in Band B specified in kHz. 
bandBInputCenterFreq_kHz The center frequency, in terms of baseband frequencies, of the received signal being process in Band 

B, specified in kHz. 
bandBNco1Freq_kHz The frequency shift to be provided by NCO1 of Band B specified in kHz. Positive values shift the 

spectrum up in frequency; negative values shift the spectrum down in frequency. 
bandBNco2Freq_kHz The frequency shift to be provided by NCO2 of Band B specified in kHz. Positive values shift the 

spectrum up in frequency; negative values shift the spectrum down in frequency. 
bandAbCombinedEnable The frequency shift to be provided by the combination of Band A and Band B at output, 1 = combine 

dual-band AB, 0 = disable combine dualband on AB 

Note that dual-band mode is selected when the input bandwidths of Band A and Band B are both specified (nonzero). In nondual band 
modes, specify Band A settings only, with Band B left with zero settings. Likewise, if the NCO stages of both Band A and Band B are not 
to be used, provide zero settings for all variables in the adi_adrv9025_RxNcoShifterCfg_t structure. 
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TRANSMITTER SIGNAL PATH 
Each transmitter has an independent signal path including separate digital filters, DACs, analog low-pass filters, and I/Q mixers that drive 
the signal outputs. Data is input to the Tx signal path via the JESD204B high-speed serial data interface at the IQ data rate of the 
transmitter profile. The serial data is converted to parallel format through the JESD204B deframer into I and Q components. The data is 
processed through digital filtering and signal correction stages and input to I/Q DACs. 

The DAC output is low pass filtered by the Tx low-pass filter (LPF) and input to the upconversion mixer. The I and Q paths are identical 
to one another. Over-ranging is detected in the Tx digital signal path at each stage and limited to the maximum code value to prevent data 
wrapping. A block diagram of a Tx signal path is shown in Figure 106. Blocks that are not discussed in this section are faded. 
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Figure 106. Tx Signal Path Diagram 

Analog Low Pass Filter (LPF) 

The LPF is a second-order analog Butterworth low pass filter with an adjustable 3dB corner. The Tx chains of the device can support 
pass-band bandwidths up to 225 MHz (on I and Q). The LPF is calibrated during device initialization, resulting in a consistent frequency 
corner across all devices. The LPF bandwidth is set within the device data structure and is profile dependent. Roll off within the analog 
LPF pass band is compensated by the TFIR to ensure a maximally flat pass-band frequency response. 

Interpolation By 5 Filter (INT5) 

Either the INT5 or any combination of THB3 and THB2 are used in the Tx digital path. The INT5 interpolates by a factor of 5. The INT5 
coefficients are listed as follows: 

INT5 filter coefficients: 0.002929688, 0.029052734, −0.029296875, 0.03125, −0.012207031, −0.005859375, −0.056640625, 0.051513672,  
−0.055664063, 0.025390625, 0.020996094, 0.081298828, −0.057617188, 0.072509766, −0.045166016, −0.047607422, −0.095947266,  
0.030517578, −0.071289063, 0.068603516, 0.093994141, 0.113769531, 0.030761719, 0.055419922, −0.103759766, −0.185791016, 
−0.185302734, −0.136962891, −0.037353516, 0.227050781, 0.518554688, 0.717285156, 0.928466797, 1.019287109, 0.928466797,  
0.717285156, 0.518554688, 0.227050781, −0.037353516, −0.136962891, −0.185302734, −0.185791016, -0.103759766, 0.055419922,  
0.030761719, 0.113769531, 0.093994141, 0.068603516, −0.071289063, 0.030517578, −0.095947266, −0.047607422, −0.045166016,  
0.072509766, −0.057617188, 0.081298828, 0.020996094, 0.025390625, −0.055664063, 0.051513672, −0.056640625, −0.005859375, 
−0.012207031, 0.03125, -−0.029296875, 0.029052734, 0.002929688 

Transmit Half Band 3 THB3 

The THB3 is a fixed coefficient half-band interpolating filter. THB3 can interpolate by a factor of 2 or it can be bypassed. The coefficients 
are listed as follows. 

THB3 filter coefficients: 0.125, 0.5, 0.75, 0.5, 0.125 

Transmit Half Band 2 (THB2) 

The THB2 is a fixed coefficient half-band interpolating filter. THB2 can interpolate by a factor of 2 or it can be bypassed. The coefficients 
are listed below. 

THB2 filter coefficients: −0.08203125, 0, 0.58203125, 1, 0.58203125, 0, −0.08203125 
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Transmit Half Band 1 (THB1) 

The THB1 is a fixed coefficient half band interpolating filter. THB1 interpolates by a factor of 2 or it can be bypassed. The coefficients are 
listed as follows. 

THB1 filter coefficients: −0.002319336, 0, 0.003601074, 0, −0.004058838, 0, 0.004119873, 0, −0.006439209, 0, 0.009613037, 0, 
−0.012023926, 0, 0.014404297, 0, −0.018737793, 0, 0.024291992, 0, -0.030059814, 0, 0.037353516, 0, −0.048156738, 0, 0.062927246, 0, 
−0.084350586, 0, 0.122283936, 0, −0.209564209, 0, 0.635925293, 1, 0.635925293, 0, −0.209564209, 0, 0.122283936, 0, −0.084350586, 0, 
0.062927246, 0, −0.048156738, 0, 0.037353516, 0, −0.030059814, 0, 0.024291992, 0, −0.018737793, 0, 0.014404297, 0, −0.012023926, 0, 
0.009613037, 0, −0.006439209, 0, 0.004119873, 0, −0.004058838, 0, 0.003601074, 0, −0.002319336 

Programmable Transmitter Finite Impulse Response (TFIR) 

The TFIR filter acts as an interpolating filter in the TX path. The TFIR may interpolate by a factor of 1, 2, or 4, or it can be bypassed. The 
TFIR is used to compensate for roll off caused by the post-DAC analog low pass filter. The TFIR has a configurable number of taps; either 
20, 40, 60, or 80 taps can be used. The TFIR also has a programmable gain setting of +6 dB, 0 dB, −6 dB or −12 dB. 

The maximum number of taps is limited by the TFIR Clock Rate (Data Processing Clock − DPCLK). The maximum DPCLK is 1 GHz. 
The DPCLK is the high speed digital clock (HSDIG_CLK) divided by either 4 or 5 depending on the HSDIG_CLK divider setting. The 
DPCLK affects the maximum number of TFIR filter taps that can be used according to the following relationship: 

20
_ _

max
max

DPCLKTx PFIR filter taps
Tx IQ DataRate

   

TX SIGNAL PATH EXAMPLE 
The Transceiver Evaluation Software provides an example depicting how the baseband filtering stages are used in profile configurations 
for a signal data path. In this example, the ADRV9025Init_StdUseCase26_nonLinkSharing profile is selected for the Tx channels. This is a 
200 MHz/450 MHz profile with IQ Rate 491.52 MSPS.  

To explain the terminology of the 200 MHz/450 MHz profile, the 200 MHz refers to the Tx primary signal bandwidth, whereas the 
450 MHz refers to Tx RF bandwidth. 

Figure 107 shows the filter configuration for this profile. The signal rate after the TFIR block is equal to the IQ rate of the profile.  
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Figure 107. Filter Configuration for the Tx 200 MHz/450 MHz, 491.52 MSPS Profile 
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The combined Tx signal transfer function can be found in the Tx tab under the ChipConfig dropdown menu as shown in Figure 108.  
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Figure 108. Tx Signal Transfer Function 

TRANSMITTER FILTER API STRUCTURE 
The filter configuration is stored in the adi_adrv9025_TxProfile_t structure. This structure is stored within the 
adi_adrv9025_TxSettings_t structure, which is stored in the overall device initialization structure (adi_adrv9025_Init_t). Its parameters 
are described in Table 191. 

Table 191. adi_adrv9025_TxProfile_t Structure Parameters 
Name Value Description 
txInputRate_kHz 30720 to 491520 (based on currently 

defined use cases) 
IQ data rate at the input to the TFIR specified in kHz 

primarySigBandwidth_kHz 20000 to 200000 (based on currently 
defined use cases) 

Primary signal bandwidth specified in kHz 

rfBandwidth_kHz 100000 to 450000 (based on currently 
defined use cases) 

The RF bandwidth specified in kHz 

txDac3dBCorner_kHz 100000 to 450000 (based on currently 
defined use cases) 

The DAC 3dB corner specified in kHz 

txBbf3dBCorner_kHz 50000 to 225000 (based on currently 
defined use cases) 

The BBF 3dB corner frequency specified in kHz 

txFirInterpolation 1, 2, 4 Tx FIR interpolation setting 
thb1Interpolation 1 = bypass, 2 = in use Tx HB1 interpolation setting 
thb2Interpolation 1 = bypass, 2 = in use Tx HB2 interpolation setting 
thb3Interpolation 1 = bypass, 2 = in use Tx HB3 interpolation setting 
txInt5Interpolation 1 = bypass, 5 = in use Tx INT5 interpolation setting 
txFir A value of type adi_adrv9025_TxFir_t txFir structure explained in detail in the Tx FIR Settings section 
txBbfPowerMode 0 to 8 The Tx BBF power scaling mode selection between 0 and 8, where 

a value of 8 allows the Arm to set the power mode based on the 
LUT of power saving 
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Tx FIR Settings 

The adi_adrv9025_TxFir_t structure is contained within the adi_adrv9025_TxProfile_t structure. Its parameters are described in Table 192. 

Table 192. adi_adrv9025_TxFir_t Structure Parameters 
Name Value Description 
gain_dB −12, −6, 0, +6 The setting (in dB) for the gain block within the Tx FIR 
numFirCoefs 20, 40, 60, 80 Number of taps to be used in the Tx FIR 
coefs[ADI_ADRV9025_MAX_TXPFIR_COEFS] A pointer to an array of filter coefficients of size ADI_ADRV9025_MAX_TXPRIF_COEFS 

The Tx FIR is specified in signed coefficients from +32,767 to −32,768. The gain block allows for more flexibility when designing a digital 
filter. For example, a FIR can be designed with 6 dB gain in the pass band, and then this block can be set to −6 dB gain to give an overall 
0 dB gain in the pass band. The gain of the filter coefficients can be calculated as follows: 

152 1
FIR Coefficients

DC Gain





 

OBSERVATION RECEIVERS SIGNAL PATH 
The device has four observation receivers (ORx1, ORx2, ORx3 and ORx4) that can be used to capture data for digital pre-distortion 
(DPD) algorithms and other measurements/calibration that require monitoring the transmitter outputs. The observation receiver can 
serve as an external loopback path to loop back the output of a PA, provided input level to the ORx is below the full-scale level of the 
ADC.  

The devices ORx1, ORx2, ORx3 and ORx4 channels have separate I/Q mixers. These mixers are identical to the mixers of the receivers, 
with the exception that the observation mixers include an LO mux. The LO mux allows either the RF PLL or the AUX PLL to provide the 
local oscillator signal source for the ORx1, ORx2, ORx3 and ORx4 mixers.  

The mixer feeds into a programmable transimpedance amplifier (TIA) that serves as a low pass filter (LPF) in the analog data path. The 
signal is converted by the sigma-delta ADC and filtered in halfband decimation stages and the programmable finite impulse response 
(PFIR). The fixed coefficient halfband filters (FIR1, RHB1(HR), RHB1(LP), RHB2, RHB3, DEC5) and the PFIR are designed to prevent 
data wrapping and overrange conditions. 

The IF conversion stage provides the ability frequency shift or upsample/downsample digital data. Configurations supported include real 
IF (real valued baseband data) configuration and low IF (complex data) configuration.  

The diagram in Figure 109 shows the signal path for an ORx signal chain. Blocks that are not discussed in this section are faded.  
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Figure 109. ORx Signal Path 

Transimpedance Amplifier (TIA) 

The ORx transimpedance amplifier is a low pass filter with a single real pole frequency response. The TIA can support pass-band 
bandwidths up to 225 MHz (for both I and Q). The TIA is calibrated during device initialization which ensures a consistent frequency 
corner across all devices. The TIA 3 dB bandwidth is set within the device data structure and is profile dependent. Roll-off within the 
ORx pass band is compensated by the PFIR to ensure a maximally flat pass-band frequency response. 

DEC5 

Either the DEC5, or the combination of RHB3 and FIR1 is used in the Rx digital path. The DEC5 decimates by a factor of 5 or it may be 
bypassed. The DEC5 coefficients are listed below. 

DEC5 filter coefficients: 0.000732422, 0.001464844, 0.002441406, 0.003417969, 0.003173828, −0.000732422, −0.005615234, 
−0.013183594, −0.020507813, −0.022949219, −0.014648438, 0.003417969, 0.035400391, 0.077392578, 0.119873047, 0.154541016, 
0.176269531, 0.176269531, 0.154541016, 0.119873047, 0.077392578, 0.035400391, 0.003417969, −0.014648438, −0.022949219, 
−0.020507813, −0.013183594, −0.005615234, −0.000732422, 0.003173828, 0.003417969, 0.002441406, 0.001464844, 0.000732422 
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Finite Impulse Response 1 (FIR1) 

The FIR1 filter is a fixed coefficient decimating filter. The FIR1 decimates by a factor of 2 or it may be bypassed.  

FIR1 filter coefficients: 0.25, 0.75, 0.75, 0.25 

Receive Half Band 3 (RHB3) 

The RHB3 filter is a fixed coefficient decimating filter. The RHB3 decimates by a factor of 2 or it may be bypassed. The RHB3 coefficients 
are listed below.  

RHB3 filter coefficients: −0.0625, 0.0078125, 0.5625, 0.984375, 0.5625, 0.0078125, −0.0625 

Receive Half Band 2 (RHB2) 

The RHB2 filter is a fixed coefficient decimating filter. The RHB2 decimates by a factor of 2 or it may be bypassed. The RHB2 coefficients 
are listed below.  

RHB2 filter coefficients: −0.002929688, 0, 0.018554688, 0, −0.0703125, 0, 0.3046875, 0.500976563, 0.3046875, 0, −0.0703125, 0, 
0.018554688, 0, −0.002929688 

Receive Half Band 1 High Rejection (RHB1 (HR)) 

The RHB1 (HR) filter is a fixed coefficient decimating filter. The RHB1 can decimate by a factor of 2, or it may be bypassed. The RHB1 
coefficients are listed as follows.  

RHB1 filter coefficients: −0.000732422, 0, 0.000732422, 0, −0.001098633, 0, 0.001586914, 0, −0.00213623, 0, 0.002929688, 0, 
−0.00378418, 0, 0.004882813, 0, −0.006225586, 0, 0.007873535, 0, −0.009887695, 0, 0.012329102, 0, −0.015380859, 0, 0.019226074, 0, 
−0.024353027, 0, 0.031555176, 0, -0.042419434, 0, 0.061462402, 0, −0.104797363, 0, 0.317871094, 0.5, 0.317871094, 0, −0.104797363, 0, 
0.061462402, 0, −0.042419434, 0, 0.031555176, 0, −0.024353027, 0, 0.019226074, 0, -0.015380859, 0, 0.012329102, 0, −0.009887695, 0, 
0.007873535, 0, −0.006225586, 0, 0.004882813, 0, −0.00378418, 0, 0.002929688, 0, -0.00213623, 0, 0.001586914, 0, −0.001098633, 0, 
0.000732422, 0, −0.000732422 

Receive Half Band 1 Low Power (RHB1 (LP)) 

The RHB1 (LP) filter is a fixed coefficient decimating filter. The RHB1 can decimate by a factor of 2, or it may be bypassed. The RHB1 
coefficients are listed below.  

RHB1 filter coefficients: −0.002685547, 0, 0.017333984, 0, −0.068359375, 0, 0.304443359, 0.501708984, 0.304443359, 0, −0.068359375, 0, 
0.017333984, 0, −0.002685547 

PFIR 

The PFIR filter acts as a decimating filter. The PFIR may decimate by a factor of 1, 2, or 4, or it can be bypassed. The PFIR is used to 
compensate for the roll off of the analog TIA LPF. The PFIR can use either 24, 48, or 72 filter taps. The PFIR also has programmable gain 
settings of +6 dB, 0 dB, −6 dB or −12 dB. 

The maximum number of taps is limited by the FIR Clock Rate (Data Processing Clock - DPCLK). The maximum DPCLK is 1 GHz. The 
DPCLK is the ADC Clock Rate divided by either 4 or 5. It is 4 when using the HB2 and HB3 filters. It is 5 when using the DEC5 filter. The 
DPCLK affects the maximum number of RFIR filter taps that can be used according to the following relationship: 

24
_ _

max
max

DPCLKORx PFIR filter taps
ORx IQ DataRate

    

IF Conversion 

Refer to the equivalent Receiver Signal Path section about the IF conversion stage.  

OBSERVATION RECEIVER SIGNAL PATH EXAMPLE  
The Transceiver Evaluation Software provides an example depicting how the baseband filtering stages are used in profile configurations 
for a signal pathway. In this example, the ORx 450 MHz, IQRate 491.52 MSPS profile is selected for the ORx channels. This profile is 
compatible with the other examples provided in this document.  

Figure 110 shows the filter configuration for this profile. The clocking frequencies are noted in blue. The signal rate after the RFIR block 
is equal to the IQRate of the profile. 
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Figure 110. Filter Configuration for ORx 450 MHz, IQ Rate 491.52 MSPS 

In the ORx tab under the ChipConfig dropdown menu the ORx signal transfer function of the signal chain can be found as shown in 
Figure 111.  
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Figure 111. ORx Signal Transfer Function 
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OBSERVATION RECEIVER FILTER API STRUCTURE 
The filter configuration is stored in the adi_adrv9025_RxProfile_t structure. This structure is stored within the adi_adrv9025_RxSettings 
structure, which is stored in the overall device initialization structure (adi_adrv9025_Init_t). It contains the parameters listed in Table 193. For 
further details refer to the Receiver Filter API Structure section.  

Table 193. adi_adrv9025_RxProfile_t Structure Parameters 
Name Value Description 
channelType A value of type adi_adrv9025_RxChannels_e  Choose what channel to configure the filters 

described in Table 187 
rxFirDecimation 1, 2, 4 ORx FIR Decimation setting 
rxDec5Decimation 4 = use combination of FIR1, FIR2, and/or RHB3, 5 = Use 

Dec5 
Setting to use either the Dec5 or HB3 and HB2 in the 
ORx path 

rhb1Decimation 1 = bypass, 2 = in use ORx HB1 decimation setting 
rhb1WideBandMode 0 = HB1 is narrow, 1 = HB1 is wider ORx and loopback profiles ignore this field 
rhb2Decimation 1, 2 ORx Half-Band2 (HB2) decimation factor 
rhb3Decimation 1, 2 ORx Half-Band3 (HB3) decimation factor 
rxFir1Decimation 1, 2 ORx FIR decimation factor 
rxFir2Decimation 1, 2 Rx FIR decimation factor; ORx and loopback profiles 

ignore this field 
rxOutputRate_kHz 122880 to 491520 (based on currently defined use cases) IQ Data rate specified in kHz (to the input of the 

JESD block) 
rfBandwidth_kHz 112500 to 450000 (based on currently defined use cases) The RF bandwidth specified in kHz 
rxBbf3dBCorner_kHz 112500 to 450000 (based on currently defined use cases) The BBF 3 dB corner frequency specified in kHz 
rxAdcBandWidth_kHz 56250 to 225000 (based on currently defined use cases) Rx ADC bandwidth tunes the bandwidth of the pass 

band and noise transfer functions of the ADC 
rxFir A value of type adi_adrv9025_RxFir_t The Rx FIR filter structure is described in Table 188 
rxDdcMode A value of type adi_adrv9025_RxDdc_e The Rx DDC mode settings are described in Table 189 
rxNcoShifterCfg A value of type adi_adrv9025_RxNcoShifterCfg_t The Rx NCO shifter configuration structure is 

described in Table 190 
tiaPowerMode 0, 1, 2, 3 Four options for TIA power reduction modes (range 

0 to 3) 
rxDataFormat A value of type adi_adrv9025_RxDataFormat_t This structure is explained in the Gain 

Compensation, Floating Point Formatter and Slicer 
section and Table 181 
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GENERAL-PURPOSE INPUT/OUTPUT CONFIGURATION 
The device features nineteen (19) digital General-Purpose Input/Output (GPIO) pins that can be used for a variety of functions. The 
device also features eight analog General-Purpose Input/Output (GPIO_ANA) pins. The GPIO/GPIO_ANA pins provide a real-time 
interface for the baseband processor to control the transceiver or for the transceiver to send information to the baseband processor. An 
example of baseband processor control uses rising edges sent by the baseband processor over user assigned GPIO pins to increase or 
decrease the transmitter attenuation. An example of the transceiver sending information to the baseband processor is the ability to send 
overload detection information from peak detectors in the receiver datapath to advise that input signal level is too high. 

The GPIO_ANA pins serve as the output pins for 8 AuxDAC signals. The AuxDAC can be used for providing a control voltage. The 
AuxDAC is not a precision converter device and is recommended to be used in applications where high accuracy is not needed. It is best 
to use the AuxDAC in feedback systems rather than in open-loop control systems.   

The digital GPIO supply is the VDD_IF supply voltage. The GPIO_ANA supply is the VDDA_1P8 supply voltage. IBIS models have been 
created to assist in the simulation of these interfaces.  

DIGITAL GPIO OPERATION 
Each digital GPIO pin can be set to either input or output mode. In this section, input and output mode are oriented with respect to the 
transceiver device. The input mode allows the baseband processor to drive pins on the transceiver to execute specific tasks. The output 
mode allows the device to output various signals.  

The digital GPIO pin I/O direction can be set with the following API commands.  

adi_adrv9025_GpioInputDirSet(…) 
adi_adrv9025_GpioInputDirSet(adi_adrv9025_Device_t* device, uint32_t gpioInputMask) 

Description 

Configures pins for input direction. 

Parameters 

Table 194.  
Parameter Description 
*device  Pointer to device structure. 
gpioInputMask Selects the device GPIO pins that are required to be set as input in the range 0x00000 - 0x7FFFF. If a bit is set high, the 

GPIO pin associated with the bit is set as an input (GPIO_0 corresponds to bit D0, GPIO_1 corresponds to bit D1, and 
so on). 

adi_adrv9025_GpioOutputDirSet  

adi_adrv9025_GpioOutputDirSet(adi_adrv9025_Device_t* device, uint32_t gpioOutputMask) 

Description 

Configures pins for output direction. 

Parameters 

Table 195.  
Parameter Description 
*device  Pointer to device structure. 
gpioInputMask Selects the device GPIO pins that are required to be set as output in the range 0x00000 - 0x7FFFF. If a bit is set high, the 

GPIO pin associated with the bit is set as an output (GPIO_0 corresponds to bit D0, GPIO_1 corresponds to bit D1, and 
so on). 

Note that conflicts regarding GPIO usage may occur when using combinations of certain features. Ensure that multiple functions are not 
assigned to the same GPIO pin.  
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Input GPIO Features 

The following table provides a list of GPIO input features available that interact with datapath control elements on the device. For the 
GPIO features within Table 196, the API automatically sets the I/O direction of the GPIO pins assigned for the feature.  

Table 196. Summary of Input GPIO Features 
Feature Description GPIO Pins Available for Feature 
SPI2 Secondary SPI channel for control and read back of receiver gain index 

and transmitter attenuation.  
API Configuration Command: adi_adrv9025_Spi2CfgSet(…) 
adi_adrv9025_TxAttenSpi2PinCtrlCfgSet(…) 

GPIO_0: SPI_DIO (input or output) 
GPIO_1: SPI_DO (output only) 
GPIO_2: SPI_CLK (input) 
GPIO_3: SPI_CS (input) 
GPIO_4 through GPIO_18: Tx Attenuation 
state select 

Pin Controlled 
Rx/ORx Gain 
Index Increment 
and Decrement  

Configure specific GPIO pins to increment or decrement the gain index 
on any Rx or ORx channel after a rising edge on the assigned pin.  
API Configuration Command: adi_adrv9025_RxGainPinCtrlCfgSet(…) 

GPIO_0 through GPIO_15: Rx/ORx gain 
index increment pin select.  
GPIO_0 through GPIO_15: Rx/ORx gain 
index decrement pin select. 

Pin Controlled Tx 
Attenuation 
Increment and 
Decrement 

Configures specific GPIO pins to increment or decrement attenuation 
on any Tx channel after a rising edge on the assigned pin.  
API Configuration Command: adi_adrv9025_TxAttenPinCtrlCfgSet(…) 

GPIO_0 through GPIO_15: Tx attenuation 
increment pin select.  
GPIO_0 through GPIO_15: Tx attenuation 
decrement pin select.  

External Slicer 
Mode 

A technique used in some gain compensation applications. The 
baseband processor instructs the slicer to attenuate the digital data to 
fit within a desired bit-width based on the value expressed on the slicer 
pins (up to 3 available in input mode). 
API Configuration Command: adi_adrv9025_RxDataFormatSet(…)  

GPIO_[2:0] = Assign to any Rx 
GPIO_[5:3] = Assign to any Rx 
GPIO_[8:6] = Assign to any Rx 
GPIO_[11:9] = Assign to any Rx 
GPIO_[14:12] = Assign to any Rx 
GPIO_[17:15] = Assign to any Rx 

Tx-Observation 
Receiver Select 

When using fewer than 4 ORx channels, the ORx channel needs 
information about which Tx channel data is presented to the ORx. If a 
pin interface is required to indicate the Tx to ORx mapping, the 
following command sets up the pins, provided the stream file is 
generated with appropriate input settings.  
API Configuration Command: adi_adrv9025_StreamGpioConfigSet(…) 

GPIO_0 through GPIO_15. 

 

More details on these features are provided in the following subsections.  

SPI2 

A complete description, including descriptions of custom data types, for the SPI2 interface can be found in the SPI2 Description section 
of this user guide.  

The SPI2 interface acts as a secondary SPI channel that operates on digital GPIO_[3:0]. An optional pin can be configured for toggling 
the Tx attenuation between attenuation state S1 and attenuation state S2 on GPIO_4 through GPIO_18. The SPI2 interface uses the same 
SPI configuration used on the primary SPI interface. SPI2 can be used to set the gain index on Rx/ORx channels, read back the gain index 
on Rx/ORx channels, and set up two distinct Tx attenuation states that the user can alternate between by toggling a GPIO pin. The SPI2 
interface cannot access registers available to the primary SPI interface. 

When the SPI2 feature is enabled, GPIO_[3:0] and the pin assigned for Tx Attenuation Select (can be GPIO_4 through GPIO_18 or leave 
unassigned) cannot be used for other purposes. When SPI2 is enabled, it overrides functionality previously assigned to digital GPIO_[3:0] 
pins. Refer to Table 196 for specific pin mapping details.  
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adi_adrv9025_Spi2CfgSet  

adi_adrv9025_Spi2CfgSet(adi_adrv9025_Device_t* device, uint8_t spi2Enable) 

Description 

Enables the SPI2 feature. 

Parameters 

Table 197.  
Parameter Description 
*device  Pointer to device structure. 
Spi2Enable used to set the state of the SPI2 bus: 1 = Enable, 0 = Disable. 

adi_adrv9025_TxAttenSpi2PinCtrlCfgSet 
adi_adrv9025_TxAttenSpi2PinCtrlCfgSet(adi_adrv9025_Device_t* device, 
adi_adrv9025_TxAttenSpi2PinCfg_t txAttenSpi2PinCfg[], uint8_t numTxAttenSpi2PinConfigs) 

Description 

Assigns the Tx attenuation select pin. 

Parameters 

Table 198.  
Parameter Description 
*device  Pointer to device structure. 
txAttenSpi2PinCfg[] Pointer to an array of adi_adrv9025_TxAttenSpi2PinCfg_t structure that configures the Tx 

attenuation SPI2 pin control. Note that multiple transmitters can share an attenuation select pin if 
desired. 

numTxAttenSpi2PinConfigs Determines the number of channelized Tx attenuation SPI2 pin configurations passed in the array 
txAttenSpi2PinCfg. 

Pin Based Rx Gain Control 

A complete description of the pin based Rx gain control feature is provided in the Receiver Gain Control and Gain Compensation section 
of this user guide.  

Pin based Rx gain control is relevant for applications which require Manual Gain Control (MGC) and precise timing for gain change 
events. The pin based control scheme offers lower latency than SPI based gain change operations. In pin-based gain control, specific 
GPIO pins are assigned “increment gain index” or “decrement gain index” functionality for a particular receiver channel. By applying a 
logic high pulse on the GPIO pin, the gain index for the corresponding channel is either incremented or decremented, depending on the 
assigned functionality. The pulse width requirement is 2 AGC clock cycles in the logic high state. The gain change due to gain index 
increment or decrement is programmable (ranges from 1 to 8 gain index steps). Increment and decrement functionality can be assigned 
to any digital GPIO from GPIO_15 to GPIO_0. 

Note that if the user has programmed a gain table that operates in a subset of the full gain table range (that is, using Index 195 to Index 
255), the pin-based Rx gain control does not have knowledge of this status. If the gain decrement pulse is applied when the gain index is 
195, the gain index decrements off table. It is possible that the off-table gain indices (that is, gain indices below 195) correspond to 
maximum gain condition. It is recommended to exercise care when applying pulses when the gain index is at the edge of the useful 
section gain table, or design the gain table with this in mind.  
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adi_adrv9025_RxGainPinCtrlCfgSet  

adi_adrv9025_RxGainPinCtrlCfgSet(adi_adrv9025_Device_t* device, adi_adrv9025_RxChannels_e 
rxChannel, adi_adrv9025_RxGainPinCfg_t *rxGainPinCtrlCfg) 

Description 

This command configures the pin-based Rx Gain Control feature. the device must be in MGC for proper operation. 

Parameters 

Table 199.  
Parameter Description 
*device  Pointer to device structure. 
rxChannel Selects which Rx channel for configuring pin-based Rx gain control. 
*rxGainPinCtrlCfg Pointer to adi_adrv9025_RxGainPinCfg_t structure containing configuration values for pin based Rx gain 

control. 

Table 200 describes the adi_adrv9025_RxGainPinCfg_t data structure used in the above command.  

Table 200. Description of adi_adrv9025_RxGainPinCfg_t Data Structure 
Data Type parameter name Comments 
uint8_t incStep Increment in gain index applied when the increment gain pin is pulsed. A value of 0 to 

7 applies a step size of 1 to 8 
uint8_t decStep Decrement in gain index applied when the increment gain pin is pulsed. A value of 0 to 

7 applies a step size of 1 to 8 
adi_adrv9025_GpioPinSel_e rxGainIncPin GPIO used for the increment gain input: ADI_ADRV9025_GPIO00 to 

ADI_ADRV9025_GPIO15 can be used 
adi_adrv9025_GpioPinSel_e rxGainDecPin GPIO assigned for the decrement gain input: ADI_ADRV9025_GPIO00 to 

ADI_ADRV9025_GPIO15 can be used 
uint8_t enable Enable (1) or disable (0) the gain pin control 

 

Pin-Based Tx Attenuation Control 

A complete description of Tx attenuation control is provided in the Tx Overview and Path Control section of this user guide.  

Pin based Tx attenuation control, similar to the Tx attenuation select feature of SPI2, provides an interface to make attenuation 
adjustments with precise timing control. The pin based control scheme offers lower latency than SPI based attenuation change operations. 
In pin based attenuation control, certain GPIO pins are assigned “increment attenuation” or “decrement attenuation” functionality. By 
applying a high pulse on the assigned GPIO pin, the attenuation for a specific channel is either incremented or decremented, depending 
on the assigned functionality. Increment and decrement functionality can be assigned to any digital GPIO from GPIO_15 to GPIO_0.  

A notable difference between SPI2 and pin based Tx attenuation control is that SPI2 allows toggling between programmed attenuation 
states (S1 and S2) while pin based Tx attenuation control allows for multiple increments or decrements of Tx attenuation.  

adi_adrv9025_TxAttenPinCtrlCfgSet  

adi_adrv9025_TxAttenPinCtrlCfgSet(adi_adrv9025_Device_t* device, adi_adrv9025_TxAttenPinCfg_t 
txAttenPinCfg[],uint8_t numTxAttenPinConfigs) 

Description 

Configures the pin-based Tx attenuation control feature. 

Parameters 

Table 201. 
Parameter Description 
*device  Pointer to device structure. 
txAttenPinCfg[] Pointer to an array of adi_adrv9025_TxAttenPinCfg_t structure that configures the Tx attenuation pin control. 
numTxAttenPinConfigs Determines the number of channelized Tx attenuation pin configuration passed in the array txAttenPinCfg. 
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Table 202 describes the adi_adrv9025_TxAttenPinCfg_t data structure used in the above command. 

Table 202. Description of adi_adrv9025_TxAttenPinCfg_t Data Structure 

Data Type 
Parameter 
Name Comments 

uint32_t txChannelMask Bitwise channel mask that the Tx attenuation pin configuration settings are applied to. 
[D0] = Tx1, [D1] = Tx2, [D2] = Tx3, [D3] = Tx4.  

uint8_t stepSize This parameter sets the change in Tx attenuation for each increment or decrement signal 
received in incr/decr mode. 0.5dB/LSB. Valid range is from 0 to 31 

adi_adrv9025_GpioPinSel_e txAttenIncPin GPIO assigned for the increment attenuation input: ADI_ADRV9025_GPIO00 to 
ADI_ADRV9025_GPIO15 can be used 

adi_adrv9025_GpioPinSel_e txAttenDecPin GPIO assigned for the decrement attenuation input: ADI_ADRV9025_GPIO00 to 
ADI_ADRV9025_GPIO15 can be used 

uint8_t enable Enable (1) or disable (0) the gain pin control 

 

External Slicer Mode 

A complete description of the external slicer use case is provided in the Receiver Gain Control and Gain Compensation section of this 
user guide.  

The Rx datapath features a GPIO based slicer used in conjunction with digital gain compensation to digitally attenuate data sent over the 
JESD204B/JESD204C interface. The digital gain compensation may expand the required number of bits to express data path samples 
beyond the interface bit width. The slicer attenuates the data to fit within the interface bit width.  

The slicer can be used in a mode where the amount of digital gain compensation at a particular gain index determines the slicer position 
(internal slicer). Alternatively, the slicer can be used with GPIOs in an externally driven mode where the baseband processor determines 
the slicer position, which controls the amount of digital attenuation applied by the slicer. When using the slicer in the external mode, 
specific groups of GPIO pins are assigned to set the slicer position. 3 GPIO pins per Rx are utilized. See Table 206 for a list of the valid 
external slicer pins.  

The following command configures the external slicer mode.  

adi_adrv9025_RxDataFormatSet 
adi_adrv9025_RxDataFormatSet(adi_adrv9025_Device_t* device, adi_adrv9025_RxDataFormat_t 
rxDataFormat[], uint8_t arraySize) 

Description 

Configures the external slicer mode. 

Parameters 

Table 203.  
Parameter Description 
*device  Pointer to device structure. 
rxDataFormat[] Pointer to the Rx data format configuration structure. 
arraySize Determines the size of rxDataFormat array representing the number of configurations. 

Table 204 describes the adi_adrv9025_RxDataFormat_t data structure.  

Table 204. Description of adi_adrv9025_RxDataFormat_t Data Structure 
Data Type Parameter Name Comments 
uint32_t rxChannelMask Rx channel mask 
adi_adrv9025_RxDataFormatModes_e formatSelect Rx Channel format mode selects 
adi_adrv9025_FloatingPointConfigSettings_t floatingPointConfig Rx Channel floating point format configuration 
adi_adrv9025_IntegerConfigSettings_t integerConfigSettings Rx Channel integer format configuration 
adi_adrv9025_SlicerConfigSettings_t slicerConfigSettings Rx Channel integer slicer configuration 
uint8_t externalLnaGain Selects Slicer to compensate for external dual band LNA (0= 

disabled, 1 = enabled) 
uint8_t tempCompensationEnable Selects Slicer to compensate for temperature variations (0 = 

disabled, 1 = enabled) 
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For the external slicer mode, the formatSelect parameter must be set as ADI_ADRV9025_GAIN_WITH_EXTERNAL_SLICER.  

Other settings relevant to the external slicer configuration include the adi_adrv9025_SlicerConfigSettings_t data structure described in 
Table 205.  

Table 205. Description of adi_adrv9025_SlicerConfigSettings_t Data Structure 
Data Type Parameter Name Comments 
adi_adrv9025_ExtSlicerStepSizes_e extSlicerStepSize Enum selects the external pin gain step size 
adi_adrv9025_IntSlicerStepSizes_e intSlicerStepSize Enum selects the internal pin gain step size 
adi_adrv9025_RxExtSlicerGpioSel_e rx1ExtSlicerGpioSelect Enum selects the Rx1 Ext Ctrl GPIO Configuration 
adi_adrv9025_RxExtSlicerGpioSel_e rx2ExtSlicerGpioSelect Enum selects the Rx2 Ext Ctrl GPIO Configuration 
adi_adrv9025_RxExtSlicerGpioSel_e rx3ExtSlicerGpioSelect Enum selects the Rx3 Ext Ctrl GPIO Configuration 
adi_adrv9025_RxExtSlicerGpioSel_e rx4ExtSlicerGpioSelect Enum selects the Rx4 Ext Ctrl GPIO Configuration 

The enum adi_adrv9025_RxExtSlicerGpioSel_e provides the list of GPIO groupings available when using the external slicer mode as 
displayed in Table 206. 

Table 206. Description of adi_adrv9025_RxExtSlicerGpioSel_e Enumeration 
Enum Name Enum Value Comments 
ADI_ADRV9025_EXTSLICER_RX_GPIO_DISABLE 0 No GPIO assigned to external slicer 
ADI_ADRV9025_EXTSLICER_RX_GPIO_2_DOWNTO_0 1 Select Rx Gain Slicer External GPIO2, GPIO1, GPIO0 
ADI_ADRV9025_EXTSLICER_RX_GPIO_5_DOWNTO_3 2 Select Rx Gain Slicer External GPIO5, GPIO4, GPIO3 
ADI_ADRV9025_EXTSLICER_RX_GPIO_8_DOWNTO_6 3 Select Rx Gain Slicer External GPIO8, GPIO7, GPIO6 
ADI_ADRV9025_EXTSLICER_RX_GPIO_11_DOWNTO_9 4 Select Rx Gain Slicer External GPIO11, GPIO10, GPIO9 
ADI_ADRV9025_EXTSLICER_RX_GPIO_14_DOWNTO_12 5 Select Rx Gain Slicer External GPIO14, GPIO13, GPIO12 
ADI_ADRV9025_EXTSLICER_RX_GPIO_17_DOWNTO_15 6 Select Rx Gain Slicer External GPIO17, GPIO16, GPIO15 

 

Other members of the adi_adrv9025_RxDataFormatter_t are discussed in the Receiver Gain Control and Gain Compensation section.  

Tx-ORx Mapping 

A full description of Tx-ORx mapping is provided in the “Stream Processor and System Control” section.  

For initial calibrations and tracking calibrations that require the use of an external Tx to ORx loopback channel for the algorithm, the 
Arm must understand the specific mapping of Tx to ORx at that time. In the 4 ORx use case, typically the mapping is static, and it is 
recommended to use the API command adi_adrv9025_TxToOrxMappingSet(…) to configure the mapping. In the 2 ORx use case, each 
ORx channel must know which Tx channel is provided as input. An alternative to the API command interface is to use a GPIO based 
interface to inform the Arm about the currently mapped Tx channels into the ORx. To clarify, the baseband processor informs the 
transceiver about the channel mapping state by signaling on GPIOs which executes a stream processor command. This stream processor 
command provides the mapping information to the Arm processor which executes the calibration routines.  

The GPIO pins available for this feature range from GPIO_0 to GPIO_15. Up to four GPIO pins are required to fully implement pin 
based mapping controls. A partial implementation can be achieved with 2 GPIO pins. The partial implementation only indicates which 
Tx was mapped to the ORx (TX_SEL signal) and does not permit the baseband processor to inform the device that it must not perform 
tracking calibrations (TX_EN signal). This additional information is useful if antenna calibrations are performed while the tracking 
calibrations that depend on a constant external channel are still enabled.  

To set up this feature, the GUI must generate a stream file with the desired GPIO pins of the user to use for the TX_SEL/TX_EN signals. 
With the proper steam file, the user can configure the stream processor to listen to the input GPIO pins with the following command. 
Note that this command is called as a part of the adrv9025_RadioctrlInit command which is called during 
adi_adrv9025_PostMcsInit(…).  

adi_adrv9025_StreamGpioConfigSet(…) 
adi_adrv9025_ StreamGpioConfigSet(adi_adrv9025_Device_t* device,  

 adi_adrv9025_StreamGpioPinCfg_t* streamGpioPinCfg); 

Description 

This function associates a GPIO pin with stream processor GP inputs and enables stream trigger functionality if a valid GPIO (GPIO0 to 
GPIO15) is assigned to the streamGpInput pins.  
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There are 16 GPIO inputs available to trigger streams. These GPIO pins can be mapped to one of GPIOs[0:15]. 

To unmap a GPIO association with a stream GP input, please set the GPIO input to ADI_ADRV9025_GPIO_INVALID. 

Parameters 

Table 207.  
Parameter Description 
*device  Pointer to device structure. 
streamGpioPinCfg A data structure containing the GPIO assignments for stream processor inputs. 

Table 208. Description of the adi_adrv9025_StreamGpioPinCfg_t Data Structure 
Member Data Type Description 
streamGpInput0 adi_adrv9025_GpioPinSel_e Select desired GPIO pin input to stream processor GP Input 0 (valid GPIO0 to GPIO15). 

To disable select ADI_ADRV9025_GPIO_INVALID. 
streamGpInput1 adi_adrv9025_GpioPinSel_e Select desired GPIO pin input to stream processor GP Input 1 (valid GPIO0 to GPIO15). 

To disable select ADI_ADRV9025_GPIO_INVALID. 
streamGpInput2 adi_adrv9025_GpioPinSel_e Select desired GPIO pin input to stream processor GP Input 2 (valid GPIO0 to GPIO15). 

To disable select ADI_ADRV9025_GPIO_INVALID. 
streamGpInput3 adi_adrv9025_GpioPinSel_e Select desired GPIO pin input to stream processor GP Input 3 (valid GPIO0 to GPIO15). 

To disable select ADI_ADRV9025_GPIO_INVALID. 
streamGpInput4 adi_adrv9025_GpioPinSel_e Select desired GPIO pin input to stream processor GP Input 4 (valid GPIO0 to GPIO15). 

To disable select ADI_ADRV9025_GPIO_INVALID. 
streamGpInput5 adi_adrv9025_GpioPinSel_e Select desired GPIO pin input to stream processor GP Input 5 (valid GPIO0 to GPIO15). 

To disable select ADI_ADRV9025_GPIO_INVALID. 
streamGpInput6 adi_adrv9025_GpioPinSel_e Select desired GPIO pin input to stream processor GP Input 6 (valid GPIO0 to GPIO15). 

To disable select ADI_ADRV9025_GPIO_INVALID. 
streamGpInput7 adi_adrv9025_GpioPinSel_e Select desired GPIO pin input to stream processor GP Input 7 (valid GPIO0 to GPIO15). 

To disable select ADI_ADRV9025_GPIO_INVALID. 
streamGpInput8 adi_adrv9025_GpioPinSel_e Select desired GPIO pin input to stream processor GP Input 8 (valid GPIO0 to GPIO15). 

To disable select ADI_ADRV9025_GPIO_INVALID. 
streamGpInput9 adi_adrv9025_GpioPinSel_e Select desired GPIO pin input to stream processor GP Input 9 (valid GPIO0 to GPIO15). 

To disable select ADI_ADRV9025_GPIO_INVALID. 
streamGpInput10 adi_adrv9025_GpioPinSel_e Select desired GPIO pin input to stream processor GP Input 10 (valid GPIO0 to GPIO15). 

To disable select ADI_ADRV9025_GPIO_INVALID. 
streamGpInput11 adi_adrv9025_GpioPinSel_e Select desired GPIO pin input to stream processor GP Input 11 (valid GPIO0 to GPIO15). 

To disable select ADI_ADRV9025_GPIO_INVALID. 
streamGpInput12 adi_adrv9025_GpioPinSel_e Select desired GPIO pin input to stream processor GP Input 12 (valid GPIO0 to GPIO15). 

To disable select ADI_ADRV9025_GPIO_INVALID. 
streamGpInput13 adi_adrv9025_GpioPinSel_e Select desired GPIO pin input to stream processor GP Input 13 (valid GPIO0 to GPIO15). 

To disable select ADI_ADRV9025_GPIO_INVALID. 
streamGpInput14 adi_adrv9025_GpioPinSel_e Select desired GPIO pin input to stream processor GP Input 14 (valid GPIO0 to GPIO15). 

To disable select ADI_ADRV9025_GPIO_INVALID. 
streamGpInput15 adi_adrv9025_GpioPinSel_e Select desired GPIO pin input to stream processor GP Input 15 (valid GPIO0 GPIO15). To 

disable select ADI_ADRV9025_GPIO_INVALID. 

 

It is recommended to use the GUI to determine the values required for this data structure. This helps ensure that features assigned the 
stream GPIO pins are properly assigned.  

Output GPIO Features 

This section outlines digital GPIO output features available on the device. Output GPIO features on the transceiver use a concept called 
source control. The source control describes the source of the signals routed to GPIO pins, whether they are from the monitor feature or 
the Arm. Table 211 summarizes the available source control selections. Source control is relevant for GPIO pins that are configured in the 
output mode. GPIO pins operating in the input mode do not require a source control setup.  

adi_adrv9025_GpioOutSourceCtrlSet 
adi_adrv9025_GpioOutSourceCtrlSet(adi_adrv9025_Device_t* device, uint32_t gpioSrcCtrl);  

Description 
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Sets the source control. 

Parameters 

Table 209.  
Parameter Description 
*device  Pointer to device structure. 
gpioSrcCtrl The nibble-based source control – this is a 32-bit value containing 5 nibbles that set the output source control for each set of 

four GPIO pins. This parameter is set in 4-bit nibble groupings as shown in Table 210. 

Table 210. Description of the Nibble Groups Configured Via gpioSrcCtrl 
gpioSrcCtrl[bits] Description 
gpioSrcCtrl[d3:d0] GPIO output source for GPIO_[3:0] pins 
gpioSrcCtrl[d7:d4] GPIO output source for GPIO_[7:4] pins 
gpioSrcCtrl[d11:d8] GPIO output source for GPIO_[11:8] pins 
gpioSrcCtrl[d15:d12] GPIO output source for GPIO_[15:12] pins 
gpioSrcCtrl[d19:d16] GPIO output source for GPIO_[18:16] pins 

The values for these nibble groupings can be formed with the adi_adrv9025_GpioOutputModes_e enumeration. This enum is described 
in Table 211.  

Table 211. Description of adi_adrv9025_GpioOutputModes_e Enumeration 
Enum Name Enum Value Comments 
ADI_ADRV9025_GPIO_BITBANG_MODE 3 Manual mode, API function sets output pin levels and reads input pin levels 
ADI_ADRV9025_GPIO_SLICER_OUT_MODE 10 Allows slicer position to be output on GPIO pins 

 

Note that if a GPIO is not designated as an output pin that it can be set as an input pin. As an example, consider a use case where 3 pins in 
a 4-pin nibble group are dedicated for slicer output mode, the 4th pin in the group can be set as an input pin for gain control. As a 
constraint on customer applications, multiple source control selections cannot be used within a single 4 pin nibble group.  

Manual Pin Toggle (Bitbang) Mode  

This mode allows control of the logic level of individual GPIO pins.  

adi_adrv9025_GpioOutPinLevelSet 
adi_adrv9025_GpioOutPinLevelSet(adi_adrv9025_Device_t* device, uint32_t gpioOutPinLevel) 

Description 

Sets the output logic level of the GPIO pins (after configuring the I/O direction and source control). 

Parameters 

Table 212.  
Parameter Description 
*device  Pointer to device structure. 
gpioOutPinLevel Determines the level to output on each GPIO pin. 0 = low output, 1 = high output. 

Slicer Output Mode 

A general description of this feature is provided in the Mode 2: Digital Gain Compensation with Slicer GPIO Outputs section. 
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GPIO_ANA OPERATION 
The main purpose of the GPIO_ANA pins is to serve as control pins for an external control element, such as a Digital Step Attenuator 
(DSA) or Low Noise Amplifier (LNA). Other features may be exposed in future software releases. A high-level overview of the 
GPIO_ANA features are provided below.  

Table 213. Summary of GPIO_ANA Features 
Feature Description GPIO Pins Available for Feature 
Rx Gain 
Table 
External 
Control 
Word 
Output 

The Rx gain table includes a column for 2-bit control of an external gain element. 
Each Rx channel has 2 fixed GPIO_ANA pins associated with it. The 2-bit value 
expressed on the pins depends on the gain index and gain table column. API 
Function for Configuration: adi_adrv9025_RxGainTableExtCtrlPinsSet(…) 

GPIO_ANA_[1:0]: Rx1 External Control 
Word, GPIO_ANA_[3:2]: Rx2 External 
Control Word, GPIO_ANA_[5:4]: Rx3 
External Control Word, 
GPIO_ANA_[7:6]: Rx4 External Control 
Word 

 

Gain Table External Control Word 

For proper use of this feature, a custom gain table must be created that uses the external control column. When a gain index with a non-
zero value in the external control column of the gain table is selected, the value of the external control column is output on a pair of 
GPIO_ANA pins. The configuration of the GPIO pins for gain table external control word is performed with the following API 
command.  

adi_adrv9025_RxGainTableExtCtrlPinsSet 
adi_adrv9025_RxGainTableExtCtrlPinsSet(adi_adrv9025_Device_t* device, 
adi_adrv9025_RxExtCtrlPinOuputEnable_e extCtrlGpioChannelEn) 

Description 

Configures the GPIO pins for the gain table external control word. 

Parameters 

Table 214.  
Parameter Description 
*device  Pointer to device structure. 
extCtrlGpioChannelEnable Determines the adi_adrv9025_RxChannels_e enum type to select which set of gain table external control 

words to output on analog GPIOs. 

Table 215 describes the adi_adrv9025_RxExtCtrlPinOutputEnable_e enumeration.  

Table 215. Description of adi_adrv9025_RxExtCtrlPinOuputEnable_e Enumeration 
Enum Name Comments 
ADI_ADRV9025_DISABLE_RX1_RX2_EXT_CTRL_GPIOS Disable Rx1 and Rx2 Ext Ctrl Word output on Analog GPIOs 
ADI_ADRV9025_ENABLE_RX1_RX2_EXT_CTRL_GPIOS Enable Rx1 and Rx2 Ext Ctrl Word output on Analog GPIOs 
ADI_ADRV9025_DISABLE_RX3_RX4_EXT_CTRL_GPIOS Disable Rx3 and Rx4 Ext Ctrl Word output on Analog GPIOs 
ADI_ADRV9025_ENABLE_RX3_RX4_EXT_CTRL_GPIOS Enable Rx3 and Rx4 Ext Ctrl Word output on Analog GPIOs 
ADI_ADRV9025_DISABLE_RX1_RX2_RX3_RX4_EXT_CTRL_GPIOS Disable Rx1, Rx2, Rx3 and Rx4 Ext Ctrl Word output on Analog GPIOs 
ADI_ADRV9025_ENABLE_RX1_RX2_RX3_RX4_EXT_CTRL_GPIOS Enable Rx1, Rx2, Rx3 and Rx4 Ext Ctrl Word output on Analog GPIOs 
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GENERAL-PURPOSE INTERRUPT 
The device features two General Purpose Interrupt pins, GPINT1 and GPINT2 per the data sheet pinout. Note that the data sheet pinout 
conventions of GPINT1 and GPINT2 are referenced within the API as GPINT0 and GPINT1, respectively. In this section, references are 
made to the GPINT conventions on the data sheet pinout except when listed in an API code example. A summary of API commands 
relevant for the GPINT functionality is provided in the API Commands for GPINT section.  

The GPINT pins provide an interface that allows the device to inform the baseband processor of an error in normal operation. Examples 
of the interrupt sources include PLL unlock events, SERDES link status, a stream processor error, or Arm exception. A full list of interrupt 
sources is provided in Table 216. The GPINT2 pin acts as the high priority interrupt pin and GPINT1 acts as the low priority interrupt 
pin. The pins can be configured with independent bitmasks that controls which signals can assert GPINT1 or GPINT2. A high-level block 
diagram of the GPINT operation is shown in Figure 112.  

GP_INT2

ON-CHIP

GP_INT1

gpInt1Mask[d49:d0]

gpInt0Mask[d49:d0]

x50

x50

x50

x50

D49:D0

D49:D0GP_INT STATUS REGISTER:
gpIntStatus[d49:d0]

50

OFF-CHIP

INTERRUPT SOURCES

22
7

70
-1

1
7

 
Figure 112. Block Diagram of General-Purpose Interrupt Outputs  

The GPINT1 and GPINT2 pins are a bitwise OR of all unmasked GPINT sources. The status register represents all possible interrupt 
sources that can assert on the device. Any time the GPINT pin asserts, the GPINT status indicates what interrupt source(s) asserted the 
GPINT pin.  

Note that the GPINT status and the GPINT pins have different behaviors. The GPINT pins are real-time indicators of error status. For 
example, if a PA protection error occurs when PA protection is configured in the autoclear mode, the GPINT pin deasserts after the 
power returns to normal. The GPINT status bit fields are sticky and remain asserted until the user clears the register. If the PA protection 
error occurs and disappears in autoclear mode, the GPINT status still indicates a PA protection error occurred until the user manually 
clears the GPINT status. 

A description of the interrupt sources and their bit positions within the 50-bit general purpose interrupt mask is provided in Table 216. 

Table 216. GP_INTERRUPT Bitmask Description 
Bit Position Brief Description Sub-System API Recovery Action 
D49 Deframer IRQ 11: Deframer1 JESD204C CRC Error  Deframer ADI_ADRV9025_ACT_ERR_BBIC_LOG_ERROR 
D48 Deframer IRQ 10: Deframer1 JESD204C Loss of Sync 
D47 LO1 PLL Unlock PLL ADI_COMMON_ACT_ERR_RESET_MODULE 
D46 LO2 PLL Unlock ADI_COMMON_ACT_ERR_RESET_MODULE 
D45 AUX PLL Unlock ADI_COMMON_ACT_ERR_RESET_MODULE 
D44 CLK PLL Unlock ADI_COMMON_ACT_ERROR_RESET_FULL 
D43 LO1 PLL Charge Pump Overrange ADI_ADRV9025_ACT_ERR_BBIC_LOG_ERROR 
D42 LO2 PLL Charge Pump Overrange 
D41 AUX PLL Charge Pump Overrange 
D40 CLK PLL Charge Pump Overrange 
D39 SERDES PLL Unlock ADI_COMMON_ACT_ERROR_RESET_FULL 
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Bit Position Brief Description Sub-System API Recovery Action 
D38 Deframer IRQ 9: Deframer1 JESD204B QBD IRQ Deframer ADI_ADRV9025_ACT_ERR_BBIC_LOG_ERROR 
D37 Deframer IRQ 8: Deframer1 SYSREF Out of Phase 
D36 Deframer IRQ 7: Deframer1 Elastic Buffer Error  
D35 Deframer IRQ 6: Deframer1 Lane FIFO Pointer Error 
D34 Deframer IRQ 5: Deframer0 JESD204C CRC Error 
D33 Deframer IRQ 4: Deframer0 JESD204C Loss of Sync 
D32 Deframer IRQ 3: Deframer0 JESD204B QBD IRQ 
D31 Deframer IRQ 2: Deframer0 SYSREF Out of Phase 
D30 Deframer IRQ 1: Deframer0 Elastic Buffer Error 
D29 Deframer IRQ 0: Deframer0 Lane FIFO Pointer Error 
D28 Framer IRQ 8: Framer2 Transport Not Sending Data Framer 
D27 Framer IRQ 7: Framer2 SYSREF Out of Phase 
D26 Framer IRQ 6: Framer2 Lane FIFO Pointer Error 
D25 Framer IRQ 5: Framer1 Transport Layer Not Sending 

Data 
D24 Framer IRQ 4: Framer1 SYSREF Out of Phase 
D23 Framer IRQ 3: Framer1 Lane FIFO Pointer Error 
D22 Framer IRQ 2: Framer0 Transport Layer Not Sending 

Data 
D21 Framer IRQ 1: Framer0 SYSREF Out of Phase 
D20 Framer IRQ 0: Framer0 Lane FIFO Pointer Error 
D19 PA Protection Error (Threshold Exceeded) Tx4 Transmitter ADI_ADRV9025_ACT_ERR_BBIC_LOG_ERROR 
D18 PA Protection Error (Threshold Exceeded) Tx3 
D17 PA Protection Error (Threshold Exceeded) Tx2 
D16 PA Protection Error (Threshold Exceeded) Tx1 
D15 Arm Has Forced Interrupt Arm ADI_COMMON_ACT_ERROR_RESET_FULL 
D14 Arm Watchdog Timer Timeout ADI_COMMON_ACT_ERROR_RESET_FULL 
D13 Slew Rate Limiter IRQ ADI_ADRV9025_ACT_ERR_BBIC_LOG_ERROR 
D12 Arm System Error  ADI_ADRV9025_ACT_ERR_BBIC_LOG_ERROR 
D11 ORx3/4 Stream Processor Error Stream Processor ADI_COMMON_ACT_ERROR_RESET_FULL 
D10 ORx1/2 Stream Processor Error 
D9 Tx4 Stream Processor Error 
D8 Tx3 Stream Processor Error 
D7 Tx2 Stream Processor Error 
D6 Tx1 Stream Processor Error 
D5 Rx4 Stream Processor Error 
D4 Rx3 Stream Processor Error 
D3 Rx2 Stream Processor Error 
D2 Rx1 Stream Processor Error 
D1 Core Stream Processor Error 
D0 Memory ECC Error Arm ADI_COMMON_ACT_ERROR_RESET_FULL 

 

Table 216 can be used to form bitmasks for GPINT2 and GPINT1. Note that in the API, GPINT1 is linked to the GPINT2 pin and 
GPINT0 is linked to the GPINT1 pin. 

Further description of these event sources is provided in the following sections.  
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PLL GPINT SOURCES 
The PLL GPINT sources include two types of interrupt for the PLLs: PLL unlock events and PLL Charge Pump (CP) overrange events. It 
must be noted that if initial calibrations are run, it is expected that some PLLs are used during this time and a PLL unlock event may show 
up in the GPINT status register. PLL unlocks during successful runs of initialization calibrations are expected and is not a concern.  

PLL Unlock Event Bits 

The PLL unlock event bits, if asserted, indicate that a PLL has unlocked and is not operating properly. The PLLs are designed to maintain 
lock over the full temperature range and operation of the device. In extremely rare cases the PLL may unlock due to external or internal 
factors. There are two recovery procedures for PLL unlocks depending on the PLL that unlocks.  

 If CLK PLL unlocks: Reset Device. It is not expected the device can recover from the loss of the primary clock within the transceiver. 
 If LO2, LO1 or AUX PLL unlocks, call adi_adrv9025_PllFrequencySet(…) to see if the PLL relocks.  

 If the unlocked PLL re-locks, then follow procedures to re-run certain initialization calibrations as this is effectively a PLL 
frequency change procedure. If the user has configured attenuation ramp down/up events to occur based on PLL lock status, the 
attenuation ramp down/up event must be cleared prior to running initial calibrations.  

 If the unlocked PLL fails to achieve lock, then reset the device.  

The real time lock status of the PLL can be verified with the command adi_adrv9025_PllStatusGet(…).  

CP Overrange Event Bits 

CP Overrange Event Bits must not be unmasked for the GPINT pins. These bits may assert intermittently but do not indicate a significant 
device issue.  

JESD204B/JESD204C GPINT SOURCES 
The deframer and framer, in both JESD204B and JESD204C modes of operation, may send information to the user regarding error events 
over the GPINT pin.  

Note: Due to a hardware issue, the JESD204C CRC error can assert when the link is configured for JESD204B mode. Ignore the 
JESD204C CRC Error when detected in JESD204B use cases. Additionally, do not allow JESD204C errors assert the GPINT pins when 
configured in JESD204B mode since there is no value provided in this configuration.  

Table 217 provides some additional detail regarding the deframer and framer interrupts that can assert the GPINT pin. In general, 
referring to JESD204B/JESD204C documentation can help explain these events in more detail and possible recovery mechanisms. 

Table 217. Framer and Deframer Interrupt List 
GP_INT 
Bits 

Brief 
Description Technical Description Further Actions, If Necessary 

D34, 
D49 

Deframer 
JESD204 CRC 
Error 

A cyclic redundancy check (CRC) error 
has been detected on one of the 
active deframer lanes. Tx data possibly 
corrupted. 

Log event. Customer to decide how to react to the event.  

D33, 
D48 

Deframer 
JESD204C Loss 
of Sync 

The JESD204C link layer has lost sync. 
This can be due to loss of sync header 
alignment, or multi-block alignment. 
Typically, the link has dropped and 
needs to be reestablished. 

Log event. If link is down, reestablish link.  

D32, 
D38 

Deframer 
JESD204B QBD 
IRQ 

The Quad Byte Deframer (QBD) 
Interrupt (IRQ) indicates that a 
deframer IRQ source has asserted. 
Deframer IRQ sources include Bad 
Disparity (BD), Not-in-Table (NIT), 
Unexpected K (UEK). Most errors are 
considered minor.  

Log event. Call adi_adrv9025_DfrmIrqSourceGet(…) to retrieve the 
specific interrupt that asserted. Typically this is an informational 
interrupt, but some cases may require link reset.  

D31, 
D37 

Deframer 
SYSREF Out of 
Phase 

SYSREF registered at the wrong phase 
in the link.  

Log event. Something is likely incorrect in overall system timing and 
needs to be adjusted. 
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GP_INT 
Bits 

Brief 
Description Technical Description Further Actions, If Necessary 

D30, 
D36 

Deframer 
Elastic Buffer 
Error 

The phase of lane data in the link with 
respect to global LMFC has shifted 
such that the buffer is in “protect” 
mode to avoid corrupt data transfer. 
Deterministic latency is lost.  

Log event. Reassess lmfcOffset value selection if deterministic 
latency is required.  

D29, 
D35 

Deframer Lane 
FIFO Pointer 
Error 

Lane FIFO pointers have moved in the 
link. This may or may not be 
associated with SYNC going low.  

Log event. Reset link. 

D22, 
D25, 
D28 

Framer 
Transport Layer 
Not Sending 
Data 

The framer is not sending user data. 
This occurs if the LMFC from the link 
layer is out of phase with the 
transport layer LMFC. This forces a 
relink by taking SYNC low.  

Log event. 

D21, 
D24, 
D27 

Framer SYSREF 
Out of Phase 

SYSREF is registered at the wrong 
phase in the framer link. If JESD is 
configured to attempt re-link with the 
new phase, no action required.  

Log event. Something is likely incorrect in overall system timing and 
needs to be adjusted. 

D20, 
D23, 
D26 

Framer Lane 
FIFO Pointer 
Error 

The lane FIFO pointer has changed. Log event.  

 

These deframer interrupts can be used to assert the rampdown of Tx attenuation as described in the Transmitter Power Amplifier 
Protection section of this document. 

PA PROTECTION GPINT SOURCES 
The PA protection feature must be enabled for these interrupts to assert. The PA protection block refers specifically to the peak and 
average power measurement capabilities within the Tx data path and must not be misconstrued for the general Tx attenuation ramp 
features.  

PA protection GPINT sources indicate to the user that a peak or average power measurement within the Tx data path has exceeded the 
thresholds as configured on the device. When the power measurement exceeds the threshold, this is also referred to as a PA protection 
error. Log this event and take appropriate action within their system to resolve the reason for the power increase in the Tx data path.  

The user can configure the PA protection block to enforce a ramp (or increase) of Tx attenuation with the command 
adi_adrv9025_PaPllDfrmEventRampDownEnableSet(…). Control over whether the attenuation ramp is sticky or autoclears is 
determined by adi_adrv9025_TxAttenuationRampUpStickyModeEnable(…) command. Refer to the Transmitter Power Amplifier 
Protection section for more information.  

ARM GPINT SOURCES 
There are four Arm interrupt sources available.  

Arm Has Forced Interrupt 

The Arm asserts this interrupt in the case a fatal error occurs within the FW. If possible, acquire an Arm memory dump to assist in debug. 
Reset the device.  

Arm Watchdog Timer Timeout 

The Arm asserts this interrupt when the watchdog timer within the Arm reaches its timeout value. If the Arm was unable to reset this 
timer there is a fatal error within the Arm. If possible, acquire an Arm memory dump s to assist in debug. Reset the device. 

Slew Rate Limiter IRQ  

As of SW 2.0.5 versions, this bit represents the Slew Rate Limiter (SRL) error interrupt for the Tx datapaths. If this interrupt asserts, then 
it indicates an SRL error event has occurred. Check the SRL statistics for each channel to check which channel generated the interrupt. 

Arm System Error 

The Arm asserts this interrupt when the Arm detects an issue with any calibration or system related issue managed by the Arm. Some 
events may be fatal. To acquire more information about the error, call the API command adi_adrv9025_ArmSystemErrorGet(…). This bit 
also represents any issues with tracking calibrations. 



UG-1727 Preliminary Technical Data
 

Rev. PrA | Page 200 of 267 

STREAM PROCESSOR SOURCES 
Assertion of any stream processor interrupt bits indicate that a significant problem has occurred within the stream processor. The stream 
processor does not have a way to recover from these events. Reset the device if stream processor errors are detected.  

MEMORY ECC ERROR 
A memory ECC error indicates that a bit error has occurred in a memory circuit within the chip. This is an extremely rare event. The 
device must be reset if this is detected.  

SOFTWARE PROCEDURES FOR GPINT 
Referring to the device programming sequence in adi_adrv9025_daughter_board.c, the GPINT feature setup is one of the last steps in 
device initialization, occurring after both adi_board_adrv9025_JesdBringup(…) and adi_adrv9025_TxRampDownInit(…). The GPINT 
masks for GPINT2/GPINT1 physical pins are stored in the adi_adrv9025_GpInterruptSettings_t structure and applied to the device 
during adi_adrv9025_GpIntInit(…). This configures both GPINT pins and no further action is needed for setup.  

If it is necessary to reconfigure the GPINT masks after initialization, use the command adi_adrv9025_GpIntMaskSet(…). The primary 
difference between the two GPINT setup commands is that adi_adrv9025_GpIntMaskSet(…) allows selection regarding which pin 
bitmask to program.  

The baseband processor monitors the status of the GPINT2 and GPINT1 pins after configuring the mask bits. If either pin asserts, this 
indicates that the transceiver has run into a problem that may require user intervention to resolve. The GPINT handler functions tries to 
resolve the error by reading back the status and then clearing the status bit fields. The bits in the status register are sticky, but the pin is 
not. The pin represents whether the interrupt source is active or not. The register indicates which interrupts have occurred since the 
status was last cleared.  

The general setup and usage for the GPINT command is detailed as follows: 

1. Initialize device (call adi_adrv9025_GpIntInit(…) or adi_adrv9025_GpIntMaskSet(…) to set up the GPINT feature).  
2. Operate device. The baseband processor monitors the GPINT2 and/or GPINT1 pins for rising edges indicating an interrupt has 

occurred. 
3. If the GPINT2 and/or GPINT1 pins assert, call their associated interrupt handler API command, either 

adi_adrv9025_GpInt1Handler(…) or adi_adrv9025_GpInt0Handler(…), respectively. The interrupt handler returns information 
related to the interrupt source to the user. Calling this command may be sufficient to clearing the error. Either handler function 
returns a recovery action which suggests further action if necessary.  
a. Alternatively, the user can call adi_adrv9025_GpIntStatusGet(…), which only returns the interrupt status bits. The status word 

is not maskable and indicates all errors since the previous clearing of the status word. 
b. If the device does not need to be reset and the error state has been eliminated, it is necessary to call 

adi_adrv9025_GPIntClearStatusRegister(…) to clear all error bits asserted in the GPINT status register. 
4. Perform recovery action(s).  

API COMMANDS FOR GPINT 
The following section outlines API commands for configuring and using the GPINT feature.  

adi_adrv9025_GpIntMaskSet 

adi_adrv9025_GpIntMaskSet(adi_adrv9025_Device_t* device, adi_adrv9025_gpMaskSelect_e maskSelect, 
adi_adrv9025_gp_MaskArray_t *maskArray) 

Description 

Applies the desired bitmasks to the device. 

Parameters 

Table 218.  
Parameter Description 
*device  Pointer to device structure. 
maskSelect The enum indicating which GP_INTERRUPT bitmask (GPINT1 or GPINT0) to write. 
*maskArray Pointer to the data structure holding the GP_INTERRUPT bitmasks to write. 
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Table 219 describes the adi_adrv9025_gpMaskSelect_e enumeration. This parameter describes which pin to write the mask to.  

Table 219. Description of adi_adrv9025_gpMaskSelect_e Enumeration 
Enum Name Comments 
ADI_ADRV9025_GPINT0 GPINT1 Select (GPINT0 bitmask). Only adi_adrv9025_gp_MaskArray_t -> gpInt0Mask is programmed to the 

device.  
ADI_ADRV9025_GPINT1 GPINT2 Select (GPINT1 bitmask). Only adi_adrv9025_gp_MaskArray_t -> gpInt1Mask is programmed to the 

device. 
ADI_ADRV9025_GPINTALL GPINT1 and GPINT2 Select. Both members of adi_adrv9025_gp_MaskArray_t are programmed to the device.  

Table 220 describes the adi_adrv9025_gp_MaskArray_t data structure. Refer to Table 216 for a description of the bitmasks.  

Table 220. Description of adi_adrv9025_gp_MaskArray_t Data Structure 
Data 
Type 

Parameter 
Name Comments 

uint64_t gpInt0Mask Bitmask for the GPINT1 pin. If a bit within the mask is set to 1, the associated interrupt source cannot 
assert the GPINT2 pin. 

uint64_t gpInt1Mask Bitmask for the GPINT2 pin. If a bit within the mask is set to 1, the associated interrupt source cannot 
assert the GPINT1 pin.  

When either GPINT pin asserts, there are interrupt handler API commands to assist with determining the error. The following 
commands are the GPINT2 and GPINT1 interrupt handlers.  

adi_adrv9025_GpInt1Handler 
adi_adrv9025_GpInt1Handler(adi_adrv9025_Device_t* device, adi_adrv9025_gpIntStatus_t 
*gpInt1Status) 

Description 

Sets up the GPINT2 interrupt handler. 

Parameters 

Table 221.  
Parameter Description 
*device  Pointer to device structure. 
*gpInt1Status Pointer to the status read-back word containing the GPINT2 source registers. 

adi_adrv9025_GpInt0Handler 

adi_adrv9025_GpInt0Handler(adi_adrv9025_Device_t* device, adi_adrv9025_gpIntStatus_t 
*gpInt0Status) 

Description 

Sets up the GPINT1 interrupt handler. 

Parameters 

Table 222.  
Parameter Description 
*device  Pointer to device structure. 
*gpInt0Status Pointer to the status read-back word containing the GPINT1 source registers. 

When either handler command is called, the first step in the procedure is to temporarily modify the interrupt bitmask such that no other 
interrupts can assert GPINT2 or GPINT1 while the handler is invoked. This masking is followed by retrieval of the GPINT status. The 
final step in the handler is to restore initial bitmask for GPINT2/GPINT1. In some cases, reading the error is sufficient to clearing the 
error – this is the case for short-term, intermittent errors. If the error persists, then the status continues to indicate the interrupt and 
further intervention is necessary.  
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adi_adrv9025_GpIntStatusGet 

adi_adrv9025_GpIntStatusGet(adi_adrv9025_Device_t* device, uint64_t *gpIntStatus) 

Description 

Provides direct readback of the GPINT status word. 

Parameters 

Table 223.  
Parameter Description 
*device  Pointer to device structure. 
*gpIntStatus Pointer to the status read-back word. Refer to Table 216 for bitmask description. 

adi_adrv9025_GPIntClearStatusRegister 
adi_adrv9025_GPIntClearStatusRegister(adi_adrv9025_Device_t *device, uint64_t *gpIntStatus) 

Description 

Clears the GPINT status register.  

Parameters 

Table 224.  
Parameter Description 
*device  Pointer to device structure. 
*gpIntStatus Pointer to the status read-back word. Refer to Table 216 for bitmask description. 
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AUXILIARY CONVERTERS AND TEMPERATURE SENSOR 
The transceiver features auxiliary data converters including eight 12-bit auxiliary digital-to-analog converters (AuxDAC) and two 12-bit 
auxiliary analog-to-digital converters (AuxADC). An integrated diode-based temperature sensor is available to readback the approximate 
die temperature of the device. These features are included to simplify control tasks and reduce pin count requirements on the baseband 
processor by offloading these tasks to the transceiver. Example usage of the auxiliary converters include static voltage measurements 
performed by the AuxADC and flexible voltage control performed by the AuxDAC. This section outlines the operation of these features 
along with API command for configuration and control.  

The AuxDAC and AuxADC are not precision data converters. DC offset and gain/slope errors are present and may vary on different 
channels. Refer to specifications in data sheet. The AuxDAC and AuxADC are best used in feedback systems rather than in open-loop 
systems for precision voltage readback or control.  

AUXILIARY DAC (AUXDAC) 
There are eight independent 12-bit AuxDACs integrated on the transceiver. The voltage range of the AuxDAC is from ground (0 V) to 
1.8 V. The AuxDACs use the enumeration adi_adrv9025_AuxDacs_e when referenced in the API. The pins used for the AuxDAC features 
are listed in Table 225. 

Table 225. AuxDAC Pin Mapping and adi_adrv9025_AuxDacs_e Enum Description 
Auxiliary DAC Number Pin Name Pin Number Enum Name Enum Value 
AUXDAC[0] GPIO_ANA_0 C4 ADI_ADRV9025_AUXDAC0 0x01 
AUXDAC[1] GPIO_ANA_1 C5 ADI_ADRV9025_AUXDAC1 0x02 
AUXDAC[2] GPIO_ANA_2 L1 ADI_ADRV9025_AUXDAC2 0x04 
AUXDAC[3] GPIO_ANA_3 L2 ADI_ADRV9025 _AUXDAC3 0x08 
AUXDAC[4] GPIO_ANA_4 L17 ADI_ADRV9025_AUXDAC4 0x10 
AUXDAC[5] GPIO_ANA_5 L16 ADI_ADRV9025_AUXDAC5 0x20 
AUXDAC[6] GPIO_ANA_6 C12 ADI_ADRV9025_AUXDAC6 0x40 
AUXDAC[7] GPIO_ANA_7 C13 ADI_ADRV9025_AUXDAC7 0x80 

The capacitive load of the AuxDAC pins must not exceed more than 100 pF or stability issues may occur.  

The AuxDAC uses the GPIO_ANA pins on the device. Conflicts between GPIO_ANA and AuxDAC functionality may occur. In case of 
these conflicts, the AuxDAC takes precedence over all other GPIO_ANA functionality when AuxDAC is enabled for a specific pin. When 
the AuxDAC is disabled, the configured GPIO_ANA functionality is applied. The AuxDAC can be enabled one pin at a time to allow 
flexibility between AuxDAC and GPIO_ANA functionality.  

The AuxDAC is typically used in applications requiring analog control signals. The data interface used to set the output level of the 
AuxDAC is SPI based. There is no CMOS/LVDS data interface to provide input data to the AuxDAC.  

The (ideal) output voltage expressed on the AuxDAC is based on the following equation: 

1.8 V
4096AuxDAC

AuxDACValue
V     

where parameter AuxDacValue is the 12-bit digital code applied to the AuxDAC.  

As previously mentioned, the AuxDAC is not a precision converter. It is best used in feedback systems. Figure 113 shows AuxDAC output 
voltage vs. input codes for a full range code sweep of the AuxDAC. Channel to channel variability in slope and dc offset are expected.  
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Figure 113. AuxDAC Channel Comparison over Full Range Code Sweep 

AuxDAC Configuration 

The AuxDAC is configured using the API command adi_adrv9025_AuxDacCfgSet(…). This command must be called after device 
initialization to use the AuxDACs.  

adi_adrv9025_ AuxDacCfgSet(adi_adrv9025_Device_t *device, adi_adrv9025_AuxDacCfg_t 
auxDacConfig[], 

uint8_t numberOfCfg) 

Table 226. AuxDAC Configuration Parameters 
Parameter Description 
*device Pointer to the device settings structure 
auxDacConfig[] The pointer to an array of AuxDAC configuration structure 
numberOfCfg The number of configurations at the auxDacConfig array 

A data structure used in this command is the adi_adrv9025_AuxDacCfg_t data structure. The elements within this structure are 
described in Table 227.  

Table 227. Description of adi_adrv9025_AuxDacCfg_t Data Structure 
Data Type Parameter Name Comments 
uint32_t auxDacMask AuxDAC selection. Bit 0 = AuxDAC0, Bit1 = AuxDAC1, …, Bit7 = AuxDAC7 
uint8_t enable 1 = Enable selected AuxDAC per auxDacMask. 0 = Disable selected AuxDAC.  

AuxDAC Ouput Setup 

After enabling the AuxDAC, the user can set the output value of one or more AuxDACs with the API command 
adi_adrv9025_AuxDacValueSet(…). This command is described below.  

adi_adrv9025_ AuxDacValueSet(adi_adrv9025_Device_t* device,adi_adrv9025_AuxDacValue_t 
auxDacValues[], uint8_t numberOfCfg) 

Parameters 

Table 228.  
Parameter Description 
*device Pointer to the device settings structure 
auxDacValues[] The array of DAC value data structures to set 
numberOfCfg The number of configurations at the auxDacValues array 
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A data structure used in this command is the adi_adrv9025_AuxDacValue_t data structure. The elements within this structure are 
described in Table 229.  

Table 229. Description of adi_adrv9025_AuxDacValue_t Data Structure 
Data Type Parameter Name Comments 
uint32_t auxDacMask AuxDAC selection. Bit 0 = AuxDAC0, Bit1 = AuxDAC1, …, Bit7 = AuxDAC7 
uint16_t value 12-bit AuxDAC word to apply to AuxDACs selected by auxDacMask 
 

AUXILIARY ADC (AUXADC) 
There are two physical AuxADCs integrated on the device. Each AuxADC has two inputs for a total of four AuxADC pins. The different 
AuxADCs are designated ADI_ADRV9025_AUXADC_A and ADI_ADRV9025_AUXADC_B per the enumeration 
adi_adrv9025_AuxAdcSelect_e.  

The AuxADC is a 12-bit Δ-Σ converter. It is most useful for relative voltage measurements rather than precision measurements due to 
slope and dc offset variability. The decimator state at the AuxADC output is linear to 10 bits. The input voltage range of the AuxADC is 50 
mV to 950 mV. Readback of the AuxADC data word is performed using API commands. Accuracy of the AuxADC is dependent upon 
the supply voltages provided to VCONV1_1P0 for AUXADC_A and VCONV2_1P0 for AUXADC_B.  

There are no on-chip calibrations executed or available for the AuxADC.  

Each physical converter has two inputs providing four possible measurement channels (see Figure 114).  
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Figure 114. AuxADC On-Chip Block Diagram 

The following (ideal) equation describes the output code in relation to an input voltage, VIN. In practice, the AuxADC has slope and dc 
offset variability.  

DOUT = 4096(VIN – 0.5 V) + 2048 

AuxADC Configuration 

The AuxADC is configured with the following API command.  
adi_adrv9025_AuxAdcCfgSet(adi_adrv9025_Device_t *device, adi_adrv9025_AuxAdcCfg_t *auxAdcConfig, 
uint8_t arraySize) 

Parameters 

Table 230.  
Parameter Description 
*device Pointer to the device settings structure 
*auxAdcConfig Pointer to the supplied ADC configuration structure(s) 
arraySize The number of supplied configuration structures 

An important data structure used in this command is adi_adrv9025_AuxAdcCfg_t. Table 231 describes the parameters used in this 
structure.  
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Table 231. Description of adi_adrv9025_AuxDacValueAuxDacAdcValueCfg_t Data Structure 
Data Type Parameter Name Comments 
AdiAadi_adrv9025_AuxAdcEnable_e auxAdcEnable Enable = 1, Disable = 0 
AdiAadi_adrv9025_AuxAdcSelect_e auxAdcSelect Select which ADC to configure (AUXADC_A or AUXADC_B) 
AdiAadi_adrv9025_AuxAdcInputSelect_e auxAdcInputSelect Select which input of the selected AuxADC to use (INPUT_0 or INPUT_1) 
AdiAadi_adrv9025_AuxAdcClkDivide_e auxAdcClkDivide ADC CLK Divider Setting 

The enumerations used in this structure are described further in the following tables.  

Table 232. Description of adi_adrv9025_AuxAdcEnable_e Enumeration 
Enum Name Enum Value Comments 
ADI_ADRV9025_AUXADC_DISABLE 0 Aux ADC Disabled 
ADI_ADRV9025_AUXADC_ENABLE 1 Aux ADC Enabled 

Table 233 provides the enumerations describing the two physical converters on the device.  

Table 233. Description of adi_adrv9025_AuxAdcSelect_e Enumeration 
Enum Name Enum Value Comments 
ADI_ADRV9025_AUXADC_A 0 Aux ADC A Selection 
ADI_ADRV9025_AUXADC_B 1 Aux ADC B Selection 

Table 234 provides the enumerations describing the two input selections that can be applied to each converter.  

Table 234. Description of adi_adrv9025_AuxAdcInputSelect_e Enumeration 
Enum Name Enum Value Comments 
ADI_ADRV9025_AUXADC_INPUT_0 3 Aux ADC Input 0 Selection 
ADI_ADRV9025_AUXADC_INPUT_1 2 Aux ADC Input 1 Selection 

The AuxADC clock can be set based on a divider. The AuxADC input clock is supplied by the device clock input to the device 
(DEVCLK±). The valid options are provided in Table 235. Select the AuxADC divider setting such that the sampling clock frequency is 
set as low as possible without resulting in aliasing. 

Table 235. Description of adi_adrv9025_AuxAdcClkDivide_e Enumeration 
Enum Name Enum Value Comments 
ADI_ADRV9025_AUXADC_CLKDIVIDE_32 0 Input clock divide by 32 
ADI_ADRV9025_AUXADC_CLKDIVIDE_1 1 No Clock Divide 
ADI_ADRV9025_AUXADC_CLKDIVIDE_2 2 Input Clock divide by 2 
ADI_ADRV9025_AUXADC_CLKDIVIDE_3 3 Input Clock divide by 3 
ADI_ADRV9025_AUXADC_CLKDIVIDE_4 4 Input Clock divide by 4 
ADI_ADRV9025_AUXADC_CLKDIVIDE_5 5 Input Clock divide by 5 
ADI_ADRV9025_AUXADC_CLKDIVIDE_6 6 Input Clock divide by 6 
ADI_ADRV9025_AUXADC_CLKDIVIDE_7 7 Input Clock divide by 7 
ADI_ADRV9025_AUXADC_CLKDIVIDE_8 8 Input Clock divide by 8 
ADI_ADRV9025_AUXADC_CLKDIVIDE_9 9 Input Clock divide by 9 
ADI_ADRV9025_AUXADC_CLKDIVIDE_10 10 Input Clock divide by 10 
ADI_ADRV9025_AUXADC_CLKDIVIDE_11 11 Input Clock divide by 11 
ADI_ADRV9025_AUXADC_CLKDIVIDE_12 12 Input Clock divide by 12 
ADI_ADRV9025_AUXADC_CLKDIVIDE_13 13 Input Clock divide by 13 
ADI_ADRV9025_AUXADC_CLKDIVIDE_14 14 Input Clock divide by 14 
ADI_ADRV9025_AUXADC_CLKDIVIDE_15 15 Input Clock divide by 15 
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AuxADC Readback 

After the AuxADC has been configured, the command that retrieves the AuxADC readback value is adi_adrv9025_AuxAdcValueGet(…). 
This command is described below.  

adi_adrv9025_ AuxAdcValueGet(adi_adrv9025_Device_t *device, adi_adrv9025_AuxAdcSelect_e 
auxAdcSelect, adi_adrv9025_AuxAdcValue_t *auxAdcValue) 

Parameters 

Table 236.  
Parameter Description 
*device Pointer to the device settings structure 
auxAdcSelect Selects the desired AuxADC to read a sample from 
*auxAdcValue Pointer to the supplied AuxADC value structure to populate 

A data structure used in the above command is the adi_adrv9025_AuxAdcValue_t. Table 237 describes the members within this data 
structure.  

Table 237. Description of adi_adrv9025_AuxAdcValue_t Data Structure 
Data Type Parameter Name Comments 
adi_adrv9025_AuxAdcSelect_e auxAdcSelect Selects which AuxADC to read from. 
uint16_t auxAdcValue 12-bit ADC sample from the selected AuxADC  

TEMPERATURE SENSOR 
The device features a temperature sensor that measures the temperature on the die. The temperature sensor uses an ADC similar to the 
AuxADC, however it is a separate instantiation and has no connections to a device pin.  

The initiation of a temperature measurement is performed without user intervention by the Arm processor. The user can retrieve this 
measurement results in degrees C through an API command. The API command to readback the temperature sensor measurement is 
described below.  

adi_adrv9025_ TemperatureGet(adi_adrv9025_Device_t *device, int16_t *temperatureDegC) 

Parameters 

Table 238.  
Parameter Description 
*device Pointer to the device settings structure 
*temperatureDegC Pointer to a single int16_t element that returns the current 12-bit temperature sensor in degrees C 
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SPI2 DESCRIPTION 
The ADRV9026 uses the primary SPI port for nearly all SPI transactions needed during operation. The device also features a secondary 
SPI (SPI2) port that can be used to control Tx, Rx and ORx attenuation settings.  

SPI2 CONFIGURATION  
The SPI2 port can be enabled by calling the following API and setting spi2Enable to 1: 

adi_adrv9025_Spi2CfgSet(adi_adrv9025_Device_t *device, uint8_t spi2Enable); 

When this feature is enabled, the GPIO pins listed in Table 239 are configured automatically to the correct IO port direction to support 
the SPI Interface.  

Table 239. SPI2 GPIO Pin Assignments 
Pin Number SPI2 Functionality Pin Direction 
GPIO_3 CS Input 

GPIO_2 SCLK Input 
GPIO_1 SDO Input/Output (depending on 3-wire or 4-wire wire mode) 
GPIO_0 SDIO Input/Output (depending on 3-wire or 4-wire wire mode) 

The primary SPI and SPI2 share the same configuration: LSB first/MSB first, 3-wire/4-wire and single-instruction mode. Whichever 
configuration is selected for SPI is automatically assigned to SPI2. 

TRANSMITTER CONTROL WITH SPI2 
SPI2 provides the option to switch between two distinct attenuation states for the transmitters by toggling a single GPIO pin, bypassing 
the need to access the main SPI bus. The user can program four 10-bit attenuation words into registers designated State 1 (S1) and State 2 
(S2). When the GPIO is low, the S1 registers set the attenuation values for the four transmitters. When the GPIO is high, the S2 registers 
set the attenuation values for the four transmitters. The user must select which GPIO is to be used to control the attenuation state. The 
valid selection values range from GPIO4 to GPIO18. The GPIO selection is performed by calling the following API 

adi_adrv9025_TxAttenSpi2PinCtrlCfgSet(adi_adrv9025_Device_t *device, 
adi_adrv9025_TxAttenSpi2PinCfg_t txAttenSpi2PinCfg[], uint8_t numTxAttenSpi2PinConfigs); 

Parameters 

Table 240.  
Parameter Description 
*device Pointer to the device settings structure 
txAttenSpi2PinCfg[] An array of structures of type adi_adrv9025_TxAttenSpi2PinCfg_t detailed in Table 241 
numTxAttenSpi2PinConfigs The number of configurations passed in the array 

 

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
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Table 241. SPI2 Configuration Parameters 
Parameter Comments 
txChannelMask This selects the channels upon which the API acts. It is a bit mask with each bit corresponding to a channel. The 

desired mask can be generated by OR’ing the desired channel enums as listed below. 
Data type: uint32_t 

adi_adrv9025_TxChannels_e Tx Channel 
ADI_ADRV9025_TXOFF No Tx channels selected 
ADI_ADRV9025_TX1 Tx1 channel selected 
ADI_ADRV9025_TX2 Tx2 channel selected 
ADI_ADRV9025_TX3 Tx3 channel selected 
ADI_ADRV9025_TX4 Tx4 channel selected 

txAttenSpi2Pin This parameter selects which GPIO pin is used to select between Tx attenuation state 1 and state 2. 
Data type: adi_adrv9025_Spi2TxAttenGpioSel_e 
txAttenSpi2Pin GPIO Selected 
ADI_ADRV9025_SPI2_TXATTEN_DISABLE Remove GPIO selection – this choice is only used if SPI2 is being disabled. 

This removes the previously selected GPIO from the list of used resources 
ADI_ADRV9025_SPI2_TXATTEN_GPIO4 Select GPIO 4 for Tx state selection 
ADI_ADRV9025_SPI2_TXATTEN_GPIO5 Select GPIO 5 for Tx state selection 
ADI_ADRV9025_SPI2_TXATTEN_GPIO6 Select GPIO 6 for Tx state selection 
ADI_ADRV9025_SPI2_TXATTEN_GPIO7 Select GPIO 7 for Tx state selection 
ADI_ADRV9025_SPI2_TXATTEN_GPIO8 Select GPIO 8 for Tx state selection 
ADI_ADRV9025_SPI2_TXATTEN_GPIO9 Select GPIO 9 for Tx state selection 
ADI_ADRV9025_SPI2_TXATTEN_GPIO10 Select GPIO 10 for Tx state selection 
ADI_ADRV9025_SPI2_TXATTEN_GPIO11 Select GPIO 11 for Tx state selection 
ADI_ADRV9025_SPI2_TXATTEN_GPIO12 Select GPIO 12 for Tx state selection 
ADI_ADRV9025_SPI2_TXATTEN_GPIO13 Select GPIO 13 for Tx state selection 
ADI_ADRV9025_SPI2_TXATTEN_GPIO14 Select GPIO 14 for Tx state selection 
ADI_ADRV9025_SPI2_TXATTEN_GPIO15 Select GPIO 15 for Tx state selection 
ADI_ADRV9025_SPI2_TXATTEN_GPIO16 Select GPIO 16 for Tx state selection 
ADI_ADRV9025_SPI2_TXATTEN_GPIO17 Select GPIO 17 for Tx state selection 
ADI_ADRV9025_SPI2_TXATTEN_GPIO18 Select GPIO 18 for Tx state selection 
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Figure 115. SPI2 Transmitter Attenuation Update Options 
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There are two update modes selectable for updating the attenuation applied to the transmitters, selected by bit D0 in SPI2 register 0x2A. 
When SPI2 0x2A[D0] is 0, updates to the attenuation state registers or MUX select GPIO take immediate effect. When SPI2 0x2A[D0] is 
1, a retiming block is used to block updates to the transmit attenuation until a latch bit (one per transmitter channel) is set. The latch bits 
are in SPI2 register 0x2A, bits D4 to D1. Note that these bits are not self-clearing and must be written to zero before being used to latch 
new attenuation values. 

Table 242. SPI2 Register 0x2A details 
Register 0x2A Comments 
D4 Latch bit for Tx3 attenuation words (not self-clearing) 
D3 Latch bit for Tx2 attenuation words (not self-clearing) 
D2 Latch bit for Tx1 attenuation words (not self-clearing) 
D1 Latch bit for Tx0 attenuation words (not self-clearing) 
D0 Attenuation update mode selection bit.  
  0 = Update attenuation when LSB is written. 

  1 = Update attenuation when latch bit is set transitioned from low to high 

 

It is generally preferred to synchronize the attenuation change of all the Tx channels in one device, or across an antenna array comprising 
many devices. An example of how to do this is given in the following steps: 

1. Set 0x2A[D0] low to allow immediate updates of attenuation 
2. Update the attenuation values of the attenuation state not in use 
3. Toggle the selected attenuation state by toggling the GPIO pin which selects between states. The new attenuation values are now 

simultaneously applied to all transmitters in the product/antenna array 

As this sequence is repeated, the Tx attenuation values of an entire antenna array can be adjusted simultaneously, with real time 
attenuation changes triggered by the GPIO transition.  

The two different attenuation states for each transmitter can be stored in the SPI2 register map shown in Table 243. Values are written to 
these registers using the SPI protocol that is defined in the Serial Peripheral Interface (SPI) section.  
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RECEIVER AND OBSERVATION RECEIVER CONTROL WITH SPI2 
SPI2 can also be used to control both receiver and observation receiver attenuation settings. Dual states like those used by the transmitters 
are not implemented for the receiver and observation receiver attenuation settings. When a new attenuation setting is written to one of 
the gain index registers shown in Table 243, an immediate update occurs. The value of each register can be written or read back using the 
SPI protocol that is defined in the Serial Peripheral Interface (SPI) section.  

Table 243. SPI2 Register Map 
Address Register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 
0x0002 orx0_agc_manual_gain_index agc_orx0_manual_gain_index 
0x0003 orx1_agc_manual_gain_index agc_orx1_manual_gain_index 
0x0004 orx2_agc_manual_gain_index agc_orx2_manual_gain_index 
0x0005 orx3_agc_manual_gain_index agc_orx3_manual_gain_index 
0x0006 orx0_agc_gain_index_readback agc_orx0_gain_index_readback 
0x0007 orx1_agc_gain_index_readback agc_orx1_gain_index_readback 
0x0008 orx2_agc_gain_index_readback agc_orx2_gain_index_readback 
0x0009 orx3_agc_gain_index_readback agc_orx3_gain_index_readback 
0x000a rx0_agc_manual_gain_index agc_rx0_manual_gain_index 
0x000b rx1_agc_manual_gain_index agc_rx1_manual_gain_index 
0x000c rx2_agc_manual_gain_index agc_rx2_manual_gain_index 
0x000d rx3_agc_manual_gain_index agc_rx3_manual_gain_index 
0x000e rx0_agc_gain_index_readback agc_rx0_gain_index_readback 
0x000f rx1_agc_gain_index_readback agc_rx1_gain_index_readback 
0x0010 rx2_agc_gain_index_readback agc_rx2_gain_index_readback 
0x0011 rx3_agc_gain_index_readback agc_rx3_gain_index_readback 
0x0012 tx0_attenuation_readback_lsb tx0_attenuation_readback[7:0] 
0x0013 tx0_attenuation_readback_msb Reserved tx0_attenuation_readback[9:8] 
0x0014 tx0_attenuation_s1_lsb tx0_attenuation_s1[7:0] 
0x0015 tx0_attenuation_s1_msb Reserved tx0_attenuation_s1[9:8] 
0x0016 tx0_attenuation_s2_lsb tx0_attenuation_s2[7:0] 
0x0017 tx0_attenuation_s2_msb Reserved tx0_attenuation_s2[9:8] 
0x0018 tx1_attenuation_readback_lsb tx1_attenuation_readback[7:0] 
0x0019 tx1_attenuation_readback_msb Reserved tx1_attenuation_readback[9:8] 
0x001a tx1_attenuation_s1_lsb tx1_attenuation_s1[7:0] 
0x001b tx1_attenuation_s1_msb Reserved tx1_attenuation_s1[9:8] 
0x001c tx1_attenuation_s2_lsb tx1_attenuation_s2[7:0] 
0x001d tx1_attenuation_s2_msb Reserved tx1_attenuation_s2[9:8] 
0x001e tx2_attenuation_readback_lsb tx2_attenuation_readback[7:0] 
0x001f tx2_attenuation_readback_msb Reserved tx2_attenuation_readback[9:8] 
0x0020 tx2_attenuation_s1_lsb tx2_attenuation_s1[7:0] 
0x0021 tx2_attenuation_s1_msb Reserved tx2_attenuation_s1[9:8] 
0x0022 tx2_attenuation_s2_lsb tx2_attenuation_s2[7:0] 
0x0023 tx2_attenuation_s2_msb Reserved tx2_attenuation_s2[9:8] 
0x0024 tx3_attenuation_readback_lsb tx3_attenuation_readback[7:0] 
0x0025 tx3_attenuation_readback_msb Reserved tx3_attenuation_readback[9:8] 
0x0026 tx3_attenuation_s1_lsb tx3_attenuation_s1[7:0] 
0x0027 tx3_attenuation_s1_msb Reserved tx3_attenuation_s1[9:8] 
0x0028 tx3_attenuation_s2_lsb tx3_attenuation_s2[7:0] 
0x0029 tx3_attenuation_s2_msb Reserved tx3_attenuation_s2[9:8] 
0x002a tx_atten_upd_spi2 Reserved tx_atten_upd_core_spi2 tx_atten_upd_core_spi2_en 
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RF PORT INTERFACE OVERVIEW 
This section describes the recommended RF transmitter and receiver interfaces to obtain optimal device performance. This section 
includes data regarding the expected RF port impedance values and examples of impedance matching networks used in the evaluation 
platform. Some reference is also provided regarding board layout techniques and balun selection guidelines. 

The ADRV9026 is a highly integrated transceiver with transmit, receive and observation receive signal chains. External impedance 
matching networks are required on transmitter and receiver ports to achieve performance levels indicated on the data sheet. Analog 
Devices Inc. recommends the utilization of simulation tools in the design and optimization of impedance matching networks. To achieve 
best correlation from simulation to PCB, accurate models of the board environment, SMD components (for example, baluns and filters), 
and device port impedances are required.  

RF PORT IMPEDANCE DATA 
This section provides the port impedance data for all transmitters and receivers in the device. Note the following: 

 Zo is defined as 50 Ω for Tx and as 100 Ω for Rx/ORx. 
 The reference plane for this data is the device ball pads.  
 Single ended mode port impedance data is not available. However, a rough assessment is possible by taking the differential mode 

port impedance data and dividing both the real and imaginary components by 2. 
 Contact Analog Devices Applications Engineering for the impedance data in Touchstone format. 
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Figure 116. Tx1 and Tx4 SEDZ and PEDZ Data 
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Figure 117. Tx2 and Tx3 SEDZ Data 
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Figure 118. Rx1 and Rx4 SEDZ Data 
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Figure 119. Rx2 and Rx3 SEDZ Data 

22
7

70
-1

2
5

0

5.0

–5.0

2.0

1.0

–1.0

–2.0

0.5

–0.5

0.2

–0.2

m4
FREQUENCY = 3.500GHz
RC_SEDZ_Rref2 = 0.207/–133.176
IMPEDANCE = Z0 × (0.722 + j0.227)

m5
FREQUENCY = 4.500GHz
RC_SEDZ_Rref2 = 0.242/–149.161
IMPEDANCE = Z0 × (0.638 – j0.169)
m6
FREQUENCY = 6.000GHz
RC_SEDZ_Rref2 = 0.277/–172.444
IMPEDANCE = Z0 × (0.568 – j0.045)

m1
FREQUENCY = 100.0MHz
RC_SEDZ_Rref2 = 0.124/–49.378
IMPEDANCE = Z0 × (1.153 – j0.221)

m2
FREQUENCY = 1.000GHz
RC_SEDZ_Rref2 = 0.109/–85.458
IMPEDANCE = Z0 × (0.993 – j0.218)
m3
FREQUENCY = 2.000GHz
RC_SEDZ_Rref2 = 0.140/–107.096
IMPEDANCE = Z0 × (0.890 – j0.243)

FREQUENCY (100.0MHz TO 6.000GHz)

R
C

_S
E

D
Z

_R
re

f

M6
M5M4

M3

M2M1

 
Figure 120. ORx1 and ORx4 SEDZ Data 
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Figure 121. ORx2 and ORx3 SEDZ Data 

ADS SETUP USING DAC (DATA ACCESS COMPONENT) AND SEDZ FILE 
The port impedances are supplied as an *.s1p Series Equivalent Differential Z (impedance) file. This format allows simple interface to 
ADS by using the Data Access Component. In Figure 122, Term1 is the single ended input or output and Term2 represents the differential 
input or output RF port. The Pi network on the single ended side and the differential Pi configuration on the differential side allow 
maximum flexibility in designing matching circuits and is suggested for all design layouts as it can step the impedance up or down as 
needed with appropriate component selection. 
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Figure 122. Simulation Setup in ADS with SEDZ s1p Files and DAC Ccomponent 

Operation is as follows: 

1. 1. The DAC bBlock reads the rf port *.s1p file. This is the device rf port reflection coefficient. 
2. 2. The two equations convert the RF port reflection coefficient to a complex impedance. The end result is the RX_SEDZ variable. 
3. 3. The RF port calculated complex impedance (RX_SEDZ) is utilized to define the Term2 impedance. 

Term2 is used in a differential mode and Term1 is used in a single-ended mode. Setting up the simulation this way allows measurement of 
S11, S22, and S21 of the 3-port system without complex math operations within the display page. 

For highest accuracy, use EM modeling results of the PCB artwork and S parameters of the matching components and balun in the 
simulations. 
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TRANSMITTER BIAS AND PORT INTERFACE 
This section considers the dc biasing of the transmitter (Tx) outputs and how to interface to each Tx port. The transmitters operate over a 
range of frequencies. At full output power, each differential output side draws approximately 100 mA of dc bias current. The Tx outputs 
are dc biased to a 1.8 V supply voltage using either RF chokes (wire-wound inductors) or a transformer center tap connection.  

Careful design of the dc bias network is required to ensure optimal RF performance levels. When designing the dc bias network, select 
components with low dc resistance (RDCR) to minimize the voltage drop across the series parasitic resistance element with either of the 
suggested dc bias schemes suggested in Figure 123. The red resistors (R_DCR) indicate the parasitic elements. As the impedance of the 
parasitics increase, the voltage drop (ΔV) across the parasitic element increases, causing the transmitter RF performance (for example, 
PO,1dB and PO,MAX) to degrade. Select the choke inductance (LC) high enough relative to the load impedance such that it does not degrade 
the output power.  

The recommended dc bias network is shown in Figure 124. This network has fewer parasitics and fewer total components.  
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Figure 123. RF DC Bias Configurations Depicting Parasitic Losses Due toWire Wound Chokes  
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Figure 124. RF DC Bias Configurations Depicting Parasitic Losses Due to Center Tapped Transformers 

Figure 125 to Figure 128 identifyfour basic differential transmitter output configurations. Impedance matching networks (balun single-
ended port) are most likely required to achieve optimum device performance from the device. Also, the transmitter outputs must be ac-
coupled in most applications due to the dc bias voltage applied to the differential output lines of the transmitter.  

The recommended RF transmitter interface featuring a center tapped balun is shown in Figure 125. This configuration offers the lowest 
component count of the options presented.  

Brief descriptions of the Tx port interface schemes are provided as follows:  

 Center tapped transformer passes the bias voltage directly to the transmitter outputs 
 RF chokes are used to bias the differential transmitter output lines. Additional coupling capacitors (CC) are added in the creation of a 

transmission line balun 
 RF chokes are used to bias the differential transmitter output lines and connect into a transformer 
 RF chokes are used to bias the differential output lines that are ac-coupled into the input of a driver amplifier.  
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Figure 125. ADRV9026 RF Transmitter Interface Configuration A 
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Figure 126. ADRV9026 RF Transmitter Interface Configuration B 
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Figure 127. ADRV9026 RF Transmitter Interface Configuration C 
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Figure 128. ADRV9026 RF Transmitter Interface Configuration D 

 

If a Tx balun is selected that requires a set of external dc bias chokes, careful planning is required. It is necessary to find the optimum 
compromise between the choke physical size, choke dc resistance (RDCR) and the balun low frequency insertion loss. In commercially 
available dc bias chokes, resistance decreases as size increases. However, as choke inductance increases, resistance increases. Therefore, it 
is undesirable to use physically small chokes with high inductance as they exhibit the greatest resistance. For example, the voltage drop of 
a 500 nH, 0603 choke at 100 mA is roughly 50 mV. 

 

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
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Table 244. Sample Wire-Wound DC Bias Choke Resistance vs. Size 
Inductance (nH) Resistance (Size: 0603) Resistance (Size: 1206) 
100 0.10 0.08 
200 0.15 0.10 
300 0.16 0.12 
400 0.28 0.14 
500 0.45 0.15 
600 0.52 0.20 

 

GENERAL RECEIVER PATH INTERFACE 
The device has two types of receivers. These receivers include four main receive pathways (Rx1, Rx2, Rx3 and Rx4) and four observation 
receivers (ORx1, ORx2, ORx3 and ORx4). The Rx and ORx channels are designed for differential use only. 

The receivers support a wide range of operation frequencies. In the case of the Rx and ORx channels, the differential signals interface to 
an integrated mixer. The mixer input pins have a dc bias of approximately 0.7 V present on them and may need to be ac-coupled 
depending on the common mode voltage level of the external circuit.  

Important considerations for the receiver port interface are as follows:  

 Device to be interfaced: filter, balun, T/R switch, external LNA, and external PA. Determine if this device represents a short to 
ground at dc.  

 Rx and ORx maximum safe input power is +18 dBm (peak). 
 Rx and ORx optimum dc bias voltage is 0.7 V bias to ground. 
 Board Design: reference planes, transmission lines, and impedance matching. 

Figure 129 shows possible differential receiver port interface circuits. The options in Figure 129 and Figure 130 are valid for all receiver 
inputs operating in differential mode, though only the Rx1 signal names are indicated. Impedance matching may be necessary to obtain 
data sheet performance levels.  
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Figure 129. Differential Receiver Input Interface Circuits 
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Figure 130. Differential Receiver Input Interface Circuits 

Given wide RF bandwidth applications, SMD balun devices function well. Decent loss and differential balance are available in a relatively 
small (0603, 0805) package.  

IMPEDANCE MATCHING NETWORK EXAMPLES 
Impedance matching networks are required to achieve performance levels noted on the data sheet. This section provides example 
topologies and components used on the CE board.  

Models of the devices, board, balun and SMD components are required to build an accurate system level simulation. The board layout 
model may be obtained from an EM (electro-magnetic: Momentum) simulator. The balun and SMD component models may be obtained 
from the device vendors or built locally. Contact Analog Devices Applications Engineering for device modeling details.  
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Figure 131. Impedance Matching Topology 

The impedance matching networks provided in this section have not been evaluated in terms of Mean Time to Failure (MTTF) in high 
volume production. Consult with component vendors for long-term reliability concerns. Additionally, consult with balun vendors to 
determine appropriate conditions for dc biasing. 

The schematics in Figure 132, Figure 133, and Figure 134 show two or three circuit elements in parallel marked DNI (Do Not Include). 
This was done on the evaluation board schematic to accommodate different component configurations for different frequency ranges. 
Only one set of SMD component pads are placed on the board to provide a physical location that can be used for the selected parallel 
circuit element. For example, R302, L302, and C302 components only have one set of SMD pads for one SMD component. The schematic 
shows that in a generic port impedance matching network, the series elements may be either a resistor, inductor or a capacitor whereas 
the shunt elements may be either an inductor or a capacitor. Only one component of each parallel combination is placed in a practical 
application. Note that in some matching circuits, some shunt elements may not be required. All components for a given physical location 
remain DNI in those particular applications. 
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Figure 132. Transmitter Generic Matching Network Topology from CE  Board 
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Figure 133. Receiver Generic Matching Network Topology from CE  Board 
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Figure 134. Observation Receiver Generic Matching Network Topology from CE Board 
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MATCHING COMPONENT RECOMMENDATIONS 
Table 245 through Table 250 show the balun and matching components used on the CE boards. DNI stands for do not install (leave 
open). Note that all tolerances are ±3% unless listed. Tolerance notations are either shown as a percentage of the nominal value (%) or as a 
range in the units of the component. Component reference designators can be cross-referenced with the schematic drawings for the CE 
boards. 

Table 245. Receiver Matching Components—Rx1 and Rx4 

Frequency 
Band 
(MHz) 

Component Location on PCB (All Tolerances Are ±3% Unless Noted) 

C301/ 
L301, 
C331/ 
L331 

C302/L302/ 
R302, C332/ 
L332/ R332 

C303/ 
L303, 
C333/ 
L333 

C304/L304/ 
R304, C334/ 
L334/R334 

C305/ 
R305, 
C335/ 
R335 

C306/ 
L306, 
C336/ 
L336 

C307/L307/ 
R307, C337/ 
L337/ R337 

C308/L308/ 
R308, C338/ 
L338/R338 

C309/ 
L309, 
C339/ 
L339 T301, T307 

650 to 2800 DNI 0 Ω DNI 0 Ω  0 Ω 91 nH 3.9 pF ± 
0.1 pF 

3.9 pF ± 
0.1 pF 

47 nH Johanson 
1720BL15A0100 

2800 to 
6000 

DNI 1.2 nH ± 
0.1 nH 

DNI 0 Ω 1.8 pF ± 
0.1 pF 

9.1 nH 0.7 nH  ± 
0.1 nH 

0.7 nH  ± 
0.1 nH 

30 nH Johanson 
4400BL15A0100E 

Table 246. Receiver Matching Components—Rx2 and Rx3 

Frequency 
Band (MHz) 

Component Location on PCB (All Tolerances Are ±3% Unless Noted) 

C311/ 
L311, 
C321/ 
L321 

C312/L312/ 
R312, C322/ 
L322/R322 

C313/ 
L313, 
C323/ 
L323 

C314/L314/ 
R314, C324/ 
L324/R324 

C315/ 
R315, 
C325/ 
R325 

C316/ 
L316, 
C326/ 
L326 

C317/ 
L317/R317, 
C327/ 
L327/ R327 

C318/L318/ 
R318, C328/ 
L328/R328 

C319/ 
L319, 
C329/ 
L329 T303, T305 

650 to 2800 DNI 0 Ω DNI 0 Ω  0 Ω 100 nH 3.9 pF ± 
0.1 pF 

3.9 pF  ± 0.1 pF 43 nH Johanson 
1720BL15A0100 

2800 to 6000 DNI 1.2 nH ± 
0.1 nH 

0.2 pF ± 
0.05 pF 

0 Ω 4.8 pF ± 
0.1 pF 

9.1 nH 0.7 nH  ± 
0.1 nH 

0.7 nH ± 0.1 nH 30 nH Johanson 
4400BL15A0100E 

 

Table 247. Observation Receiver Matching Components—ORx2 and ORx4 

Frequency 
Band 
(MHz) 

Component Location on PCB (All Tolerances Are ±3% Unless Noted) 

C401/ 
L401, 
C431/ 
L431 

C402/L402/ 
R402, C432/ 
L432/R432 

C403/ 
L403, 
C433/ 
L433 

C404/L404/ 
R404, C434/ 
L434/R434 

C405/ 
R405, 
C435/ 
R435 

C406/ 
L406, 
C436/ 
L436 

C407/ L407/ 
R407, C437/ 
L437/R437 

C408/ L408/ 
R408, C438/ 
L438/ R438 

C409/ 
L409, 
C439/ 
L439 T401, T407 

650 to 2800 DNI 0 Ω DNI 0 Ω  0 Ω 82 nH 4.7 pF ± 
0.1 pF 

4.7 pF ± 
0.1 pF 

75 nH ± 
5% 

Johanson 
1720BL15A0100 

2800 to 
6000 

DNI 1.3 nH ± 
0.1 nH 

0.2 pF ± 
0.05 pF 

0 Ω 5.6 pF 
± 0.1 
pF 

7.5 nH 0.6 nH ± 
0.1 nH 

0.6 nH ± 
0.1 nH 

0.1pF ± 
0.05 pF 

Johanson 
4400BL15A0100E 

 

Table 248. Observation Receiver Matching Components—ORx1 and ORx3 

Frequency 
Band 
(MHz) 

Component Location on PCB (All Tolerances Are ±3% Unless Noted) 

C411/ 
L411, 
C421/ 
L421 

C432/ L412/ 
R412, C422/ 
L422/R422 

C413/ 
L413, 
C423/ 
L423 

C414/ L414/ 
R414, C424/ 
L424/R424 

C415/ 
R415, 
C425/ 
R425 

C416/ 
L416, 
C426/ 
L426 

C417/L417/ 
R417, C427/ 
L427/R427 

C418/L418/ 
R418, C428/ 
L428/R428 

C419/ 
L419, 
C429/ 
L429 T403, T405 

650 to 2800 DNI 0 Ω DNI 0 Ω  0 Ω 200 nH 10 pF   ± 5% 10 pF   ± 5% 200 nH Johanson 
1720BL15A0100 

2800 to 
6000 

13 nH 0.5 nH ± 
0.1 nH 

DNI 0.3 nH ± 
0.1 nH 

1.6 pF  
± 0.1 pF 

11 nH 0.5 nH  ± 
0.1 nH 

0.5 nH  ± 
0.1 nH 

39 nH Johanson 
4400BL15A0100E 
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Table 249. Transmitter Matching Components—Tx1 and Tx4 

Frequency 
Band 
(MHz) 

Component Location on PCB (All Tolerances Are ±3% Unless Noted) 

C512/ 
L512, 
C572/ 
L572 

C511/L511/ 
R511, C571/ 
L571/R571 

C510/ 
L510, 
C570/ 
L570 

C509/L509/ 
R509, C569/ 
L569/R569 

C508/ 
L508, 
C568/ 
L568 

C506/L506/ 
R506, C566/ 
L566/R566 

C507/ L507/ 
R507, C567/ 
L567/ R567 

C503/ 
L503, 
C563/ 
L563 

C516, 
C576 T501, T507 

650 to 2800 DNI 0.8 nH ± 
0.1 nH 

33 nH 5.1 pF ± 
0.1 pF 

DNI 0 Ω 0 Ω DNI 82 pF Johanson 
1720BL15A0100 

2800 to 
6000 

3.2 nH ± 
0.1 nH 

8.2 pF ± 
0.1 pF 

DNI 2 pF ± 0.1 pF 16 nH 1.1 nH ± 
0.1 nH 

1.1 nH  ± 
0.1 nH 

12 nH 6.2 pF ± 
0.1 pF 

Johanson 
4400BL15A0100E 

 

Table 250. Transmitter Matching Components—Tx2 and Tx3 

Frequency 
Band 
(MHz) 

Component Location on PCB (All Tolerances Are ±3% Unless Noted) 

C532/ 
L532, 
C552/ 
L552 

C531/L531/ 
R531, C551/ 
L551/R551 

C530/ 
L530, 
C550/ 
L550 

C529/L529/ 
R529, C549/ 
L549/R549 

C528/ 
L528, 
C548/ 
L548 

C526/ L526/ 
R526, C546/ 
L546/ R546 

C527/ 
L527/ R527, 
C547/ 
L547/ R547 

C523/ 
L523, 
C543/ 
L543 

C536, 
C556 T503, T505 

650 to 2800 DNI 0.9 nH ± 
0.1 nH 

200 nH 6.8 pF ± 
0.1 pF 

DNI 0 Ω 0 Ω DNI 82 pF Johanson 
1720BL15A0100 

2800 to 
6000 

62 nH  1.8 nH ± 
0.1 nH 

0.2 pF ± 
0.05 pF 

0.5 nH ± 
0.1 nH 

12 nH 1 nH ± 0.1 nH 1 nH ± 
0.1 nH 

20 nH 4.9 pF ± 
0.1 pF 

Johanson 
4400BL15A0100E 
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POWER MANAGEMENT CONSIDERATIONS 
The ADRV9026 requires five different power supply domains: 

 1.0 V digital: this supply is connected to the device through the three VDIG_1P0 pins. This is the supply that feeds all digital 
processing and clock generation. Take care to properly isolate this supply from all analog signals on the PCB to avoid noise 
corruption. This supply input can have a tolerance of ±5%, but note that the total tolerance must include the tolerance of the supply 
device added to the voltage drop of the PCB. This supply is a high-current input, so it is critical that the input traces for these three 
inputs be balance (same impedance for inputs) and as thick as possible to minimize the I × R drop.  

 1.0 V analog: these supplies are collectively referred to in the data sheet as the VANA_1P0 supply. This covers the VDES_1P0, 
VSER_1P0, VTT_DES, and VJSY_1P0 supplies. All of these inputs provide power for various functions in the JESD interface blocks. 
They can be connected directly to the same supply as VDIG_1P0 if the source has the current capability to supply the extra current 
needed for the JESD interface and if proper isolation is included to prevent digital noise from corrupting these inputs. Alternatively, 
these supply inputs can be connected to a separate 1.0 V regulator to keep them isolated from digital domains inside the device. This 
supply input also has a tolerance of ±5%.  

 1.3 V analog: these supplies connect to all functional blocks in the device through 14 different input pins. They are collectively 
referred to in the data sheet as the VANA_1P3 supply. Treat each input as a noise susceptible input, meaning proper decoupling and 
isolation techniques must be followed to avoid crosstalk between channels. The tolerance on these supply inputs is ±2.5%. 

 1.8 V analog: these supplies are primarily used to supply the transmitter outputs, but they also supply current for multiple 
transmitter, receiver, converter, and auxiliary converter blocks. They are collectively referred to in the data sheet as the VANA_1P8 
supply. This supply has a tolerance of ±5%.  

 Interface supply: the VIF supply is a separate power domain shared with the baseband processor interface. The nominal input voltage 
on this supply is 1.8 V with a tolerance of ±5%. This input serves as the voltage reference for the digital interface (SPI), GPIO, and 
digital control inputs.  

IMPORTANT 
During operation, supply currents can vary significantly, especially if operating in TDD mode.  The supply needs to have adequate 
capacity to provide the necessary current (as indicated on the data sheet) so that performance criteria over all process and temperature 
variations are maintained. Analog Devices recommends adding 900 mA to the digital and 20% margin to all analog supply maximums to 
ensure proper operation under all conditions. 

POWER SUPPLY SEQUENCE 
The device requires a specific power-up sequence to avoid undesirable power-up currents. In the optimal sequence, the VDIG_1P0 supply 
must come up first. If the VANA_1P0 supplies are connected to the same source as the VDIG_1P0 supply, then it is acceptable for these 
inputs to power up at the same time as the VDIG_1P0 supply. After the VDIG_1P0 source is enabled, the other supplies can be enabled in 
any order or all together. Note that the VIF supply can be enabled at any time without affecting the other circuits in the device. In 
addition to this sequence, it is also recommended to toggle the RESET signal after power has stabilized prior to initializing the device.  

The power-down sequence recommendation is similar to power-up. Disable all analog supplies in any order (or all together) before 
VDIG_1P0 is disabled. If such a sequence is not possible, then disable the sources of all supplies simultaneously to ensure there is no back 
feeding circuits that have been powered down. 

POWER SUPPLY DOMAIN CONNECTIONS 
lists the pin number, the pin name, the recommended routing technique for that pin from the main 1.3 V analog supply (if applicable), 
and a brief description of the block it powers in the chip.  

The information listed in Table 251 shows which power supply pins must be powered by designated traces and which pins are tied 
together and share a common trace. In some cases, a separate trace from a common power plane is used to power up two to three 1.3 V 
power supply pins, wheras in other cases, there are power supply pins that are powered from a separate trace. 

The recommendation for VDDA1P3_DES is to keep it separate from the VDDA1P3_SER supplies using a separate trace. It is acceptable 
to power this input from the other 1.3 V analog supply. Noise from this supply can affect the JESD link performance directly. 

 

 

 

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
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Table 251. Power Supply Pins and Functions 
Pin Name Pin No.  Type Voltage (V) Recommended Routing/Notes Description 
VDIG_1P0 G9, J9, 

L9 
Digital 1.0 Ensure all connections are matched to avoid 

variations in voltage among the pins. Minimize 
total impedance to ensure as little voltage drop as 
possible. 

Digital clocks and processing 
blocks 

VIF N9 Analog 1.8 CMOS/LVDS Interface Supply (routing typically 
not critical). 

Supply for SPI interface, GPIO, 
control signals 

TX1± (RF 
Choke Feed) 

N17, 
P17 

Analog 1.8 Star connect from the 1.8 V plane, isolated by 
ground from other transmitter supplies, 
connected to pins using RF chokes (part depends 
on frequency range) 

Alternative Tx supply if power is 
not supplied via a center-tapped 
balun 

TX2± (RF 
Choke Feed) 

A13, 
A14 

Analog 1.8 Star connect from the 1.8 V plane, isolated by 
ground from other transmitter supplies, 
connected to pins using RF chokes (part depends 
on frequency range) 

Alternative Tx supply if power is 
not supplied via a center-tapped 
balun 

TX3± (RF 
Choke Feed) 

A4, A5 Analog 1.8 Star connect from the 1.8 V plane, isolated by 
ground from other transmitter supplies, 
connected to pins using RF chokes (part depends 
on frequency range) 

Alternative Tx output supply if 
power is not supplied via a 
center-tapped balun 

TX4± (RF 
Choke Feed) 

P1, N1 Analog 1.8 Star connect from the 1.8 V plane, isolated by 
ground from other transmitter supplies, 
connected to pins using RF chokes (part depends 
on frequency range) 

Alternative Tx output supply if 
power is not supplied via a 
center-tapped balun 

VANA1_1P8 N16 Analog 1.8 Star connect from the 1.8 V plane. Isolate from 
other 1.8 V inputs with a ferrite bead if necessary. 

1.8V supply for: Tx1 analog 
output, Rx1 LO buffer, RF synth1, 
AUXADC_0, AUXADC_1, Rx1 TIA, 
ORx1 mixer, Converter1 LDO 

VANA2_1P8 B14 Analog 1.8 Star connect from the 1.8 V plane. Isolate from 
other 1.8 V inputs with a ferrite bead if necessary. 

1.8V supply for: Tx2 analog 
output, Tx1_2 LO buffers and LO 
delay, Analog SPI, DEVCLK, AUX 
PLL and AUX LO generation, Rx 
LO mux and mbias, Rx2 LO 
buffer, RF PLL1 and LOGEN1, 
ORx1_2 LO buffers and TxLB1_2 
LO buffer, Rx2 TIA, ORx2 mixer, 
ORx1 and ORx2 TIA 

VANA3_1P8 B4 Analog 1.8 Star connect from the 1.8 V plane. Isolate from 
other 1.8 V inputs with a ferrite bead if necessary. 

1.8V supply for: Tx3 analog 
output, Aux synth, Tx3_4 LO, 
Analog SPI, Rx3 LO buffer, RF 
PLL2 and LOGEN2, ORx3_4 LO 
buffers and TxLB3_4 LO buffers, 
Rx3 TIA, ORx3 mixer, ORx3_4 TIA 

VANA4_1P8 N2 Analog 1.8 Star connect from the 1.8 V plane. Isolate from 
other 1.8 V inputs with a ferrite bead if necessary. 

1.8V supply for: Tx4 analog 
output, RF synth2, Rx4 LO buffer, 
Clock PLL and CLKGEN, Clock 
synth, AUXADC_2, AUXADC_3, 
Rx4 TIA, ORx4 mixer, Converter2 
LDO 

VCONV1_1P8 H15 Analog 1.8 Star connect from the 1.8 V plane. Isolate from 
other 1.8 V inputs with a ferrite bead if necessary. 

1.8V supply for: Tx1,2 DACs, 
Rx1,2 ADCs, ORx1,2 ADCs 

VCONV2_1P8 H3 Analog 1.8 Star connect from the 1.8 V plane. Isolate from 
other 1.8 V inputs with a ferrite bead if necessary. 

1.8V supply for: Tx3,4 DACs, 
Rx3,4 ADCs, ORx3,4 ADCs 

VJVCO_1P8 P11 Analog 1.8 Star connect from the 1.8 V plane. Isolate from 
other 1.8 V inputs with a ferrite bead if necessary. 

1.8V supply for JESD VCO/PLL 

VANA1_1P3 D15 Analog 1.3 Star connect from the 1.3 V plane. Use wide 
traces/shapes to minimize trace resistance as 
much as possible. Isolate from other 1.8 V inputs 
with a ferrite bead if necessary. 

1.3V supply for: Tx1 phase 
detector, BBF, Tx2 phase 
detector, BBF, Rx1, Rx2 TIA, 
ORx1_2 TIA, Analog SPI 
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Pin Name Pin No.  Type Voltage (V) Recommended Routing/Notes Description 
VANA2_1P3 D3 Analog 1.3 Star connect from the 1.3 V plane. Use wide 

traces/shapes to minimize trace resistance as 
much as possible. Isolate from other 1.8 V inputs 
with a ferrite bead if necessary. 

1.3V supply for: Tx3 phase 
detector, BBF, Tx4 phase 
detector, BBF, Rx3,4 TIA, ORx3_4 
TIA, Analog SPI 

VCONV1_1P3 J15 Analog 1.3 Star connect from the 1.3 V plane. Use wide 
traces/shapes to minimize trace resistance as 
much as possible. Isolate from other 1.8 V inputs 
with a ferrite bead if necessary. 

1.3V supply for: Tx1,2 DACs, 
Rx1,2 ADCs, ORx1_2 ADCs 

VCONV2_1P3 J3 Analog 1.3 Star connect from the 1.3 V plane. Use wide 
traces/shapes to minimize trace resistance as 
much as possible. Isolate from other 1.8 V inputs 
with a ferrite bead if necessary. 

1.3V supply for: Tx3,4 DACs, Rx3, 
Rx4 ADCs, ORx3_4 ADCs  

VRFVCO1_1P3 G15 Analog 1.3 Star connect from the 1.3 V plane. Use wide 
traces/shapes to minimize trace resistance as 
much as possible. Isolate from other 1.8 V inputs 
with a ferrite bead if necessary. Very sensitive to 
aggressors. 

1.3V supply for: RF VCO1, 
LOGEN1 

VRFVCO2_1P3 G3 Analog 1.3 Star connect from the 1.3 V plane. Use wide 
traces/shapes to minimize trace resistance as 
much as possible. Isolate from other 1.8 V inputs 
with a ferrite bead if necessary. Very sensitive to 
aggressors. 

1.3V supply for: RF VCO2, 
LOGEN2 

VRFSYN1_1P3 J13 Analog 1.3 Star connect from the 1.3 V plane. Use wide 
traces/shapes to minimize trace resistance as 
much as possible. Isolate from other 1.8 V inputs 
with a ferrite bead if necessary. Very sensitive to 
aggressors. 

1.3V supply for RF1 synth 

VRFSYN2_1P3 J5 Analog 1.3 Star connect from the 1.3 V plane. Use wide 
traces/shapes to minimize trace resistance as 
much as possible. Isolate from other 1.8 V inputs 
with a ferrite bead if necessary. Very sensitive to 
aggressors. 

1.3V supply for RF1 synth 

VAUXVCO_1P3 C12 Analog 1.3 Star connect from the 1.3 V plane. Use wide 
traces/shapes to minimize trace resistance as 
much as possible. Isolate from other 1.8 V inputs 
with a ferrite bead if necessary. Very sensitive to 
aggressors. 

1.3V supply for: Aux VCO, Aux 
LOGEN1_2, Aux LOGEN3_4 

VAUXSYN_1P3 C6 Analog 1.3 Star connect from the 1.3 V plane. Use wide 
traces/shapes to minimize trace resistance as 
much as possible. Isolate from other 1.8 V inputs 
with a ferrite bead if necessary. Very sensitive to 
aggressors. 

1.3V supply for Aux synth 

VCLKSYN_1P3 R7 Analog 1.3 Star connect from the 1.3 V plane. Use wide 
traces/shapes to minimize trace resistance as 
much as possible. Isolate from other 1.8 V inputs 
with a ferrite bead if necessary. Very sensitive to 
aggressors. 

1.3V supply for: DEVCLK, Clock 
synth 

VCLKVCO_1P3 N5 Analog 1.3 Star connect from the 1.3 V plane. Use wide 
traces/shapes to minimize trace resistance as 
much as possible. Isolate from other 1.8 V inputs 
with a ferrite bead if necessary. Very sensitive to 
aggressors. 

1.3V supply for: Clock VCO, Clock 
generation, Clock distribution 

VRXLO_1P3 A9 Analog 1.3 Star connect from the 1.3 V plane. Use wide 
traces/shapes to minimize trace resistance as 
much as possible. Isolate from other 1.8 V inputs 
with a ferrite bead if necessary. Very sensitive to 
aggressors. 

1.3V supply for: Rx1,2 LO mux; 
Rx3, Rx4 LO mux  



Preliminary Technical Data UG-1727
 

Rev. PrA | Page 225 of 267 

Pin Name Pin No.  Type Voltage (V) Recommended Routing/Notes Description 
VTXLO_1P3 A7 Analog 1.3 Star connect from the 1.3 V plane. Use wide 

traces/shapes to minimize trace resistance as 
much as possible. Isolate from other 1.8 V inputs 
with a ferrite bead if necessary. Very sensitive to 
aggressors. 

1.3V supply for: Tx1, Tx2 LO mux; 
Tx3, Tx4 LO mux 

VSER_1P0 R3, R4 Analog 1.0 Connect directly to VDIG_1P0 or to a 1.0 V 
regulator using a separate wide trace to minimize 
resistance as much as possible. Connect using a 
ferrite bead if concerned with digital noise. 

1.0V supply for JESD serializer 

VDES_1P0 P12, 
P13 

Analog 1.0 Connect directly to VDIG_1P0 or to a 1.0 V 
regulator using a separate wide trace to minimize 
resistance as much as possible. Connect using a 
ferrite bead if concerned with digital noise. 

1.0V supply for JESD deserializer 

VTT_DES P14 Analog 1.0 Connect directly to VDIG_1P0 or to a 1.0 V 
regulator. Connect using a ferrite bead if 
concerned with digital noise. 

1.0V supply for JESD deserializer 
VTT 

VJSYN_1P0 R9 Analog 1.0 Connect directly to VDIG_1P0 or to a 1.0 V 
regulator. Connect using a ferrite bead if 
concerned with digital noise. 

1.0V supply for the JESD synth 

VCONV1_1P0 K12 Analog 1.0 Connect a 4.7 μF bypass capacitor to ground. Bypass connection point for 
internal converter regulator. 

VCONV2_1P0 K3 Analog 1.0 Connect a 4.7 μF bypass capacitor to ground. Bypass connection point for 
internal converter regulator. 

VAUXVCO_1P0 B11 Analog 1.0 Connect a 4.7 μF bypass capacitor to ground. Bypass connection point for 
internal AUXVCO regulator. 

VCLKVCO_1P0 P5 Analog 1.0 Connect a 4.7 μF bypass capacitor to ground. Bypass connection point for 
internal CLKVCO regulator. 

VRFVCO1_1P0 G13 Analog 1.0 Connect a 4.7 μF bypass capacitor to ground. Bypass connection point for 
internal RFVCO1 regulator. 

VRFVCO2_1P0 G5 Analog 1.0 Connect a 4.7 μF bypass capacitor to ground. Bypass connection point for 
internal RFVCO2 regulator. 

 

POWER SUPPLY ARCHITECTURE 
The diagram in Figure 135 outlines the power supply configuration used on the CE board. This configuration follows the 
recommendations outlined in Table 251. This diagram includes the use of ferrite beads for additional RF isolation and 0 Ω resistors. The 
use of 0 Ω resistors accomplishes three goals. 

 Serve as place holders for ferrite beads or other filter devices that may be needed when users encounter RF noise problems in their 
application and additional isolation is required.  

 Ensure that layout follows power routing, forcing traces to be star connected to a central supply. 
 Provide a place in the circuit where the current can be monitored and measured for debugging purposes. For this case, the 0 Ω 

components can be replaced by very low impedance shunt resistors and the voltage measured to determine total current to the 
specified input ball. 

For more details on exact power supply implementation, refer to the ADRV9026 CE board schematic that is supplied by the Analog 
ADRV9026 design support package with this user guide.  

 

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
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Figure 135. Power Supply Connection Diagram 

CURRENT CONSUMPTION 
Current consumption in each block can vary depending on the device configuration for the profile in use. Clock frequencies, data rates, 
calibrations, and number of channels in operation all influence the amount of current required for transceiver operation. The following 
information is a sample of a typical use case profile and the resulting current consumption in different modes. Note that this is a typical 
example, but do not consider the values maximums for design purposes. Follow the design margins noted previously in this section when 
sizing power supplies.  

Current Measurements: Use Case 26C-Link Sharing Profile 

The setup parameters are as follows: 

 Tx channels: 4 
 Rx channels: 4 
 ORx channels: 1 
 Device clock: 491.52 MHz 
 Tx/Rx primary signal bandwidth: 200 MHz 
 Tx/ORx synthesis bandwidth: 450 MHz 
 Rx data sample rate: 245.76 MSPS 
 Tx/ORx data sample rate: 491.52 MSPS 
 JESD lane rate: 16.22016 Gbps 
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Table 252. Typical Current Consumption—Use Case 26-NLS 

Pin Name Pins Type Voltage (V) 
Measured Current (mA) 

Rx Enabled Tx + ORx Enabled Rx + Tx + ORx Enabled 
VDIG_1P0 G9, J9, L9 Digital 1.0 985 1193 1540 
VSER_1P0 R3, R4 Analog 1.0 155 155 156 
VDES_1P0 P12, P13 Analog 1.0 416 418 419 
VTT_DES P14 Analog 1.0 4 4 4 
VJSYN_1P0 R9 Analog 1.0 8 8 8 
VIF N9 Analog 1.8 5 5 5 
VANA1_1P8 N16 Analog 1.8 5 130 130 
VANA2_1P8 B14 Analog 1.8 13 131 131 
VANA3_1P8 B4 Analog 1.8 8 130 130 
VANA4_1P8 N2 Analog 1.8 8 130 130 
VCONV1_1P8 H15 Analog 1.8 102 64 141 
VCONV2_1P8 H3 Analog 1.8 102 25 102 
VJVCO_1P8 P11 Analog 1.8 43 43 43 
VANA1_1P3 D15 Analog 1.3 321 359 475 
VANA2_1P3 D3 Analog 1.3 317 310 417 
VCONV1_1P3 J15 Analog 1.3 377 299 662 
VCONV2_1P3 J3 Analog 1.3 372 116 476 
VRFVCO1_1P3 G15 Analog 1.3 179 177 179 
VRFVCO2_1P3 G3 Analog 1.3 177 176 179 
VRFSYN1_1P3 J13 Analog 1.3 10 10 10 
VRFSYN2_1P3 J5 Analog 1.3 10 10 10 
VAUXVCO_1P3 C12 Analog 1.3 189 214 218 
VAUXSYN_1P3 C6 Analog 1.3 7 8 8 
VCLKSYN_1P3 R7 Analog 1.3 22 22 22 
VCLKVCO_1P3 N5 Analog 1.3 103 103 132 
VRXLO_1P3 A9 Analog 1.3 169 19 171 
VTXLO_1P3 A7 Analog 1.3 11 184 187 

 

Table 253. Total Current Consumption per Supply Rail 
Mode of Operation 1.8 V Source Current (mA) 1.3 V Source Current (mA) 1.0 V Source Current (mA) 
Rx Enabled 281 2264 1568 
Tx + ORx Enabled 653 2007 1778 
Rx + Tx + ORx Enabled 807 3146 2127 
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PCB LAYOUT CONSIDERATIONS 
OVERVIEW 
The ADRV9026 is a highly integrated RF agile transceiver with significant signal conditioning integrated onto one chip. Due to the high 
level of complexity of the device and its high pin count, careful printed circuit board (PCB) layout is important to obtain optimal 
performance. This document provides a checklist of issues to look for and general guidelines on how to optimize the PCB to mitigate 
performance issues. The goal of this document is to help achieve the best performance from the ADRV9026 while reducing board layout 
effort. This section assumes that the reader is an experienced analog/RF engineer who understands RF PCB layout as well as RF and high 
speed transmission lines.  

The ADRV9026 evaluation board represents one of the most complex implementations of the device. All RF inputs and outputs, JESD 
serial data lanes, and digital control and monitoring signals are implemented in this design. As such, a high level of PCB technology is 
used to achieve maximum device performance while seeking to maintain a high level of performance in the face of constraints presented 
by the routing density. Depending on the intended application, users may not require all signals to be routed and can, therefore, use 
alternate PCB layout techniques to reach their design goals. This includes but is not limited to a traditional BGA fan-out, fewer layers, 
through hole vias only, and lower grade PCB materials.  

This section discusses the following issues and provides guidelines for system designers to get the best performance out of the ADRV9026 
device: 

 PCB material and stack up selection 
 Fan-out and trace-space layout guidelines 
 Component placement and routing priorities 
 RF and JESD transmission line layout 
 Isolation techniques used on the ADRV9026 CE board 
 Power management routing considerations 
 Analog signal routing recommendations 
 Digital signal routing recommendations 
 Unused pin instructions 

PCB MATERIAL AND STACK UP SELECTION 
The ADRV9026 evaluation board utilizes Isola I-Speed dielectric material. It was selected for its low loss tangent and low dielectric 
constant characteristics. On previous evaluation systems, Analog Devices has chosen a combination of low loss, RF capable dielectric for 
the outer edge layers and standard FR4-370 HR dielectric for interior layers. RF signal routing on these boards was confined to the top 
and bottom layers. Therefore, the material mix was a good compromise to obtain optimum RF performance and low overall board cost. 
Given the need to route RF and high speed digital data lanes on multiple layers due to the increased number of RF channels and JESD 
lanes, I-Speed material was chosen for all layers on this board. There are several other material options on the market from other PCB 
material vendors that are also valid options for use with the ADRV9026 device. The key comparison metric for these materials is the 
dielectric constant and the loss tangent. Designers must also be careful to ensure that the thermal characteristics of the material are 
adequate to handle high reflow temperatures for short durations and expected operating temperatures for extended durations. 

Figure 136 shows the PCB stack up used for the ADRV9026 evaluation board. Layer 1 and Layer 16 are primarily used for RF IO signal 
routing and I-Speed prepreg material was selected to support the required controlled impedance traces. Layer 2 and Layer 15 have 
uninterrupted ground copper flood beneath all RF routes on Layer 1 and Layer 16. Layer 2 is also used in combination with Layer 4 to 
route high speed digital JESD lanes. These signal layers use Layer 3 and Layer 4 as references. Clean reference planes are important to 
maintain signal integrity on sensitive RF and high speed digital signal paths. Layer 3, Layer 5, and Layer 7 are used to route analog power 
domains. Routing of analog power planes and traces are discussed in more detail in the power supply layout section. Layer 9 is a solid 
ground plane used to help isolate sensitive analog signal and power layers from potentially noisy digital signals routed in the lower half of 
the PCB. Layer 10 through Layer 14 are used to route a variety of digital power, GPIO, and control signals. Table 254 describes the drill 
table for via structures used in the evaluation board to route all signals from the transceiver. Note that the metal and dielectric thicknesses 
have been balanced to ensure that the thickness of each half of the PCB is relatively equal to avoid uneven flexing or deforming under 
pressure or temperature changes. 

Via structures were selected based on signal routing requirements and manufacturing constraints. Ground planes are full copper floods 
with no splits except for vias, through-hole components, and isolation structures. Ground and power planes are all routed to the edge of 
the PCB with a 10 mil pullback from the edge to decrease the risk of a layer to layer shorts at the exposed board edge.  

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf


Preliminary Technical Data UG-1727
 

Rev. PrA | Page 229 of 267 

22
7

70
-1

3
6

 
Figure 136. PCB Material Stack Up Diagram 

Table 254. Drill Table 
Start 
Layer 

End 
Layer 

Drill 
Type 

Plate 
Type Via Fill 

Drill Size 
(min) 

Drill 
Depth 

Pad 
Size(min) 

Stacked 
Vias 

1 16 Mech PTH Not applicable 45.30 83.35     
3 8 Mech Via Resin fill 11.80 26.96     
9 14 Mech Via Resin fill 11.80 26.42     
1 16 Mech Via Nonconductive via fill 7.90 83.35     
15 14 Laser Microvia CuVF_Button pattern 7.90 3.65   Y 
16 15 Laser Microvia Nonconductive via fill 7.90 6.61   Y 
8 7 Laser Microvia CuVF_Button pattern 11.80 3.33   Y 
1 2 Laser Microvia Non-Conductive via fill 7.90 6.60   Y 
2 3 Laser Via CuVF_Button pattern 7.90 3.65   Y 
3 4 Laser Microvia CuVF_Button pattern 7.90 5.14   Y 
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Controlled impedance traces, single ended and differential, are required to obtain best RF performance. Impedances of 50 Ω and 100 Ω 
are required for RF, high speed digital, and clock signals. Table 255 describes details about trace impedance controls used in the 
ADRV9026 evaluation board and types of line structures used to obtain desired impedance and performance on and for given layers and 
impedances. 

Table 255. Impedance Table  

Layer 
Structure 
Type 

Target 
Impedance 
(Ω) 

Impedance 
Tolerance (Ω) 

Target Line 
Width (mils) 

Edge 
Coupled 
Pitch (mils) 

Reference 
Layers 

Modeled 
Line Width 
(mils) 

Modeled 
Impedance 
(Ω) 

Coplanar 
Space 
(mils) 

1 Single-ended 50.00 ±5 11.00 0.00 (2) 11.50 51.48 9.75 
1 Edge coupled 

differential 
50.00 ±5 27.00 32.00 (2) 27.50 50.99 9.75 

1 Edge coupled 
differential 

100.00 ±10 7.50 14.50 (2) 8.25 102.70 9.62 

2 Edge coupled 
differential 

100.00 ±10 4.25 12.00 (1, 3) 4.10 102.17 12.07 

4 Edge coupled 
differential 

100.00 ±10 3.75 9.50 (3, 5) 3.75 100.60 12.00 

4 Single-ended 50.00 ±5 4.50 0.00 (3, 5) 4.25 50.00 12.13 
12 Single-ended 50.00 ±5 4.50 0.00 (11, 13) 4.75 51.77 11.88 
12 Edge coupled 

differential 
100.00 ±10 4.00 9.00 (11, 13) 4.00 101.61 12.00 

16 Single-Ended 50.00 ±5 11.00 0.00 (15) 11.50 51.51 9.75 
16 Edge coupled 

differential 
100.00 ±10 7.50 14.50 (15) 8.25 102.71 9.62 
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FANOUT AND TRACE SPACING GUIDELINES 
The ADRV9026 uses a 289-ball BGA 14 mm × 14 mm package. The pitch between the pins is 0.8 mm. This small pitch makes it 
impractical to route all signals on a single layer. RF and high speed data pins have been placed on the perimeter rows of the BGA to 
minimize complexity of routing of these critical signals. Via in pad technology is used to escape all other signals to layers on which they 
are routed. The recommended via size includes an 8 mil drill hole with a 12 mil capture pad. A combination of stacked micro vias, buried 
vias, and through vias are used to route signals to appropriate inner layers for further routing. JESD interface signals are routed on two 
inner signal layers utilizing controlled impedance traces. 

Figure 137 illustrates the fanout of RF differential channels from the device on the top layer of the PCB. Note that each signal pair is 
designed with the required characteristic impedance and isolation to minimize crosstalk between channels. The isolation structures 
include a series of ground balls around each RF channel and the digital interface section of the device. Connect these ground balls by 
traces to form a wall around each section, and then fill the area to make the ground as continuous as possible underneath the device. 

22
7

70
-1

3
7

 
Figure 137. ADRV9026 CE Board RF Receiver and Transmitter Fanout and Layout 
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COMPONENT PLACEMENT AND ROUTING GUIDELINES 
The ADRV9026 transceiver requires few external components to function. Those that are required must be carefully placed and routed to 
optimize performance. This section provides a checklist for properly placing and routing some of those critical signals and components. 

Signals with Highest Routing Priority 

RF inputs and outputs, clocks, and high speed digital signals are the most critical for optimizing performance and must be routed with the 
highest priority. Figure 138 shows the general directions in which each of the signals must be routed so that they can be effectively 
isolated from aggressor signals. It may be difficult to keep all RF channels on a single outer layer. In such cases, it is recommended to 
route the receiver and transmitter channels on the top PCB layer with adequate channel-to-channel isolation and the observation 
receivers on internal layers or on the bottom layers. Ensure that the trace impedance is properly designed to 100 Ω differential including 
the vias needed to transfer the signals between PCB layers. 
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Figure 138. RF IO, DEVCLK, EXT LO, and JESD204B Routing Guidelines 
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Tx, Rx, and ORx routing (also referred to as trace routing), physical design (trace width/spacing), matching network design, and balun 
placement significantly impact RF transceiver performance. Make every effort to optimize path design, component selection, and 
placement to avoid performance degradation. The RF Routing Guidelines section describes proper matching circuit placement and 
routing in greater detail. Additional related information can be found in the RF Port Interface Overview section. 

To achieve desire levels of isolation between RF signal paths, use the considerations and techniques described in the Isolation Techniques 
section in designs. 

For RF Tx outputs, install a 10 μF capacitor near the Tx balun(s) VANAx_1P8 dc feed(s). This capacitor acts as a reservoir for the Tx 
supply current. The Tx Bias Supply Guidelines section discusses Tx dc supply design in detail. 

Connect external clock inputs to DEVCLK+ and DEVCLK− through ac coupling capacitors. Place a 100 Ω termination across the input 
near Pin C8 and Pin C9, as shown in Figure 139. Shield traces by ground planes above and below with vias staggered along the edges of 
the differential pair routing. This shielding is important because it protects the reference clock inputs from spurious signals that can 
transfer to different clock domains within the device. Refer to the Synthesizer Configuration section for more details regarding the clock 
signals. 
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Figure 139. DEVCLK and SYSREF Termination 

Route JESD204B high speed digital interface traces at the beginning of the PCB design process with the same priority as the RF signals. 
The JESD204B/JESD204C Routing Recommendations section outlines launch and routing guidelines for these signals. Provide adequate 
isolation between interface differential pairs. 

If an external LO source is used, connect to the port through ac coupling capacitors. EXT_LO1± (E16, F16) and EXT_LO2± (E2, F2) pins 
are internally dc biased. An on-chip 100 Ω termination is provided. 

Signals with Second Routing Priority 

Power supply routing and quality has a direct impact on overall system performance. The Power Management Layout  section provides 
recommendations for how to best route power supplies to minimize loss as well as interference between RF channels. Follow 
recommendations provided in this section to ensure optimal RF and isolation performance. 

Signals with Lowest Routing Priority 

Route remaining low frequency digital inputs and outputs, auxiliary ADCs and DACs, and SPI signals. It is important to route all digital 
signals bounded between rows E and R and Column 6 and Column 15 down and away from sensitive analog signals on PCB signal layers 
with a solid ground layer shielding other sensitive signals from the potentially noisy digital signals (refer to Figure 138 for the ball 
diagram). The ADRV9026 CE board uses Layer 9 as a solid ground flood on the entire layer to act as a shield and delineation between 
analog and digital domains. All RF, analog power, and high speed signaling is routed on Layer 1 through Layer 8 and Layer 16, while 
digital power and signaling is routed on Layer 10 through Layer 15. Auxiliary ADC and DAC signal traces are routed on layers separated 
from RF IO and high speed digital, but still on the analog side of the PCB. 
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RF AND JESD TRANSMISSION LINE LAYOUT 
RF Routing Guidelines 

The ADRV9026 evaluation boards use both surface coplanar waveguide and surface edge coupled coplanar waveguide transmission lines 
for Tx, Rx, and ORx RF signals. In general, Analog Devices does not recommend using vias to route RF traces unless a direct route on the 
same layer as the device is not possible. Keep balanced lines for differential mode signaling used between the device and the RF balun as 
short as possible. Keep the length of the single ended transmissions lines for RF signals as short as possible. Keeping signal paths as short 
as possible reduce susceptibility to undesired signal coupling and reduce the effects of parasitic capacitance, inductance, and loss on the 
transfer function of the transmission line and impedance matching network system. The routing of these signal paths is the most critical 
factor in optimizing performance and, therefore, must be routed prior to any other signals and maintain the highest priority in the PCB 
layout process. 

All 12 RF ports are impedance matched using PI matching networks, both differential and single ended. Take care in the design of 
impedance matching networks including balun, matching components, and ac coupling capacitor selection. Additionally, external LO 
ports and DEVCLK may require impedance matching to ensure optimal performance. Figure 140 depicts the path from device to external 
connector that is used to route Tx4 on the CE board. Component placement for matching components are highlighted in red. Refer to the 
RF Port Interface Overview section for more information on RF impedance matching recommendations.  
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Figure 140. Tx RF Routing and Matching Network 

All the RF signals must have a solid ground reference under each path to maintain the desired impedance. Ensure that none of the critical 
traces run over a discontinuity in the ground reference. 

 

 

 

 

 

 

 



UG-1727 Preliminary Technical Data
 

Rev. PrA | Page 236 of 267 

Tx Bias Supply Guidelines 

Each transmitter requires approximately 125 mA supplied through an external connection. In the ADRV9026 CE board, bias voltages are 
supplied at the dc feed of a center tapped balun in the RF signal path as shown in Figure 141.  
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Figure 141. 1.8V TX Bias Routing at Balun 

To reduce switching transients due to attenuation setting changes, power the balun dc feed directly from the 1.8 V supply plane. Design 
the geometry of the plane to isolate each transmitter from the others. Figure 142 shows the 1.8 V supply distribution on the ADRV9026 
CE board. The primary 1.8 V distribution is through a plane that transitions to two wide fingers on Layer 5, which run up both sides of 
the device. The finger width is designed to minimize voltage drop at the tap points. Each transmitter is biased with a finger on layer 3 that 
taps the main 1.8 V supply. The fingers are designed and routed to present a low impedance at the connection point to the Tx input. 
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Figure 142. 1.8 V Supply Distribution 

As previously mentioned, the ADRV9026 evaluation board couples the supply into the transmitter via a center tapped balun, but it is also 
provisioned for an external choke feed inductor with an ac decoupling capacitor. This topology helps in improving transmitter-to-
transmitter isolation.  

When a balun is selected that does not have a dc feed capability, RF chokes must be used to supply current to the transmitters. Chokes are 
connected from the 1.8 V supply to each Tx output. Note that in this scenario, the Tx balun must be ac-coupled. The RF chokes must also 
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be decoupled by capacitors from the power feed to ground. Place the ground connections to these capacitors as close as possible to the Tx 
output pins. Take care to match both chokes and their layout to avoid peaking due to current transients. 

JESD204B/JESD204C Routing Recommendations 

The ADRV9026 uses a JESD204B/JESD204C high speed serial interface. To ensure performance of this interface, keep the differential 
traces as short as possible by placing the device as close as possible to the baseband processor and routing the traces as directly as possible 
between the devices. Using a PCB material with a low dielectric constant and loss tangent is also strongly recommended. For a specific 
application, loss must be modeled to ensure adequate drive strength is available in both the ADRV9026 and the baseband processor. 

Route the differential pairs on a single plane using a solid ground plane as a reference on the layers directly above and/or below the signal 
layer. Reference planes for the impedance controlled traces must not be segmented or broken along the entire length of a trace. 

All JESD lane traces must be impedance controlled, targeting 100 Ω differential. Ensure that the pair is loosely coplanar edge-coupled. 
The ADRV9026 CE board uses 4 mil wide traces and a separation of approximately 10 mil. This varies depending on the stack up and 
selected dielectric material. Minimize the pad area for all the connector and passive components to reduce parasitic capacitance effects on 
the transmission lines, which can negatively impact signal integrity. Via use to route these signals must be minimized as much as possible. 
Use blind vias wherever possible to eliminate via stub effects and use micro vias to minimize inductance. If using standard vias, use 
maximum length vias to minimize the stub size. For example, on an 8-layer board, use Layer 7 for the stripline pair, thus reducing the 
stub length of the via to that of the height of a single layer. For each via pair, a pair of ground vias must be placed nearby to minimize the 
impedance discontinuity.  

For JESD signal traces, the recommendation is to route them on the top side of the board as a 100 Ω differential pair (coplanar edge 
coupled waveguide). In the case of the ADRV9026 CE board, the JESD signals are routed on inner Layer 2 and Layer 4. To minimize 
coupling, these signals are placed on an inner layer using a via in pad of the component footprint. ac coupling capacitors (100 nF) are 
places in series near the FMC connector away from the chip. The JESD interface can operate at frequencies up to 16 GHz.  

Figure 143 and Figure 144 show the transition between ball and launch. Surrounding ground references, above and below the signal layer 
are designed to tune the modal impedances ideal for the high speed signaling and according to the JESD204B standard.  
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Figure 143. JESD Signal Launch on Layer 2 
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Figure 144. JESD Signal Launch on Layer 4 

ISOLATION TECHNIQUES 
Given the density of sensitive and critical signals, significant isolation challenges are faced when designing a PCB for the ADRV9026 
device. Isolation requirements listed below were followed to accurately evaluate the ADRV9026 device performance. Analytically 
determining aggressor-to-victim isolation in a system is very complex and involves considering vector combinations of aggressor signals 
and coupling mechanisms.  

Isolation Goals 

Table 256 lists the isolation targets for each RF channel-to-channel combination type. To meet these goals with significant margin, 
isolation structures were designed into the ADRV9026 CE board.  

Table 256. Port to Port Isolation Goals 
Port 650 MHz to 4 GHz 4 GHz to 6 GHz 
Tx to Tx 65 dB 60 dB 
Tx to Rx 70 dB 65 dB 
Tx to ORx 70 dB 65 dB 
Rx to Rx 65 dB 60 dB 
Rx to ORx 70 dB 65 dB 

Isolation Between RF IO Ports 

These are the primary coupling mechanisms between RF IO paths on the evaluation board: 

 Magnetic field coupling  
 Surface propagation 
 Cross domain coupling via ground  

To reduce the impact of these coupling mechanisms on the ADRV9026 CE board, several strategies were used. Large slots are opened in 
the ground plane between RF IO paths. These discontinuities prevent surface propagation. A careful designer may notice various bends in 
the routing of differential paths. These routes were developed and tuned through iterative electromagnetic simulation to minimize 
magnetic field coupling between differential paths. These techniques are illustrated in Figure 145. 
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Figure 145. RF IO Isolation Structures 

Additional shielding is provided by using connecting VSSA balls under the device to form a shield around RF IO ball pairs. This ground 
provides a termination for stray electric fields. Figure 146 shows how this is done for Tx1. The same is done for each set of sensitive RF IO 
ports. Ground vias are used along single ended RF IO traces. Optimal via spacing is 1/10 of a wavelength for the highest signal frequency, 
but that spacing can vary somewhat due to practical layout considerations.  
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Figure 146. Shielding of TX Launches 
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RF IO baluns are spaced and aligned to reduce magnetic coupling from the structures in the balun package. Care must also be taken to 
reduce cross talk over shared grounds between baluns. Another precaution taken involved placing and orienting SMA connectors to 
minimize connector to connector coupling between ports.  

Isolation Between JESD204B Lines 

The JESD204B interface uses 16 lane pairs that can operate at speeds up to 16 GHz. Take care when doing PCB layout to make sure those 
lines are routed following rules described in the JESD204B/JESD204C Routing Recommendations section. In addition, use isolation 
techniques to prevent crosstalk between the different JESD204B lane pairs. Via fencing is the primary technique used on the ADRV9026 
CE board.  

Figure 147 illustrates this technique. Ground vias are placed along and between each pair of traces to provide isolation and decrease 
crosstalk. Spacing between vias, marked as A in Figure 147 follows the rule provided in the equation below. For most accurate spacing of 
fencing vias, use layout simulation software.  
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Figure 147. JESD204B Lane Via Fencing 

POWER MANAGEMENT LAYOUT DESIGN 
Due to the complexity and high level of integration in the ADRV9026, power supply routing is critical to achieve optimum RF 
performance. The device is designed to minimize power supply coupled noise by implementing several internal linear regulators that 
isolate circuits from each other when connected to a common power supply rail. This provides an improved level of isolation compared to 
previous products, but it is only one level of protection. Proper power supply layout can also help isolate individual circuits in the device.  

Analog Power Ring Approach 

The RF section is designed as two hemispheres with two transmitters, two receivers, and as many as two observation receivers on each 
side. To reduce coupling between channels and keep each power supply input isolated from others, a star connection approach is used. 
This approach involves connecting each power supply input to a common power supply bus using an isolated trace designed specifically 
for the current requirements of the particular input. The ADRV9026 evaluation board uses a power ring approach to provide the power 
supply bus for the 1.8 V and 1.3 V analog supplies. The 1.8 V supply is routed as an inner ring to provide a more direct connection to the 
1.8 V transmitter output supplies and the 1.3 V supply is routed in a similar fashion as an outer ring that can be star-connected to each 1.3 
V supply on the device. Figure 148 shows this layout approach on the ADRV9026 CE board. The inner purple “u-shape” is the 1.8 V 
supply and the outer pink shape is the 1.3 V supply. Note that neither shape forms a complete ring. This was done to better control the 
current path for each supply and avoid current loops and coupling between the two hemispheres of the board. Also, there is a thin strip of 
ground plane that is routed between the two supply rings, maintaining some separation and prevention of direct coupling on the same 
layer. 
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Figure 148. Analog Power Ring Layout Approach 
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Analog Power Star Connections 

The analog power ring approach provides ample locations for the individual star connections to be made. This approach enables the 
designer to control the current paths for each supply as well as design individual traces that better control the effect of voltage drops on 
other circuits when large load current changes occur. Each individual power supply input is evaluated for its maximum current 
consumption value, and the star connection trace is then designed to minimize the voltage drop for that particular supply input while still 
providing isolation from the other inputs. Figure 149 and Figure 150 illustrate how these star connections are made to the individual 
supply balls of the device. Some of the connections are made directly to the corresponding supply ring, some are made through a ferrite 
bead or similar filter device. Note that the thickness and layer of each trace was determined to minimize voltage drops and maximize 
isolation between aggressor and victim inputs. The layers with the thicker metal in the stackup drawing are used for the inputs with the 
highest current consumption values. 
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Figure 149. 1.8 V Supply Routing Using Star Connections 
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Figure 150. 1.3 V Supply Routing Using Star Connections 

Digital Power Routing 

The digital 1.0 V supply is the noisiest supply in the system, so it is important to keep this supply shielded from the other supplies. It is 
also the highest current supply, so the thickness of the traces needs to be adequate to carry the load current to the device without 
experiencing significant voltage drops. There are three digital power input pins to the device, so the routing into the device is also critical. 
Each input that connects to an input pin must match the others in length and thickness so there is no additional voltage drop in one 
connection compared to the others. Figure 151 illustrates the approach used on the CE board to supply this current. A digital power 
channel is routed from the power supply to the device and the entire area is flooded with copper to provide a low resistance supply trace. 
This channel is shielded on all sides so that it is isolated from other signals. Figure 152 shows a zoomed-in view of the connection to the 
device. Note that all three connections are made using two traces to reduce the trace resistance. Each connection is equal in total copper 
volume to the others, so their voltage drops are equal when the device is active. 
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Figure 151. Digital Supply Routing 
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Figure 152. Digital Supply Connection to Three VDIG Input Pins of the Device 
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JESD 1.0 V Supply Inputs 

After careful evaluation, it was determined that the 1.0 V supply needed for the JESD interface can be supplied directly from the 1.0 V 
digital supply without any interference or noise problems. The CE boards have these supplies routed separately from the common 1.0 V 
supply shared by VDIG_1P0 as traces using a similar star connection approach that was used by the analog 1.3 V and 1.8 V supplies. Note 
that the serializer and deserializer supply inputs carry the majority of the current, so these traces are made by creating filled areas as wide 
as possible to minimize voltage drop. The VTT_DES and VJSYN_1P0 traces carry vary little current and are, therefore, routed using 
standard traces. Figure 153 illustrates how these traces are routed to the device. Note that the VTT_DES and VJSYN_1P0 traces were 
routed on a different PCB layer than the VSER_1P0 and VDES_1P0 supplies. 
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Figure 153. SERDES Power Supply Input Routing 

Interface Supply Input 

The interface supply is a low current input that provides the supply reference for the SPI serial interface. It can be routed as a signal trace 
with adequate thickness to minimize voltage drop when the device is active. Route this trace in the digital area like the VDIG_1P0 supply 
and keep it isolated from other signals to ensure it is not corrupted by other active digital signals or by the JESD interface lanes. 

Ground Returns 

Another critical routing consideration is how to control the mixing of ground currents to avoid noise coupling between different power 
domains. One way to keep domains separated is to provide different ground return planes for each supply domain. This approach can 
complicate a dense PCB layout like what is required for the ADRV9026. Another option is to connect all ground to the same plane system 
and use cutouts and channeling like those used in the RF sections to provide better channel to channel isolation. Creating such ground 
channels can provide the benefit of steering ground currents in a desired path without the complexity of trying to keep ground planes 
isolated from each other. The specifics of such designs are highly dependent on the PCB layout and the level of isolation is desired.  
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Input Bypass Component Placement 

There are subtle component placement techniques for placing power supply bypass components that can have a substantial impact on 
radio performance. Follow these guidelines when placing components on power supply inputs: 

 Each power supply pin requires 0.1 μF bypass capacitor near the pin at a minimum. For inputs that require a large current step, a 10 
μF capacitor in parallel is recommended. Place the ground side of the bypass capacitor(s) so that ground currents flow away from 
other power pins and their bypass capacitors. 

 Route power supply input traces to the bypass capacitor and the connect capacitor(s) as close to the supply pin as possible through a 
via to the component side of the PCB. If possible, it is recommended that the via be located inside the power supply pin pad to 
minimize trace inductance. 

 Some power supplies require a ferrite bead in series with the supply line to prevent RF noise from coupling between different inputs, 
while others can do without the extra protection. It is recommended that each line be connected with a series component – either a 
ferrite bead or a 0 Ω place holder. Ensure that the device is sized properly to handle the current load for the particular power supply 
input of concern. 

 Figure 154 and Figure 155 illustrate an example of how the power supply routing from the common power ring to a bypass capacitor 
and into the ADRV9026 device is implemented. Note that the bypass capacitor is connected directly to the vias leading from the 
bottom of the PCB to the ball pads on the top of the PCB. 

22
77

0
-1

5
4

 
Figure 154. Power Supply Routing Example with Ferrite Bead at the Input (VANA1_1P3) 
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Figure 155. Power Connection to Supply Ball with Bypass Capacitor Between Vias 
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ANALOG SIGNAL ROUTING CONSIDERATIONS 
Other analog signals in and out of the device such as the auxiliary ADCs and DACs do not require critical routing considerations. Use 
standard routing techniques for these signals to keep them shielded from interference or noise that may affect their desired levels.  

DIGITAL SIGNAL ROUTING CONSIDERATIONS 
The digital signal routing (for example, SPI, enable controls, and GPIO) is the least sensitive area, but it is nevertheless very important to 
isolate from other signals to avoid digital noise coupling into other circuits. In the evaluation board these signals are routed from the 
bottom of the board up through the same channel created for the VDIG power supply on Layer 10, Layer 11, and Layer 12. This provides 
the benefit of using the same ground return area as the VDIG supply, which keeps the return currents from intermixing with currents 
from the analog and RF functions of the device. Most of these signals are static or infrequently changing state, so once signals are routed 
out of the device, they can be fanned-out to other parts of the PCB without concern of interfering with radio functions. Figure 156 
illustrates how the signals are routed out of the device following the same path as the VDIG supply (brown fill area). Note that there are 
designated layers on the customer evaluation PCB for digital routing and these layers are isolated by ground layers from other sensitive 
signals such as the JESD lanes and the RF inputs and outputs. It is strongly recommended to keep any traces that are non-static, such as 
the SPI or SPI2 buses, isolated from the sensitive analog/RF/JESD signals by ensuring there is ample ground between the traces and that 
there is also no overlap of signals from layer to layer. 
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Figure 156. Digital Routing Out of ADRV9026 
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UNUSED PIN INSTRUCTIONS 
In some applications, the user may decide not to use all available inputs or outputs. In these cases, take care to follow the 
recommendations listed in Table 257 for unused pins.  

Table 257. Recommendations for Unused Pins 
Pin No. Type Mnemonic When pins are not used: 
A4, A5, A13, A14, P1, N1, N17, 

P17 
O TX3+, TX3−, TX2+, TX2−, TX4+, TX4−, TX1+, 

TX1− 
Do not connect. 

E4, E5, E13, E14, L4, L5, L13, L14 I ORX3+, ORX3−, ORX1+, ORX1−, ORX4+, ORX4−, 
ORX2+, ORX2− 

Connect to VSSA. 

C1, B1, B17, C17, J1, H1, H17, 
J17 

O RX3+, RX3−, RX2+, RX2−, RX4+, RX4−, RX1+, 
RX1− 

Connect to VSSA. 

F2, E2, E16, F16 I/O EXT_LO2+, EXT_LO2−, EXT_LO1+, EXT_LO1− Do not connect. 
C4, C5, L1, L2, L17, L16, C12, C13 I/O GPIO_ANA_7 to GPIO_ANA_0 Connect to VSSA with a 10 kΩ resistor or 

configure as outputs, drive low, and leave 
disconnected. 

E1, E17, F1, F17 I AUXADC_3, AUXADC_1, AUXADC_2, AUXADC_0 Do not connect. 
E7, E11, M7, M11 I TX3_EN, TX2_EN, TX4_EN, TX1_EN Connect to VSSA. 
G7, G11, J7, J11 I RX3_EN, RX2_EN, RX4_EN, RX1_EN Connect to VSSA. 
F7, F11, L7, L11 I ORX_CTRL_C, ORX_CTRL_B, ORX_CTRL_D, 

ORX_CTRL_A 
Connect to VSSA directly or with a 10 kΩ 
pull-down resistor. 

H11, K11, N11, E10, F10, G10, 
H10, J10, K10, E9, F9, E8, F8, 
G8, H8, J8, K8, H7, K7 

I/O GPIO_0 to GPIO_18 Connect to VSSA with a 10 kΩ resistor or 
configure as outputs, drive low, and leave 
disconnected. 

N7, N8 O GPINT2, GPINT1 Do not connect. 
M8 O SPI_DO Do not connect. 
P10 I TEST_EN Connect to VSSA. 
N6, P6, N12, N13, P7, P8 I SYNCIN3+, SYNCIN3-, SYNCIN1+, SYNCIN1-, 

SYNCIN2+, SYNCIN2-  
Connect to VSSA. 

N14, N15, P15, R15 O SYNCOUT2+, SYNCOUT2-, SYNCOUT1+, 
SYNCOUT1− 

Do not connect. 

U1, U2, T3, T4, U5, U6, T7, T8 O SERDOUTD+, SERDOUTD− SERDOUTC+, 
SERDOUTC−, SERDOUTB+, SERDOUTB−, 
SERDOUTA+, SERDOUTA−,  

Do not connect. 

U16, U17, T15, T14, U12, U13, 
T11, T10,  

I SERDIND+, SERDIND−, SERDINC+, SERDINC-, 
SERDINB+, SERDINB−, SERDINA+, SERDINA−  

Do not connect.  
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TRANSCEIVER EVALUATION SOFTWARE (TES) OPERATION 
The ADRV9026 demonstration system enables customers to evaluate the device without having to develop custom software or hardware. 
The system comprises a radio daughtercard, an ADS9 motherboard, a microSD card with operating system, a power supply for the ADS9, 
a 12 V power supply that connects to a wall outlet, and a C#-based evaluation software application. The evaluation system uses Ethernet 
interface to communicate with the PC. 

INITIAL SETUP 
The ADRVTRX TES is the graphical user interface (GUI) used to communicate with the evaluation platform. It can run with or without 
evaluation hardware connected. When TES runs without the hardware connected, it can be fully configured for a particular operating 
mode. If the evaluation hardware is connected, the desired operating parameters can be setup with TES and then the software can 
program the evaluation hardware. Once the device is configured, the evaluation software can be used to transmit waveforms generated 
from the internal NCO block or using custom waveform files as well as observe signals received on one of the receiver or observation 
input ports. An initialization sequence in form of an IronPython script can be generated and executed using TES if customized scripts are 
desired.  

HARDWARE KIT 

The ADRV9026 demonstration system kit contains: 

 The CE board in form of a daughter card with FMC connector 
 One (1) 12 V wall connector power supply cable 
 One (1) SD card containing image of Linux operating system with required evaluation software. SD card type is 16 GB size, Type 10 

The ADS9 demonstration system kit contains: 

 The ADS9 motherboard with FMC connector 
 One (1) 12 V, 1.5 A power supply for powering the board 

REQUIREMENTS 
The hardware and software require the following: 

 The ADS9 demonstration system kit 
 The ADRV9026 demonstration system kit  
 The operating system on the controlling PC must be Windows 7 (×86 and ×64) or Windows 10 (×86 and ×64) 
 The PC must have a free Ethernet port with the following constraints: 

 If the Ethernet port is occupied by another LAN connection, a USB to Ethernet adapter can be used 
 The PC must be able to access over this dedicated Ethernet connection via the following ports: 

 Port 22: SSH protocol  
 Port 55556: access to the evaluation software on the ADS9 platform 

 TES: contact a local Analog Devices representative to obtain access to this software. 
 The user must have administrative privileges. To run software automatic updates, the PC must have access to the internet. If 

internet access is restricted, a manual software update can be performed. 

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf


Preliminary Technical Data UG-1727
 

Rev. PrA | Page 251 of 267 

HARDWARE SETUP 
Before setup, the ADS9 platform requires the user to insert the SD card included with the evaluation kit into the J6 slot of the ADS9 
(MicroZED) platform. The evaluation hardware setup is shown in Figure 157 and Figure 158.  

S1: MUST BE IN
OFF POSITION

DS1 – FPGA
ONLINE

S4: POWER ON

DS13: 12V_PIN

J6: MicroSD
CARD SLOT
(UNDER ETHERNET)

J1: ETHERNET
CONNECTION

SW1: SHUTDOWN

D3: BOOT STATUS
NOTE: BOOT TIME
IS 3 MINUTES
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Figure 157. Analog Devices ADS9 Mother Board Configured to Work with ADRV9026 Evaluation Boards 

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
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Figure 158. CE Board and ADS9 Motherboard with Connections Required for Tx Testing 

To set up the evaluation board for testing, follow steps listed below: 

1. Connect the ADRV9026 evaluation board and the ADS9 evaluation platform together as shown in Figure 158. Use the HPC FMC 
connector (P1001/P2). Ensure the connectors are properly aligned. 

2. Insert the SD card that came with the evaluation kit into ADS9 microSD card slot (J6). 
3. On the ADRV9026 evaluation card, provide a reference clock source (122.88 MHz is the default, or frequency match the setting 

selected on the AD9528 configuration tab), at a 7 dBm power level to the J613 connector. (This signal drives the reference clock into 
the AD9528 clock generation chip on the board. The REFA/REFA_N pins of AD9528 generate the DEV_CLK for the device and 
REF_CLK for the FPGA on the ADS9 platform). 

4. Connect a 12 V, 1.5 A power supply to the ADS9 evaluation platform at the P1 header. 
5. Connect the ADS9 evaluation platform to the PC with an Ethernet cable (connect to P3). There is no driver installation required. 

In the case when the Ethernet port is already occupied by another connection, use an USB to Ethernet adapter. 

On an Ethernet connection dedicated to the ADS9 platform, the user must manually set the following: 

 IPv4 address: 192.168.1.2  
 IPv4 subnet mask: 255.255.255.0 

Refer to Figure 159 for more details. Make sure that the following ports are not blocked by firewall software on their PC: 

 Port 22: SSH protocol  
 Port 55556: access to the evaluation software on ADS9 platform 

Note that the ADS9 IP address is set by default to 192.168.1.10. 

 

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf


Preliminary Technical Data UG-1727
 

Rev. PrA | Page 253 of 267 

22
77

0-
1

59

 
Figure 159. IP Settings for Ethernet Port Dedicated for ADS9 Platform 

HARDWARE OPERATION  
1. Turn on the evaluation system by switching the ADS9 motherboard power switch (S4) to the on position. If hardware is connected 

correctly, the green LED (DS13) on the ADS9 motherboard turns on. 
2. The ADS9 motherboard uses a Linux operating system. It takes approximately 3 minutes before the system is ready for operation and 

can accept commands from PC software. Boot status can be observed on ADS9 LED (D3, on the MicroZED daughtercard). This 
LED illuminates red for approximately 3 minutes after power on. When it goes off, this indicates that the board is booted properly. 
When D3 transitions from red to off, the system is ready for normal operation and awaits connection with the PC over Ethernet 
(which must be established using TES). 

3. Connect the reference clock signal (122.88 MHz CW tone, 7 dBm maximum) to J613 on the underside of the CE board.  
4. Before applying power to the CE board, ensure that each of the four Tx output ports (J501 to J504) are properly terminated. 
5. After the ADS9 system has properly booted, LED DS801 on the evaluation board illuminates. At this point, power from the 12 V wall 

adapter must be connected to the CE board. When power is applied, DS802 illuminates on the CE board. 
6. For transmitter testing, connect a spectrum analyzer to any Tx output on the evaluation board. Use a shielded RG-58, 50 Ω coaxial 

cable (1 m or shorter) to connect the spectrum analyzer. Terminate all Tx paths, either into spectrum analyzers or into 50 Ω if 
unused.  

7. The CE board must be powered off before the motherboard by unplugging the wall adapter. When power is removed from the CE 
board, click on disconnect in the TES window and then press and hold SW1 on the ADS9 evaluation board (MicroZED daugher 
card) until LED D3 illuminates. When LED D3 goes off, it is safe to turn off the ADS9 power using Switch S4.  

TES INSTALLATION 
Customers must contact an Analog Devices representative to obtain access to TES. After the initial software download, copy the software 
to the target system and unzip the files (if not already unzipped). The downloaded zip container has an executable file called ADRV9025 
Transceiver Evaluation Software.exe.  

Administrator privileges are required to install TES. After running an executable file, a standard installation process follows. Parts of the 
installation build are Microsoft .NET Framework 4.5 (which is mandatory for the software to operate) and IronPython 2.7.4 (which is 
optional and recommended). Figure 160 shows the recommended configuration. Note that the Microsoft .NET Framework and the 
IronPython 2.7.4 installations are not necessary to select once they have been installed. If you are updating the version of the TES, these 
boxes can be left unchecked to save installation time. 
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Figure 160. Software Installation Components 

The last step of the instalation process is to select shortcut configuration as shown in Figure 161. The user can select a shortcut to be 
placed in the Windows Start Menu and/or on the Windows desktop. 
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Figure 161. Transceiver Evaluation Software Shortcut Configuration 
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STARTING THE TRANSCEIVER EVALUATION SOFTWARE 
Depending on the user selection during the installation process (see Figure 161), users can start the customer software by clicking on 
Start > All Programs > Analog Devices > ADRV9025 Transceiver Evaluation Software_x86_FULL > ADRV9025 Transceiver 
Evaluation Software or by clicking on the desktop shortcut called ADRV9025 Transceiver Evaluation Software. Figure 162 shows the 
opening page of the TES after it is activated. 
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Figure 162. Transceiver Evaluation Software Interface 

Demo Mode 

Figure 162 shows the opening page of the TES. In the case when evaluation hardware is not connected, the user can still use the software 
in demo mode by following these steps: 

1. Click on Connect (top left corner).  
2. The software moves into demo mode in which a superset of all transceiver family features is displayed. 
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NORMAL OPERATION  
When hardware is connected to a PC and the user wants to start using the complete evaluation system, TES establishes a connection with 
the ADS9 system via Ethernet after clicking the Connect option in the drop down menu. When proper connection is established, the user 
can click on the DaughterCard position in device tree on the left. After selecting DaughterCard, information about revisions of different 
setup blocks appears in the main window. The bottom part of that window shows the TCP IP Address set to 192.168.1.10 and Port 
Number set to 55556. Contact the Analog Devices Applications Engineering team if the ADRV9026 Evaluation System needs to operate 
over a remote connection and a different IP address for the ADS9 platform is desired. Figure 163 shows an example of correct connection 
between a PC and a ADS9 system with a daughter card connected to it.  
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Figure 163. Setup Revision Information 

Configuring the Device 

Contained within the Config tab are sub tabs that contain setup options for the device. The first one displayed is the Overview tab. Figure 164 
shows the initial screen for the device Tx. In this page the user can select the following: 

 Device to be programmed 
 Select profiles  

Profile Options 

The TES contains the following profile options: 

 ADRV9025Init_StdUseCase50_nonLinkSharing 
 ADRV9025Init_StdUseCase50_LinkSharing 
 ADRV9025Init_StdUseCase51_LinkSharing  
 ADRV9025Init_StdUseCase61_ LinkSharing 

These profiles configure the device for different Tx, Rx, and ORx bandwidths, sample rates, and clock rates. They also set different JESD 
configurations and lane rates. By default, the platform boots to JESD204B mode. Note the available use cases may vary based on the 
version of the software being run.  

 

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
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Figure 164. Main Overview Tab 

Additional 204C use cases are also available. The platform must be switched to 204C mode then the available 204C profiles are displayed. 
To switch the platform select Device > FPGA switch JESD > Jesd 204C. At this point the platform reboots (which takes approximately 3 
minutes). Upon reconnecting, the 204C profiles are available. 

Initialization 

The Initialization tab provides access to the settings that are used to configure the device at startup. This page allows the user to set the 
LO frequencies used, initial Tx attenuation settings, initial Rx gain index settings, and the initial gain index for ORx1 (the only ORx 
channel available at this stage in development). These and other settings that are provided in future revisions are shown in Figure 165. 
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Figure 165. Initialization Configuration Tab 
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InitCals 

The InitCals tab is used to set which calibrations take place at initialization. The default settings are shown in Figure 166. These can be 
enabled/disabled by clicking on the box next to the calibration. A check mark indicates the calibration is run at startup. 
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Figure 166. InitCals Tab with Default Settings 

Tx Configuration 

The Tx tab is primarily informative and is based on the profile selection in the Overview tab (Figure 164). In this tab, the user can check 
clock rates at each filter node as well as filter characteristics and pass-band flatness. Quick zooming capability allows zooming of the pass-
band response as well as restoring to the full scale plot. Figure 167 shows an example of the Tx tab with the resulting composite filter 
response for the chosen profile. 
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Figure 167. Tx Summary Tab 
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Rx Configuration 

The Rx tab is primarily informative and is based on the profile selection in the Overview tab (see Figure 164). In this tab, the user can 
check clock rates at each filter node as well as filter characteristics and pass-band flatness. Quick zooming capability allows zooming of 
the pass-band response as well as restoring to the full scale plot. Figure 168 shows an example of the Rx tab with the resulting composite 
filter response for the chosen profile. 
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Figure 168. Rx Summary Tab 

ORx Configuration 

The ORx tab is primarily informative and is based on the profile selection in the Overview tab (Figure 164). In this tab, the user can check 
clock rates at each filter node as well as filter characteristics and pass-band flatness. Quick zooming capability allows zooming of the pass-
band response as well as restoring to the full scale plot. Figure 169 shows an example of the ORx tab with the resulting composite filter 
response for the chosen profile. 
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Figure 169. ORx Summary Tab 
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JESD Configuration 

The JESD tab is primarily informative and is based on the profile selection in the Overview tab (see Figure 164). In this tab, the user can 
check the Tx Deframer settings and the Rx and ORx Framer settings. Figure 170 shows an example of the JESD tab with the settings for 
Use Case 13. 
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Figure 170. JESD Summary Tab 

Programming the Evaluation System 

After all tabs are configured, the user must press the Program button. This kicks off initialization programming. TES sends a series of API 
commands that are executed by a dedicated Linux application on the ADS9 platform.  

When programming has completed, the system is ready to operate. There is a progress bar at the bottom of the window. Figure 171 
displays the window with the progress bar and message after the device has been programmed.  
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Figure 171. Device Programmed  
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Initialization Script 

TES allows the user to create a script with all API initialization calls in the form of IronPython functions. When the user clicks the Tools 
> Save Python Script option, the script can be given a file name and stored in a location of the choosing of the user for future use. TES 
generates the script in the form of a python (.py) file. That file can then be executed using the IronPython Script tab shown in Figure 176. 
There is an option to save a MATLAB based initialization script for the chosen setup in the GUI.  

TRANSMITTER OPERATION 
Selecting the Transmit tab opens a page as shown in Figure 172. The upper plot displays the FFT of the digital input data and the lower 
plot shows its time domain waveform. When multiple Tx outputs are enabled, the user can select desired data to be displayed in the 
Spectrum plot using the checkboxes below the plot. In the time domain plot, the user can select Tx1, Tx2, Tx3, Tx4, or any combination 
of the data input channels, with I and/or Q data displayed. 

Once the Transmit tab is open, the user can enter the RF Tx center frequency in MHz for Tx LO1 (used for Tx operation), change 
attenuation level, and transmit CW tones.  
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Figure 172. Transmit Data Tab 
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Transmitter Data Options 

The TES provides the following options for inputting transmitter data: 

 A single tone from the internal NCO can be generated on each channel by the evaluation system using the Tone Parameters menu 
shown in Figure 173. This window is accessed by pressing the TONES button near the upper left of the Transmit page. In that 
window, the user can enable the tone (Number of Tones = 0 to 3) to be transmitted on the selected Tx output.  

 The user can also chose to input a waveform file instead of using the internal NCO by selecting the LoadFile box and entering the 
path to the waveform file. 
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Figure 173. Tx Tone Parameters Setup Menu 

Pressing the play symbol moves the device to the transmit state and starts a process where the NCO generated CW data is enabled.  

The Tx2 Attenuation (dB) input allows the user to control analog attenuation in the Tx2 channel. It provides 0.05 dB of attenuation 
control accuracy. The Tx3 Attenuation (dB) and Tx4 Attenuation (dB) perform the same operation on the Tx3 and Tx4 channels. 
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RECEIVER OPERATION 
Rx Signal Chain 

The Receive tab opens a window as shown in Figure 174. The upper plot displays the FFT of the received input data and the lower plot 
shows its time domain waveform. When multiple Rx inputs are enabled, the user can select the desired data to be displayed in the 
Spectrum plot using the checkboxes below the plot. In the Time Domain plot, the user can select Rx1, Rx2, Rx3, Rx4, or any combination 
of the input channels, with I and/or Q data displayed. 

Once the Receive tab is open, the user can enter the RF LO frequencies for LO1 and LO2 PLLs, select which LO is used by Rx1 and Rx2, 
select which LO is used by Rx3 and Rx4, select the Rx Trigger type, enter the sample time for the data, and select gain levels and tracking 
calibrations for each channel. Pressing the play symbols enables the selected receivers and displays their waveform data. 
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Figure 174. Receive Data Tab 

Observation Rx Signal Chain  

The Obs Rx tab opens a window as shown in Figure 175. The upper plot displays the FFT of the received input data and the lower plot 
shows its time domain waveform. When multiple ORx inputs are enabled, the user can select the desired data to be displayed in the 
Spectrum plot using the checkboxes below the plot. In the Time Domain plot, the user can select Obs1, Obs2, Obs3, Obs4, or any 
combination of the input channels, with I and/or Q data displayed. 

Once the Obs Rx tab is open, the user can enter the RF LO frequencies for LO1, LO2, and Aux LO PLLs, select which LO is used by 
ObsRx1 and ObsRx2, select which LO is used by ObsRx3 and ObsRx4, select the Obs Rx Trigger type, enter the sample time for the data, 
and select gain levels and QEC for each channel. Pressing the play symbols enables the selected receivers and displays their waveform 
data.  

Note that only Obs Rx1 is enabled for use at this stage in product development. All four channels are available in future software 
revisions. 
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Figure 175. Obs Rx Data Tab 

SCRIPTING 
The Iron Python tab allows the user to use IronPython language to write a unique sequence of events and then execute them using the 
evaluation system. Scripts generated using this tab can be loaded, modified if needed, and run on the evaluation system. Figure 176 shows 
the Iron Python tab after executing the File > New script function. The top part of the window contains IronPython commands while the 
bottom part of the window displays the script output. Scripts are run by selecting Build > Run. Scripts that provide useful functions that 
the user may want to use in the future can be saved by selecting File > Save and entering the path and file name for saving the script. 

After the user configures the part to the desired profile, a script can be generated with all API initialization calls in the form of 
IronPython functions. Selecting Tools > Create Script > Python accomplishes this task. This generates a script with the initialization 
sequence and open a Dialogue box to save this file. Basic script with no initializaion sequence can be generated by selecting File > New 
option.  
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Figure 176. Iron Python Scripting Window 
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IronPython Script Example 

The following example sets the RF LO frequency of LO1 and LO2 and reads back the configured values. 
 

################################################################################# 

#GUI Version: 0.1.0.19 

#DLL Version: 0.1.0.11 

#Cmd Server Version: 0.1.0.11 

#FPGA Version: 0xC900000F 

#Arm Version: 0.1.0.5(ADI_ADRV9025_ARMBUILD_TESTOBJ) 

#StreamVersion: 0.0.0.28 

################################################################################# 

 

#Import Reference to the DLL 

import System 

import clr 

import time 

from System import Array 

clr.AddReferenceToFileAndPath("C:\\Program Files (x86)\\Analog Devices\\ADRV9025 Transceiver 
Evaluation Software_x86_FULL\\adrvtrx_dll.dll") 

from adrv9025_dll import AdiEvaluationSystem 

from adrv9025_dll import Types 

from adrv9025_dll import Ad9528Types 

 

#Create an Instance of the Class 

Link = AdiEvaluationSystem.Instance  

 

if (Link.IsConnected): 

    fpga9025 = Link.FpgaGet() 

    adrv9025 = Link.ADRV9025Get(1) 

 

    print "Setting PLL LO1 and LO2" 

    adrv9025.RadioCtrl.PllFrequencySet(Types.adi_adrv9025_PllName_e.ADI_ADRV9025_LO1_PLL, 
3500000000) 

    adrv9025.RadioCtrl.PllFrequencySet(Types.adi_adrv9025_PllName_e.ADI_ADRV9025_LO2_PLL, 
3550000000) 

     

    print "Readback PLL" 

    lo1 = adrv9025.RadioCtrl.PllFrequencyGet(Types.adi_adrv9025_PllName_e.ADI_ADRV9025_LO1_PLL, 
0) 

    print "LO1 set to :" + str(lo1[1]) 

    lo2 = adrv9025.RadioCtrl.PllFrequencyGet(Types.adi_adrv9025_PllName_e.ADI_ADRV9025_LO2_PLL, 
0) 

    print "LO2 set to :" + str(lo2[1])  

 

else: 

    print "Not Connected" 

 

print "Finished Setting RF PLL" 
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Figure 177.  

When using the Iron Python window, the user can execute any API command that is available in the loaded software build.  

C CODE GENERATION 
It is possible to generate C initialization structure from the GUI. To generate this code, select Tools > Create Script > Init c files. 
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Figure 178.  

On selecting this option, GUI open a dialogue box for selecting a location and file name to store this code. preferred file name initdata.c. 
You can choose to store resource files at the same location or another location by selecting Yes or No on the prompt. 
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Figure 179.  
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To use this code, follow these steps: 

1. Copy the c_src folder from Adi.ADRV9025.Api\public\src to the location /home/analog/adrv9025_c_example/ on platform. 
(create directory adrv9025_c_example if not present). 

2. Copy the generated resources folder to the platform at the same location /home/analog/adrv9025_c_example/. 
3. Copy the generated files, initdata.h, initdata.c, and main.c to /home/analog/adrv9025_c_example/c_src/app/example/. 
4. Go the the example directory using the terminal and run following command command to enter the directory (see Figure 180). 
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Figure 180.  

5. Run Comand make at this location. This compiles the code. If no errors, this generates an executable with name main in 
/home/analog/adrv9025_c_example/c_src/app/example/. 
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Figure 181.  

6. Run command ./main in the same folder to run the initialization sequence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors). 
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