ANALOG ADRV9026 System Development User Guide
DEVICES Y P UG-1727

One Technology Way « P.O. Box 9106 « Norwood, MA 02062-9106, U.S.A. « Tel: 781.329.4700 « Fax: 781.461.3113 - www.analog.com
Preliminary Technical Data

ADRV9026 Integrated Quad RF Transceiver with Observation Path

SCOPE

This user guide is the main source of information for system engineers and software developers using the Analog Devices, Inc., ADRV9026
software defined radio transceiver. Updates to this user guide can be expected after additional ADRV902x products are added to this
family of radio transceivers. This user guide must be used in conjunction with the ADRV9026 data sheet.

PLEASE SEE THE LAST PAGE FOR AN IMPORTANT
WARNING AND LEGAL TERMS AND CONDITIONS. Rev. PrA | Page 1 of 267

https://www.analog.com/?doc=ADRV9026-system-development-user-guide-UG-1727.pdf
http://www.analog.com/
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/ADRV9026?doc=ADRV9026-system-development-user-guide-UG-1727.pdf

UG-1727

TABLE OF CONTENTS

Scope 1
General OVEIVIEW.......ccvuucieimereieiieiseieiiessesssssessesssssesassssssens 4
System Overview 5
System Architecture Description......... 6
Software Architecture 6
API Folder Structure 6
Private vs. Public API functions 7
Hardware Abstraction Layer ..., 8
Software Integration 10
Software Integration Process OVerviewccveueecereunnes 10
Software Package Folder Structure Overviewccccceuuee. 10
API Software Architecture 11
Implementing Hardware Abstraction Interface...........c......... 11
Developing the Application 11
Serial Peripheral Interface (SPI) 20
SPI Bus Signals 20
SPI Data Transfer Protocol..........ccoueuveuviuneuciencuneneieneicnncinnns 20
SPI Configuration Using API Function 21
Timing Diagrams 22
System Initialization......... 24
Initialization Sequence 24
Serializer/Deserializer (SERDES) Interfacecccceeeuevevevennnnee. 25
JESD204 Standard 25
Differences between JESD204B and JESD204C..................... 26
Clock Distribution .26
Receiver (ADC) Datapath 27
Transmitter (DAC) Datapath .38
Supported Deframer Link Parameters 39
API Software Integration 49
Implementation Recommendationsccocuveureureereeerennees 49
Link Initialization and Debugging 50
First time system bring up—Checking Link Integrity 50
Sample Iron Python Code for PRBS Testingcccccceuuueee 51
PRBS Errors 51
SPO (Static Phase Offset) TEST to Verify Eye Width 53
Checking JESD204C Link Status........cccoceeeieicincincincencnicnnee 60
Selecting the Optimal LMFC/LEMC Offset for a Deframer 60
Synthesizer Configuration............cccecuecuvcuniuriurieeececcuscunensenenenns 72
Overview 72
Connections for external Reference clock(DEVCLK)........... 72

External Reference Clock (DEVCLK) Requirements............ 73
Clock Synthesizer............ 74
RF Synthesizer 74
Auxiliary Synthesizer 76
Setting the LO Frequencies... 76
External LO 79
Lock Status 79
RF PLL Phase Synchronization 80
Arm Processor and Device Calibrations...........cccccoecvcuvcureneunenee 82
Arm State Machine Overview 82
System Initialization.......... 82
Pre MCS Init 83
Post MCS Init 83
Device Calibrations 83
Initial Calibrationscceeeeeververrernerneueeerensersenserseseeenennes 84
System Considerations for Initial Calibrationscececuu.. 87
Tracking Calibrations 91
Calibration Guidelines after PLL Frequency Changes.......... 95
Initialization Calibrations to be Run after Device
Initialization.........cceceeevvcuennce 104
Tracking Calibration Timing 105
Stream Processor and System Control 106
Slice Stream Processors . 106
System Control 106
Use Cases 113
Transmitter Overview and Path Control.............cccooceeviencence 119
API Commands........cccecuvcuveuncuncuecennnn. 119
DAC Full-Scale Function (DAC B0OSt)ccovevererrereerenrennnes 124
adi_adrv9025_TxChannelCfg API Structure...........ccocue... 126
Transmitter Power Amplifier Protectionc..cvcveveeeernennee 127
PA Protection Description .. 127
Receiver Gain Control and Gain Compensation...................... 134
Overview 134
Receiver Data Path 135
Gain Control Modes 136
Manual Gain Control (MGC) 137
Automatic Gain Control.......... 139
AGC Clock and Gain Block Timing.........ccecveeveereereereeenennecs 147
Analog Peak Detector (APD)ccccocvivicicicinnincnncinicicnnes 148
Half-Band 2 Peak Detector 149

Rev. PrA | Page 2 of 267

UG-1721

Power Detector 151 Receiver and Observation Receiver Control with SPI2......211
API Programming 152 RF Port Interface Overview 212
AGC Holdover Function 153 RF Port Impedance Data........cocveeveercereeeeeenernenneeneineeseeeeenenne 212
Rx Gain Mode Switching using GPIO 153 ADS Setup Using DAC (Data Access Component) and SEDZ
Gain Control Data Structures 155 File 215
Sample Python Script—Peak Detect Mode with Fast Attack Transmitter Bias and Port Interface 216
160 General Receiver Path Interface 218
Gain Compensation, Floating Point Formatter and Slicer. 162 Impedance Matching Network Examples............ccocoeeeuunneee. 218
Receiver Data Format Data Structure 169 Matching Component Recommendationscccccueeenes 220
Digital Filter Configuration 173 Power Management Considerations 222
Overview 173 Important 222
Receiver Signal Path. 173 Power Supply Sequence 222
Receiver Signal Path Example 176 Power Supply Domain Connections 222
Receiver Filter API Structure 177 Power Supply Architecture 225
Transmitter Signal Path 180 Current ConSUMPIONceveeeveueuremererererenenenesenesensesenenes 226
Tx Signal Path Example 181 PCB Layout Considerations... 228
Transmitter Filter API Structure 182 Overview 228
Observation Receivers Signal path 183 PCB Material and Stack Up Selection 228
Observation Receiver Signal Path Example........c.ccocveueuuenes 184 Fanout and Trace Spacing Guidelines 231
Observation Receiver Filter API Structure...........ccoceeueeueeee 186 Component Placement and Routing Guidelines.................. 232
General-Purpose Input/Output Configurationcccce..... 187 RF and JESD Transmission Line Layout.........cccccoecuveuviunanee. 234
Digital GPIO Operation..........cccocuecureureueicecescuncurenreneeenennes 187 Isolation Techniques.... 238
GPIO_ANA Operation 195 Power Management Layout Design 240
General-Purpose Interrupt..... 196 Analog Signal Routing Considerations 248
PLL GPINT Sources 198 Digital Signal Routing Considerations 248
JESD204B/JESD204C GPINT Sources........cccceveveeerereeererene 198 Unused Pin Instructions 249
PA Protection GPINT Sources 199 Transceiver Evaluation Software (TES) Operation 250
Arm GPINT Sources 199 Initial Setup.......ccceuueeees 250
Stream Processor Sources .. 200 Hardware Kit 250
Memory ECC Error 200 Requirements 250
Software Procedures for GPINT 200 Hardware SEtUPcc.euveueeeeeineenereeeieeeieieerenetseeeisesesesessesesenns 251
API Commands for GPINT............. 200 Hardware Operation 253
Auxiliary Converters and Temperature Sensor-...........c.cc.e..... 203 TES Installation 253
Auxiliary DAC (AuxDAC)......... 203 Starting the Transceiver Evaluation Software 255
Auxiliary ADC (AUXADCQC)covvuureirrererierisenenaeisesennsenes 205 Normal Operation 256
Temperature Sensor 207 Transmitter OPerationc.ceceveeeveeeurererecrereerenereserenseseseenenns 261
SPI2 Description 208 Receiver Operation ... 263
SPI2 Configuration 208 SCIPHIG ettt nseaes 264
Transmitter Control with SPI2 208 C Code Generation 266

Rev. PrA | Page 3 of 267

UG-1727

GENERAL OVERVIEW

There are several sections to this user guide, organized to make it easier for users to find the information pertinent to their area of
interest. A synopsis of each section follows:

System Overview section: explains the capability of the ADRV9026 and provides an introduction to all the subsystems and functions,
including block diagrams and interfaces.

System Architecture Description section: explains the software design approach using APIs and all details required to develop code to
operate the device.

Software Integration section: explains the structure of the API developed by Analog Devices and how to integrate the API into the code of
the customer.

Serial Peripheral Interface (SPI) section: explains the main control interface between the baseband processor (also referred to as BBIC)
and the device.

System Initialization section: explains the sequence of steps required at startup.

Serializer/Deserializer (SERDES) Interface section: describes the high speed digital interface that transfers data to/from a baseband
processor.

Synthesizer Configuration section: describes the design, control, and versatility of the synthesizer subsystem.
Arm Processor and Device Calibrations section: explains the calibrations scheduled and controlled by the internal Arm® processor.
Stream Processor and System Control section: explains the stream processor functions and how these functions are implemented.

Transmitter Overview and Path Control section: describes operation of the transmitter attenuation settings and available software API
used for control.

Transmitter Power Amplifier Protection: describes the protection circuitry and how it works in conjunction with the general-purpose
interrupt feature to enable transmitter attenuation and notify the baseband processor that such an event has taken place.

Receiver Gain Control and Gain Compensation section: describes automatic and manual gain control options that the API uses for
making adjustments.

Digital Filter Configuration section: describes the digital processing portion of each receiver and transmitter and provides details on
configuration options.

General-Purpose Input/Output Configuration section: describes the different GPIO capabilities provided by the ADRV9026 device and
how to configure those capabilities for various functions.

General-Purpose Interrupt section: describes the various interrupt options that can be routed to the GPINT pins for monitoring
purposes.

Auxiliary Converters and Temperature Sensor section: describes the implementation and functionality of the AuxDAC, AuxADC, and
internal temperature sensor.

SPI2 Description section: explains the implementation and functionality of the SPI2 bus using designated GPIO pins.

RF Port Interface Overviewsection: describes the RF port impedance matching process and explains different topologies that can be used
to achieve proper impedance matching.

Power Management Considerations section: explains how to connect power supplies to the device, the inputs that supply the various
blocks, and precautions to take when completing a schematic and layout for power routing implementation.

PCB Layout Considerations section: provides guidelines for proper printed circuit board (PCB) layout and techniques for maximizing
performance and minimizing channel-to-channel interference.

Transceiver Evaluation Software (TES) Operation section: explains setup and control of the device using the graphical user interface
(GUI) software.

Rev. PrA | Page 4 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1721

SYSTEM OVERVIEW

The ADRV9026 is part of a family of highly integrated RF agile transceivers designed for use in small cell, massive MIMO, and macro
base station equipment used in advanced communications systems. The device contains four independently controlled transmitters,
dedicated observation receiver inputs for monitoring transmitter channel outputs, four independently controlled receivers, integrated
synthesizers, and digital signal processing functions to provide a complete transceiver solution. The device provides the high radio
performance and low power consumption demanded by cellular infrastructure applications such as macro 2G/3G/4G/5G and massive
MIMO base stations. This document is designed to encompass description of all functions available in the ADRV9026. Note that some
variants may be developed for specific design targets that do not encompass all available functions, so refer to the data sheet for the
specific device to determine which features are included. To avoid confusion, the term “device” is used throughout this user guide to refer
to any variant that employs a specific function. When a function that applies to a specific part is described, the device part number is used
to delineate which device is being described.

The ADRV9026 is designed to operate over the wide frequency ranges of 650 MHz to 6 GHz. The receiver channels support bandwidth
up to 200 MHz with data transfer across (up to) four JESD204B/JESD204C lanes at rates up to 16.22 Gbps. The transmitter channels
operate over the same frequency range as the receivers. Each transmitter channel supports up to 450 MHz synthesis bandwidth with data
input across (up to) four JESD204B/JESD204C lanes. In addition, local oscillator (LO) routing allows the transmitters to operate at
different frequencies than the receivers for additional flexibility. Two observation receiver channels are included to provide the capability
to monitor feedback from the transmitter outputs. The feedback loops can be used to implement error correction, calibration, and signal
enhancing algorithms. These receivers operate in the same frequency range as the transmitter channels, and they support up to 450 MHz
channel bandwidth to match the output synthesis bandwidth of the transmitter channels. These channels provide digital data paths to the
internal Arm processor for use in calibration and signal enhancement algorithms.

Multiple fully integrated PLLs are included in the device to provide a high level of flexibility and performance. Two are high performance,
low power fractional-N RF synthesizers that can be configured to supply the transmitters and receivers in different configurations. A
third fractional-N PLL supports an independent frequency for the observation receiver channels. Other clock PLLs are included to
generate the converter and digital clocks for signal processing and communication interfaces.

Power supply for each block is distributed across four different voltage supplies: 3 analog and 1 digital. The analog supplies are 1.8V,
1.3V, and 1.0 V. These supplies are fed directly to the power inputs for some blocks and buffered by internal low dropout (LDO)
regulators for other functions for maximum performance. The digital processing blocks are supplied by a 1.0 V source. In addition, a
1.8 V supply supplies all GPIO and interface ports that connect with the baseband processor.

See the functional block diagram in the ADRV9026 data sheet for a high level view of the functions in the ADRV9026. Descriptions of
each block with setup and control details are provided in subsequent sections.

Rev. PrA | Page 5 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1727

SYSTEM ARCHITECTURE DESCRIPTION

Analog Devices developed a proprietary application programming interface (API) software for the ADRV9026 transceiver device.
Whereas this section outlines the overall architecture, folder structure, and methods for using API software on the customer platform,
this section does not explain the API library functions. Detailed information regarding the API functions is in the doxygen document
included with the API software (adrv9025.chm) located at /c_src/doc. This file can also be viewed in the Help tab on the ADRVTRX
transceiver evaluation software (TES) used for controlling the evaluation platform. Note that the ADRV9025 is the baseline device for the
ADRV902x family; all API and evaluation systems use the ADRV9025 product number to delineate the product. With respect to this user
guide, the ADRV9025 and ADRV9026 product numbers are interchangeable.

SOFTWARE ARCHITECTURE
Figure 2 illustrates the software architecture for the system evaluation platform.
This architecture can be broadly divided into three main layers:

e Hardware abstration layer: consists of device drivers and device specific code.

e Middleware layer: consists of device APIs and other auxiliary layer functions, and resides in the platform layer.

e Application layer: consists of radio application software running on a baseband processor. The baseband processor can be an
embedded processor or a PC running a digital signal processing application, such as MATLAB® that processes baseband data.

API FOLDER STRUCTURE

Source files are provided by Analog Devices in the folder structure shown in Figure 1. Note that the baseline device, ADRV9025, is used
in the source file folder structure. Each subfolder is explained in the following sections. Analog Devices understands that the developer
may desire to use a different folder structure. Whereas Analog Devices provides API source code releases in the folder structure shown in
Figure 1, the developer may organize the API into a custom folder organization. Creating a new folder structure, however, does not
permit the developer the right to modify the content of the API source code. Modifying the content of any API source file is not allowed
because such modification causes issues with supporting the API and complicates updates to future API code releases.

4 L] c_src
4 . boards
B adred025
4 .| common
oo adi_error
B adi_hal
B2 adi_logging
B[R] adi_cormrmon.hk
B[R] adi_cormrmon_macrash
B[4 adi_comman_types.h
4 o devices
B ad9528
B adred025
B fpga
o fpgadolo
4 - platforms
P adsh
P adsl
B #+ adi_platform.c
B[4 adi_platform.h i
b [adi_platform_types.h E

Figure 1. APl Folder Structure

Rev. PrA | Page 6 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1721

|

APPLICATION LAYER

[Gul J I penitTestCh] [e J[b]} Resides in PC
Transport Layer (server and client)] —
J

;|A [
V|‘

Transceiver Wrapper Layer C+

Board Level

[Adrv902x Board server function kst]

i ; MIDDLEWARE
— Resides in platform LAYER
ADI Adrv802x device

Unit Test (C++)

Uity wm:mrim device APT (public)

ADI device AP (private)

A\

/
Linux 12C][TCPiIP SPI Timer Loggung FPGA Regs FPGA DDR Mern
] File System ABSTRACTION LAYER
it Stack Do wnw WSO Kamad Deiver UIOWDH\M' "

Figure 2. ADRV9025 API Software Architecture (Analog Devices Evaluation Platform)

L[Platlorrn Libraries & Hardware Abstraction Layer A HARDWARE

22770-002

Devices Folder (/c_src/devices)

The devices folder (/c_src/devices) includes the main API code for the transceiver as well as the Analog Devices clock chip AD9528
(/ad9528 folder). The /adrv9025 folder contains the high level function prototypes, data types, macros, and source code to build the final
user software system. The user is strictly forbidden to modify the files contained in the /adrv9025 and /ad9528 folders. Note that
software support cannot be provided if these files have been modified. Analog Devices maintains this code. The only exception is that the
developer may modify user-selectable #define macros such as ADI_ADRV9025_VERBOSE mode to enable or disable API logging, and
user configurable macros defined in /adrv9025/public/include/adi_adrv9025_user.h.

Platforms Folder (/c_src/platforms)

The platforms folder, named /c_src/platforms, provides the means for a developer to insert custom platform hardware driver code for
system integration with the APIL. The adi_platform.c/.h files contain function pointers and the required prototypes necessary for the API
to work correctly. It is important that the function prototypes in adi_platform.c do not change. The developer is responsible for
implementing the code for each adi_platform.c function to insure the correct hardware drivers are called for the platform hardware of
the user. In the example code provided by Analog Devices in adi_platform.c, the function pointers are assigned to call the Analog
Devices ADS9 platform functions. To allow for easy platform swapping, Analog Devices maintains a generic implementation of
adi_platform.c. To support another platform, assign the function pointers in adi_platform.c to call the platform functions specific for
the platform hardware of the user.

API doxygen (adrv9025.chm) File (/c_src/doc)

This folder contains the device API doxygen (adrv9025.chm) file for user reference. It is in compressed HTML format. For security
reasons, .chm files can only be opened from a local drive. If you attempt to open from a network drive, the file may look empty.

PRIVATE vs. PUBLIC API FUNCTIONS

The API is made up of multiple .c and .h files. The API is written in C, so there are no language modifiers to identify a function as private
or public as commonly used in object-oriented languages. Per the Analog Devices coding standard, public API functions are denoted by
the function name prepended with adi_adrv9025_FunctionName(). The application layer is free to use any API function prepended with
the adi_adrv9025_ naming. Private helper functions lack the adi_ prefix, and are not intended to be called by the customer application.

Most functions in the API are prefixed with adi_adrv9025_ and are for public use. However, many of these functions are never called
directly from the application layer of the developer. Utility functions that abstract some common operations, specifically initialization of
the device, are provided in adi_adrv9025_utility.c. For this reason, the majority of the initialization and other helper functions have been
separated from the top level adi_adrv9025.c/adi_adrv9025.h files to help the developer focus on the most commonly and widely used
functions by the application layer program.

Rev. PrA | Page 7 of 267

UG-1727

HARDWARE ABSTRACTION LAYER

The hardware abstraction layer (HAL) interface is a library of functions that the transceiver API uses when it needs to access the target
platform hardware. The implementation of this interface is platform dependent and needs to be implemented by the end user in
adi_platform.c. The current adi_platform.c provides example code that calls the HAL functions for the ADS9 evaluation platform
specific functions.

The adi_platform.c HAL functions are function pointers that must be initialized by creating a customer supplied, platform specific
function and pointing the associated HAL function pointer to the customer supplied function.

A snippet is given here from the adi_platform.c provided for the ADS9 mother board demonstrating assignment of adi_hal_ function
pointers to ADS9 specific functions:

adi_hal_HwOpen = ads9 HwOpen;

adi_hal HwClose = ads9 HwClose;

adi_hal HwReset = ads9 HwReset;

adi_hal_DevHalCfgCreate = ads9 DevHalCfgCreate;

adi_hal_DevHalCfgFree = ads9 DevHalCfgFree;

adi_hal_Spilnit = ads9_Spilnit;
adi_hal_SpiWrite = ads9_SpiWrite_v2;
adi_hal_SpiRead = ads9_SpiRead_v2;

adi_hal_LogFileOpen = ads9_LogFileOpen;
adi_hal_LogLevelSet = ads9_LogLevelSet;
adi_hal_LogLevelGet = ads9_LogLevelGet;
adi_hal_LogWrite = ads9_LogWrite;
adi_hal_LogFileClose = ads9_LogFileClose;

adi_hal_Wait_us = ads9 TimerWait_us;
ads9_TimerWait_ms;

adi_hal_Wait_ms

/* only required to support the ADI FPGA*/
adi_hal_BbicRegisterRead = ads9_BbicRegisterRead;
adi_hal_BbicRegisterWrite = ads9 BbicRegisterWrite;
adi_hal_BbicRegistersRead = ads9 BbicRegistersRead;
adi_hal_BbicRegistersWrite = ads9_BbicRegistersWrite;
Hardware Functions

Access to the SPI controller that communicates with the Analog Devices transceiver is required. The SPI details are illustrated in the
Serial Peripheral Interface (SPI) section of this document. In addition, control of the hardware reset signal that controls the RESET pin is
required. This is usually implemented using a platform processor GPIO. Refer to the target platform schematic and transceiver data sheet
for more details of the RESET pin.

Logging Functions

The API provides a simple logging feature function that may be enabled for debugging purposes. This feature requires an implementation
for the adi_hal_LogWrite function. The APIs optionally call to send debug information to the system via the HAL. The function
adi_hal_LogLevelSet, may be used to configure HAL flags to configure how the HAL processes the various message types from the API
layer. Analog Devices transceiver open-hardware function, adi_hal HwOpen calls this function to set the desired logging operation.
Available logging levels are given by adi_common_LogLevel_e, as shown in Table 1.

Rev. PrA | Page 8 of 267

UG-1721

Table 1. Logging Levels

Function Name

Purpose

ADI_COMMON_LOG_NONE

ADI_COMMON_LOG_MSG

ADI_COMMON_LOG_WARN

ADI_COMMON_LOG_ERR
ADI_COMMON_LOG_API

ADI_COMMON_LOG_API_PRIV

ADI_COMMON_LOG_BF
ADI_COMMON_LOG_HAL
ADI_COMMON_LOG_SPI
ADI_COMMON_LOG_ALL

All types of log messages not selected

Log message type

Warning message type

Error message type

API function entry for logging purposes

Private API function entry for logging purposes

BF function entry for logging purposes

Analog Devices HAL function entry for logging purposes
SPI transaction type

All types of log messages selected

Multiple Device Support

For applications with multiple transceivers, the HAL layer requires a reference to the targeted device and its hardware particulars, for
example SPI chip select, reset signal. The HAL function prototypes first parameter, void* devHalCfg, provides the platform layer
functions with device specific settings such as SPI chip select, log file names, and so forth. The devHalCfg pointer is void to the device
API layer because the device API layer has no knowledge of the platform. This allows each platform to use a different devHalCfg structure
that properly represents the specific hardware on the platform.

Note for the Analog Devices transceiver API: there is a requirement that only one thread may control and configure a specific device

instance at any given time.

devHalinfo

To pass a target device information from the application to the adi_platform.c HAL functions, the API layer passes a void pointer
parameter, called devHalInfo. This void pointer shall act as a state container for the relevant hardware information for a particular device.
Note that within the platform layer (adi_platform.h), this is the same as devHalCfg.

The API user must define this state container as per system HAL implementation requirements. User may implement any structure to
pass any hardware configuration information that the hardware requires between application layer and platform layer. This state
container may be used to transfer device reference information in multi-threaded and multi-transceiver systems.

The application passes the device state container, devHallnfo, via the API transceiver device structure, for example the adi_adrv9025_Device_t.
The API function does not read or write the (void *) devHalInfo but passes it as a parameter to all HAL function calls.

Table 2. HAL Interface Functions for User Integration

Function Name

Purpose

adi_hal_HwOpen

adi_hal_HwClose
adi_hal_HwReset
adi_hal_SpiWrite

adi_hal_SpiRead

adi_hal_Wait_us
adi_hal_Wait_ms
adi_hal_LogFileOpen
adi_hal_LoglLevelSet
adi_hal_LogLevelGet
adi_hal_LogWrite
adi_hal_LogFileClose
adi_hal_DevHalCfgCreate
adi_hal_DevHalCfgFree
adi_hal_BbicRegisterRead
adi_hal_BbicRegisterWrite
adi_hal_BbicRegistersRead
adi_hal_BbicRegistersWrite

Open and initialize all platform drivers/resources and peripherals required to control the transceiver device
(for example, SPI, timer, and logging)

Close any resources opened by adi_hal_HwOpen
Toggle the hardware reset signal for the transceiver device

Write an array of data bytes on a targeted SPI device (address bytes are packed into the byte array before
calling this function)

Read an array of data bytes from a targeted SPI device (address bytes are provided by a TxData array, which
are packed into the byte array before calling this function)

Perform a wait/thread sleep in units of microseconds

Perform a wait/thread sleep in units of milliseconds

Open a file for logging

Mask to set the severity of information to write to the log (Error/Warning/Message)
Get the current log level setting

Log a debug message (message, warning, error) from the API to the platform log
Function to close the log file

This function allows the platform to allocate and configure the devHalCfg structure
This function allows the platform to deallocate the devHalCfg structure

This function is used to communicate with the baseband processor (FPGA)

This function is used to communicate with the baseband processor (FPGA)

This function is used to communicate with the baseband processor (FPGA)

This function is used to communicate with the baseband processor (FPGA)

Rev. PrA | Page 9 of 267

UG-1727

SOFTWARE INTEGRATION

The ADRV9025 API package was developed on the Analog Devices ADS9 reference platform utilizing a Xilinx MicroZed running a
Linux variant. This section describe how to use the provided API in a custom hardware/software environment. This is readily
accomplished because the API was developed abiding by ANSI C constructs while maintaining Linux system call transparency. The ANSI
C standard was followed to ensure agnostic processor and operating system integration with the API code.

SOFTWARE INTEGRATION PROCESS OVERVIEW

The following steps can be followed to integrated Analog Devices API into functioning system software.

Transceiver Device API Integration: The API source code can be integrated into the radio system software deployed on the baseband
processor to control the Analog Devices transceiver operations.

Integration of Transceiver Specific Files: Platform files which are necessary for the Analog Devices transceiver to function are added
to the system software.

Integration of Drivers in Hardware Abstraction Layer: The API software provided by Analog Devices communicates with the
transceiver through a SPI interface, accessed via Hardware Abstraction Layer (HAL). The references to the SPI driver need to be
updated by the user in the HAL.

Compilation and Programming: Once the files required for software integration are available, the device API can be compiled, and
the transceiver specific platform files programmed into the transceiver.

INTEGRATION OF INTEGRATION OF
TRANSCEIVER DEVICE TRANSCEIVER SPECIFIC DRIVERS IN THE COMPILATION AND
API INTEGRATION FILES (FW, STREAM, HARDWARE PROGRAMMING
GAIN TABLES, PROFILE) ABSTRACTION LAYER

22770-004

Figure 3. Software Integration Process Steps

SOFTWARE PACKAGE FOLDER STRUCTURE OVERVIEW

The software package delivered follows the structure shown in Figure 4. The software package consists of 4 main folders:

API—contains the API C source code for the ADRV902x family of transceiver devices.
Firmware—contains the firmware binaries generated for the embedded Arm processor core in the ADRV902x family devices.

Gain Tables—contains the receiver gain table, receiver gain compensated gain table, and the transmit path attenuation table used by
the ADRV902x family devices.

GUI—contains an installation package for the Transceiver Evaluation Software, which can be used to evaluate the transceiver, and
generate important platform files such as the stream and the use case profile used to initialize the device.
£ Adi.Adrv9025.Api

E Adi.Adrv9025.Firmware

E Adi.Adrv9025.GainTables

RxGainTable.csv

(] RxGainTable_GainCompensated.csv

TxAttenTable.csv

exe

eiver Evaluation Soft .exe

Figure 4. Software Package Folder Structure

Rev. PrA | Page 10 of 267

UG-1721

API SOFTWARE ARCHITECTURE

The API architecture is implemented as 3 main layers as shown in Figure 5. This section describes how to use the API in a custom

hardware/software environment. This is readily accomplished because the API was developed abiding by ANSI C constructs while

maintaining Linux system call transparency. The ANSI C standard was followed to ensure agnostic processor and operating system
integration with the ADRV902x transceiver family-based API code.

Device Layer
Adrv902x Customer
cannot
Common modify
Fal (_Logging] Eror
Platform Layer adi_platform
3 miath is a interface
adi_platform Layer that the
~ Platform - ™y Customer needs
adi_hal | n _ Logging Timer to map to their
adi_hal_HwClose Spi adi_hal_LogFileOpen adl_hal_Wait_us B
adi_hal_HwReset adi_hal_SpiWrite adi_hal_LogLevelSet iyt HAL through the
adi_hal_DevHalCfgCreate adi_hal_SpiRead adi_hal_LogLevelGet = functions
adi_hal_DevHalCfgFree _ adi_hal_LogWrite J pointers
HAL layer
7 ye - HAL
| . Customer
Platform SPI |\ Logging J Timer J implementation 8
\. _ e

Figure 5. Software Integration

IMPLEMENTING HARDWARE ABSTRACTION INTERFACE

Users who develop code to target custom hardware platforms use different drivers for the peripherals such as the SPT and GPIO compared
to the drivers chosen for the Analog Devices evaluation platform. The Analog Devices HAL interface is a library of functions that the API
uses when it needs to access the target platform hardware. The Analog Devices HAL is defined by adi_platform.h. The implementation of
this interface is platform dependent and shall be implemented by the developer in a platform specific subfolder. The prototypes of the
required functions defined in adi_platform.h may not be modified, as this breaks the APL

Refer to Table 2 for the functions required by the HAL interface for integration.
DEVELOPING THE APPLICATION

The /c_src/app/main.c file provides a user example demonstrating top-level initialization. The example application was written to
demonstrate initialization of one device, initialize the transmitter, and provide examples of calling the HAL functions and key
initialization functions such as adi_adrv9025_PreMcsInit_v2. Initialization of the transmitter and loading of the adi_adrv9025_Init_t
structure are omitted from the example code contained here for brevity. The example project also demonstrates how to load the
adi_adrv9025_Init_t structure from a JSON file or using initdata.c files.

The user application needs to allocate and clear the device and init structures. The adi_adrv9025_Device_t data structure is used to
describe or point to a particular device. The adi_adrv9025_Init_t structure is used to contain the init profile of the user.

An adi_adrv9025_Device_t pointer to the specific device instance is as follows:

typedef struct adi_adrv9025_Device

{
adi_common_Device_t common;
adi_adrv9025_Info_t devStatelnfo;
adi_adrv9025_SpiSettings_t spiSettings;
} adi_adrv9025 Device_t;
typedef struct adi_adrv9025_Init
{
adi_adrv9025_ClockSettings_t clocks;

adi_adrv9025_GplnterruptSettings_t
adi_adrv9025_ RxSettings_t

gplnterrupts;
rx;

Rev. PrA | Page 11 of 267

UG-1727

adi_adrv9025_TxSettings_t tx;
adi_adrv9025_ DatalnterfaceCfg_t datalnterface;
} adi_adrv9025_Init_t;
To support multiple ADRV9026 devices, the application layer code needs to instantiate multiple adi_adrv9025_Device_t structures to

describe each physical device. Multiple devices can have their own adi_adrv9025_Init_t structure instance, or share a common init
structure if they are configured the same.

The devHallInfo is defined as a void pointer and allows the user to define and pass any platform hardware settings to the platform HAL
layer functions. For example, devHalInfo might contain information such as the SPI chip select to be used for the physical ADRV9026
device. The API does not use the devHalInfo member, and therefore does not define the information it contains. Note that the API
functions are shared across all instances of physical ADRV9026 devices. The devHalInfo structure defined by the developer identifies
which physical ADRV9026 device is targeted (SPI chip select) when a particular API function is called. The developer may need to store
other hardware information unique to a particular ADRV9026 device in this structure such as timer instances, log file information to
allow for multithreading. It is expected that only one thread uses the API to a particular ADRV9026 device.

The devStateInfo member is of type adi_adrv9025_Info_t and is a runtime state container for the APIL. The application layer must allocate
memory for this structure, but only the API writes to the structure. The application layer allocates the devStateInfo structure with all
zeroes. The API uses the devStatelnfo structure to keep up with the current state of the API (for example, has it been initialized and Arm
loaded), as well as a debug store for any run-time data, such as error codes and error sources. It is not intended for the application layer to
access the devStateInfo member directly, as API functions are provided to access the last error code and source information.

The adi_adrv9025_Init_t structure is used to contain the customer profile initialization settings to configure an ADRV9026 device. This
init structure is passed to the API init functions during the initialization phase. This structure contains the
receiver/transmitter/observation receiver profile settings, system clock settings, JESD204B/JESD204C settings, and transceiver specific
SPI slave controller settings. The application layer passes a pointer to an instance of the adi_adrv9025_Init_t structure for a particular
ADRV9026 device to handle the majority of the device core initialization. After initialization is complete, the adi_adrv9025_Init_t
structure may be disposed of or deallocated if desired.

#include <stdio.h>

#include "adi_platform_h"
#include "adi_adrv9025_utilities.h"
#include "adi_adrv9025.h"
#include "adi_adrv9025_ radioctrl_h"

static void adi_LoadADRVI025InitStructUseCase24(adi_adrv9025_Init_t *init);
static Int32_t adi_ADRV9025InitExample(adi_adrv9025 Device_t *adrv9025Device);
static Int32_t adi_ADRV9025EnableTxExample(adi_adrv9025 Device_t *adrv9025Device);
int main(Q)
{
int32_t recoveryAction = 0;
adi_adrv9025_Device_t adrv9025Device = {0} ;
adi_ADRV9025InitExample(&adrv9025Device);
adi_ADRV9025EnableTxExample(&adrv9025Device) ;
recoveryAction = adi_adrv9025 HwClose(&adrv9025Device);
if (recoveryAction != ADI_ADRV9025_ACT_NO_ACTION)
{
printf(""Failed closing platform hardware drivers\n');
return -1;
}
adi_hal_DevHalCfgFree(adrv9025Device.devHal Info);
return O;
Rev. PrA | Page 12 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1721

static int32_t adi_ADRV9025InitExample(adi_adrv9025 Device_t *adrv9025Device)

{

int32_t recoveryAction = 0;

printf(""Example

Init sequence for ADRV9025\n™);

if (adrv9025Device == NULL)

{

printf("'NULL ADRV9025 device pointer\n');
return -1

adi_adrv9025_Init_t adrvo025Init = {0};

/* Platform layer function adi_hal_DevHalCfgCreate allocates platform specific

settings structure for SPI
driver, logging, etc (per device)*/

void *adrv9025hal = adi_hal_DevHalCfgCreate((ADI_HAL_INTERFACE_SPI |

ADI_HAL_INTERFACE_LOG |

ADI_HAL_ INTERFACE_HWRESET |

ADI_HAL_INTERFACE_TIMER), 0, "adrv9025Log.txt");

structure\n™);

if (adrv9025hal
{

}

adrv9025Device-

== NULL)
printf("Failed allocating platform hardware settings

return -1;

>devHal Info = adrv9025hal;

/* Load ADRV9025 init structure */
adi_LoadADRV9025InitStructUseCase24(&adrvo025Init);

recoveryAction

= adi_adrv9025_HwOpen(adrv9025Device);

if (recoveryAction '= ADI_ADRV9025 ACT_NO_ACTION)

{

printf(""Failed opening platform hardware drivers\n');

return -1;

/* Initialize ADRV9025 */

recoveryAction

= adi_adrv9025_PreMcslnit_v2(adrv9025Device,
&adrv9025Init,

""/home/analog/adrv9025_server/resources/Tokelau_M4_bin",

e.bin",

""/home/analog/adrv9025_server/resources/stream_imag

Rev. PrA | Page 13 of 267

UG-1727

""/home/analog/adrv9025_server/resources/RxGainTable.csv",

""/home/analog/adrv9025_server/resources/TxAttenTable._csv');

recoveryAction = adi_adrv9025_PlIFrequencySet(adrv9025Device,
ADI_ADRV9025_L0O1_PLL, 3500000000);

return O;

}

Include Files

For each major function block, there are generally three files: adi_feature.c, adi_feature.h, and adi_feature_types.h. For core API
functionality, Table 3 shows the mandatory .h header files that must be included in the application layer program. Optional add-on API
functions can be included if the application of the developer requires those features. Note: the API places typedef definitions in files with
_types postfix such as ADRV9025_types.h. These _types.h files are included within their corresponding .h files and do no need to be
manually included in the application layer code.

Note that the ADRV9025_user.h contain the #defines for API timeouts and SPI read intervals which may be set as needed by the
customer platform. The user files are the only API files that the developer may change.

Table 3. API Mandatory .h Header Files

Mandatory Include Files Description

adi_adrv9025.h Core init functions

adi_adrv9025_error.h Error extension from common error

adi_adrv9025_arm.h Arm related functions

adi_adrv9025_cals.h Calibration related functions

adi_adrv9025_gpio.h General-purpose input/output (GPIO) related functions

adi_adrv9025_data_interface.h | Data interface related functions, JESD204B/JESD204C

adi_adrv9025_hal.h Contains prototypes and macro definitions for transceiver specific HAL wrapper functions

adi_adrv9025_radioctrl.h Functions for controlling the Radio

adi_adrv9025_rx.h Receiver related functions

adi_adrv9025_tx.h Transmitter related functions

adi_adrv9025_user.h API timeout and retry definitions

adi_adrv9025_utilities.h Higher level utility functions for init, loading Arm and Stream binaries, loading Rx Gain Table, Tx
attenuation table (Most require file system support)

adi_adrv9025_version.h Version structure

Table 4. API Optional .h Files

Optional (Add On) Include Files Description

adi_adrv9025_agc.h Add-on receiver AGC functionality

Rev. PrA | Page 14 of 267

UG-1721

API Error Handling and Debug

Each API function returns an int32_t value representing a recovery action. Recovery actions are divided into:

e Warning actions are those that don’t have an impact at the time of executing the device API, but can cause performance issues or
logging problems. The value of this actions are positive.

e Error actions are those that cause API not to be able to run and an action is required for API to go back to a good state. The value of
this actions are negative.

The API error structure that is accessed via device.error contains various members to narrow the action to be taken.

e errSource: current source of error detected, indicating the source file where the error.
e errCode: current error code,
errLine: line of the source code where the error was returned

e errFunc: function name where the error occurred

errFile: file name where the error occurred

e varName: variable name which has the error

e errorMessage: error message to describe the error
e lastAction: last action detected

e newAction: new action detected

API functions respond by telling the application layer what action needs to be taken due to a possible error in the API function call. The
error structure contains further information in order to take the adequate action. The possible recovery action return values are listed in
Table 5.

Table 5. API Recovery Actions

Recovery Action Name Value | Description
ADI_COMMON_ACT_WARN_CHECK_PARAM +3 API OK: parameter exceeds the range of values allowed
ADI_COMMON_ACT_WARN_RERUN_FEATURE +2 API OK: rerun device feature (Arm init cals)
ADI_COMMON_ACT_WARN_CHECK_INTERFACE | +1 API OK: log not working, this is a warning device programing can continue,
upper layer must decide action to be taken
ADI_COMMON_ACT_NO_ACTION 0 API function completed: no error handling action is required.
ADI_COMMON_ACT_ERR_CHECK_TIMER -1 API OK: timer not working
ADI_COMMON_ACT_ERR_CHECK_PARAM -2 API OK: invalid parameter detected in API
ADI_COMMON_ACT_ERR_RESET_INTERFACE -3 APING: interface Not Working, device cannot be program or access,
timer/I>)C/SP1/data interface
ADI_COMMON_ACT_ERR_RESET_FEATURE -4 API NG: reset device feature (for example, arm init cals)
ADI_COMMON_ACT_ERR_RESET_MODULE -5 API NG: module of device not working (arm not accessible)
ADI_COMMON_ACT_ERR_RESET_FULL -6 API NG: full system reset required

The actions can be divided into different blocks: parameter, feature, module, interface, and device.
Parameter:

e Parameter either passed to function or member of structure
e This action can be assigned when we want to set a feature/Module/Interface and it is not configure correctly

Feature: (parts of a module or device)

e GPIO control for transmitter attenuation
eGP interrupt

e Arm initial calibrations

e Arm tracking calibrations

e Arm control

e AGC control

e PA protection

Rev. PrA | Page 15 of 267

UG-1727

Module: (individual blocks that are contained in the device that are to contain features)
e Arm

e Caching/merging/streaming...

Interface:

e Devices interface
e SPI/I*)C/data interface
e Log

Device:
e Target device

API Recovery Action: ADI_COMMON_ACT_NO_ACTION

The ADI_COMMON_ACT_NO_ACTION API recovery action is returned when an API function completes. There is no recovery action
to be performed.

API Recovery Action: ADI_COMMON_ACT_WARN_RERUN_FEATURE

The ADI_COMMON_ACT_WARN_RERUN_FEATURE recovery action is returned when the API detects a failure in any of the device

features.

If a tracking calibration error is detected, it usually is not a catastrophic error, usually resulting in degraded radio performance. The
application layer attempts to recover by resetting the tracking calibration.

If the API detects an error with the transceiver init calibrations, at this point the error severity is high enough that re-running all init
calibrations is required. A full transceiver device reset is not required. It is also not required to reload the Arm firmware of the device.

Suggested application layer action:

1. Set PA and other RF front-end components in powered down / init state.
2. Calladi_adrv9025_ErrorCodeGet() to determine the specific ADIHAL error code and verify ADIHAL is the error source. Log error
code and source.
3. Read Arm calibration status to log debug information on calibration failure - call adi_adrv9025_InitCalDetailedStatusGet()
. Call adi_adrv9025_InitCalsRun() to re-run the init calibrations.
5. Call adi_adrv9025_InitCalsWait () and adi_adrv9025_InitCalDetailedStatusGet () to confirm that there is no error in init
calibrations.

API Recovery Action: ADI_COMMON_ACT_WARN_CHECK_INTERFACE

The ADI_COMMON_ACT_WARN_CHECK_INTERFACE API recovery action is returned if the adi_platform has return an error in
any interface. Further information can be extracted by reading the error structure which contains extended information about the error.

The following are possible scenarios for a check interface action.
Issue: Logging Interface When the Log File Cannot Be Opened Or Written to

The API layer does not return this as an error because it does not directly affect transceiver performance. In addition, this recovery action
does not prevent the API function from completing. Analog Devices suggests that the application layer attempt to close the log file and
reopen to resolve the log file access issue.

Issue: Baseband Processor GPIO Failed to Operate Correctly, but the API Circumvented the Error by Using the SPI port or
Other Control Mechanism

Because the API was able to complete the API function, the issue is not critical, but the application layer attempts to debug and fix the
issue reported by the adi_common layer with respect to the baseband processor GPIO control. The device.common.error contains the
information for decoding the error, the application layer can use it to debug the root cause of the error further.

Issue: adi_common Returns an Error Reporting that the Timer Is Not Working as Expected

The API uses the timer adi_common functions to perform thread blocking waits to insure that the API does not poll the SPI bus with
100% utilization.

If the timer is reporting an error from the adi_common, it is possible that the API function works correctly, but there may be an impact
on the system due to incorrect usage of system resources.

Rev. PrA | Page 16 of 267

UG-1721

Issue: adi_common layer reports a HAL error while attempting to control the baseband processor GPIO pins

If the API function cannot circumvent the error, this action is returned. If the API can circumvent the error, only a warning is returned.
Currently, the only baseband processor GPIO pin used in the adi_common is to reset the transceiver device (RESET pin).

If this error is reported, the application layer attempts to reset the baseband processor GPIO pins that are used within the adi_common
layer of code. If the application layer can resolve the GPIO hardware driver issue, normal operation of the API can resume by retrying the
failed API function.

Suggested application layer actions:

e Attempt to reset interface.

e Continue use of API monitoring for future check interface recovery action reports.

e If continued reports of ADI_COMMON_ACT_WARN_ CHECK_INTERFACE, a system diagnostic may be required for the
particular hardware.

API Recovery Action: ADI_COMMON_ACT_ERR_CHECK_PARAM

The ADI_COMMON_ACT_ERR_CHECK_PARAM API recovery action is returned if an API parameter range check or null parameter
check failed. In the event that this recovery action is returned, the API function did not complete. It is expected that this recovery action
is only found during the debug phase of development. During application software development, this recovery action informs the
developer to double check the value passed into the API function parameters. Once the parameters are corrected to be in the valid range,
or null pointers are corrected, recalling the function allows the API function to complete.

For debug, the developer may access further information located in the error structure, like error code, file name, function name or
variable name, a message is stored in the error message variable describing the error in more detail.

If the application SW passes development test but this recovery action is returned in the field, a bug in the application layer is highly
possible causing an out of range or NULL pointer error.

API Recovery Action: ADI_COMMON_ACT_ERR_CHECK_DEVICE

The ADI_COMMON_ACT_ERR_CHECK_DEVICE recovery action is returned when the device detected is not compatible with the
API being executed.

API Recovery Action: ADI_COMMON_ACT_ERR_RESET_INTERFACE

The ADI_COMMON_ACT_ERR_RESET_INTERFACE API recovery action is returned if the ADIHAL layer reports a HAL error while
attempting a SPI read or write transaction. If the ADIHAL function returns a timeout error due to SPI hardware being busy or used by
another thread, the API attempts to retry the SPI operation once. If the SPI transaction fails again, the API reports this recovery action.
This action is also returned if an ADIHAL error is returned due to inability to access the driver.

Suggested application layer action:

Call to determine the specific ADIHAL error code and verify that ADIHAL is the error source.

Log error code and source.

If the ADIHAL error is a timeout, the API function may be retried.

If the ADIHAL error is not a timeout, application tries resetting the SPI driver and retrying the function call.

If recovery action persists, verify SPI communication with other SPI devices and assess the need for a baseband processor system
reset.

R

If an API function has detected a condition, only the baseband processor can determine if it is a true error or not. An example is a data
interface error counter threshold overflow. If a data interface counter were to overflow once an hour or once a month, only the baseband
processor can determine if the counter overflow constituted an actual error condition.

Suggested application layer action:

1. Record the error.
2. Perform any baseband processor determined recovery actions.

Rev. PrA | Page 17 of 267

UG-1727

API Recovery Action: ADI_COMMON_ACT_ERR_RESET_FEATURE

The ADI_COMMON_ACT_ERR_RESET_FEATURE API recovery action is returned by the API when an error has been detected that
required the reset of a feature of the device. To reset the feature a reconfiguration of same has to be performed.

API Recovery Action: ADI_COMMON_ACT_ERR_RESET_MODULE
The ADI_COMMON_ACT_ERR_RESET_MODULE API recovery action is returned if the API detects an issue any of the modules:

e Arm processor module that requires a complete reset and reload of the Arm firmware. This type of action might be required if the
communication interface to the ADRV9026 Arm processor fails or the Arm watchdog timer reports an error. These events are not
expected in production code, but are failsafe mechanisms in the event of a catastrophic error.

e Issue adi_adrv9025_RxTxEnableSet() to disable transmitter to keep hardware in a safe state. If this fails, a full transceiver reset is
required.
e Set PA and other RF front-end components in powered down / init state.
e Call adi_adrv9025_ErrorCodeGet() to determine the specific error code and verify the error source. Log error code and source.
¢ Dump Arm memory if necessary for debug.
e Dump SPI registers if necessary for debug.
e Reload the stream processor and Arm binary firmware files.
e Continue with normal init sequence to run init calibrations and enable tracking calibrations.

API Recovery Action: ADI_COMMON_ACT_ERR_RESET_DEVICE

The ADI_COMMON_ACT_ERR_RESET_DEVICE recovery action is returned if an API function cannot complete due to a detected
error. If the API cannot correct or circumvent the error, and the severity of the error requires a complete reset of the transceiver device,
this action is returned.

Suggested application layer action:

1. Put system hardware in safe state.
a. Set PA and other RF front end components in powered down / init state
b. Hard reset ADRV9026 device (adi_adrv9025_HwReset())
2. Read API error code information for debug.
a. Dump Arm memory if necessary
b. Dump SPI registers if necessary
3. Reinitialize transceiver using normal full initialization sequence.

Restrictions

Developers may not modify any code located in /c_src/devices/* folder other than changing the adi_platform.c, adi_platform.h code
bodies for hardware driver insertion. Analog Devices maintains the code in /c_src/devices/adrv9025 and /c_src/devices/ad9528. Analog
Devices provides new releases to fix any code bugs in these folders.

No direct SPI read/write operation is permitted when configuring the transceiver or Analog Devices clock chip device. Only use the high-
level API functions defined in /c_src/devices/ad9528/ad9528.h or other public .h files. Do not directly use any SPI read/write functions in
the application layer code for transceiver configuration or control. Analog Devices does not support any customer code containing SPI
writes reverse-engineered from the original API.

Multiple Thread and Multiple Transceiver Application Considerations

For applications with multiple transceivers, the API requires a reference to the targeted device and its hard and soft particulars - for
example, SPI chip-select, reset and configuration status. The adi_adrv9025_Device_t structure is used to identify each instance of a
physical transceiver device.

For multi-threaded applications, there is a requirement that a particular device may only be controlled and configured by a single thread.
Concurrent thread configuration of the same instance of a physical transceiver device is not supported by the API.

Delays, Waits and Sleeps

A small number of APIs require some time to allow the hardware to complete internal configurations, for example,
adi_adrv9025_PllFrequencySet(). These APIs request the system to perform a wait or sleep by calling the HAL interface function
adi_hal_Wait_us/adi_hal Wait_ms. If the HAL interface implementation of the target platform chooses to implement a thread sleep, it is
not permitted for the application to call another API targeting the same transceiver device. The application is required to wait/sleep and
the API to complete before continuing with the configuration of the device.

Rev. PrA | Page 18 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1721

Table 6 lists the wait/sleep period used by the API. They are defined in adi_adrv9025_user.h. The timeout period values are the
recommended period required to complete the operation. Modifying these values is not reccommended and may impact performance.
During this time-out period, the status of the transceiver is polled. The frequency of the polling the status during this timeout period may
be modified by the user by adjusting the value of the polling interval.

Note that these recommendations may change once evaluation of the device is fully complete.

Table 6. API internal Wait/Sleep Intervals

Recommended Timeout Recommended Poll
Wait/Sleep Reference Purpose Period Per ps Interval Per ps
VERIFY_ARM_CHKSUM_XXX Calculation of arm checksum 200000 5000
CLKPLL_CPCAL_XXX Internal clock and PLL configuration 1000000 100000
CLKPLL_LOCK_XXX Internal clock and PLL locking period 1000000 100000
SETARMGPIO_XXX Update arm information on GPIOs for | 1000000 100000
TDD pin control

SETRFPLL_XXX Configure RF PLL frequency 1000000 100000
GETRFPLL_XXX Retrieve RF PLL frequency 1000000 100000
ABORTINITCALS_ XXX Abort initial calibrations 1000000 100000
GETINITCALSTATUS_XXX Retrieving initial calibrations status 1000000 100000
RADIOON_XXXS Enabling radio transmit and receive 1000000 100000
READARMCFG_XXX Reading arm configurations 1000000 100000
WRITEARMCFG_XXX Updating arm configurations 1000000 100000
RADIOOFF_XXX Disabling radio transmit and receive 1000000 100000
ENTRACKINGCALS_XXX Enabling tracking calibrations 1000000 100000
RESCHEDULETRACKINGCALS_XXX | Schedule a tracking calibration to run | 1000000 100000
SETTXTOORXMAP_ Set Tx to ORx external signal routing 1000000 100000
GETTXLOLSTATUS_ Status of TxLOL external tracking cal 1000000 100000
GETTXQECSTATUS_ Status of Tx QEC tracking cal 1000000 100000
GETRXQECSTATUS _ Status of Rx QEC tracking cal 1000000 100000
GETORXQECSTATUS_ Status of ORx QEC tracking cal 1000000 100000
GETRXHD2STATUS Status of Rx HD2 tracking cal 1000000 100000
SENDARMCMD_XXX Sending requests to arm firmware 2000000 100000
GETTEMPERATURE_ Read current temperature 1000000 100000
GETARMBOOTUP_ Waiting for arm to boot up 1000000 100000

Rev. PrA | Page 19 of 267

UG-1727

SERIAL PERIPHERAL INTERFACE (SPI)

The SPI bus provides the mechanism for digital control by a baseband processor. Each SPI register is 8 bits wide, and each register
contains control bits, status monitors, or other settings that control all functions of the device. This section is mainly an information-only
section meant to give the user an understanding of the hardware interface used by the baseband processor to control the device. All
control functions are implemented using the API detailed within this document. The following sections explain the specifics of this
interface.

SPI BUS SIGNALS
The SPI bus consists of the following signals:

cs

CS is the active-low chip select that functions as the bus enable signal driven from the baseband processor to the device. This signal is an

input to the SPI_EN pin. CS is driven low before the first SCLK rising edge and is normally driven high again after the last SCLK falling
edge. The device ignores the clock and data signals while CS is high. CS also frames communication to and from the device and returns
the SPI interface to the ready state when it is driven high.

Forcing [high in the middle of a transaction aborts part or all of the transaction. If the transaction is aborted before the instruction is
complete or in the middle of the first data word, the state machine returned to the ready state. Any complete data byte transfers prior to
CS deasserting is valid, but all subsequent transfers in a continuous SPI transaction are aborted.

SCLK

SCLK is the serial interface reference clock driven by the baseband processor. This signal is an input to the SPI_CLK pin. It is only active
while CS is low. The minimum SCLK frequency is 10 MHz and the maximum SCLK frequency is 25 MHz. These limits are determined
based on the practical timing requirements of the transceiver system and the physical limitations of the device.

SDIO and SDO

When configured as a 4-wire bus, the SPI utilizes two data signals: SDIO and SDO. SDIO is the data input line driven from the baseband
processor. The signal input to the device is the SPI_DIO pin. SDO is the data output from the device to the baseband processor in this
configuration. The output signal is driven by the SPI_DO pin. When configured as a 3-wire bus, SDIO is used as a bidirectional data
signal that both receives and transmits serial data. The SDO port is disabled in this mode.

The data signals are launched on the falling edge of SCLK and sampled on the rising edge of SCLK by both the baseband processor and
the device. SDIO carries the control field from the baseband processor to the device during all transactions, and it carries the write data
fields during a write transaction. In a 3-wire SPI configuration, SDIO carries the returning read data fields from the device to the
baseband processor during a read transaction. In a 4-wire SPI configuration, SDO carries the returning data fields to the baseband
processor.

The SPI_SDO and SPI_SDIO pins transition to a high impedance state when the [input is high. The device does not provide any weak
pull-ups or pull-downs on these pins. When SPI_SDO is inactive, it is floated in a high impedance state. If a valid logic state on SPI_SDO
is required at all times, add an external weak pull-up/down (10 kQ value) on the PCB.

SPI DATA TRANSFER PROTOCOL

The SP1 is a flexible, synchronous serial communication bus allowing seamless interfacing to many industry standard microcontrollers
and microprocessors. The serial I/O is compatible with most synchronous transfer formats, including both the Motorola SPI and Intel
SSR protocols. The control field width for this device is limited to 16 bits, and multi-byte IO operation is allowed. This device cannot be
used to control other devices on the bus - it only operates as a slave.

There are two phases to a communication cycle. Phase 1 is the control cycle, which is the writing of a control word into the device. The
control word provides the serial port controller with information regarding the data field transfer cycle, which is Phase 2 of the
communication cycle. The Phase 1 control field defines whether the upcoming data transfer is read or write. It also defines the register
address being accessed.

Rev. PrA | Page 20 of 267

UG-1721

Phase 1 Instruction Format

The 16-bit control field contains the following information in Table 8.

Table 7. 16-Bit Control Field

MSB D14:D0

R/W A[14:0]

R/W—Bit 15 of the instruction word determines whether a read or write data transfer occurs after the instruction byte write. Logic high
indicates a read operation; logic zero indicates a write operation.

D14:D0—Bits A[14:0] specify the starting byte address for the data transfer during Phase 2 of the IO operation.

All byte addresses, both starting and internally generated addresses, are assumed to be valid. That is, if an invalid address (undefined
register) is accessed, the IO operation continues as if the address space were valid. For write operations, the written bits are discarded, and
read operations result in logic zeros at the output.

SPI CONFIGURATION USING API FUNCTION

SPI operation is configured via calling adi_adrv9025_SpiCfgSet(). This function is called by the adi_adrv9025_Initialize(), which is called
by adi_adrv9025_PreMcsInit_v2().

The input parameters for adi_adrv9025_PreMcsInit_v2() include the init structure which is of type adi_adrv9025_Init_t. The
adi_ ADRV9025InitExample() function shows an example of configuring a hard-coded init function which includes the SPI related
parameters.

Users can configure SPI settings for the device with different SPI controller configurations by configuring member values of the
adi_adrv9025_SpiSettings_t data structure. The adi_adrv9025_ SpiSettings_t data structure contains the following:
The parameters for this structure are listed in Table 8. Any value that is not listed in the table is invalid.
typedef struct adi_adrv9025_SpiSettings
{

uint8_t msbFirst;

uint8_t enSpiStreaming;

uint8_t autolncAddrUp;

uint8_t fourWireMode;

adi_adrv9025_CmosPadDrvStr_e cmosPadDrvStrength;
} adi_adrv9025_SpiSettings_t;

Table 8. SPI Bus Setup Parameters

Structure Member Value | Function Default

MSBFirst 0x00 | Least significant bit first 0x01
0x01 Most significant bit first

enSpiStreaming 0x00 | Enable single-byte data transfer mode. All communication between the baseband processor 0x00

and the device uses this mode. Note: not implemented in the Analog Devices platform layer.

0x01 Enable streaming to improve SPI throughput for indirect data transfer using an internal DMA
controller. Note: not implemented in the Analog Devices platform layer.

autolncAddrUp 0x00 | Auto-increment. Functionality intended to be used with SPI streaming. Sets address auto- 0x01
increment -> next addr = addr — 4. Note: not implemented in the Analog Devices platform
layer.

0x01 Auto-decrement. Functionality intended to be used with SPI streaming. Sets address auto-
decrement -> next addr = addr + 4. Note: not implemented in the Analog Devices platform

layer.

fourWireMode 0x00 | SPI hardware implementation. Use 3-wire SPI (SDIO pin is bidirectional). Figure 8 shows 0x01
example of SPI 3-wire mode of operation. Note: Analog Devices FPGA platform always uses
4-wire mode.

0x01 SPI hardware implementation. Use 4-wire SPI. Figure 6 and Figure 7 show examples of SPI 4-wire
mode of operation. The default mode for Analog Devices FPGA platform is 4-wire mode.

cmosPadDrvStrength | 0x00 | 5 pF load at 75 MHz 0x01
0x01 100 pF load at 100 MHz

Rev. PrA | Page 21 of 267

UG-1727

Single-Byte Data Transfer

When enSpiStreaming = 0, a single-byte data transfer is chosen. In this mode, [goes active-low, the SCLK signal activates, and the
address is transferred from the baseband processor to the device. This mode is always used in direct communication between the
baseband processor and the device.

In LSB mode, the LSB of the address is the first bit transmitted from the baseband processor, followed by the next 14 bits in order from

next LSB to MSB. The next bit signifies if the operation is read (set) or write (clear). If the operation is a write, the baseband processor
transmits the next 8 bits LSB to MSB. If the operation is a read, the device transmits the next 8 bits LSB to MSB.

In MSB mode, the first bit transmitted is the R/W bit that determines if the operation is a read (set) or write (clear). The MSB of the
address is the next bit transmitted from the baseband processor, followed by the remaining 14 bits in order from next MSB to LSB. If the

operation is a write, the baseband processor transmits the next 8 bits MSB to LSB. If the operation is a read, the device transmits the next
8 bits MSB to LSB.

Single-byte data transfer can continue in either mode for multiple byte transfers using the transfer format of address followed by data (A
D AAD ...) until the CS signal is driven high. The address must be written for each data byte transfer when using this mode.
Multiple Byte Data Transfer (SPI Streaming)

Multiple byte data transfer (also called SPI streaming) is not utilized in standard communication between the baseband processor and the
device. When enSpiStreaming = 1, data is transferred in multibyte packets, depending on the streaming mode that is enabled. This mode
is used to transfer data indirectly to internal Arm memory using a direct memory access (DMA) controller.

TIMING DIAGRAMS

The diagrams in Figure 6 and Figure 7 illustrate the SPI bus waveforms for a single-register write operation and a single-register read
operation, respectively. In the first figure, the value 0x55 is written to register 0x00A. In the second value, register 0x00A is read and the
value returned by the device is 0x55. If the same operations are performed with a 3-wire bus, the SDO line in Figure 6 is eliminated, and
the SDIO and SDO lines in Figure 7 are combined on the SDIO line. Note that both operations use MSB-first mode and all data is latched
on the rising edge of the SCLK signal.

CSsB _\ /—

SDho

22770-007

WRITE TO REGISTER 0x00A — VALUE = 0x55

w1 ala

READ REGISTER 0x00A - VALUE = 0x55

Figure 6. Nominal Timing Diagram, SPI Write Operation

-

22770-008

Figure 7. Nominal Timing Diagram, SPI Read Operation

Rev. PrA | Page 22 of 267

UG-1721

Table 9 lists the timing specifications for the SPI bus. The relationship between these parameters is shown in Figure 8. This diagram
shows a 3-wire SPI bus timing diagram with the device returning a value of 0xD4 from register 0x00A and timing parameters marked.
Note that this is a single read operation, so the bus-ready parameter after the data is driven from the device (tszs) is not shown in the
diagram.

Table 9. SPI Bus Timing Constraint Values

Parameter Min Typ Max Description

tep 40 ns 100 ns SCLK cycle time (clock period)

tmp 10 ns SCLK pulse width

tsc 4ns CS setup time to first SCLK rising edge

the 0ns Last SCLK falling edge to CS hold

ts 4ns SDIO data input setup time to SCLK

th Ons SDIO data input hold time to SCLK

tco 10ns 16 ns SCLK falling edge to output data delay (3-wire or 4-wire mode)
thzm th tco (max) Bus turnaround time after baseband processor drives the last address bit
thzs 3ns tco max Bus turnaround time after device drives the last data bit

tint 400 ns Byte to byte delay time during any single read or write operation

tsc tup tep ts =tizm H-tco the
=ty
CSsB
SCLKDON‘TCARE*L\’\L"‘,"\’\,\’\’\’\’\}\N\AM ’\,\’\’\,\’l‘DON'TCARE

SDIO DON’T CARE lRN_Vl A14| A13| A12| A11|A10| A9| A8| A7 | AG| A5| A4l A3 A2| A1 | A0| D7| D6 D5| D4| D3| D2| D1 | DO[DON'T CARE

22770-009

Figure 8. 3-Wire SPI Timing with Parameter Labels

Rev. PrA | Page 23 of 267

UG-1727

SYSTEM INITIALIZATION

This section provides information about the initialization process for the device utilizing the API developed by Analog Devices. The
following sections describe the developer preparation requirements and the initialization sequence. This section does not explain the API
library functions. Detailed information regarding the API functions can be found in the API doxygen document (adrv9025.chm) located
at /src/doc. This section does not describe API integration and the hardware abstraction Interface. Details of such can be found in the
Software Integration section and the Hardware Abstraction Layer section.

INITIALIZATION SEQUENCE

The initialization sequence is comprised of API calls intermixed with user defined function calls specific to the hardware platform. The
API functions perform all of the necessary tasks for device configuration, calibration, and control. The user is required to insert their
code into the initialization sequence specific to the hardware platform requirements. These platform requirements include but are not
limited to: user clock device, user FPGA\ASIC\baseband processor JESD204B interface, data path control, and various system checks
governed by the application.

The initialization process consist of the following steps. Some of the steps are done by the Arm. All functions before loading the stream
must be write only (use SPI write or bit field write, no SPI read).

Pre MCS initialization:

1. adi_adrv9025_Initialize

Set SPI controller settings

Set master bias

Enable pin pads

Set device clock hsdig divider
Load PFIRs per channel

Load gain tables

Load Tx attenuation tables
Load stream binary

Load arm binary

Write init struct/Rx/Tx profile info into Arm mem
Armrun=1

Wait for Arm boot to complete
Verify Arm checksum

AT S TR e A o

2

Arm configuration:

Rx/Tx channel configuration (all half-band filter enables, clock dividers)
CLKPLL/SERDES PLL configuration

JESD204 configuration

Arm switches to CLKPLL output once PLL locked

L s

Post MCS initialization:

1. MCS:

a. SetArmrun=0

b. Enable MCS state machine to listen for new SYSREF pulses
c. Customer sends SYSREF pulses

d. When MCS state machine complete, Arm run =1

Pass License /cap info to Arm

Request Capabilities from Arm

Create function vector table (for optional /licensed features)
Load factory cal data

Run Arm init cals

Enable tracking cals

a. Enable radio control pin mode or not

Setup any GPIO for Arm/streams

NS v

The system is now ready.

Rev. PrA | Page 24 of 267

UG-1721

SERIALIZER/DESERIALIZER (SERDES) INTERFACE

The ADRV9026 employs a SERDES high speed serial interface based on the JESD204B/JESD204C standards to transfer ADC and DAC
samples between the device and a baseband processor. The device can support high-speed serial lane rates up to 16.22 Gbps. An external
clock distribution solution provides a device clock and SYSREF to both the device and the baseband processor. The SYSREF signal
ensures deterministic latency between the device and the baseband processor.

Note that the initialization sequence of the part is critical to guarantee deterministic latency. Specifically, the Arm init calibrations must
be run before the JESD links are established, as described in the initialization sequence section of this document. It is also imperative to
check the FIFO depth after the link has been established, as described in this section.

Major blocks in the interface include clock distribution, SERDES framer, and SERDES deframer.

JESD204 STANDARD

The JESD204 specification defines four key layers that implement the protocol data stream, as shown in Figure 9. The transport layer
maps the conversion between samples and framed, unscrambled octets. The optional scrambling layer scrambles/descrambles the octets,
spreading the spectral peaks to reduce EMI. The data link layer handles link synchronization, setup, and maintenance, and encodes/decodes the
optionally scrambled octets to/from 10-bit characters in the case of JESD204B (8-bit/10-bit encoding) and 66-bit characters in the case of
JESD204C (64-bit/66-bit encoding). The physical layer is responsible for transmission and reception of characters at the bit rate.

Tx Rx
APPLICATION APPLICATION
LAYER LAYER
TRANSPORT TRANSPORT
LAYER LAYER
SCRAMBLING SCRAMBLING
DATA LINK DATA LINK
LAYER LAYER
PHYSICAL (PHY) PHYSICAL (PHY)
LAYER LAYER

22770-010

HIGH SPEED SERIAL LANES
Figure 9. Key Layers of the JESD 204B/C standard

Figure 10 and Figure 11 illustrate how the JESD204 transmit and receive protocols are implemented.

The data interface blocks in the ADRV9026 can operate in either 204B or 204C modes. Fewer number of lanes may be needed when
operating in JESD204C, which results in simpler PCB layout and less power consumption.

TRANSPORT LAYER LINK LAYER PHYSICAL LAYER
| [| |
FRAME/LANE
PROCESSED 8B/10B (204B)
SAMPLE FRAME ALIGNMENT
SAMPLES — - |— SCRAMBLER |H IH 64B/66B (204C) [— SERIALIZER [OUTPUT .
FHOM ADG | CONSTRUCTION || CONSTRUCTION CHARACTER ENCODER g
Figure 10 JESD 204B/C Framer (JTX)
PHYSICAL LAYER LINK LAYER TRANSPORT LAYER
[I | |
8B/10B (204B) FRAME/LANE
INPUT —| DESERIALIZER |— 64B/66B (204C) || #HLG:A% | DESCRAMBLER [—| DEFRAMER |[» SAMPLES
DECODER DETECTION TODAC(s) §

Figure 11 JESD 204 B/C Deframer (JRX)

Rev. PrA | Page 25 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1727

DIFFERENCES BETWEEN JESD204B AND JESD204C

The initial revision of the interface provided support both single and multiple lanes per convertor device. Revision B added programmable
deterministic latency, usage of device clock as main clock source and data rate up to 12.5 Gbps. In the Revision C specification the data rate is
increased up to 32 Gbps and three link layers are defined as 8-bit/10-bit, 64-bit/66-bit and 64B/80B where the 8-bit/10-bit link layer is
same as JESD204B link layer.

In 8-bit/10-bit link layer, the data is organized into multiframes where in 64-bit/66-bit link layer data is organized into multiblocks of

32 blocks where each block contains 8 octets. In 8-bit/10-bit link layer, phase synchronization is done by Local Multiframe clock (LMFC)
where 64-bit/66-bit uses the Local Extended Multiblock Clock (LEMC). In 8-bit/10-bit link layer, LMFC marks multiframe boundaries
where in 64-bit/66-bit link layer LEMC is used to mark extended multiblock boundaries. Deterministic latency can be achieved by both
local multiframe clock (LMFC) or local extended multiblock clock (LEMC) as per the link layer used.

The 8-bit/10-bit link layer does the alignment between multiple converters by the alignment of their LMFCs to an external signal SYSREFE.
In 64-bit/66-bit link layer, the alignment between multiple converter devices is done by the alignment of their LEMC to an external signal
SYSREF/MULTIREF in Subclass 1. Each converter device can then adjust its LEMC phase to match with the common LEMC of the logic
device. The 64-bit/66-bit link layer only supports subclass 1 based LEMC alignment. In this case, the RBD adjustment resolution must not
be greater than 255 steps, and if more than one multiframe or multiblock per lane fits in the buffer, the RBD adjustment resolution must
be at least 16 steps per multiframe or multiblock. The 64-bit/66-bit link layer also defines a sync header stream, which transmits the
information parallel to the user data. This information is encoded using the sync header portion of the 66-bit word block. One sync
header per block is decoded to a single bit, and 32 of these bits across a multiblock makes a 32-bit sync word. The sync word can contain
the following information:

e Pilot signal (used to mark the borders of the multiblocks and extended multiblocks)
e CRC-3signal (used for error detection)

e CRC-12 signal (used for error detection)

e FEC signal (used for error detection and correction)

e Command channel (used for transmitting commands and status information)

With the 8-bit/10-bit link layer, JESD204 uses the SYNC interface for synchronization and error reporting where as in 64-bit/66-bit
encoding sync headers within the encoded data are used for the synchronization process and the reporting of errors is left to the
application layer.

CLOCK DISTRIBUTION

The clock distribution in the ADRV 9026 allows the SERDES to be driven by the either by the SERDES PLL or the Clock PLL depending
on the use case. Analog Devices provides tested predefined profiles with the appropriate settings so that each use case has a known
working setup configurations. For other profile configurations, a Profile Generator application is planned for future release allowing
customers to change bandwidths and sampling rates for custom configuration support.

Rev. PrA | Page 26 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1721

RECEIVER (ADC) DATAPATH

Figure 12 is a block diagram of the transceiver receive side (SERDES framer).

SYNCINBO

SYMCINB1

SYMCINB2

SYNC
XBAR
v
Framer O >
ADC >
LANE
Samples to 8B10B/64B66B -
* XBAR
Lanes Encode
ADC
ADC Framer 1 >
OR
Sample Samplesto | 8B10B/64B66B LANE Gate
XBAR XBAR
ADC Lanes Encode
" Framer 2
. LANE
. Samples to 8B10B/64B66B »
XBAR
- Lanes Encode

Serializers

YyVvY°Y

SERDOUTO
SERDOUT1
SERDOUT2

SERDOUT3
|

Figure 12. High Level JESD204B/JESD204C Interface Block Diagram (Rx Only)

Clock Generation
and SYSREF
Retiming

22770-013

The framers take care of all the encoding functions of the interface and is highly configurable with regard to interface rates and
combinations of RF receiver/observation receiver data streams, either separately or utilizing link sharing (Rx/ORx data time multiplexed
on the same lane according to the receiver-transmitter frame timing) for up to four lanes. To assist in debugging it contains an internal
data generator allowing a number of test patterns and PBRS patterns to be sent across the link.

There are three framers in the ADRV9026 to allow flexibility in configuring the output data streams. Data samples from the receivers and
observation receivers can be routed through a cross bar to put specific data on a particular lane. The framer supports separate lanes for
receiver and observation receiver, as well supporting link sharing in TDD mode that reduces the number of physical lanes needed by
putting receiver data on the lanes during the receiver slot and observation receiver data on the same lanes during the transmitter slot.
Figure 13 shows the configuration for use case 83C with link sharing (UC83C-LS) where all the signals are routed into Framer0. Framer1
and Framer?2 are not needed and are unused. This profile is a 25G 204C profile.

Rev. PrA | Page 27 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1727

@ Framer 0
Link Sharing Rx Settings
JESD Parameters JESD204
LaneRate (MHz) 24330.24 Link Sharing Mode: Framer
SampleRate (MHz) 36864 Set Rx ORx here. i Fereiare
input Output
L (#Lanes) ORx ORx Rx 0 to 1) (@ te L))
= 22 JESD ORX1_IRX1_1 *° FrmOut0 >}_tHJUU
ORX1_(RX1_Q™ ' FrmOut1 * GERDOUT B
M (#ADCs) ORX2_IRX2_| *} 2 Unused *SERDOUT O
ORX2_(RX2_Q" * Unused [*EERDOUT T
F Unused RX3_1 *1— *
LMFC Offset Unused RX3 Q ¥~ 5
Unused RX4_| *1 ¢
s RX1_Q RX4_ Q- 7
Unused Unused T~ &
NP Unused Unused H— 2
Unused Unused H— 10
crembig Unused Unused H— 11
Link Sharing Unused Unused H— 12
. Unused Unused +— 13
SYSREF Settings Unused Unused H— 14
Relink on SYSREF Unused Unused 1~ 15
SYSREF for Startup
SYSREF N Shot Enabled
Ignore when Linked
NShot Count
=
3
UC83C-LS 5
&
Figure 13. Example Framer Configuration for UC83C-LS
) Framer 0 & e
T ramer O Settings Fromar 1 Satsings
JESD Paramatbers JESDR04 JESD Parnmaters
Lanefste (MHz) 16220.16 Framer Laoafivle P} 1922018
SarplaRate (MHz) 49152 e e il] 20
- .| gt | L (WMLarwen) 1 hd
L {#Lanes) FI 01 b 1) Pt = -
o o
R oRaT oo -
M (#ADCs) A= %:"‘" = F 8
F a WMQ,: a LMFC Oftsat o
LWFC Oftsen o SRRRE - ¢ # LT
8 2= Unused == 7 NP L
] 16 v Umimed il o O &
Scrambling v T SYSREF Satings
Link Sharing Unassad == 12 Ruknk cm SYSREF
SYSREF Sotings - SYSREF for Starp
Rabrk on SYSREF Unused H— 18 SYSREF N Shat Enabled
SYSREF for Startup Igrcet wheen Linked
SYSREF N Shet Enablad NS&at Count Q
Igrsare whan Linked
NShot Count 0
=) Framer 2
Framer 2 Settings
JESD Parnmeters JESD204
LanaRate (MHz) 1622016 Framer
SampleFtate (MHZ) 24578 [T ramar o
L (MLaras) 1 * 0t M4
UC26C-NLS L . may el
M {RADCE) P e
T
5 5 Urusod 1= +
LWFE Odtsat L] e A
s Ly Urused == *
- Urnned == o
NP T Unused ==
saenang . e
Urnman) == 12
SYSHEF Set | Unused - 1
Rulnk o SYSREF m-— o

SYSREF hor Storteg

SYSREF N 5hat Enabiled
Kprm i Linkedd

NSkt Count (]

22770-015

Figure 14. Example Framer Configuration for UC26C-NLS

Figure 14 shows a configuration for a non-link sharing use case UC26C-NLS. This profile has a unique configuration where the datalink
on the ORx must have the data in a specific format (IIQQ). Framer0 has more flexibility that the other two framers. For this case Framer0
is used to format the ORx data as needed, and the other two framers are used to route the RX data on the lanes. This is a 16G 204C
profile.

The transport and link layers for JESD204B/JESD204C are performed in the framers. This device has three JESD204B/JESD204C framers
that get ORed together into four serial lanes. There are 20 logical converters to choose from, and samples from any of the logical
converters can be connected to any framer using the sample crossbar. Each framer has its own SYNC signal. This allows links to be
brought up/down for reconfiguration without interrupting the other links.

The three framers are capable of operating at different sample rates. The highest sample rate must be a power of two multiple of the lower
sample rates (2%, 4x, 8%, and so forth). There are two options to make this work: oversample at the framer input or bit repeat at the
framer output.

Rev. PrA | Page 28 of 267

UG-1721

Oversample mode samples the same converter samples of the lower sample rate multiple time, essentially oversampling the converter
output. This allows for all serializers to run at the same bit rate. In oversample mode, the baseband processor must decimate the data after
the transport layer to remove the extra samples.

Bit repeat mode repeats each bit at the framer output on the lane or lanes that carry the slower data, before it enters the serializer. Because
this is after the 8B10B/64B66B encoding, it appears as if the lane is running at a slower data rate than the other lanes. This essentially
expands the eye of the signal in the horizontal direction. In bit repeat mode, the baseband processor must be able to configure the lane
rates on the individual lanes independently as the lanes with the slower link must be sampled at a slower lane rate than the lanes with the
faster link.

All framers must share the four serializer lanes. Each framer must be configured for 0, 1, 2 or 4 lanes such that at a time all framers
combine for no more than 4 lanes.

Each framer is capable of generating a pseudo-random bit sequence (PRBS) on the enabled lanes. Once the PRBS is enabled, errors can be
injected. Enabling the PRBS generator disables the normal JESD204B/JESD204C framing, and causes the link to drop.

The serializers can be configured to adjust the amplitude and pre-emphasis of the physical signal to help combat bit errors due to various
PCB trace lengths.

Supported Framer Link Parameters

This device supports a subset of possible JESD204B/JESD204C link configurations. The number of virtual converters and the number of
serial lanes implemented in the silicon limit these configurations.

Table 10. JESD204B/JESD204C Framer Parameters

JESD204B/JESD204C Parameter | Description

M Number of converters. Framer 0 supports M maximum of 8, Framers 1 and 2 support M maximum of 4.
L Number of lanes (L can be 1, 2, or 4).

S Number of samples per converter per frame cycle (S can be 1, 2, or 4).

N Converter resolution (N can be 12, 16, or 24).

N’ Total number of bits per sample (N’ can be 12, 16, or 24).

CF Number of control words/frame clock. Cycle/converter device.

cs Number of control bits/conversion sample.

K JESD204B only: Number of frames in 1 multiframe, (20 < F*K < 256), F*K must be a multiple of 4.

E JESD204C only: Number of multiblocks in an extended multiblock.

For the JESD204B/JESD204C configuration to be valid, the lane rate must be within the range 3686.4 Mbps to 16220.16 Mbps. The lane
rate is the serial bitrate for one lane of the JESD204B/JESD204C link. The lane rates can be calculated using Equation 1 for JESD204B
configurations and using Equation 2 for JESD204C configurations.

JESD204B Lane Rate =1Q Sample Rate x M x N' x % +L (1)

JESD204C Lane Rate =1Q Sample Rate x M x N' x g +L (2)

Serializer Configuration

The amplitude of the serializer is represented by a 3-bit number that is not linearly weighted. The JESD204B/JESD204C transmitter mask
requires a differential amplitude greater than 360 mV and less than 770 mV.

Table 11. Serializer Amplitude Settings

Serializer Amplitude (Decimal) Average Differential Amplitude (Vrr=1V)
0 1 X Vit

1 0.85 x V11

2 0.75 x V1t

3 0.5 X Vrr

It is always recommended to verify the eye diagram in the system after building a PCB to verify any layout related performance
differences. If possible verify the eye using an internal eye monitor after the equalizer circuit of the receiver as this shows the true eye that
the receiver circuit receives.

A three-tap FIR equalizer is implemented in the serializer as shown in Figure 15. Here, the cursor, or largest tap weight multiplying ax is in
the center. There is a precursor tap, b-1, multiplying a1 and a postcursor tap, bi, multiplying a1 to realize the following difference
Rev. PrA | Page 29 of 267

UG-1727

equation for y«. Transmit pre-emphasis is used because it is simpler to realize bit delays with flip flops than trying to implement analog
delays at the receiver.

PRE-CURSOR CURSOR POST-CURSOR
// // / "

b_y bo by -

D—w| FF | 2%*14 ol pr |- 2% 4] FF [t

! i f

22770016

Yk = b_qa + 1+ boay + bqay _ 4

Figure 15. Serializer Emphasis implementation

This serializer pre-emphasis circuit allows boosting the amplitude anytime the serial bit changes state. If no bit transition occurs, the
amplitude is left unchanged. Pre-emphasis helps open the eye for longer PCB traces or when the parasitic loading of connectors has a
noticeable effect. In most cases, to find the best setting, a simulation or measurement of the eye diagram with a high-speed scope at the
receiver is recommended, or as mentioned above an internal eye monitor after the equalizer is the optimum solution. The serializer pre-
emphasis is controlled by setting a precursor and a postcursor setting, which are listed in Table 12 and Table 13, respectively.

Table 12. Precursor Amplitude Settings

Emphasis (Decimal) Emphasis (dB)
0 0
1 3
2 6

Table 13. Postcursor Amplitude Settings

Emphasis (Decimal) Emphasis (dB)
0 0

1 3

2 6

3 9

4 12

The adi_adrv9025_SerCfg_t data structure contains the information required to properly configure the serializer. Details of each member
can be found in API documentation (/c_src/doc). The Transceiver Evaluation Software has the option to output example data structures
with values chosen from the configuration tab of the software.

typedef struct adi_adrv9025_SerCfg
{
uint8_t serAmplitude;
uint8_t serPreEmphasis;
uint8_t serPostEmphasis;
uint8_t serlnvertLanePolarity;
} adi_adrv9025_SerCfg_t;
Framer
Each framer receives logical converter samples and maps them to high speed serial lanes. The mapping changes depending on the

JESD204B/JESD204C configuration chosen, specifically the number of lanes, the number of converters, and the number of samples per
converter. Figure 16 provides one valid framer configuration for this device.

The converter samples are passed into the framer through a sample crossbar. The sample crossbar allows any of the 20 logical converters
to be mapped to any input of any framer. For example, this can be used to swap I and Q samples or to mix and match different receivers’
data across different logical lanes. The framer lane data outputs also pass through a lane crossbar. This allows mapping any framer output

Rev. PrA | Page 30 of 267

UG-1721

lane (internal to the silicon) to any physical JESD204B/JESD204C lane at the package pin. The framer packs the converter samples into
lane data following the JESD204B/JESD204C specification. Figure 16 shows the data packing for M =2, L =1, S = 1 as an example.

CONVERTER DEVICE, 2 x 16 BITS, 1 SAMPLE PER SINGLE CONVERTER PER FRAME CYCLE

CONVERTER 0 | | CONVERTER 1

SAMPLE 0 | | SAMPLE 0

< NO CONTROL BITS TOADD CF =0AND CS =0 >

WORD 0 | | WORD 1
NG 0 | | NG 1
OCTET 0 | | OCTET 1 | | OCTET 2 | | OCTET 3
LANE 0

CONFIGURATION Fe4OCTETS R
DATA: - >

CF=0 _ _ — _

cs=0 2 2 2 2

F=4 LANE 0 = = = =

L=1 & 12 @ ®?

o ' - T

M=2 S S S S

N=16

N' =16 .

S=1 TIME E

Figure 16. Framer Data Packing forM=2,L=1,5=1

Other Useful Framer IP Features

PRBS Generator

Each framer has a built in PRBS test pattern generator to aid in debugging the JESD204B/JESD204C serial link. The pattern generator is
capable of generating PRBS7, PRBS9, PRBS15, PRBS23, or PRBS31 patterns. If errors caused by signal integrity exist, it may be difficult to
get the JESD204B/JESD204C framer-to-deframer link to work properly. The PRBS generator built into the framer allows the device to
output serial data even when the link cannot be established. With this mode enabled, the serializer amplitude and pre-emphasis can be
adjusted to find the best setting to minimize bit errors seen by the PRBS checker at the receiver side of the link. For this mode to be
utilized, the baseband processor must have a PRBS checker to check the PRBS sequence for errors.

Typical usage sequence:

1. Initialize the device as outlined in the link establishment section

2. Run the adi_adrv9025_FramerTestDataSet(...) with the required framer, test data source set to desired PRBS order, and injection
point to serializer input

3. Enable PRBS checker on the baseband processor and reset its error count
4. Wait a specific amount of time to allow a good number of samples to be transmitted, and then check the PRBS error count of the

baseband processor.
5. Adjust framer amplitude and pre-empbhasis settings and/or deframer equalization settings and repeat steps 3 and 4 to find the

optimum settings.

Pattern Generator

The framer also has the capability to generate some other patterns that can be used during debug like RAMP, CHECKERBOARD. There
is also a way the user can load a custom pattern into the framer which can be verified on the baseband processor. The pattern can sent
once, or be repeated continuously.

Rev. PrA | Page 31 of 267

UG-1727

API Software Integration

Configuration of the serializer and framers are all handled by the adi_adrv9025_Initialize(...) API function. Set all JESD204B/JESD204C
link options for the framer in the adi_adrv9025_FrmCfg_t data structure before calling adi_adrv9025_Initialize(...). After initialization,
there are some other API functions to aid in debug and monitoring the status of the JESD204B/JESD204C link.

JESD204B/JESD204C Framer APl Data Structures

adi_adrv9025_FrmCfg_t

The adi_adrv9025_FrmCfg_t data structure contains the information required to properly configure each framer. Details of each member

can be found in API documentation. The transceiver evaluation software has the option to output example data structures with values
chosen from the configuration tab of the software.

typedef struct adi_adrv9025_FrmCfg
{
uint8_t enableJesd204C;
uint8_t bankld;
uint8_t deviceld;
uint8_t laneOld;
uint8_t jesd204M;
uintl6_t jesd204K;
uint8_t jesd204F;
uint8_t jesd204Np;
uint8_t jesd204E;
uint8_t scramble;
uint8_t externalSysref;
uint8_t serializerLanesEnabled;
uintl6é_t ImfcOffset;
uint8_t reserved;
uint8_t syncblnSelect;
uint8_t overSample;
uint8_t syncblnLvdsMode;
uint8_t syncblnLvdsPninvert;
uint8_t enableManualLaneXbar;
adi_adrv9025_SerLaneXbar_t serializerLaneCrossbar;
adi_adrv9025_AdcSampleXbarCfg_t adcCrossbar;
uint8_t newSysrefOnRelink;
uint8_t sysrefForStartup;
uint8_t sysrefNShotEnable;
uint8_t sysrefNShotCount;
uint8_t sysreflgnoreWhenLinked;
} adi_adrv9025_ FrmCfg_t;

Rev. PrA | Page 32 of 267

UG-1721

Table 14. JESD204B/JESD204C Framer Configuration Structure Member Description

Structure Member Valid Values | Description
enableJesd204C 0,1 0 = enable JESD204B framer; 1 = enable JESD204C framer
bankld 0..15 JESD204B/JESD204C configuration Bank ID—extension to device ID
deviceld 0..255 JESD204B/JESD204C configuration Device ID—Ilink identification number
lane0Old 0..31 JESD204B/JESD204C configuration Lane ID—if more than one lane is used, each subsequent
lane increments from this number
jesd204M 0,1,2,4,8 Number of converters—typically two converters per receive chain
jesd204K 1to32 Number of frames in a multiframe—default is 32; F x K must be a multiple of 4
jesd204F 1,2,3,4,6, Number of octets per frame
8,12,16
jesd204Np 12,16,24 Number of bits per sample
Scramble (JESD204B Only) | 0, 1 Scrambling enabled
If scramble = 0, then scrambling is disabled
If scramble = 1, then scrambling is enabled
externalSysref 0,1 External SYSREF enabled
If externalSysref = 0, then use internal SYSREF
If externalSysref = 1, then use external SYSREF
serializerLanesEnabled 0x0 to OxOF Serializer lane enabled—one bit per lane
serializerLaneCrossbar 0x0 to OxFF Serializer lane crossbar—two bits per lane
ImfcOffset 0to 31 LMFC Offset—set the local multiframe counter offset value for deterministic latency setting,
such that 0 < ImfcOffset < (K-1)
reserved
syncinbSelect 0,1,2 SYNC selection — selects which SYNC input is connected to the framer
If syncinbSelect = 0, then SYNCINO is connected to the framer
If syncinbSelect = 1, then SYNCIN1 is connected to the framer
If syncinbSelect = 2, then SYNCIN2 is connected to the framer
overSample 0,1 Oversample mode—selects which method is chosen when oversample or bit repeat is needed
If oversample = 0, then bit repeat mode is selected
If oversample = 1, then oversample is selected
enableManualLaneXbar 0,1 0 = automatic lane crossbar mapping; 1 = manual lane crossbar mapping (using
serializerLaneCrossbar value)
syncbinLvdsMode 0,1 1 =Enables LVDS input pad; 0 = enables CMOS input pad
syncbinLvdsPninvert 0,1 0 =SYNC LVDS PN not inverted; 1 = SYNC LVDS PN inverted
newSysrefOnRelink 0,1 Set the flag for determining if SYSREF on relink. Where, if > 0 = set, 0 = not set
sysrefForStartup 0,1 1 = framer: require a SYSREF before CGS is output from serializer, 0: Allow CGS to output before
SYSREF occurs (recommended on framer to allow deframer CDR to lock and EQ to train)
sysrefNShotEnable 0,1 1 = enable SYSREF NShot (ability to ignore first rising edge of SYSREF to ignore possible runt
pulses)
sysrefNShotCount 0..15 Count value of which SYSREF edge to use to reset LMFC phase
sysreflgnoreWhenLinked 0,1 When JESD204 link is up and valid, 1 = ignore any SYSREF pulses

Rev. PrA | Page 33 of 267

UG-1727

JESD204B/JESD204C Framer Enumerated Types

adi_adrv9025_FramerDataSource

The adi_adrv9025_FramerDataSource_e is an enumerated data type to select the Framer test data source. The allowable values are listed

in Table 15.

Table 15. Framer Data Source Enumeration Description

Enumeration Value

Description

FTD_ADC_DATA
FTD_CHECKERBOARD
FTD_TOGGLEO_1
FTD_PRBS31
FTD_PRBS23
FTD_PRBS15
FTD_PRBS9
FTD_PRBS7
FTD_RAMP
FTD_PATTERN_REPEAT
FTD_PATTERN_ONCE

Framer test data ADC data source - this is used for normal operation
Framer test data checkerboard data source

Framer test data toggle 0 to 1 data source

Framer test data PRBS31 data source

Framer test data PSRB23 data source

Framer test data PRBS15 data source

Framer test data PRBS9 data source

Framer test data PRBS7 data source

Framer test data ramp data source

Framer test data 16-bit programmed pattern repeat source

Framer test data 16-bit programmed pattern executed once source

adi_adrv9025_FramerDatalnjectPoint

The adi_adrv9025_FramerDatalnjectPoint is an enumerated data type to select the Framer test data injection point. The allowable values

are listed in Table 16.

Table 16. Framer Injection Point Enumeration Description

Enumeration Value

Description

FTD_FRAMERINPUT
FTD_SERIALIZER
FTD_POST_LANEMAP

Framer test data injection point at framer input
Framer test data injection point at serializer input
Framer test data injection point after lane mapping

adi_adrv9025_ FramerSel

The adi_adrv9025_FramerSel is an enumerated data type to select the desired Framer. The allowable values are listed in Table 17.

Table 17. Framer Selection Enumeration Description

Enumeration Value

Description

ADI_ADRV9025_FRAMER_0
ADI_ADRV9025_FRAMER_1
ADI_ADRV9025_FRAMER_2
ADI_ADRV9025_ ALL_FRAMERS

Framer 0 selection
Framer 1 selection
Framer 2 selection
All Framers selected

API Functions

adi_adrv9025_FramerSysrefCtrlSet(...)

adi_adrv9025_FramerSysrefCtriSet(adi_adrv9025_Device_t *device, uint8_t framerSelMask, uint8_t

enable);

This function enables or disables the external SYSREF JESD204B/JESD204C signal connection to the framers.

For the framer to retime its LMFC/LEMF (local multi frame clock/local extended multiblock clock), a SYSREEF rising edge is required.
The external SYSREF signal at the pin can be gated off internally so the framer does not see a potentially invalid SYSREF pulse before it is

configured correctly.

By default the device has the SYSREF signal ungated. However, the multichip sync state machine still does not allow the external SYSREF
to reach the framer until the other stages of multichip sync have completed. As long as the external SYSREF is correctly configured before
performing MCS, this function may not be needed by the BBP, because the MCS state machine gates the SYSREF to the framer.

Precondition

This function is called after the device has been initialized and the JESD204B/JESD204C framer is enabled.

Rev. PrA | Page 34 of 267

UG-1721

Dependencies

device->devHallnfo

Parameters

Table 18.

Parameter Description

*device is a pointer to the device settings structure

framerSelMask | Select framer to enable/disable SYSREF input for (Valid Any OR’ed combination of enums ADI_ADRV9025_FRAMER_0,
ADI_ADRV9025_FRAMER_1, ADI_ADRV9025_FRAMER_2 or ADI_ADRV9025_ALL_FRAMERS)

enable =1 enables SYSREF to framer, '0' disables SYSREF to framer

Return Values

Table 19.

Return Value Description
ADI_ADRV9025_ACT_WARN_RESET_LOG Recovery action for log reset
ADI_ADRV9025_ACT_ERR_CHECK_PARAM Recovery action for bad parameter check
ADI_ADRV9025_ACT_ERR_RESET_SPI Recovery action for SPI reset required
ADI_ADRV9025_ACT_NO_ACTION Function completed, no action required

adi_adrv9025_FramerStatusGet(...)

adi_adrv9025_FramerStatusGet(adi_adrv9025 Device_t *device, adi_adrv9025 FramerSel_e framerSel,
adi_adrv9025_FramerStatus_t *framerStatus);

This function reads back the status of the selected framer to determine the state of the JESD204B/JESD204C link. The framer status
return value is an 8-bit status word as shown in Table 20. It also returns the qbfStateStatus and sync signal used by the selected framer.

Table 20. Framer Status Return Value

framerStatus Description

[71 Reserved

[6] Reserved

[5] Reserved

[4] Reserved

[3] Current SYNCIN level(1 = high, 0 = low)

[2] SYSREF phase error. Is set when a new SYSREF had different timing than the first that set the LMFC
timing.

[1] SYSREF phase established by framer

[0] Flag indicating that configuration parameters are not supported when set(1)

Precondition

The Rx JESD204B/JESD204C link(s) needs to be configured and running to use this function
Dependencies

device->devHalInfo

Parameters

Table 21.

Parameter Description

*device is a pointer to the device settings structure

framerSel Read back the framer status of the selected framer (Framer0, Framer1 or Framer2)
framerStatus is the framer status structure read

Rev. PrA | Page 35 of 267

UG-1727

Return Values

Table 22.

Return Value Description
ADI_ADRV9025_ACT_WARN_RESET_LOG Recovery action for log reset
ADI_ADRV9025_ACT_ERR_CHECK_PARAM Recovery action for bad parameter check
ADI_ADRV9025_ACT_ERR_RESET_SPI Recovery action for SPI reset required
ADI_ADRV9025_ACT_NO_ACTION Function completed, no action required

adi_adrv9025_FramerTestDataSet(...)

adi_adrv9025_FramerTestDataSet(adi_adrv9025 Device_t *device, adi_adrv9025_FrmTestDataCfg_t
*frmTestDataCfq);

This function selects the PRBS type and enables or disables Rx Framer PRBS generation. This is a debug function to be used for debug of
the Rx JESD204B/JESD204C lanes. Rx data transmission on the JESD204B/JESD204C link(s) is not possible when the framer test data is
activated.

Precondition
This function may be called any time after device initialization.
Dependencies

device->devHalInfo

Parameters

Table 23.

Parameter Description

*device is a pointer to the device settings structure

frmTestDataCfg is a pointer to a structure which contains the framer(s) of interest, testDataSource and injectPoint
Return Values

Table 24.

Return Value Description
ADI_ADRV9025_ACT_WARN_RESET_LOG Recovery action for log reset
ADI_ADRV9025_ACT_ERR_CHECK_PARAM Recovery action for bad parameter check
ADI_ADRV9025_ACT_ERR_RESET_SPI Recovery action for SPI reset required
ADI_ADRV9025_ACT_NO_ACTION Function completed, no action required

adi_adrv9025_FramerTestDataInjectError (...)

adi_adrv9025 FramerTestDatalnjectError(adi_adrv9025 Device_t *device, adi_adrv9025_ FramerSel_e
framerSelect, uint8_t laneMask);

This function injects an error into the Framer test data by inverting the data. This is a debug function to be used for debug of the receiver
JESD204B/JESD204C lanes. Receiver data transmission on the JESD204B/JESD204C link(s) is not possible when the framer test data is
activated.

Precondition
This function is called after the framer test data is enabled.
Dependencies

device->devHallnfo

Parameters

Table 25.

Parameter Description

*device is a pointer to the device settings structure

framerSelect Select the desired framer ADI_ADRV9025_FRAMER_0, ADI_ADRV9025_FRAMER_1, ADI_ADRV9025_FRAMER_2
laneMask is an four bit mask allowing selection of lanes 0-3 for the selected framer

Rev. PrA | Page 36 of 267

UG-1721

Return Values

Table 26.

Return Value Description
ADI_ADRV9025_ACT_WARN_RESET_LOG Recovery action for log reset
ADI_ADRV9025_ACT_ERR_CHECK_PARAM Recovery action for bad parameter check
ADI_ADRV9025_ACT_ERR_RESET_SPI Recovery action for SPI reset required
ADI_ADRV9025_ACT_NO_ACTION Function completed, no action required

adi_adrv9025_FramerLinkStateSet (...)

adi_adrv9025_ FramerLinkStateSet(adi_adrv9025 Device_t *device, uint8_t framerSelMask, uint8_t
enable);

This function enables and disables the JESD204B/JESD204C Framer. This function is normally not necessary. In the event that the link
needs to be reset, this function allows a framer to be disabled and reenabled. .

Precondition
This function may be called any time after device initialization.
Dependencies

device->devHallnfo

Parameters

Table 27.

Parameter Description

*device is a pointer to the device settings structure

framerSelMask Desired framer(s) to set/reset.

enable 0 = Disable the selected framers, 1 = enable the selected framer link
Return Values

Table 28.

Return Value Description
ADI_ADRV9025_ACT_WARN_RESET_LOG Recovery action for log reset
ADI_ADRV9025_ACT_ERR_CHECK_PARAM Recovery action for bad parameter check
ADI_ADRV9025_ACT_ERR_RESET_SPI Recovery action for SPI reset required
ADI_ADRV9025_ACT_NO_ACTION Function completed, no action required

Rev. PrA | Page 37 of 267

UG-1727

TRANSMITTER (DAC) DATAPATH
Figure 17 shows a block diagram of the transceiver transmit side (SERDES deframer).

The SERDES deframer receives the transmitter data from the baseband processor, decodes it and distributes the data streams to the
transmitters. The ADRV9026 includes two deframers that share up to four lanes that can operate at up to 25G. Figure 18 shows the
configuration for UC26C-NLS that uses Deframer0 and utilizes four lanes at 16G to support 4 Tx at maximum bandwidth.

SYNCOUTBO

SYNC i
XBAR SYNCOUTB1 .
Y
* DeFramer 0 *
DAC || < «
< Lanes to $B10B/64B66B ;’gﬁ:
Samples Decode D—
DAC ; y
SERDIND
lSERDINO
Sample ‘ SERDINL
DeSerializers SERDINZ
XBAR SERDINS
pac |I4 v -
DeFramer 1 N ¢
" Lanes to 8B10B/64B66B LANE
DAC |[[* XBAR
< Samples Decode
3
Clock Generation
and SYSREF
Retiming ®
g
S
I
&
Figure 17. High Level JESD204B/JESD204C Interface Block Diagram (Tx Only)
(~) Deframer 0
Deframer 0 Settings
JESD Parameters JESD204
LaneRate (MHz) 1622016 Deframer
—
SampleRate (MHz) 491.52 Sample Deframer Lane
Output Input]
L (#Lanes) G Eﬂutﬂp:ﬂ-ﬂ) [al toan-:)
K o4 T |+ BirmOuto o - SERDESIN A
TEL_ U |+ DfrmOut1 ! —1® SERDESIN B
M (#DACs) 5 - T2 | |+ DFfmOut2 ? 41 SERDESIN C
TX2_0 | <1 DfrmOut3 2 1 SERDESIN_D
F 4 T3 T | 1 DErmOutd 4 =8 Unused
LMFC Offset 0 Ti3 U |1 DfrmOutd & —T® Unused
T T]« DfrmOut6 & 1@ Unused
) L T7d_0 | ++ DfrmOut? 7 8 Unused

NP 16 -
v

Scrambling

SYSREF Settings
Relink on SYSREF
SYSREF for Startup
SYSREF N Shot Enabled
Ignore when Linked
NShot Count 0

22770-019

UC26C-NLS
Figure 18. Example Deframer Configuration for UC26C-NLS

Rev. PrA | Page 38 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1721

Figure 19 shows the configuration for UC83C-LS that uses Deframer0. Only two lanes are needed to realize the maximum chip RF
bandwidth (450 MHz) across all four Tx. This device has two JESD204B/JESD204C deframers that share four physical lanes. The two
deframers feed a sample crossbar that connects to eight DACs. All converters must run at the same sample rate. Likewise, all lanes must
run at the same data rate. Each deframer is capable of receiving a PRBS sequence and accumulating error counts. The deserializers have
adjustable equalization circuits to counteract the insertion loss due to various PCB trace lengths and material.

@ Deframer 0
Deframer 0 Settings
JESD Parameters JESD204
LaneRate (MHz) 24330.24 Deframer
| —
SampleRate (MHz) 366.64 Gample Deframer Lane
T Output Input
L (#Lanes) ‘2 v| (0 to h-1) (0to L1
K EE T4 1] 41 DfrmOut0 0 - SERDESIN A
171 0|+ DfrmOut 1 ! =1® SERDESIN_C
M (#DACs) \8 '| T2 | | *1T DfrmOut2 Z -8 Unused
- T2 Q| *+ DfrmOut3 3 —1® Unused
F | 8 T3 | |+ DfrmOut4 4 =8 Unused
LMFC Offset 0 143 Gl | *T DfrmOuts & =18 Unused
T T4 T | <1 DfrmOut6 & 1@ Unused
S ‘17'| Td_O |+ DfrmOut7 7 18 Unused
NP 18~
Scrambling [¥
SYSREF Settings
Relink on SYSREF
SYSREF for Startup

SYSREF N Shot Enabled
Ignore when Linked [
NShat Count | O

22770-020

ucs3c-Ls
Figure 19. Example Deframer Configuration for UC83C-LS

SUPPORTED DEFRAMER LINK PARAMETERS

The product supports a subset of possible JESD204B/JESD204C link configurations. The modes are limited by the number of DACs and
the number of serial lanes implemented in the silicon.

Table 29. JESD204B/JESD204C Deframer Parameters

JESD204B/JESD204C

Parameter Description

M Number of converters (M can be 1, 2, 4 or 8)

L Number of lanes (L can be 1, 2, or 4)

S Number of samples per converter per frame cycle

N Converter resolution (N can be 12 or 16)

N’ Total number of bits per sample (N'can be 12 or 16)

CF Number of control words/frame clock cycle/converter device

cs Number of control bits/conversion sample

HD High density mode.

K JESD204B only: Number of frames in 1 multiframe, (20 < F x K < 256), F X K must be a multiple of 4, K < 32
E JESD204C only: Number of multiblocks in an extended multiblock.

For a particular converter sample rate, not all combinations listed in the above table are valid. Calculate the JESD204B or JESD204C lane
rate using the equations described in the Supported Framer Link Parameters section.

The deserializer link is allowed to run at a different lane rate than the serializer link, under the condition that both lane rates are possible
with respect to the clock divider settings. Both the deserializer and serializer link rates are derived from the same PLL, but there are
separate dividers to generate the deserializer clock and the serializer clock.

Rev. PrA | Page 39 of 267

UG-1727

Deserializer Configuration

The deserializer includes a non-adaptive, programmable equalizer. This helps in compensating for signal integrity distortions for each
channel due to PCB trace length and impedance. The table below summarizes the amount of insertion loss each EQ setting can overcome.
Equalizer boost settings can range from 0 (maximum boost) to 3 (default).

Table 30. Deserializer EQ Boost Correction

EQ BoostSettings Boost (dB)
0 0

1 -3

2 -6

3 -12

If the insertion loss is greater than this, one of the other settings may be appropriate. Note that any setting can be used in conjunction
with transmitter pre-emphasis to ensure functionality and/or to optimize for power. The equalizer setting can be changed in the API
using desEqGainSetting parameter in the data structure adi_adrv9025_DesCfg _t.

The adi_adrv9025_DesCfg_t data structure contains the information required to properly configure the deserializer. Details of each
member can be found in API documentation. The Transceiver Evaluation Software has the option to output example data structures with
values chosen from the configuration tab of the software.

typedef struct adi_adrv9025_ DesCfg
{
uint8_t deslnvertLanePolarity;
uint8_t desEgBoostSetting;
uint8_t desEqGainSetting;
uint8_t desEqFeedbackSetting;
} adi_adrv9025_ DesCfg_t;
In JESD204B mode, the ADRV9026 uses passive equalizer architecture that de-emphasizes low frequencies in relation to the high

frequencies and then amplifies the signal. This provides the required equalization or ‘boost’ to properly capture the signal. A brief
description of the data members in adi_adrv9025_DesCfg_t is given in Table 31.

Table 31. Deserializer EQ Data Members

Structure Member Description

desInvertLanePolarity | Deserializer lane PN inversion select. Bit 0 = invert PN of Lane 0, Bit 1 = invert PN of Lane 1, and so on.

desEqBoostSetting It sets how much high frequency attenuation you are trying to compensate.

desEqGainSetting Gain is setting the number of stages of limiting amplifier. This compensates for the amount of EqBoost added
above.

desEqFeedbackSetting | This is the amount of feedback set for each gain stage. It works as a basic op amp, where the feedback network
can be tuned depending on the feedback setting in the equalizer. This feedback setting is applied to each of the
limiting amplifiers (depending on number of stages). It causes peaking in the total channel response. It is not
recommended to tune this data member while compensating for insertion losses.

When operating in JESD 204C mode, the equalization is done with a CTLE (continuous time linear equalizer) that is configured during
device initialization with a SERDES INIT calibration.

Deframer
The active deframers receive 8B10B/64B66B encoded data from the deserializer and decode the data into converter samples. The

deserializer-to-converter sample mapping changes depending on the JESD204B/JESD204C link configuration setting. Responsibilities of
the deframer are:

1. Monitor the health of the JESD204B/JESD204C link

2. Control the JESD204B/JESD204C Interrupt signal (can output on General Purpose Interrupt pin) to signal baseband processor when
certain JESD204B/JESD204C error conditions arise.

3. Remove character replacement (valid for only JESD204B).

4. Perform 8B10B/64B66B decoding.

5. Map JESD204B/JESD204C lane data to converter samples.

Rev. PrA | Page 40 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1721

A lane crossbar provides the ability to reorder the lanes into each deframer input. A sample crossbar provides the ability to reorder the
converter samples at the output of the deframers. The lane and sample crossbars enable flexiblity on which physical lanes are used and
which data is on each link.

The deframer unpacks the converter samples from lane data following the JESD204B/JESD204C specification. Figure 20 shows the data
unpacking for M =4, L =2, S =1 as an example.

CONVERTER DEVICE, 4 x 16 BITS, 1 SAMPLE PER SINGLE CONVERTER PER FRAME CYCLE

CONVERTER 0 | | CONVERTER 1 | | CONVERTER 2 | | CONVERTER 3
SAMPLE 0 | | SAMPLE 0 | | SAMPLE 0 | | SAMPLE 0
< NO CONTROL BITS TOADD CF=0AND CS =0 >
WORD 0 | | WORD 1 | | WORD 2 | | WORD 3
NG 0 | | NG 1 | | NG 2 | | NG 3

OCTET 0 | | OCTET 1 | | OCTET 2| | OCTET 3| | OCTET 4| | OCTET 5| | OCTET 6 | | OCTET 7

LANE 0 | | LANE 1
CONFIGURATION F-40CTETS R
DATA: - >
CF=0 - _ — _
cs=0 a3 g a3 g
F=4 LANE 0 = = = =
o (=]
L=2 17} g 7] “f
M=4 g G 5 I5)
N=16
N'=16
s=1
& =y & =y
e £ e £
LANE 1) a 2 @
ﬁ ™
5 5 3 5
TIME 8

Figure 20. JESD204B Deframer Configuration (M =4, L = 2)

Rev. PrA | Page 41 of 267

UG-1727

Other Useful Deframer IP Features

PRBS Checker

The deframer has a built in pseudo random bit sequence (PRBS) checker. The PRBS checker can self synchronize and check for PRBS
errors on a PRBS7, PRBS15, or PRBS31 sequence. Since this mode works even in the midst of potential bit errors on each lane, the
physical link can be debugged even when the JESD204B/JESD204C link cannot be established. This mode can be used to check the

robustness of the physical link during initial testing and/or factory test. For this mode to be fully utilized, the BPP must have a PRBS
generator capable of creating PRBS7, PRBS15, or PRBS31 data.

A typical usage sequence is as follows:

1. Initialize the device as outlined in the link establishment section.

2. Enable the PRBS generator on the baseband processor with the desired PRBS sequence.

3. Call the API adi_adrv9025_DfrmPrbsCheckerStateSet(...) passing the actual device being evaluated, the PRBS sequence to check,
and the location at which to check the PRBS sequence.

4. After some amount of time, call the API function to check the PRBS errors. This can be done by calling the API function
adi_adrv9025_DfrmPrbsErrCountGet(...) passing the actual device being evaluated, the counter selection lane to be read and the
error count is returned in the third parameter passed.

To prove an error count of 0 is valid, the baseband processor may have a PRBS error inject feature. Alternatively, the baseband processor
amplitude and emphasis settings can be set to a setting where errors occur. To reset the error count call the API function that clears the
counters: adi_adrv9025_DfrmPrbsCountReset(...).

API Software Configuration

Configuration of the deserializer and deframers are handled by the adi_adrv9025_Initialize(...) API function. Set all
JESD204B/JESD204C link options for the framer in the adi_adrv9025_DfrmCfg_t data structure before calling
adi_adrv9025_Initialize(...). After initialization, there are some other API functions to aid in debug and monitoring the status of the
JESD204B/JESD204C link.

JESD204B/JESD204C Deframer API Data Structures

adi_adrv9025_DfrmCfg_t

The adi_adrv9025_DfrmCfg_t data structure contains the information required to properly configure each deframer. Details of each

member can be found in API documentation. The transceiver evaluation software has the option to output example data structures with
values chosen from the configuration tab of the software.

typedef struct adi_adrv9025_DfrmCfg
{
uint8_t enableJesd204C;
uint8_t bankld;
uint8_t deviceld;
uint8_t laneOld;
uint8_t jesd204M;
uintlé_t jesd204K;
uint8_t jesd204Np;
uint8_t jesd204E;
uint8_t scramble;
uint8_t externalSysref;
uint8_t deserializerLanesEnabled;
uintl6é_t ImfcOffset;
uint8_t reserved;
uint8_t syncbOutSelect;
uint8_t syncbOutLvdsMode;
uint8_t syncbOutLvdsPninvert;
uint8_t syncbOutCmosSlewRate;
uint8_t syncbOutCmosDrivelevel;
Rev. PrA | Page 42 of 267

UG-1721

uint8_t enableManualLaneXbar;

adi_adrv9025_DeserLaneXbar_t deserializerLaneCrossbar;

adi_adrv9025_DacSampleXbarCfg_t dacCrossbar;
uint8_t newSysrefOnRelink;
uint8_t sysrefForStartup;
uint8_t sysrefNShotEnable;
uint8_t sysrefNShotCount;
uint8_t sysreflgnoreWhenLinked;

} adi_adrv9025 DfrmCfg_t;

Table 32. JESD204B/JESD204C Deframer Configuration Structure Member Description

Structure Member Valid Values | Description

enableJesd204C 0,1 0 = Enable JESD204B framer; 1= Enable JESD204C framer

bankld 0.15 JESD204B/JESD204C Configuration Bank ID (extension to device ID)

deviceld 0..255 JESD204B/JESD204C Configuration Device ID (link identification number)

lane0Old 0..31 JESD204B/JESD204C Configuration Lane ID (if more than one lane is used, each subsequent
lane increments from this number)

jesd204M 0,2,4,8 Number of converters: 2 converters per transmit chain

jesd204K (JESD204B Only) 1.32 Number of frames in a multiframe (default is 32); F x K must be a multiple of 4

jesd204Np 12,16 Number of bits per sample

jesd204E 0..255 JESD204C E parameter

Scramble (JESD204B Only) | O, 1 Scrambling enabled
If scramble = 0, then scrambling is disabled
If scramble = 1, then scrambling is enabled

externalSysref 0,1 External SYSREF enabled
If externalSysref = 0, then use internal SYSREF
If externalSysref = 1, then use external SYSREF

deserializerLanesEnabled 0x0 to OxF Deserializer lane enabled: one bit per lane

deserializerLaneCrossbar 0x0 to OxFF Deserializer lane crossbar: three bits per lane

ImfcOffset 0to 31 LMFC offset: Set the Local Multi Frame Counter Offset value for deterministic latency setting,
such that 0 < ImfcOffset < (K-1)

syncbOutSelect 0,1 New SYSREF on Relink: flag to indicate that a SYSREF is required to re-establish the link
if newSysrefOnRelink = 0, then no SYSREF is required
if newSysrefOnRelink = 1, then SYSREF is required

enableManualLaneXbar 0,1 SYNC Selection: selects which SYNCOUT output is driven by the deframer
If syncbOutSelect = 0, then the deframer drives SYNCOUTO
If syncbOutSelect = 1, then the deframer drives SYNCOUT1

syncbinLvdsMode 0,1 0 = automatic lane crossbar mapping; 1 = Manual lane crossbar mapping (using
deserializerLaneCrossbar value)

syncbinLvdsPniInvert 0,1 1 =enables LVDS input pad; 0 = enables CMOS input pad

syncbOutCmosSlewRate 0to3 0 = SYNC LVDS PN not inverted; 1 = SYNC LVDS PN inverted

syncbOutCmosDriveLevel 0,1 0 = fastest rise/fall times, 3 = slowest rise/fall times

newSysrefOnRelink 0,1 Set the flag for determining if SYSREF on relink. 1 = set, 0 = not set

sysrefForStartup 0,1 1 = framer: requires a SYSREF before CGS outputs from serializer, 0: allow CGS to output
before SYSREF occurs (recommended on framer to allow deframer CDR to lock and EQ to
train)

sysrefNShotEnable 0,1 1 = enable SYSREF NShot (ability to ignore first rising edge of SYSREF to ignore possible runt
pulses)

sysrefNShotCount 0to15 Count value of which SYSREF edge to use to reset LMFC phase

sysreflgnoreWhenLinked 0,1 When JESD204 link is up and valid, 1= ignore any sysref pulses

Rev. PrA | Page 43 of 267

UG-1727

adi_adrv9025_ DatalnterfaceCfg _t
The adi_adrv9025_ DatalnterfaceCfg_t data structure contains the information required to properly configure each framer, each
deframer, the serializers, and deserializers. Details of each member can be found in API documentation (/c_src/doc).
typedef struct adi_adrv9025_DatalnterfaceCfg
{

adi_adrv9025_FrmCfg_t framer[3];

adi_adrv9025 DfrmCfg_t deframer[2];

adi_adrv9025_SerCfg_t serCfg[8];

adi_adrv9025 DesCfg_t desCfg[8];

uint8_t sysreflLvdsMode;

uint8_t sysreflLvdsPninvert;

adi_adrv9025_LinkSharingCfg_t linkSharingCfg;
} adi_adrv9025 DatalnterfaceCfg_t;

Table 33. JESD204B/JESD204C Settings Structure Member Description

Structure Member Valid Values Description

framerQ data structure Framer 0 configuration data structure

framer1 data structure Framer 1 configuration data structure

framer2 data structure Framer 2 configuration data structure

deframer0 data structure Deframer 0 configuration data structure

deframer1 data structure Deframer 1 configuration data structure

serAmplitude 0to3 Serializer amplitude setting. Default = 1.

serPreEmphasis 0to2 Serializer pre-emphasis setting. Default = 0.
serlnvertLanePolarity 0x0 to OxOF Serializer Lane Polarity Inversion Select — one bit per lane
deslInvertLanePolarity 0x0 to OxOF Deserializer Lane Polarity Inversion Select — one bit per lane
desEqSetting 0to3 Deserializer Equalizer setting. Applied to all deserializer lanes.

JESD204B/JESD204C Deframer Enumerated Types
adi_adrv9025_DeframerSel

The adi_adrv9025_DeframerSel is an enumerated data type to select the desired Deframer. The allowable values are listed in Table 34.

Table 34. Deframer Selection Enumeration Description

Enumeration Value Description
ADI_ADRV9025_DEFRAMER_O Deframer 0 selection
ADI_ADRV9025_DEFRAMER_1 Deframer 1 selection
ADI_ADRV9025_DEFRAMER_O_AND_1 Deframer 0 and 1 selection

adi_adrv9025_ DeframerPrbsOrder

The adi_adrv9025_DeframerPrbsOrder is an enumerated data type to select the desired Deframer PRBS pattern. The allowable values are
listed in Table 35.

Table 35. Deframer PRBS Polynomial Order Enumeration Description

Enumeration Value Description
ADI_ADRV9025_PRBS_DISABLE Deframer PRBS pattern disable
ADI_ADRV9025_PRBS7 Deframer PRBS7 pattern select
ADI_ADRV9025_PRBS15 Deframer PRBS15 pattern select
ADI_ADRV9025_PRBS31 Deframer PRBS31 pattern select

Rev. PrA | Page 44 of 267

UG-1721

adi_adrv9025_DeframerPrbsCheckLoc

The adi_adrv9025_DeframerPrbsCheckLoc is an enumerated data type to select the desired location within the Deframer to check the PRBS
pattern. The allowable values are listed in Table 36.

Table 36. Deframer PRBS Check Location Enumeration Description

Enumeration Value Description

ADI_ADRV9025_PRBSCHECK_LANEDATA Check PRBS at deserializer lane output (does not allow JESD204B/JESD204C link to be
established)

ADI_ADRV9025_PRBSCHECK_SAMPLEDATA | Check PRBS at output of deframer (JESD204B/JESD204C deframed sample)

API Functions
adi_adrv9025_DeframerSysrefCtrlSet(...)

adi_adrv9025_DeframerSysrefCtriSet(adi_adrv9025 Device_t *device, adi_adrv9025_DeframerSel_e
deframerSel, uint8_t enable)

This function enables or disables the external SYSREF to the deframers of the transceiver.

For the deframer to retime its LMFC /LEMC (local multi frame clock/local extended multiblock clock), a SYSREF rising edge is required.
The external SYSREF signal at the pin can be gated off internally so the deframer does not see a potential invalid SYSREF pulse before it is
configured correctly.

By default the device has the SYSREF signal ungated, however, the Multichip Sync state machine still does not allow the external SYSREF
to reach the deframer until the other stages of multichip sync have completed. As long as the external SYSREF is correctly configured
before performing MCS, this function may not be needed by the baseband processor, since the MCS state machine gates the SYSREF to
the deframer.

Precondition
This function is called after the device has been initialized and the JESD204B/JESD204C deframer is enabled.
Dependencies

device->devHallnfo

Parameters

Table 37.

Parameter | Description

*device Pointer to the device settings structure

deframerSel | Select deframer to enable/disable SYSREF input for (Valid ADI_ADRV9025_DEFRAMER_0, ADI_ADRV9025_DEFRAMER_1 or
ADI_ADRV9025_DEFRAMER_0_AND_1)

enable 1 = enable SYSREF to deframer, 0 = disable SYSREF to deframer

Return Values

Table 38.

Return Value Description
ADI_ADRV9025_ACT_WARN_RESET_LOG Recovery action for log reset
ADI_ADRV9025_ACT_ERR_CHECK_PARAM Recovery action for bad parameter check
ADI_ADRV9025_ACT_ERR_RESET_SPI Recovery action for SPI reset required
ADI_ADRV9025_ACT_NO_ACTION Function completed, no action required

adi_adrv9025_DfrmLinkStateSet (...)

adi_adrv9025 DfrmLinkStateSet(adi_adrv9025_Device_t *device, uint8_ t deframerSelMask, uint8_t
enable)

This function is normally not necessary. In the event that the link needs to be reset, this function allows a deframer to be disabled and re-
enabled.

During disable, the lane FIFOs for the selected deframer are also disabled. When the deframer link is enabled, the lane FIFOs for the
selected deframer are reenabled (reset). The baseband processor sends valid serializer data before enabling the link so the device CDR
(recovered clock) is locked.

Rev. PrA | Page 45 of 267

UG-1727

Precondition
This function may be called any time after device initialization.
Dependencies

device->devHalInfo

Parameters

Table 39.

Parameter Description

*device Pointer to the device settings data structure

deframerSelMask Desired deframer to reset. Valid ADI_ADRV9025_DEFRAMER_0, ADI_ADRV9025_DEFRAMER_1 or
ADI_ADRV9025_DEFRAMER_0_AND_1

enable 0 = disable the selected deframer, 1 = enable the selected deframer link

Return Values

Table 40.

Return Value Description

ADI_ADRV9025_ACT_WARN_RESET_LOG Recovery action for log reset

ADI_ADRV9025_ACT_ERR_CHECK_PARAM Recovery action for bad parameter check

ADI_ADRV9025_ACT_ERR_RESET_SPI Recovery action for SPI reset required

ADI_ADRV9025_ACT_NO_ACTION Function completed, no action required

adi_adrv9025_DeframerStatusGet(...)

adi_adrv9025 DeframerStatusGet(adi_adrv9025 Device_t *device, adi_adrv9025 DeframerSel_e
deframerSel, adi_adrv9025 DeframerStatus_t *deframerStatus)

After bringing up the deframer JESD204B/JESD204C link, the baseband processor can check the status of the deframer for the
parameters shown in Table 41.

Table 41. Deframer Status Parameters

deframerStatus | Bit Name Description
7 Valid checksum | 1 if the checksum calculated by the device matched the one sent in the ILAS data.
6 EOF Event This bit captures the internal status of the End of Frame event of the deframer. Value =1 if framing
error during ILAS
5 EOMF Event This bit captures the internal status of the End of Multiframe event of the deframer. Value = 1 if
framing error during ILAS
4 FS Lost This bit captures the internal status of the Frame Symbol event of the deframer. Value = 1 if framing
error during ILAS or user data (invalid replacement characters)
3 Reserved
2 User Data Valid | =1 when in user data (deframer link is up and sending valid DAC data)
SYSREF Deframer has received the external SYSREF signal
Received
0 Syncb level Current level of SYNC signal internal to deframer (= 1 means link is up)
Precondition

The Tx JESD204B/JESD204C link(s) needs to be configured and running to use this function.
Dependencies

device->devHallnfo

Parameters

Table 42.

Parameter Description

*device is a pointer to the device settings structure

deframerSel Select the Deframer to read back the status of ADI_ADRV9025_DEFRAMER_0, ADI_ADRV9025_DEFRAMER_1 or

ADI_ADRV9025_DEFRAMER_0_AND_1
deframerStatus | 8 bit deframer status word return value

Rev. PrA | Page 46 of 267

UG-1721

Return Values

Table 43.

Return Value Description
ADI_ADRV9025_ACT_WARN_RESET_LOG Recovery action for log reset
ADI_ADRV9025_ACT_ERR_CHECK_PARAM Recovery action for bad parameter check
ADI_ADRV9025_ACT_ERR_RESET_SPI Recovery action for SPI reset required
ADI_ADRV9025_ACT_NO_ACTION Function completed, no action required

adi_adrv9025_DfrmPrbsCheckerStateSet(...)

adi_adrv9025 DfrmPrbsCheckerStateSet(adi_adrv9025 Device_t *device, adi_adrv9025 DfrmPrbsCfg_t
*dfrmPrbsCfqg)

This function configures and enables or disables the transceiver lane or sample PRBS checker. This is a debug function to be used for
debug of the Tx JESD204B/JESD204C lanes.

If the checkerLocation is ADI_ADRV9025_PRBSCHECK_LANEDATA, the PRBS is checked at the output of the deserializer. If the
checkLocation is ADI_ADRV9025_PRBSCHECK_SAMPLEDATA the PRBS data is expected to be framed JESD204B/JESD204C data
and the PRBS is checked after the JESD204B/JESD204C data is deframed. For the sample data, there is only a PRBS checker on DAC 0
input. The lane PRBS has a checker on each deserializer lane.

Precondition
This function may be called any time after device initialization.
Dependencies

device->devHalInfo

Parameters

Table 44.

Parameter Description

*device is a pointer to the device settings structure

polyOrder selects the PRBS type based on enum values (ADI_ADRV9025_PRBS_DISABLE, ADI_ADRV9025_PRBS7,

ADI_ADRV9025_PRBS15, ADI_ADRV9025_PRBS31)
checkerLocation | Check at deserializer (deframer input) or sample (deframer output).

Return Values

Table 45.

Return Value Description
ADI_ADRV9025_ACT_WARN_RESET_LOG Recovery action for log reset
ADI_ADRV9025_ACT_ERR_CHECK_PARAM Recovery action for bad parameter check
ADI_ADRV9025_ACT_ERR_RESET_SPI Recovery action for SPI reset required
ADI_ADRV9025_ACT_NO_ACTION Function completed, no action required

adi_adrv9025_DfrmPrbsCountReset(...)

adi_adrv9025_DfrmPrbsCheckerStateSet(adi_adrv9025 Device_t *device, adi_adrv9025 DfrmPrbsCfg_t
*dfrmPrbsCfg)

This function allows the baseband processor to clear the Deframer PRBS counters. It resets the PRBS error counters for all lanes. It is
recommended to clear the error counters after enabling the deframer PRBS checker.

Precondition
The Tx JESD204B/JESD204C link(s) needs to be configured to use this function.
Dependencies

device->devHallnfo

Rev. PrA | Page 47 of 267

UG-1727

Parameters

Table 46.

Parameter Description

*device is a pointer to the device settings structure

Return Values

Table 47.

Return Value Description
ADI_ADRV9025_ACT_WARN_RESET_LOG Recovery action for log reset
ADI_ADRV9025_ACT_ERR_CHECK_PARAM Recovery action for bad parameter check
ADI_ADRV9025_ACT_ERR_RESET_SPI Recovery action for SPI reset required
ADI_ADRV9025_ACT_NO_ACTION Function completed, no action required

adi_adrv9025_DfrmPrbsErrCountGet(...)

adi_adrv9025_DfrmPrbsErrCountGet(adi_adrv9025 Device_t *device,
adi_adrv9025_DfrmPrbsErrCounters_t *counters)

After enabling the deframer PRBS checker and clearing the PRBS error counters, use this function to read back the PRBS error counters.
The lane parameter allows the baseband processor to select which lane error counter to read. Only one lane error counter can be read at a
time. To read error counters for all four lanes, the baseband processor calls this function four times.

In the case that the PRBS checker is set to check at the deframer output sample, there is only a checker on the DAC 0 input. In this case
the lane function parameter is ignored and the sample 0 PRBS counter is returned. The sample crossbar can be used to switch all
deframer outputs to DACO in turn.

Precondition

The Tx JESD204B/JESD204C link(s) needs to be configured to use this function.

Dependencies

device->devHallnfo

Parameters

Table 48.

Parameter Description

*device Pointer to the device settings structure

counters Pointer to PRBS Error counter structure to be returned

Return Values

Return Value Description
ADI_ADRV9025_ACT_WARN_RESET_LOG Recovery action for log reset
ADI_ADRV9025_ACT_ERR_CHECK_PARAM Recovery action for bad parameter check
ADI_ADRV9025_ACT_ERR_RESET_SPI Recovery action for SPI reset required
ADI_ADRV9025_ACT_NO_ACTION Function completed, no action required

Rev. PrA | Page 48 of 267

UG-1721

API SOFTWARE INTEGRATION
Configuration of the JESD204B/JESD204C circuitry is handled by the adi_adrv9025_Initialize(...) API function. Set all
JESD204B/JESD204C link options in the adi_adrv9025_Init_t data structure before calling adi_adrv9025_Initialize(...).
JESD204B/JESD204C API Data Structures
adi_adrv9025_ DatalnterfaceCfg _t
The adi_adrv9025_ DatalnterfaceCfg_t data structure contains the information required to properly configure each framer, each
deframer, the serializers, and deserializers. Details of each member can be found in API documentation (/c_src/doc).
typedef struct adi_adrv9025_DatalnterfaceCfg
{

adi_adrv9025_FrmCfg_t framer[3];

adi_adrv9025 DfrmCfg_t deframer[2];

adi_adrv9025_SerCfg_t serCfg[8];

adi_adrv9025 DesCfg_t desCfg[8];

uint8_t sysreflLvdsMode;

uint8_t sysreflLvdsPnilnvert;

adi_adrv9025_LinkSharingCfg_t linkSharingCfg;
} adi_adrv9025 DatalnterfaceCfg_t;

Table 49. JESD204B/JESD204C Settings Structure Member Description

Structure Member Valid Values Description

framer0 data structure Framer 0 configuration data structure

framer1 data structure Framer 1 configuration data structure

framer2 data structure Framer 2 configuration data structure

deframer0 data structure Deframer 0 configuration data structure

deframer1 data structure Deframer 1 configuration data structure

serAmplitude 0.3 Serializer amplitude setting. Default = 1.

serPreEmphasis 0.2 Serializer pre-emphasis setting. Default = 0.
serlnvertLanePolarity 0x0 to OxOF Serializer Lane Polarity Inversion Select - one bit per lane
deslInvertLanePolarity 0x0 to OxOF Deserializer Lane Polarity Inversion Select - one bit per lane
desEqSetting 0to3 Deserializer Equalizer setting. Applied to all deserializer lanes.

IMPLEMENTATION RECOMMENDATIONS

e SYSREF must be dc-coupled. If SYSREF is generated by GPIO pins for example, both pins being in the low state at startup is not
valid. Ensure that the signals are active and/or in a known valid state prior to enabling the MCS gate.
e For 25G operation, it is recommended to use deframer Lane A and Lane C to minimize crosstalk possibilities.
e Deframer input amplitude is on the order of 500 mV p-p to 700 mV p-p if insertion loss is on the order of 5 dB at room temp.
e Minimizing data link uncertainty:
e Ensure setup and hold times are met for each SYSREF/DCLK pair
e Separate the SYSREF/DCLK pairs for each device in the system
e Match the trace length within each pair so that the propagation time is the same

Rev. PrA | Page 49 of 267

UG-1727

LINK INITIALIZATION AND DEBUGGING

Link initialization occurs during the post MCS phase of device initialization. The link bringup procedure in general follows the following
steps:

JESD204B
For the deframer side, follow these steps:

Initialize and bring up the baseband processor framer side.

Deframer is held in reset state until INIT command, then deframer issues a synchronization request by asserting the SYNC signal.
Framer starts sending K28.5 characters, then deframer is brought out of reset.

Deframer identifies four consecutive K28.5 characters then deasserts SYNC and goes into ILAS phase.

If SYNC stays asserted, this indicates it is stuck in CGS phase. Check that the link parameters match. If they do, check the signal
integrity (refer to the Sample Iron Python Code for PRBS Testing section).

Al

For the framer side, link establishment follows the same flow. First the framer is enabled and the baseband processor deframer
synchronizes to the signal.

JESD204C
For the deframer side, follow these steps:

1. Initialize and bring up the baseband processor framer side.
2. Send the JESD204C initialization calibration command. This brings the link up since it is now protocol based.
3. Enable the JESD204C tracking calibrations. This maintains the link parameters on a 60 second schedule.

For the framer side, link establishment follows the same flow. First the framer is enabled and then the baseband processor deframer
synchronizes to the signal.

The API function adi_board_adrv9025_JesdBringup is used to configure and establish the datalinks. The overall detailed sequence
including the MCS is in the file adi_adrv9025_daughter_board.c.

FIRST TIME SYSTEM BRING UP—CHECKING LINK INTEGRITY

1. For ease of debug during bring up, it is reccommended to start with single lane on both sides and with minimum possible link speed.

2. Check that the parameters are configured the same at both ends transceiver and FPGA. The adi_adrv9025_DfrmCfg_t data structure
contains the information required to properly configure each deframer.

3. There is a PRBS checker available that can be used to check signal integrity related issues. Initialize the device as outlined in the link
establishment section. Enable the PRBS generator on the baseband processor with the desired PRBS sequence.

4. Confirm that the lanes baseband processor is transmitting PRBS on are the actually configured in the ADRV9026. Start with the
PRBS errors. Ensure baseband processor and the ADRV9026 are both using the same PRBS signal and ADRV9026 expects the same
PRBS 7 from baseband processor.

5. Call the API adi_adrv9025_DfrmPrbsCheckerStateSet(...) passing the actual device being evaluated, the PRBS sequence to check,
and the location at which to check the PRBS sequence.

6. After some amount of time, call the API function to check the PRBS errors. This can be done by calling the API function
adi_adrv9025_DfrmPrbsErrCountGet(...) passing the actual device being evaluated, the counter selection lane to be read and the
error count is returned in the third parameter passed.

7. The user can use adi_adrv9025_DeframerSysrefCtrlSet(...) API so that The external SYSREF signal at the pin can be gated off
internally so the deframer does not see a potential invalid SYSREF pulse before it is configured correctly.

8. After bringing up of JESD204B link or for debugging the deframer, the baseband processor can check the status of the deframer
using adi_adrv9025_DeframerStatusGet(...).

Rev. PrA | Page 50 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1721

SAMPLE IRON PYTHON CODE FOR PRBS TESTING

The following Iron Python script can be loaded into the Iron Python tab in the GUI to run the PRBS test. To use this code, select File
>New and place this code just after the ##### YOUR CODE GOES HERE ##### note.

#Create an Instance of the Class

link = AdiEvaluationSystem. Instance

connect = False

adrv9025 = link.Adrv9025Get(1)

FrmTestDataCfg=Types.adi_adrv9025_FrmTestDataCfg_t()
FrmTestDataCfg.framerSelMask=int(Types.adi_adrv9025_ FramerSel_e.ADI_ADRV9025_FRAMER_O)
print FrmTestDataCfg.framerSelMask

FrmTestDataCfg.testDataSource=Types.adi_adrv9025 FramerDataSource_e.ADI_ADRV9025 FTD_PRBS7

FrmTestDataCfg. injectPoint=Types.adi_adrv9025 FramerDatalnjectPoint_e.ADI_ADRV9025_ FTD_SERIALIZE
R

adrv9025.Datalnterface.FramerTestDataSet(FrmTestDataCfg)

#Enable Deserializer

link.platform.board.Fpga.Prbs.PrbsDeserializerEnable(0xF,0x1) #1:PRBS7;2:PRBS9;3:PRBS15;5:PRBS31
link.platform.board.Fpga.Prbs.PrbsDeserializerEnable(OxF,0x1) #1:PRBS7;2:PRBS9;3:PRBS15;5:PRBS31
#clear PRBS error

link_platform.board.Fpga.Prbs.PrbskErrorClear (OxF)

#Read PRBS error

#adrv9025_Datalnterface.FramerTestDatalnjectError(Types.adi_adrv9025 FramerSel_e.ADI_ADRV9025 FR
AMER_O, 0x0)

time.sleep(1)

errCounts=Array[System_.UInt32]([0,0,0,0,0,0,0,0])
errCounts=link.platform_board.Fpga.Prbs._PrbsErrorCountsRead(errCounts)[1]
errCounts=[int(data) for data in errCounts]

print errCounts #[0,0,0,0,0,0,0,0]

When this script is run, it results in the number of errors per enabled lane. Note only the first 4 positions are valid and the last four

positions is always be 0. To create errors as a test, change the 0x1 in the line immediately below “Enable Deserializer” comment to one of
the other values indicated. The enabled lanes show errors by enabled lane position.

PRBS ERRORS

When the baseband processor is transmitting PRBS, confirm that the active lanes are also configured properly in the ADRV9026. Start
with the PRBS errors. Ensure the baseband processor and the ADRV9026 are both using the same PRBS signal and the ADRV9026
expects the same PRBS 7 from baseband processor. The following are some scenarios that might occur and how to resolve issues.

If stuck in CGS mode, or if SYNC stays at logic low level or pulses high for less than four multiframes, take the following steps:

1. Check the board, unpowered for the following:
a. SYSREF and SYNC signaling is dc-coupled.
b. Check that the pull-down or pull-up resistors are not dominating the signaling, for example if values are too small or shorted
and therefore cannot be driven correctly.
c. Verify that the differential-pairs traces are length matched.
d. Verify differential impedance of the traces is 100 Q.

Rev. PrA | Page 51 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1727

2. Check the board, powered:
a. If there is a buffer/translator in the SYNC path, make sure it is functioning properly.
b. Check that SYNC source is properly configured to produce compliant logic levels.
3. Check SYNC signaling:

a. If SYNC is static and logic low, the link is not progressing beyond the CGS phase. There is either an issue with the data being
sent or the JESD204 receiver is not decoding the samples properly. Verify /K/ characters are being sent, verify receive
configuration settings, verify SYNC source. Consider overdriving SYNC signal and attempt to force link into ILAS mode to
isolate link Rx vs. Tx issues.

b. If SYNC is static and logic high, verify the SYNC logic level is configured correctly in the source device. Check pull-up and pull-
down resistors.

c. If SYNC pulses high and returns to logic-low state for less than six multiframe periods, the JESD204 Link is progressing beyond
the CGS phase but not beyond ILAS phase. This suggests the /K/ characters are okay and the basic function of the CDR are
working. Proceed to ILAS troubleshooting.

d. If SYNC pulses high for a duration of more than six multiframe periods, the Link is progressing beyond the ILAS phase and is
malfunctioning in the data phase; see the data phase section for troubleshooting tips.

4. Checking Serial Data

a. Verify the transmitter data rate and the receiver expected rate are the same.

b. Measure lanes with high-impedance probe (differential probe, if possible); if characters appear incorrect, make sure lane
differential traces are matched, the return path on the PCB is not interrupted, and devices are properly soldered on the PCB.
CGS characters are easily recognizable on a high speed scope.

c. Verify /K/ characters with high impedance probe. (If /K/ characters are correct, the Tx side of the link is working properly. If /K/
characters are not correct, the Tx device or the board lanes signal have an issue.

d. Verify the transmitter CML differential voltage on the data lanes

e. Verify the receiver CML differential voltage on the data lanes

f. Verify that the configuration parameters M and L values match between the baseband processor and the transceiver, otherwise
the data rates may not match. For example, M = 2 and L = 2 expect % the data rate over the serial interface as compared to the
M=2andL =1 case.

g. Ensure the device clock is phase locked and at the correct frequency.

If the user is stuck in ILAS mode, or if SYNC pulses high for approximately four multiframes, take the following steps:

1. Link parameter conflicts
a. Verify ILAS multiframes are transmitting properly, verify link parameters on the Tx device, the Rx device and those transmitted
in ILAS second multiframe.
b. Calculate expected ILAS length (tframe, tmultiframe, 4xtmultiframe), verify ILAS is attempted for approximately four
multiframes.
2. Verify all lanes are functioning properly. Ensure there are no Multilane/Multilink conflicts.

If the interface enters data phase but occasionally link resets (returns to CGS and ILAS before returning to data phase), take the following
steps:

Invalid setup and hold time of periodic or gapped periodic SYSREF or SYNC signal.
Link parameter conflicts

Character replacement conflicts

Scrambling problem, if enabled

Lane data corruption, noisy or jitter can force the eye diagram to close

Spurious clocking or excessive jitter on device clock

A e

Rev. PrA | Page 52 of 267

UG-1721

SPO (STATIC PHASE OFFSET) TEST TO VERIFY EYE WIDTH

High speed data rates present a tougher challenge because signal integrity is required for reliable error free data transfer. See the PCB
Layout Considerations section for differential line layout recommendations.

When debugging lane errors, it can be useful to understand how large the ‘eye’ of the waveform is to determine how reliable the link is. In
the case of the Deframer, in 204C mode the channel is estimated during an initialization cal that configures the CTLE (continuous time
linear equalizer) and automatically adjusts the sampling position on the waveform. To gain confidence in the link stability, the opening of
the eye over the operating conditions is one measure of robustness. A method of determining the opening size is to sweep the sampling
position, searching for ‘dead space’ where no transitions are occurring therefore the sampling point is in the eye. This is called a SPO
(Static Phase Offset) test that offsets the clocks to move the sampling edge left or right on the waveform and the resulting ‘dead’ steps total
at least 4 steps left and right from center, over all operating conditions the link is considered ‘good’ The SPO test requires PRBS
transmission in the FPGA and setup of the PRBS pattern checker in the TRX.

A typical test output report is shown below. In this case, two lanes are in use. The phase is swept in 128 steps The resolution is of course
dependent on the lane rate, but in general this result shown is considered good with approximately 16 phase steps open in the center of
the eye as shown in the resulting output files.

SPO Test Example Python Script

The SPO test code can be run in the GUI and works for both JESD204B and for JESD204C. The user needs to set the first line
appropriately and also configure the output file path to a folder on the PC. Insert these functions in the def section of the New Script, as
follows:
def FpgaWrite(address, data):

link_platform.board.Fpga.Hal _.RegisterWrite(address, data)

#print "FPGA Write Address " + hex(address) + ": " + hex(data)

def FpgaRead(address):
data = link.platform.board.Fpga.Hal .RegisterRead(address, 0)
print "FPGA Read Address " + hex(address) + ": " + hex(data[l])

def FPGAPRBSSetup(mode_is_204c=0):

enablePRBS_chl = link.platform.board.Fpga.Hal .RegisterRead(0x43400220,0)
#Read the value in PRBS control register (FPGA chl testmodes register)

disablePRBS = enablePRBS_chl[1] & OxFOFffFFFF
#Zero bits 27-24 without affecting the other bits
in the register.

enablePRBS7 = disablePRBS | 0x01000000
#Set the enablePRBS variable bits 27-24 to 0001
to enable PRBS7

enablePRBS23 = disablePRBS | 0x05000000
#Set the enablePRBS variable bits 27-24 to 0101 to
enable PRBS23

for fpgaregister in range (0x43400100, 0x43400900, 0x100):
#Update all FPGA chO-7

if (mode_is_204c == 1):

FpgaWrite(fpgaregister, 0x00000004)
#Puts the lane transmit side in reset

FpgaWrite(fpgaregister + 0x48, 0x20800080)
#Sets the data and data mask for the DRP write to enable
the buffer and disable the gearbox

FpgaWrite(fpgaregister + 0x40, 0x0003007C)
#Initiates the write to the DRP

Rev. PrA | Page 53 of 267

UG-1727

FpgaWrite(fpgaregister + 0x10, 0x02015233)
#Sets the transmit clock source to the PMA clock

FpgaWrite(fpgaregister + 0x20, enablePRBS7)
#Write the new value back to the FPGA to enable PRBS7 -
chl(fpga) to ch7 =serdinA to H

it (mode_is_204c):

FpgaWrite(fpgaregister, 0x00000000)
#Remove reset

print "PRBS7 is enabled”, hex(disablePRBS), hex(enablePRBS7), hex(enablePRBS23)

ErrorCount = Types.adi_adrv9025 DfrmPrbsErrCounters_t()

dfrmPrbsCfg = Types.adi_adrv9025_DfrmPrbsCfg_t()

dfrmPrbsCfg.deframerSel = dfrm_sel

dfrmPrbsCfg.polyOrder = Types.adi_adrv9025_DeframerPrbsOrder_e.ADI_ADRV9025_PRBS7

dfrmPrbsCfg.checkerLocation =
Types.adi_adrv9025_DeframerPrbsCheckLoc_e.ADI_ADRV9025 PRBSCHECK LANEDATA

adrv9025.Datalnterface.DfrmPrbsCheckerStateSet(dfrmPrbsCfg)
#check config matches what you"ve written

dfrmPrbsCfgRead = Types.adi_adrv9025_DfrmPrbsCfg_t()
adrv9025.Datalnterface.DfrmPrbsCheckerStateGet(dfrmPrbsCfgRead)

print "PRBS config setup, Poly, location,drmrSel", dfrmPrbsCfgRead.polyOrder,
dfrmPrbsCfgRead.checkerLocation, dfrmPrbsCfgRead.deframerSel

adrv9025.Datalnterface._DfrmPrbsCountReset()

adrv9025.Datalnterface.DfrmPrbsErrCountGet(ErrorCount) #api method to read error
counters + flags

for lanes in range(len(ErrorCount._laneErrors)):

is :

print "Initial laneError count for lane", lanes, , ErrorCount.laneErrors[lanes]

print "Initial ErrorStatus for lane", lanes, "is :", ErrorCount.errorStatus[lanes] #Bit
0 = Lane inverted, bit 1 = invalid data flag, bit 2 = sample/lane error flag

if ErrorCount.laneErrors[0] == O:

print "No Errors detected as expected in PRBS7 mode. Will switch to PRBS23 now"
else:

print "Errors detected!! Link not good, please check link"

for fpgaregister in range (0x43400100, 0x43400900, 0x100):
#Update all FPGA chO-7

link_platform.board.Fpga.Hal _.RegisterWrite(fpgaregister + 0x20, enablePRBS23)
#Write to the FPGA to enable PRBS23 on all Ch

print ""Changing to PRBS23"

adrv9025.Datalnterface.DfrmPrbsCountReset()
adrv9025_Datalnterface.DfrmPrbsErrCountGet(ErrorCount)

for lanes in range(len(ErrorCount.laneErrors)):
print "PRBS23 laneError count for lane', lanes, "is :'", ErrorCount.laneErrors[lanes]

Rev. PrA | Page 54 of 267

UG-1721

print "PRBS23 ErrorStatus for lane', lanes, "is :", ErrorCount._errorStatus[lanes]

if ErrorCount.laneErrors[0] != O:

print "Errors detected as expected with PRBS mismatch. Will switch back to PRBS7 now"
else:

print "Errors not detected with PRBS mismatch !! Please verify PRBS generator in FPGA™

for fpgaregister in range (0x43400100, 0x43400900, 0x100):
#Update all FPGA chO-7

link.platform.board.Fpga.Hal .RegisterWrite(fpgaregister + 0x20, enablePRBS7)
print "PRBS7 is enabled again on all channels”
adrv9025.Datalnterface._DfrmPrbsCountReset()
adrv9025.Datalnterface.DfrmPrbsErrCountGet(ErrorCount)
if ErrorCount.laneErrors[0] == O:

print "No Errors detected after switching back to PRBS7 mode. Will move onto phase/amp
eye sweep"

else:
print "Errors detected!! please check setup - may need to reboot"

Insert the following in the Iron Python tab after the line: ##### YOUR CODE GOES HERE ##### (approximately Line 40). See Figure 21 for
the SPO test measurement result.

mode_is_204c = 0 # need to setup FPGA differently for 204c vs. 204b mode, so
set this bit appropriately.

foldername = "C:\\tmp"

errorTimeDuration = 0.001 #time duration to allow PRBS errors to accumulate
LaneErrorFlag = [] #containers to store ErrorFlag Data for each lane to print
to file

LaneErrorCntr= []

dfrmPrbsCfg = Types.adi_adrv9025 DfrmPrbsCfg_t()
ErrorCount = Types.adi_adrv9025 DfrmPrbsErrCounters_t()
dfrm_sel = Types.adi_adrv9025 DeframerSel_e_ADI_ADRV9025_DEFRAMER_O

FPGAPRBSSetup(mode_is_204c) #Setup PRBS TestMode on FPGA side

dfrmPrbsCfg.deframerSel = dfrm_sel

dfrmPrbsCfg.polyOrder = Types.adi_adrv9025_DeframerPrbsOrder_e.ADI_ADRV9025_ PRBS7 #can
configure PRBS mode on Madura

dfrmPrbsCfg.checkerLocation =
Types.adi_adrv9025_DeframerPrbsCheckLoc_e.ADI_ADRV9025 PRBSCHECK LANEDATA

adrv9025.Datalnterface.DfrmPrbsCheckerStateSet(dfrmPrbsCfg)

adrv9025.Datalnterface._DfrmPrbsCountReset()

adrv9025.Datalnterface.DfrmPrbsErrCountGet(ErrorCount) #Run initial PRBS error check -
should have zero errors initially

for lanes in range(len(ErrorCount._laneErrors)):
Rev. PrA | Page 55 of 267

UG-1727

print “Initial laneError count for lane™, lanes, "is :', ErrorCount.laneErrors[lanes]

print "Initial ErrorStatus for lane™, lanes, "is :', ErrorCount.errorStatus[lanes] #Bit 0 =
Lane inverted, bit 1 = invalid data flag, bit 2 = sample/lane error flag

for phase in range (64,192,1):

phase = phase % 128 #0ffset the phase to centre the eye
spiWrite(0x6805, 0xD) # Write the serdes submap addr

spiWrite(0x6808, phase | 0x80) # Write the phase data

spiWrite(0x6806, OxO0F) # Latch in phase data for all lanes
spiWrite(0x6806, 0x00) #clear latch

adrv9025.Datalnterface._DfrmPrbsCountReset()

time.sleep(errorTimeDuration) #Set a wait time to allow errors
to accumulate

adrv9025.Datalnterface.DfrmPrbsErrCountGet(ErrorCount)

for lanes in range(len(ErrorCount.laneErrors)): #readback errors from each lanes
and store in an array

LaneErrorFlag.append(int(ErrorCount_errorStatus[lanes] >> 2) & 0x1)
LaneErrorCntr.append(ErrorCount. laneErrors[lanes])

Print ErrorFlag & ErrorCounter data to files

filename = "{0}\\eyedata_lane.txt".format(foldername)

filename2 = "{O}\\cntrdata_lane.txt".format(foldername)

with open(Ffilename, “w") as fl, open(filename2, “"w") as f2:
fl_write('LaneErrorFlag[0]\tLaneErrorFlag[1]\tLaneErrorFlag[2]\tLaneErrorFlag[3]\n'")
f2_write('LaneErrorCntr[0]\tLaneErrorCntr[1]\tLaneErrorCntr[2]\tLaneErrorCntr[3]\n"")

for i in range(0, len(LaneErrorFlag),4): #print out the eye diagram ascii
symbols to file
fl.write(C"{ON\t{1\t{2\t{3}\n" _format(LaneErrorFlag[i],
LaneErrorFlag[i+1],LaneErrorFlag[i+2],LaneErrorFlag[i+3]))

2 write("{ON\t{IN\t{2\t{3}\n" _format(LaneErrorCntr[i],
LaneErrorCntr[i+1],LaneErrorCntr[i+2],LaneErrorCntr[i+3]))

Rev. PrA | Page 56 of 267

UG-1721

Connect

ed

PRBS7 is enabled @x0L ©x1008000L ©x5000000L

PRBS config setup, Poly, location,drmrSel ADI_ADRV991© PRBS7 ADI_ADRV9918_ PRBSCHECK_LANEDATA ©

Initial
Initial
Initial
Initial
Initial
Initial
Initial
Initial

laneError count
Errorstatus for
laneError count
ErrorsStatus for
laneError count
Errorstatus for
laneError count
ErrorStatus for

for lane @ is : @
lane @ is : @
for lane 1 is : @
lane 1 is : @
for lane 2 is : @
lane 2 is : @
for lane 3 is : @
lane 3 is : @

No Errors detected as expected in PRBS7 mode. Will switch to PRBS23 now

Changin
PRBS23
PRBS23
PRBS23
PRBS23
PRBS23
PRBS23
PRBS23
PRBS23
Errors

g to PRBS23

laneError count
Errorstatus for
laneError count
Errorstatus for
laneError count
Errorstatus for
laneError count
Errorstatus for
detected as expe

for lane @ is : 333222

lane @ is : 4

for lane 1 is : @

lane 1 is : @

for lane 2 is : 517779

lane 2 is : 4

for lane 3 is : @

lane 3 is : @

cted with PRBS mismatch. Will switch back to PRBS7 now

PRBS7 is enabled again on all channels
No Errors detected after switching back to PRBS7 mode. Will move onto phase/amp eye sweep

Initial
Initial
Initial
Initial
Initial
Initial
Initial
Initial

laneError count
ErrorStatus for
laneError count
Errorstatus for
laneError count
ErrorsStatus for
laneError count
Errorstatus for

for lane @ is : @
lane @ is : @
for lane 1 is : @
lane 1 is : @
for lane 2 is : @
lane 2 is : @
for lane 3 is : @
lane 3 is : @

Figure 21. SPO Test Measurement Result

22770-022

The test reported in Figure 21 was run on UC14C-LS on the evaluation board platform with the result indicating that initially there are no
PRBS errors. Then errors are injected with the resulting error counts, and the eye sweep is run with no errors being reported. In this use

case only two deframer lanes are in use: Lane A and Lane C. Data for the unused lanes are 0.

Two files are also generated by the script: cntrdata_lane.txt and eyedata_lane.txt.

The cntrdata_lane.txt indicates the number of errors counted as the phase is adjusted, and the count goes to 0 in the center of the eye.

In the eyedata_lane.txt file, errors are represented by 1 and the eye indicated by 0. Similarly, the Os occur toward the center of the
waveform indicating and acceptable eye width. Following, in Figure 22 and Figure 23, are excerpts from the center of the files.

Rev. PrA | Page 57 of 267

UG-1727

683046 0 657487 0
602268 O 614251 O
397518 0 469438 ©
817921 O 719822 O
685900 O 527792 0
689797 0 611034 0
648607 O 765663 O
437121 O 522234 ©
253707 O 442740 0
85281 0 179763 0
18818 0 60046 0
815 0 9462 0
25 0 1529 0
0 0 159 0
0 0 2 0]
0 0 0 0
0 0 0 0
0 0 0] 0]
0 0 0 0
0 0 0] 0]
0 0 0 0
0 0 0 0
0 0 0] 0]
0 0 0 0
0 0 0] 0]
0 0 0 0
0 0 0 0
0 0 0] 0]
0 0 0 0
0 0 1 0]
113 0 2 0
5567 0 170 0
39999 0 2632 0]
122796 0 33358 0
230292 O 277960 0O
734022 0O 748024 O
701161 O 783019 O
532885 0 628545 0
782405 0O 896331 0 g
445538 0 562745 0 §

Figure 22. cntrdata_lane.txt Showing PRBS Error Counts About the Eye Center

Rev. PrA | Page 58 of 267

UG-1721

¥20-0LL22

OCO0O00000000000O0O00000O0OO0O0DO0O00O0O0O00DO0DDO0O0O0O00O0O00ODO00OC0

A A A A A A A A A A OO O OO O0O0000 OO0 - dddd

OCO0O00000000000O0O00000O0OO0O0DO0O00O0O0O00DO0DDO0O0O0O00O0O00ODO00OC0

A A A A A A A A OO OO OO0 00000O0O000O0 I d

Figure 23. eyedata_lane.txt Showing Center of the Eye

Rev. PrA | Page 59 of 267

UG-1727

CHECKING JESD204C LINK STATUS

The API for checking the link status is currently not available. Until it is, the registers can be read directly with SPI commands.
Address: 0x6B2B to Address 0x6B2E are for Deframer 0 for Lane A, Lane B, Lane C, and Lane D, respectively.

Address: 0x6D2B to Address 0x6D2E are for Deframer 1 for Lane A, Lane B, Lane C, and Lane D, respectively.

It is only necessary to check as many lanes as the deframer is using. For example, if both deframers are in use and each one uses two lanes,
then it is only necessary to check the first two registers in each deframer, not all four.

Table 50.

Bits Name Description
73 Reserved Reserved
2:0 Jrx_dl_204c_state Current Lock State
Table 51.

Bits[2:0] Description

0 Reset

1 Unlocked

2 Block (blocks aligned)

3 M_Block (lanes aligned)

4 E_M_Block (multiblock aligned)

5 FEC_BUF

6 FEC_READY (good state)

7 Reserved

SELECTING THE OPTIMAL LMFC/LEMC OFFSET FOR A DEFRAMER

This section describes how to set the LMFC/LEMC offset for a deframer, how to read back the corresponding elastic buffer depth, and
how to select the optimal LMFC/LEMC offset value for a given system.

Deterministic latency in JESD 204B mode

In JESD204B mode, the ADRV9026 digital data interface follows the JESD204B Subclass 1 standard, which has provisions to ensure
repeatable latencies across the link from power-up to power-up or over link re-establishment by using the SYSREF signal.

To achieve this deterministic latency, the ADRV9026 deframers include elastic buffers for each of their lanes. The elastic buffers are also
used to de-skew each lane before aligning them with the LMFC signal. The depth of the elastic buffers can therefore be different for each
lane of a given deframer.

A deframer starts outputting data out of its elastic buffers on the next LMFC (that is, multiframe) boundary following the reception of the
first characters in the ILA sequence by all the active lanes. It is therefore possible to adjust when the data is output from the elastic buffers,
and therefore how much data is stored in those buffers (called buffer depth), by adjusting the phase relationship between the external
SYSREEF signal and the internally generated LMFC signal. This phase relationship is adjustable by using the LMFC offset parameter,
which is programmable for each of the deframers. This is illustrated on Figure 24 and Figure 25.

LANES MAY NOTBE ALL LANES ARE ALIGNED

ALIGNED WITH WITH EACH OTHER AND
EACH OTHER HERE WITH LMFC/LEMC HERE.

DESKEWED AND
DEFRAMER . ELASTIC LMFC/LEMC
LANE INPUT 0 BUFFER [~ ™ ALIGNED DEFRAMER
LANE 0
DESKEWED AND
DEFRAMER »| ELASTIC LMFC/LEMC
LANE INPUT 1 BUFFER [~ ™ ALIGNED DEFRAMER
LANE 1
L]
*
L]
DESKEWED AND -
DEFRAMER » ELASTIC LMFC/LEMC g
LANE INPUT L-1 BUFFER [~ ™ ALIGNED DEFRAMER £
LANE L-1]

Figure 24. Elastic Buffers in the Deframers

Rev. PrA | Page 60 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1721

Tx
Device

Rx
Device

SYSREF
SYNC~ I""\Tx ILA begins on first LMFC zero-crossing after SYNC~ is deasserted
Deterministic
- ‘_delay from SYSREF
sampled highto 4
LMFC T LMFC zero-crossing T T T T 1
} +— multiframe —»
L Transmit :
(o B0 GEGRRGENEE HER
SYNC~insing edge when LMFC Offset = N
SYNC~§nsing edge when LMFC Offset = N+1
SYSREF ﬂ / :
SYNC~ :
LMEC _N FDetEM|thc delay from SYSREF sampled high to LMFC zero—crcl)ssmg for LMFC Offset=N
(LMFC Offset = N) : f T T T i f 1‘ 1
LMEC _" . Deterministic delay from SYSREF sampled high to LMFC zero-crossing for LMFC Offset = N+1

[LMFC Offset = N+1)

Output on all Lanes
(LMFC Offset = N)

(LMFC Offset = N+1)

Earliest
Lane
Arrival

Latest
Lane
Arrival

Elastic Buffer

Elastic Buffer
Output on all
Lanes

_f t t t t t

Data stored in Elastic Buffer for
Earliest Lane when LMFC Offset = N
Data stored in Elastic Buffer for
Earliest Lane when LMFC Offset = N+1
i i Data stored in Elastic Buffer for

| Latest Lane when LMFC Offset =N

: : | Data stored in Elastic Buffer for Latest
: : : i 1 Lane when LMFC Offset = N+1

: Deterministic delay from Tx ILA output
7 to RxILA output when LMFC Offset=N ~ : |

---------- BT SR

: : Deterministic delay from Tx ILA output to
: : Rx ILA output when LMFC Offset = N+1

Figure 25. Impact of LMFC Offset on Elastic Buffer Depth in JESD204B Mode

Rev. PrA | Page 61 of 267

o oo

22770-026

UG-1727

Deterministic Latency in JESD204C Mode

In JESD204C mode, deterministic latency can also be achieved thanks to the elastic buffers in the deframers. The elastic buffers are still
used to de-skew each lane before aligning them with the LEMC signal. The depth of the elastic buffers can, therefore, be different for each
lane of a given deframer.

A deframer starts outputting data from its elastic buffers on the next LEMC (extended multiblock) boundary following the reception of
the first multiblock in an extended multiblock by all the active lanes. As a result, it is possible to adjust when the data is output from the
elastic buffers and, therefore, how much data is stored in those buffers (the buffer depth) by adjusting the phase relationship between the
external SYSREF signal and the internally generated LEMC signal. This phase relationship is adjustable by using the LEMC offset
parameter, which is programmable for each of the deframers. This is illustrated on Figure 24 and Figure 26.

It is important to note that the size of each elastic buffer is 512 octets. When the JESD204C E parameter (number of multiblocks in an
extended multiblock) is bigger than 2, the elastic buffer is not able to store enough data for some LEMC offset values.

1 Extended Multiblock (EMB)
= E x 1 Multiblock (MB)
= E x 256 octets
=K x F octets |
I

T

—_—

I
SYSREF i_l

1

|

|
f
— ll— Deterministic delay from SYSREF sampled high to LENC zero-crossing for LMFC Offset = N
LEMC } + 4
(LEMC Offset = N} ‘ ! |
— l ‘4— Deterministic delay from SYSREF sampled high to LEMC zero-crossing for LMFC Offset = N+1
LEMC ! | + 4
(LEMC Offset = N+1) —! —!
(. || Il
Earliest Lane | : } { | | | | | | : }
Lo mmmmmmmesses 0l1 31 fe-e-meen 0l1 31|01 [F T R
Arrival MBO | ME E-1 MBO |
| L L1
Lates’f Lalne -l o | 1 Li _______ | 31 } -------- -I o | 1 | | 31 |] | 1 | | 31 } """""""""""
Arriva } ‘ M n; MB E-1 ME 0l
| l Data stored in Elastic Buffer for } :
| | I Earliest Lane when LMFC Offset =N I
‘ [|1 Data stored in Elastic Buffer for I
‘ | Earliest Lane when LMFC Offset = N+1 I
‘ ‘ I Data stored in Elastic Buffer for Il
‘ N Latest Lane when LMFC Offset=N ; :
| | Data stored in Elastic Buffer for Latest Il
| |l Lane when LMFC Offset = N+1 1
Elastic Buffer Output ‘ || I
on all Lanes { 0 | 1 | | 31 } -------- -I 0 | 1 | | 31 | 0 | 1 | | 31 } ---------
(LEMC Offset = N) ‘ MB 0 B E-1 | MB O
\ |
Elastic Buffer Output ‘ |
on all Lanes i [} | 1 | | 31 } -------- -| 0 | 1 | | 31 | 0 | 1 | | 31 } ------- é
(LEMC Offset = N) MEBO ME E-1 MBO g

Figure 26. Impact of LEMC Offset on Elastic Buffer Depth in JESD204C Mode

Rev. PrA | Page 62 of 267

UG-1721

Programming the LMFC Offset for a Deframer
There are three ways to program the LEMC offset for a given deframer.
1. By modifying the profile file being used

2. By using the adi_adrv9025_DfrmCfg data structure
3. By writing directly to the relevant SPI registers

Each method is addressed in the following sections.
Setting the LMFC/LEMC Offset in the Profile File

There is an ImfcOffset field for each of the two deframers in the profile file. This field corresponds to the LMFC offset in JESD 204B
mode, and to the LEMC offset in JESD 204C mode. It can be set to a decimal value between 0 and (K x S) — 1 (where K is the number of
frames per multiframe/extended multiblock, and S is the number of samples per converter per frame cycle). For example, for the
ADRV9025Init_StdUseCase26C_nonLinkSharing.profile file, the “ImfcOffset” field is located around Line 189 for Deframer 0 and
around Line 229 for Deframer 1 (see Figure 27).

2 _ - I -
Figure 27. Deframer 0 ImfcOffset Field for the ADRV9025Init_StdUseCase26C_nonLinkSharing.profile File

22770-028

Note that the device must be reprogrammed after changing an LMFC/LEMC offset in the profile file and loading it into Arm memory for
the change to take effect. Also note that if the goal is to sweep the LMFC/LEMC offset values for test purposes without any need for RF
performance (for example, to determine the optimal LMFC/LEMC value), it is not necessary to run the init cals when programming the
device. Not running the init cals make the programming process quicker.

Rev. PrA | Page 63 of 267

UG-1727

Setting the LMFC/LEMC Offset in the adi_adrv9025_DfrmCfg Data Structure

An alternative way of programming the LMFC/LEMC offset consists in using the ImfcOffset field of the adi_adrv9025_DfrmCfg data
structure for the relevant deframer (see Figure 28). Note that the device must be reprogrammed after changing the LMFC/LEMC offset
for a given deframer in the adi_adrv9025_DfrmCfg data structure for the change to take effect. Also note that if the goal is to sweep the
LMEC/LEMC offset values for test purposes without any need for RF performance (for example, to determine the optimal LMFC/LEMC
value), it is not necessary to run the init cals when programming the device. Not running the init cals make the programming process
quicker.

typedef struct adi adrv9025 DfrmCfg
{

uint8 t enableJesd204C;
uint8 t bankId;
uint8 t deviceId;
uint8_ t lane0Id:
uint8 t jesd204M;
uintl® t jesd204K;
uint8_t jesd204F;
uint8 t jesd204Np:
uint8_t jesd204E:
uint8_t scramble;
uint8 t deserializerLanesEnabled;
uint8_t syncbOutSelect;
uint8 t syncbOutLvdsMode;
uint8 t syncbOutLvdsPnInvert;
uint8 t syncbOutCmosSlewRate:
uint8_t syncbOutCmosDriveLevel;
adi_adrv9025 DeserLaneXbar t deserializerLaneCrosshbar;
adi adrv9025 DacSampleXbarCfg t dacCrossbar:
uint8 t newSysrefOnRelink:
uint8 t sysrefForStartup:;
uint§ t sysrefNShotEnable;
uint8_t sysrefNShotCount;
uint8_t sysrefIgnoreWhenLinked:

} adi_adrv9025 DfrmCfg t;

22770-029

Figure 28. LMFC Offset Field in adi_adrv9025_DfrmCfg Data Structure
It is possible to set the LMFC/LEMC offset value by writing to the following SPI registers: Deframer 0 and Deframer 1.
Deframer 0:

e Register 0x6A8E, Bits[7:0]: jrx_tpl_phase_adjust[7:0]. Bits[7:0] of the LMFC/LEMC phase adjustment 16-bit word for Deframer 0.
The valid range of phase adjustment values is 0 to (K x S) — 1 (where K is the number of frames per multiframe/extended multiblock,
and S is the number of samples per converter per frame cycle).

e Register 0x6A8FE, Bits[7:0]: jrx_tpl_phase_adjust[15:8]. Bits[15:8] of the LMFC/LEMC phase adjustment 16-bit word for Deframer 0.
The valid range of phase adjustment values is 0 to (K x S) — 1 (where K is the number of frames per multiframe/extended multiblock,
and S is the number of samples per converter per frame cycle).

Deframer 1:

e Register 0x6C8E, Bits[7:0]: jrx_tpl_phase_adjust[7:0]. Bits[7:0] of the global LMFC/LEMC phase adjustment 16-bit word for
Deframer 1. The valid range of phase adjustment values is 0 to (K x S) — 1 (where K is the number of frames per
multiframe/extended multiblock, and S is the number of samples per converter per frame cycle).

e Register 0x6C8F, Bits[7:0]: jrx_tpl_phase_adjust[15:8]. Bits[15:8] of the global LMFC/LEMC phase adjustment 16-bit word for
Deframer 1. The valid range of phase adjustment values is 0 to (K x S) — 1 (where K is the number of frames per
multiframe/extended multiblock, and S is the number of samples per converter per frame cycle).

Note that a SYSREF pulse must be applied and then the link between the JESD framer and JESD deframer of the transceiver must be
reestablished after changing the LMFC/LEMC offset through SPI writes for a given deframer for the change to take effect.

Rev. PrA | Page 64 of 267

UG-1721

Setting the LMFC/LEMC Offset Through SPI Registers Controls
It is possible to set the LMFC/LEMC offset value by writing to the following SPI registers:

Deframer 0:

e Register 0x6A50, Bits[7:0]: jrx_tpl_phase_adjust[7:0]. Bits[7:0] of the LMFC/LEMC phase adjustment 16-bit word for deframer 0.
The valid range of phase adjustment values is 0 to (K x S) — 1 (where K is the number of frames per multiframe/extended multiblock,
and S is the number of samples per converter per frame cycle).

e Register 0x6A51, Bits[7:0]: jrx_tpl_phase_adjust[15:8]. Bits[15:8] of the LMFC/LEMC phase adjustment 16-bit word for deframer 0.
The valid range of phase adjustment values is 0 to (K x S) — 1 (where K is the number of frames per multiframe/extended multiblock,
and S is the number of samples per converter per frame cycle).

Deframer 1:

e Register 0x6C50, Bits[7:0]: jrx_tpl_phase_adjust[7:0]. Bits[7:0] of the global LMFC/LEMC phase adjustment 16-bit word for
deframer 1. The valid range of phase adjustment values is 0 to (K x S) — 1 (where K is the number of frames per
multiframe/extended multiblock, and S is the number of samples per converter per frame cycle).

e Register 0x6C51, Bits[7:0]: jrx_tpl_phase_adjust[15:8]. Bits[15:8] of the global LMFC/LEMC phase adjustment 16-bit word for
deframer 1. The valid range of phase adjustment values is 0 to (K x S) — 1 (where K is the number of frames per
multiframe/extended multiblock, and S is the number of samples per converter per frame cycle).

Note that a SYSREF pulse must be applied and then the link between the JESD framer and the transceiver JESD deframer must be
reestablished after changing the LMFC/LEMC offset through SPI writes for a given deframer for the change to take effect.

Reading Back the Buffer Depths for Each Deframer Lanes

It is possible to read back the depths of the elastic buffers for each deframer lanes in the following SPI registers: Deframer 0 and Deframer 1.
Deframer 0:

e Register 0x6A8A, Bits[7:0]: buffer depth for Lane 0 of Deframer 0
e Register 0x6A8B, Bits[7:0]: buffer depth for Lane 1 of Deframer 0
e Register 0x6A8C, Bits[7:0]: buffer depth for Lane 2 of Deframer 0
e Register 0x6A8D, Bits[7:0]: buffer depth for Lane 3 of Deframer 0

Deframer 1:

e Register 0x6C8A, Bits[7:0]: buffer depth for Lane 0 of Deframer 1
e Register 0x6C8B, Bits[7:0]: buffer depth for Lane 1 of Deframer 1
e Register 0x6C8C, Bits[7:0]: buffer depth for Lane 2 of Deframer 1
e Register 0x6C8D|[7:0]: buffer depth for Lane 3 of Deframer 1

In JESD204B mode, the unit of the values read back in those registers is 4 octets. In other words, an increment of the buffer depth value
read back by 1 unit corresponds to an actual increment by 4 octets. The values read back range from 0 to (K x F)/4 (where K is the
number of frames per multiframe, and F is the number of octets per lane in a frame cycle).

In JESD204C mode, the unit of the values read back in those registers is 8 octets. In other words, an increment of the buffer depth value
read back by 1 unit corresponds to an actual increment by 8 octets. The values read back range from 0 to E x 32 (where E is the number
multiblocks in an extended multiblock). Note that the size of the elastic buffer is 512 octets. When E > 2, the maximum buffer depth
values read back are therefore limited to 64, which corresponds to 512 octets.

Note that the values reported in each of those registers correspond to a value based on the positions of the elastic buffer read and write
pointers. The value has a fixed offset and does not represent the exact number of octets in the elastic buffer.

Buffer Protection

By default, an automatic buffer protection is enabled for the elastic buffers. This automatic buffer protection prevents the read and write
pointers from being too close, which can lead to corrupted data being read out of the elastic buffers, as data can be read at the same time
it is being written. When the automatic buffer protection detects that the read and write pointers are too close to each other for any of the
elastic buffers, a pre-determined buffer depth is used, the data out of the elastic buffer no longer aligns to the LMFC/LEMC output signal,
and deterministic latency is lost.

Rev. PrA | Page 65 of 267

UG-1727

Checking if the Buffer Protection Is Active

It is possible to read back if the buffer protection is active in the following SPI register bits: Deframer 0 and Deframer 1.

Table 52. Deframer 0—Register 0x6A89, Bit 7: jrx_tpl_buf_protection

Bit Setting

Description

0
1

Buffer protection not active for Deframer 0

Buffer protection active for Deframer 0. Buffer read and write pointers were too close with the chosen LMFC/LEMC
offset setting. A predetermined buffer depth is used. Deterministic latency is lost.

Table 53. Deframer 1—Register 0x6C89, Bit 7: jrx_tpl_buf_protection

Bit Setting

Description

0
1

Buffer protection not active for Deframer 1.

Buffer protection active for Deframer 1. Buffer read and write pointers were too close with the chosen LMFC/LEMC
offset setting. A predetermined buffer depth is used. Deterministic latency is lost.

Disabling the Automatic Buffer Protection

It is possible to disable the automatic buffer protection by using the following SPI register bits: Deframer 0 and Deframer 1.

Table 54. Deframer 0—Register 0x6A89, Bit 6: jrx_tpl_buf_protection_en

Bit Setting

Description

0
1

Automatic buffer protection disabled for Deframer 0
Automatic buffer protection enabled for Deframer 0

Table 55. Deframer 1— Register 0x6C89, Bit 6: jrx_tpl_buf_protection_en

Bit Setting

Description

0
1

Automatic buffer protection disabled for Deframer 1
Automatic buffer protection enabled for Deframer 1

Following is an example of buffer depth values vs. LMFC offset values in JESD 204B mode with buffer protection enabled:

Figure 29 corresponds to the elastic FIFO buffer depths for Lane 0 and Lane 1 vs. the LMFC offset setting measured for Deframer 0 on
the ADRV9026 customer evaluation (CE) board with the ADRV9025Init_StdUseCase50_nonLinkSharing profile. In this example, the
buffer protection activated for LMFC offset values between 23 and 26, and the buffer depths were fixed to values between 7 and 9
independently of the LMFC offset. For other LMFC offset values, the buffer depths read back changed with the LMFC offset.

During the measurement, the link between the JESD framer and JESD deframer of the transceiver was reestablished 10 times (with
application of a new SYSREF pulse each time) for each LMFC offset value and each time the buffer depth was read. That is why several
buffer depth values can be seen for a given LMFC offset. This variation in buffer depth is due to the variance in, for example,
synchronization delays and physical lane skews, during the JESD link establishments that the elastic buffers are correcting for.

Rev. PrA | Page 66 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1721

Madura - UC50-NLS - Dev Clock = 245.76 MHz
S=1,M=8,N'=16,K=32,L=2, F =8, TxIQ rate = 122.88 MHz
Buffer Protection Enabled

Buffer Dpeth

W W

N &

o
a8
oed
o
Buffer Protection Active Bit

5 6 P 8 9 0 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
® ® ® e ® e & @ N
LMFC Offset

[=)
[=
L N
[

on

Lane 0 ®lanel ® Buffer o
Buffer Depth Buffer Depth Protection 8
(RegOx6aBa) (RegOxGa8b) Bit E

Figure 29. Buffer Depths for Lane 0 and Lane 1 vs. LMFC Offset on the ADRV9026 CE Board with the ADRV9025Init_StdUseCase50_nonLinkSharing Profile and Buffer
Protection Enabled

Selecting the optimal LMFC/LEMC offset for a system

The buffer depths are expected to slightly change from power up to power up or from one JESD link establishment to another due to the
variance in, for example, synchronization delays and physical lane skews. They are also expected to slightly change from system to system
due to process, voltage and temperature (PVT) variations.

It is therefore recommended to select an LMFC/LEMC offset value resulting in optimal buffer depths to account for those variations and
maintain deterministic latency on all boards for a given system. The LMFC/LEMC offset to be selected depends on whether buffer
protection is enabled or not.

Selecting the Optimal LMFC Offset for a System in JESD204B Mode with Buffer Protection Enabled

To ensure deterministic latency when buffer protection is enabled, it is recommended to select an LMFC offset value that gives buffer
depths values as close as possible to the center of the linear part of the buffer depth vs. LMFC Offset plot for all the lanes used. To find the
LMEC offset corresponding to those optimal buffer depths, read back the buffer depth values for all the used lanes for all LMFC offset
values with buffer protection enabled on a sample board for a given system. Measuring the buffer depths per LMFC offset for 10 power
cycles or JESD link establishments (with application of a new SYSREF pulse each time) provides a good indication of the buffer depths
spread for each LMFC offset values. Select an LMFC offset value giving buffer depths as close as possible to the center of the linear part of
the buffer depth vs. LMFC Offset plot for all the used lanes.

Figure 29 illustrates this process using the ADRV9026 CE board programmed with the ADRV9025Init_StdUseCase50_nonLinkSharing
profile, with automatic buffer protection enabled. In that example, an LMFC offset value of 9 is a good choice because it results in a buffer
depth around 37 or 38 for each lane, which is in the middle of the linear part of the plot and therefore guarantees deterministic latency.

If the goal for the system is to achieve deterministic latency with a latency as short as possible, it may be desirable to select an LMFC offset
value giving buffer depths as small as possible. In that case, an LMFC offset value above the highest LMFC offset resulting in the
automatic buffer protection being active with some additional headroom to account for PVT variations can be selected. In that situation,
carry out thorough system testing over all possible temperature, supply and board variations to ensure that the automatic buffer
protection never gets activated and that deterministic latency is maintained in all possible operating conditions for the system.

Avoid LMFC offset values giving large buffer depths (that is, near a value of (K x F)/4) because, for some combinations of JESD
parameters, it can lead to the write and read pointers being too close and therefore can result in data corruption.

Rev. PrA | Page 67 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1727

Selecting the Optimal LMFC Offset for a System in a JESD 204B Mode with Buffer Protection Disabled

When buffer protection is disabled, it is recommended to select an LMFC offset value that gives buffer depths as close as possible to (K x
F)/8 to account for variations and maintain deterministic latency on all boards for a given system.

To find the LMFC offset corresponding to that optimal buffer depth, read back the buffer depth values for all LMFC offset values for all
the used lanes with buffer protection disabled on a sample board for a given system. Measuring the buffer depths per LMFC offset for

10 power cycles or JESD link establishments (with application of a new SYSREF pulse each time) provides a good indication of the buffer
depth spread for each LMFC offset values.

Select an LMFC offset value giving buffer depths as close as possible to (K x F)/8 for all lanes.

Figure 30 illustrates this process using the same ADRV9026 CE board with the ADRV9025Init_StdUseCase50_nonLinkSharing profile
example with automatic buffer protection disabled.

Madura - UC50-NLS - Dev Clock = 245.76 MHz
S=1,M=8N'=16,K=32,L=2,F=8, TxIQrate = 122.88 MHz
Buffer Protection Disabled

Buffer Depth
L

] 1 2 3 4 5 [7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 M4 25 W 27 28 29 W A
LMFC Offsat

Lane 0 ® Lane 1
Buffer Depth Buffer Depth
(Rep OxGaga) (Rep OuGagh)
Figure 30. Buffer Depths Read Back for Lane 0 and Lane 1 vs. LMFC Offset on the ADRV9026 CE Board with ADRV9025Init_StdUseCase50_nonLinkSharing Profile and
Buffer Protection Disabled

22770-031

In this example, an LMFC offset value of 6 or 7 is a good choice because the result is buffer depths around 31 and 34 for all the used lanes,
guaranteeing deterministic latency with no chance of data corruption due to the read and write pointers being too close.

If the goal for the system is to achieve deterministic latency with a latency as short as possible, it may be desirable to select an LMFC offset
value giving buffer depths as small as possible but still well above a small number (for example, 10 or 12) to avoid data corruption due to
the read and write pointers being too close. Note that in that situation, carry out thorough system testing over all possible temperature,
supply and board variations to ensure that data corruption never occurs in all possible operating conditions for the system.

Avoid LMFC offset values giving a large buffer depth (that is, near a value of (K x F)/4) because, for some combinations of JESD
parameters, it can lead to the write and read pointers being too close and therefore can result in data corruption.

Selecting the Optimal LEMC Offset for a System in JESD 204C Mode When E < 2 with Buffer Protection Enabled

In JESD 204C mode when E < 2, it is also recommended to select an LEMC offset that gives buffer depths values as close as possible to the
center of the linear part of the buffer depth vs. LEMC Offset plot for all the lanes used. To find that LEMC offset, read back the buffer
depth values for all the used lanes for all LEMC offset values with buffer protection enabled on a sample board for a given system.
Measuring the buffer depths per LEMC offset for 10 power cycles or JESD link establishments (with application of a new SYSREF pulse
each time) provides a good indication of the buffer depths spread for each LEMC offset. Select an LEMC offset value giving buffer depths
as close as possible to the center of the linear part of the buffer depth vs. LEMC Offset plot for all the used lanes.

Rev. PrA | Page 68 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1721

Figure 31 illustrates this process using the ADRV9026 CE board programmed with the ADRV9025Init_StdUseCase26C_nonLinkSharing
profile, with automatic buffer protection enabled.

In this example, LEMC offset values between 36 and 40 are good choices because the result is a buffer depth around 24 for each lane,
which is in the middle of the linear part of the plot and, therefore, guarantees deterministic latency.

If the goal for the system is to achieve deterministic latency with a latency as short as possible, it may be desirable to select an LEMC
offset value giving buffer depths as small as possible. In that case, an LEMC offset value above the highest LEMC offset resulting in the
automatic buffer protection being active with some additional headroom to account for PVT variations can be selected. In that situation,
carry out thorough system testing over all possible temperature, supply and board variations to ensure that the automatic buffer
protection never gets activated and that deterministic latency is maintained in all possible operating conditions for the system.

Avoid LEMC offset values giving large buffer depths (near a value of E x 32) because, for some combinations of JESD parameters, it can
lead to the write and read pointers being too close and therefore can result in data corruption.

Madura - UC26C-NLS - Dev Clock = 245.76 MHz
S=1,M=8,N'=16,K=64,L=4,F=4,E=1, Tx1Q rate = 491.52 MHz
Buffer Protection Enabled

00 S0eBGORE See @ sesnooRee eosnooone]
36
34
32
(BN N N N N J
an o9 000
ee0c0e
28 ® eeoo
TXXXX
26 eovoee
LA B N N]
24 eeoe e o
(R RN -]
22 ecsoee v
I XXX =
£ 20 eP9®® 2
j=1 XXX o
8 18 eee 8
e ® T
£ 16 & ® a
S esee 3]
m 14 eeoee &
I XYY -
17 oeo00 0 £
ecoee S
10 seeee =
e0 800
8 *e0o00O
XXX
HE PO O OO ® ® (] [] @ L] ®
IR XX R R RN N] ® XEIXY XN EXXNR]
19 o000 OCOO eo o [EE RN es00BOGD
°
2 ®®
XX
0 L R
5, 012345678 91011121314151617 1819202122 2324752627 28293031 32 33343536 37 38 394041 42 4344454647 4849 50 51 52 53 54 55 56 57 58 59 60 61 62 63
iseees000s000000000000Se E R R R RN NN NN RN e 0

LEMC Offset

®Lane 0 Lane 1 Lane 2 ®Lane 3 ® Buffer
Buffer Depth Bufter Depth Buffer Depth Buffer Depth Protection
(Reg OxbaBa) [Reg xbaBb) (Reg OxbaBc) [Reg OxbaBd) Bit

22770-032

Figure 31. Buffer Depths for Lane 0, Lane 1, Lane 2, and Lane 3 vs. LEMC Offset on the ADRV9026 CE Board with the ADRV9025Init_StdUseCase26C_nonLinkSharing
Profile and Buffer Protection Enabled

Selecting the Optimal LEMC Offset for a System in JESD 204C Mode When E < 2 with Buffer Protection Disabled

When buffer protection is disabled, it is recommended to select an LEMC offset value that gives buffer depths as close as possible to (E x
32)/2 to account for variations and maintain deterministic latency on all boards for a given system. To find the LEMC offset
corresponding to that optimal buffer depth, read back the buffer depth values for all LEMC offset values for all the used lanes with buffer
protection disabled on a sample board for a given system. Measuring the buffer depths per LEMC offset for 10 power cycles or JESD link
establishments (with application of a new SYSREF pulse each time) provided a good indication of the buffer depth spread for each LEMC
offset values. Select an LEMC offset value giving buffer depths as close as possible to (E x 32)/2 for all lanes.

Figure 32 illustrates this process using the same ADRV9026 CE board with the ADRV9025Init_StdUseCase26C_nonLinkSharing profile
and automatic buffer protection disabled.

In this example, an LEMC offset value between 21 and 24 is a good choice because it results in buffer depths around 16 for all the used
lanes, guaranteeing deterministic latency with no chance of data corruption due to the read and write pointers being too close.

Rev. PrA | Page 69 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1727

If the goal for the system is to achieve deterministic latency with a latency as short as possible, it may be desirable to select an LEMC
offset value giving buffer depths as small as possible but still well above a small number (for example, 10 or 12) to avoid data corruption
due to the read and write pointers being too close. Note that in that situation, carry out thorough system testing over all possible
temperature, supply and board variations to ensure that data corruption never occurs in all possible operating conditions for the system.

Avoid LEMC offset values giving a large buffer depth (near a value of E x 32) because, for some combinations of JESD parameters, it can
lead to the write and read pointers being too close and therefore can result in data corruption.

Madura - UC26C-NLS - Dev Clock = 245,76 MHz
S=1,M=8,N'=16,K=64,L=4,F=4,E=1, TxIQrate = 491.52 MHz
Buffer Protection Disabled

32
EREN X
30 se e
sese e
28 ER XN N]
ssees
Flil [N N]
EER X
24 se s e e
(R RN
£ 2 seeee
a se e
2 20 RN
o XXX
£ 18 ssse e
=1 (N N NN N
o 16 LR
' ERE NN
14 s 000 e
LER]
12 ssee
 EEREN]
10 s e s
(LR
8 KRR
ssees
Greessee
EEX]
188 s e
 EE NN
2 ERE NN
seeee
0 L
0123245678 9101112131415161718192021222324252627 282030313233 342353637 38230404142 43 44 45 46 47 48 405051 52 53 54 55 56 57 58 59 60 61 62 63
LEMC Offset
& Lane 0 Lane 1 Lane 2 & Lane 3 §
Buffer Depth Buffer Depth Buffer Depth Buffer Depth 2
(Reg OxGaga) (Reg DxGash) (Reg OnGasc) (Reg OxGaBd) §

Figure 32. Buffer Depths for Lane 0, Lane 1, Lane 2, and Lane 3 vs. LEMC Offset on the ADRV9026 CE Board with the ADRV9025Init_StdUseCase26C_nonLinkSharing
Profile and Buffer Protection Disabled

Selecting the Optimal LEMC Offset for a System in JESD204C Mode When E > 2

As mentioned previously, the size of each elastic buffer is 512 octets. When E is bigger than 2, there is some LEMC offset values for which
more than 512 octets are needed to be stored in the elastic buffer to be able to release the data on the next LEMC edge. As this is not
possible due to the elastic buffer size, buffer protection gets activated for such LEMC offset values when it is enabled. It is therefore
recommended to have buffer protection enabled when E > 2.

In JESD204C mode when E >2, it is recommended to select an LEMC offset that gives buffer depths values as close as possible to the
center of the linear part of the buffer depths vs. LEMC Offset plot for all the lanes used.

To find that LEMC offset, read back the buffer depths values for all the used lanes for all LEMC offset values with buffer protection
enabled on a sample board for a given system. Measuring the buffer depths per LEMC offset for 10 power cycles or JESD link
establishments (with application of a new SYSREF pulse each time) provides a good indication of the buffer depths spread for each LEMC
offset.

Select an LEMC offset value giving buffer depths as close as possible to the center of the linear part of the buffer depth vs. LEMC Offset
plot for all the used lanes.

Figure 33 illustrates this process using an ADRV9026 CE board programmed with the ADRV9025Init_StdUseCase14C_LinkSharing
profile, with automatic buffer protection enabled.

In this example, LEMC offset values between 87 and 89 are good choices because it results in a buffer depth around 41 for each lane,
which is in the middle of the linear part of the plot and therefore guarantees deterministic latency.

If the goal for the system is to achieve deterministic latency with a latency as short as possible, it may be desirable to select an LEMC

offset value giving buffer depths as small as possible. In that case, an LEMC offset value above the highest LEMC offset resulting in the
automatic buffer protection being active with some additional headroom to account for PVT variations can be selected. In that situation,

Rev. PrA | Page 70 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1721

carry out thorough system testing over all possible temperature, supply and board variations to ensure that the automatic buffer
protection never gets activated and that deterministic latency is maintained in all possible operating conditions for the system.

Avoid LEMC offset values giving large buffer depths (near a value of 64) because, for some combinations of JESD parameters, it can lead
to the write and read pointers being too close and therefore can result in data corruption.

Madura - UC14C-LS - Dev Clock = 245,76 MHz
S=1,M=8,N'=12,K=128,L=2,F=6,E =3, TxIQrate = 491.52 MHz
Buffer Protection Enabled

(. e *seeeee |

Buffer Depth

t+]
2
oas
b - |
Buffer Protection Active Bit

o8
6 jegsapiengsesionsisensaseniasentissatians g saases
o e
; a 4 8 12 15 W0 M 28 32 3F 40 4 48 57 56 60 B4 BB T2 76 BO B4 8.3- 92 85 100 104 }98 112 116 22.124
LEMC Offset

Lane 0 ® Lane 1 ® guffer
Buffer Depth Buffer Depth Protection
{Rep OxBaga) {Reg Oxbaghb) Rit

22770-034

Figure 33. Buffer Depths for Lane 0 and Lane 1 vs. LEMC Offset on the ADRV9026 CE Board with the ADRV9025Init_StdUseCase14C_LinkSharing Profile and Buffer
Protection Enabled

Rev. PrA | Page 71 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1727

SYNTHESIZER CONFIGURATION

OVERVIEW

The ADRV9026 employs four phase-locked loop (PLL) synthesizers: Clock, RF (x2), and Auxiliary. Each PLL is based on a fractional-N
architecture and consists of a common block made up of a reference clock divider, phase frequency detector, charge pump, loop filter,
feedback divider, and digital control block and either a 1 or 4 core voltage-controlled oscillator (VCO). The AuxPLL and CLKPLL VCO
have a tuning range of 6.5 GHz to 13 GHz. The RFPLL1 and RFPLL2 VCO have a tuning range of 6.4 GHz to 12.8 GHz. Each PLL drives
its own local oscillator (LO) generator: RF LOGEN, Aux LOGEN, and CLKGEN. The output of the LOGEN block is a divided version of
the VCO frequency. No external components are required to cover the entire frequency range of the device. This configuration allows the
use of any convenient reference frequency for operation on any channel with any sample rate. The reference frequency for the PLL is
scaled from the reference clock applied to the device. Figure 35 below illustrates the common PLL block used in the ADRV9026.

CONNECTIONS FOR EXTERNAL REFERENCE CLOCK (DEVCLK)

The external clock is used as a reference clock for the clock synthesizer, two RF synthesizers, and auxiliary synthesizer in the device and
thus needs to be a very clean clock source with respect to noise. Connect the external clock inputs to the DEVCLK+ (C8) and DEVCLK-
(C9) pins via ac coupling capacitors and terminate them with 100 Q close to the device as shown in Figure 34. The device clock receiver is
a noise sensitive differential RF receiver. The frequency range of the DEVCLK signal must be between 10 MHz and 1 GHz. Ensure that
the external clock peak to peak amplitude does is not less than 50 mV or greater than 1 V.

—]— C8 DEVCLK+
100nf
10093 ADRV9026
100nf 8
—] C9 DEVCLK- g
Figure 34. Reference Clock Input Connections
LOGIC, ADCs,
DACs, ETC...
f TX1, TX2
CLKPLL CLOCK CLOCK RATE DIGITAL CLOCK TX3, TX4
REF SYNTHESIZER GENERATOR DISTRIBUTION ’
RF PLL1 RF RF LO1
REF CLK REF |_"| SYNTHESIZER2 GENERATOR | RX1, RX2
REF CLKINS =1 DISTRIBUTION RF PLL2 RF RF LO2
REF |__»|SYNTHESIZER2 GENERATOR |
AUX PLL AUXILLARY AUXLO | >
REF |_"| SYNTHESIZER l_' GENERATOR | ORXx3, ORx4

ORx3, ORx4

22770-035

Figure 35. Synthesizer Interconnection and Clock/LO Distribution Block Diagram

Rev. PrA | Page 72 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1721

EXTERNAL REFERENCE CLOCK (DEVCLK) REQUIREMENTS

Each RF synthesizer takes a lower frequency reference and multiplies it up to a higher frequency. The phase noise performance at the final
frequency subsequently has some dependency on the phase noise of the input reference clock. This section discusses the impact of the
reference (DEVCLK input) on the phase noise performance of the RF synthesizers. In general, the reference clock requirements are
derived from the desired LO frequencies, PLL loop bandwidths, and somewhat on the phase margin.

The phase noise plots provided in the ADRV9026 data sheet are taken with a nearly ideal reference clock. An example is shown in Figure 36.
Any noise on the reference is an additional noise source and can be RSS (root square sum) added to the phase noise specified in the data
sheet.

-80
-90 \
~ NA
< -100 d
3 e
o2 N
w 110
2] TN
o ™\
4
w 120
<
I
o
o -130
pur]
N
-140
-150
100 1k 10k 100k M 10M

22770-037

FREQUENCY OFFSET (Hz)
Figure 36. LO Phase Noise vs. Frequency Offset, F.o =2600 MHz, Loop Bandwidth = 500 kHz, Phase Margin = 60°, DEVCLK Supplied by a Wenzel VCXO

The LO frequency is related to the reference clock by the following equation:
fro=N X frer
Loop Gain = 20 x logio(N)
where N is the multiplier applied to the reference clock frequency (fzer) to generate the desired LO frequency.

Noise power from the reference sees a multiplication factor equal to the loop gain. What is missing from this equation is the transfer
function of the PLL that depends on the PLL loop bandwidth and somewhat on the loop phase margin. The loop bandwidth and phase
margin are provided in the caption of the phase noise figures provided in the data sheet (as shown in Figure 36).

Figure 37 illustrates several closed loop responses with different loop bandwidths and phase margins listed. Each response is normalized
to 0 dB using the loop gain calculation value for each to factor in the amount of gain that each response shifts. For example, for a fio of
2600 MHz and a frer of 245.76 MHz the gain is 20.5 dB. With the reference clock noise, the data sheet RF LO phase noise, and this
transfer function the total noise can be calculated.

10
0 SSi ot i
s
-10 N N
h N
\\
-20 i
=30 \
—40 N\
N
-50
— 50k, 85°C
-60 — 100k, 60°C
— 500k, 60°C ’
_70 L1 111l L1l ||
100 1K 10k 100k M 10M

22770-038

FREQUENCY (Hz)
Figure 37. Normalized PLL Closed Loop Response

Rev. PrA | Page 73 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1727

A 245.76 MHz reference with relatively high noise content is shown in Figure 38. This can be used to calculate the reference clock noise
impact to the RF PLL using the following process:

e Multiply the phase noise of the reference clock by the PLL closed loop transfer function.
e RSS add this product to the corresponding RF PLL phase noise response for the given LO frequency provided in the data sheet.

The result of this process using the example data in Figure 36 through Figure 38 is illustrated by the plot shown in Figure 39. Note that the
data sheet reference has much better phase noise at low frequency because it was measured during device characterization testing using
an extremely low phase noise VCXO as the reference clock.

22770-039

Figure 38. Phase Noise Plot for a Noisy 245.76 MHz Reference Clock

-50

60 [T
-70 NN

&
/|

LEVEL (dBc)

LoLoL L
B W N =2 O ©
© © © © © o

-150

—160 I — DATA SHEET

170 MEASURED NOISE
— CALCULATED NOISE

-180

100 1k 10k 100k ™ 10M
OFFSET FREQUENCY (Hz)

22770-040

Figure 39. Example of Measured Phase Noise vs. Calculated Phase Noise—High Phase Noise Reference Clock

CLOCK SYNTHESIZER

The clock synthesizer is used to generate all the clocking signals necessary to run the device. The synthesizer uses a single core VCO
block. The reference frequency for the clock PLL is scaled from the device clock by the reference clock generator. Although the clock PLL
is a fractional-N architecture, the signal sampling relationships to the JESD interface rates typically require that the synthesizer operates in
integer mode. Profiles that are included in the ADRVTRX TES configure the clock synthesizer appropriately. Reconfiguration of the clock
synthesizer is typically not necessary after initialization. The most direct approach to configuration is to follow the recommended
programming sequence and utilize provided API functions to set the clock synthesizer to the desired mode of operation. The clock
generation block of the clock synthesizer provides clock signals for the high speed digital clock, Rx ADC sample and interface clocks,
ORx ADC sample and interface clocks, and Tx DAC sample and interface clocks.

RF SYNTHESIZER

The device contains two RF PLLs. Each RF PLL uses the PLL block common to all synthesizers in the device and employ a 4 core VCO
block which provides a 6 dB phase noise improvement over the single core VCO. As with the other synthesizers in the device, the
reference for RF PLL 1 and 2 are sourced from the reference generation block of the device. The RF PLLs are also fractional-N
architectures with a programmable modulus. The default modulus of 8386560 is programmed to provide an exact frequency on at least a
2 kHz raster using reference clocks that are integer multiples of 122.88 MHz. More details of the divider options are given in Table 56.

Rev. PrA | Page 74 of 267

UG-1721

The RF LO frequency is derived by dividing down the VCO output in the LOGEN block. The tunable range of the RF LO is 400-6400 MHz. The
LO divider boundaries are given in Table 57. Note that it is recommend to rerun the init cals when crossing a divide by 2 boundary or when
changing the LO frequency by +100 MHz or more from the frequency at which the init cals were performed.

Table 56. RF Synthesizer Divider Ranges

LO Frequency Limits (MHz)

Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper
Limit Limit Limit Limit Limit Limit Limit Limit Limit Limit
AuxPLL 203.125 406.25 406.25 8125 8125 1625 1625 3250 3250 6500
RFPLL1/2 | 200 400 400 800 800 1600 1600 3200 3200 6400
Div by 32 16 8 4 2
Table 57. RF Synthesizer LO Boundaries
Desired LO Frequency Ranges (MHz)
PLL Lower | Upper | Lower | Upper | Lower | Upper | Lower | Upper | Lower | Upper

DEV_CLK_IN | PFD Limit Limit Limit Limit Limit Limit Limit Limit Limit Limit

(MHz) (MHz) | 200 400 400 800 800 1600 1600 3200 3200 6400
LO Step Size | 491.52, 245.76 | 0.92 1.83 3.66 7.33 14.65
(Hz) 245.76

307.2 307.2 1.14 2.29 4.58 9.16 18.32

122.88 122.88 | 0.46 0.92 1.83 3.66 7.33

153.6 153.6 0.57 1.14 2.29 458 9.16
Exact 491.52, 245.76 | 250 500 1000 2000 4000
Decimal 245.76
Frequency 307.2 307.2 3125 625 1250 2500 5000
Raster (Hz2) 15788 12288 | 125 250 500 1000 2000

153.6 153.6 156.25 3125 625 1250 2500

A switching network is implemented in the device to provide flexibility in LO assignment for the two RF LO sources. The switching
network is diagrammed in Figure 40. Note that it is not recommended to set RFLO1 = RFLO?2; this cab cause unwanted coupling between
the two PLLs. To set RFLO1 = RFLO2, then set either RFPLL1 or RFPLL2 to the desired frequency and mux that PLL to both TxLO and
RxLO. That is, set either TXLO = RXLO = RFLO1 or TXLO = RXLO = RFLO2 and power down the unused RFLO.

Rev. PrA | Page 75 of 267

UG-1727

AUXILIARY SYNTHESIZER

An auxiliary synthesizer is integrated to generate the signals necessary to calibrate the device. This synthesizer utilizes a single core VCO.
The reference frequency for the AUX synthesizer is scaled from the device clock via the reference clock generation system. The output
signal is connected to a switching network and injected into the various circuits to calibrate filter bandwidth corners, or into the Rx signal
chain as an offset LO. Calibrations are executed during the initialization sequence at startup. There is no signal present at the Rx/ORx
input during tone calibration time. Calibrations are fully autonomous. During the calibration, the auxiliary synthesizer is controlled solely
by the internal Arm processor and does not require any user interactions. The AUX LO signal is also available as an LO source for the
observation receiver mixers.

EXT LO1 EXT LO2

¢ Y ‘ A ¢ Y ¢ Y

TX1, TX2 TX3, TX4 RX1, RX2 RX3, RX4
SWITCH SWITCH SWITCH SWITCH
| TX1, TX2 | | TX3, TX4 | | RX1, RX2 | | RX3, RX4 |
¢ AUXLO
A

ORX1, ORX2 ORX3, ORX4
SWITCH SWITCH

! !

| ORX1, ORX2 | ORX3, ORX4 |

22770-041

Figure 40. LO Switching Network
SETTING THE LO FREQUENCIES

There are two commands that the user can execute to select the LO frequency in the device. One is used when the user does not have

special phase requirements between the Tx LO and the AUX LO; the other is used when the user has special phase requirements. When

no phase requirements exist, the user can run the following API command:

int32_t adi_adrv9025 PlIFrequencySet(adi_adrv9025 Device_t* device, adi_adrv9025_ PlIName_e
plIName, uint64_t pllLoFrequency_Hz)

If the user has special phase requirements, relies on their own LOL/QEC tracking calibrations, or requires a faster lock time, the user can

use the following function which provides more control over these settings.

int32_t adi_adrv9025_ PlIFrequencySet_v2(adi_adrv9025 Device_t* device, adi_adrv9025_PlIConfig_t
*plIConfig)

An example of this situation involves placing the AUX LO at a user defined offset from the TX LO that is normally defaulted to

+(bandwidth/2 + 5) MHz. If the user has no specific requirements on the phase or frequency of the auxiliary LO, use the

adi_adrv9025_PllFrequencySet(...) command. More details about these commands are in the API Functions section of this chapter.

Both commands can be run any time after device initialization, and neither has any prerequisite commands or requirements. The
structures and enumerators for these API commands are detailed in Table 58 through Table 62.

Table 58. adi_adrv9025_PlIConfig t Structure

Data Type Parameter Range Description
PlIName_e plIName Table 59 Name of the PLL the user wants to control.
PlIModeSel_e plIModeSel Table 60 The user can select between Slow locking or fast locking mode.
PlIAuxLoResyncSel_e pllAuxLoResyncSel Table 61 The user can select between resyncing and not resyncing the AUX LO to
the TX LO after a frequency change.
PllAuxLoOffsetProgSel | pllAuxLoOffsetProgSel | Table 62 The user can select whether the auxiliary LO frequency is changed to be
+(bandwidth/2 + 5) MHz or to not be changed after a frequency change.
Uint64_t pllLoFrequency_Hz 400 x 106 to | The LO frequency which the customer wants to set in Hz.
6000 x 106

Rev. PrA | Page 76 of 267

UG-1721

Table 59. adi_adrv9025_PlIName_e Enumerator

Enum Enum Values

Description

ADI_ADRV9025_LO1_PLL
ADI_ADRV9025_LO2_PLL
ADI_ADRV9025_AUX_PLL

PlIName_e

Selects LO1 PLL for Tx/Rx/ORx
Selects LO2 PLL for Tx/Rx/ORx.
Selects AUX PLL for ORx.

Table 60. adi_adrv9025_Pll_ModeSel_e Enumerator

Enum Enum Values Description

plIModeSel_e | ADI_ADRV9025_PLL_SLOW_MODE

Slow lock mode. This mode skips some calibrations in order to lock the PLL faster.

Table 61. adi_adrv9025_pllAuxLoResyncSel_e Enumerator

Enum Enum Values

Description

pllAuxLoResyncSel_e | ADI_ADRV9025_PLL_AUX_LO_RESYNC_ENABLE

Resyncs the AUX LO to the Tx LO after a frequency change.

ADI_ADRV9025_PLL_AUX_LO_RESYNC_DISABLE

Does not resync the AUX LO to the Tx LO after a frequency
change.

Table 62. adi_adrv9025_pllAuxLoOffsetProgSel_e Enumerator

Enum Enum Values

Description

pllAuxLoOffsetProgSel_e

ADI_ADRV9025_PLL_AUX_LO_OFFSET_PROG_ENABLE

ADI_ADRV9025_PLL_AUX_LO_OFFSET_PROG_DISABLE

Programs the AUX LO to be +(bandwidth/2 + 5) MHz
from the Tx LO after every frequency change.

Does not set the AUX LO after a frequency change.

API Functions
adi_adrv9025_PllIFrequencySet(...)

int32_t adi_adrv9025 PlIFrequencySet(adi_adrv9025 Device_t* device, adi_adrv9025 PlIName_e

plIName, uint64_t pllLoFrequency_ Hz)
Description
This function sets the LO frequency of the chosen PLL.
Precondition

After device initialization.

Parameters

Table 63.

Parameter Description

*device Pointer to device structure.

pliName The PLL selected for setting the frequency.
pllLoFrequency_Hz Frequency of the LO the user wants to set in Hz.

adi_adrv9025_PllFrequencyGet(...)

int32_t adi_adrv9025 PlIFrequencyGet(adi_adrv9025 Device_t* device, adi_adrv9025 PlIName_e

plIName, uint64_t *pllLoFrequency_Hz)
Description
This function gets the LO frequency of the chosen PLL.
Precondition

After device initialization.

Parameters

Table 64.

Parameter Description

*device Pointer to device structure.

pliName The PLL selected for getting the frequency.
*pllLoFrequency_Hz Pointer to the frequency of the LO the user wants to set in Hz.

Rev. PrA | Page 77 of 267

UG-1727

adi_adrv9025_PlIFrequencySet_v2(...)

int32_t adi_adrv9025_ PlIFrequencySet_v2(adi_adrv9025 Device_t* device, adi_adrv9025_PlIConfig_t
*plIConfig);

Description

Use this function when the user has special phase constraints that they need to put on certain PLLs to meet system requirements.
adi_adrv9025_PllFrequencySet_v2(...) is equivalent to adi_adrv9025_PllFrequencySet(...) with the following parameters set in the
adi_adrv9025_PllConfig_t structure:

Table 65.

Parameter Description

plIModeSel ADI_ADRV9025_PLL_SLOW_MODE

pllAuxLoResyncSel ADI_ADRV9025_PLL_AUX_LO_RESYNC_ENABLE
pllAuxLoOffsetProgSel ADI_ADRV9025_PLL_AUX_LO_OFFSET_PROG_ENABLE
Precondition

After device initialization.

Parameters

Parameter Description

*device Pointer to device structure.

*pliConfig Pointer to PLL configuration structure.

adi_adrv9025_PllLoopFilterSet(...)

int32_t adi_adrv9025 PlILoopFilterSet(adi_adrv9025 Device_t* device, adi_adrv9025 PlIName_e
plIName, adi_adrv9025_PllLoopFilterCfg_t *pllLoopFilterConfig);

Description
This function allows the user to set the PLL loop filter bandwidth, phase margin, and power scale of the device.
Precondition

After device initialization.

Parameters

Table 66.

Parameter Description

*device Pointer to device structure.

pliName PLL selected for changing settings.

*pllLoopFilterConfig Pointer to loop filter configuration structure passed to the device.

adi_adrv9025_PllLoopFilterGet(...)

int32_t adi_adrv9025 PlILoopFilterGet(adi_adrv9025 Device_t* device, adi_adrv9025 PlIName_e
plIName, adi_adrv9025_PllLoopFilterCfg_t *pllLoopFilterConfig);

Description
This function allows the user to get the PLL loop filter bandwidth, phase margin, and power scale of the device.
Precondition

After device initialization.

Parameters

Table 67.

Parameter Description

*device Pointer to device structure.

pliName PLL selected for getting settings.

*pllLoopFilterConfig Pointer to loop filter configuration structure passed to the device, returns the current
configuration.

Rev. PrA | Page 78 of 267

UG-1721

EXTERNAL LO

The device is provisioned with 2 external LO ports. These ports share a pair of balls and can be configured to be input or output for LO
signals. In an input configuration, they provide the option to drive the LO with another device in order to synchronize multiple devices in
the same system or to provide an LO with better phase noise performance in order to meet stringent requirements as in the case of
multicarrier GSM receivers. In an output configuration, the LO of one device can drive the LO input of another device. Refer to Figure 40
for illustration of EXT LO connection in reference to the RF LO sources.

EXTLOIN

External LO in can receive a signal between 200 MHz and 13 GHz through a matched differential impedance of 100 Q and delivers a
programmable signal between 25 MHz and 6.5 GHz as the LO for transmitters and receivers in the device. Amplitude must be maintained
between +6 dBm.

EXTLOOUT
In the output mode, the port delivers the internal LO divided by 1 to 128 providing a frequency range of 25 MHz to 6.5 GHz.
LOCK STATUS

Lock status of the clock, RF and auxiliary PLLs is provided through the following API command:
adi_adrv9025_PIlIStatusGet(adi_adrv9025_Device_t* device, uint32_t *pllLockStatus);

Table 68. pllLockStatus Return Values

Variable Bit Position Return Values
*pllLockStatus DO 1 =CLKPLL Locked; 0 = Unlocked
D1 1=L01 PLL Locked; 0 = Unlocked
D2 1 =102 PLL Locked; 0 = Unlocked
D3 1 = AUX (LO3) PLL Locked; 0 = Unlocked

Additionally, PLL lock status can be set to assert via a general purpose interrupt pin. For monitoring the lock status over the GPINT
signal, see the General-Purpose Interrupt section.

API Functions

Adi_adrv9025_PlIStatusGet(...)

int32_t adi_adrv9025 PlIStatusGet(adi_adrv9025 Device_t* device, uint32_t *pllLockStatus)
Description

This function gets the PLL lock status of Clock, LO1, LO2 and AUX PLLs and returns them in the parameter *pllLockStatus.
Precondition

After device initialization.

Parameters

Table 69.

Parameter Description

*device Pointer to device structure.

*pllLockStatus Pointer to structure element that contains the PLL Lock Status.

Rev. PrA | Page 79 of 267

UG-1727

RF PLL PHASE SYNCHRONIZATION

The RFPLL Phase Sync description is included at this time for prototyping and evaluation purposes only. Consult Analog Devices for
function availability.

This function has been added to allow the internally generated LO to be phase synchronized and aligned to the applied reference clock. In
multiple transceiver systems, this function allows all devices to align the RFPLL to the same point, and therefore the phase between each
device is aligned at startup so that phasing between devices is repeatable and fixed. At startup, the standard JESD204B multi-chip
synchronization mechanism (MCS) implemented with the device clock (DEVCLK) and system reference signal (SYSREF) are used to
reset the data converter clocks and all other clocks at the baseband rate. These same signals are also used to initialize an on-chip counter
which is later used during PLL programming to synchronize the LO phase. No additional signals are required to take advantage of the LO
phase synchronization mechanism. From the on-chip counter and a PLL fractional word programming, a digital representation of the
desired LO phase can be computed at each PLL reference clock edge and is remembered in the digital phase accumulator (DPA).

The LO phase sync hardware operates by directly sampling the LO signal (in quadrature) using the PLL reference clock signal (DEVCLK).
Averaging is required to increase the accuracy of the LO phase measurement, so at every sample, the observed LO phase is de-rotated by
the digitally desired phase. This is done by performing a vector multiplication of the complex conjugate of the digital phase. The result is a
vector representing the phase difference between the LO and the digitally desired phase, and these vectors can be averaged over many
DEVCLK cycles to obtain an accurate measurement of the phase adjustment required.

After the phase difference has been measured, the adjustment can be applied into the first stage £-A modulator (SDM) of the PLL by
adding it to the first stage modulator input. The total adjustment amount is added over many reference clock cycles in order to stay within
the PLL loop bandwidth and not cause the PLL to come unlocked. To counteract temperature effects after calibration, a PLL phase
tracking mode can be activated. Figure 41 is a block diagram of the phase synchronization system.

! 1
1
REF_CLK_IN ! i
| - »| LO GEN T
! PFD - —(\) ot a? !
: LPF Voo i
' 1 Y A
1
: 1 1 Q
I :REFCLK CAPTURE |, CAPTURE
1
! |
1
I 1
! : »| Z(LO;*NCO, +LOq* NCOq)
i Nco |1 APD
I X »| % (LO, * NCO,-LOq * NCOq)
' # I
PHASE -
SYNCHRORIZER FREQUENCY TUNING WORD

A
| <_|— MULTI CHIP SYNC

- CONTROL

22770-042

Figure 41. LO Phase Sync Functional Diagram

Rev. PrA | Page 80 of 267

UG-1721

System Level Considerations

Opverall phase synchronization is determined by a number of factors, including the board level clock routing (tcix), the on-chip reference
path routing (trerearn), the PLL and LO divider path (teir), and the RF and antenna paths (te). These time delays are illustrated in Figure 42. In a
beam forming/MIMO system, there is a system level antenna calibration that is performed to equalize the sum of these paths between all
channels. The goals of this transceiver mechanism are:

¢ Reduce the complexity of the antenna calibration by initializing to a more consistent startup condition with deterministic PLL phase
and LO divider state,

e Reduce the temperature dependence of the system phase synchronization to allow the antenna calibration to run less frequently
during operation,

e Allow transceivers to be stopped and started in an operational system and “hot synchronize” with the other transceiver elements.

The LO phase synchronization method addresses the initial PLL phase and LO divider state and reduces their temperature dependence to
a negligible amount compared to other sources of phase drift in the system.

Aterk AtRerpaTH Atp . Atge
ANAAANAAAA~
LO GEN J AN
D—/_®_ =2k J AAAANAANAANAANAANAA
PLL Jy

LO GEN AnAAAAAA
+2k
> : A~~~
CLOCK PLL J

CHIP T Y ~n

LO GEN ANANAANAAANA
> V4 () 2k
ANNANANANANANAN
PLL J

(d
L d
(]

H

22770-043

Figure 42. High Level Contributions to System Phase Per Antenna

Rev. PrA | Page 81 of 267

UG-1727

ARM PROCESSOR AND DEVICE CALIBRATIONS

The ADRV9026 is equipped with a built in Arm M4 processor. The firmware for this Arm processor is loaded during the initialization
process. The firmware memory size is 224 kB, and the Arm has access to a further 160 kB of data memory to utilize. The Arm is tasked
with configuring the device for the selected use case, performing initial calibrations of the signal paths and maintaining device
performance over time through tracking calibrations.

ARM STATE MACHINE OVERVIEW

STATE 0:
POWER UP/RESET

|
BOOT SEQUENCE
SYSTEM INITIALIZATION

STATE 1:
READY/IDLE

ALL COMMANDS ACCEPTED IN THIS STATE.
INITIAL CALIBRATRIONS CAN BE RUN.
TRACKING CALIBRATIONS CAN BE RUN.

22770-044

Figure 43. Arm State Machine

State 0: When the arm core is powered up, the Arm moves into its power-up/reset state. The Arm firmware image is loaded at this point.
Once the Arm image has been loaded, the Arm is enabled and begins its boot sequence.

State 1: After the arm has been booted, it enters its ready/idle state. In this state, it can receive configuration settings or commands
(instructions), such as performing the initial calibrations of the device or enabling tracking calibrations.

SYSTEM INITIALIZATION

The System Initialization section of this document provides a detailed description of the initialization procedure. There are three main
sections to the initialization procedure.

Pre MCS Init initializes the device up to the multichip sync procedure. The Pre-MCS init sequence is split into two commands that the
application layer function calls. These are adi_adrv9025_PreMcsInit_v2(...) and adi_adrv9025_PreMcsInit_NonBroadCast(...).
adi_adrv9025_PreMcsInit_v2(...) is a broadcastable command that can simultaneously issue commands to multiple transceivers to save
time during system initialization for systems with multiple transceivers. Arm and Stream binaries are programmed to the chip during this
step. The broadcast functionality is realized by issuing SPI write commands only. The adi_adrv9025_PreMcsInit_NonBroadCast(...)
verifies that the Arm is programmed properly by verifying the Arm checksum and that the Arm is in the Ready/Idle state.

The multichip sync (MCS) step uses SYSREF pulses to synchronize internal clocks within the transceiver. Required for deterministic
latency.

Post-MCS Init continues initialization following MCS. The application layer command that performs the post-MCS initialization is
adi_adrv9025_PostMcsInit(...). This command programs the PLLs, configures the radio control initialization structure and instructs the
Arm to perform initialization calibrations.

Rev. PrA | Page 82 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1721

PRE MCS INITIALIZATION
This section explains the Arm related function calls in adi_adrv9025_PreMcsInit_v2(). Run adi_adrv9025_PreMcsInit_v2(...) as part of
the initialization sequence.
adi_adrv9025_PreMcslInit_v2(adi_adrv9025 Device_t *device,
adi_adrv9o025_Init_t *init,
const char *armlmagePath,
const char *streamlmagePath,
adi_adrv9025_RxGainTableFile_t rxGainTableFileArr[],
uint8_t rxGainTableFileArrSize,
adi_adrv9025_TxAttenTableFile_t txAttenTableFileArr[],
uint8_t txAttenTableFileArrSize);
Of importance from the perspective of the Arm is the armImagePath, a file system location where the Arm binary is stored, which is

required for the Arm to be loaded.

The adi_adrv9025_PreMcslnit_v2(...) function is in the adi_adrv9025_utilities.c/h file. It performs a sizeable part of the full chip
initialization. From the point of view of the Arm, it performs a number of tasks. The first step is to load the Arm image:
adi_adrv9025_ArmImageLoad(device, armImagePath), where device is the transceiver device structure.

armImagePath is the path to the Arm image binary passed as a parameter to adi_adrv9025_PreMcsInit_v2()
The Arm image is provided in the Resources/ArmPFiles folder of the GUI installation folder.

Following the Arm firmware image being loaded, the next step is to load the device configuration into data memory using
adi_adrv9025_ArmProfileWrite(adi_adrv9025_Device_t *device, const adi_adrv9025_Init_t *init).

*init is the initialization settings data structure.
The Arm is then started and begins its boot sequence. This process is initiated by:
adi_adrv9025_ArmStart(adi_adrv9025_Device_t *device, const adi_adrv9025_Init_t *init)

As part of the boot sequence, the Arm configures the device for the required profile (Tx/Rx/ORx path configuration as determined by the
use case), configures and enables the clock PLL (the device starts initialization on the device clock), and configures the JESD framers and
deframers. The Arm also computes a checksum for the Arm firmware image loaded, for each of the streams loaded and the profiles
loaded (determining if they are valid profiles). The following API function waits for the Arm boot to complete, compares the computed
checksums during booth to precomputed checksums, for example comparing the Arm firmware checksum vs. the Arm checksum which
is calculated upon compilation of the Arm firmware and stored within the Arm firmware image:
adi_adrv9025_ArmStartStatusCheck(adi_adrv9025_Device_t *device, uint32_t timeout_us), where timeout_us is a timing parameter that
dictates the longest time that the function waits for arm booting to complete

If a checksum is found not to be valid, this function returns an error.

POST MCS INITIALIZATION

After the MCS sequence has been completed, the Arm is ready to configure the radio, perform its initialization calibrations and bring up
the JESD link. Once complete, the tracking calibrations can be enabled. The RF data paths can then be enabled using either SPI or pin
modes.

Note that there is no absolute requirement to follow this sequence. The initialization calibrations and tracking calibrations do not need to
be run in order for the paths to be enabled in the device. It is ultimately up to the user to ensure that the paths have been correctly
configured prior to operation.

DEVICE CALIBRATIONS

The Arm is tasked with performing calibrations for the device to achieve its performance specifications. These are split into two
categories: initial calibrations which are run either before the device is operational or after LO frequency change; and tracking calibrations
which are used to maintain performance during runtime.

A number of Tx calibrations use an observation path to observe the signal at the output of the Tx. For the most part, they use an internal
loopback path from Tx to ORx. The exception is the external LOL initialization and tracking algorithms that require the use of an
external path connection between the Rx output and an ORx input (typically the DPD feedback path).

Rev. PrA | Page 83 of 267

UG-1727

A requirement for this device is that the ORx channel used to calibrate a Tx channel must be on the same side of the chip as that Tx
channel. Table 70 provides the possible feedback combinations. For example, it is not possible for LO Leakage tracking to calibrate Tx4 by
providing its output to ORx1 or ORx2.

Table 70. External Feedback Path Possibilities

Channel Available Feedback Channels
Tx1 ORx1 or ORx2
Tx2 ORx1 or ORx2
Tx3 ORx3 or ORx4
Tx4 ORx3 or ORx4

Figure 44 shows an example of four feedback paths, each Tx going back to an ORx, obeying the principle of each Tx being fed back to an
ORx on the same side of the device. It is also possible to have both Tx1 and Tx2 going back to a single ORx input (either ORx1 or ORx2)
through a switch, likewise Tx3 and Tx4 can go back to a single ORx input (either ORx3 or ORx4).

Note: for the diagrams outlining the operation of individual calibrations, the Tx and ORx inputs are not numbered. Instead it is assumed
that the principle of a Tx being fed back to an ORx on the same side of the device is being obeyed.

Artenina 3 Artenma 2

M d 1 T43 iz

ORASH OR#1E

JlBaIu"
T R4 Rl —
4 r

Arterna 1

SERDES

22770-045

Figure 44. External Feedback for Tx Tracking Calibrations

INITIAL CALIBRATIONS

The Arm processor in the device is tasked with scheduling/performing initial calibrations to optimize the performance of the signal paths
prior to device operation. These calibrations are run as part of the utility API function adi_adrv9025_PostMcsInit(). To correctly
perform the initial calibrations, this utility function needs to be called. This section also provides details of the procedure invoked in
adi_adrv9025_PostMcsInit() to perform the initial calibrations, principally for further information, but also in case there is a need to run
initial calibrations outside of the post MCS initialization procedure. The function definition for the post MCS initialization is:

adi_adrv9025_PostMcsInit(adi_adrv9025 Device_t *device, adi_adrv9025 PostMcslnit_t *utilitylnit)
*utilitylInit is a structure containing a structure determining the initial calibrations to be run as part of the post MCS initialization routine

In some cases, it is required to run an initial calibration outside of adi_adrv9025_PostMcsInit(...). This following command instructs the
Arm to perform the requested calibrations:

adi_adrv9025_InitCalsRun(adi_adrv9025 Device_t *device, adi_adrv9025_ InitCals_t *initCals)
*initCals is the initial calibration structure, passed to adi_adrv9025_PostMcsInit as part of utilityInit, that informs the Arm processor

which calibrations to run on which enabled path. initCals is composed of a uint32_t calMask and a uint8_t channelMask. calMask
indicates which calibrations are to run in this call of adrv9025_InitCalsRun().

Table 71 shows the bit assignments of the calibration mask. Note that Table 71 provides a full list of initialization calibrations for the
device. Some initial calibrations are not available for certain variants of the ADRV9026 device.

The channelMask parameter, a member of the adi_adrv9025_InitCals_t structure, advises which channels the selected calibrations run.
Each bit of the bitmask refers to an individual channel as shown in Table 72. The mask is universally applied to all calibrations selected in
the current call of adi_adrv9025_initCalsRun(), regardless of the paths that the calibrations are being run for. For example, if OxF is

Rev. PrA | Page 84 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1721

chosen as a mask and both Rx and Tx calibrations are selected in the calMask, then when the Arm runs an Rx calibration it does so on all

four Rx channels. Likewise, when it runs a Tx calibration it does so on all four Tx channels.

Table 71. calMask Bit Assignments

Bits | Corresponding Enum Calibration Description

DO | ADI_ADRV9025_TX_BB_FILTER Tx baseband filter This is used to tune the corner frequency of the Tx Baseband
calibration filter.

D1 ADI_ADRV9025_ADC_TUNER ADC tuner This is used to configure the ADC for the required profile
calibration bandwidth.

D2 | ADI_ADRV9025_RX_TIA Rx TIA filter This is used to tune the corner frequency of the Rx TIA Filter.
calibration

D3 ADI_ADRV9025_ORX_TIA ORx TIA filter This is used to tune the corner frequency of the ORx TIA
calibration Filter.

D4 ADI_ADRV9025_LBRX_TIA Loopback Rx TIA This is used to tune the corner frequency of the Loopback Rx
Filter calibration TIA Filter.

D5 ADI_ADRV9025_RX_DC_OFFSET Rx dc offset This is used to correct for dc Offset within the Rx chain.
calibration

D6 | ADI_ADRV9025_ORX_DC_OFFSET ORXx dc offset This is used to correct for dc Offset within the ORx chain.
calibration

D7 | ADI_ADRV9025_LBRX_DC_OFFSET Loopback Rx dc This is used to correct for dc Offset within the loopback Rx
offset calibration chain.

D8 | ADI_ADRV9025_FLASH_CAL ADC flash This is used to optimally configure the ADC Flash converters.
calibration

D9 | ADI_ADRV9025_INTERNAL_PATH_DELAY Internal path delay | This computes the Tx to internal loopback path delay, which
calibration is required for the TXQEC initial calibration and tracking.

D10 | ADI_ADRV9025_TX_LO_LEAKAGE_INTERNAL | TxLO leakage This performs an initial LO leakage calibration for the Tx path.
initial calibration It utilizes the Tx path and the internal loopback path (see

Figure 47).

D11 | ADI_ADRV9025_TX_LO_LEAKAGE_EXTERNAL | TxLO leakage This performs an initial external LO leakage calibration for
external initial the Tx path. It utilizes the Tx path, a required external
calibration loopback path and the ORx path (see Figure 48). The external

loop must be enabled such that the Tx output is observable
by the ORx.

D12 | ADI_ADRV9025_TX_QEC_INIT Tx QEC initial This performs an initial QEC calibration for the Tx path. It utilizes
calibration the Tx path and an internal loopback path (see Figure 47).

D13 | ADI_ADRV9025_LOOPBACK_RX_LO_DELAY Loopback Rx LO This is used to perform an LO delay calibration for the
delay calibration loopback path.

D14 | ADI_ADRV9025_LOOPBACK_RX_RX_QEC_INIT | Loopback RxQEC This performs an initial QEC calibration for the Rx path.
initial calibration

D15 | ADI_ADRV9025_RX_LO_DELAY Rx LO delay This is used to perform an LO delay calibration for the
calibration receiver path.

D16 | ADI_ADRV9025_RX_QEC_INIT Rx QEC initial This performs an initial QEC calibration for the Rx path.
calibration

D17 | ADI_ADRV9025_ORX_LO_DELAY ORx LO delay This is used to perform an LO delay calibration for the
calibration observation receiver path.

D18 | ADI_ADRV9025_ORX_QEC_INIT ORx QEC initial This performs an initial QEC calibration for the observation
calibration receiver path.

D19 | ADI_ADRV9025_TX_DAC Tx DAC initial This performs a calibration of the Tx DAC.
calibration

D20 | Reserved

D21 | ADI_ADRV9025_EXTERNAL_PATH_DELAY External Tx to ORx This acquires an estimation of the Tx to ORx path delay (not
path delay initial required if CLGC tracking is not used)
calibration

D22 | Reserved

D23 | ADI_ADRV9025_HD2 HD2 initial This performs an initial calibration of the HD2 product in the
calibration Rx path (typically required only in GSM applications).

Rev. PrA | Page 85 of 267

UG-1727

Bits | Corresponding Enum Calibration Description
D24 | ADI_ADRV9025_TX_ATTENUATION_DELAY Tx attenuation This is used to calculate the path delay between the Tx
delay calibration analog and digital attenuation blocks. This delay is then used

to delay the onset of Tx analog attenuation when the Tx
attenuation changes. This synchronizes the attenuation
change at the Tx output.

D25 | ADI_ADRV9025_TX_ATTEN_TABLE Tx attenuation This is used to correct for phase changes between different
table linearization attenuation indices in the Tx attenuation table.
calibration

D26 | ADI_ADRV9025_RX_GAIN_DELAY Rx gain delay This is used to calculate the path delay between the Rx
calibration analog and digital attenuation blocks. This delay is then used

to delay the onset of Rx analog attenuation when the Rx gain
index is changed. This synchronizes the gain change in the
baseband data.

D27 | ADI_ADRV9025_RX_GAIN_PHASE Rx gain phase This is used to correct for phase changes between different
calibration gain indices in the Rx gain table.

D28 | Reserved

D29 | ADI_ADRV9025_CFR_INIT Crest factor This performs an initialization calibration for the ADRV9026
reduction CFR hardware.
initialization
calibration

D30 | ADI_ADRV9025_SERDES_INIT SERDES This performs an initialization calibration for the ADRV9026
initialization cal JESD 204C data interface.

D31 | Reserved

Table 72. channelMask Bit Assignments

Bits Channel

DO Channel 1 (either Rx1/Tx1/ORx1 depending on calibration being performed)
D1 Channel 2 (either Rx2/Tx2/ORx2 depending on calibration being performed)
D2 Channel 3 (either Rx3/Tx3/ORx3 depending on calibration being performed)
D3 Channel 4 (either Rx4/Tx4/ORx4 depending on calibration being performed)

The Arm sequences the initial calibrations as required, not necessarily in the bit order presented above. It is mandatory that the user wait
for calibrations to complete before continuing with the initialization of the device. The following API command is used to verify that the
initial calibrations are complete:

adi_adrv9025_InitCalsWait(adi_adrv9025 Device_t *device, uint32_t timeoutMs, uint8_t *errorFlag)
timeoutMs is the time in milliseconds (ms) that the function must wait for the calibrations to complete before returning an error
errorFlag indicates if there was an Arm error when the running the initialization calibrations

This function implements a blocking wait until the initial calibrations have been completed. An alternative function can be used instead
which determines if the initial calibrations are still running using the following API:

adi_adrv9025_InitCalsCheckCompleteGet(adi_adrv 9025 Device_t *device, uint8_t *areCalsRunning,
uint8_t *errorFlag);

*areCalsRunning is a value to indicate if calibrations are still running (0 = initial calibrations have completed, 1 = initial calibrations are
still running)

errorFlag indicates if there was an Arm error when the running the initialization calibrations.
In the case when an initial calibration error occurs, information about the error can be obtained with the following command:

adi_adrv9025_InitCalsDetailedStatusGet(adi_adr v9025 Device_t *device,
adi_adrv9025_InitCalStatus_t *initStatus);

*initStatus is a pointer to a data structure that contains initial calibration status information. The adi_adrv9025_InitCalStatus_t data
structure details are described in Table 73.

Rev. PrA | Page 86 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1721

Table 73. Definition of adi_adrv9025_InitCalStatus_t

Parameter Interpretation

initErrCode Returns the Object ID and error code reported for the initialization calibration failure. The object ID is contained
within Bits[D15:D8] and error bits are contained within Bits[D7:D0].

initErrCal Returns the object ID of the calibration reporting an error.

calsDurationUsec Time duration in microseconds of the most recent InitCalsRun invocation.

calsSincePowerUpl[4] | A 4-element array indicating the bitmask of initial calibrations run since power up. Each element of the array
corresponds to calibrations performed on each channel.

calsLastRun[4] A 4-element array indication the bitmask of initial calibrations run in the most recent invocation of InitCalsRun. Each
element of the array corresponds to calibrations performed on each channel.

SYSTEM CONSIDERATIONS FOR INITIAL CALIBRATIONS

The following diagrams are used to show how the device is configured for notable calibrations with external system requirements, such as
the QEC and LOL calibrations. In all diagrams, gray lines and blocks are not active in the calibration. Lines showing the path of the LOs
are shown in color to distinguish them from the signal paths. A brief explanation of the calibration is provided. Note that as the Arm
performs each of the calibrations, it is tasked with configuring the device as per Figure 45, with respect to enabling/disabling paths, for
example. No user input is required in this regard.

It is important that the user ensures that external conditions are met, such as having the PA off for all calibrations other than the external
LOL initialization calibration, or having the Rx input properly terminated for an Rx QEC initialization calibration.

Rx QEC Initial Calibration

The Rx QEC initialization calibration algorithm is utilized to improve the Rx path QEC performance. The Rx QEC calibration routine
sweeps a number of internally generated test tones across the desired frequency band, measuring quadrature performance and calculating
correction coefficients. Tone generation is performed by the CAL PLL in the figure above, which is the AUX PLL. When the Rx QEC
initialization calibration runs, the Arm configures the Rx to the maximum gain index (255).

System requirement: The input port must be isolated from incoming signals or the calibration may fail to complete. The calibration tones
appear on the Rx pins and, therefore, must be prevented from reaching the antenna through the Rx port being properly terminated into a
50 Q2 load. If an LNA is present at the Rx input, it is recommended to disable the LNA during the calibration.

ADRV902x
500 I

Rx
[input 9_-« e
_<I = BLOCK
| i o T =

22770-046

Figure 45. Rx QEC Initial Calibration System Configuration
ORx QEC Initial Calibration

The ORx QEC calibration functions by sweeping a number of internally generated test tones across the band measuring quadrature
performance and calculating correction coefficients. The Arm determines which PLL is free for use as a calibration source given the LO
selections. In the figure above, the Tx LO is the LO source for the ORx channel and the AUX PLL acts as the CAL PLL.

System Requirement: For optimum performance, the ORx QEC initialization must run at the same attenuation setting as described in the
External Tx LOL Init Cal system requirement, that is, it is recommended to set the internal ORx attenuation to 10 dB for TXLO <
2.8 GHz or 14 dB to 16 dB for TXLO > 2.8 GHz.

Isolate the ORx input from incoming signals and be properly terminated into a 50 Q load while the calibration is running. The calibration
tones appear on the ORx pins and, therefore, must be prevented from reaching the antenna.
Rx/ORx TIA Initial Calibration

The Rx/ORx TIA calibration is used to calibrate the corner frequency of the analog baseband TIA filter in the Rx/ORx signal path. The
signal path used for this calibration is the same as the Rx QEC initialization calibration shown in Figure 45. The calibration applies two
tones sequentially, one in-band and another at the TIA corner frequency, and compares the amplitude of both of these signals to ensure
that the corner frequency produces the appropriate roll-off.

Rev. PrA | Page 87 of 267

UG-1727

System requirement: Isolate the input port from incoming signals or the calibration may fail to complete.

" o - — — 0
| ADRV902x |
500 o S
y <
[input @_-« = |
— < QEc 4
= BLOCK E |
(X] | LPF -@ =
! Al
| I
CAL .
| s
L — — — — — — — — — — — — — — — — — 4§

Figure 46. ORx QEC Initial Calibration System Configuration

Internal Tx LO Leakage and Tx QEC Initial Calibrations

The Tx LO Leakage and Tx QEC Initial calibrations utilize the internal loopback path and the baseband section of the ORx path to
calculate its initial correction factors. During these calibrations, test signals (tones and wideband signals) are output. These appear at the
Tx output, so it is important that the PA connected to the device output be switched off. Both calibrations sweep through a series of
attenuation values, creating a table of initial calibration values over attenuation. Then during operation and upon application of a new Tx
attenuation setting, the corresponding QEC and LOL correction values are applied to the Tx channel by the Arm. The device
configuration for this calibration is shown in Figure 47.

System requirement: The PA in the Tx path must be powered off during these calibrations to prevent potential damage to the PA. When
the PA is disabled, ensure the load seen at the Tx output is 50 Q.

QEC
BLOCK

G

l
|
[
|
[
|
|
|
[
|
|

T
dands]
Gkt 9—-« L

22770-048

L

Figure 47. Device Path Configuration for Tx LOL and QEC Initial Calibrations

External Tx LO Leakage Initial Calibration

The external LOL initialization calibration requires that the PA be enabled such that a full external loop is made between the Tx outputs
and the ORx inputs. The purpose of this calibration is to obtain a good estimate (gain/phase) of the external loop channel conditions
prior to operation. The device configuration is shown in Figure 48. The calibration utilizes a pseudo-random noise signal to estimate the
channel conditions. This is a broadband signal with a nominal level of -78 dBES out of the DAC.

It is important that a suitable attenuator be chosen between the PA output and the ORx input. This is to prevent Tx data from saturating
the ORx input. This is also necessary from the perspective of DPD operation.

Note: If the ORx receives an input signal larger than the ADC full scale, the channel overloads and calibration results are poor. The arm
does not issue a warning or error condition in this case. Similarly the arm does not issue a warning if the physical Tx to ORx mapping
does not match the programmed Tx to ORx mapping.

System requirement: The output of the Tx channel to be calibrated must be routed to the utilized ORx path to properly observe the
calibration signal. If there is a PA in the path, it must be enabled during this calibration. The Tx to ORx mapping must be configured (via
API or GPIO) prior to the calibration to indicate which Tx is routed back to which ORx (see the Tx to ORx Feedback section).

Rev. PrA | Page 88 of 267

UG-1721

Choose the combined external coupler plus attenuation to provide a peak input power close to PHIGH at the ORx input pin such that the
peak power is close to —2 dBFS at the digital output with the programmed internal attenuation. For optimal external LOL initial
calibration and LOL tracking calibration, it is recommended to set the internal ORx attenuation to 10 dB for TXLO < 2.8 GHz or 14 dB to
16 dB for TXLO > 2.8 GHz.

ADRV902x

Attenuator

QEC
Block

oupker |
=<

| Output

22770-049

Figure 48. External LOL System Configuration (grayed-out circuitry not in use)

Rx Gain Delay Initial Calibration

The Rx datapath features an analog and a digital gain/attenuation element. If the analog and digital gain changed simultaneously, then the
received baseband data shows a two-step change in the gain index. The first gain change seen in the baseband is from the digital gain
change and the second gain change is from the analog gain change. This is due to the non-zero data path latency between the analog and
digital gain/attenuation elements.

The Rx gain delay calibration measures the latency between the analog and digital gain/attenuation elements in order to delay the onset of
digital gain. This ensures that when the analog and digital gain change that the baseband data shows a single coordinated gain change
between these two elements. Because the analog gain change is not delayed there are no consequences to AGC timing due to this
calibration.

Rx Gain Phase

The Rx gain phase calibration is used to minimize the phase differences between different gain indices. This calibration scans the gain
table for unique analog attenuation settings and applies a phase shift for each setting to minimize the phase difference between gain index
settings. The AUX PLL is used to transmit a tone at the Rx input and measure the phase difference. The phase shift is introduced by a
digital phase shifting element.

Tx Attenuation Phase Initial Calibration

This calibration is called ADI_ADRV9025_TX_ATTEN_TABLE in the API enumerations. This calibration corrects for phase differences
between different attenuation settings in the Tx attenuation table. A tone is transmitted during this calibration at -12 dBFS and it is
advised to disable the PA during this calibration. No external loopback is necessary during the operation of this calibration.

Run this calibration run prior to any LO Leakage initial calibrations. When combined in the initial calibration mask with LO Leakage
calibrations, the Arm sequences this cal before LO Leakage initial calibrations.

The attenuation phase calibration supports up to 20 dB of attenuation.
This calibration has known performance issues below 1 GHz LO frequency operation.
Tx Attenuation Delay

Similar to the Rx, the Tx datapath features an analog and digital gain/attenuation element. The Tx attenuation delay calibration helps to
ensure that when a change in attenuation occurs in both analog and digital that the Tx output only sees a single change in output power
rather than a two-step effect. This is done by delaying the onset of the analog attenuator change, unlike the Rx Gain Delay calibration,
which delays the onset of digital gain/attenuator changes.

Tx to ORx Feedback

For the external Tx LO leakage initial calibration to complete, the Arm must be advised of the current Tx to ORx feedback paths through
the external circuitry. Specify this at initialization, through the adi_adrv9025_PostMcsInit_t structure that is passed to
adi_adrv9025_PostMcsInit(). In this structure, there are four variables which indicate which Tx is being fed back to each ORx. These are
shown in Table 74.

Rev. PrA | Page 89 of 267

UG-1727

Table 74. Definition of adi_adrv9025_TxToOrxMappingConfig t

ORXx Permissible Values

orx1Map ADI_ADRV9025_MAP_NONE_ORX1
ADI_ADRV9025_MAP_TX1_ORX1
ADI_ADRV9025_MAP_TX2_ORX1

orx2Map ADI_ADRV9025_MAP_NONE_ORX2
ADI_ADRV9025_MAP_TX1_ORX2
ADI_ADRV9025_MAP_TX2_ORX2

orx3Map ADI_ADRV9025_MAP_NONE_ORX3
ADI_ADRV9025_MAP_TX3_ORX3
ADI_ADRV9025_MAP_TX4_ORX3

orx4Map ADI_ADRV9025_MAP_NONE_ORX4
ADI_ADRV9025_MAP_TX3_ORX4
ADI_ADRV9025_MAP_TX4_ORX4

Note: In the case of multiple Tx channels being fed back to a single ORx, a multiple pass is required for the External Tx LO Leakage initial
calibration. During the first pass when adi_adrv9025_PostMcsInit() is called, the current feedback paths must be advised to the device.
When the external LOL initial calibration is run, the Arm performs the calibration on Tx paths that have a feedback path to an ORx. In a
second pass, the feedback paths are modified and advised to the device, and the external LOL initial calibration must be called again.

Note Regarding AUX LO Settings During Initialization Calibrations

For users who intend to use an AUX LO frequency other than the default AUX LO frequency for their given use case, note that initial
calibrations must run with the default AUX PLL frequency. Therefore, the user must use the following procedure if a non default AUX
PLL frequency is used in their application. This procedure is as follows:

1. Set the Tx PLL frequency to the desired frequency.

a. Ifthe user uses adi_adrv9025_PlIFrequencySet(...), the AUX PLL is configured to the default offset frequency when the Tx PLL is
programmed.

b. If the user uses adi_adrv9025_PllIFrequencySet_v2(...), the AUX PLL is configured to the default offset frequency if the
adi_adrv9025_PllConfig_t->pllAuxLoOffsetProgSel parameter is set to
ADI_ADRV9025_PLL_AUX_LO_OFFSET_PROG_ENABLE.

2. Runinitialization calibrations.
3. After all initialization calibrations are complete, the user can set the AUX PLL frequency to the desired application frequency.

If the user sets the AUX PLL to a different frequency and requires initial calibrations to be rerun, follow this procedure.

Summary of Initial Calibration Requirements

Table 75 summarizes initial calibration requirements and other related details as mentioned previously.

Table 75. Recommended Initial Calibrations

Initial Calibration Recommendations

Rx QEC ADI_ADRV9025_MAP_NONE_ORX1
ADI_ADRV9025_MAP_TX1_ORX1
ADI_ADRV9025_MAP_TX2_ORX1

Rx TIA ADI_ADRV9025_MAP_NONE_ORX2
ADI_ADRV9025_MAP_TX1_ORX2
ADI_ADRV9025_MAP_TX2_ORX2

ORxTIA ADI_ADRV9025_MAP_NONE_ORX3
ADI_ADRV9025_MAP_TX3_ORX3
ADI_ADRV9025_MAP_TX4_ORX3

orx4Map ADI_ADRV9025_MAP_NONE_ORX4
ADI_ADRV9025_MAP_TX3_ORX4
ADI_ADRV9025_MAP_TX4_ORX4

Rev. PrA | Page 90 of 267

UG-1721

TRACKING CALIBRATIONS

The Arm processor is tasked with ensuring that QEC and LOL (and HD2 for GSM applications) corrections are optimal throughout
device operation over time, attenuation, and temperature. It achieves this by performing calibrations at regular intervals. These
calibrations are termed “tracking calibrations”, and utilize normal traffic data to update the path correction coefficients.

The following API function enables the tracking calibrations in the Arm:

adi_adrv9025_TrackingCalsEnableSet(adi_adrv9025 Device_t *device, uint32_t enableMask,
adi_adrv9025_TrackingCalEnableDisable_e enableDiasbleFlag)

enableMask is a mask that informs the Arm processor which tracking calibrations to run (Table 76 shows the bit assignments of the
enable mask (Presently only Rx/ORx QEC calibrations are available))

enableDiasbleFlag is an enable or disable parameter (valid enums are shown in Table 77)

Based on the enum chosen for enableDiasbleFlag, the selected tracking calibrations in enableMask is enabled or disabled.

Table 76. Tracking Calibrations Enable Mask Bit Assignments

Cal Mask Bits Function

DO Rx1 QEC Tracking
D1 Rx2 QEC Tracking
D2 Rx3 QEC Tracking
D3 Rx4 QEC Tracking
D4 ORx1 QEC Tracking
D5 ORx2 QEC Tracking
D6 ORx3 QEC Tracking
D7 ORx4 QEC Tracking
D8 Tx1 LOL Tracking
D9 Tx2 LOL Tracking
D10 Tx3 LOL Tracking
D11 Tx4 LOL Tracking
D12 Tx1 QEC Tracking
D13 Tx2 QEC Tracking
D14 Tx3 QEC Tracking
D15 Tx4 QEC Tracking

Table 77. adi_adrv9025_TrackingCalEnableDisable_e Definition

ENUM Description

ADI_ADRV9025_TRACKING_CAL_DISABLE | When used, the selected tracking calibrations in enableMask is disabled upon the call to
adi_adrv9025_TrackingCalsEnableSet.
ADI_ADRV9025_TRACKING_CAL_ENABLE | When used, the selected tracking calibrations in enableMask is enabled upon the call to
adi_adrv9025_TrackingCalsEnableSet.

The arm is tasked with the scheduling of the tracking calibrations. No user input is required to initiate a tracking calibration.
System Considerations for Tracking Calibrations

This section describes the operation of the tracking calibrations. Diagrams are used to show how the device is configured for each
calibration, and a brief explanation of the calibration is provided. In all diagrams, grayed-out lines and blocks are not active in the
calibration. Lines showing the path of the LOs are shown in color to distinguish them from the signal paths. As the Arm performs each of
the calibrations, it is tasked with configuring the feedback path or ORx input as per the following diagrams. No user input is required in
this regard. However, for external LOL tracking the user must ensure that the feedback path is available to use.

The following sections show the requirements for GPIO and enable pins during each of the tracking calibrations. These calibrations may
need many milliseconds of observation to calculate an update. The Arm reduces the total time needed by splitting up this time into
batches such that observations do not need to be continuous. The Arm algorithms are optimized to process batches of 100 ps, but smaller
batches are acceptable.

The Rx/ORx tracking algorithms run while the channels are in normal use, using the data in the channel to calculate updates to the
correction coefficients. The Tx correction algorithms utilize the ORx path when they are run, feeding back transmission data for
observation to calculate updates to the correction coefficients. Thus ORx paths must be time shared with other uses of the ORx path.

Rev. PrA | Page 91 of 267

UG-1727

Given the device has two observation paths, the expectation is that the calibrations always have access to a single ORx path, an equal
amount of time for ORx paths on either side of the device (that is, an equal amount of time on ORx1/ORx2 and ORx3/ORx4). When an
ORx on one side of the device is being assigned to calibrations, the other ORx(s) on the other side of the device are available to the user
for observation.

Rx QEC Tracking Calibration

The Rx QEC tracking algorithm improves the Rx path QEC performance during operation. It utilizes normal traffic data to calculate
updated corrected coefficients. It runs continuously while the receivers are active.

System requirement: Rx channels must be enabled. For example, in TDD mode Rx QEC tracking only runs during Rx periods. If only one
channel is enabled, the Rx QEC only runs on this channel.

Note: In FDD modes, Rx Enable is high at all times. Rx Enable refers to the enable of any of Rx1-4.

oo [Q{0 e - — qQEC
T e Block

F—_———
=z
22770-050

Figure 49. Rx QEC Tracking

AIR TIME X RX X RX

Rx ENABLE _|

PERIODS WHERE |:|

RxQEC
COULD RUN

RxQEC RxQEC

22770-051

Figure 50. Timing Diagram Showing When RxQEC Can Run in TDD Mode
ORx QEC Tracking Calibration

The ORx QEC tracking algorithm improves the ORx path QEC performance during operation. It utilizes normal traffic data to calculate
updated corrected coefficients. It runs continuously in the background while the observation receiver is active.

System Requirement: ORx channels must be enabled. For example, in TDD mode ORx QEC tracking only runs during ORx periods. If
only one channel is enabled, the ORx QEC only runs on this channel.

Do not change the ORx gain index while the tracking cal runs. If the ORx gain index changes, re-run the ORx QEC initial calibration.

r-------------—-—"=— = =—"
| ADRV902x
| o € T g
Input &FIR =
< QEC w
} BLOCK =
= —2
| |

22770-052

L - - - - —] __ — - - - — — 4

Figure 51. ORx QEC Tracking

Rev. PrA | Page 92 of 267

UG-1721

AIR TIME X RX X RX
ORx ENABLE
PERIODS WHERE
RxQEC ORxQEC ORxQEC g
COULD RUN g

Figure 52. Timing Diagram Showing When ORx QEC Can Run in TDD Mode (ORx Enable Refers to the Internal Enable Control of ORx1 to ORx4)
Tx QEC Tracking Calibration

The Tx QEC tracking is an online calibration that is run to improve the QEC performance using transmit data. It utilizes the loopback
(feedback) path for operation. Therefore, the Tx QEC tracking must be interleaved with normal other captures that utilize the ORx path.
This tracking determines optimal coefficients for the current gain setting, updating the table stored during the Tx QEC initialization to make
sure this table has the best values for the current operating conditions. Figure 53 shows the device configuration for Tx QEC tracking
calibration.

System Requirement: Tx channel(s) must be enabled. To run, the ORx path must be available for the Arm to use (ORx enable low). That
means the required ORx path cannot be required by the user for other (or VSWR and so forth) captures.

Note: In FDD modes, Tx Enable is high at all times. Tx Enable refers to the enable of any of Tx1-Tx4. ORx Enable refers to the internal
enable signal for the selected ORx channel.

QEC tracking uses an offset LO on the feedback path during tracking. This ensures that the quadrature errors of the Tx path are not
aligned with those of the ORx path. This frequency is set to

foreser = ((Primary Tx Bandwidth/4) + 5 MHz
Continuous wave tones placed at +forrser, or 2x (tforrser), show reduced QEC performance. However, modulated signals centered at these

frequencies do not have reduced performance.

ADRV902x

Feedback —

Path 1/2 Bands|
| _l’__@) | LPF ADC
1/2 Bands|
&FIR

QEC
BLOCK

—
N e a
|
' Tx 1 /
|Output (X) | LPF | { DAC —

L JE—— - - = = = |

Figure 53. Tx QEC Tracking Calibration Configuration

-
é Attenuator

X

JESD INTERFACE

22770-054

Rev. PrA | Page 93 of 267

UG-1727

AIR TIME X RX X RX

Tx ENABLE

ORx ENABLE

PERIODS WHERE
TxQEC TxQEC
COULD RUN

22770-055

Figure 54. Timing Diagram Showing When TxQEC Can Run in TDD Mode

Tx LOL Tracking Calibration

The Tx LO leakage tracking calibration uses an external path between the Tx output and ORx input to measure LO leakage and calculate
correction factors. This calibration is run while user data is being transmitted (with the PA operational). For this calibration, the AuxLO
is used in the ORx path to offset the Tx LO leakage from the ORx LO. Figure 55 shows the device configuration for the TX LO leakage
tracking calibration with the Tx output looped back to the ORx input (an ORx on the same side of the chip as the Tx being calibrated).

Note: If the observation receiver receives an input signal larger than the ADC full scale, the channel is overloads and calibration results
are poor. The arm does not issue a warning or error condition in this case.

System Requirement: Tx channel(s) must be enabled. The ORx path must be available for the Arm to use (that is, not required by the user
for DPD (or VSWR) captures). The ORx path must be connected to the appropriate Tx to be calibrated, and the Arm must be advised
which Tx output has a connection to which ORx.

A proper channel estimate is required for optimal LOL tracking performance. A new initial channel estimate must be acquired when the
LO frequency changes or ORx gain index changes. There are two methods to achieve this as follows; however, it is highly recommended
to follow the first procedure.

1. Run External Tx LO Leakage Initial Calibration. Ensure that mapping is setup properly, PA is enabled, and all tracking calibrations
are disabled.

2. If not running External Tx LO Leakage Initial Calibration, follow the procedure below.
a. Recommended Sequence to run Tx LOL Tracking calibration if either skip Ext Tx LOL Init Cal, change LO Frequency or ORx

attenuation: Disable Tx LOL tracking (if it is running)

If Tx traffic has content at dc, disable data transmission. If data is offset from dc it can be left on.

Reset the desired channels using the ExtTxLolchannelReset() command

Call TrackingCalTxLolStatusGet() and note the value of iterCount

Enable Tx LOL tracking

Call TrackingCalTxLolStatusGet() again and note the value of iterCount

If the iterCount value has increased by at least 1, enable Tx data transmission

@ me a0 o

Rev. PrA | Page 94 of 267

UG-1721

ADRV902x |

| Input
—K

1/2 Bands
&FIR
1/2 Bands|
&FIR

QEC
BLOCK

1/2 Bands —
&FIR

Coupler |
<[
"
: =
&FIR

L - - _— __ T

Figure 55. Tx La Tracking Configuration
CALIBRATION GUIDELINES AFTER PLL FREQUENCY CHANGES

Some applications require changing the PLL frequency for Tx, Rx, or ORx signal paths after the transceiver has started normal operation
and tracking calibrations have improved performance. Some tracking calibrations require re-running initial calibrations after the PLL
frequency change in order to relearn the new channel conditions. It is important that certain procedures are followed in order to maintain
proper operation of the tracking cals.

§ Attenuator

JESD INTERFACE

22770-056

The LO frequency changes fall into one of two types:
Type 1: LO frequency change that is described by both of the following criteria:

e The LO frequency change is less than 100 MHz.
e The LO frequency change does not step over an LO divider boundary as explained in the Synthesizer Configuration section. Note the
table that describes the “Div by” settings.

Type 2: LO Frequency change that is described by either of the following criteria:

e The LO frequency change is greater than 100 MHz.
e The LO frequency change steps over an LO divider boundary.

Type 1 Frequency Change Procedure

If the LO frequency change falls into Type 1 described in the Calibration Guidelines after PLL Frequency Changes section, implement the
following procedure:

1. Disable all tracking calibrations

2. Disable all RF channels. If TX_EN/RX_EN/ORX_CTRL pins cannot stop toggling, put the device into command control mode via
adi_adrv9025_RadioCtrlCfgSet(...), then call adi_adrv9025_RxTxEnaleSet(...) to disable all channels.

3. Rerun the following initial calibrations. Make sure to follow system considerations as described in System Considerations for Initial
Calibrations. Please ensure that INTERNAL_PATH_DELAY is run prior to TX_QEC_INIT if calibrations are run one at a time. The
Arm sequences the calibrations properly when
a. ADI_ADRV9025_INTERNAL_PATH_DELAY (if Tx QEC Tracking is used)

b. ADI_ADRV9025_LO_LEAKAGE_EXTERNAL. This step is optional but highly recommended. The PA must be enabled in this
step. Ensure that the external calibration is run for all Tx to ORx mappings used in the application.
If the previous step is not executed, it is mandatory to call adi_adrv9025_ExtTxLolChannelReset(...) command for each Tx
channel. It must be called one Tx channel at a time. Then a special procedure must be followed to relearn the channel estimate
described in the Tx LOL Tracking Calibration section.

c. Enable relevant tracking calibrations.

d. Transition back to pin control mode, if necessary.

Rev. PrA | Page 95 of 267

UG-1727

Type 2 Frequency Change Procedure

If the LO frequency change falls into Type 2 described in the Calibration Guidelines after PLL Frequency Changes section, implement a
similar procedure to the Type 1 frequency change procedure while adding the ADI_ADRV9025_LOOPBACK_RX_LO_DELAY and
ADI_ADRV9025_TX_QEC_INIT calibrations.

Initialization Calibrations Durations

In order to achieve best performance, the device features autonomous internal calibrations that are performed during device initialization.
The calibrations are run in the Post-MCS section of device initialization. The majority of the calibrations are run with a single API call
once the calibration structure is set. These are the internal calibrations that utilize internal loopback paths. Those that utilize external
paths (such as External Tx LOL calibration) are run separately afterward.

All of the calibrations are overseen and scheduled by the Arm processor so the user does not need to be concerned about what order the
calibrations are run. The sequence is defined such that those calibrations that depend on others are scheduled appropriately. The amount
of time it takes for the calibrations to complete are related to the internal high speed clock and the resulting IQ rates of the Rx, Tx and
ORx paths. The Arm clock is derived from the clock PLL.

In the following diagram the slices show the relative timing of each common initialization calibration relative to the total time. Some of
the calibrations are very short and mostly involve for example loading coefficients and initializing for operation, or measuring the delay of
the calibration path. Some others require observation of either internally generated calibration tones or pseudo-random noise to calculate
the required coefficients that are used to define the characteristics of the channel. Still others for example the Tx QEC calibration use an
algorithm to determine the correction factors which can be influenced by the actual load conditions the transmitter is connected to. For
these reasons, the amount of time each of the calibrations needs to complete may vary slightly.

RELATIVE TIME DISTRIBUTION OF INITIALIZATION CALIBRATIONS

ADC_TUNER _FLASH_CAL RX_TIA
TX_BB_FILTER _ 3% 1%

TX_QEC_INIT___
9%

ORX_TIA
1%

LBRX_TIA

1%
RX_DC_OFFSET
3%

ORX_DC_OFFSET
7%

LBRX_DC_OFFSET

LOOPBACK_RX_LO_DELAY
5%

TX_LO_LEAKAGE_INTERNAL
26%

— RX_QEC_INIT
23%

INTERNAL_PATH_DELAY

ORX_QEC_INIT
23%

22770057

Figure 56. Relative Time Distribution of Initialization Calibrations

Rev. PrA | Page 96 of 267

UG-1721

The following tables are measured calibration times of the device for a number of different use cases using the standard calibration mask
of 0xD73FF. These results can be used as guidelines as to what the typical expected times are for a particular configuration. The columns

in the table show the calibration timing results in milliseconds for 1, 2, 3, and 4 enabled Rx or Tx channels. In the case of ORx

calibrations, because there are just two shared paths, the entries for ORX_DC_OFFSET are different for 1 and 2 channels enabled, but
remain the same for 3 and 4 enabled channels. Other ORx calibrations do show differences from 1 to 4 channels because the paths from
each of the transmitters is calibrated individually.

Table 78. ADRV9025Init_StdUseCasel3_nonLinkSharing

Tx TX Input TXDAC ORXx ORX Output | ORx ADC Rx Rx Output Rx ADC
Use Case | Bandwidth | Rate Rate Bandwidth Rate Rate Bandwidth | Rate Rate
UC13_NLS | 225 MHz 245.76 MHz 1.966 GHz 225 MHz 245.76 MHz 4915 GHz 100 MHz 122.88 MHz 1.966 GHz
Table 79.
Calibration 1 Channel 2 CHANNELS 3 Channels 4 Channels
TX_DAC 4 8 12 17
TX_BB_FILTER 2 2 4 5
ADC_TUNER 1 1 1 1
FLASH_CAL 219 263 324 365
RX_TIA 84 125 166 207
ORX_TIA 64 86 108 128
LBRX_TIA 64 86 107 129
RX_DC_OFFSET 451 451 451 451
ORX_DC_OFFSET 451 899 899 899
LBRX_DC_OFFSET 8 14 14 14
LOOPBACK_RX_LO_DELAY 175 345 510 679
RX_QEC_INIT 756 1508 2262 3013
ORX_QEC_INIT 787 1570 2354 3137
INTERNAL_PATH_DELAY 1 1 3 3
TX_LO_LEAKAGE_INTERNAL 892 1781 2671 3560
TX_QEC_INIT 584 1162 1730 2323
Total Calibration time (ms) 4545 8302 11616 14932
Table 80. ADRV9025Init_StdUseCasel4_LinkSharing
Use Tx TX Input TXDAC ORx ORX Output ORx ADC | Rx Rx Output Rx ADC
Case Bandwidth | Rate Rate Bandwidth | Rate Rate Bandwidth | Rate Rate
UC14_LS | 450 MHz 491.52 MHz 1.966 GHz 450 MHz 491.52 MHz 4915 GHz | 200 MHz 245.76 MHz 4915 GHz
Table 81.
Calibration 1 Channel 2 Channels 3 Channels 4 Channels
TX_DAC 4 9 12 17
TX_BB_FILTER 1 2 4 4
ADC_TUNER 1 1 1 1
FLASH_CAL 219 263 324 365
RX_TIA 64 85 106 126
ORX_TIA 54 65 76 88
LBRX_TIA 54 65 77 87
RX_DC_OFFSET 451 451 451 450
ORX_DC_OFFSET 467 899 898 899
LBRX_DC_OFFSET 7 14 14 14
LOOPBACK_RX_LO_DELAY 163 324 484 644
RX_QEC_INIT 787 1570 2354 3138
ORX_QEC_INIT 785 1566 2347 3127
INTERNAL_PATH_DELAY 1 2 2 3
TX_LO_LEAKAGE_INTERNAL 876 1748 2622 3494
TX_QEC_INIT 293 595 908 1197
Total Calibration time (ms) 4226 7658 10680 13654

Rev. PrA | Page 97 of 267

UG-1727

Table 82. ADRV9025Init_StdUseCasel14C_LinkSharing

Tx TX Input TXDAC ORx ORX Output ORx ADC Rx Rx Output Rx ADC
Use Case | Bandwidth | Rate Rate Bandwidth | Rate Rate Bandwidth | Rate Rate
UC14C_LS | 450 MHz 49152 MHz | 1.966 GHz | 450 MHz 491.52 MHz 4.915GHz 200 MHz 245.76 MHz 4915 GHz
Table 83.
Calibration 1 Channel 2 Channels 3 Channels 4 Channels
TX_DAC 3 6 1 15
TX_BB_FILTER 2 3 3 4
ADC_TUNER 1 1 1 1
FLASH_CAL 219 262 325 368
RX_TIA 64 85 105 126
ORX_TIA 54 65 76 87
LBRX_TIA 55 65 76 87
RX_DC_OFFSET 451 451 450 451
ORX_DC_OFFSET 450 899 899 899
LBRX_DC_OFFSET 7 15 14 14
LOOPBACK_RX_LO_DELAY 166 325 484 645
RX_QEC_INIT 786 1569 2354 3138
ORX_QEC_INIT 784 1567 2350 3130
INTERNAL_PATH_DELAY 1 2 2 2
TX_LO_LEAKAGE_INTERNAL 876 1749 2622 3495
TX_QEC_INIT 307 593 902 1188
Total Calibration time (ms) 4226 7657 10674 13649
Table 84. ADRV9025Init_StdUseCase23C_LinkSharing

ORX

Tx TX Input TXDAC ORx Output ORx ADC Rx Rx Output Rx ADC
Use Case Bandwidth | Rate Rate Bandwidth Rate Rate Bandwidth Rate Rate
UC23C_LS | 337.5MHz | 368.64 MHz | 1.475 GHz | 337.5 MHz 368.64 MHz | 3.686 GHz | 150 MHz 184.32 MHz | 3.686 GHz
Table 85.
Calibration 1 Channel 2 Channels 3 Channels 4 Channels
TX_DAC 4 5 9 11
TX_BB_FILTER 1 2 3 5
ADC_TUNER 1 1 1 1
FLASH_CAL 285 343 426 482
RX_TIA 84 111 139 172
ORX_TIA 72 86 100 114
LBRX_TIA 72 85 100 115
RX_DC_OFFSET 450 451 451 451
ORX_DC_OFFSET 451 899 898 898
LBRX_DC_OFFSET 7 14 14 15
LOOPBACK_RX_LO_DELAY 210 419 628 835
RX_QEC_INIT 863 1728 2583 3443
ORX_QEC_INIT 861 1718 2574 3430
INTERNAL_PATH_DELAY 1 2 3 4
TX_LO_LEAKAGE_INTERNAL 883 1765 2645 3526
TX_QEC_INIT 401 800 1192 1607
Total Calibration time (ms) 4645 8429 11767 15108

Rev. PrA | Page 98 of 267

UG-1721

Table 86. ADRV9025Init_StdUseCase26C_LinkSharing

Tx TX Input TXDAC ORx ORX Output | ORx ADC Rx Rx Output Rx ADC
Use Case | Bandwidth Rate Rate Bandwidth Rate Rate Bandwidth Rate Rate
UC26C_LS | 450 MHz 491.52 MHz | 1.966 GHz | 450 MHz 491.52 MHz 4915 GHz | 200 MHz 245.76 MHz | 4.915 GHz
Table 87.
Calibration 1 Channel 2 Channels 3 Channels 4 Channels
TX_DAC 4 7 10 15
TX_BB_FILTER 1 2 3 4
ADC_TUNER 1 1 1 1
FLASH_CAL 220 263 324 367
RX_TIA 64 84 106 125
ORX_TIA 54 66 76 88
LBRX_TIA 55 65 75 86
RX_DC_OFFSET 451 450 451 450
ORX_DC_OFFSET 451 900 899 899
LBRX_DC_OFFSET 7 14 14 14
LOOPBACK_RX_LO_DELAY 163 323 485 645
RX_QEC_INIT 787 1571 2354 3137
ORX_QEC_INIT 783 1564 2346 3125
INTERNAL_PATH_DELAY 1 2 2 3
TX_LO_LEAKAGE_INTERNAL 876 1748 2622 3494
TX_QEC_INIT 291 597 892 1201
Total Calibration time (ms) 4210 7657 10660 13654
Table 88. ADRV9025Init_StdUseCase26C_nonLinkSharing

Tx TX Input TXDAC ORx ORX Output ORx ADC Rx Rx Output Rx ADC

Use Case Bandwidth | Rate Rate Bandwidth | Rate Rate Bandwidth | Rate Rate
UC26C_NLS | 450 MHz 491.52 MHz | 1.966 GHz | 450 MHz 491.52 MHz 4915GHz | 200 MHz 245.76 MHz 4915 GHz
Table 89.
Calibration 1 Channel 2 Channels 3 Channels 4 Channels
TX_DAC 3 7 13 14
TX_BB_FILTER 1 2 3 4
ADC_TUNER 1 1 1 1
FLASH_CAL 220 261 324 368
RX_TIA 64 85 105 125
ORX_TIA 54 65 77 87
LBRX_TIA 54 65 76 87
RX_DC_OFFSET 451 451 451 451
ORX_DC_OFFSET 450 899 899 899
LBRX_DC_OFFSET 7 14 14 15
LOOPBACK_RX_LO_DELAY 164 325 485 645
RX_QEC_INIT 786 1570 2355 3138
ORX_QEC_INIT 785 1565 2346 3128
INTERNAL_PATH_DELAY 1 1 2 2
TX_LO_LEAKAGE_INTERNAL 876 1749 2621 3494
TX_QEC_INIT 293 598 891 1192
Total Calibration time (ms) 4211 7658 10663 13649

Rev. PrA | Page 99 of 267

UG-1727

Table 90. ADRV9025Init_StdUseCase50_LinkSharing

Use Tx TX Input TXDAC ORx ORX Output ORx ADC Rx Rx Output Rx ADC
Case Bandwidth | Rate Rate Bandwidth | Rate Rate Bandwidth | Rate Rate
UC50_LS | 450 MHz 122.88 MHz 1.966 GHz | 450 MHz 245.76 MHz 4915 GHz 100 MHz 122.88 MHz 1.966 GHz
Table 91.

Calibration 1 Channel 2 Channels 3 Channels 4 Channels
TX_DAC 5 7 12 13
TX_BB_FILTER 1 2 3 4

ADC_TUNER 1 1 1 1

FLASH_CAL 218 261 324 369

RX_TIA 85 126 166 207

ORX_TIA 54 65 76 88

LBRX_TIA 54 66 75 87
RX_DC_OFFSET 451 452 451 452
ORX_DC_OFFSET 450 899 899 899
LBRX_DC_OFFSET 7 15 14 14
LOOPBACK_RX_LO_DELAY 172 342 506 663
RX_QEC_INIT 793 1583 2373 3161
ORX_QEC_INIT 784 1564 2347 3126
INTERNAL_PATH_DELAY 1 2 2 3
TX_LO_LEAKAGE_INTERNAL 876 1749 2621 3494
TX_QEC_INIT 299 588 899 1186

Total Calibration time (ms) 4251 7721 10771 13766

Table 92. ADRV9025Init_StdUseCase50_nonLinkSharing

Use Tx TX Input TXDAC ORXx ORX Output ORx ADC Rx Rx Output Rx ADC
Case Bandwidth | Rate Rate Bandwidth | Rate Rate Bandwidth | Rate Rate
UC50_LS | 450 MHz 122.88 MHz 1.966 GHz 450 MHz 245.76 MHz 4915 GHz 100 MHz 122.88 MHz 1.966 GHz
Table 93.

Calibration 1 Channel 2 Channels 3 Channels 4 Channels
TX_DAC 4 8 10 15
TX_BB_FILTER 1 3 3 4

ADC_TUNER 1 1 1 1

FLASH_CAL 219 262 324 367

RX_TIA 84 125 167 208

ORX_TIA 54 65 77 87

LBRX_TIA 54 66 76 87
RX_DC_OFFSET 451 451 451 452
ORX_DC_OFFSET 451 899 899 898
LBRX_DC_OFFSET 7 14 15 14
LOOPBACK_RX_LO_DELAY 174 343 507 663
RX_QEC_INIT 757 1508 2261 3012
ORX_QEC_INIT 785 1564 2347 3129
INTERNAL_PATH_DELAY 1 1 2 2
TX_LO_LEAKAGE_INTERNAL 875 1749 2622 3494
TX_QEC_INIT 301 605 890 1200

Total Calibration time (ms) 4219 7663 10651 13634

Rev. PrA | Page 100 of 267

UG-1721

Table 94. ADRV9025Init_StdUseCase51_LinkSharing

Use Tx TX Input TXDAC ORx ORX Output ORx ADC Rx Rx Output Rx ADC
Case Bandwidth | Rate Rate Bandwidth | Rate Rate Bandwidth | Rate Rate
UC51_LS | 450 MHz 245.76 MHz 1.966 GHz 450 MHz 245.76 MHz 4,915 GHz 200 MHz 245.76 MHz 4915 GHz
Table 95.
Calibration 1 Channel 2 Channels 3 Channels 4 Channels
TX_DAC 3 9 1 13
TX_BB_FILTER 1 3 3 4
ADC_TUNER 1 1 1 1
FLASH_CAL 219 262 324 367
RX_TIA 63 84 105 126
ORX_TIA 54 65 76 87
LBRX_TIA 54 64 75 87
RX_DC_OFFSET 450 451 451 451
ORX_DC_OFFSET 451 898 899 899
LBRX_DC_OFFSET 7 14 14 14
LOOPBACK_RX_LO_DELAY 165 328 488 647
RX_QEC_INIT 786 1571 2353 3139
ORX_QEC_INIT 783 1564 2347 3126
INTERNAL_PATH_DELAY 1 1 2 2
TX_LO_LEAKAGE_INTERNAL 873 1742 2612 3482
TX_QEC_INIT 291 598 921 1191
Total Calibration time (ms) 4203 7656 10682 13637
Table 96. ADRV9025Init_StdUseCase51_nonLinkSharing

Tx TX Input TXDAC ORx ORX Output ORx ADC Rx Rx Output Rx ADC
Use Case | Bandwidth | Rate Rate Bandwidth | Rate Rate Bandwidth | Rate Rate
UC51_NLS | 450 MHz 24576 MHz | 1.966 GHz | 450 MHz 245.76 MHz 4915 GHz 200 MHz 245.76 MHz 4915 GHz
Table 97.
Calibration 1 Channel 2 Channels 3 Channels 4 Channels
TX_DAC 4 9 10 16
TX_BB_FILTER 2 2 3 5
ADC_TUNER 1 1 1 1
FLASH_CAL 219 263 325 367
RX_TIA 64 85 106 127
ORX_TIA 54 65 77 87
LBRX_TIA 54 65 76 87
RX_DC_OFFSET 451 450 451 450
ORX_DC_OFFSET 451 899 898 898
LBRX_DC_OFFSET 7 14 14 14
LOOPBACK_RX_LO_DELAY 164 326 486 646
RX_QEC_INIT 790 1573 2358 3142
ORX_QEC_INIT 783 1564 2346 3128
INTERNAL_PATH_DELAY 1 1 2 3
TX_LO_LEAKAGE_INTERNAL 872 1743 2612 3482
TX_QEC_INIT 293 600 921 1210
Total Calibration time (ms) 4210 7659 10686 13664

Rev. PrA | Page 101 of 267

UG-1727

Table 98. ADRV9025Init_StdUseCase54_nonLinkSharing

Tx TX Input TXDAC ORx ORX Output ORx ADC Rx Rx Output Rx ADC
Use Case | Bandwidth | Rate Rate Bandwidth | Rate Rate Bandwidth | Rate Rate
UC54_NLS | 450 MHz 122.88 MHz | 1.966 GHz | 450 MHz 245.76 MHz 4915 GHz 200 MHz 122.88 MHz 4915 GHz
Table 99.
Calibration 1 Channel 2 Channels 3 Channels 4 Channels
TX_DAC 86 89 92 97
TX_BB_FILTER 83 84 85 86
ADC_TUNER 82 81 82 81
FLASH_CAL 301 344 560 603
RX_TIA 146 167 228 250
ORX_TIA 136 147 199 210
LBRX_TIA 136 147 199 210
RX_DC_OFFSET 532 532 980 980
ORX_DC_OFFSET 532 980 1428 1877
LBRX_DC_OFFSET 89 926 102 109
LOOPBACK_RX_LO_DELAY 99 115 283 447
RX_QEC_INIT 870 1655 2440 3223
ORX_QEC_INIT 865 1647 2430 3211
INTERNAL_PATH_DELAY 82 83 85 84
TX_LO_LEAKAGE_INTERNAL 957 1850 2703 3576
TX_QEC_INIT 447 724 1022 1326
Total Calibration time (ms) 5443 8742 12917 16370
Table 100. ADRV9025Init_StdUseCase55_nonLinkSharing

Tx TX Input TXDAC ORx ORX Output ORx ADC Rx Rx Output Rx ADC
Use Case | Bandwidth | Rate Rate Bandwidth | Rate Rate Bandwidth | Rate Rate
UC55_NLS | 450 MHz 122.88 MHz | 1.966 GHz | 450 MHz 245.76 MHz 4915 GHz 160 MHz 122.88 MHz 4915 GHz
Table 101.
Calibration 1 Channel 2 Channels 3 Channels 4 Channels
TX_DAC 86 89 93 119
TX_BB_FILTER 83 84 85 86
ADC_TUNER 81 82 81 81
FLASH_CAL 300 344 561 604
RX_TIA 146 166 227 248
ORX_TIA 136 160 199 209
LBRX_TIA 136 146 199 210
RX_DC_OFFSET 533 532 981 982
ORX_DC_OFFSET 532 980 1428 1877
LBRX_DC_OFFSET 89 96 103 110
LOOPBACK_RX_LO_DELAY 99 115 284 449
RX_QEC_INIT 656 1229 1799 2370
ORX_QEC_INIT 866 1658 2431 3211
INTERNAL_PATH_DELAY 82 83 84 85
TX_LO_LEAKAGE_INTERNAL 958 1831 2703 3576
TX_QEC_INIT 404 720 1017 1336
Total Calibration time (ms) 5186 8315 12274 15552

Rev. PrA | Page 102 of 267

UG-1721

Table 102. ADRV9025Init_StdUseCase61_LinkSharing

Use Tx TX Input TXDAC ORx ORX Output ORx ADC Rx Rx Output Rx ADC
Case Bandwidth | Rate Rate Bandwidth | Rate Rate Bandwidth | Rate Rate
UC61_LS | 300 MHz 368.64 MHz 1.843 GHz 337.5 MHz 368.64 MHz 3.686 GHz 300 MHz 368.64 MHz 3.686 GHz
Table 103.
Calibration 1 Channel 2 Channels 3 Channels 4 Channels
TX_DAC 7 11 15 20
TX_BB_FILTER 4 5 6 8
ADC_TUNER 2 3 3 3
FLASH_CAL 292 342 435 491
RX_TIA 73 88 102 117
ORX_TIA 74 88 103 118
LBRX_TIA 74 88 103 117
RX_DC_OFFSET 453 453 452 453
ORX_DC_OFFSET 453 901 901 902
LBRX_DC_OFFSET 11 21 22 21
LOOPBACK_RX_LO_DELAY 242 480 721 967
RX_QEC_INIT 861 1718 2573 3430
ORX_QEC_INIT 862 1717 2574 3431
INTERNAL_PATH_DELAY 4 5 5 7
TX_LO_LEAKAGE_INTERNAL 885 1763 2642 3521
TX_QEC_INIT 403 807 1231 1631
Total Calibration time (ms) 4701 8489 11889 15236
Table 104. ADRV9025Init_StdUseCase82C_LinkSharing

Tx TX Input TXDAC ORx ORX Output ORx ADC Rx Rx Output Rx ADC
Use Case | Bandwidth | Rate Rate Bandwidth | Rate Rate Bandwidth | Rate Rate
UC82C_LS | 450 MHz 491.52 MHz | 1.966 GHz 450 MHz 491.52 MHz 4915 GHz 200 MHz 245.76 MHz 4915 GHz
Table 105.
Calibration 1 Channel 2 Channels 3 Channels 4 Channels
TX_DAC 5 7 10 15
TX_BB_FILTER 2 2 3 5
ADC_TUNER 1 1 1 1
FLASH_CAL 219 263 324 366
RX_TIA 63 84 105 127
ORX_TIA 54 65 76 87
LBRX_TIA 54 65 76 87
RX_DC_OFFSET 451 451 450 451
ORX_DC_OFFSET 451 899 899 898
LBRX_DC_OFFSET 7 14 14 14
LOOPBACK_RX_LO_DELAY 166 330 485 650
RX_QEC_INIT 787 1569 2354 3138
ORX_QEC_INIT 785 1564 2346 3126
INTERNAL_PATH_DELAY 1 2 2 3
TX_LO_LEAKAGE_INTERNAL 876 1749 2622 3495
TX_QEC_INIT 302 589 907 1188
Total Calibration time (ms) 4224 7654 10676 13652

Rev. PrA | Page 103 of 267

UG-1727

Table 106. ADRV9025Init_StdUseCase83C_LinkSharing

Tx TX Input TXDAC ORx ORX Output ORx ADC Rx Rx Output Rx ADC
Use Case | Bandwidth | Rate Rate Bandwidth | Rate Rate Bandwidth | Rate Rate
UC83C_LS | 337.5MHz 368.64 MHz | 1.475 GHz 337.5 MHz 368.64 MHz 3.686 GHz 200 MHz 368.64 MHz 3.686G Hz
Table 107.
Calibration 1 Channel 2 Channels 3 Channels 4 Channels
TX_DAC 2 5 8 13
TX_BB_FILTER 1 3 3 5
ADC_TUNER 1 1 1 1
FLASH_CAL 285 343 425 483
RX_TIA 71 84 99 112
ORX_TIA 71 85 99 115
LBRX_TIA 71 85 100 114
RX_DC_OFFSET 451 451 450 451
ORX_DC_OFFSET 450 899 898 899
LBRX_DC_OFFSET 7 14 14 14
LOOPBACK_RX_LO_DELAY 208 416 625 830
RX_QEC_INIT 547 1094 1638 2184
ORX_QEC_INIT 860 1717 2572 3437
INTERNAL_PATH_DELAY 1 2 3 4
TX_LO_LEAKAGE_INTERNAL 883 1764 2645 3525
TX_QEC_INIT 419 818 1202 1639
Total Calibration time (ms) 4328 7781 10782 13826

INITIALIZATION CALIBRATIONS TO BE RUN AFTER DEVICE INITIALIZATION

The device requires a few additional initialization calibrations to be run after the standard set because they require external signal routing.

An External TXLOL initialization calibration is available where the observation point is moved from inside the device to the selected

observation receiver input. In this case it is typically connected to a directional coupler after the PA in the antenna path. This

configuration results in the best possible performance because the correction observation point is moved to the PA output. The

calibration is run on each transmitter individually after the correct observation input path has been set. Similarly, CFR calibrations are

also run separately and sequentially. Refer to Table 71 for the appropriate cal mask.

The following table addresses the typical times for these INIT calibrations. Note the CFR initialization calibration is mostly coefficient
setting and, therefore, completes quickly.

Table 108.

INIT Calibration Time
TX_LO_LEAKAGE_EXTERNAL 122.88 MHz IQ Rate 320 ms
TX_LO_LEAKAGE_EXTERNAL 245.76 MHz IQ Rate and higher 230 ms
CFR Initialization calibration <1ms

Rev. PrA | Page 104 of 267

UG-1721

TRACKING CALIBRATION TIMING

Tracking calibrations are provided to maintain performance over the device operating conditions. The Arm processor periodically runs
the enabled tracking calibrations according to the tracking calibration scheduler.

On the receive side, there are RX QEC, ORX QEC and on some devices RX HD2 tracking calibrations. These calibrations, when enabled
constantly observe the RX (or ORX) spectrum and update the correction parameters as the computations are completed. They are
triggered on a 7 ms schedule, but are essentially running continuously in the background whenever the channel is enabled.

The transmitter tracking calibrations include TXLOL, TXQEC and for some versions of the device also include CLGC tracking
calibration. When the tracking calibrations are enabled on the transmitter, the spectrum is observed based upon the available observation
path and correction parameters are applied to each transmitter as the computations are completed.

TXLOL tracking calibration runs on a 6 sec schedule. The samples are collected in batches of 20 us duration for a total sample size of
approximately 30 ms. TXQEC runs on a 30 sec schedule and also collects batches of 20 us duration. TXQEC captures as many batches as
necessary to obtain good correlator results. The time to finish can vary and can be from 100 ps up to 55 ms. However because they run in
the background, the absolute time is not of concern to the user. Even though these cals run at fixed intervals (6 sec and 30 sec), any
change in Tx attenuation causes both cals to be restarted. This is done to quickly correct any channel impairments.

The CLGC tracking calibration runs on a 1 sec schedule with similar batch sizes.

In the case of JESD204C, an additional tracking calibration is run to maintain the link parameters on a 60 sec schedule.

Rev. PrA | Page 105 of 267

UG-1727

STREAM PROCESSOR AND SYSTEM CONTROL

A stream processor is a processor within the device tasked with performing a series of configuration tasks based on some event. Upon a
request from the user, the stream processor performs a series of pre-defined actions which are loaded into the stream processor during
device initialization. This processor takes full advantage of the speed of the internal register buses for efficient execution of commands.
The stream processor can access and modify registers independently, avoiding the need for Arm interaction.

The stream processor executes streams, or series of tasks for the following:

e Tx1/Tx2/Tx3/Tx4 Enable/Disable
e Rx1/Rx2/Rx3/Rx4 Enable/Disable

ORx1/0ORx2/ORx3/ORx4 Enable/Disable

The device flexibility is maintained by implementing the stream processors with similar flexibility. The stream processor image changes
with configuration similar to how the initialization structures change with the selected profiles. For example, the stream that enables the
receivers differs depending on the JESD configuration. For this reason, it is necessary to save a stream image for each device
configuration. When the user saves the configuration files (.c) using the GUI, a stream binary image is generated automatically. Then use
this stream file when initializing the device with the profile in question.

The following are examples of how the stream files can differ:

e The framer choices for ORx and Rx
e For link sharing purposes
e If floating point formatting is being used on Rx and ORx paths, the stream image can change

Eleven separate stream processors exist in the device, each of which is responsible for the execution of some dedicated functionality
within the device. These can be divided into two broad categories: slice stream processors and the core stream processor.

SLICE STREAM PROCESSORS

There are ten slice stream processors, one each for the four Tx, Rx data paths, and two for the ORx data paths. Note that even though
there are four distinct RF front ends for the ORx, the device only supports two digital data paths—one shared between ORx1/ORx2 and
another shared between ORx3/ORx4. These ORx data paths are also shared with the internal Tx channel loopback paths in order to
facilitate data collection during the various Tx calibrations. The existence of individual slice stream processors for each data path enables
true real-time parallel operation of all unique Tx and Rx data paths. The ORx data paths still need to be managed based on the various
system operation use cases detailed in this section.

Since each slice stream processor is limited to some dedicated part of the transceiver, a given slice stream processor may only access the
digital register sub maps corresponding to its specific functionality. For example, the Tx slice stream processors can only access the Tx
digital sub maps.

Core Stream Processor

There is also a core stream processor that has access to the entire device. The core stream processor services GPIO pin-based streams and
any custom streams that are cross domain.

SYSTEM CONTROL

The signal paths within the device can be controlled by either the API or through pin control. In the case of API control, control relies on
the SPI communication bus and its inherent unpredictable timing with respect to register access. For critical time alignment when
powering on/off signal chains, pin control is reccommended. The device defaults to API mode upon power up.

Rev. PrA | Page 106 of 267

UG-1721

API Control
The following API function is used to control the data paths when the device is in API control:
adi_adrv9025_RxTxEnableSet

adi_adrv9025_RxTxEnableSet(adi_adrv9025_ Device_t *device, uint32_t rxChannelMask, uint32_t
txChannelMask)

Description

Controls and configures the Tx and Rx data paths.

Parameters

Table 109.

Parameter Description

*device Pointer to device structure.

rxChannelMask The desired Rx/ORx signal chain to power up. See Table 110 for list of enums.
txChannelMask The desired Tx signal chain to power up. See Table 111 for list of enums.

The enums are used (ORed) to create a value for the channel masks that determine the paths enabled when this API is called. The selected
channels remain active until further instruction from this API command. It is important to note that if an ORx channel is enabled
continuously and not returned to ADI_ADRV9025_RXOFF for any time, then the Tx tracking calibrations are able to function.

Table 110. adi_adrv9025_RxChannels_e Enum Definition

adi_adrv9025_RxChannels_e Enum Enabled Channels

ADI_ADRV9025_RXOFF No Rx or ORx channels enabled

ADI_ADRV9025_RX1 Rx1 Enabled

ADI_ADRV9025_RX2 Rx2 Enabled

ADI_ADRV9025_RX3 Rx3 Enabled

ADI_ADRV9025_RX4 Rx4 Enabled

ADI_ADRV9025_ORX1 ORXx1 Enabled

ADI_ADRV9025_ORX2 ORx2 Enabled

ADI_ADRV9025_ORX3 ORx3 Enabled

ADI_ADRV9025_ORX4 ORx4 Enabled

ADI_ADRV9025_LB12 Tx1 or Tx2 internal loopback into ORx1/2 channel enabled
ADI_ADRV9025_LB34 Tx3 or Tx4 internal loopback into ORx3/4 channel enabled

Table 111. adi_adrv9025_TxChannels_e Enum Definition

adi_adrv9025_TxChannels_e Enum Enabled Channels
ADI_ADRV9025_TXOFF No Tx channels enabled
ADI_ADRV9025_TX1 Tx1 Enabled
ADI_ADRV9025_TX2 Tx2 Enabled
ADI_ADRV9025_TX3 Tx3 Enabled
ADI_ADRV9025_TX4 Tx4 Enabled
ADI_ADRV9025_TXALL All Tx Enabled

Rev. PrA | Page 107 of 267

UG-1727

Pin Control

The individual channels can also be controlled using a series of enable pins. In pin control mode, the Rx and Tx signal chains are
controlled using dedicated pins, one RX_ENABLE pin per receiver and one TX_ENABLE pin per transmitter. When these pins are
toggled high, the relevant signal chain is enabled. When these pins are toggled low, the relevant signal chain is disabled.

The ORx paths can be controlled in various modes, as indicated in Table 112.

Table 112. ORx Select Mechanisms

ORx Pin Mode ORXx Select Mechanism
Single Channel In this mode a single channel is selected through the API (over SPI). ORX_CTRL_A is the enable/disable control pin,
1-Pin Mode when high the selected ORx is enabled, when low, all ORx paths are disabled. Figure 57 illustrates Single Channel 1 Pin

Mode. Note that ORx1 has been shown in this example, however any of ORx1 to ORx4 can be chosen.

Single Channel
2-Pin Mode

In this mode, ORX_CTRL_A is the enable/disable control pin, when high the selected ORx is enabled, when low, all ORx
paths are disabled. The ORX_CTRL_B pin is used for to select the ORx path, allowing the user to choose between two
different ORx paths. These paths are predetermined through the API (over SPI), with one path selected when
ORX_CTRL_B is high and another when it is low. This mode is illustrated in Figure 58. Note where ORx2 on and ORx3 on
are shown. Any of the other ORx can be configured to turn on at this time instead of ORx2 or ORx3.

Single Channel

ORX_CTRL_A is the enable/disable control. ORx select is accomplished by ORX_CTRL_B and ORX_CTRL_C. The mapping

3-Pin Mode of which path is selected is as follows:
ORX_CTRL_C ORX_CTRL_B Path Selected
0 0 ORx1
0 1 ORx2
1 0 ORx3
1 1 ORx4
This mode is illustrated in Figure 59.
Dual Channel In this mode ORX_CTRL_A and ORX_CTRL_C are the enable/disable control allowing the user to choose between two
2-Pin Mode different ORx paths. These paths are predetermined through the API (over SPI). This mode is illustrated in Figure 60.
Dual Channel In this mode In this mode ORX_CTRL_A and ORX_CTRL_C are the enable/disable control while ORX_CTRL_B and
4-Pin Mode ORX_CTRL_D selects which channel is to be enabled allowing the user to choose between four different ORx paths. This

mode is illustrated in Figure 61.

ORX_CTRL_A ‘

ALL ALL ALL ALL ALL | ALL
og;w ORX 0{251 ORX ~ORX ORX | ORX | ORX
OFF OFF OFF OFF

OFF | OFF

22770-058

Figure 57. Single Channel 1-Pin Mode

ORX_CTRL_A

ORX_CTRL_B

ORX2 | ORX3 ' ORX2 ORX3 : ALL 1 ALL i ALL & AL
ON | ON | ON ~ ON i ORX 1 ORX 3 ORX '\ ORX 1
! _ OFF | OFF | OFF | OFF &

Figure 58. Single Channel 2-Pin Mode

Rev. PrA | Page 108 of 267

UG-1721

ORX_CTRL_A 5
ORX_CTRL_B
ORX_CTRL_C
ORX1 | ORX2 | ORX3 | ORx4 | ALL | ALL : ALL : ALL i
ON ' ON | ON ! ON ORX : ORX . ORX ; ORX : &
! : : OFF ' OFF ' OFF ' OFF '§
Figure 59. Single Channel 3-Pin Mode
| | | | I
ORx_CTRL A
ORX1/2 : ORX1/2 : ORX1/2 : ORX1/2 : ORX1/2 : ORX1/2 :oRx:L/z : ORX1/2 :
OFF , ON | OFF | ON | OFF ON |, OFF , ON |
| |
|
ORx_CTRL_C |
I—
ORX3/4 | ORX3/4 | ORX3/4 | ORX3/4 | ORX3/4 | ORX3/4 | ORX3/4 | ORX3/4, _
ON | OFF | ON | OFF | ON | OFF | ON | OFF | §
| | | I | | | &
Figure 60. Dual Channel 2-Pin Mode
		T			
ORx_CTRL_A				! !	
ORx_CTRL_B					
ORX1	ORX2	ORX1	ORX2	ORx1	ORX1&
	' '	OFF	OFF	OFF	
ORx_CTRL C					
} [
ORx_CTRL_D					
ORX3&	ORX3&' ORX3& ' Opx4a	ORX3	ORX4	, ORX3	ORX4
ORX4	ORX4	ORX4	oOoN	ON	ON
OFF	OFF OFF				

22770-062

Figure 61. Dual Channel 4-Pin Mode
Rev. PrA | Page 109 of 267

UG-1727

The user can set the channel control mode (API/Pin) with the post multi-chip sequence API function:
adi_adrv9025_PostMcsInit
adi_adrv9025_PostMcsInit(adi_adrv9025 Device_t *device, adi_adrv9025_PostMcslnit_t *utilitylnit)

Description

Sets the channel control mode (API or Pin).

Parameters

Table 113.

Parameter | Description

*device Pointer to device structure.

*utilityInit Structure of type adi_adrv9025_PostMcsInit_t containing all relevant settings for the post MCS initialization routines.

This command contains a structure of type adi_adrv9025_ RadioctrlInit_t for setting up how the device is controlled. Inside this structure
is the structure adi_adrv9025_ RadioCtrIModeCfg_t that contains the radio control mode configuration for the Tx, Rx and ORx channels.

This structure is defined in Table 114 and, depending on how the user configures this structure before the call to

adi_adrv9025_PostMcsInit(), the part is configured in either pin or API mode.

Table 114. adi_adrv9025_RadioCtrIModeCfg_t Definition

Name

Description

txRadioCtrIModeCfg
rxRadioCtrIModeCfg
orxRadioCtrIModeCfg

Tx signal path enable mode configuration. See Table 115 for description.
Rx signal path enable mode configuration. See Table 116 for description.
ORx signal path enable mode configuration. See Table 117 for description.

Table 115. adi_adrv9025_TxRadioCtrIModeCfg_t Definition

Name

Value

Description

txEnableMode

A value of type adi_adrv9025_TxEnableMode_e, options are:

ADI_ADRV9025_TX_EN_SPI_MODE

Setting this mode selects API (or SPI) mode to control
the Tx signal path

ADI_ADRV9025_TX_EN_PIN_MODE

Setting this mode does not modify the currently set
mode to control the Tx signal path

ADI_ADRV9025_TX_EN_INVALID_MODE

Setting this mode selects no mode to control the Tx
signal path

txChannelMask

Bit mask, one bit per channel ([D0] =Tx1, [D1]1 =Tx2, [D2] =
Tx3, [D3] =Tx4). For example, to apply this to all four
transmitters, txChannelMask is set to 15.

Set this to the Tx channels you want to configure with
the selected txEnableMode

Table 116. adi_adrv9025_RxRadioCtrlIModeCfg_t Definition

Name

Value

Description

rxEnableMode

A value of type adi_adrv9025_RxEnableMode_e, options are:

ADI_ADRV9025_RX_EN_SPI_MODE

Setting this mode selects API (or SPl) mode to control the
Rx signal path

ADI_ADRV9025_RX_EN_PIN_MODE

Setting this mode selects the Pin mode to control the Rx
signal path

ADI_ADRV9025_RX_EN_INVALID_MODE

Setting this mode does not modify the currently set
mode to control the Rx signal path

rxChannelMask

Bit mask, one bit per channel ([D0] = Rx1, [D1] =Rx2, [D2] =
Rx3, [D3] = Rx4). For example, to apply this to all four
receivers, rxChannelMask is set to 15.

Set this to the Rx channels you want to configure with
the selected rxEnableMode

Rev. PrA | Page 110 of 267

UG-1721

Table 117. adi_adrv9025_ORxRadioCtrlModeCfg_t Definition

Name

Value

Description

orxEnableMode

A value of type adi_adrv9025_OrxEnableMode_e, options
are:

ADI_ADRV9025_ORX_EN_SPI_MODE

Setting this mode selects API (or
SPI) mode to control the ORx
signal path

ADI_ADRV9025_ORX_EN_SINGLE_CH_3PIN_MODE

Setting this mode puts the
device in Single Channel 3
pin mode as described in
Table 112

ADI_ADRV9025_ORX_EN_SINGLE_CH_2PIN_MODE

Setting this mode puts the
device in Single Channel 2
pin mode as described in
Table 112

ADI_ADRV9025_ORX_EN_SINGLE_CH_1PIN_MODE

Setting this mode puts the
device in Single Channel 1
pin mode as described in
Table 112

ADI_ADRV9025_ORX_EN_DUAL_CH_4PIN_MODE

Setting this mode puts the
device in Dual Channel 4
pin mode as described in
Table 112

ADI_ADRV9025_ORX_EN_DUAL_CH_2PIN_MODE

Setting this mode puts the
device in Dual Channel 2
pin mode as described in
Table 112

ADI_ADRV9025_ORX_EN_INVALID_MODE

Setting this mode does not
modify the currently set mode
to control the ORx signal path

orxPinSelectSettlingDelay_armClkCycles

MinValue: 0, MaxValue: 16

Amount of time for the
firmware to wait before
sampling pins used for ORx
selection; minimum is 2 Arm
clock cycles, maximum is

18 Arm clock cycles

singleChannel1PinModeOrxSel

A value of type adi_adrv9025_
SingleChannelPinModeOrxSel_e, options are:

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX1_FE

Selects ORx1 when in single
channel 1 pin ORx enable mode

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX2_FE

Selects ORx2 when in single
channel 1 pin ORx enable mode

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX3_FE

Selects ORx3 when in single
channel 1 pin ORx enable mode

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX4_FE

Selects ORx4 when in single
channel 1 pin ORx enable mode

ADI_ADRV9025_SINGLE_CH_PIN_MODE_INVALID_ORX_SEL

Does not modify the current
mode of ORx when in single
channel 1 pin ORx enable mode

Rev. PrA | Page 111 of 267

UG-1727

Name

Value

Description

singleChannel2PinModeLowOrxSel

A value of type

adi_adrv9025_SingleChannelPinModeOrxSel_e, options are:

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX1_FE

Selects ORx1 when the
ORX_CTRL_B pin is low in single
channel 2 pin ORx enable mode

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX2_FE

Selects ORx2 when the
ORX_CTRL_B pinis low in single
channel 2 pin ORx enable mode

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX3_FE

Selects ORx3 when the
ORX_CTRL_B pinis low in single
channel 2 pin ORx enable mode

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX4_FE

Selects ORx4 when the
ORX_CTRL_B pin is low in single
channel 2 pin ORx enable mode

ADI_ADRV9025_SINGLE_CH_PIN_MODE_INVALID_ORX_SEL

Does not modify the current
mode of ORx when the
ORX_CTRL_B pin is low in single
channel 2 pin ORx enable mode

singleChannel2PinModeHighOrxSel

A value of type

adi_adrv9025_SingleChannelPinModeOrxSel_e, options are:

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX1_FE

Selects ORx1 when the
ORX_CTRL_B pin is high in
single channel 2 pin ORx enable
mode

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX2_FE

Selects ORx2 when the
ORX_CTRL_B pin is high in
single channel 2 pin ORx enable
mode

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX3_FE

Selects ORx3 when the
ORX_CTRL_B pin is high in
single channel 2 pin ORx enable
mode

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX4_FE

Selects ORx4 when the
ORX_CTRL_B pin is high in
single channel 2 pin ORx enable
mode

ADI_ADRV9025_SINGLE_CH_PIN_MODE_INVALID_ORX_SEL

Does not modify the current
mode of ORx when the
ORX_CTRL_B pin is high in
single channel 2 pin ORx enable
mode

dualChannel2PinModeOrxSel

A value of type
adi_adrv9025_DualChannelPinModeOrxSel_e, options are:

ADI_ADRV9025_DUAL_CH_PIN_MODE_ORX1_ORX3_SEL

Selects ORx1 and ORx3 when
the part is in dual channel 2 pin
mode

ADI_ADRV9025_DUAL_CH_PIN_MODE_ORX1_ORX4_SEL

Selects ORx1 and ORx4 when
the partis in dual channel 2 pin
mode

ADI_ADRV9025_DUAL_CH_PIN_MODE_ORX2_ORX3_SEL

Selects ORx2 and ORx3 when
the partis in dual channel 2 pin
mode

ADI_ADRV9025_DUAL_CH_PIN_MODE_ORX2_ORX4_SEL

Selects ORx2 and ORx4 when
the part is in dual channel 2 pin
mode

ADI_ADRV9025_DUAL_CH_PIN_MODE_INVALID_ORX_SEL

Does not modify the current
mode of ORx when the part s in
dual channel 2 pin mode

Rev. PrA | Page 112 of 267

UG-1721

ADC Crossbar Control

There are two control modes for the ADC crossbar (Xbar) switches that feed the JESD serializers during link sharing mode. In the default
mode, the Rx channel is connected to the serializer when the enable pin of the channel is active, and the ORx channel is connected to the
serializer when the ORX_CTRL pins are driven to select the ORx channel. A second mode called ADC Xbar toggling exists that assigns
the path control solely to the ORx channel control signals.

When ADC Xbar toggling is enabled, the ADC sample crossbar connects the desired ORx channel to the serializer when that channel is
enabled using the ORX_CTRL pins. When the ORX_CTRL pins disable the ORx channel, the Rx channel is automatically connected to

the serializer. This allows the system to keep the Rx channel enabled during link sharing operation and limit toggling to the ORX_CTRL
inputs.

This feature can be enabled in a stream file by selecting ADC Xbar control in the TES Stream Settings window before generating the
stream. The appropriate selection is shown in Figure 62.

@ Stream Settings

AGC state persist Stream Options

ADC xBar contral v

ORxA0C On

OF: TIA On

Fo Gain Gpio Pin || INV -

DPD capture trigger ||NV v|

DPD capture done ||NV v|

Custom Stream i

22770-063

Figure 62. Stream Settings Window for Selecting ADC Xbar Control Mode
USE CASES

This section details example use cases for the device that show how the device is typically operated to ensure that calibrations are run.

4 Tx/4 Rx/2 ORx Input Use Case

In this use case the device is configured such that two Tx feed back into one ORx for each side of the device. The ORX_CTRL signals are
configured in single channel 2 pin mode, with ORX_CTRL_A and ORX_CTRL_B used to determine which ORx is enabled and selected
for the observation purposes of the user. ORX_CTRL_A is high at all the time, as an ORx path is always being used. When
ORX_CTRL_A goes low, regardless of the state of ORX_CTRL_B, no ORx channel is enabled. ORX_CTRL_B determines which ORx
channel the user is observing. For this example, ORx2 and ORx3 are being used. Note that ORx1 can be used in place of ORx2 or ORx4 in
place of ORx3. At least one ORx from each side of the device must be used; that is, either ORx1 or ORx2 must be used for calibrations on
Tx1 and Tx2. The ORx from one side of the device cannot be used to calibrate the Tx on the other side of the device. That is, ORx1 or
ORx2 cannot be used to calibrate Tx3 and Tx4.

The ORX_TX_SEL and ORX2_TX_EN signals are used to indicate the external routing of the feedback paths, allowing the arm to know
which transmitter is being looped back to which observation receiver at a given time and whether a calibration may be run or not. As a
transmitter is always available at an observation receiver on its own side of the chip, ORX2_TX_EN and ORX3_TX_EN are defaulted
high over SPI as they remain fixed. ORX2_TX_SEL and ORX3_TX_SEL indicate the external routing of a transmitter to a given
observation receiver. When ORX2_TX_SEL is low, it indicates the Tx1 path is routed back to ORx2. Likewise, when ORX2_TX_SEL is
high, this indicates PA2 is available at the ORx2 input. This is similar for ORX3_TX_SEL, such that when this signal is low it indicates
PA3 is available at the ORx3 input, and, likewise, when it is high PA4 is available at the observation receiver input.

For this use case, internal calibrations can be performed on the inactive ORx channel while an external calibration is running on the
active channel. In the first time slot of the timing diagram in Figure 64, it can be seen that ORx2 is enabled by the user. PA1 and PA3 have
been routed back to ORx2 and ORx3, respectively. The device can perform an external LOL tracking calibration for Tx3 via ORx3, or a
QEC tracking calibration on Tx3 or Tx4, while the system is performing calculations for PA1. The QEC tracking calibration is performed
via an internal routing between each Tx channel and its corresponding ORx channel. The external LOL tracking calibration, however, can
only be performed when an external loopback path is available. In the second time slot in Figure 64, ORx2 is still enabled for the user

Rev. PrA | Page 113 of 267

UG-1727

with PA2 and PA4 being made available to ORx2 and ORx3. The system can perform calculations for PA2 via ORx2 while performing a
QEC tracking calibrations on Tx3 or Tx4, or an external LOL tracking calibration on Tx4.

Note that calibrations are not automatically run in a designated time slot. The Arm scheduler of the device schedules which calibrations
run at any given time. For more information on the scheduler, refer to the Arm Processor and Device Calibrations section of this user
guide. In addition, the same JESD link can be used for ORx2 and ORx3 in the scenario above because only one ORx is used at any given
time.

Macro TDD/Massive MIMO
4T, 4R, 20Rx

,
A

Antenna 3 Antenna 2

Antenna 1

\/

GPIO_X

GHICEY ‘ SERDES

ORx3_TX_SEL ORx2_Tx_SEL

,
\

22770-064

Figure 63. 4 Tx, 4 Rx, 2 ORx Configuration

P& output
o Ot JESD

ORX_CTRL_A |

ORY_CTRL_B

0 C] i i [L
[" ' ' ' [L
DRERE CHRX S OREI 0 ORX3 v ORXZ » ORXS » ORX3 « ORX3 ORXZ DRGE v DRXE e+ ORXF

Ofie2 Tx SEL pay | pAZ | PA1 | PAZ

Ofd T SEL - PAZ | pag | PAZ | PA4

Oftx2_Tx_EN ! | ! ! !
ORe2 Tx_EN ; i ; : . .

22770-065

Figure 64. ORx Enable and Tx Select Signals: 4 Tx, 4 Rx, 2 ORx Configuration

Rev. PrA | Page 114 of 267

UG-1721

4 Tx/4 Rx/4 ORx Input Use Case

In this use case, each Tx is routed back to its own ORx input. The device is configured in Single Channel 3 Pin Mode for this use case.
ORX_CTRL_A is principally high all the time, meaning an ORx path is always being used. ORX_CTRL_B and ORX_CTRL_C determine
what ORx channel is enabled and selected for the observation purposes of the user. Refer to Table 118 for how each ORx is selected via
the two ORx select signals.

Table 118. ORx Select Logic

Logic of ORX_CTRL_C (MSB) and ORX_CTRL_B (LSB) ORXx Selected
00 ORx1
01 ORx2
10 ORx3
11 ORx4

Because each Tx is routed back to a separate ORx input, there is no need for external switching in this use case and each of the
ORX_TX_SEL signals can be set to a default value via the SPI. ORX2_TX_SEL and ORX4_TX_SEL are both defaulted to a high state, and
ORX1_TX_SEL and ORX3_TX_SEL are both defaulted to a low state. ORX1_TX_EN, ORX2_TX_EN, ORX3_TX_ EN, and
ORX4_TX_EN are all defaulted to a high state.

The first time slot in the timing diagram in Figure 66 shows that the ORX_CTRL_B and ORX_CTRL_C signals are set to a 00 value,
enabling ORx1 to the user. In this scenario, calculations can be performed on PA1. ORx2 is on this side of the chip, so the device cannot
use it for any calibrations during this time slot. The other side of the chip can be utilized via ORx3/ORx4 for calibrations. Note that
calibrations can be performed on either Tx3 or Tx4 and it is up to the scheduler to determine what calibration for which Tx is to runin a
given time slot. Because each Tx is permanently routed back to its own ORx, the external path always exists for external LOL tracking to run.

Because only one ORx is used at any given time, the same JESD link for ORx1, ORx2, ORx3 and ORx4 can be used in this scenario.

Macro TDD/Massive MIMO
4T, 4R, 40Rx

Antenna 3 Antenna 2

v PA Balun) : >3 le—L01 Lo1—»| ™2 : Balun 4’ v

NHO O-n

Y

le—LO1 LO1—>| Balun

Y/
Bl
il

_'J—L ORX3/4 le—LO1 LO1— ORX1/2

Antenna 4 .

Antenna 1

\V
Q=N

[«—LO1 LO1—>|

—

NFO

TX4 le—LO1 LO1—»f
Balun Balun

C

v
P
Siliini

[N

a-;a
N WA

|
[
2
[

SERDES

22770-066

Figure 65. 4 Tx, 4 Rx, 4 ORx Configuration

Rev. PrA | Page 115 of 267

UG-1721 Preliminary Technical Data

PA output
t0 ORXJESD | P3| | Pas [Pas |

ORY_CTRL_A I

ORY_CTRL_B

ORX_CTRL_C

ORXZ | ORX3

ORX1 ORXZ ' ORX3

ORX4 ' ORX1 | ORX2 ' ORX3 ' ORx4 ORX4

1
ORx2_Tx_SEL Defaulted to high over SP1
ORxd_Tx_SEL

ORx1_Tx_SEL
ORx3_Tx_SEL

0
Defaulted to low owver 5P

ORx1_Tx_EN 1
ORx2 _Tx_EM Defaulted to high aver SP

ORx3_Tx_EM
ORx4_Tx_EM

R R

OR
ORx2
Usage
PAZ
OR

o o
OR OR

Figure 66. ORx Enable and Tx Select Signals: 4 Tx, 4 Rx, 4 ORx Configuration

22770-067

Rev. PrA | Page 116 of 267

UG-1721

4 Tx/4 Rx/2 ORx input - Single Point of Feedback from 4 Tx to ORx Use Case

This use case shows an example where all the ORx paths are shared through one common feedback point. As there are two sides to the
device from a calibration perspective, the user must route Tx1 and Tx2 to either ORx1 or ORx2. Similarly, Tx3 and Tx4 need a path back
to ORx3 or ORx4 for the purpose of calibrations. To allow calibrations to run in parallel with PA observation captures, the opposite side
of the device to that required for calibrations is used to capture observation data; that is, if Tx2 is being fed back through this single
feedback point, then ORx2 is used for device calibrations while ORx3 can be used to capture observation data. A resistive splitter is used
to route the signal to both sides of the device.

For this use case, we use single channel 2 pin mode. ORX_CTRL_A is set high all the time because an ORx path is always being used.
ORX_CTRL_B selects which ORx the user is observing in a given time slot. For this example, ORx2 and ORx3 are used. ORx3 is selected
for observation when ORX_CTRL_B is high and ORx2 is selected for observation when ORX_CTRL_B is low.

ORX2_TX_SEL and ORX2_TX_EN together tell the Arm which external path (either Tx1 or Tx2) is routed back to ORx2. When
ORX2_TX_SEL and ORX2_TX_EN are both high, the PA2 path is routed back to both ORx2 and ORx3. When ORX2_TX_SEL is low
and ORX2_TX_EN is high, the PA1 path is routed back to both ORx2 and ORx3. When ORX2_TX_EN is low, this tells the device that
there is no external feedback path between this ORx input and a Tx on the same side of the device. In this scenario, the external LOL
calibration cannot be performed. Likewise, the ORX3_TX_SEL and ORX3_TX_EN perform the same function for the Tx paths on the
other side of the chip. If ORX3_TX_SEL is low and ORX3_TX_EN is high, the PA3 path is routed back to both ORx2 and ORx3. If
ORX3_TX_SEL and ORX3_TX_EN are both high, the PA4 path is routed back to both ORx2 and ORx3. Finally, if ORX3_TX_EN is low,
this tells the device that there is no external feedback path between this ORx input and a Tx on the same side of the device. In this
scenario, the external LOL calibration cannot be performed.

Unlike the other use cases previously described, the device can perform both calculations on a given PA and calibrations with the other
ORx input for the same side of the chip. While the Tx calibrations have to be performed with an ORx from the same side of the chip, the
PA calculations do not have that constraint. The first time slot in Figure 68 shows that calculations are being performed on PA1 via ORx3
while calibrations are performed on Tx1/Tx2 via ORx2. Note at the first time slot in this diagram that the external LOL calibration can be
performed for Tx1 as the path is routed back to ORx2. In time slot two, the external LOL calibration can be performed for Tx2 but not
Tx1 as there is no external feedback path. QEC calibrations are performed though an internal feedback path and do not require an
external feedback path to run. It is up to the Arm scheduler to determine what calibration is due to run in any given slot. The same JESD
link can be used for ORx2 and ORx3 in this scenario because only one ORx is used at any given time.

ADRV902x
[a1} [PAT |——
ORx2_Tx_EN —
o Tx2 PA2
ORx3_Tx_EN
ORX_CTRL A
ORX_CTRL B
ORX_CTRL C [oRa]
—_—
Tx3 PA3 —
ORx2_Tx_SEL
SN |
ORx3_Tx_SEL Tx4 L _PA4 | —

22770-068

L
Figure 67. Observation Channel Routing: 4 Tx to 2 ORx Channels

Rev. PrA | Page 117 of 267

Preliminary Technical Data

PA output
to Ofix JESD

UG-17217

690-0LL22
L LI L qm..||||.||||||| == = amaa -
8
]
8
- ||h....... - - === == -
M
[
=
F]
=3
Q
o
[
=
B (R — ._..|. ||||||||||| e RN N — =
g
=]
|||||||| .ﬁ. am= === == = === =
=
o
o

PAZ

SR —— m - R —— ..:.W......

PAY/Z

ORx3_Tx_EN

ORx2_Tx_EM
OR=3_Tx_SEL

ORX_CTRL_B
ORx2_Tx_SEL

ORX_CTRL_A

Figure 68. ORx Enable and Tx Select Signals: 4 Tx to 2 ORx Multiplexed Configuration
Rev. PrA | Page 118 of 267

UG-1721

TRANSMITTER OVERVIEW AND PATH CONTROL

The ADRV9026 uses an accurate and efficient method of transmit power control (Tx attenuation control) that involves a minimum of
interaction with the baseband processor. The power control in the transmit chain is implemented with two variable attenuations, one in
the digital domain and one in the analog domain. Furthermore, the maximum output level of the transmitter can be adjusted between
two levels, allowing a tradeoff between linearity and LOL performance.

There are three different modes available to control the attenuation setting of the transmitter. The attenuation can be set immediately via
the API, incremented or decremented using GPIO pins to trigger the increment or decrement, or set through a SPI2 mode that enables
real time operation using a GPIO pin. The choice of attenuation mode is set by attenMode.

The attenuation is controlled via a lookup table, which is programmed into the product during initialization. The lookup table maps a
desired value in dB to the appropriate analog and digital attenuation settings to be applied in the data path. The default table provides a
range of 0 dB to 41.95 dB of attenuation, with a step size of 0.05 dB, resulting in 840 available attenuation settings.

The Tx path allows the maximum output of the DAC to be increased by 3 dB adjusting the parameter dacFullScale. This results in the
baseband signal (the desired signal) increasing by 3 dB while RF output components (such as LO leakage) remain unchanged, giving a net
improvement of 3 dB in LOL performance. There is a reduction in linearity performance in this mode. Therefore, the setting is a trade-off
based on the system requirements of the user.

The Tx datapath can be configured to automatically ramp the attenuation to the maximum level under certain conditions, such as the
JESD link dropping (rampJesdDfrm) or the Tx PLL unlocking (disTxDatalfPllUnlock), to prevent spurious transmission in the event of
these types of system errors.

Test tones may be generated digitally in the Tx baseband path. This function is useful for testing/debugging before the JESD link has been
established. The frequency can be set from —TxInputRate/2 to + TxInputRate/2. The Tx attenuation is manually overridden when this
function is enabled. When test tones are selected as the Tx input, the analog portion of the Tx attenuation is set to 0 dB (max output
power), and the digital portion is set by txToneGain.

API COMMANDS

Several API commands are available to adjust the Tx paths after initialization and during normal operation. The following descriptions
detail these commands and how they are used.

adi_adrv9025_TxAttenCfgSet

adi_adrv9025_TxAttenCfgSet(adi_adrv9025_Device_t* device, adi_adrv9025 TxAttenCfg_t
txAttenCfg[], uint8_t attenCfgs);

Description

Configures Tx power control.

Parameters

Table 119.

Parameter Description

*device Pointer to device structure.

txAttenCfg(] An array of structures of type adi_adrv9025_TxAttenCfg_t detailed in Table 120.
attenCfgs The number of configurations passed in the array.

Rev. PrA | Page 119 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1727

Table 120. adi_adrv9025_TxAttenCfg_t Parameters

Parameter

Comments

txChannelMask

This selects the channels upon which the APl acts. It is a bit mask with each bit corresponding to a channel. The
desired mask can be generated by OR'ing the desired channel enums as listed below. Data type: uint32_t

Parameter

Tx Channel

ADI_ADRV9025_TXOFF
ADI_ADRV9025_TX1
ADI_ADRV9025_TX2
ADI_ADRV9025_TX3
ADI_ADRV9025_TX4
ADI_ADRV9025_TXALL

No Tx channels selected
Tx1 channel selected
Tx2 channel selected
Tx3 channel selected
Tx4 channel selected
All Tx channels selected

txAttenStepSize

This parameter sets the attenuation step size; Data type: adi_adrv9025_TxAttenStepSize_e

Parameter Step Size (dB)
ADI_ADRV9025_TXATTEN_OPO5_DB 0.05
ADI_ADRV9025_TXATTEN_OP1_DB 0.1
ADI_ADRV9025_TXATTEN_OP2_DB 0.2
ADI_ADRV9025_TXATTEN_OP4_DB 0.4

disTxDatalfPllUnlock

Option to ramp Transmit attenuation to max if the RFPLL unlocks ;

Data type: adi_adrv9025_TxDatalfUnlock_e

Parameter

Action

ADI_ADRV9025_TXUNLOCK_TX_NOT_DISABLED

Do not alter Tx attenuation in an unlock event.

ADI_ADRV9025_TXUNLOCK_TX_RAMP_DOWN_TO_MIN_ATTEN

Ramp Tx attenuation to maximum in an unlock
event.

rampJesdDfrm Ramp up attenuation when a deframer link unlocks. Note this field is not being used actively. If user enables at least
one deframer event with adi_adrv9025_PaPlIDfrmEventRampDownEnableSet, the gain ramp down on the deframer
event is automatically enabled. Data type: adi_adrv9025_TxDatalfUnlock_e
attenMode Selects the Tx attenuation mode; Data type: adi_adrv9025_TxAttenMode_e
Parameter Mode
ADI_ADRV9025_TXATTEN_BYPASS_MODE Tx attenuation mode Bypass: zero total
attenuation
ADI_ADRV9025_TXATTEN_SPI_MODE Tx attenuation set by 10-bit index programmed
over SPI
ADI_ADRV9025_TXATTEN_GPIO_MODE Tx attenuation is incremented/decremented
using GPIO pins
ADI_ADRV9025_TXATTEN_SPI2_MODE Attenuation is controlled using the SPI2 mode
dacFullScale Sets the full scale of the Tx DAC; Data type: adi_adrv9025_DacFullScale_e

Parameter

Description

ADI_ADRV9025_TX_DACFS_0DB

ADI_ADRV9025_TX_DACFS_3DB

No Full Scale Boost
Full scale boost =3 dB

Rev. PrA | Page 120 of 267

UG-1721

adi_adrv9025_TxAttenCfgGet

adi_adrv9025_TxAttenCfgGet(adi_adrv9025_Device_t* device, adi_adrv9025_TxChannels_e txChannel,
adi_adrv9025_TxAttenCfg_t *txAttenCfg)

Description

Reads Tx power control configuration one channel at a time.

Parameters

Table 121.

Parameter Description

*device Pointer to device structure.

txChannel The Tx channel to be read back using an enum as described in Table 120.

*txAttenCfgs The pointer to the readback structure of the queried Tx channel as defined in Table 120.

adi_adrv9025_TxAttenSet

adi_adrv9025_TxAttenSet(adi_adrv9025 Device_t* device, adi_adrv9025_TxAtten_t txAttenuation[],
uint8_t numTxAttenConfigs);

Description

Sets Tx attenuation when Tx attenuation mode is set to ADI_ADRV9025_TXATTEN_SPI_MODE.

Parameters

Table 122.

Parameter Description

*device Pointer to device structure.

txAttenuation[] An array of structures of type adi_adrv9025_TxAtten_t detailed in Table 123.
numTxAttenConfigs The number of configurations passed in the array.

Table 123. adi_adrv9025_TxAtten_t Parameters

Parameter Comments
txChannelMask This selects the channels upon which the APl acts. It is a bit mask with each bit corresponding to a channel. The
desired mask can be generated by ORing the desired channel enums as listed below. Data type: uint32_t
Parameter Tx Channel
ADI_ADRV9025_TXOFF No Tx channels selected
ADI_ADRV9025_TX1 Tx1 channel selected
ADI_ADRV9025_TX2 Tx2 channel selected
ADI_ADRV9025_TX3 Tx3 channel selected
ADI_ADRV9025_TX4 Tx4 channel selected
ADI_ADRV9025_TXALL All Tx channels selected
txAttenuation_mdB | This parameter specifies the attenuation in mdB. Data type: uint16_t

Rev. PrA | Page 121 of 267

UG-1727

adi_adrv9025_TxAttenGet

adi_adrv9025_TxAttenGet(adi_adrv9025 Device_t* device, adi_adrv9025_TxChannels_e txChannel,

adi_adrv9025_TxAtten_t* txAttenuation)

Description

Reads Tx attenuation when the Tx attenuation mode is set to ADI_ADRV9025_TXATTEN_SPI_MODE or

ADI_ADRV9025_TXATTEN_GPIO_MODE.

Parameters

Table 124.

Parameter Description

*device Pointer to device structure.

txChannel The Tx channel to be read back using an enum as described in Table 123.
*txAttenuation Pointer to the readback structure of the queried Tx channel as defined in Table 123.

adi_adrv9025_TxAttenModeSet

adi_adrv9025_TxAttenModeSet(adi_adrv9025 Device_t* device, adi_adrv9025_TxChannels_e txChannel,

adi_adrv9025_TxAttenMode_e *txAttenMode);

Description

Sets the Tx attenuation mode independent of the init structure.

Parameters

Table 125.

Parameter Description

*device Pointer to device structure.

txChannel Tx channel upon which the API acts as described in Table 126.

*txAttenMode Pointer to the desired mode of attenuation using an enum as described in Table 126.

Table 126. adi_adrv9025_TxAttenModeSet Parameters

Parameter Comments

txChannelMask | This selects the channels upon which the API acts. It is a bit mask with each bit corresponding to a channel. The desired

mask can be generated by ORing the desired channel enums as listed below. Data type: uint32_t

Parameter

Tx Channel

ADI_ADRV9025_TXOFF
ADI_ADRV9025_TX1
ADI_ADRV9025_TX2
ADI_ADRV9025_TX3
ADI_ADRV9025_TX4
ADI_ADRV9025_TXALL

No Tx channels selected
Tx1 channel selected
Tx2 channel selected
Tx3 channel selected
Tx4 channel selected
All Tx channels selected

txAttenMode Selects the Tx attenuation mode; Data type: adi_adrv9025_TxAttenMode_e

Parameter

Mode

ADI_ADRV9025_TXATTEN_BYPASS_MODE
ADI_ADRV9025_TXATTEN_SPI_MODE
ADI_ADRV9025_TXATTEN_GPIO_MODE
ADI_ADRV9025_TXATTEN_SPI2_MODE

Tx attenuation mode Bypass: zero total attenuation

Tx attenuation set by 10-bit index programmed over SPI

Tx attenuation is incremented/decremented using GPIO pins
Attenuation is controlled using the SPI2 mode

Rev. PrA | Page 122 of 267

UG-1721

Adi_adrv9025_TxTestToneSet

adi_adrv9025_TxTestToneSet(adi_adrv9025_Device_t* device, adi_adrv9025 TxTestToneCfg_t
txNcoTestToneCfg[], uint8_t arraySize);

Description

Generates test tones in the Tx baseband path.

Parameters

Table 127.

Parameter Description

*device Pointer to device structure.

txNcoTestToneCfg[] An array of structures of type adi_adrv9025_TxAttenCfg_t as detailed in Table 128.
arraySize The number of configurations passed in the array.

Table 128. adi_adrv9025_TxTestToneCfg t Parameters

Parameter Comments

txChannelMask | This selects the channels upon which the API acts. It is a bit mask with each bit corresponding to a channel. The desired
mask can be generated by OR’'ing the desired channel enums as listed below.
Data type: uint_8

Parameter Tx channel

No Tx channels selected
Tx1 channel selected

ADI_ADRV9025_TXOFF
ADI_ADRV9025_TX1
ADI_ADRV9025_TX2
ADI_ADRV9025_TX3
ADI_ADRV9025_TX4

Tx2 channel selected
Tx3 channel selected
Tx4 channel selected

ADI_ADRV9025_TXALL All Tx channels selected

enable Sets whether the test tones are enabled or disabled; Data type: uint_8
Parameter Mode
0 Test tones disabled
1 Test tones enabled

txToneFreq_Hz | Sets the frequency of the test tone in Hz. Range is £245.76 MHz. Data type: uint_32

txToneGain Sets the amplitude of the test tone in dBFS; Data type: adi_adrv9025_TxNcoGain_e
Parameter Gain
ADI_ADRV9025_TX_NCO_NEG18_DB —18 dBFS test tone
ADI_ADRV9025_TX_NCO_NEG12_DB —12 dBFS test tone
ADI_ADRV9025_TX_NCO_NEG6_DB —6 dBFS test tone
ADI_ADRV9025_TX_NCO_0_DB 0 dBFS test tone

Rev. PrA | Page 123 of 267

UG-1727

DAC FULL-SCALE FUNCTION (DAC BOOST)

The DAC Full Scale function is an analog 3 dB gain stage that can be used primarily to help systems that have marginal system
performance to the TX LO leakage (Tx LOL) specification. As shown in the figure, the gain is realized in the DAC output but before the
Tx predistortion (LPF) filters which is where the majority of the flicker noise observed on Tx LOL is added to the signal chain. When
enabled, it provides an additional 3 dB of signal gain. By increasing the signal level by 3 dB it provides an additional 3 dB of separation to
the noise/Tx LOL. The 3 dB gain factor is achieved by shifting the bias point of the DAC.

Increasing the signal level through the chain can potentially result in reduced linearity and spurious. The user is cautioned when
transmitting signals with very low PAR for these reasons. When the mode is enabled, signal PAR does not allow the DAC to be driven
above —3 dBFS. Normally, however for LTE signals or similar with PAR of about 12 dB, the signal chain has enough headroom for
minimal performance impact. The measurements that follow show this.

Since the Tx signal level is increased when enabled, the configuration must be done prior to device initialization so that the internal
calibrations see the appropriate gain through the signal chain. It is not possible to change it after the part has been configured.

The Tx predistortion (LPF) filters are the main contributors of flicker noise to the Tx signal chain. Because the gain occurs before them,
the amount of Tx LOL emitted from the device is not changed by enabling the 3 dB mode. The transmitter Tx attenuators follow the
filters in the signal chain. For this reason Tx LOL reduces at the output with each attenuator step, dB for dB. The Tx LOL measurement
for both enabled and disabled modes along with the margin gained when the function is enabled is presented in Figure 69.

-82.0

TxLOL dBFs 0dB
TXLOL dBFs 3dB
-82.5 p—

-83.0]

-83.5

-84.0

Tx LOL (dBm/MHz)

-84.5

-85.0

-85.5

-86.0

0 2 4 6 8 10
TX ATTENUATOR (dB)

Figure 69. TxLO Leakage with dacFullScale Enabled/Disabled

R)

22770-070

dacFullScale
(DAC BOOST)

93ej9u| g¥0casar

22770-071

Figure 70. TX Datapath with dacFullScale Function

Rev. PrA | Page 124 of 267

UG-1721

The Tx LOL specification is defined in terms of dBFS and is measured in a 1 MHz bandwidth. Tx LOL in dBFS is determined by applying
a known signal level (-12 dBFS tone in this case) then measuring the resulting output power to determine 0 dBFs. Then the difference in
power levels results in Tx LOL (dBES).

The improvement shown in Table 85 is close to the 3 dB gain added. There is a small amount of variability due to the effects of flicker
noise and the stability/accuracy of measuring the noise.

To meet data sheet performance levels, adjust the input signal to compensate for the 3 dB increase so that the resulting power levels are
equivalent and therefore the OIP3 is equivalent as well. This is presented in the second OIP3 column in Table 130. In general, the OIP3 is
only slightly affected by enabling the Boost with the same input tone levels (both tones level= —15 dBFS as per the data sheet). Typical
performance shown on the data sheet is approximately 30 dBm, and measurements of the device in both modes are consistent. Impact on
linearity is shown in Table 130.

EVM was measured with Boost in 0 dB mode and with Boost in 3 dB mode. There is no significant impact to EVM as a result of enabling
the 3 dB mode. The impact on EVM is presented in Table 131.

System requirement: The desired DAC Boost mode must be configured prior to device initialization. The Tx signal level is increased
which impacts internal calibrations, therefore it is not able to be modified during device operation.

Table 129. dacFullScale TXLOL and Tx Output Power Comparison 0dB Mode and 3dB Mode

DAC Full Scale TX Attn
Setting (dB) TxLOL (dBm/MHz) | Tone Power (dBm) | 0 dBFS in dBm | Tx LOL (dBFS) | Improvement (dB)
dacFullScale 0dB 0 -77.2) 6 -83.2
Mode 5 -81.6 -10.8 12 -82.8
10 -86.5 -16 -4 -82.5
dacFullScale 3dB 0 -76.6 -2.8 9.2 —85.8 2.6
Mode 5 -81.5 -7.8 4.2 -85.7 29
10 -85.9 -13 -1 -84.9 24

Table 130. dacFullScale Tx Linearity 0 dB Mode and 3 dB Mode

F2 Tone MHz, OIP3 dBm, 0 dB Mode, | OIP3 dBm, 3 dB Mode, Tones =-18 dBFS | OIP3 dBm, 3 dB mode,
F1Tone MHz | (F1 + 5 MHz) Tones = -15 dBFS (Data Sheet Equivalent Output Power) (Tones = —15 dBFs)
10 15 326 36.0 331
30 35 353 349 36.0
50 55 38.0 37.7 40.0
70 70 339 34.8 33.2
90 95 35.7 31.1 30.0

Table 131. dacFullScale EVM vs. Mode Selection

0 dB mode 3 dB mode
TX Attenuator (dB) Signal Power (dBm) EVM (dB) Signal Power (dBm) EVM (dB)
0 -17.9 —45.28 -15.0 —45.86
5 -22.9 —45.09 —-20.0 —45.72
10 -27.9 -43.73 -25.0 —44.97
15 -32.8 —43.38 -30.0 —43.06
20 -37.8 -43.08 -34.9 -43.64

Rev. PrA | Page 125 of 267

UG-1727

ADI_ADRV9025_TXCHANNELCFG API STRUCTURE

The dacFullScale enum is stored in the adi_adrv9025_TxChannelCfg structure. This structure is stored within the
adi_adrv9025_TxSettings_t structure, which is stored in the overall device initialization structure (adi_adrv9025_Init_t). The parameters
are described in Table 132 and Table 133. The dacFullScale parameter is also found in the json (profile) file.

Table 132. adi_adrv9025_TxChannelCfg Structure Parameters

Data Fields Description
adi_adrv9025_TxProfile_t profile
adi_adrv9025_DacFullScale_e dacFullScale

Table 133. adi_adrv9025_DacFullScale_e enum Parameters

Data Fields Description Value
ADI_ADRV9025_TX_DACFS_0DB DAC full scale = 0 dB (default mode) 0x0
ADI_ADRV9025_TX_DACFS_3DB DAC full scale =3 dB 0x1

Rev. PrA | Page 126 of 267

UG-1721

TRANSMITTER POWER AMPLIFIER PROTECTION

The ADRV9026 features four transmitters with independent power amplifier (PA) protection circuitry. The PA protection circuitry
operates in conjunction with other interrupt sources within the transceiver. This section describes both PA protection and the other
interrupt sources that can trigger a Tx attenuation ramp to set the Tx attenuation to 40 dB to protect the PA device.

Note that it is recommended to use these features in conjunction with the GP_INTERRUPT feature so that the baseband processor
receives information over GP_INTERRUPT pins that an attenuation ramp down may have occurred. This is achieved by unmasked
relevant GP_INTERRUPT sources described within this document.

PA PROTECTION DESCRIPTION

The PA protection circuitry is designed to alert the user that the digital signal power within the Tx datapath exceeds a programmable
threshold. The GPINT1 and GPINT?2 pins can be configured to assert when the PA protection block detects an ‘error. In this context,
error means that a power threshold has been exceeded. If PA protection is used, it is reccommended that the user unmask the PA
protection interrupts for one of the GPINT pins to give the baseband processor an indication that a PA protection error has occurred. Set
up the power thresholds at a level appropriate for their system given the PA damage power level and Tx RF attenuation.

There are two types of thresholds in the PA protection circuit: peak power threshold and average power threshold.

e Peak Power Threshold: When the peak signals detected by PA protection exceed the peak power threshold (peakThreshold) a
programmable number of times (peakCount) within a period (peakDuration), this leads to a peak power threshold error
(peakPowerErr = 1).

e Average Power Threshold: When the signal power calculated by PA protection exceeds the programmable average power threshold
(powerThreshold) within a period (avgDuration), this leads to an average power threshold error (avgPowerErr = 1)

When PA protection is enabled and a PA protection error occurs, a ramp down of the Tx attenuation can be executed. The attenuation is
set to 40 dB after the ramp down, if enabled. This feature can be used to protect PA devices in scenarios where the baseband processor
executes algorithms that affect the power of the transmitted signal. The attenuation ramp down is configured with the
adi_adrv9025_PaPlIDfrmEventRamp DownEnableSet(...) command.

PA Protection Configuration
The PA protection feature is setup with the APT command adi_adrv9025_TxPaProtectionCfgSet(...).

adi_adrv9025_TxPaProtectionCfgSet

adi_adrv9025_TxPaProtectionCfgSet(adi_adrv9025_Device_t* device, adi_adrv9025_TxPaProtectCfg_t
txPaProtectCfg[], uint8_t arraySize);

Description

Sets up the PA protection feature.

Parameters

Table 134.

Parameter Description

*device Pointer to device structure.

txPaProtectCfg[] | An array of PA protection configurations of data type adi_adrv9025_TxPaProtectCfg_t. This data structure is explained in
further detail in Table 135.

arraySize The array length of txPaProtectCfg[].

Table 135. adi_adrv9025_TxPaProtectCfg_t Data Structure Parameters

Data Type Parameter Name Parameter Description

adi_adrv9025_TxChannels_e txChannel Tx channel select based on adi_adrv9025_TxChannel_e. PA protection
configuration is applied to channels selected by this parameter

uint8_t avgDuration Sets the duration for which average power is accumulated and compared

with powerThreshold. Range = 0 to 15. Duration in time is given by
(sample rate in Hz, duration in seconds):

1 avgDuration+5
8!
X

t e —
txSampleRate

avgDuration =

Rev. PrA | Page 127 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1727

Data Type

Parameter Name

Parameter Description

uint8_t

peakDuration

Sets the duration for which peaks are compared against peakThreshold. At
the end of this duration, the number of counted peaks resets to zero.
Range = 0 to 15. Duration in time is given by (sample rate in Hz, duration in
seconds):

1 « ZpeakDumtion +5

t B
txSampleRate

peakDuration —

uint16_t

powerThreshold

Sets the powerThreshold for average power measurements. If the average
power exceeds this threshold, the avgPowerErr signal is asserted.

powerThreshold)

powerThreshold ;5. =10log (8192

uint8_t

peakCount

Sets a limit for the number of peaks detected within a peakDuration. When
this limit is exceeded, the PA protection peakPowerErr signal is asserted.

uint16_t

peakThreshold

Sets the peak threshold power limit for counting a peak. If a peak exceeds
this threshold, it is counted. When this counter value exceeds peakCount,
peakPowerErr signal is asserted.

peakThreshold)

kThreshold jps =101
peakThreshold ;. og(8192

uint8_t

avgPowerEnable

When set = 1, the PA protection average power measurement block is
enabled. Allows avgPowerErr signal assertion.

When set = 0, the PA protection average power measurement block is
disabled.

uint8_t

peakPowerEnable

When set = 1, the PA protection peak power measurement block is
enabled. Allows peakPowerErr signal assertion.

When set = 0, the PA protection peak power measurement block is
disabled.

adi_adrv9025_PaProtectionlnputSel_e

inputSel

Determines the data path location for peak and average power measurement.
Options are given by the enumeration described in Table 136.

uint8_t

avgPeakRatioEnable

When set = 1, this enables the average to peak power ratio block.
avgPowerEnable and peakPowerEnable need to be enabled.

When set = 0, average to peak power calculations are not performed.

Table 136 describes the adi_adrv9025_PaProtectionInputSel_e enumeration. These measurement locations are shown in Figure 71.

Table 136. adi_adrv9025_PaProtectionInputSel_e Enumeration Options

Enumeration

Enum Value

Description

ADI_ADRV9025_COMPLEX_MULT_OUTPUT 0
ADI_ADRV9025_TXQEC_ACTUATOR_OUTPUT | 1

Input data to PA protection block comes from the complex multiplier output.
Input data to PA protection block comes from the Tx QEC actuator output.

DPD Complex DPD
e St ACT Mult HB a3

PA PROTECTION

9del91u] #0¢asar

Complex
Mult

22770072

Figure 71. Tx Datapath Showing PA Protection Measurement Locations

Rev. PrA | Page 128 of 267

UG-1721

PA Protection Runtime Commands

This section describes commands that can be used to check the status of the PA protection blocks. The GP_INTERRUPT represents a real
time interface to notify the baseband processor that a PA protection error has occurred. When the interrupt asserts, call the
GP_INTERRUPT handler command. If it is indicated that a PA protection error has occurred, the commands in this section describe
what the user can do to acquire more information or clear the error.

adi_adrv9025_TxPaProtectionErrFlagsGet

adi_adrv9025_TxPaProtectionErrFlagsGet(adi_adrv9025 Device_t* device, adi_adrv9025_TxChannels_e
txChannel, adi_adrv9025_TxPaProtectionErr_t* errorFlags);

Description

Gets information about which PA protection error flag has been asserted and the associated power level. Do not call this command before
adi_adrv9025_TxPaProtectionCfgSet(...).

Parameters

Table 137.

Parameter Description

*device Pointer to device structure.

txChannel The Tx channel mask that selects which transmitter to retrieve error flag information from.
errorFlags A data structure containing the error flag information for selected Tx channel.

Table 138. adi_adrv9025_TxPaProtectionErr_t Data Structure Parameters

Data Parameter
Type Name Parameter Description

uint8_t peakPowerErr | If value = 1, then the peak power error bit has been asserted. If value = 0, the peak power error has not been
asserted. This bit is sticky depending on configuration applied in
adi_adrv9025_TxAttenuationRampUpStickyModeEnable(...)

uint8_t avgPowerErr If value = 1, then the average power error bit has been asserted. If value = 0, the average power error has not
been asserted. This bit is sticky depending on configuration applied in
adi_adrv9025_TxAttenuationRampUpStickyModeEnable(...)

uint16_t | powerErr When avgPowerErr asserts, this parameter contains the average power level that triggered the error
condition.

Clearing PA Protection Error Flags

In the case a PA protection error has occurred, it is useful to obtain specific information whether it is a peak power error or an average
power error. To obtain information about which PA protection error flag has been asserted use
adi_adrv9025_TxPaProtectionStatusGet(...). Once this information has been obtained and the cause of the error has been resolved, the
user must clear the error flag manually when the errors are configured in sticky mode. This can be done with the
adi_adrv9025_PaPllDfrmEventClear(...) command or the command described below. Note that adi_adrv9025_PaPlIDfrmEventClear(...)
can clear a PA protection error, a PLL unlock interrupt, or a deframer interrupt. The following command is specific only to PA protection
errors.

adi_adrv9025_TxPaProtectionErrFlagsReset

adi_adrv9025_TxPaProtectionErrFlagsReset(adi_adrv9025 Device_t* device,
adi_adrv9025_TxChannels_e txChannel, adi_adrv9025_TxPaProtectErrFlags_e errorFlags);

Description

Clears PA Protection error flags for specified channels.

Parameters

Table 139.

Parameter Description

*device Pointer to device structure.

txChannel The Tx channel mask that selects which transmitter to clear/reset PA protection errors.
errorFlags An enumerated data type describing which error flags need to be cleared.

Rev. PrA | Page 129 of 267

UG-1727

Table 140 describes the adi_adrv9025_TxPaProtectErrFlags_e enumeration.

Table 140. adi_adrv9025_TxPaProtectErrFlags_e Enumeration Options

Enumeration Enum value Meaning
ADI_ADRV9025_TXPA_PROTECT_FLAGS_AVG_POWER_ERR 1 Reset average power error flag
ADI_ADRV9025_TXPA_PROTECT_FLAGS_PEAK_POWER_ERR 2 Reset peak power error flag
ADI_ADRV9025_TXPA_PROTECT_FLAGS_ALL 3 Reset both average and peak power error flags

Adi_adrv9025_TxPaProtectionStatusGet

The PA protection status data structure provides information regarding the power in the data path. After the PA protection configuration
has been applied, the following command can be called.

adi_adrv9025_TxPaProtectionStatusGet(adi_adrv9025 Device_t* device, adi_adrv9025 TxChannels_e
txChannel, adi_adrv9025_TxPaProtectStatus_t* status);

Description

Reads back the Tx average IQ sample power.

Parameters

Table 141.

Parameter Description

*device Pointer to device structure.

txChannel The Tx channel mask that selects from which transmitter to retrieve PA protection status information.
status A data structure containing the PA protection status information for selected Tx channel.

The data structure type adi_adrv9025_TxPaProtectionStatus_t is described in Table 142.

Table 142. adi_adrv9025_TxPaProtectionStatus_t Data Structure Parameters

Data Parameter
Type Name Parameter Description
uint16_t | avgPower Result of the most recently completed average power measurement. Result in dBFS is provided by the

formula:

avgPower

uint16_t | avgPeakRatio Measurement describing the average to peak ratio as measured by PA protection. Enable peak and average

power measurement for meaningful results.

PAR= lolog[angeallécRatzoj
2

uint16_t | avgErrorPower When avgPowerErr asserts, this parameter contains the average power level that triggered the error
condition. This parameter only updates when an average power error occurs.

ErrorP
IOlog(an rror. ower]

P 216

avgErrPow =

Rev. PrA | Page 130 of 267

UG-1721

adi_adrv9025_PaPlIDfrmEventRampDownEnableSet

adi_adrv9025_ PaPlIDfrmEventRampDownEnableSet(adi_adrv9025 Device_t* device, uint32_t
txChannelMask, uint32_t irgMask, uint8_t enable);

Description

Configures which interrupts can trigger a Tx attenuation ramp down event.

Parameters

Table 143.

Parameter Description

*device Pointer to device structure.

txChannelMask | The Tx channel mask for selecting which transmitters to configure based on adi_adrv9025_TxChannels_e enumeration.

irgMask The bit mask that selects which interrupts are enabled or disabled based on the enable parameter. If a bit within this
mask is set, then the value of enable is applied for each bit set. The value must not be zero. A description of the irgMask
bit field is provided in Table 144.

enable Bit that controls ramp down for the events selected by irqMask. If set to 0, the function is disabled for all selections.

Table 144. Bitwise Description of irqMask

Bit

Position | Description Command to Clear Interrupt

D7 PA protection error flag has been asserted. If Slew adi_adrv9025_adrv9025_PaPlIDfrmEventClear(...) or
Rate Limiter (SRL) interrupt (IRQ) has been enabled, adi_adrv9025_adrv9025_TxPaProtectionErrFlagsReset(...)
this bit also allows attenuation ramp down based on
the SRL IRQ.

D6 SERDES PLL Unlock adi_adrv9025_adrv9025_PaPlIDfrmEventClear(...)

D5 RF PLL 2 Unlock

D4 RF PLL 1 Unlock

D3 AUX PLL Unlock

D2 CLK PLL Unlock

D1 Deframer 1 Interrupt/IRQ

DO Deframer 0 Interrupt/IRQ

While the irqMask is a uint32_t data type value, the enumeration adi_adrv9025_PaPlIDfrmRampDownEnSel_e can be used to form the
irqMask.
Sticky Control for Tx Attenuation Ramp Down

If a Tx attenuation ramp down interrupt is asserted, there are two modes of interrupt behavior pertaining to when attenuation is restored.
These modes of behavior control how the attenuation level ramp up is performed.

e Sticky Interrupt (Default operation): The attenuation ramp down remains in effect until the API command
adi_adrv9025_PaPlIDfrmEventClear(...) is called and the interrupt is no longer asserted. These two conditions need to be true for
attenuation to return to its former level before the interrupt. This mode requires user intervention.

e Auto clear Interrupt: The attenuation ramp down remains in effect until the interrupt is no longer asserted. This mode only depends
on the status of the interrupt.

The user can select between these modes through the following API command.
adi_adrv9025_TxAttenuationRampUpStickyModeEnable

adi_adrv9025_ TxAttenuationRampUpStickyModeEnable(adi_adrv9025 Device_t* device, uint32_t
channelMask, uint8_t txPllJesdProtClrReqd, uint8_t txPaProtectionAvgpowerErrorClearRequired,
uint8_t txPaProtectionPeakpowerErrorClearRequired)

Description

Configures Tx attenuation ramp up sticky mode for the selected Tx channel.

Rev. PrA | Page 131 of 267

UG-1727

Parameters

Table 145.

Parameter Description

*device Pointer to device structure.

channelMask The Tx channel mask for selecting which transmitters to configure based on
adi_adrv9025_TxChannels_e enumeration.

txPllJesdProtCIrReqd Determines if the user is required to manually clear PLL/deframer attenuation
ramp down events after assertion. Setting 1 requires user to clear, 0 does not
require user to clear.

txPaProtectionAvgpowerErrorClearRequired Determines if the user is required to manually clear PA protection average power
error flag after assertion. Setting 1 requires user to clear, 0 does not require user to
clear.

txPaProtectionPeakpowerErrorClearRequired Determines if the user is required to manually clear PA protection peak power
error flag after assertion. Setting 1 requires user to clear, 0 does not require user to
clear.

The command adi_adrv9025_adrv9025_PaPlIDfrmEventClear(...) can be used to clear the error.
Determining the Interrupt Source of an Attenuation Ramp Down

The GPINT1 and GPINT?2 pins can be configured to alert the baseband processor that a PA protection error, PLL unlock event, or
deframer interrupt has occurred. When the interrupt has occurred, the user is expected to call adi_adrv9025_GpInt1Handler or
adi_adrv9025_GpIntOHandler depending on which GPINT pin has asserted. GpInt1Handler is linked to the GPINT2 pin and
GPIntOHandler is linked to the GPINT1 pin. The handler returns information relevant to which interrupts have been asserted. This is one
method to determine which interrupts have asserted. However, note that the GP_INTERRUPT bitmask description does not specify
whether a peak or average power PA protection error has occurred. To obtain more specificity regarding the error source, call
adi_adrv9025_PaPlIDfrmEventGet(...).

adi_adrv9025_PaPlIDfrmEventGet

adi_adrv9025_PaPlIDfrmEventGet (adi_adrv9025 Device_t* device, adi_adrv9025_TxChannels_e
txChannelSelect, uint8_t eventBits);

Description

Reads the status of events causing Tx attenuation ramp down rather than any signal that has asserted GP_INTERRUPT.

Parameters

Table 146.

Parameter Description

*device Pointer to device structure.

txChannelSelect | The Tx channel mask for selecting which transmitters to configure based on adi_adrv9025_TxChannels_e enumeration.

eventBits Selects which interrupt source to clear based on the bit description in Table 147. If a bit position in this value is set high,
the associated interrupt has asserted to cause a Tx attenuation ramp down.

The command adi_adrv9025_adrv9025_PaPlIDfrmEventClear(...) can be used to clear the error.

Table 147. Bitwise Description of eventBits Parameter

Bit Position Description

D3 to D7 Unused

D2 Any PLL unlock or deframer error
D1 PA protection peak power error
DO PA protection average power error

Rev. PrA | Page 132 of 267

UG-1721

Clearing Tx Attenuation Ramp Down Events

There are two commands available to clear attenuation ramp down events. In the case that the interrupts are configured as sticky
interrupts, the user needs to call the appropriate function to clear the error. Note that these commands do not execute corrective
measures to remove the error source. For example, calling adi_adrv9025_TxPaProtectionErrFlagsReset(...) after a PA protection average
power error does not mean that the cause of the error is gone. If the datapath power is still greater than the PA protection average power
threshold after this command is called, then the interrupt persists. In some cases, the baseband processor must take an action to resolve
the interrupt/error. The following command can be used to clear such interrupts.

adi_adrv9025_PaPlIDfrmEventClear

adi_adrv9025_PaPlIDfrmEventClear(adi_adrv9025_ Device_t* device, adi_adrv9025_ TxChannels_e
txChannelSelect, uint8_t eventBits);

Description

Clears the Tx attenuation ramp down interrupts caused by the deframer or PLL unlock events.

Parameters

Table 148.

Parameter Description

*device Pointer to device structure.

txChannelSelect | The Tx channel mask for selecting which transmitters to configure based on adi_adrv9025_TxChannels_e enumeration.

eventBits Selects which interrupt source to clear based on the bit description in Table 147. If a bit position in this value is set high,
the command attempts to clear the interrupt.

Rev. PrA | Page 133 of 267

UG-1727

RECEIVER GAIN CONTROL AND GAIN COMPENSATION

OVERVIEW

The ADRV9026 receivers (Rx1/Rx2/Rx3/Rx4) feature automatic and manual gain control modes allowing for flexible gain control in a
wide array of applications. Automatic gain control (AGC) allows for receivers to autonomously adjust the receiver gain depending on
variations of the input signal, such as the onset of a strong interferer that can overload the receiver data path. It controls the gain of the
device based on the information from a number of signal detectors (peak/power detectors). The AGC can control the gain with very fine
resolution if required. The receivers are also capable of operating in Manual Gain Control (MGC) mode where changes in gain are
initiated by the baseband processor. The gain control blocks are configured by means of the API data structures and several API functions
exist to allow for user interaction with the gain control mechanisms.

The AGC is highly flexible and can be configured in a number of ways. For BTS receivers, the received signal is a multicarrier signal in
most cases. Perform a gain change only under large overrange or underrange conditions, and gain changes typically do not occur very
often for typical 3G/4G operation. Therefore, the Peak Detect Mode operation is sufficient. Nevertheless, if an asynchronous blocker does
appear, a fast attack mode exists that is able to reduce the gain at a fast rate.

Alternatively, to manage GSM blockers and radar pulses that have fast rise and rapid fall times, a mode with fast attack, fast recovery, peak
detect only is provided. This mode can recover receiver gain quickly in addition to the fast attack capability mentioned earlier.

This section contains the following functional descriptions:

Receiver Data Path: This section outlines the gain control and signal observation elements of the receiver chain. It then describes the
concept of the receiver gain table.

Gain Control Modes: This section advises how to select between the gain control modes.
Manual Gain Control (MGC): This section describes how to operate the device in manual gain control mode.

Automatic Gain Control (AGC): This section describes the two principal modes of AGC operation, peak detect mode and peak/power
detect mode.

AGC Clock and Gain Block Timing: This section describes the speed of the AGC clock and the various gain event and delay timers.
Peak and Power Detectors: This section outlines the operation and configuration of the gain control detectors in the device.

API Programming: This section outlines how to configure the AGC using the API, explaining each parameter of the AGC API structures.
It also provides details of gain control utility functions within the API.

Sample Scripts: Sample scripts are provided in this section which can be used in the Iron Python tab of the TES, allowing AGC to be
tested on the evaluation platform.

Gain Compensation, Floating Point Formatter and Slicer: This section outlines the various forms of gain compensation available in the
ADRV9026.

This document contains a full description of the gain control functionality available in the device. Some features may not be available
depending on the software version.

Glossary of Important Terms

Automatic Gain Control (AGC): This term is used to refer to the internal AGC of the device, where the device is in control of the receiver
gain settings. If the user does not use the internal AGC, then it is expected that an AGC runs in the baseband processor.

Manual Gain Control (MGC): This term is used to refer to a use case when the user is in control of the currently applied gain settings in
the receiver chain.

Gain Attack: This term is used to indicate the reduction of the receiver gain due to an overloaded signal path.
Gain Recovery: This term is used to indicate the increase of the receiver gain due to a reduction in the power of the signal being received.

Gain Compensation: The process of compensating for the analog attenuation in the device (prior to the ADC) with a corresponding
amount of digital gain before the digital signal is sent to the user.

High Threshold: Each peak detector has multiple threshold levels. The highest level is referred to as the high threshold. High thresholds
set an upper bound to the signal input level above which the gain can be decreased.

Low Threshold: A level in a peak detector which is lower than the high threshold. Some detectors have multiple low thresholds. Low
thresholds set a lower bound to the signal input level below which the gain can be increased.

Threshold Overload: When a threshold is exceeded in a peak detector, this is referred to as an overload.

Rev. PrA | Page 134 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1721

Over-Range Condition: An over-range condition exists when the AGC is required to reduce the gain. This can either be a peak condition,
where a programmable number of individual overloads of a high threshold have occurred within a defined period of time, or a power
condition, where the measured power exceeds a high power threshold.

Under-Range Condition: An under-range condition exists when the AGC is required to increase the gain. This can either be a peak
condition, where a lower threshold is not exceeded a programmable number of times within a defined period of time, or a power
condition, where the measure power does not exceed a low power threshold.

RECEIVER DATA PATH

Figure 72 shows the Rx data path and gain control blocks. The receivers have front end attenuators prior to the mixer stage that are used
to attenuate the signal in the RF domain to ensure the signal does not overload the receiver chain. In the digital domain, there is the
option of digital attenuation or digital gain. This digital gain block is also utilized for gain compensation.

The receiver chain also has multiple observation elements that can monitor the incoming signal. These can be used in either MGC or
AGC modes. Firstly, an Analog Peak Detector (APD) exists prior to the ADC. Being in the analog baseband, this peak detector sees
signals first, and also has blocker signal visibility, which can overload the ADC but be filtered as they progress through the digital chain.
Note that the APD is located after the TIA filter. The second peak detector is called the HB2 overload detector, so called because it
monitors the data at the HB2 filter in the receiver chain.

A power measurement detection block is also provided in the receiver chain, which takes the rms power of the received signal over a
configurable period. The power measurement location in the data path is user configurable.

This device can also control an external gain element through use of the receiver gain table and the GPIO_ANA pins.

Slicer Qutputs
to BEP

41444

External Gain Front End
Element Attenuator

I FLOATING POINT L
FORMATTER

POWER
MEASUREMENT
BLOCK.

OVERLDAD
DETECTOR

GAIN CONTROL BLOCK
GPIOs (AGC, MGC)

A
1
1
1
1
1
[

22770-073

SPI GPIOs

Figure 72. Rx Data Path and Gain Control Blocks

The gain control block is shown with multiple inputs providing information. Overload (Peak) detectors are shown in red, while the power
measurement block is shown in blue. The gain control block controls the gain of the signal chain using a gain table.

This table is user programmable, and each row of the table provides a combination of front end attenuator, external gain element (if used)
and digital gain settings. Based on the row of this table selected, either by the user in MGC mode, or automatically by the device in AGC
mode, the gain control block updates the variable gain elements depicted by the green arrows. Finally, the user can control the gain
control block using the SPI bus (configuration of AGC, MGC) and GPIOs.

Table 149 shows a sample gain table.

Table 149. Sample Rows from the Default Rx Gain Table

Gain Table Front-End External Gain TIA/ADC Signed Digital Phase
Index Attenuator[7:0] Control[3:0] Gain Gain/Attenuation[10:0] Offset
255 0 0 0 0 0
254 14 0 0 0 0
253 28 0 0 0 0

The gain table index is the reference for each unique combination of gain settings in the programmable gain table. It is possible to have
different gain tables for each receiver, though typically the same one is used. The possible range of the gain table is 255 to 0, however
typically only a subset of this range is used. The gain table must be assigned in order of decreasing gain, starting with the highest gain in
the maximum gain index, such as 255, and the lowest gain in the minimum gain index.

Rev. PrA | Page 135 of 267

UG-1727

The front end attenuator has an 8-bit control word. The amount of attenuation applied depends on the value set in the front-end
attenuator column of the selected gain table index. The following equation provides an approximate relationship between the internal
attenuator and the front-end attenuation value programmed in the gain table, N:

Attenuation (dB) =201 256N
enuation = (o) _—
810 256

The external gain control column controls two analog GPIOs for each Rx. Table 150 shows which analog GPIOs are used for which Rx.

Table 150. Analog GPIOs for External Gain Element Control

Receiver GPIO Pins to Control External Gain Element
Rx1 GPIO_ANA[1:0]
Rx2 GPIO_ANA[3:2]
Rx3 GPIO_ANA[5:4]
Rx4 GPIO_ANA[7:6]

These analog GPIOs must be enabled as outputs and set for external gain functionality. The 2-bit value programmed is directly related to
the status of these GPIO pins, for example if the external gain word of the Rx1 gain table is programmed to 3 in selected gain index, then
analog GPIOO0 and 1 is high.

EXTERNAL
ATTENUATOR

GPIO_ANA_0
GPIO_ANA_1

22770-074

Figure 73. GPIO Control of an External Gain Element to Rx1

The signed digital gain/attenuation is used to apply gain or attenuation digitally. The range of the digital gain is 0 to 50 dB. The range of
the digital attenuation is 0 to 18 dB. The resolution of the steps is 0.05 dB. As an example, a value of 14 results in 0.7 dB gain, and a value
of —14 results in 0.7 dB of attenuation.

The TIA/ADC gain must be zero in all rows because this functionality is not used.
GAIN CONTROL MODES
The gain control mode is selected with the following API function.

adi_adrv9025_RxGainCtrIModeSet

adi_adrv9025_RxGainCtrIModeSet(adi_adrv9025_Device_t* device, adi_adrv9025_RxAgcMode_t
gainMode[], uint8_t arraySize)

Description

Selects the gain control mode.

Parameters

Table 151.

Parameter Description

*device Pointer to device structure.

gainMode An array of type adi_adrv9025_RxAgcMode_t indicating which gain mode is to be used for which Rx channel
arraySize The size of the array

Rev. PrA | Page 136 of 267

UG-1721

Each adi_adrv9025_RxAgcMode_t instance contains agcMode, an enum selecting the chosen gain mode. The possible options are shown
in Table 152.

Table 152. Definition of adi_adrv9025_RxAgcMode_e

Enum Gain Mode
ADI_ADRV9025_MGC Manual Gain Mode
ADI_ADRV9025_AGCSLOW Automatic Gain Control Mode
ADI_ADRV9025_HYBRID Not currently supported
rxChannelMask

This selects the channels upon which to enable this gain control mode. It is a bit mask with each bit corresponding to a channel, [D0] =
Rx1, [D1] = Rx2, [D2] = Rx3, [D3] = Rx4. Setting the rxChannelMask = 15 means that all Rxx are configured with the same agcMode.

MANUAL GAIN CONTROL (MGC)

The gain control block applies the settings from the selected gain index in the gain table. In MGC mode, the baseband processor is in
control of the selecting the gain index. There are two options: 1) API commands; and 2) pin control. By default, if MGC is chosen the part
is configured for API commands. The following commands can be used when in API command mode.

adi_adrv9025_RxGainSet

adi_adrv9025 RxGainSet(adi_adrv9025 Device_ t* device, adi_adrv9025 RxGain_t rxGain[], uint8_t
arraySize)

Description

Selects the gain index in the gain table when in API command mode.

Parameters

Table 153.

Parameter | Description

*device Pointer to device structure.

rxGain An array of type adi_adrv9025_RxGain_t that determines the gain setting and the channels using the chosen setting
arraySize The size of the array

Each adi_adrv9025_RxGain_t instance contains:

e gainIndex—the selected gain index from the gain table

e rxChannelMask—this selects the channels upon which to apply the gainIndex setting. It is a bit mask with each bit corresponding to
a channel, [DO] = Rx1, [D1] = Rx2, [D2] = Rx3, [D3] = Rx4. Setting the rxChannelMask = 15 applies this gain index to all four
receivers.

adi_adrv9025_RxGainGet

adi_adrv9025_RxGainGet(adi_adrv9025_Device_t* device, adi_adrv9025_RxChannels_e rxChannel,
adi_adrv9025 RxGain_t *rxGain)

Description

Reads back the gain index in the gain table for the selected channel when in API command mode.

Parameters

Table 154.

Parameter | Description

*device Pointer to device structure.

rxChannel | Anenum as shown in Table 155.

*rxGain Of type adi_adrv9025_RxGain_t, pointer to the current gain of the channel and a mask indicating which gain of the channel is
contained within the structure.

Rev. PrA | Page 137 of 267

UG-1727

Table 155. Definition of adi_adrv9025_RxChannels_e

Receiver ENUM

Rx1 ADI_ADRV9025_RX1
Rx2 ADI_ADRV9025_RX2
Rx3 ADI_ADRV9025_RX3
Rx4 ADI_ADRV9025_RX4

The pin control MGC mode is useful when real time control of gain is required. In this mode 2 GPIO pins per receiver are used, two for
each receiver, one increasing, the other decreasing the gain table index. The user specifies both the increment and decrement step size in
terms of number of gain indices. A pulse is applied to the relevant GPIO pin to trigger an increment of decrement in gain as shown in
Figure 74. This pulse must be held high for at least 2 AGC clock cycles for a gain change to occur (see the AGC Clock and Gain Block
Timing section for details).

*Rx1 *Rx3
GPIO1.8V a GPIO1.8V e

L{) GPIO1.8V b GPIO1.8V f ()%L
h—xz() GPIO1.8V ¢ GPIO1.8V g ()+R+4
+Rx3 +m4

—(l) GPI101.8V d GPIO1.8V h (I)i

Figure 74. MGC Pin Mode: GPIO1.8V/(a-h) Represent Any of GPIOO-15

adi_adrv9025_RxGainPinCtrICfgSet

adi_adrv9025_RxGainPinCtriICfgSet(adi_adrv9025_Device_t* device, adi_adrv9025 RxGainPinCfg_t
*rxGainPinCtriICfg, adi_adrv9025_RxChannels_e rxChannel)

22770-075

Description

Configures pin control MGC mode.

Parameters

Table 156.

Parameter Description

*device Pointer to device structure.

rxChannel An enum indicating which Rx channel to configure as shown in Table 155.

*rxGainPinCtrlCfg A configuration structure pointer for the pin control MGC mode containing members shown in Table 157.

Table 157. Definition of ADRV9025_RxGainCtrlPin_t

Member Description

uint8_t incStep Increment in gain index applied when the increment gain is pulsed. Acceptable values for this
parameter are 0 to 7, however one is added to what is programmed into this parameter, resulting in
step sizes of 1 to 8.

uint8_t decStep Decrement in gain index applied when the decrement gain is pulsed. Acceptable values for this
parameter are 0 to 7, however one is added to what is programmed into this parameter, resulting in
step sizes of 1 to 8.

adi_adrv9025_GpioPinSel_e GPIO used to increment gain. Any of GPIO0-15 can be used. Acceptable values:
rxGainlncPin ADI_ADRV_9025_GPIO00 to ADI_ADRV9025_GPIO15.
adi_adrv9025_GpioPinSel_e GPIO used to decrement gain. Any of GPIO0-15 can be used. Acceptable values:
rxGainDecPin ADI_ADRV_9025_GPIO00 to ADI_ADRV9025_GPIO15.

Rev. PrA | Page 138 of 267

UG-1721

The peak detector outputs can be monitored using GPIO pins by configuring them as outputs that are activated when an upper or lower
threshold has been exceeded by the APD or HB2 detectors. More details can be found in the General-Purpose Input/Output
Configuration section of this document. More details on what causes an over-range condition are provided in the Peak Detect Mode
section of this guide.

AUTOMATIC GAIN CONTROL

In Automatic Gain Control (AGC) mode, a built-in state machine automatically controls the gain based on a user defined configuration.
The AGC can be configured in one of two modes:

e Peak Detect mode, where only the peak detectors are used to make gain changes.
e Peak/Power Detect mode, where information from the power detector and the peak detectors are used to make gain changes.

The agcPeakThreshGainControlMode parameter of the AGC configuration structure adi_adrv9025_AgcCfg_t is used to select the
individual modes of the AGC operation as shown in Table 158.

Table 158. agcPeakThreshGainControlMode Settings

agcPeakThreshGainControlMode Description

0 AGC in peak/power mode
1 AGC in peak detect mode
Peak Detect Mode

In this mode, the peak detectors alone are used to inform the AGC to make gain changes. The APD and HB2 detector both have a high
threshold and a low threshold. These are set with the parameters apdHighThresh, apdLowThresh, hb2HighTresh and
hb2UnderRangeHighThresh. These levels are user programmable, as is the limit for the number of times a threshold needs to be crossed
for an over range or under range condition to be flagged. The high thresholds are used as limits on the incoming signal level and typically
are set based on the maximum input of the ADC. When an over range condition occurs, the AGC reduces the gain (gain attack).

The low thresholds are used as lower limits on signal level. When the signal peaks are not exceeding the lower threshold, then this is
indicative of a low power signal, and the AGC increases gain (gain recovery). This is termed an under range. The AGC stable state (where
it does not adjust gain) occurs when neither an under range nor over range condition is occurring (the signal peaks are less than the high
threshold and greater than the lower level).

Each overrange/underrange condition has its own attack and recovery gain step as shown in Table 159.

Table 159. Peak Detector Gain Steps

Overload/Under Range Gain Step

apdHighThresh over range Reduce gain by apdGainStepAttack
apdLowThresh under range Increase gain by apdGainStepRecovery
hb2HighThresh over range Reduce gain by hb2GainStepAttack
hb2UnderRangeHighThresh under range Increase gain by hb2GainStepHighRecovery

An overrange condition occurs when the high thresholds have been exceeded a configurable number of times within a configurable
period. An under range condition occurs when the low thresholds have not been exceeded a configurable number of times within the
same configurable period. These counters make the AGC more or less sensitive to peaks in the input signal, ensuring that a single peak
exceeding a threshold does not necessarily cause the AGC to react, allowing the user to trade off bit-error rate with signal to noise ratio.
Table 160 outlines the counter parameters for the individual overload/under range conditions.

Table 160. Peak Detector Counter Values

Overload/Under Range Counter

apdHighTresh over range apdUpperThreshPeakExceededCnt
apdLowThresh under range apdLowerThreshPeakExceededCnt
hb2HighThresh over range hb2UpperThreshPeakExceededCnt
hb2UnderRangeHighThresh under range hb2UnderRangeHighThreshExceededCnt

Rev. PrA | Page 139 of 267

UG-1727

The AGC uses a gain update counter to time gain changes, with gain changes made when the counter expires. The counter value, and
therefore the time spacing between possible gain changes, is user programmable through the agcGainUpdateCounter parameter. The user
specifies the period, in AGC clock cycles, that gain changes can be made. Typically, this might be set to frame or sub-frame boundary
periods. The total time between gain updates is the combination of the agcSlowLoopSettlingDelay and the agcGainUpdateCounter.

Once the gain update counter expires, all the peak threshold counters are reset. The gain update period is therefore a decision period. The
overload thresholds and counters are therefore set based on the number of overloads considered acceptable for the application within the
gain update period.

Figure 75 shows an example of the AGC response to a signal vs. the APD threshold levels. For ease of explanation, the APD is considered
in isolation. The green line is representative of the peaks of the signal. Initially the peaks of the signal are within the apdHighThresh and
apdLowThresh. No gain changes are made. An interferer suddenly appears whose peaks now exceed apdHighThresh. On the next expiry
of the gain update counter (assuming a sufficient number of peaks occurred to exceed the counter), the AGC decrements the gain index
(reduces the gain) by apdGainStepAttack. This is not sufficient to obtain the signal peaks within the threshold levels, and thus the gain is
decremented once more, with the peaks now between the two thresholds. The gain is stable in this current gain level until the interfering
signal is removed, and the peaks of the signal are below the apdLowThresh, resulting in an under range condition. The AGC increases
gain by the apdGainStepRecovery at the next expiry of the gain update counter, continuing to do so until the peaks of the signal are
within the two thresholds once more.

Gain Update
Period

1)
|
Gain Decrement |
(apdGainStepAttack) |

Gain Decrement
(apdGainStepAttack)

apdHighThresh

Removed

— Interferer
Present

Gain Increment

1
|
|
|
I
|
1
|
Interferer I
|
|
|
|
|
|
|
|
| (apdGainStepRecovery)

|
Gain Increment |
(apdGainStepRecovery)
|
| |

|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|

22770-076

Figure 75. APD Thresholds and Gain Changes Associated with Underrange and Overrange Conditions

Rev. PrA | Page 140 of 267

UG-1721

Figure 76 shows the same scenario but from the viewpoint of the HB2 detector considered in isolation.

i i I I i] Gain Update
I | [| | Period
« >
I Gain Decrement | I I |
(hb2GainStepAttack)			
	Gain Decrement		
) : (hb2GainStepAttack) H			
f f f f .			
l		1 : hb2HighThresh	

I I | I Interferer | I
			Removed	
		I	I	
		I	I	

G | | | | | |

— Interferer
—] | | | |
Present
| I | I I Gain Increment
| | | | | (hb2GainStepHighRecovery)
| | | |
| | | | |
| | | | Gain Increment,
hb2GainstepHighRecovery)

1 1 1 1

22770077

Figure 76. HB2 Thresholds and Gain Changes Associated with Under Range and Over Range Conditions

It is possible to enable a fast attack mode whereby the AGC is instructed to reduce gain immediately when an over range condition
occurs, instead of waiting until the next expiry of the gain update counter using agcGainChangelfThreshHigh. This parameter has
independent controls for the APD and HB2 detectors. Values from 0-3 are valid as shown in Table 161.

Table 161. agcGainChangelfThreshHigh Settings

agcChangeGainlfThreshHigh[1:0] Gain Change Following APD Overrange Gain Change Following HB2 Overrange
00 After expiry of agcGainUpdateCounter After expiry of agcGainUpdateCounter

01 Immediately After expiry of agcGainUpdateCounter

10 After expiry of agcGainUpdateCounter Immediately

11 Immediately Immediately

Rev. PrA | Page 141 of 267

UG-1727

Figure 77 shows how the AGC reacts when the agcChangeGainIfThreshHigh is set for APD. In this case when the interferer appears, the
gain is updated as soon as the number of peaks exceed the peak counter. It does not wait for the next expiry of the gain update counter. A
number of gain changes can be made in quick succession providing a much faster attack than the default operation. The assumption here
is that if the ADC is overloaded then it is best to decrease the gain quickly rather than wait for a suitable moment in the received signal in
order to change the gain.

i Gain Update
| Period
Gain Decrement I

1)
|
|
(apdGainStepAttack) |
| |

|

Gain Decrement
(apdGainStepAttack)

apdHighThresh

Removed

Signal Leve

I
I
|
|
|
|
|
|
|
—_— Interferer |
|
|
|
|
|
|
|
|
I

|
|

|

I

I

|

1

|

Interferer |

|

|

I

|

|

|

Present l
I

|

Gain Increment
(apdGainStepRecovery)

(apdGainStepRecovery)
|

|
‘ Gain Increment |

I
I
I
I
I
I
f
|
I
I
I
I
I
I
|
|
|
|
I
I
I
I
I
|
I

22770-078

Figure 77. APD Gain Changes with Fast Attack Enabled

Figure 78 shows the same scenario but from the viewpoint of agcChangeGainIfThreshHigh being set for HB2.

Gain Update
Period
R E——

1
|
Gain Decrement |
(hb2GainStepAttack) |
|
|

|
Gain Decrement

]
|
|
|
|
I
(hb2GainStepAttack) t

; hb2HighThresh

1
|
|
|
|
I
1
|
|
| Removed
|
|
|
|
|

Signal Level

P Interferer
Present

Gain Increment

I
|
|
I
I
|
1
|
Interferer |
|
|
I
|
|
|
I
I
| (hb2GainStepHighRecovery)

|

Gain Increment,
hb2GainStepHighRecovery)
|

I
I
I
I
I
I
f
|
I
I
I
I
I
I
|
|
|
|
I
I
I
I
I
|
I

1 t
| |
I |
I |
I |
I |
I |
I |
I |
I |
I |
I |
I |
I |
I |
I |
I |
I |
I 1)

22770-079

Figure 78. HB2 Gain Changes with Fast Attack Enabled

Rev. PrA | Page 142 of 267

UG-1721

It is also possible to enable a fast recovery mode whereby a gain recovery event occurs at the expiry of the gain update period as shown in
Figure 79. This functionality is enabled with the ableFastRecoveryLoop parameter. This fast recovery mode enables the HB2 overload
detector. The operation is illustrated in Figure 80. When the signal level falls below hb2UnderRangeLowThresh, the gain is incremented
by hb2GainStepLowRecovery following the expiry of the gain update period. Note that in the fast recovery mode the
agcUnderRangeLowInterval is used instead of the gain update counter to set the gain update period. After sufficient gain increases are
implemented to bring the signal level above hb2UnderRangeLowThresh, the gain is incremented by hb2GainStepMidRecovery after the
expiry of a number of gain update periods as set by hb2GainStepMidRecovery. Finally, when the signal level is increased above
hb2UnderRangeMidThresh, the gain is incremented by hb2GainStepHighRecovery following the expiry of a number of gain update
periods as set by agcUnderRangeHighInterval. The multiple threshold and interval parameters allow for a gain recovery whereby as the
wanted signal level is approached, the magnitude of the gain adjustments is reduced and the time interval between gain changes is
increased. However recovery events remain periodic as shown in Figure 79 because all gain updates occur at the expiry of the gain update
period.

GAIN UPDATE COUNTER 5AGC GAIN UPDATE COUNTER 5AGC
OR SLOW LOOP CLOCK OR SLOW LOOP CLOCK

LOW UNDER-RANGE INTERVAL SETTLING DELAY CYCLES | LOW UNDER-RANGE INTERVAL SETTLING DELAY CYCLES

Y A

GAIN GAIN o
RECOVERY RECOVERY 8
EVENT EVENT S

Figure 79. AGC Sequence with HB2 Detector in Fast Recovery Mode

hb2HighThresh

Sianal Level

agcUnderRangeHighinterval } Gain Increment
(hb2GainStepHighRecovery)

Gain Increment
(hb2GainStepMidRecovery)

hb2UnderRangeMidThresh

agcUnderRangeMidinterval

hb2UnderRangeLowThresh

Gain Increment
(hb2GainStepLowRecovery)

22770-081

agcUnderRangeLowlinterval
Figure 80. AGC operation with HB2 Detector in Fast Recovery Mode

Rev. PrA | Page 143 of 267

UG-1727

Priorities and Overall Operation

It is highly recommended that the apdHighThresh and hb2HighThresh are set to an equivalent dBES value. Likewise, it is highly
recommended that the apdLowThresh and the hb2UnderRangeHighThresh are set to equivalent values. This equivalence is approximate
because these thresholds have unique threshold settings that are not exactly equal. This section discusses the relevant priorities between
the detectors and how the AGC reacts when multiple threshold detectors have been exceeded. Table 162 shows the priorities between the
detectors when multiple overranges occur.

Table 162. Priorities of Attack Gain Steps

apdHighThresh Over Range hb2HighThresh Over Range Gain Change

No No No Gain Change

No Yes Gain Change by hb2GainStepAttack
Yes No Gain Change by apdGainStepAttack
Yes Yes Gain Change by apdGainStepAttack

For recovery, the number of thresholds is dependent on whether fast recovery is enabled or not. Considering the fast recovery scenario,
the priority of the thresholds is:

hb2UnderRangeLowThresh underrange condition
hb2UnderRangeMidThresh underrange condition
hb2UnderRangeHighThresh underrange condition
apdLowThresh underrange condition

L .

Upon one under range condition, the AGC changes the gain by the corresponding gain step size of this condition. However, if multiple
conditions occur simultaneously, then the AGC prioritizes based on the priorities indicated; that is, if hb2UnderRangeLowThresh is
reporting an under range condition then the AGC adjusts the gain by hb2GainStepLowRecovery with two exceptions.

The apdLowThresh has priority in terms of preventing recovery. If apdLowThresh reports an over range condition (sufficient signal peaks
have exceeded its threshold in a gain update counter period), then no further recovery is allowed. Configure apdLowThresh and
hb2UnderRangeHighThresh to be as close to the same value of dBFS. However, assuming some small difference between the thresholds,
then as soon as apdLowThresh is exceeded, recovery no longer occurs. The reverse is not true, hb2UnderRangeHighThresh does not
prevent the gain recovery towards the apdLowThresh. Given the strong recommendation that apdLowThresh and
hb2UnderRangeHighThresh be set equally, then a condition whereby apdLowThresh is at a lower dBES level to
hb2UnderRangeLowThresh or hb2UnderRangeMidThresh does not occur.

Another exception is if the recovery step size for a detector is set to zero. If so, the AGC makes the gain change of the highest priority
detector with a non-zero recovery step. Figure 81 provides a flow diagram of the decisions of the AGC when recovering the gain in peak
detect mode.

Rev. PrA | Page 144 of 267

UG-1721

Gain Recovery

apdLowThresh
under-range

IF
hb2UnderRange
LowThresh
under-range &
hb2GainStepLow
Recovery # 0

IF
hb2UnderRange
MidThresh
under-range &
hb2GainStepMid
Recovery =0

Y
Recover Gain by
hb2GainStepLowRecovery

IF
hb2UnderRange Y _
HighThresh Recover Gain by
under-range & hb2GainStepMidRecovery
hb2GainStepHigh

Recovery = 0

IF

apdLowThresh Y
under-range & Recover Gain by
apdGainStep hb2GainStepHighRecovery

Recovery =0

Y

Recover Gain by
apdGainStepRecovery

END

22770-082

Figure 81. Flow Diagram for AGC Recovery in Peak Detect AGC Mode

Power Detect Mode

In this mode, the power detector measurement is also used to control the gain of the Rx chain. In the event of an over-range condition,
then both the peak detectors and the power detector can instantiate a gain decrement. In the event of an under-range, only the power
detector can increment the gain. The power detector changes gain solely at the expiry of the gain update counter. The peak detectors can
be set in one of two modes (depending on the setting of agcGainChangelfThreshHigh) whereby the AGC waits for the gain update
counter to expire before initiating a gain change, or immediately updates the gain as soon as the overrange condition occurs (see Figure 75 to
Figure 80).

The power measurement block provides the RMS power of the receiver data at the measurement location. It can be configured to monitor
the signal in one of three locations as shown in Figure 72. In power detect mode, the AGC compares the measured signal level to
programmable thresholds which provide a second-order control loop, whereby gain can be changed by larger amounts when the signal
level is further from the target level, and make smaller gain changes when the signal is closer to the target level.

Rev. PrA | Page 145 of 267

UG-1727

Figure 82 shows the operation of the AGC when using the power measurement detector. Considering the power measurement detector in
isolation from the peak detectors, the AGC does not modify the gain when the signal level is between overRangeLowPowerThresh and
underRangeHighPowerThresh. This range is the target range for the power measurement.

When the signal level goes below underRangeLowPowerThresh, the AGC waits for the next gain update counter expiry and then
increments the gain by underRangeLowPowerGainStepRecovery. When the signal level is greater than underRangeLowPowerThresh but
below underRangeHighPowerThresh, the AGC increments the gain by underRangeHighPowerGainStepRecovery. Likewise, when the
signal level goes above overRangeHighPowerThresh, the AGC decreases the gain by overRangeHighPowerGainStepAttack, and when the
signal level is between overRangeHighPowerThresh and overRangeLowPowerThresh, the AGC decreases the gain by
overRangeLowPowerGainStep Attack.

Gain Update

I Period
-+

[
B

overRangeHi

t Gain by
PowerGainStepAttack

Gain Decrement

I

|

[

|
Ovchangcl—lﬁghpowerThre sh

I

Decrement Gain by

overRangelowPowerGainStepAttack

Gain Decrement

]

overRangeLowPowerThresh !
|

|

— I
Received signal |

Level Change Received signal

Level Change

|
l
|
|
|
|
|
|
|
|
I

underRang c[nghPowchhre sh
I

|
underRangeLowPowerThresh

[

|

Increment Gain by

[Gain Increment

T underRangeHighPowerGainStepRecovery
|

Gain Increment |

Power Power Power Inc

| Meas Meas Mea:

.
Duration | Duration | Duration l
| | [

Figure 82. PMD Thresholds and Gain Changes for Under-range and Over-range Conditions

underRangelLow

|
|
|
|
|
I
|
|
|
|
|
I
|
|
|
|
|

I
|
|
|
|
I
|
|
|
|
|

22770-083

It is possible for the AGC to get contrasting requests from the power and peak detectors. An example is a blocker that is visible to the
analog peak detector but is quite significantly attenuated by the power measurement block. In this case the APD can be requesting a gain
decrement, while the power measurement block can be requesting a gain increment. The AGC has the following priority scheme in power
detect mode:

APD Opverrange (upper level)
HB2 Overrange (upper level)
APD lower level peak exceeded
HB2 lower level peak exceeded
Power measurement

R

In this example, the gain is decremented because the APD overrange has a higher priority than the power measurement. Of note are the
APD and HB2 lower level overloads. In peak detect mode, the lower level thresholds for these detectors were used to indicate an under-
range condition which caused the AGC to increase the gain. In power detect more, these detectors are not used for gain recovery, but can
be used to control gain recovery by setting the API parameter, agcLowThreshPreventGain. If this parameter is set, and if the signal level is
exceeding a lower level threshold, the AGC is prevented from increasing the gain regardless of the power measurement.

This prevents an oscillation condition that may otherwise occur to a blocker visible to a peak detector but filtered before the power
measurement block. In such a case, the peak detector can cause the AGC to decrease gain. It does this until the blocker is no longer
exceeding the defined threshold. At this point, the power measurement block can request an increase in gain and does so until the peak
threshold of the detector is exceeded. This decreases gain. By using these lower level thresholds, the AGC is prevented from increasing
gain as the signal level approaches an overload condition, providing a stable gain level for the Rx chain under such a condition.

Rev. PrA | Page 146 of 267

UG-1721

AGC CLOCK AND GAIN BLOCK TIMING

The AGC clock is the clock which drives the AGC state machine. A number of the programmable counters used by the AGC are clocked
at this rate. Its maximum frequency is 500 MHz. The clock is the greatest 2¥ multiple of the IQ rate less than 500 MHz. For example, for
an Rx profile with an IQ output rate of 245.76 MSPS, the AGC clock is 491.52 MHz.

The AGC state machine contains 3 states: Gain Update Counter, followed by the Slow Loop Settling (SLS) delay, and a constant 5 AGC
clock cycles delay. The total time between gain updates (gain update period) is a combination of agcSlowLoopSettlingDelay and 5 AGC
clock cycles.

Immediate
Gain Attack
Event

YES

AGC Gain i
Attack !
AGC Gain
Attack
A4
Delayed
Gain Attack
Event
A
/ § _\\ [\
/ \ / \
’/ \\ ,"‘ Gain \‘-\
Vi \\ | Change \
/ \,w"(ounter/SLS‘\.

Gain Gain
Recovery Recovery 8
Event Event 5

Figure 83. Gain Update Period

Figure 83 outlines the operation of the AGC state machine. The diagram outlines possible gain change scenarios rather than a practical
example of AGC operation. The possible gain change scenarios are described as follows:

e AGC Gain Attack within gain update counter, but more than an SLS delay before the gain update counter expiry. Because slow loop
settling (SLS) is typically several orders of magnitude smaller than gain update counter, this is the most common gain decrement
scenario.

e AGC Gain Attack within gain update counter, but within a SLS delay before the gain update counter expiry. This is a special case, but
rarely occurs in applications per the reasoning described in the previous scenario).

e AGC Gain Recovery at the end of the gain update counter. Note that when fast recovery is enabled, the gain update counter is
substituted with the low under range interval, per Figure 79.

A gain attack may occur within the gain update counter period when fast attack is enabled. A gain recovery event may only occur at the
end of gain update counter period. After a gain attack, a gain change counter with a value equal to the SLS delay is started. No further
gain attacks are possible while in this counter is running. This allows the minimum time to be set between gain changes. However the
gain change counter also prevents the AGC from moving from the gain update counter state to the slow loop settling delay state.
Therefore if a gain attack occurred very close to end of the gain update counter state, the gain change counter delays the start of the SLS
state and shift the gain recovery event. To prevent this happening and maintain a perfectly periodic gain recovery event, gain attacks are
prevented from happening towards the end of gain update counter state as shown in Figure 83. If a gain attack happens in this period, it is
delayed until the start of the next gain update counter state. This can cause gain attacks to be held off for up to 2x SLS delay, therefore it is
recommended to keep SLS delay as short as possible to minimize the gain attack delay. Note that it is possible to disable this blocking

Rev. PrA | Page 147 of 267

UG-1727

feature, thus allowing gain attacks to occur anywhere within the gain update counter state, however the periodicity of the gain recovery
event is no longer guaranteed as gain attacks towards the end of the gain update counter state causes the gain recovery event to be delayed.

At the expiry of the gain update counter, all measurement blocks are reset and any peak detector counts is reset back to zero. When the Rx
is enabled, the counter begins. This may mean that its expiry is at an arbitrary phase to the slot boundaries of the signal. The expiry of the
counter can be aligned to the slot boundaries by setting the parameter agcEnableSyncPulseForGainCounter. While this bit is set, the AGC
monitors a GPIO pin to find a synchronization pulse. This pulse causes the reset of the counter at this point in time. Therefore, if the user
supplies a GPIO pulse time aligned to these slot boundaries, the expiry of the counter is aligned to slot boundaries. Any of GPIO_0-15
can be used for this purpose.

For example, considering 100 ps gain update period and a 491.52 MHz AGC clock, a total of 49,152 AGC clocks exist in the gain update
period:

Gain Update Period (AGC Clocks) = 491.52 MHz x100 ps = 49,152

As noted, the full gain update period is the sum of the agcGainUpdateCounter, the agcSlowLoopSettlingDelay and 5 clock cycles. If the
agcSlowLoopSettlingDelay is set to 4, the gain update counter must be set to 49,139.

Gain Update Period (AGC Clocks) = agcGainUpdateCounter x2(agcSlowLoopSettingDelay) + 5
Gain Update Period (AGC Clocks) = 49,139 +2(4) + 5 = 49,152

When Rx is enabled, the AGC can be kept inactive for a number of AGC clock cycles by using agcRxAttackDelay. This means the user can
specify one delay for AGC reaction when entering Rx mode, and another for after a gain change occurs (agcSlowLoopSettlingDelay).

ANALOG PEAK DETECTOR (APD)

The analog peak detector is located in the analog domain following the TIA filter and prior to the ADC input (see Figure 72). It functions
by comparing the signal level to programmable thresholds. When a threshold has been exceeded a programmable number of times in a
gain update period, then the detector flags that the threshold has been overloaded.

apdHighThresh (mV)

apdLowThresh (mV)

—
22770085

Figure 84. Analog Peak Detector Thresholds

There are two APD thresholds as shown in Figure 84. These thresholds are contained in the agcPeak API structure, apdHighThresh and
apdLowThresh, respectively.

Rev. PrA | Page 148 of 267

UG-1721

To determine the setting of the APD thresholds in terms of the closest possible setting in terms of dBFS of the ADC (ADCABEFS), the
following equations can be used:

SSOXIOM—I6
apdHighThresh =round T 0

850 x IOM—I6
apdLowThresh =round "

Note that the APD is an analog circuit located after the TIA filter. The equations above assume that the TIA does not attenuate the signal,
but the receiver path is typically configured to have some analog roll-off within the pass band compensated by the programmable FIR
filter. The TIA provides filtering that attenuates the signal seen at the APD, which means that a larger signal is required to assert the APD.
There is a known issue with the APD where it is more sensitive to signals near dc (<5 MHz, generally). This increased sensitivity
(typically on the order of 1 dB to 2 dB) is accounted for with the introduction of a secondary digital threshold that prevents the APD from
making a gain change when the input signal is detected in-band. This prevents the sensitivity from causing unnecessary changes to the
gain index. The APD acts mostly as an out-of-band blocker detector.

The APD threshold must be exceeded a programmable number of times within a gain update counter period before an over range
condition occurs. Both the upper and lower thresholds have a programmable counter in the agcPeak API structure, as indicated in Table 163.

Table 163. APD Programmable Threshold Counters

Threshold Counter
Upper Threshold (apdHighThresh) apdUpperThreshPeakExceededCnt
Lower Threshold (apdLowThresh) apdLowerThresPeakExceededCnt

As described in the earlier section on AGC control, the APD is used for both gain attack and gain recovery in peak detect mode. In power
detect mode, the APD is used for gain attack, and is used to prevent overloading during gain recovery. For more details, refer to the
relevant sections of this document.

In AGC mode, the APD has programmable gain attack and gain recovery step sizes.

Table 164. APD Attack and Recovery Step Sizes

Gain Change Step Size
Gain Attack apdGainStepAttack
Gain Recovery apdGainStepRecovery

Step size refers to the number of indices of the gain table the gain is changed. As explained earlier, the gain table is programmed with the
largest gain in the Max Gain Index (typically Index 255), with ever decreasing gain for decreasing gain index. Thus, if the APD gain attack
step size was programmed to 6, then this means that the gain index is reduced by 6 when the apdHighThresh has been exceeded more
than apdUpperThreshPeakExceededCnt times. For example, if the gain index had been 255 before this over range condition, then the
gain index is reduced to 249. The amount of gain reduction this equates to is dependent on the gain table in use. The default table has

0.5 dB steps, which in this example equates to a 3 dB gain reduction upon an APD over range condition.

The APD is held in reset for a configurable amount of time following a gain change to ensure that the receiver path is settled at the new
gain setting before monitoring the paths for over-ranges. This is configured using the agcPeakWaitTime API parameter.

HALF-BAND 2 PEAK DETECTOR

The HB2 peak detector is located in the digital domain at the output of the Half-Band filter 2. It can therefore also be referred to as the
Decimated Data Overload Detector because it works on decimated data. Like the APD detector, it functions by comparing the signal level
to programmable thresholds. It monitors the signal level by observing individual I* + Q* samples (or peak I and peak Q if
hb2OverloadPowerMode = 0) over a period of time and compares these samples to the threshold. If a sufficient number of samples
exceed the threshold in the period of time, then the threshold is noted as exceeded by the detector. The duration of the HB2 measurement
is controlled by hb2OverloadDurationCnt, whereas the number of samples that exceeds the threshold in that period is controlled by
hb2OverloadThreshCnt.

Once the required number of samples exceed the threshold in the duration required, then the detector records that the threshold was
exceeded. Like the APD detector, the HB2 detector requires a programmable number of times for the threshold to be exceeded in a gain
update period before it flags an overrange condition.

Rev. PrA | Page 149 of 267

UG-1727

Figure 85 shows the two-level approach. It shows the gain update counter period, with the time being broken into subsets of time based
on the setting of hb2OverloadDurationCnt. Each of these periods of time is considered separately, and hb2OverladThreshCnt individual
samples must exceed the threshold within hb2OverloadDurationCnt for an overload to be declared. These individual samples greater
than the threshold are shown in red, while those less than the threshold are shown in green. Two examples are shown, one where the
number of samples exceeding the threshold was sufficient for the HB2 peak detector to declare an overload (this time period is shown as
red in the gain update counter timeline), and a second example where the number of samples exceeding the threshold was not sufficient
to declare an overload (this time period is shown as green in the gain update counter timeline). The number of overloads are counted, and
if the number of overloads of the hb2HighThresh exceed hb2UpperThreshPeakExceededCnt in a gain update counter period, then an
over range condition is called. Likewise, if the number of overloads of the hb2UnderRangeHighThresh does not exceed
hb2LowerThreshPeakExceededCnt, then an under-range condition is called.

hb20verloadDurationCnt hb20verloadDurationCnt

hb20verloadThreshCnt
Exceeded

hb20verloadThreshCnt
Mot Exceeded

< >

22770-086

agcGainUpdateCounter
Figure 85. HB2 Detector Two-Level Approach for an Overload Condition

The HB2 detector has a number of programmable thresholds. Some of these thresholds are only used in the fast recovery mode of the
peak detect AGC configuration, as summarized in Table 165.

Table 165. HB2 Overload Thresholds

HB2 Threshold Usage

hb2HighThresh Used for gain attack in both peak and power detect AGC modes.

hb2UnderRangeHighThresh | Used for gain recovery in peak detect AGC mode. In power detect AGC mode it is used to prevent overloads
during gain recovery.

hb2UnderRangeMidThresh | Used only when the fast recovery option of the peak detect AGC mode is being utilized.
hb2UnderRangeLowThresh | Used only when the fast recovery option of the peak detect AGC mode is being utilized.

For more details of how these thresholds are used by the AGC, refer to the relevant sections of the AGC overview in this document
(specifically Figure 76, Figure 78 and Figure 80).

The thresholds are related to an ADC dBFS value using the following equations:

(hthigthst
hb2HighThresh =16,384x10° %

(thUnderRangeHigthFS)
hb2UnderRangeHighThresh =16,384 x10 20
(thUnderRangeMiddBFS)
hb2UnderRangeMidThresh =16,384 x10 20
[thUnderRangeLadeFS)
hb2UnderRangeLowThresh =16,384 x10 20

Each threshold has an associated counter such that an over-range condition is not flagged until the threshold has been exceeded this
amount of times in a gain update period.

Rev. PrA | Page 150 of 267

UG-1721

Table 166. Gain Steps for HB2 Over-range and Underrange Conditions

HB2 Threshold Counter

hb2HighThresh hb2UpperThreshPeakExceededCnt
hb2UnderRangeHighThresh hb2UnderRangeHighThreshExceededCnt
hb2UnderRangeMidThresh Hb2UnderRangeMidThreshExceededCnt
hb2UnderRangeLowThresh Hb2UnderRangeLowThreshExceededCnt

In AGC mode, the HB2 has programmable gain attack and gain recovery step sizes.

Table 167. HB2 Attack and Recovery Step Sizes

Gain Change Step Size

Gain Attack hb2GainStepAttack

Gain Recovery (hb2UnderRangeHighThresh) hb2GainStepHighRecovery
Gain Recovery (hb2UnderRangeMidThresh) hb2GainStepMidRecovery

Gain Recovery (hb2UnderRangeLowThresh) hb2GainStepLowRecovery

The HB2 peak detector is held in reset for a configurable amount of time following a gain change to ensure that the receiver path is settled
at the new gain setting before monitoring the paths for over-range conditions. This duration is configured using the agcPeakWaitTime
API parameter.

POWER DETECTOR

The power measurement block measures the RMS power of the incoming signal. It can monitor the signal level at different locations,
namely the HB2 output, the RFIR output and the output of the dc correction block. To choose a location, the powerInputSelect API
parameter is utilized as described in Table 168.

Table 168. Location of the Decimated Power Measurement

powerlnputSelect Value
RFIR Output 0
HB1 1
HB2 2

The number of samples that are used in the power measurement calculation is configurable using the powerMeasurementDuration API
parameter:

PowerMeasDuration (Rx Sample Clocks) = 8 x 2¢overMeasurementDuration

where Rx Sample Clocks is the number of clocks at the power measurement location. It is important that this duration not exceed the gain
update counter. The gain update counter resets the power measurement block and therefore a valid power measurement must be available
before this event. In the case of multiple power measurements occurring in a gain update period, the AGC uses the last fully completed
power measurement, any partial measurements being discarded.

The power measurement block has a dynamic range of 60 dB by default. Power measured in the receiver data path can be readback with
the following command.

adi_adrv9025 RxDecPowerGet

adi_adrv9025_RxDecPowerGet(adi_adrv9025_Device_t* device, adi_adrv9025_RxChannels_e rxChannel,
uintl6_t *rxDecPower_mdBFS)

Description

Readback for receiver power measurement.

Parameters

Table 169.

Parameter Description

*device Pointer to device structure.

rxChannel An enum indicating which Rx channel to configure as shown in Table 155.
*rxDecPower_mdBFS pointer to the variable through which the power measurement reading is returned.

Rev. PrA | Page 151 of 267

UG-1727

APl PROGRAMMING

The API programming sequence for the gain control blocks is detailed in Figure 86. The configuration of these blocks is one of the last
steps before making the device operational. The structures are defined before initialization of the device begins. Once device initialization
has proceeded up to the configuration of the JESD, then the gain control configuration begins.

The following API is used to configure the gain control blocks within the device such as the peak detectors, the power detector, and the
AGC if used. It is required to call this command in applications that require AGC.

adi_adrv9025_AgcCfgSet

adi_adrv9025 AgcCfgSet(adi_adrv9025 Device t* device, adi_adrv9025 AgcCfg_t agcConfig[], uint8_t
arraySize)

Description

Configures the gain control blocks within the device such as peak detectors, power detector, and AGC settings.

Parameters

Table 170.

Parameter Description

*device Pointer to device structure.

agcConfig An array of gain control configuration structures of type adi_adrv9025_AgcCfg_t.
arraySize The number of configuration structures in agcConfigl[].

The composition of the gain control configuration structure is detailed in the next section. Once agcConfig[] has been configured, the
desired gain control mode can be enabled by using the adi_adrv9025_RxGainCtrlModeSet() API function, which was detailed earlier in
this user guide.

The final step is to configure any GPIOs as necessary, be it monitor outputs which allow real-time monitoring of the peak detector
outputs, or GPIO inputs which allow the AGC gain update counter to be synchronized to a slot boundary, or GPIOs to directly control
the gain index. The operation of these has been described above.

DEVICE DATA STRUCTURE

CONFIGURE GAIN TABLE,
AGC STRUCTURES

DEVICE INITIALISATION
UP TO AND INCLUDING
adi_adrv9010_PostMcslnit()

RUN
adi_adrv9010_AgcCfgSet()

RUN
adi_adrv9010_RxGainModeSet()

CONFIGURE GAIN
CONTROL GPIOs

GAIN CONRTROL SETUP
COMPLETE

22770-087

Figure 86. Gain Control Programming Flowchart

Rev. PrA | Page 152 of 267

UG-1721

AGC HOLDOVER FUNCTION

The ADRV9026 AGC uses counters to keep track off any over range or under range events. These events are used to increment a counter
that accumulates and triggers the AGC state machine if it exceeds the desired count value. For a TDD case, the counters get reset every
time the Rx enable goes low. This reset of the over range and under range counters can potentially cause the AGC state machine to never
trigger if the gainUpdateCounter is larger than the Rx TDD slot duration. The AGC holdover function has been implemented to avoid
this situation by preventing the counters from getting reset when Rx enable is toggled.

To enable this function, the user needs to create a stream file using the Transceiver Evaluation Software with the AGC state persist box
checked in the Stream Settings section as shown in Figure 89. Once this box is checked, a stream file can be created with the AGC
holdover function enabled to prevent AGC counter resets during TDD operation.

@ Stream Settings

AGC state persist v Strearn Options

ADC XBar control

CRxADC On

OFx TI& On
P Gain Gpio Pin||INV -
DFD capture trigger ||NV hd |
DPD capture done ||NV M |

Custom Stream S

22770-088

Figure 87. TES Stream Settings Control Window to Enable AGC Holdover
RX GAIN MODE SWITCHING USING GPIO

This feature allows use of a GPIO pin to force Rx gain index changes and move to MGC mode. This feature is beneficial if the user wants
to run a quick RF calibration for the entire Rx signal chain. Such a cal requires a fixed Rx gain index, which is not possible to guarantee if
the part is in AGC mode. The user can change the mode to MGC and then change the Rx gain index, but the duration of this switch is a
few ms, which is not feasible in a 5G NR TDD platform.

When this feature is employed, the user can enable a GPIO pin to change the Rx gain index to a fixed predetermined value and move the
Rx to MGC mode. This action sets the gain index and avoids the issue of the AGC state machine modifying the index. The user can then
run the desired function (for example, RF calibration) and then toggle the GPIO low to restore the original Rx state. When the GPIO is
low, the gain control mode is restored back to AGC to resume normal Rx operation.

To enable Rx GPIO gain mode switching, the use needs to create a stream file using the TES with the Rx Gain Gpio Pin set to the desired
GPIO pin as shown in Figure 88.

@ Stream Settings

AGC state persist Stream Optians

ADC XBar control

OR=ADC On

OR=TI& On
R Gain Gpio P ||5 v
DPFD capture trigger ||N\‘r v|
DPFD capture done ||NV h |

Custom Stream S

22770-089

Figure 88. TES Stream Settings Control Window to Enable Rx Gain Mode Switching using GPIO

Rev. PrA | Page 153 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1727

The user also needs to use the StreamGpioConfigSet API function to unmask the stream GPIO source so as to allow the stream to be

triggered on the desired GPIO. The steps to set up this feature are the following:

1. Generate the stream with the correct GPIO set to the Rx Gain GPIO tag as shown in Figure 88.
2. Use StreamGpioConfigSet function (called during postMcsInit) with the correct GPIO pin selected as shown in the

StreamGpioConfigSet Function section.

3. Set the Rx manual gain to the desired value to be used during the calibration.

By following these steps, the user can more Rx to MGC mode when the GPIO goes high and move back to AGC mode when the GPIO

goes low. Not that this function affects all four Rx channels if utilized.

StreamGpioConfigSet Function

streamGpioCfg = Types.adi_adrv9025_StreamGpioPinCfg_t()

streamGpioCfg.streamGplnput0 =
streamGpioCfg.streamGplnputl =
streamGpioCfg.streamGplnput2 =
streamGpioCfg.streamGplnput3d =
streamGpioCfg.streamGplnput4d =
streamGpioCfg.streamGplnputs =
streamGpioCfg.streamGplnputé =
streamGpioCfg.streamGplnput7 =
streamGpioCfg.streamGplnput8 =
streamGpioCfg.streamGplnput9 =
streamGpioCfg.streamGplnputl0 =
streamGpioCfg.streamGplnputll =
streamGpioCfg.streamGplnputl2 =
streamGpioCfg.streamGplnputl3 =
streamGpioCfg.streamGplnputlsd =
streamGpioCfg.streamGplnputl5 =

Types.adi_adrv9025 GpioPinSel_e.
-ADI_ADRV9025_GPIO_INVALID

Types.adi_adrv9025 GpioPinSel_e

Types.adi_adrv9025 GpioPinSel_e.
.ADI_ADRV9025 GP10_INVALID
-ADI_ADRV9025 GPI10O_INVALID

Types.adi_adrv9025 GpioPinSel_e
Types.adi_adrv9025_GpioPinSel_e

Types.adi_adrv9025 GpioPinSel_e.
-ADI_ADRV9025_GPIO_INVALID
-ADI_ADRV9025_GPIO_INVALID
-ADI_ADRV9025_GPIO_INVALID
-ADI_ADRV9025_GPIO_INVALID
-ADI_ADRV9025_GPIO_INVALID
-ADI_ADRV9025_GPIO_INVALID
-ADI_ADRV9025_GPIO_INVALID
-ADI_ADRV9025_GPIO_INVALID
-ADI_ADRV9025_GPIO_INVALID
-ADI_ADRV9025_GPIO_INVALID

Types.adi_adrv9025_GpioPinSel_e
Types.adi_adrv9025_GpioPinSel_e
Types.adi_adrv9025 _GpioPinSel_e
Types.adi_adrv9025 GpioPinSel_e
Types.adi_adrv9025 GpioPinSel_e
Types.adi_adrv9025_GpioPinSel_e
Types.adi_adrv9025_GpioPinSel_e
Types.adi_adrv9025_GpioPinSel_e
Types.adi_adrv9025 GpioPinSel_e
Types.adi_adrv9025 GpioPinSel_e

ADI_ADRV9025_GP10_INVALID

ADI_ADRV9025_GPIO_INVALID

ADI_ADRV9025_GP10_05

link.platform.board.Adrv9025Device.RadioCtrl.StreamGpioConfigSet(streamGpioCfg)

Rev. PrA | Page 154 of 267

UG-1721

GAIN CONTROL DATA STRUCTURES

Figure 89 shows the member structure of adi_adrv9025_AgcCfg_t, and of its substructures, adi_adrv9025_AgcPeak_t and
adi_adrv9025_AgcPower_t. Each of the parameters are briefly explained in Table 171, Table 172, and Table 173, and the wider context of
these parameter settings are outlined in the relevant gain control/peak detector sections.

adi_adrv9010 AgcCfg t
+ rxChannelMask
+ agcPeakWaitTime
+ agcRxMaxGainlndex
+ agcRxMinGainindex
+ agcGainUpdateCounter
+ agcRxAttackDelay
+ agcSlowLoopSettlingDelay
+ agcLowThreshPreventGaininc
+ agcGainChangelfThreshHigh
+ agcPeakThreshGainControlMode
+ agcResetOnRxOn
+ agcEnableSyncPulseForGainCounter
+ agcEnableFastRecoverylLoop

+ agcPeak + agcPower
adi_adrv9010_AgcPeak_t adi_adrv9010_AgcPower_t
+ agcUnderRangeLowlnterval + powerEnableMeasurement
+ agcUnderRangeMidinterval + powerlnputSelect
+ agcUnderRangeHighinternval + underRangeHighPowerThresh
+ apdHighThresh + underRangeLowPowerThresh
+ apdLowGainModeHighThresh + underRangeHighPowerGainStepRecovery
+ apdLowThresh + underRangeLowPowerGainStepRecovery
+ apdLowGainModeLowThresh + powerMeasuremnetDuration
+ apdUpperThreshPeakExceededCnt + rxTddPowerMeasDuration
+ apdLowerThreshPeakExceededCnt + rxTddPowerMeasDelay
+ apdGainStepAttack + overRangeHighPowerThresh
+ apdGainStepRecovery + overRangeLowPowerThresh
+ enableHb20verload + powerLogShift
+ hb2OverloadDurationCnt + overRangeHighPowerGainStepAttack
+ hb20verloadThreshCnt + overRangeLowPowerGainStepAttack

+ hb2HighThresh

+ hb2UnderRangeLowThresh

+ hb2UnderRangeMidThresh

+ hb2UnderRangeHighThresh

+ hb2UpperThreshPeakExceededCnt

+ hb2UnderRangeHighThreshPeakExceededCnt
+ hb2GainStepHighRecovery

+ hb2GainStepLowRecovery

+ hb2GainStepMidRecovery

+ hb2GainStepAttack

+ hb20verloadPowerMode

+ hb2ThreshConfig

+ hb2UnderRangeMidThreshPeakExceeded Cnt
+ hb2UnderRangeLowThreshPeakExceededCnt

22770-090

Figure 89. Member Listing of adi_adrv9025_AgcCfg_t Data Structure

Rev. PrA | Page 155 of 267

UG-1727

Table 171. ADRV9025_AgcCfg_t Structure Definition

Parameter

Description

Min Value

Max Value

rxChannelMask

agcPeakWaitTime
agcRxMaxGainlndex
agcRxMinGainindex

agcGainUpdateCounter

agcRxAttackDelay
agcSlowLoopSettlingDelay

agcLowThreshPreventGain

agcChangeGainlfThreshHigh

agcPeakThreshGainControlMode

agcResetOnRxon

agcEnableSyncPulseForGainCounter

agcEnableFastRecoverylLoop

agcPower
agcPeak

This selects the channels upon which to enable this gain control
mode. It is a bit mask with each bit corresponding to a channel, [D0] =
Rx1, [D1] = Rx2, [D2] = Rx3, [D3] = Rx4. Therefore, setting the
rxChannelMask = 15 means that all Rx channels are configured with
the same AGC configuration.

Number of AGC clock cycles to wait before enable peak/overload
detectors after a gain change.

Maximum gain index allowed in AGC mode. Must be greater than
agcMinGainindex and be a valid gain index.

Minimum gain index allowed in AGC mode. Must be less than
agcRxMaxGainIindex and be a valid gain index.

Is used as a decision period, with the peak detectors reset on this
period. Gain changes in AGC mode can also be synchronized to this
period (the expiry of this counter). The full period is a combination of
the agcGainUpdateCounter and agcSlowLoopSettlingDelay.

Hold the duration the AGC should be held in reset when the Rx path is
enabled.

Number of AGC clock cycles to wait after a gain change before the
AGC changes gain again.

Only relevant in Peak/Power Detect AGC operation.

1:1f AGC is in Peak Power Detect Mode, then gain increments
requested by the power detector are prevented if there are sufficient
peaks (APD/HB2 Low Threshold Exceeded Count) above the
apdLowThresh or hb2UnderRangeHighThresh.

0: apdLowThresh and hb2UnderRangeHighThresh are don't cares for
gain recovery.

Applicable in both peak and peak/power detect modes.

0: Gain changes wait for the expiry of the gain update counter if a
high threshold count has been exceeded on either the APD or HB2
detector.

1: Gain changes occur immediately when initiated by HB2. Gain
changes initiated by the APD wait for the gain update to expire.

2: Gain changes occur immediately when initiated by APD. Gain
changes initiated by HB2 want for the gain update to expire.

3: Gain changes occur immediately when initiated by APD or HB2
detectors.

1: AGC in Peak AGC mode, power-based gain changes are disabled.

0: AGC in Peak/Power AGC mode where both Peak Detectors and
Power Detectors are utilized.

1: AGC state machine is reset when Rx is disabled. The AGC gain
setting is returned to the maximum gain.

0: AGC state machine maintains its state when Rx is disabled.

1: Allows synchronization of AGC Gain Update Counter to the time-
slot boundary. GPIO setup required.

0: AGC Gain Update Counter free runs.

1: Enables the fast recovery AGC functionality using the HB2 overload
detector. Only applicable in Peak Detect Mode.

0: AGC fast recovery is not enabled.
Structure containing all the power detector settings.
Structure containing all the peak detector settings.

0

Depends on
Overload
Detector
Settings

0

N/A
N/A

15

31
255
255

4194303
AGC_CLK
Cycles

63

127

N/A
N/A

Rev. PrA | Page 156 of 267

UG-1721

Table 172. ADRV9025_AgcPeak_t Structure Definition

Parameter

Description

Min Value

Max Value

agcUnderRangelLowlnterval

agcUnderRangeMidinterval

agcUnderRangeHighinterval

apdHighThresh

apdLowGainModeHighThresh
apdLowThresh

apdLowGainModeLowThresh
apdUpperThreshPeakExceededCnt

apdLowerThreshPeakExceededCnt

apdGainStepAttack

apdGainStepRecovery

enableHb20Overload

hb20OverloadDurationCnt

hb20verloadThreshCnt

This sets the time constant (in AGC clock cycles) that the AGC
recovers when the signal peaks are less than
hb2UnderRangeLowThresh. Only applicable when the fast
recovery option is enabled in Peak Detect AGC mode.

This sets the time constant (in AGC clock cycles) that the AGC
recovers when the signal peaks are less than
hb2UnderRangeMidThresh. Calculated as

(agcUnderRangeMidinterval + 1) x agcUnderRangeLowInterval

Only applicable when the fast recovery option is enabled in Peak
Detect AGC mode.

This sets the time constant (in AGC clock cycles) that the AGC
recovers when the signal peaks are less than
hb2UnderRangeHighThresh. Calculated as

(agcUnderRangeHighinterval + 1) x agcUnderRangeMidinterval

Only applicable when the fast recovery option is enabled in Peak
Detect AGC mode.

This sets the upper threshold of the analog peak detector. When
the input signal exceeds this threshold a programmable number
of times (set by its corresponding overload counter) within a gain
update period, the overload detector flags. In AGC modes, the gain
is reduced when this overload occurs.

adpdHighThresh (mV) = (apdHighThresh + 1) x 16 mV
This parameter is not utilized.

This sets the lower threshold of the analog peak detector. When
the input signal exceeds this threshold a programmable number
of times (set by its corresponding overload counter) within a gain
update period, the overload detector flags. In Peak AGC mode, the
gain is increased when this overload is not occurring. In Power
AGC mode, this threshold can be used to prevent further gain
increases if the agcLowThreshPreventGain bit is set.

adpdLowThresh (mV) = (apdLowThresh + 1) x 16 mV
This parameter is not utilized.

Sets number of peaks to detect above apdHighThresh to cause an
APD High Over Range Event. In AGC modes, this results in a gain
decrement set by apdGainStepAttack.

Sets number of peaks to detect above apdLowThresh to cause an
APD Low Overload Event. In Peak Detect AGC mode, if an APD Low
Overload Event is not occurring then this results in a gain
increment set by apdGainStepRecovery.

The number of indices that the gain index pointer must be
decreased in the event of an APD High Over Range in AGC modes.
The step size in dB depends on the gain step resolution of the gain
table (default 0.5 dB per index step).

The number of indices that the gain index pointer must be
increased in the event of an APD Under range event occurring in
Peak Detect AGC mode. The step size in dB depends on the gain
step resolution of the gain table (default 0.5 dB per index step).

1: HB2 Overload Detector enabled. 0: HB2 Overload Detector
disabled

The number of clock cycles (at the HB2 output rate) within which
hb20OverloadThreshCnt must be exceeded for an overload to
occur. A HB2 overload flag is only raised when the number of these
overloads exceeds hb2UpperThreshPeakExceededCnt or
hb2LowerThreshPeakExceededCnt within a gain update period.
The number Of CIOCkS iS: z(thDverloadDurationCnt+1)

Sets the number of individual samples exceeding hb2HighThresh
or hb2LowThresh necessary within hb2OverloadDurationCnt for
an overload to occur. The HB2 overload flag is only raised when
the number of these overloads exceeds
hb2UpperThreshPeakExceededCnt or
hb2LowerThreshPeakExceededCnt within a gain update period.

Depends on
HB2 detector
settings

0

apdLowThresh

65535

63

63

63

apdHighThresh

255

255

31

31

15

Rev. PrA | Page 157 of 267

UG-1727

Parameter

Description

Min Value

Max Value

hb2HighThresh

hb2UnderRangeLowThresh

hb2UnderRangeMidThresh

hb2UnderRangeHighThresh;

hb2UpperThreshPeakExceededCnt

hb2UnderRangeHighThreshExceededCnt

hb2GainStepHighRecovery

hb2GainStepLowRecovery

hb2GainStepMidRecovery

hb2GainStepAttack

hb20OverloadPowerMode
hb2ThreshConfig
hb2UnderRangeMidThreshExceededCnt

This sets the upper threshold of the HB2 detector.
(thHigthFSj
hb2HighThresh =16,384x10° %

This sets the lower threshold of the HB2 under range threshold
detectors. Used only when the fast recovery option of the peak
detect AGC mode is being utilized.

(thUnderRungeLadeFSJ
hb2UnderRangeLowThresh =16,384x10 20

This sets the middle threshold of the HB2 under range threshold
detectors. Used only when the fast recovery option of the peak
detect AGC mode is being utilized.

[thUnderRangeMiddBFSj
hb2UnderRangeMidThresh =16,384x10 2

Peak Detect Mode: Threshold used for gain recovery.

Peak Detect with Fast Recovery Mode: This sets the highest
threshold of the HB2 under range threshold detectors.

Power Detect Mode: Threshold used to prevent further gain
increases if agcLowThreshPreventGain is set.

(thUnderRangeHIgthFSj
hb2UnderRangeHighThresh =16,384x10 20

Sets number of individual overloads above hb2HighThresh
(number of times hb20verloadThreshCnt was exceeded in
hb20verloadDuractionCnt) to cause an HB2 High Over Range
event. In AGC modes, this results in a gain decrement set by
hb2GainStepAttack.

Sets number of individual overloads above
hb2UnderRangeHighThresh (number of times
hb20verloadThreshCnt was exceeded in
hb20OverloadDurationCnt) to cause an HB2 Under Range High
Threshold Overload Event. In Peak Detect AGC mode, not having
sufficient peaks to cause the overload is flagged as an underrange
event and the gain is recovered by hb2GainStepHighRecovery.

The number of indices that the gain index pointer must be
increased in the event of an HB2 Under Range High Threshold
Under Range Event.

Only applicable in fast recovery mode of peak detect AGC. This
sets the number of indices that the gain index pointer must be
increased in the event of an HB2 Under Range Low Threshold
Under Range Event.

Only applicable in fast recovery mode of peak detect AGC. This
sets the number of indices that the gain index pointer must be
increased in the event of an HB2 Under Range Mid Threshold
Under Range Event.

The number of indices that the gain index pointer must be
decreased in the event of an HB2 High Threshold Over Range
event in AGC modes. The step size in dB depends on the gain step
resolution of the gain table (default 0.5 dB per index step).

Sets the measurement mode of the HB2 detector.

Setto 3.

Only applicable in fast recovery mode of peak detect AGC. Sets
number of individual overloads above hb2UnderRangeMidThresh
(number of times hb20verloadThreshCnt was exceeded in
hb20verloadDurationCnt) to cause an HB2 Under Range Mid
Threshold Overload Event. In Peak Detect AGC mode, not having
sufficient peaks to cause the overload is flagged as an under-range
event and the gain is recovered by hb2GainStepMidRecovery.

0

w

16383

16383

16383

16383

255

255

31

31

31

31

255

Rev. PrA | Page 158 of 267

UG-1721

Parameter Description

Min Value

Max Value

hb2UnderRangeLowThreshExceededCnt Only applicable in fast recovery mode of peak detect AGC. Sets 0

number of individual overloads above hb2UnderRangeLowThresh
(number of times hb20verloadThreshCnt was exceeded in
hb20verloadDurationCnt) to cause an HB2 Under Range Low
Threshold Overload Event. In Peak Detect AGC mode, not having
sufficient peaks to cause the overload is flagged as an under-range
event and the gain is recovered by hb2GainStepLowRecovery.

255

Table 173. ADRV9025_AgcPower_t Structure Definition

Parameter

Description

Min Value

Max Value

powerEnableMeasurement
powerlnputSelect

underRangeHighPowerThresh

underRangeLowPowerThresh

underRangeHighPowerGainStepRecovery

underRangeLowPowerGainStepRecovery

powerMeasurementDuration

rxTddPowerMeasDuration

rxTddPowerMeasDelay

overRangeHighPowerThresh

overRangeLowPowerThresh

powerLogShift

overRangeHighPowerGainStepAttack

overRangeLowPowerGainStepAttack

1: Power Measurement block enabled. 0: Power Measurement block
disabled.

This parameter sets the location of the power measurement. 0 =
RFIR output; 1 = HB1 Output, 2 = HB2 Output.

Threshold in dBFS (negative sign assumed) which defines the lower
boundary on the stable region of the power detect gain control
mode.

Offset (negative sign assumed) from underRangeHighPowerThresh
which defines the outer boundary of the power based AGC
convergence. Typically, recovery is set to be larger steps than when
the power measurement is less than this threshold.

The number of indices that the gain index pointer must be
increased (gain increase) in the event of the power measurement
being less than underRangeHighPowerThresh but greater than
underRangeLowPowerThresh.

The number of indices that the gain index pointer must be
increased (gain increase) in the event of the power measurement
being less than underRangeLowPowerThresh.

Number of IQ samples on which to perform the power
measurement. The number of samples corresponding to the 4-bit
word is 8 x 2(pmdMeasDuration[3:0) Thjs value must be less than AGC Gain
Update Counter.

Following an Rx Enable, the power measurement block can be
requested to perform a power measurement for a specific period of
a frame. This is applicable in TDD modes. This parameter sets the
duration of this power measurement. A value of 0 causes the power
measurement to run until the next gain update counter expiry.
Following an Rx Enable, the power measurement block can be
requested to perform a power measurement for a specific period of
a frame. This is applicable in TDD modes. This parameter sets the
delay between the Rx Enable and the power measurement starting
on Rx1.

Threshold in dBFS (negative sign assumed) which defines the
upper boundary on the stable region (no gain change based on
power measurement) of the power detect gain control mode.
Offset (positive sign assumed) from upperOPowerThresh which
defines the outer boundary of the power based AGC convergence.
Typically attack is set to be larger steps than when the power
measurement is greater than this threshold.

Enable increase in dynamic range of the power measurement from
40 dB to ~60 dB.

The number of indices that the gain index pointer must be
decreased (gain reduction) in the event of the power measurement
being greater than overRangeHighPowerThresh.

The number of indices that the gain index pointer must be
decreased (gain decrease) in the event of the power measurement
being less than OverRangeHighPowerThresh but greater than
OverRangeLowPowerThresh.

0

1

127

31

31

31

31

65535
AGC clock
cycles

65535
AGC clock
cycles

127

15

31

31

Rev. PrA | Page 159 of 267

UG-1727

SAMPLE PYTHON SCRIPT—PEAK DETECT MODE WITH FAST ATTACK

The following is a sample python script to enable the AGC in peak detect mode. The user can use this sample script as a starting point to
enable AGC on the evaluation platform.

#Import Reference to the DLL

import System

import clr

from System import Array

clr_AddReferenceToFileAndPath(*'C:\\Program Files (x86)\\Analog Devices\\ADRV9025 Transceiver
Evaluation Software\\adrv9025_dlil._dIl"™)

from adrvo025_dll import AdiEvaluationSystem
from adrvo025_dll import Types

#Create an Instance of the Class
Link = AdiEvaluationSystem. Instance
connect = False

if (Link.IsConnected() == False):
connect = True
Link.Ads8.board.Client.Connect(''192.168.1.10", 55556)
print ""Connecting”

if (Link.IsConnected()):
adrv9025 = Link.Adrv9025Get(1)

Create an instance of the rxGainMode , agcConfig classes
rxGainMode = Types.adi_adrv9025_RxAgcMode_t()
agcConfig = Types.adi_adrv9025_AgcCfg_t()

General Rx Gain Mode Configuration
rxGainMode.rxChannelMask = OxF
rxGainMode.agcMode = Types.adi_adrv9025_ RxAgcMode_e.ADI_ADRV9025_ AGCSLOW

General AGC Configuration
agcConfig.rxChannelMask = OxF
agcConfig.agcPeakWaitTime = 4
agcConfig.agcRxMaxGainlndex = 255
agcConfig.agcRxMinGainlndex 195
agcConfig.agcGainUpdateCounter = 921600
agcConfig.agcRxAttackDelay = 10
agcConfig.agcSlowLoopSettlingDelay = 16

agcConfig.agcLowThreshPreventGaininc = 1
agcConfig.agcChangeGainlfThreshHigh = 1
agcConfig.agcPeakThreshGainControlMode= 1
agcConfig.agcResetOnRxon = 0
agcConfig.agcEnableSyncPulseForGainCounter = 0
agcConfig.agcEnableFastRecoverylLoop = 0

Rev. PrA | Page 160 of 267

#adi_adrv9025_AgcPeak_t agcPeak;

agcConfig.
agcConfig.-
agcConfig.
agcConfig.
agcConfig.
agcConfig.
agcConfig.
agcConfig.-
agcConfig.-
agcConfig.
agcConfig.
agcConfig.
agcConfig.
agcConfig.-
agcConfig.-
agcConfig-
agcConfig.
agcConfig.
agcConfig.-
agcConfig.

agcConfig.-
agcConfig.-
agcConfig.
agcConfig.
agcConfig.
agcConfig.

agcPeak.
agcPeak.
agcPeak.
agcPeak.
agcPeak.
agcPeak.
agcPeak.
agcPeak.
agcPeak.
agcPeak.
agcPeak.
agcPeak.
agcPeak.
agcPeak.
agcPeak.
agcPeak.
agcPeak.
agcPeak.
agcPeak.
agcPeak.

agcPeak.
agcPeak.
agcPeak.
agcPeak.
agcPeak.
agcPeak.

205000 / 245;
2;
4;

agcUnderRangeLowlnterval

agcUnderRangeMidinterval
agcUnderRangeHighlnterval
apdHighThresh = 38;
apdLowThresh = 25;
apdUpperThreshPeakExceededCnt

10;

apdLowerThreshPeakExceededCnt
enableHb20verload = 1;
hb20verloadDurationCnt
hb20verloadThreshCnt =
hb2HighThresh = 11598;
hb2UnderRangeLowThresh = 8211;
hb2UnderRangeMidThresh = 5813;
hb2UnderRangeHighThresh = 2913;
hb2UpperThreshPeakExceededCnt = 10;
hb2UnderRangeHighThreshExceededCnt = 3;
hb2UnderRangeMidThreshExceededCnt = 3;
hb2UnderRangeLowThreshExceededCnt = 3;
hb20verloadPowerMode = 0O;
hb2ThreshConfig = 3;

1;
1;
#-3dBFS

apdGainStepAttack = 4;
apdGainStepRecovery = 2;
hb2GainStepAttack = 4;
hb2GainStepHighRecovery =2;
hb2GainStepMidRecovery = 4;
hb2GainStepLowRecovery = 8;

#adi_adrv9025_AgcPower_t agcPower;

agcConfig.-
agcConfig.
agcConfig.-
agcConfig.-
agcConfig.
agcConfig.-
agcConfig.-
agcConfig.
agcConfig.
agcConfig.-
agcConfig.-
agcConfig.
agcConfig-
agcConfig-

agcPower.
agcPower .
agcPower .
agcPower.
agcPower.
agcPower.
agcPower.
agcPower .
agcPower .
agcPower .
agcPower .
agcPower.
agcPower.
agcPower.

powerEnableMeasurement = O;

power InputSelect = 0;
underRangeHighPowerThresh = 9;
underRangeLowPowerThresh = 2;
underRangeHighPowerGainStepRecovery = 0;
underRangeLowPowerGainStepRecovery = 0;
powerMeasurementDuration = 5;

5;

rxTddPowerMeasDuration
rxTddPowerMeasDelay = 1;
overRangeHighPowerThresh = 2;

overRangeLowPowerThresh = 0;
Force to 1
overRangeHighPowerGainStepAttack = 0;

powerLogShift = 1;

overRangeLowPowerGainStepAttack = O;

UG-1721

Make agcConfig and rxGainMode into array types (nhecessary for syntax reasons)
agcConfigArr = Array[Types.adi_adrv9025 AgcCfg_t]([agcConfig])
Rev. PrA | Page 161 of 267

UG-1727

rxGainModeArr = Array[Types.adi_adrv9025_ RxAgcMode_t]([rxGainMode])

Write settings to device
adrv9025.Agc.AgcCfgSet(agcConfigArr, 1)

Enable AGC Mode
adrv9025.Rx.RxGainCtrIModeSet(rxGainModeArr, 1)

print "Finished Programming Device"
else:
print "Not Connected"

it (connect == True):
Link.Ads8.board.Client.Disconnect()
print "Disconnecting”

GAIN COMPENSATION, FLOATING POINT FORMATTER AND SLICER

The user has the option of enabling gain compensation in the device. In gain compensation mode, the digital gain block is utilized to
compensate for the analog front-end attenuation. The cumulative gain across the device is thus 0 dB; for example, if 5 dB analog
attenuation is applied at the front end of the device then 5 dB of digital gain is applied. This ensures that the digital data is representative
of the RMS power of the signal at the Rx input port; any internal front-end attenuation changes in device in order to prevent ADC
overloading are transparent to the baseband processor. In this way, the AGC of the device can be used to react quickly to incoming
blockers without the need for the baseband processor to track the current gain index the level of the received signal at the input to the
device for received signal strength measurements.

The digital gain block is controlled by the gain table, and a compensated gain table is required to operate in this mode. Analog Devices
provides an example compensated gain table in the software package. Such a gain table has a unique front-end attenuator setting with a
corresponding amount of digital gain programmed at each index of the table.

Gain compensation can be used in either AGC or MGC modes. The maximum amount of gain compensation is 50 dB. This allows for
compensation of both the internal analog attenuator and an external gain component (such as a DSA or LNA).

Large amounts of digital gain increase the bit width of the path. There are a number of ways in which this expanded bit-width data can be
sent to the baseband processor, which are detailed below. Figure 90 is a block diagram of the gain compensation portion of the Rx chain,
showing the locations of the various blocks.

SLICER OUTPUTS
TO BBP

DIGITAL GAIN/ FLOATING POINT
COMPENSATION SLICER FORMATTER JESD

22770-091

Figure 90. Gain Compensation, Floating Point Formatter, and Slicer Section of the Receiver Datapath

Rev. PrA | Page 162 of 267

UG-1721

Mode 1: No Digital Gain Compensation

This is the mode that the chip is configured to by default. In this mode the digital gain block is not used for gain compensation. Instead
the digital gain block may be utilized to apply small amounts of digital gain/attenuation to provide consistent gain steps in a gain table.
The premise is that because the analog attenuator does not have consistent stops in dB across its range then the digital gain block can be
utilized to even out the steps for consistency (the default table utilizes the digital gain block to provide consistent 0.5 dB steps).

Nether the slicer nor floating-point formatter block is utilized. As no gain compensation are applied, there is no bit-width expansion of
the digital signal. The signal is provided to the JESD port which sends it to the baseband processor in either 12-bit, 16-bit or 24-bit format
depending on the use case.

Mode 2: Digital Gain Compensation with Slicer GPIO Outputs

In this mode gain compensation is used. Load the device with a gain table that compensates for the analog front-end attenuation applied.
Thus, as the analog front-end attenuation is increased, and equal amount of digital gain is applied. Considering 16-bit data at the input to
the digital compensation block, then as more digital gain is applied the bit-width of the signal is increased. With every 6 dB of gain, the
bit-width increases by 1. Figure 91 outlines this effect, with yellow boxes indicating the valid (used) bits in each case.

0dB GAIN
COMPENSATION

[p22] p21 [D20 | D19| D18] D17] D16 [D15] D14 [D13 [D12 [D11 D10 | D9 [D8 [D7 [D6 [D5 [D4 [D3 [D2 [D1 [DO |

0dB < GAIN

COMPENSATION < 6qs | P22 D21 D20 D19 D18] D17 D16 [D15[D14 | D13 [D12 [D11 [D10[D9 [D8 [D7 [D6 [D5 [D4 [D3 [D2 [D1 [DO |

22770-092

6dB < GAIN

COMPENSATION < 1248 | 022|D21[D20[D19 [D18 [D17[D16 [D15[D14 [D13 [D12 [D11 [D10[D9 [D8 [D7 [D6 [D5 [D4 [D3 [D2 [D1 [D0 |

Figure 91. Bit Width of Received Signal for Increasing Gain Compensation

The slicer is used to attenuate the data after the digital gain block such that it can fit into the resolution of the JESD data path. It then
advises the user how much attenuation is being applied in real time, so that the user can compensate on the baseband processor side. In
this mode, the current slicer setting (amount of attenuation) is provided real time over GPIO pins.

Note that this slicer setting information is not necessarily time aligned to the data at the baseband processor side. As soon as the slicer
value changes, this information is provided on the GPIO pins. However, there is some latency between this and when the corresponding
data arrives across the JESD link. It is up to the user to determine an appropriate way of accounting for this latency.

This slicer can be configured for a number of attenuation resolutions, namely 1 dB, 2 dB, 3 dB, 4 dB, 6 dB or 8 dB steps. Higher resolution
(smaller steps) allows the user to follow the actual signal amplitude with finer resolution, while lower resolution (larger steps) allows for
more compensation range.

The slicer can use up to 4 GPIOs per receiver. The GPIOs used to output the slicer position are shown in Table 174. These require these
pins to be enabled as outputs and configured for slicer output mode (see the General-Purpose Input/Output Configuration section).

Table 174. GPIOs Used for Slicer Output Mode

Receiver GPIOs Utilized (MSB to LSB)
Rx1 GPIO11, GPIO10, GPIO9, GPIO8
Rx2 GPIO15, GPIO14, GPIO13, GPIO12
Rx3 GPIO7, GP106, GPIO5, GPIO4

Rx4 GPIO3, GPIO2, GPIO1, GPIOO

The following example explains the operation of the slicer in detail. In this use case, the JESD is configured for 16-bit data resolution. The
slicer is configured to 6 dB resolution.

Figure 92 explains the operation. Initially the analog attenuator is applying no attenuation (0 dB) and thus there is 0 dB digital gain
applied to the signal. The slicer is in its default (0000) position. As the attenuation increases (0 dB to 6 dB), a corresponding amount of
digital gain is applied to the signal. With any digital gain applied to the signal, the bit-width of the signal has increased (the ADC can
output 16-bits, further gain allows a maximum input to go beyond 16-bits). In this case the signal has now a bit-width of 17. The slicer
therefore applies 6 dB of attenuation, and the slicer position information across the GPIOs is updated to advise the user of this change (in
this case 0001). This 6 dB attenuation ensures that the bit-width of the signal is 16 once more; that is, the 16 MSBs have been selected
(sliced) with the LSB dropped. When the compensation increases beyond 6 dB, it is now possible that the signal resolution in the digital
path can be 18-bit. The slicer then attenuates by 12 dB (or slices the 16 MSBs dropping the 2 LSBs).

Rev. PrA | Page 163 of 267

UG-1727

SLICER

OUTPUTS

TO BBP

USSR 0000

oM N N |022|DZ1|DZO|D19|D18|D17|D16!D15|D14|D13|D12|D11|D10|D9|D8|D7|D6|D5|D4|D3|D2|D1 |D0! ?1??

USRI . 0000

COMPENSATION < 6as | D22] D21 [D20 D19] D18 [D17 | D16 [D15] D14 [D13 [D12 D11 [D10] D [D8 | D7 | D6 | D5 | D4 [03 | D2 | D | DO | R

f e . 0000
compgﬂgi.r?g:‘iudB|022|DZ1|DZO|D19|D18'D17|D16|D15|D14|D13|D12|D11|D10|D9|D8|D7|D6|D5|D4|D3|D2ID1 [po | ?1?? g
b e e e m - - 4 MSB LSB §

Figure 92. Slicer Bit Selection with Digital Gain

The baseband processor receives these 16-bits and uses the slicer output to scale the power of the received signal to determine the power
at the input to the device (or at the input to an external gain element if considered part of the digital gain compensation).

The slicer position vs. digital gain for this 6 dB example is described in Table 175. Equivalent tables can be inferred for the other
attenuation options.

Table 175. Slicer GPIO Output vs. Digital Gain Compensation

Digital Gain Compensation (dB) Slicer Position (Value output on GPIOs)

0

0 < Dig_Gain< 6

6 < Dig_Gain < 12
12 < Dig_Gain< 18
18 < Dig_Gain < 24
24 < Dig_Gain < 30
30 < Dig_Gain < 36
36 < Dig_Gain < 42
42 < Dig_Gain <48
48 < Dig_Gain <50

O 0O NOULTL A WN = O

Mode 3: Digital Gain Compensation with Embedded Slicer Position

This mode is similar to Mode 2. The slicer is used to select the 16 MSBs based on the amount of digital gain used by the currently selected
gain index in the gain table. However, in this mode the GPIO slicer outputs are not used. Instead the slicer position (or attenuation
applied) is embedded into the data.

There are a number of permissible ways in which this can be configured, controlled by the intEmbeddedBits API parameter. The options
are to place the slicer setting as 1 bit on both I and Q, or 2 bits on both I and Q. These can be placed at the MSBs or LSBs. For the case
where 2 bits are embedded onto both I and Q data, there are further options of using 3 slicer bits or 4. If 3 is used, there is a further option
of inserting a 0 to fill the 4" bit, or to insert a parity bit (by adjusting the intParity API parameter). Table 176 shows the various modes
selectable by intEmbeddedBits.

Table 176. adi_adrv9025_RxSlicerEmbeddedBits_e Description

intEmbeddedBits Description

ADI_ADRV9025_EMBED_1_SLICERBIT_AT_MSB Embeds 1 slicer bit on both | and Q at the MSB position. See Figure 93.
ADI_ADRV9025_EMBED_1_SLICERBIT_AT_LSB Embeds 1 slicer bit on both | and Q at the LSB position. See Figure 94.
ADI_ADRV9025_EMBED_2_SLICERBITS_AT_MSB_3_BIT_SLICER | Embeds 2 slicer bits on both | and Q at the MSB positions. See Figure 95.

Given this is a 3-bit mode, an extra bit is inserted denoted as P in Figure 95.
This can either be a parity bit or a zero can always be inserted alternatively.
Embeds 2 slicer bits on both | and Q at the LSB position. See Figure 96.
Given this is a 3-bit mode, an extra bit is inserted denoted as P in Figure 96.
This can either be a parity bit or a zero can always be inserted alternatively.

ADI_ADRV9025_EMBED_2_SLICERBITS_AT_LSB_3_BIT_SLICER

ADI_ADRV9025_EMBED_2_SLICERBITS_AT_MSB_4_BIT_SLICER
ADI_ADRV9025_EMBED_2_SLICERBITS_AT_LSB_4_BIT_SLICER

Embeds 2 slicer bits on both | and Q at the MSB positions. See Figure 97.
Embeds 2 slicer bits on both | and Q at the LSB positions. See Figure 98.

Rev. PrA | Page 164 of 267

UG-1721

SIGN SLICER
BIT _VALUE

1DATA [s ['sta [p13 [p12 [p11 [p1o | pe [b8 | b7 | b6 | ps | b4 | p3 | b2 | b1 | Do |

SIGN SLICER
BIT _VALUE

QpATA | s [sto | D13 [D12 [D11 [Do | po [ps [o7 | b6 [ps [b4 [b3 | b2 [b1 | po |
Figure 93. Encoding of Slicer Information as Control Bits (intEmbeddedBits = ADI_ADRV9025_EMBED_1_SLICERBIT_AT_MSB)

22770-094

SIGN SLICER
BIT VALUE

iDATA [s [D13 | D12 [p11 [p1o| po | b8 | b7 | b6 | ps | b4 | p3 | b2 | b1 | po [stt |

SIGN SLICER
BIT VALUE

aoata | s [p13 [p12 [o1t [pto| po | b8 | b7 [pe | ps | b4 | p3 | p2 | p1 | po [sto|
Figure 94. Encoding of Slicer Information as Control Bits (intEmbeddedBits = ADI_ADRV9025__EMBED_1_SLICERBIT_AT_LSB)

22770-095

SIGN SLICER
BIT VALUE

iDATA [s [P [st2|p12[p11 [pto] po | pe [b7 [b6 [ps [pa [p3 | b2 [b1 | o |

SIGN SLICER
BIT VALUE

apata [s [st1 [so| p12 [o11 [p1o] po [b8 [o7 [pe [o5 [pa | p3 [b2 | p1 | oo |
Figure 95. Encoding of Slicer Information as Control Bits (intEmbeddedBits = ADI_ADRV9025_EMBED_2_SLICERBITS_AT_MSB_3_BIT_SLICER)

22770-096

SIGN SLICER
BIT VALUE

IDATA | s [p12 [D11 [pto [D9 [b8 [b7 [b6 [s [b4 [b3 [b2 [b1 [po [P [s2]

SIGN SLICER
BIT VALUE

QpATA | s [D12 [D11 [1o [Do [p8 [o7 [b6 | D5 | p4 | 03 | p2 | o1 | po [st | sto|
Figure 96. Encoding of Slicer Information as Control Bits (intEmbeddedBits = ADI_ADRV9025_EMBED_2_SLICERBITS_AT_LSB_3_BIT_SLICER)

22770-097

SIGN SLICER
BIT VALUE

1DATA | s [sta [st2]| p12 [p11 [pto [pe [p8 [o7 [b6 | b5 [p4 [b3 [b2 | b1 [po |

SIGN SLICER
BIT VALUE

apata [s [st1 [so| p12 [op11 [p1o] po [b8 [o7 [pe [p5s [pa | p3 [b2 | p1 | po |
Figure 97. Encoding of Slicer Information as Control Bits (intEmbeddedBits = ADI_ADRV9025_EMBED_2_SLICERBITS_AT_MSB_4_BIT_SLICER)

22770-098

SIGN SLICER
BIT VALUE

ipaTA | s [p12 [p11 [p1o [pe | b8 [b7 [b6 | ps [pa | p3 [p2 [o1 | po [st3 | sz

SIGN SLICER
BIT VALUE

apATA [s [p12 [p11 [p1o [o [p8 [o7 [pe | ps | p4 | p3 | p2 | o1 | po [st1 | sto|
Figure 98. Encoding of Slicer Information as Control Bits (intEmbeddedBits = ADI_ADRV9025_EMBED_2_SLICERBITS_AT_LSB_4 BIT_SLICER)

22770-099

Rev. PrA | Page 165 of 267

UG-1727

Mode 4: Digital Gain Compensation and Slicer Input

In this mode, the slicer position is controlled by the user. In modes 2 and 3, the slicer can be viewed as an attenuator which reduces the
signal level a certain dB with each slicer position step such that it can be sent across the JESD link. This mode is similar, except the
position (amount of attenuation) is controlled externally. The valid step sizes are between 1 and 6 dB and controlled by the extPinStepSize
API parameter as outlined in Table 177.

Table 177. adi_adrv9025_ExtSlicerStepSizes_e Description

extPinStepSize Slicer Gain Step (dB)
ADI_ADRV9025_EXTSLICER_STEPSIZE_1DB 1
ADI_ADRV9025_TAL_EXTSLICER_STEPSIZE_2DB 2
ADI_ADRV9025_TAL_EXTSLICER_STEPSIZE_3DB 3
ADI_ADRV9025_TAL_EXTSLICER_STEPSIZE_4DB 4
ADI_ADRV9025_TAL_EXTSLICER_STEPSIZE_6DB 6

The slicer has 3 input pins. The valid options are shown in Table 178. Each channel can be set to any one of the options using the API
parameters, rx1ExtSlicerGpioSelect, rx2ExtSlicerGpioSelect, rx3ExtSlicerGpioSelect, rx4ExtSlicerGpioSelect. The value of these pins and
the step size chosen set the level of slicer attenuation applied to the data before transmission across the JESD link.

Slicer Attenuation = Slicer Input Pin Values x extPinStepSize
For example, if the value on the slicer input pins was 0°’b111, and the step size was 2 dB, then the slicer applies 14 dB (7 x 2 dB) of

attenuation to the data.

Table 178. adi_adrv9025_RxExtSlicerGpioSel_e Description

Value of RxExtSlicerGpioSelect GPIOs Utilized (MSB to LSB)
ADI_ADRV9025_EXTSLICER_RX_GPIO_2_DOWNTO_0 GPI02, GPIO1, GPIOO
ADI_ADRV9025_EXTSLICER_RX_GPIO_5_DOWNTO_3 GPIO5, GPIO4, GPIO3
ADI_ADRV9025_EXTSLICER_RX_GPIO_8_DOWNTO_6 GPIO8, GPIO7, GPIO6
ADI_ADRV9025_EXTSLICER_RX_GPIO_11_DOWNTO_9 GPIO11, GPIO10, GPIO9
ADI_ADRV9025_EXTSLICER_RX_GPIO_14_DOWNTO_12 GPI014, GPIO13, GPIO12
ADI_ADRV9025_EXTSLICER_RX_GPIO_17_DOWNTO_15 GPIO17, GPIO16, GPIO15

Mode 5: Digital Gain Compensation and Floating-Point Formatting
The floating-point formatter offers an alternative way of encoding the digitally compensated data onto the JESD204B link. In this mode,

the data is converted to IEEE754 half precision floating point format (binary 16). There is a slight loss in resolution when using the
floating-point formatter, though resolution is distributed such that smaller numbers have higher resolution.

In binary 16 floating point format the number is composed on a sign-bit (S), an exponent (E) and a significand (T). There are a number
of options in terms of the number of bits that can be assigned to the exponent. More bits in the exponent result in higher range, and thus
can allow for more digital compensation to the represented, whereas more bits in the significand provides higher resolution. The available
options for the floating point formatter of the device include the following:

e 5-bit exponent, 10-bit significand
e 4-bit exponent, 11-bit significand
e 3-bit exponent, 12-bit significand
e 2-bit exponent, 13-bit significand

It is also possible to pack the data in the following different formats (as shown in Figure 99):

e Sign, exponent, significand
e Sign, significand, exponent

Rev. PrA | Page 166 of 267

UG-1721

SIGN EXPONENT SIGNIFICAND

BIT MSB LSB MSB LSB
s | E T |
w t
SIGN SIGNIFICAND EXPONENT
BIT MsB LSB MSB LsB
[s | T E
t w 5

Figure 99. Floating Point Number Representation

In Figure 99, S is the sign bit, E is the value of the exponent, T is the value of the significand, w is the bit width of the exponent, and t is
the bit width of the significand.

Upon receipt of an encoded floating-point formatter, the user breaks up the binary 16 number into its constituent parts. For the purposes
of this explanation, consider a 3-bit exponent. In IEEE754, the maximum exponent (0’b111 in this case) is reserved for NaN. The
minimum exponent (0’b000) is used for a signed zero (E = 0, T = 0) and subnormal numbers (E = 0, T # 0). To decode a received
floating-point sample, the following equations are used:

IfE=0and T=0,

Value =0
IfE=0and T # 0:

Value = (=1)5 x 2E-Vastl 5 (0 + 217 x T)
IfE=0:

Value = (-=1)5 x 2F ¥ x (1 +2' -2 x T)

where bias is used to convert the positive binary values to exponents which allow for values both less than and greater than the full-scale
of the ADC and p is the precision of the mode (p =t + 1, because you have t significand bits coupled with a sign bit). Table 179 provides
the values to use in these equations for the various IEEE754 supported modes.

Table 179. Floating Point Formatter—Supported IEEE 754 Modes

Exponent Bit Width (w) Significand Bit Width (t) Precision (p) bias
5 10 11 15

4 11 12 7

3 12 13 3

2 13 14 1

Figure 100 provides a visual representation of how the values of a waveform are encoded in floating point format. In this case the
maximum exponent (E-bias) is 3, meaning that data up to 24 dBFS of the ADC can be represented. As the signal reduces, the exponent
required to represent each value differs. This is a different concept to the slicer that instead bit-shifted the data solely based on the applied
digital attenuation and had a constant value for a constant digital gain. Instead the floating-point formatter interprets each data value after
the digital gain compensation separately. Given the fixed precision of the significand and the sign bit, it can also be interpreted from this
plot that there is higher resolution at lower signal levels then there is at higher signal levels, preserving SNR when the received signal
strength is low.

Rev. PrA | Page 167 of 267

UG-1727

Exp:-2

=00
(Subnormal)
A 0.25
Exp: -2
-0.5

=]
22770-101

Figure 100. Visualization of the Floating-Point Formatter Values

The floating-point formatter also supports non-IEEE754 modes, referred to as Analog Devices modes, where the largest exponent is not
used to express NaN in accordance with IEEE754. It is unnecessary for the device to encode NaN as none of the data values can be NaN,
and therefore using this extra exponent value increases the largest value representable for a given exponent bit-width.

Table 180. Exponent Bit Widths of IEEE-754 and Analog Devices Modes

Exponent Bit Width (w) | IEE-754 Mode Exponent Range (After Unbiasing) | Analog Devices Mode Exponent Range (After Unbiasing)
5 +15to-14 +16to-14

4 +7to -6 +81to -6

3 +3to-2 +4to0 -2

2 +1to -1 +2to -1

In the default floating point format, the leading one is inferred and not encoded (for normal numbers). It is possible to enable a mode
where the leading one is encoded and stored in the MSB of the significand. This reduces the precision of the values however.

If the user knows that the range of attenuation required for the worst case blocker (and therefore the digital gain required to compensate
for it) exceeds the correction range allowed by the exponent width chosen, then it is also possible to enable a fixed digital attenuation
(from 6 to 42 dB) prior to the floating point formatter to ensure that the signal never exceeds the maximum range encodable over the
JESD link.

Rev. PrA | Page 168 of 267

UG-1721

RECEIVER DATA FORMAT DATA STRUCTURE

The configuration parameters for the floating-point formatter and slicer are set up in a data structure of type
adi_adrv9025_RxDataFormat_t.

Table 181. adi_adrv9025_RxDataFormat Definition

Parameter Comments

rxChannelMask This selects the channels upon which to enable this gain control mode. It is a bit mask with each bit
corresponding to a channel, [DO] = Rx1, [D1] = Rx2, [D2] = Rx3, [D3] = Rx4. Therefore, setting the
rxChannelMask = 15 means that all Rxx are configured with the same agcMode. Data type: uint32

formatSelect This selects the format of the data received from the receive path. Data type: adirx9025_RxDataFormatModes_e
formatSelect Format
ADI_ADRV9025_GAIN_COMPENSATION_DISABLED No gain compensation (Mode 1)
ADI_ADRV9025_GAIN_WITH_FLOATING_POINT Gain compensation and floating-point formatter

enabled (Mode 5)

ADI_ADRV9025_GAIN_WITH_INTERNAL_SLICER_NOGPIO | Gain Compensation and slicer bits embedded on
JESD signal (mode 3)

ADI_ADRV9025_GAIN_WITH_INTERNAL_SLICER Gain compensation and slicer bits output on
GPIOs (Mode 2)
ADI_ADRV9025_GAIN_WITH_EXTERNAL_SLICER Gain compensation and slicer position input from
GPIOs (Mode 4)
floatingPointConfig A configuration structure for floating point format. See Table 182. To be used when floating point formatter is
utilized. Data type: adi_adrv9025_FloatingPointConfigSettings_t
integerConfigSettings A configuration structure for the data resolution across the JESD link. See Table 183. Data type:
adi_adrv9025_IntegerConfigSettings_t
slicerConfigSettings A configuration structure for the slicer functionality. See Table 184. Data type: adi_adrv9025_SlicerConfigSettings_t
externalLnaGain For use in Dual Band Modes. Not currently supported.

tempCompensationEnable | Not currently supported.

Table 182. adi_adrv9025_FloatingPointCOnfigSettings_t

Parameter Comments

fpDataFormat This parameter sets the format of the 16-bit output on the JESD204B interface. Data type:
adi_adrv9025_FpFloatDataFormat_e
fpDataFormat Floating Point Data Format
ADI_ADRV9025_FP_FORMAT_SIGN_EXP_SIGNIFICAND Sign, Exponent, Significand
ADI_ADRV9025_FP_FORMAT_SIGN_SIGNIFICAND_EXP Sign, Significand, Exponent

fpRoundMode This parameter sets the round mode for the significand. The following settings are defined in the IEEE754
specification. For more information, consult Section 4.3 in IEEE 754-2008. Data type: adi_adrv9025_FpRoundModes_e
fpRoundMode Floating Point Rounding Mode
ADI_ADRV9025_ROUND_TO_EVEN Floating point ties to an even value
ADI_ADRV9025_ROUNDTOWARDS_POSITIVE Round floating point toward the positive direction
ADI_ADRV9025_ROUNDTOWARDS_NEGATIVE Round floating point toward the negative direction
ADI_ADRV9025_ROUNDTOWARDS_ZERO Round floating point toward the zero direction
ADI_ADRV9025_ROUND_FROM_EVEN Round floating point away from the even value

foNumExpBits This parameter is used to indicate the number of exponent bits in the floating-point number. Data type:
adi_adrv9025_FpExponentModes_e
fpNumExpBits No. of Exponent Bits
ADI_ADRV9025_2_EXPONENTBITS 2
ADI_ADRV9025_3_EXPONENTBITS 3
ADI_ADRV9025_4_EXPONENTBITS 4
ADI_ADRV9025_5_EXPONENTBITS 5

Rev. PrA | Page 169 of 267

UG-1727

Parameter Comments

fpAttenSteps Attenuates integer data before floating point conversion when floating point mode enabled. Data type:
adi_adrv9025_FpAttenSteps_e
fpRx1Atten Attenuation (dB)
ADI_ADRV9025_FPATTEN_0ODB 0
ADI_ADRV9025_FPATTEN_MINUS6DB -6
ADI_ADRV9025_FPATTEN_MINUS12DB -12
ADI_ADRV9025_FPATTEN_MINUS18DB -18
ADI_ADRV9025_FPATTEN_24DB 24
ADI_ADRV9025_FPATTEN_18DB 18
ADI_ADRV9025_FPATTEN_12DB 12
ADI_ADRV9025_FPATTEN_6DB 6

fpHideLeadingOne | Itis possible to hide the leading one in the significand to be compatible to the IEEE754 specification (IEEE mode).
Alternatively, a leading one can be inserted at the MSB of the significand. Data type: adi_adrv9025_FpHideLeadingOne_e
fpHideLeadingOne Setting
ADI_ADRV9025_FP_FORMAT_HIDE_LEADING_ONE_DISABLE | Leading one at start of significand
ADI_ADRV9025_FP_FORMAT_HIDE_LEADING_ONE_ENABLE | No leading one at start of the significand

fpEncodeNan This parameter is used to configure whether the floating-point formatter reserves the highest value of exponent for
NaN (not a number) to be compatible with the IEEE754 specification or whether to use the highest value of the
exponent to extend the representable signal range. Data type: adi_adrv9025_FpNanEncode_e

fpHideLeadingOne Setting
ADI_ADRV9025_FP_FORMAT_NAN_ENCODE_DISABLE Do not reserve the highest exponent for NaN
ADI_ADRV9025_FP_FORMAT_NAN_ENCODE_ENABLE Reserve highest exponent for NaN

Table 183. adi_adrv9025_IntegerConfigSettings_t Definition

Parameter Comments

intEmbdeddedBits For use in slicer modes. This parameter sets the integer number of embedded slicer bits to embed in Rx data sample
and bit position to embed them (see mode 3). Data type: adi_adrv9025_RxSlicerEmbeddedBits_e
intEmbeddedBits Slicer bit Embedded position in Data Frame
ADI_ADRV9025_NO_EMBEDDED_SLICER_BITS Disabled all embedded slicer bits
ADI_ADRV9025_EMBED_1_SLICERBIT_AT_MSB Embeds 1 slicer bits on I and 1 slicer bits on Q

and the MSB position

ADI_ADRV9025_EMBED_1_SLICERBIT_AT_LSB Embeds 1 slicer bits on I and 1 slicer bits on Q

and the LSB position
ADI_ADRV9025_EMBED_2_SLICERBITS_AT_MSB_3_BIT_SLICER Embeds 2 slicer bits on | and 2 slicer bits on Q
and the MSB position in 3-bit slicer mode
ADI_ADRV9025_EMBED_2_SLICERBITS_AT_LSB_3_BIT_SLICER Embeds 2 slicer bits on | and 2 slicer bits on Q
and the LSB position in 3-bit slicer mode
ADI_ADRV9025_EMBED_2_SLICERBITS_AT_MSB_4_BIT_SLICER Embeds 2 slicer bits on | and 2 slicer bits on Q
and the MSB position in 4-bit slicer mode

ADI_ADRV9025_EMBED_2_SLICERBITS_AT_LSB_4_BIT_SLICER Embeds 2 slicer bits on | and 2 slicer bits on Q
and the LSB position in 4-bit slicer mode

intSampleResolution | This parameter sets the integer sample resolution selecting either 12, 16, 24 bits data with either twos complement
or signed magnitude. Data type: adi_adrv9025_RxIntSampleResolution_e

intSampleResolution Resolution of Integer sample

ADI_ADRV9025_INTEGER_12BIT_2SCOMP 12-bit resolution with twos complement
ADI_ADRV9025_INTEGER_12BIT_SIGNED 12-bit resolution with signed magnitude
ADI_ADRV9025_INTEGER_16BIT_2SCOMP 16-bit resolution with twos complement
ADI_ADRV9025_INTEGER_16BIT_SIGNED 16-bit resolution with signed magnitude
ADI_ADRV9025_INTEGER_24BIT_2SCOMP 24-bit resolution with twos complement
ADI_ADRV9025_INTEGER_24BIT_SIGNED 24-bit resolution with signed magnitude

Rev. PrA | Page 170 of 267

UG-1721

Parameter Comments

intParity In the embedded 3-bit slicer mode (mode 3), it is possible to enable a parity mode. The device can support even
parity (whereby the number of 1s in the bit sequence is always even) or odd parity (whereby the number of 1s in the
bit sequence is always odd). Data type: adi_adrv9025_RxIntParity_e

intParity Setting
ADI_ADRV9025_3BIT_SLICER_EVEN_PARITY Even parity enabled
ADI_ADRV9025_3BIT_SLICER_ODD_PARITY Odd parity enabled
ADI_ADRV9025_NO_PARITY Parity disabled

Table 184. adi_adrv9025_SlicerConfigSettings_t Definition

Parameter Comments

extSlicerStepSize This parameter is used in gain compensation with external slicer control (Mode 4). This parameter sets the slicer
step value that is used with this external control mechanism. Data type: adi_adrv9025_ExtSlicerStepSizes_e
extSlicerStepSize Slicer Step Size
ADI_ADRV9025_EXTSLICER_STEPSIZE_1DB 1dB
ADI_ADRV9025_EXTSLICER_STEPSIZE_2DB 2dB
ADI_ADRV9025_EXTSLICER_STEPSIZE_3DB 3dB
ADI_ADRV9025_EXTSLICER_STEPSIZE_4DB 4dB
ADI_ADRV9025_EXTSLICER_STEPSIZE_6DB 6dB

intSlicerStepSize This parameter is used in gain compensation with internal (automatic) slicer control (Mode 2). This parameter sets
the slicer step value. Data type: adi_adrv9025_IntSlicerStepSizes_e
intSlicerStepSize Slicer Step Size
ADI_ADRV9025_INTSLICER_STEPSIZE_1DB 1dB
ADI_ADRV9025_INTSLICER_STEPSIZE_2DB 2dB
ADI_ADRV9025_INTSLICER_STEPSIZE_3DB 3dB
ADI_ADRV9025_INTSLICER_STEPSIZE_4DB 4dB
ADI_ADRV9025_INTSLICER_STEPSIZE_6DB 6dB
ADI_ADRV9025_INTSLICER_STEPSIZE_8DB 8dB

rx1ExtSlicerGpioSelect | This parameter selects the GPIOs used for external slicer control (Mode 4) on Rx1. The choice must be unique to
Rx1. Data type: adi_adrv9025_RxExtSlicerGpioSel_e

rx1ExtSlicerGpioSelect GPIOs Utilized
ADI_ADRV9025_EXTSLICER_RX_GPIO_DISABLE

ADI_ADRV9025_EXTSLICER_RX_GPIO_2_DOWNTO_0 2,1,0
ADI_ADRV9025_EXTSLICER_RX_GPIO_5_DOWNTO_3 54,3
ADI_ADRV9025_EXTSLICER_RX_GPIO_8_DOWNTO_6 8,7,6
ADI_ADRV9025_EXTSLICER_RX_GPIO_11_DOWNTO_9 11,10,9
ADI_ADRV9025_EXTSLICER_RX_GPIO_14_DOWNTO_12 14,13,12
ADI_ADRV9025_EXTSLICER_RX_GPIO_17_DOWNTO_15 17,16,15

ADI_ADRV9025_EXTSLICER_RX_GPIO_INVALID

rx2ExtSlicerGpioSelect | This parameter selects the GPIOs used for external slicer control (Mode 4) on Rx2. The choice must be unique to
Rx2. Data type: adi_adrv9025_RxExtSlicerGpioSel_e

rx2ExtSlicerGpioSelect GPIOs Utilized
ADI_ADRV9025_EXTSLICER_RX_GPIO_DISABLE

ADI_ADRV9025_EXTSLICER_RX_GPIO_2_DOWNTO_0 2,1,0
ADI_ADRV9025_EXTSLICER_RX_GPIO_5_DOWNTO_3 54,3
ADI_ADRV9025_EXTSLICER_RX_GPIO_8 DOWNTO_6 8,7,6
ADI_ADRV9025_EXTSLICER_RX_GPIO_11_DOWNTO_9 11,10,9
ADI_ADRV9025_EXTSLICER_RX_GPIO_14_DOWNTO_12 14,13,12
ADI_ADRV9025_EXTSLICER_RX_GPIO_17_DOWNTO_15 17,16,15

ADI_ADRV9025_EXTSLICER_RX_GPIO_INVALID

Rev. PrA | Page 171 of 267

UG-1727

Parameter

Comments

rx3ExtSlicerGpioSelect

This parameter selects the GPIOs used for external slicer control (Mode 4) on Rx3. The choice must be unique to
Rx3. Data type: adi_adrv9025_RxExtSlicerGpioSel_e

rx3ExtSlicerGpioSelect GPIOs Utilized
ADI_ADRV9025_EXTSLICER_RX_GPIO_DISABLE

ADI_ADRV9025_EXTSLICER_RX_GPIO_2_DOWNTO_0 2,1,0
ADI_ADRV9025_EXTSLICER_RX_GPIO_5_DOWNTO_3 54,3
ADI_ADRV9025_EXTSLICER_RX_GPIO_8_DOWNTO_6 8,7,6
ADI_ADRV9025_EXTSLICER_RX_GPIO_11_DOWNTO_9 11,10,9
ADI_ADRV9025_EXTSLICER_RX_GPIO_14_DOWNTO_12 14,13,12
ADI_ADRV9025_EXTSLICER_RX_GPIO_17_DOWNTO_15 17,16,15

ADI_ADRV9025_EXTSLICER_RX_GPIO_INVALID

rx4ExtSlicerGpioSelect

This parameter selects the GPIOs used for external slicer control (Mode 4) on Rx4. The choice must be unique to
Rx4. Data type: adi_adrv9025_RxExtSlicerGpioSel_e

rx4ExtSlicerGpioSelect GPIOs Utilized
ADI_ADRV9025_EXTSLICER_RX_GPIO_DISABLE

ADI_ADRV9025_EXTSLICER_RX_GPIO_2_DOWNTO_O0 2,1,0
ADI_ADRV9025_EXTSLICER_RX_GPIO_5_DOWNTO_3 54,3
ADI_ADRV9025_EXTSLICER_RX_GPIO_8_DOWNTO_6 8,7,6
ADI_ADRV9025_EXTSLICER_RX_GPIO_11_DOWNTO_9 11,10,9
ADI_ADRV9025_EXTSLICER_RX_GPIO_14_DOWNTO_12 14,13,12
ADI_ADRV9025_EXTSLICER_RX_GPIO_17_DOWNTO_15 17,16,15

adi_adrv9025 RxDataFormatSet

adi_adrv9025_RxDataFormatSet(adi_adrv9025 Device_t* device, adi_adrv9025_RxDataFormat_t
rxDataFormat[],uint8_t arraySize);

Description

Configure the Rx data format.

Parameters

Table 185.

Parameter Description

*device Pointer to device structure.

rxDataFormat([] An array of Rx data format structures.

arraySize The number of Rx data format structures in rxDataFormatarray length of txPaProtectCfgl[].

Rev. PrA | Page 172 of 267

UG-1721

DIGITAL FILTER CONFIGURATION

OVERVIEW

This section describes the digital filters within the transceiver. It provides a description of each of the filters in terms of their filter
coefficients and position within the signal chain. The API structures are also described, and an example profile specific configuration is
provided for each of the signal chains. Finally, the API functions that are used to configure the filters are discussed.

RECEIVER SIGNAL PATH

Each receiver input has an independent signal path including separate I/Q mixers that feed into programmable analog transimpedance
amplifiers (TTA) that serve as low pass filters (LPF) in the analog data path. The signals are then converted by the sigma-delta ADCs and
filtered in half-band decimation stages and the programmable finite impulse response filter (PFIR). The fixed coefficient half-band filters
(FIR1, FIR2, RHB1(HR), RHB1(LP), RHB2, RHB3, DEC5) and the PFIR are designed to prevent data wrapping and over-range
conditions.

Each receiver channel can convert signals down to zero-IF real data using the standard I/Q configuration or a low-IF complex data
configuration. The digital filtering stage allows the configuration flexibility and decimation options to operate in either mode.

Figure 101 shows the signal path for the Rx1, Rx2, Rx3 and Rx4 signal chain. Blocks that are not discussed in this section are faded.

Rx1 Signal Path, I and Q Channel
=2
i g | FIR2 |I FIRT r RHB3 ﬂ_l_:"

Conversion
N DEC5 & Dig Gain

—»@—»b—» — w RHB3 m e
RHB1
(LP)

Figure 101. Rx Signal Path (Filter Blocks Highlighted in Blue)

acelia1u] g+0zasar

22770-106

Transimpedance Amplifier (TIA)

The Rx transimpedance amplifier is a low pass filter with a single real pole frequency response. The device supports bandwidths up to 200
MHz and thus each TIA supports a pass-band of 100 MHz on the I and Q paths. The TIA is calibrated during device initialization to
ensure a consistent frequency corner across all devices. The TIA 3dB bandwidth is set within the device data structure and is profile
dependent. Roll off within the Rx pass band is compensated by the PFIR to ensure a maximally flat pass-band frequency response.

Decimation Stages

The signal path can be configured so that either the decimate-by-5 filter (DEC5) or the combination of FIR2, FIR1, and RHB3 is used in
the Rx digital path. The DEC5 decimates by a factor of 5 while the other filter combination can be configured to decimate by factors of 2,
4, or 8.

DEC5

DECS filter coefficients: 0.000976563, 0.001220703, 0.001953125, 0.001953125, —0.00390625, —0.0078125, —0.014648438, —0.018798828,
—-0.019042969, -0.007568359, 0.010742188, 0.041748047, 0.079101563, 0.1171875, 0.146972656, 0.165527344, 0.165527344, 0.146972656,
0.1171875, 0.079101563, 0.041748047, 0.010742188, —0.007568359, —0.019042969, —0.018798828, —0.014648438, —0.0078125,
—-0.00390625, 0.001220703, 0.001953125, 0.001953125, 0.001220703, 0.000976563

Finite Impulse Response 2 (FIR2)

The FIR?2 filter is a fixed coefficient decimating filter. The FIR2 decimates by a factor of 2 or it may be bypassed.
FIR?2 filter coefficients: 0.0625, 0.25, 0.375, 0.25, 0.0625

Finite Impulse Response 1 (FIR1)

The FIRI filter is a fixed coefficient decimating filter. The FIR1 decimates by a factor of 2 or it may be bypassed.
FIRI filter coefficients: 0.0625, 0.25, 0.375, 0.25, 0.0625

Rev. PrA | Page 173 of 267

UG-1727

Receive Half Band 3 (RHB3)

The RHB3 filter is a fixed coefficient decimating filter. The RHB3 decimates by a factor of 2.

RHBS3 filter coefficients: —0.033203125, 0, 0.28125, 0.49609375, 0.28125, 0, —0.033203125

Receive Half Band 2 (RHB2)

The RHB2 filter is a fixed coefficient decimating filter. The RHB2 decimates by a factor of 2 or it may be bypassed.

RHB?2 filter coefficients: —0.000244141, 0, 0.001708984, 0, —0.0078125, 0, 0.026855469, 0, —0.078369141, 0, 0.30859375, 0.501220703,
0.30859375, 0, —0.078369141, 0, 0.026855469, 0, —0.0078125, 0, 0.001708984, 0, —0.000244141

Receive Half Band High Rejection 1 (RHB1 (HR))

The RHB1 (HR) filter is a fixed coefficient decimating filter. The RHB1 (HR) can decimate by a factor of 2, or it may be bypassed.

RHBI (HR) filter coefficients: 0.000106812, 0, —0.000289917, 0, 0.00062561, 0, —0.001205444, 0, 0.002120972, 0, —0.003494263, 0,
0.005493164, 0, -0.008300781, 0, 0.012207031, 0, —0.01763916, 0, 0.025421143, 0, -0.03717041, 0, 0.057250977, 0, —0.101608276, 0,
0.314498901, 0.495956421, 0.314498901, 0, —0.101608276, 0, 0.057250977, 0, —0.03717041, 0, 0.025421143, 0, —0.01763916, 0,
0.012207031, 0, —0.008300781, 0, 0.005493164, 0, —0.003494263, 0, 0.002120972, 0, —0.001205444, 0, 0.00062561, 0, —0.000289917, 0,
0.000106812

Receive Half Band Low Power 1 (RHB1 (LP))
The RHBI (LP) filter is a fixed coefficient decimating filter. The RHB1 (LP) can decimate by a factor of 2, or it may be bypassed.

RHBI (LP) filter coefficients: —0.002685547, 0, 0.017333984, 0, —0.068359375, 0, 0.304443359, 0.501708984, 0.304443359, 0,
—-0.068359375, 0, 0.017333984, 0, —0.002685547

Rx Programmable Finite Impulse Response (PFIR)

The Rx PFIR filter acts as a decimating filter. The PFIR may decimate by a factor of 1, 2, or 4, or it can be bypassed. The RFIR is used to
compensate for the roll-off of the analog TIA LPFE. The PFIR can use either 24, 48, or 72 filter taps. The PFIR also has programmable gain
settings of +6 dB, 0 dB, -6 dB or —12 dB.

The maximum number of taps is limited by the FIR Clock Rate (Data Processing Clock — DPCLK). The maximum DPCLK is 1 GHz. The
DPCLK is the ADC Clock Rate divided by either 4 or 5. The divider is 4 when using the FIR2, FIR1 and HB3 filters, and it is 5 when using
the DECS filter. The DPCLK affects the maximum number of PFIR filter taps that can be used according to the following:

DPCLK
Rx PFIR filter taps,,,, = ——————"*——x24

" Rx_IQ_ DataRate
IF Conversion

The IF conversion stage provides the user with the ability to change how the received data is presented to the JESD port. Figure 102 shows
a block diagram of the IF conversion stage. There are two parallel paths where data can be processed, referred to as Band A and Band B.
In the circuitry of each band there are two mixer stages, allowing for upshifting or downshifting, interpolation and decimation stages, and
a half band filter with a pass band of 0.4 x SampleRate. The coefficients of the HB filter in this IF conversion stage are as follows:

HB filter coefficients: —9.1553 x 107, 0, 2.4414e-4, 0, —5.7983e-4, 0, 0.0012, 0, —0.0023, 0, 0.0040, 0, —0.0065, 0, 0.0103, 0, —0.0157, 0,
0.0236, 0, -0.0357, 0, 0.0563, 0, —0.1015, 0, 0.3168, 0.5000, 0.3168, 0, -0.1015, 0, 0.0563, 0, -0.0357, 0, 0.0236, 0, -0.0157, 0, 0.0103, 0,
-0.0065, 0, 0.0040, 0, —-0.0023, 0, 0.0012, 0, —=5.7983 x 107, 0, 2.4414% 107, 0, =9.1553 10x >

The following use cases provide an example of the types of functionality supported by this block (note that currently only the Low-IF to
Zero-IF conversion mode is supported in a released profile):

Complex Low-IF to Zero-IF

In this use case the received signal is offset from LO such that the entire signal of interest is on one side of the LO. The Band A NCO1 is
used to downshift the signal such that it is centered at 0 Hz. There is a half-band filter and decimate by 2 stage, which if used, decreases
the bandwidth and the subsequently the IQ rate. This reduces the number of JESD lanes required, or the rate that they need to be run at.

Figure 103 shows a conceptual case of a 200 MHz Rx bandwidth (IQ rate 245.76 MSPS) profile being used to receive a 75 MHz MC-GSM

offset from the LO, the center frequency is 52.5 MHz offset from the LO, such that the band occupies from +15 MHz to £90 MHz. It then

uses the IF conversion stage to shift the signal such that it is centered about 0 Hz, filters with the half-band filter, and decimates the output
by two, such that the IQ rate sent over the JESD is 122.88 MSPS.

Rev. PrA | Page 174 of 267

UG-1721

Complex Low-IF to Real-IF

In this use case the signal is shifted using NCO1 or NCO2 (or both/none) such that exists solely on one side of the LO. Once this is the
case, the signal no longer needs to be complex represented and only I data is sent across the link, Q data being dropped. The interpolate
by 2 stage may also need to be used to achieve this.

BAND A CIRCUITRY

HB Filter + DEC2 2 |Dig Gain
% J— Comp

|—| INT2 + HB Filter |—

2 INT2 + HB Filter 2 |Dig Gain
'] 2 Comp
HB Filter + DEC2

HB Filter

LQ —_—

22770-107

BAND B CIRCUITRY

Figure 102. Block Diagram of the IF Conversion Stage (Note that all circuitry is implemented in quadrature as indicated)
Zero- IF to Real-IF

In this use case the received signal is centered around the LO. The signal is interpolated by 2, and half-band filtered. The Band A NCO?2 is
used to upshift or downshift the data to generate a signal that is symmetrical about 0 Hz. The result is that the spectrum no longer
requires a complex representation, and only I data is sent across the link, Q data being dropped.

Dual Band Mode

In this use case there are multiple signals being received, referred to as Signal 1 and Signal 2. Band A circuitry can be used to process
Signal 1, and Band B to process Signal 2. Band A NCO1 is used to shift Signal 1 such that it is placed within the pass band of the half band
Filter such that it filters out signal 2. The decimate by 2 stage can also be used if the final composite bandwidth allows for a lower data rate
across the JESD link. The Band A NCO2 stage is then used to offset the signal to the required position in the spectrum. Likewise, the
same procedure is performed on Signal 2. The result is that the two signals originally located far apart in the spectrum, and thus requiring
a high data rate, can be moved closer together with this IF conversion circuitry, and represented by a lower IQ rate.

Dual Band Mode (Real IF)

In this use case the signals are processed separately using Band A and Band B. The NCO2 stages are used to shift both signals so they exist
on the same side of LO. At this point the spectrum no longer needs a complex representation and only I data can be sent across the link,
Q data being dropped. The interpolate by 2 stage may also need to be used to achieve this.

HB Filter Only Mode

If there is a blocker to one side of the signal, it is possible to use the IF conversion stage to obtain further rejection of the blocker. Band A
NCOL is used to offset the signal such that the signal is positioned close to the edge of the pass band of the half-band filter, and that the
blocker is positioned in the transition or stopband of the filter. The Band A NCO2 can be used to position the desired signal to its
previous position within the spectrum if required.

Rev. PrA | Page 175 of 267

UG-1727

Input to IF Conversion Stage Output of Band A Mixer Stage 1 Output of HB Filter and Dec 2 Stage
& Final Output
1Q Rate: 245.76MSPS 1Q Rate: 245.76 MSPS 1Q Rate: 122.88MSPS
‘SHhm l \
0 525MHz f 0 f 0

BAND A CIRCUITRY
: Band A
NCO 1
| :
| 5 % HB Filter I—
|
! . | HHB Fitter + DEC2———| %> [Dig Gain
: A M — Comp
|
AT B

L INT2 + HB Filter |—
2 |Dig Gain 2
Comp

—{ INT2 + HB Filter
2

2
flj
ra

|
|
1
|
|
| — HB Filter + DEC2
|
|
|
|
|

il

2 2
L HBFilter
Band B Band B
NCO 1 NCO 2
| o T TP st ENTK it B LS. o = SR E el S e Er e s LT gl L L R P e e L) TP By, S LSS R -

22770-108

BAND B CIRCUITRY

Figure 103. Block Diagram of the IF Conversion Stage in Zero-IF MC- GSM Configuration. The red line indicates the path of the signal through the IF conversion stage.
The spectrums above show how the signal is shifted, filtered and decimated.

RECEIVER SIGNAL PATH EXAMPLE

The Transceiver Evaluation Software provides an example depicting how the baseband filtering stages are used in profile configurations
for a signal pathway. In this example, the ADRV9025Init_StdUseCase26_nonLinkSharing profile is selected for the Rx channels. This is a
200 MHz profile with an IQ rate of 245.76 MSPS.

Figure 104 shows the filter configuration for this profile. The signal rate after the PFIR block is equal to the IQ rate of the profile.

2) Fix Signal Chain

DECS

sxd L
| . RHEZ RHE1 PFIR ‘J : '“. ”ul L " IEG0E0s

JESDIOL
Framar

() Fix Input Settings
BascSotings L
Rx Cutput Sample Rato(MHz) 245,78
Pt RF Bandwidth (MHz) 200

IE -!L:\A.nn.hq k ._ 'rum':m_{uw;

22770-109

Figure 104. Filter Configuration for the Rx 200 MHz, IQ Rate 245.76 MSPS

Rev. PrA | Page 176 of 267

UG-1721

The Transceiver Evaluation Software also provides a graph of the complete signal chain transfer function for this profile in the Rx tab
under the ChipConfig dropdown. This is shown in Figure 105.

@

100
8O-
60

40-

Mag'lm (BFS)
2
—
-
_.%-

5
T
_-?"

140=

-160-

“180=

=200~

Rx Signal Transfer Function

500 1000 1500 2000 2500
Frequency (MHz)

3000 3500 4000 4500 49146

22770110

Figure 105. Rx Signal Transfer Function

RECEIVER FILTER API STRUCTURE

The filter configuration is stored in the adi_adrv9025_RxProfile_t structure. This structure is stored within the adi_adrv9025_RxSettings
structure, which is stored in the overall device initialization structure (adi_adrv9025_Init_t). It contains the parameters listed in Table 186.

Table 186. adi_adrv9025_ RxProfile_t Structure Parameters

Name

Value

Description

channelType

rxFirDecimation
rxDec5Decimation

rhb1Decimation
rhb1WideBandMode
rhb2Decimation
rhb3Decimation
rxFir1Decimation
rxFir2Decimation

rxOutputRate_kHz
rfBandwidth_kHz
rxBbf3dBCorner_kHz
rxAdcBandWidth_kHz

rxFir
rxDdcMode
rxNcoShifterCfg

tiaPowerMode

A value of type adi_adrv9025_RxChannels_e

1,2,4

4 = Use combination of FIR1, FIR2, and/or RHB3;
5 =Use Dec5

1 =bypass, 2=inuse

0 - HB1 is narrow, 1 - HB1 is wider

1,2

1,2

1,2

1,2

’

30720 to 368640 (based on currently defined
use cases)

20000 to 200000 (based on currently defined
use cases)

20000 to 200000 (based on currently defined
use cases)

10000 to 100000 (based on currently defined
use cases)

A value of type adi_adrv9025_RxFir_t

A value of type adi_adrv9025_RxDdc_e

A value of type adi_adrv9025_RxNcoShifterCfg_t

0,1,2,3

Choose what channel to configure the filters described in
Table 187

Rx FIR Decimation setting
Setting to use either the Dec5 or HB3 and HB2 in the ORx path

Rx HB1 Decimation setting

ORx and loopback profiles ignore this field
RX Half-Band 2 (HB2) decimation factor
RX Half-Band 3 (HB3) decimation factor

Rx FIR1 decimation factor

Rx FIR2 decimation factor; ORx and loopback profiles ignore
this field

IQ data rate specified in kHz (to the input of the JESD block)
The RF bandwidth specified in kHz
The BBF 3 dB corner frequency specified in kHz

Rx ADC bandwidth tunes the bandwidth of the pass band and
noise transfer functions of the ADC

The Rx FIR filter structure is described in Table 188
The Rx DDC mode settings are described in Table 189

The Rx NCO Shifter Configuration structure is described in
Table 190

4 options for TIA power reduction modes (range 0-3)

Rev. PrA | Page 177 of 267

UG-1727

Table 187. adi_adrv9025_RxChannels_e Enum Definition

adi_adrv9025_ RxChannels_e Enum

Enabled Channels

ADI_ADRV9025_RXOFF
ADI_ADRV9025_RX1
ADI_ADRV9025_RX2
ADI_ADRV9025_RX3
ADI_ADRV9025_RX4
ADI_ADRV9025_ORX1
ADI_ADRV9025_ORX2
ADI_ADRV9025_ORX3
ADI_ADRV9025_ORX4
ADI_ADRV9025_LB12
ADI_ADRV9025_LB34

No Rx or ORx channels enabled

Rx1 Enabled

Rx2 Enabled

Rx3 Enabled

Rx4 Enabled

ORx1 Enabled

ORx2 Enabled

ORx3 Enabled

ORx4 Enabled

Tx1 or Tx2 internal loopback into ORx1/2 channel enabled
Tx3 or Tx4 internal loopback into ORx3/4 channel enabled

Rx PFIR Settings

The Rx PFIR is specified in signed coefficients from +32767 to -32768. The gain block allows for more flexibility when designing a digital
filter. For example, a FIR can be designed with 6dB gain in the pass band, and then this block can be set to —6 dB gain to give an overall
0 dB gain in the pass band. The gain of the filter coefficients can be calculated as follows:

DC Gain— ZFIRz(f;)e_ﬁ;lczents
Table 188. adi_adrv9025_RxFir_t Structure Parameters
Name Value Description
gain_dB -12,-6,0,+6 The setting (in dB) for the gain block within the Rx FIR
numpFirCoefs 24,48,72 Number of taps to be used in the Rx FIR
coefs[ADI_ADRV9025_MAX_RXPFIR_COEFS] A pointer to an array of filter coefficients of size ADI_ADRV9025_MAX_RXPFIR_COEFS

Rx DDC Mode

The Rx DDC Mode is defined within the adi_adrv9025_RxProfile_t structure as an enumerated type from the adi_adrv9025_RxDdc_e
type definition. Permissible values are listed in Table 189.

Table 189. adi_adrv9025_ RxDdc_e Enum Definition

adi_adrv9025_RxDdc_e Enum

Description

ADI_ADRV9025_RXDDC_BYPASS
ADI_ADRV9025_RXDDC_FILTERONLY

ADI_ADRV9025_RXDDC_INT2
ADI_ADRV9025_RXDDC_DEC2
ADI_ADRV9025_RXDDC_BYPASS_REALIF

ADI_ADRV9025_RXDDC_FILTERONLY_REALIF
ADI_ADRV9025_RXDDC_INT2_REALIF

ADI_ADRV9025_RXDDC_DEC2_REALIF

In this mode, the half-band filter and interpolation/decimation stages are bypassed.

In this mode, the half-band filter stage is used, but the interpolation and decimation stages
are bypassed.

In this mode, the interpolate by 2 and half-band filter stages are utilized.

In this mode, the half-band filter and decimate by 2 stages are utilized.

In this mode, the half-band filter and interpolation/decimation stages are bypassed. At the
input to the JESD core, Q data is dropped.

In this mode, the half-band filter stage is used, but the interpolation and decimation stages
are bypassed. At the input to the JESD core, Q data is dropped.

In this mode, the interpolate by 2 and half-band filter stages are utilized. At the input to the
JESD core, Q data is dropped.

In this mode, the half-band filter and decimate by 2 stages are utilized. At the input to the
JESD code, Q data is dropped.

Rev. PrA | Page 178 of 267

UG-1721

Rx NCO Shifter Configuration
The adi_adrv9025_RxNcoShifterCfg_t structure is contained within the adi_adrv9025_RxProfile_t structure. It contains the settings of
the NCO stages of Band A and Band B, as well as the bandwidth and baseband center frequency of the desired signal(s). This allows the

API to ensure that the IF conversion stage has been correctly setup, and that the signal(s) post NCO shifting is falling within the
bandwidth provided by the IQ rate being utilized, and the pass-band bandwidth of the half-band filter if utilized.

The NCOs are able to be configured according to the following rules:

e bandwidthDiv2 = (bandAInputBandwidth_kHz/2) x 1000
e inputCenterFreq = (bandAlInputCenterFreq_kHz) x 1000
e ncolOutputCenterFreq = (bandAInputCenterFreq_kHz + bandANcolFreq_kHz) x 1000
e nco2OutputCenterFreq = ncol OutputCenterFreq + (bandANco2Freq_kHz) x 1000
e outputRateHz = IQ Data rate of the Rx UseCase
e primaryBwHz = Primary Rx signal bandwidth of the Rx UseCase
e ddcHbCorner depends on the mode used:
e IfRXDDC_FILTERONLY, RXDDC_FILTERONLY_REALIE, RXDDC_INT2, RXDDC_INT2_REALIF at the ddcHbCorner =
outputRateHz x 0.2
e IfRXDDC_DEC2, RXDDC_DEC2_REALIF at the ddcHbCorner = outputRateHz x 0.4

Range Checks (Total of 6 rules)
Rule 1: Input Center Frequency Setup

e inputCenterFreq + bandWidthDiv2 > primaryBwHz/2
e inputCenterFreq — bandWidthDiv2 < —primaryBwHz/2

Rule 2: Output Center Frequency Setup NCOL1. If DDC HB is enabled,

e ncolOutputCenterFreq + bandWidthDiv2 > ddcHbCorner
¢ ncolOutputCenterFreq — bandWidthDiv2 < —~ddcHbCorner

Rule 3: Output Center Frequency Setup NCO2

e nco2QutputCenterFreq + bandWidthDiv2 > outputRateHz/2
e nco20utputCenterFreq — bandWidthDiv2 < —outputRateHz/2

Table 190. adi_adrv9025_RxNcoShifterCfg_t Structure Parameters

adi_adrv9025_RxNcoShifterCfg_t | Description

bandAlnputBandWidth_kHz The bandwidth of the received signal being processed in Band A specified in kHz.

bandAlnputCenterFreq_kHz The center frequency, in terms of baseband frequencies, of the received signal being process in Band
A, specified in kHz.

bandANco1Freq_kHz The frequency shift to be provided by NCO1 of Band A specified in kHz. Positive values shift the
spectrum up in frequency; negative values shift the spectrum down in frequency.

bandANco2Freq_kHz The frequency shift to be provided by NCO2 of Band B specified in kHz. Positive values shift the
spectrum up in frequency; negative values shift the spectrum down in frequency.

bandBInputBandWidth_kHz The bandwidth of the received signal being processed in Band B specified in kHz.

bandBInputCenterFreq_kHz The center frequency, in terms of baseband frequencies, of the received signal being process in Band
B, specified in kHz.

bandBNco1Freq_kHz The frequency shift to be provided by NCO1 of Band B specified in kHz. Positive values shift the
spectrum up in frequency; negative values shift the spectrum down in frequency.

bandBNco2Freq_kHz The frequency shift to be provided by NCO2 of Band B specified in kHz. Positive values shift the
spectrum up in frequency; negative values shift the spectrum down in frequency.

bandAbCombinedEnable The frequency shift to be provided by the combination of Band A and Band B at output, 1 = combine
dual-band AB, 0 = disable combine dualband on AB

Note that dual-band mode is selected when the input bandwidths of Band A and Band B are both specified (nonzero). In nondual band
modes, specify Band A settings only, with Band B left with zero settings. Likewise, if the NCO stages of both Band A and Band B are not
to be used, provide zero settings for all variables in the adi_adrv9025_RxNcoShifterCfg_t structure.

Rev. PrA | Page 179 of 267

UG-1727

TRANSMITTER SIGNAL PATH

Each transmitter has an independent signal path including separate digital filters, DACs, analog low-pass filters, and I/Q mixers that drive
the signal outputs. Data is input to the Tx signal path via the JESD204B high-speed serial data interface at the IQ data rate of the
transmitter profile. The serial data is converted to parallel format through the JESD204B deframer into I and Q components. The data is
processed through digital filtering and signal correction stages and input to I/Q DACs.

The DAC output is low pass filtered by the Tx low-pass filter (LPF) and input to the upconversion mixer. The I and Q paths are identical
to one another. Over-ranging is detected in the Tx digital signal path at each stage and limited to the maximum code value to prevent data
wrapping. A block diagram of a Tx signal path is shown in Figure 106. Blocks that are not discussed in this section are faded.

Tx1 Signal Path, | and Q Channel

908}I9U| g70casar

22770111

Figure 106. Tx Signal Path Diagram

Analog Low Pass Filter (LPF)

The LPF is a second-order analog Butterworth low pass filter with an adjustable 3dB corner. The Tx chains of the device can support
pass-band bandwidths up to 225 MHz (on I and Q). The LPF is calibrated during device initialization, resulting in a consistent frequency
corner across all devices. The LPF bandwidth is set within the device data structure and is profile dependent. Roll off within the analog
LPF pass band is compensated by the TFIR to ensure a maximally flat pass-band frequency response.

Interpolation By 5 Filter (INT5)
Either the INT5 or any combination of THB3 and THB2 are used in the Tx digital path. The INT5 interpolates by a factor of 5. The INT5

coefficients are listed as follows:

INTS5 filter coefficients: 0.002929688, 0.029052734, —0.029296875, 0.03125, —0.012207031, —0.005859375, —0.056640625, 0.051513672,
—-0.055664063, 0.025390625, 0.020996094, 0.081298828, —0.057617188, 0.072509766, —0.045166016, —0.047607422, —0.095947266,
0.030517578, —0.071289063, 0.068603516, 0.093994141, 0.113769531, 0.030761719, 0.055419922, —0.103759766, —0.185791016,
—-0.185302734, —0.136962891, —0.037353516, 0.227050781, 0.518554688, 0.717285156, 0.928466797, 1.019287109, 0.928466797,
0.717285156, 0.518554688, 0.227050781, —0.037353516, —0.136962891, —0.185302734, —0.185791016, -0.103759766, 0.055419922,
0.030761719, 0.113769531, 0.093994141, 0.068603516, —0.071289063, 0.030517578, —0.095947266, —0.047607422, —0.045166016,
0.072509766, —0.057617188, 0.081298828, 0.020996094, 0.025390625, —0.055664063, 0.051513672, —0.056640625, —0.005859375,
-0.012207031, 0.03125, --0.029296875, 0.029052734, 0.002929688

Transmit Half Band 3 THB3

The THB3 is a fixed coefficient half-band interpolating filter. THB3 can interpolate by a factor of 2 or it can be bypassed. The coefficients
are listed as follows.

THBS3 filter coefficients: 0.125, 0.5, 0.75, 0.5, 0.125
Transmit Half Band 2 (THB2)

The THB2 is a fixed coefficient half-band interpolating filter. THB2 can interpolate by a factor of 2 or it can be bypassed. The coefficients
are listed below.

THB?2 filter coefficients: —0.08203125, 0, 0.58203125, 1, 0.58203125, 0, —0.08203125

Rev. PrA | Page 180 of 267

UG-1721

Transmit Half Band 1 (THB1)

The THBI is a fixed coefficient half band interpolating filter. THB1 interpolates by a factor of 2 or it can be bypassed. The coefficients are
listed as follows.

THBI filter coefficients: —0.002319336, 0, 0.003601074, 0, —0.004058838, 0, 0.004119873, 0, —0.006439209, 0, 0.009613037, 0,
-0.012023926, 0, 0.014404297, 0, —0.018737793, 0, 0.024291992, 0, -0.030059814, 0, 0.037353516, 0, —0.048156738, 0, 0.062927246, 0,
—-0.084350586, 0, 0.122283936, 0, —0.209564209, 0, 0.635925293, 1, 0.635925293, 0, —0.209564209, 0, 0.122283936, 0, —0.084350586, 0,
0.062927246, 0, —0.048156738, 0, 0.037353516, 0, —0.030059814, 0, 0.024291992, 0, —0.018737793, 0, 0.014404297, 0, —0.012023926, 0,
0.009613037, 0, —0.006439209, 0, 0.004119873, 0, —0.004058838, 0, 0.003601074, 0, —0.002319336

Programmable Transmitter Finite Impulse Response (TFIR)

The TFIR filter acts as an interpolating filter in the TX path. The TFIR may interpolate by a factor of 1, 2, or 4, or it can be bypassed. The
TFIR is used to compensate for roll off caused by the post-DAC analog low pass filter. The TFIR has a configurable number of taps; either
20, 40, 60, or 80 taps can be used. The TFIR also has a programmable gain setting of +6 dB, 0 dB, -6 dB or —12 dB.

The maximum number of taps is limited by the TFIR Clock Rate (Data Processing Clock — DPCLK). The maximum DPCLK is 1 GHz.
The DPCLK is the high speed digital clock (HSDIG_CLK) divided by either 4 or 5 depending on the HSDIG_CLK divider setting. The
DPCLK affects the maximum number of TFIR filter taps that can be used according to the following relationship:

DPCLK
Tx PFIR filter taps,,,, = ————"*—x20
Tx_IQ _ DataRate

TX SIGNAL PATH EXAMPLE

The Transceiver Evaluation Software provides an example depicting how the baseband filtering stages are used in profile configurations
for a signal data path. In this example, the ADRV9025Init_StdUseCase26_nonLinkSharing profile is selected for the Tx channels. This is a
200 MHz/450 MHz profile with IQ Rate 491.52 MSPS.

To explain the terminology of the 200 MHz/450 MHz profile, the 200 MHz refers to the Tx primary signal bandwidth, whereas the
450 MHz refers to Tx RF bandwidth.

Figure 107 shows the filter configuration for this profile. The signal rate after the TFIR block is equal to the IQ rate of the profile.

Q) Tx Signal Chain

THEZ THE1 PEIR ||
lo—; -
x4 2¢ 4 1x g 24 4 24 4

@) Tx Settings

Bosc Sefings
Tu Input Sampks Rata(MHz) 431 52
T FF Bandwdth (MHz) 450
T Primary Sigrel B (MHz) @00

Advanced Setrgs
Arinleng Basaband Fiter 38 (MH2)
Annlog DAC Filtor a8 (MHz)

22770-112

Figure 107. Filter Configuration for the Tx 200 MHz/450 MHz, 491.52 MSPS Profile

Rev. PrA | Page 181 of 267

UG-1727

The combined Tx signal transfer function can be found in the Tx tab under the ChipConfig dropdown menu as shown in Figure 108.

TN

\ 7“]“” I i - |

Tx Signal Transfer Function
100
80
60~
40
20-
0- —-=:::_'__‘_\+ g f{/’ ——
20 l -‘-_"'""-—h.___‘___‘__ ||'
¥ | | T — ™

Magritude (dBFS;
2
;
—
m—
—
——
™~

100~

120~
140
160
180

200~ [l ' [l ' [l ' [l i [l U 1 1 i 1 i 1 i 1 1 1
0 100 200 300 400 500 600 700 BOO 400 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 19658

22770-113

Figure 108. Tx Signal Transfer Function

TRANSMITTER FILTER API STRUCTURE

The filter configuration is stored in the adi_adrv9025_TxProfile_t structure. This structure is stored within the
adi_adrv9025_TxSettings_t structure, which is stored in the overall device initialization structure (adi_adrv9025_Init_t). Its parameters
are described in Table 191.

Table 191. adi_adrv9025_TxProfile_t Structure Parameters

Name Value Description
txInputRate_kHz 30720 to 491520 (based on currently IQ data rate at the input to the TFIR specified in kHz
defined use cases)
primarySigBandwidth_kHz | 20000 to 200000 (based on currently Primary signal bandwidth specified in kHz
defined use cases)
rfBandwidth_kHz 100000 to 450000 (based on currently The RF bandwidth specified in kHz
defined use cases)
txDac3dBCorner_kHz 100000 to 450000 (based on currently The DAC 3dB corner specified in kHz
defined use cases)
txBbf3dBCorner_kHz 50000 to 225000 (based on currently The BBF 3dB corner frequency specified in kHz
defined use cases)
txFirlnterpolation 1,2,4 Tx FIR interpolation setting
thb1interpolation 1 =bypass, 2 =in use Tx HB1 interpolation setting
thb2Interpolation 1 =Dbypass, 2 =in use Tx HB2 interpolation setting
thb3Interpolation 1 =bypass, 2 =in use Tx HB3 interpolation setting
txInt5Interpolation 1 =bypass, 5 =in use Tx INT5 interpolation setting
txFir A value of type adi_adrv9025_TxFir_t txFir structure explained in detail in the Tx FIR Settings section
txBbfPowerMode 0to8 The Tx BBF power scaling mode selection between 0 and 8, where
a value of 8 allows the Arm to set the power mode based on the
LUT of power saving

Rev. PrA | Page 182 of 267

UG-1721

Tx FIR Settings
The adi_adrv9025_TxFir_t structure is contained within the adi_adrv9025_TxProfile_t structure. Its parameters are described in Table 192.

Table 192. adi_adrv9025_TxFir_t Structure Parameters

Name Value Description

gain_dB -12,-6,0,+6 The setting (in dB) for the gain block within the Tx FIR
numFirCoefs 20, 40, 60, 80 Number of taps to be used in the Tx FIR
coefs[ADI_ADRV9025_MAX_TXPFIR_COEFS] A pointer to an array of filter coefficients of size ADI_ADRV9025_MAX_TXPRIF_COEFS

The Tx FIR is specified in signed coefficients from +32,767 to —32,768. The gain block allows for more flexibility when designing a digital
filter. For example, a FIR can be designed with 6 dB gain in the pass band, and then this block can be set to —6 dB gain to give an overall
0 dB gain in the pass band. The gain of the filter coefficients can be calculated as follows:

Y FIR Coefficients

2% -1
OBSERVATION RECEIVERS SIGNAL PATH
The device has four observation receivers (ORx1, ORx2, ORx3 and ORx4) that can be used to capture data for digital pre-distortion
(DPD) algorithms and other measurements/calibration that require monitoring the transmitter outputs. The observation receiver can
serve as an external loopback path to loop back the output of a PA, provided input level to the ORx is below the full-scale level of the
ADC.
The devices ORx1, ORx2, ORx3 and ORx4 channels have separate I/Q mixers. These mixers are identical to the mixers of the receivers,
with the exception that the observation mixers include an LO mux. The LO mux allows either the RF PLL or the AUX PLL to provide the
local oscillator signal source for the ORx1, ORx2, ORx3 and ORx4 mixers.
The mixer feeds into a programmable transimpedance amplifier (TIA) that serves as a low pass filter (LPF) in the analog data path. The

signal is converted by the sigma-delta ADC and filtered in halfband decimation stages and the programmable finite impulse response
(PFIR). The fixed coefficient halfband filters (FIR1, RHB1(HR), RHB1(LP), RHB2, RHB3, DEC5) and the PFIR are designed to prevent

data wrapping and overrange conditions.

DC Gain=

The IF conversion stage provides the ability frequency shift or upsample/downsample digital data. Configurations supported include real
IF (real valued baseband data) configuration and low IF (complex data) configuration.

The diagram in Figure 109 shows the signal path for an ORx signal chain. Blocks that are not discussed in this section are faded.

ORx1 Signal Path, | and Q Channel
=

—@—{D

9Jeys1u| g+02Aasar

L mrmbiEs

Figure 109. ORx Signal Path

22770-114

Transimpedance Amplifier (TIA)

The ORx transimpedance amplifier is a low pass filter with a single real pole frequency response. The TIA can support pass-band
bandwidths up to 225 MHz (for both I and Q). The TIA is calibrated during device initialization which ensures a consistent frequency
corner across all devices. The TIA 3 dB bandwidth is set within the device data structure and is profile dependent. Roll-off within the
ORx pass band is compensated by the PFIR to ensure a maximally flat pass-band frequency response.

DEC5
Either the DECS5, or the combination of RHB3 and FIRI is used in the Rx digital path. The DEC5 decimates by a factor of 5 or it may be
bypassed. The DECS5 coefficients are listed below.
DECS filter coefficients: 0.000732422, 0.001464844, 0.002441406, 0.003417969, 0.003173828, —0.000732422, —0.005615234,
—-0.013183594, —0.020507813, —0.022949219, —0.014648438, 0.003417969, 0.035400391, 0.077392578, 0.119873047, 0.154541016,
0.176269531, 0.176269531, 0.154541016, 0.119873047, 0.077392578, 0.035400391, 0.003417969, —0.014648438, —0.022949219,
—-0.020507813, —0.013183594, —0.005615234, —0.000732422, 0.003173828, 0.003417969, 0.002441406, 0.001464844, 0.000732422

Rev. PrA | Page 183 of 267

UG-1727

Finite Impulse Response 1 (FIR1)

The FIR1 filter is a fixed coefficient decimating filter. The FIR1 decimates by a factor of 2 or it may be bypassed.

FIR1 filter coefficients: 0.25, 0.75, 0.75, 0.25

Receive Half Band 3 (RHB3)

The RHB3 filter is a fixed coefficient decimating filter. The RHB3 decimates by a factor of 2 or it may be bypassed. The RHB3 coefficients
are listed below.

RHBS3 filter coefficients: —0.0625, 0.0078125, 0.5625, 0.984375, 0.5625, 0.0078125, —0.0625

Receive Half Band 2 (RHB2)

The RHB2 filter is a fixed coefficient decimating filter. The RHB2 decimates by a factor of 2 or it may be bypassed. The RHB2 coefficients

are listed below.

RHB?2 filter coefficients: —0.002929688, 0, 0.018554688, 0, —0.0703125, 0, 0.3046875, 0.500976563, 0.3046875, 0, —0.0703125, 0,
0.018554688, 0, —0.002929688

Receive Half Band 1 High Rejection (RHB1 (HR))

The RHBI1 (HR) filter is a fixed coefficient decimating filter. The RHB1 can decimate by a factor of 2, or it may be bypassed. The RHB1
coefficients are listed as follows.

RHBI filter coefficients: —0.000732422, 0, 0.000732422, 0, —0.001098633, 0, 0.001586914, 0, —0.00213623, 0, 0.002929688, 0,
—-0.00378418, 0, 0.004882813, 0, —0.006225586, 0, 0.007873535, 0, —0.009887695, 0, 0.012329102, 0, —0.015380859, 0, 0.019226074, 0,
-0.024353027, 0, 0.031555176, 0, -0.042419434, 0, 0.061462402, 0, —0.104797363, 0, 0.317871094, 0.5, 0.317871094, 0, —0.104797363, 0,
0.061462402, 0, —0.042419434, 0, 0.031555176, 0, —0.024353027, 0, 0.019226074, 0, -0.015380859, 0, 0.012329102, 0, —0.009887695, 0,
0.007873535, 0, —0.006225586, 0, 0.004882813, 0, —0.00378418, 0, 0.002929688, 0, -0.00213623, 0, 0.001586914, 0, —0.001098633, 0,
0.000732422, 0, —0.000732422

Receive Half Band 1 Low Power (RHB1 (LP))
The RHBI1 (LP) filter is a fixed coefficient decimating filter. The RHB1 can decimate by a factor of 2, or it may be bypassed. The RHB1

coefficients are listed below.

RHBI filter coefficients: —0.002685547, 0, 0.017333984, 0, —0.068359375, 0, 0.304443359, 0.501708984, 0.304443359, 0, —0.068359375, 0,
0.017333984, 0, —0.002685547

PFIR

The PFIR filter acts as a decimating filter. The PFIR may decimate by a factor of 1, 2, or 4, or it can be bypassed. The PFIR is used to
compensate for the roll off of the analog TIA LPF. The PFIR can use either 24, 48, or 72 filter taps. The PFIR also has programmable gain
settings of +6 dB, 0 dB, -6 dB or —12 dB.

The maximum number of taps is limited by the FIR Clock Rate (Data Processing Clock - DPCLK). The maximum DPCLK is 1 GHz. The
DPCLK is the ADC Clock Rate divided by either 4 or 5. It is 4 when using the HB2 and HB3 filters. It is 5 when using the DECS5 filter. The
DPCLK affects the maximum number of RFIR filter taps that can be used according to the following relationship:

DPCLK
ORx PFIR filter taps,,,, = CLK s o4

"™ ORx_IQ_ DataRate

IF Conversion
Refer to the equivalent Receiver Signal Path section about the IF conversion stage.
OBSERVATION RECEIVER SIGNAL PATH EXAMPLE

The Transceiver Evaluation Software provides an example depicting how the baseband filtering stages are used in profile configurations
for a signal pathway. In this example, the ORx 450 MHz, IQRate 491.52 MSPS profile is selected for the ORx channels. This profile is
compatible with the other examples provided in this document.

Figure 110 shows the filter configuration for this profile. The clocking frequencies are noted in blue. The signal rate after the RFIR block
is equal to the IQRate of the profile.

Rev. PrA | Page 184 of 267

Preliminary Technical Data UG-1727

HHE1 FFIR
24 [7] md

a
:
227704115

Figure 110. Filter Configuration for ORx 450 MHz, IQ Rate 491.52 MSPS

In the ORx tab under the ChipConfig dropdown menu the ORx signal transfer function of the signal chain can be found as shown in
Figure 111.

100~

dmm|MM ' ”%mwuwwl {Xa
|||' i ke,

||
=140 = ‘ |

22770-116

o 00 1000 1500 2000 2500 3000 3800 4000 4500 9146
Frequency (MHz)
Figure 111. ORx Signal Transfer Function

Rev. PrA | Page 185 of 267

UG-1727

OBSERVATION RECEIVER FILTER API STRUCTURE

The filter configuration is stored in the adi_adrv9025_RxProfile_t structure. This structure is stored within the adi_adrv9025_RxSettings
structure, which is stored in the overall device initialization structure (adi_adrv9025_Init_t). It contains the parameters listed in Table 193. For
further details refer to the Receiver Filter API Structure section.

Table 193. adi_adrv9025_RxProfile_t Structure Parameters

Name

Value

Description

channelType

rxFirDecimation
rxDec5Decimation

rhb1Decimation
rhb1WideBandMode
rhb2Decimation
rhb3Decimation
rxFir1Decimation
rxFir2Decimation

rxOutputRate_kHz

rfBandwidth_kHz
rxBbf3dBCorner_kHz
rxAdcBandWidth_kHz

rxFir
rxDdcMode
rxNcoShifterCfg

tiaPowerMode

rxDataFormat

A value of type adi_adrv9025_RxChannels_e

1,2,4
4 = use combination of FIR1, FIR2, and/or RHB3, 5 = Use
Dec5

1 =bypass, 2 =in use

0=HB1 is narrow, 1 =HB1 is wider
1,2

1,2

1,2

1,2

122880 to 491520 (based on currently defined use cases)

112500 to 450000 (based on currently defined use cases)
112500 to 450000 (based on currently defined use cases)
56250 to 225000 (based on currently defined use cases)

A value of type adi_adrv9025_RxFir_t
A value of type adi_adrv9025_RxDdc_e
A value of type adi_adrv9025_RxNcoShifterCfg_t

0,123

A value of type adi_adrv9025_RxDataFormat_t

Choose what channel to configure the filters
described in Table 187

ORx FIR Decimation setting

Setting to use either the Dec5 or HB3 and HB2 in the
ORx path

ORx HB1 decimation setting

ORx and loopback profiles ignore this field
ORx Half-Band2 (HB2) decimation factor
ORx Half-Band3 (HB3) decimation factor
ORx FIR decimation factor

Rx FIR decimation factor; ORx and loopback profiles
ignore this field

IQ Data rate specified in kHz (to the input of the
JESD block)

The RF bandwidth specified in kHz

The BBF 3 dB corner frequency specified in kHz

Rx ADC bandwidth tunes the bandwidth of the pass
band and noise transfer functions of the ADC

The Rx FIR filter structure is described in Table 188
The Rx DDC mode settings are described in Table 189
The Rx NCO shifter configuration structure is
described in Table 190

Four options for TIA power reduction modes (range
0to3)

This structure is explained in the Gain
Compensation, Floating Point Formatter and Slicer
section and Table 181

Rev. PrA | Page 186 of 267

UG-1721

GENERAL-PURPOSE INPUT/OUTPUT CONFIGURATION

The device features nineteen (19) digital General-Purpose Input/Output (GPIO) pins that can be used for a variety of functions. The
device also features eight analog General-Purpose Input/Output (GPIO_ANA) pins. The GPIO/GPIO_ANA pins provide a real-time
interface for the baseband processor to control the transceiver or for the transceiver to send information to the baseband processor. An
example of baseband processor control uses rising edges sent by the baseband processor over user assigned GPIO pins to increase or
decrease the transmitter attenuation. An example of the transceiver sending information to the baseband processor is the ability to send
overload detection information from peak detectors in the receiver datapath to advise that input signal level is too high.

The GPIO_ANA pins serve as the output pins for 8 AuxDAC signals. The AuxDAC can be used for providing a control voltage. The
AuxDAC is not a precision converter device and is recommended to be used in applications where high accuracy is not needed. It is best
to use the AuxDAC in feedback systems rather than in open-loop control systems.

The digital GPIO supply is the VDD_IF supply voltage. The GPIO_ANA supply is the VDDA_1P8 supply voltage. IBIS models have been
created to assist in the simulation of these interfaces.

DIGITAL GPIO OPERATION

Each digital GPIO pin can be set to either input or output mode. In this section, input and output mode are oriented with respect to the
transceiver device. The input mode allows the baseband processor to drive pins on the transceiver to execute specific tasks. The output
mode allows the device to output various signals.

The digital GPIO pin I/O direction can be set with the following API commands.
adi_adrv9025_GpiolnputDirSet(...)

adi_adrv9025_GpiolnputDirSet(adi_adrv9025 Device_t* device, uint32_t gpiolnputMask)
Description

Configures pins for input direction.

Parameters

Table 194.

Parameter Description

*device Pointer to device structure.

gpiolnputMask | Selects the device GPIO pins that are required to be set as input in the range 0x00000 - 0x7FFFF. If a bit is set high, the
GPIO pin associated with the bit is set as an input (GPIO_0 corresponds to bit DO, GPIO_1 corresponds to bit D1, and
soon).

adi_adrv9025_GpioOutputDirSet
adi_adrv9025_GpioOutputDirSet(adi_adrv9025_Device_t* device, uint32_t gpioOutputMask)

Description

Configures pins for output direction.

Parameters

Table 195.

Parameter Description

*device Pointer to device structure.

gpiolnputMask | Selects the device GPIO pins that are required to be set as output in the range 0x00000 - 0x7FFFF. If a bit is set high, the
GPIO pin associated with the bit is set as an output (GPIO_0 corresponds to bit DO, GPIO_1 corresponds to bit D1, and
soon).

Note that conflicts regarding GPIO usage may occur when using combinations of certain features. Ensure that multiple functions are not
assigned to the same GPIO pin.

Rev. PrA | Page 187 of 267

UG-1727

Input GPIO Features

The following table provides a list of GPIO input features available that interact with datapath control elements on the device. For the
GPIO features within Table 196, the API automatically sets the I/O direction of the GPIO pins assigned for the feature.

Table 196. Summary of Input GPIO Features

Feature

Description

GPIO Pins Available for Feature

SPI12

Secondary SPI channel for control and read back of receiver gain index
and transmitter attenuation.

API Configuration Command: adi_adrv9025_Spi2CfgSet(...)
adi_adrv9025_TxAttenSpi2PinCtrlCfgSet(...)

GPIO_0: SPI_DIO (input or output)
GPIO_1: SPI_DO (output only)

GPIO_2: SPI_CLK (input)

GPI0_3: SPI_CS (input)

GPIO_4 through GPIO_18: Tx Attenuation
state select

Pin Controlled
Rx/ORx Gain
Index Increment
and Decrement

Configure specific GPIO pins to increment or decrement the gain index
on any Rx or ORx channel after a rising edge on the assigned pin.
API Configuration Command: adi_adrv9025_RxGainPinCtrlCfgSet(...)

GPIO_0 through GPIO_15: Rx/ORx gain
index increment pin select.
GPIO_0 through GPIO_15: Rx/ORx gain
index decrement pin select.

Pin Controlled Tx
Attenuation
Increment and
Decrement

Configures specific GPIO pins to increment or decrement attenuation
on any Tx channel after a rising edge on the assigned pin.
API Configuration Command: adi_adrv9025_TxAttenPinCtrlCfgSet(...)

GPIO_0 through GPIO_15: Tx attenuation
increment pin select.
GPIO_0 through GPIO_15: Tx attenuation
decrement pin select.

External Slicer
Mode

A technique used in some gain compensation applications. The
baseband processor instructs the slicer to attenuate the digital data to
fit within a desired bit-width based on the value expressed on the slicer
pins (up to 3 available in input mode).

API Configuration Command: adi_adrv9025_RxDataFormatSet(...)

GPIO_[2:0] = Assign to any Rx
GPIO_[5:3] = Assign to any Rx
GPIO_[8:6] = Assign to any Rx
GPIO_[11:9] = Assign to any Rx
GPIO_[14:12] = Assign to any Rx
GPIO_[17:15] = Assign to any Rx

Tx-Observation
Receiver Select

When using fewer than 4 ORx channels, the ORx channel needs
information about which Tx channel data is presented to the ORx. If a
pin interface is required to indicate the Tx to ORx mapping, the
following command sets up the pins, provided the stream file is
generated with appropriate input settings.

API Configuration Command: adi_adrv9025_StreamGpioConfigSet(...)

GPIO_0 through GPIO_15.

More details on these features are provided in the following subsections.

SPI2

A complete description, including descriptions of custom data types, for the SPI2 interface can be found in the SPI2 Description section

of this user guide.

The SPI2 interface acts as a secondary SPI channel that operates on digital GPIO_[3:0]. An optional pin can be configured for toggling

the Tx attenuation between attenuation state S1 and attenuation state S2 on GPIO_4 through GPIO_18. The SPI2 interface uses the same
SPI configuration used on the primary SPI interface. SPI2 can be used to set the gain index on Rx/ORx channels, read back the gain index
on Rx/ORx channels, and set up two distinct Tx attenuation states that the user can alternate between by toggling a GPIO pin. The SPI2
interface cannot access registers available to the primary SPI interface.

When the SPI2 feature is enabled, GPIO_[3:0] and the pin assigned for Tx Attenuation Select (can be GPIO_4 through GPIO_18 or leave
unassigned) cannot be used for other purposes. When SPI2 is enabled, it overrides functionality previously assigned to digital GPIO_[3:0]
pins. Refer to Table 196 for specific pin mapping details.

Rev. PrA | Page 188 of 267

UG-1721

adi_adrv9025_Spi2CfgSet
adi_adrv9025_Spi2CfgSet(adi_adrv9025 Device_t* device, uint8_t spi2Enable)
Description

Enables the SPI2 feature.

Parameters

Table 197.

Parameter Description

*device Pointer to device structure.

Spi2Enable used to set the state of the SPI12 bus: 1 = Enable, 0 = Disable.

adi_adrv9025_TxAttenSpi2PinCtrICfgSet

adi_adrv9025_TxAttenSpi2PinCtriCfgSet(adi_adrv9025_Device_t* device,
adi_adrv9025_TxAttenSpi2PiInCfg_t txAttenSpi2PinCfg[], uint8_t numTxAttenSpi2PinConfigs)

Description

Assigns the Tx attenuation select pin.

Parameters

Table 198.

Parameter Description

*device Pointer to device structure.

txAttenSpi2PinCfg[] Pointer to an array of adi_adrv9025_TxAttenSpi2PinCfg_t structure that configures the Tx
attenuation SPI2 pin control. Note that multiple transmitters can share an attenuation select pin if
desired.

numTxAttenSpi2PinConfigs Determines the number of channelized Tx attenuation SPI2 pin configurations passed in the array
txAttenSpi2PinCfg.

Pin Based Rx Gain Control

A complete description of the pin based Rx gain control feature is provided in the Receiver Gain Control and Gain Compensation section
of this user guide.

Pin based Rx gain control is relevant for applications which require Manual Gain Control (MGC) and precise timing for gain change
events. The pin based control scheme offers lower latency than SPI based gain change operations. In pin-based gain control, specific
GPIO pins are assigned “increment gain index” or “decrement gain index” functionality for a particular receiver channel. By applying a
logic high pulse on the GPIO pin, the gain index for the corresponding channel is either incremented or decremented, depending on the
assigned functionality. The pulse width requirement is 2 AGC clock cycles in the logic high state. The gain change due to gain index
increment or decrement is programmable (ranges from 1 to 8 gain index steps). Increment and decrement functionality can be assigned
to any digital GPIO from GPIO_15 to GPIO_0.

Note that if the user has programmed a gain table that operates in a subset of the full gain table range (that is, using Index 195 to Index
255), the pin-based Rx gain control does not have knowledge of this status. If the gain decrement pulse is applied when the gain index is
195, the gain index decrements off table. It is possible that the off-table gain indices (that is, gain indices below 195) correspond to
maximum gain condition. It is recommended to exercise care when applying pulses when the gain index is at the edge of the useful
section gain table, or design the gain table with this in mind.

Rev. PrA | Page 189 of 267

UG-1727

adi_adrv9025_RxGainPinCtrICfgSet

adi_adrv9025_RxGainPinCtriICfgSet(adi_adrv9025 Device_t* device, adi_adrv9025 RxChannels_e
rxChannel, adi_adrv9025_RxGainPinCfg_t *rxGainPinCtriCfg)

Description

This command configures the pin-based Rx Gain Control feature. the device must be in MGC for proper operation.

Parameters

Table 199.

Parameter Description

*device Pointer to device structure.

rxChannel Selects which Rx channel for configuring pin-based Rx gain control.

*rxGainPinCtrlCfg Pointer to adi_adrv9025_RxGainPinCfg_t structure containing configuration values for pin based Rx gain
control.

Table 200 describes the adi_adrv9025_RxGainPinCfg_t data structure used in the above command.

Table 200. Description of adi_adrv9025_RxGainPinCfg_t Data Structure

Data Type parameter name | Comments

uint8_t incStep Increment in gain index applied when the increment gain pin is pulsed. A value of 0 to
7 applies a step size of 1t0 8

uint8_t decStep Decrement in gain index applied when the increment gain pin is pulsed. A value of 0 to
7 applies a step size of 1t0 8

adi_adrv9025_GpioPinSel_e | rxGainlncPin GPIO used for the increment gain input: ADI_ADRV9025_GPIO00 to
ADI_ADRV9025_GPIO15 can be used

adi_adrv9025_GpioPinSel_e | rxGainDecPin GPIO assigned for the decrement gain input: ADI_ADRV9025_GPIO00 to
ADI_ADRV9025_GPIO15 can be used

uint8_t enable Enable (1) or disable (0) the gain pin control

Pin-Based Tx Attenuation Control
A complete description of Tx attenuation control is provided in the Tx Overview and Path Control section of this user guide.

Pin based Tx attenuation control, similar to the Tx attenuation select feature of SP12, provides an interface to make attenuation
adjustments with precise timing control. The pin based control scheme offers lower latency than SPI based attenuation change operations.
In pin based attenuation control, certain GPIO pins are assigned “increment attenuation” or “decrement attenuation” functionality. By
applying a high pulse on the assigned GPIO pin, the attenuation for a specific channel is either incremented or decremented, depending
on the assigned functionality. Increment and decrement functionality can be assigned to any digital GPIO from GPIO_15 to GPIO_0.

A notable difference between SPI2 and pin based Tx attenuation control is that SPI2 allows toggling between programmed attenuation
states (S1 and S2) while pin based Tx attenuation control allows for multiple increments or decrements of Tx attenuation.

adi_adrv9025_TxAttenPinCtrICfgSet

adi_adrv9025_TxAttenPinCtriICfgSet(adi_adrv9025 Device_t* device, adi_adrv9025 TxAttenPinCfg_t
txAttenPinCfg[],uint8_t numTxAttenPinConfigs)

Description

Configures the pin-based Tx attenuation control feature.

Parameters

Table 201.

Parameter Description

*device Pointer to device structure.

txAttenPinCfgl[] Pointer to an array of adi_adrv9025_TxAttenPinCfg_t structure that configures the Tx attenuation pin control.
numTxAttenPinConfigs | Determines the number of channelized Tx attenuation pin configuration passed in the array txAttenPinCfg.

Rev. PrA | Page 190 of 267

UG-1721

Table 202 describes the adi_adrv9025_TxAttenPinCfg_t data structure used in the above command.

Table 202. Description of adi_adrv9025_TxAttenPinCfg t Data Structure

Parameter
Data Type Name Comments
uint32_t txChannelMask | Bitwise channel mask that the Tx attenuation pin configuration settings are applied to.
[DO] =Tx1, [D1]1=Tx2, [D2] =Tx3, [D3] =Tx4.
uint8_t stepSize This parameter sets the change in Tx attenuation for each increment or decrement signal

received in incr/decr mode. 0.5dB/LSB. Valid range is from 0 to 31

adi_adrv9025_GpioPinSel_e | txAttenIncPin GPIO assigned for the increment attenuation input: ADI_ADRV9025_GPIO00 to
ADI_ADRV9025_GPIO15 can be used

adi_adrv9025_GpioPinSel_e | txAttenDecPin GPIO assigned for the decrement attenuation input: ADI_ADRV9025_GPIO00 to
ADI_ADRV9025_GPIO15 can be used

uint8_t enable Enable (1) or disable (0) the gain pin control

External Slicer Mode
A complete description of the external slicer use case is provided in the Receiver Gain Control and Gain Compensation section of this

user guide.

The Rx datapath features a GPIO based slicer used in conjunction with digital gain compensation to digitally attenuate data sent over the
JESD204B/JESD204C interface. The digital gain compensation may expand the required number of bits to express data path samples
beyond the interface bit width. The slicer attenuates the data to fit within the interface bit width.

The slicer can be used in a mode where the amount of digital gain compensation at a particular gain index determines the slicer position
(internal slicer). Alternatively, the slicer can be used with GPIOs in an externally driven mode where the baseband processor determines
the slicer position, which controls the amount of digital attenuation applied by the slicer. When using the slicer in the external mode,
specific groups of GPIO pins are assigned to set the slicer position. 3 GPIO pins per Rx are utilized. See Table 206 for a list of the valid
external slicer pins.

The following command configures the external slicer mode.
adi_adrv9025_ RxDataFormatSet

adi_adrv9025_ RxDataFormatSet(adi_adrv9025 Device_t* device, adi_adrv9025_RxDataFormat_t
rxDataFormat[], uint8_t arraySize)

Description

Configures the external slicer mode.

Parameters

Table 203.

Parameter Description

*device Pointer to device structure.

rxDataFormat([] Pointer to the Rx data format configuration structure.

arraySize Determines the size of rxDataFormat array representing the number of configurations.

Table 204 describes the adi_adrv9025_RxDataFormat_t data structure.

Table 204. Description of adi_adrv9025_RxDataFormat_t Data Structure

Data Type Parameter Name Comments

uint32_t rxChannelMask Rx channel mask

adi_adrv9025_RxDataFormatModes_e formatSelect Rx Channel format mode selects

adi_adrv9025_FloatingPointConfigSettings_t | floatingPointConfig Rx Channel floating point format configuration

adi_adrv9025_IntegerConfigSettings_t integerConfigSettings Rx Channel integer format configuration

adi_adrv9025_SlicerConfigSettings_t slicerConfigSettings Rx Channel integer slicer configuration

uint8_t externalLnaGain Selects Slicer to compensate for external dual band LNA (0=
disabled, 1 = enabled)

uint8_t tempCompensationEnable | Selects Slicer to compensate for temperature variations (0 =
disabled, 1 = enabled)

Rev. PrA | Page 191 of 267

UG-1727

For the external slicer mode, the formatSelect parameter must be set as ADI_ADRV9025_GAIN_WITH_EXTERNAL_SLICER.

Other settings relevant to the external slicer configuration include the adi_adrv9025_SlicerConfigSettings_t data structure described in
Table 205.

Table 205. Description of adi_adrv9025_SlicerConfigSettings_t Data Structure

Data Type Parameter Name Comments

adi_adrv9025_ExtSlicerStepSizes_e extSlicerStepSize Enum selects the external pin gain step size
adi_adrv9025_IntSlicerStepSizes_e intSlicerStepSize Enum selects the internal pin gain step size
adi_adrv9025_RxExtSlicerGpioSel_e rx1ExtSlicerGpioSelect Enum selects the Rx1 Ext Ctrl GPIO Configuration
adi_adrv9025_RxExtSlicerGpioSel_e rx2ExtSlicerGpioSelect Enum selects the Rx2 Ext Ctrl GPIO Configuration
adi_adrv9025_RxExtSlicerGpioSel_e rx3ExtSlicerGpioSelect Enum selects the Rx3 Ext Ctrl GPIO Configuration
adi_adrv9025_RxExtSlicerGpioSel_e rx4ExtSlicerGpioSelect Enum selects the Rx4 Ext Ctrl GPIO Configuration

The enum adi_adrv9025_RxExtSlicerGpioSel_e provides the list of GPIO groupings available when using the external slicer mode as
displayed in Table 206.

Table 206. Description of adi_adrv9025_RxExtSlicerGpioSel_e Enumeration

Enum Name Enum Value Comments

ADI_ADRV9025_EXTSLICER_RX_GPIO_DISABLE 0 No GPIO assigned to external slicer
ADI_ADRV9025_EXTSLICER_RX_GPIO_2_DOWNTO_0 Select Rx Gain Slicer External GPIO2, GPIO1, GPIO0
ADI_ADRV9025_EXTSLICER_RX_GPIO_5_DOWNTO_3 Select Rx Gain Slicer External GPIO5, GPIO4, GPI03
ADI_ADRV9025_EXTSLICER_RX_GPIO_8_DOWNTO_6 Select Rx Gain Slicer External GPIO8, GPIO7, GPIO6
ADI_ADRV9025_EXTSLICER_RX_GPIO_11_DOWNTO_9 Select Rx Gain Slicer External GPIO11, GP1010, GPI0O9
ADI_ADRV9025_EXTSLICER_RX_GPIO_14_DOWNTO_12 Select Rx Gain Slicer External GPIO14, GPIO13, GPIO12
ADI_ADRV9025_EXTSLICER_RX_GPIO_17_DOWNTO_15 Select Rx Gain Slicer External GPIO17, GPIO16, GPIO15

oA WN =

Other members of the adi_adrv9025_RxDataFormatter_t are discussed in the Receiver Gain Control and Gain Compensation section.
Tx-ORx Mapping
A full description of Tx-ORx mapping is provided in the “Stream Processor and System Control” section.

For initial calibrations and tracking calibrations that require the use of an external Tx to ORx loopback channel for the algorithm, the
Arm must understand the specific mapping of Tx to ORx at that time. In the 4 ORx use case, typically the mapping is static, and it is
recommended to use the API command adi_adrv9025_TxToOrxMappingSet(...) to configure the mapping. In the 2 ORx use case, each
ORx channel must know which Tx channel is provided as input. An alternative to the API command interface is to use a GPIO based
interface to inform the Arm about the currently mapped Tx channels into the ORx. To clarify, the baseband processor informs the
transceiver about the channel mapping state by signaling on GPIOs which executes a stream processor command. This stream processor
command provides the mapping information to the Arm processor which executes the calibration routines.

The GPIO pins available for this feature range from GPIO_0 to GPIO_15. Up to four GPIO pins are required to fully implement pin
based mapping controls. A partial implementation can be achieved with 2 GPIO pins. The partial implementation only indicates which
Tx was mapped to the ORx (TX_SEL signal) and does not permit the baseband processor to inform the device that it must not perform
tracking calibrations (TX_EN signal). This additional information is useful if antenna calibrations are performed while the tracking
calibrations that depend on a constant external channel are still enabled.

To set up this feature, the GUI must generate a stream file with the desired GPIO pins of the user to use for the TX_SEL/TX_EN signals.
With the proper steam file, the user can configure the stream processor to listen to the input GPIO pins with the following command.
Note that this command is called as a part of the adrv9025_RadioctrlInit command which is called during
adi_adrv9025_PostMcslInit(...).

adi_adrv9025_StreamGpioConfigSet(...)

adi_adrv9025_ StreamGpioConfigSet(adi_adrv9025 Device_t* device,
adi_adrv9025_StreamGpioPinCfg_t* streamGpioPinCfQ);

Description

This function associates a GPIO pin with stream processor GP inputs and enables stream trigger functionality if a valid GPIO (GPIOO to
GPIO15) is assigned to the streamGplInput pins.

Rev. PrA | Page 192 of 267

UG-1721

There are 16 GPIO inputs available to trigger streams. These GPIO pins can be mapped to one of GPIOs[0:15].
To unmap a GPIO association with a stream GP input, please set the GPIO input to ADI_ADRV9025_GPIO_INVALID.

Parameters

Table 207.

Parameter Description

*device Pointer to device structure.

streamGpioPinCfg A data structure containing the GPIO assignments for stream processor inputs.

Table 208. Description of the adi_adrv9025_StreamGpioPinCfg_t Data Structure

Member

Data Type

Description

streamGplnput0
streamGplnput1
streamGplnput2
streamGplnput3
streamGplnput4
streamGplnput5
streamGplnput6
streamGplnput7
streamGplnput8
streamGplnput9
streamGplnput10
streamGplnput11
streamGplnput12
streamGplnput13
streamGplnput14

streamGplnput15

adi_adrv9025_GpioPinSel_e
adi_adrv9025_GpioPinSel_e
adi_adrv9025_GpioPinSel_e
adi_adrv9025_GpioPinSel_e
adi_adrv9025_GpioPinSel_e
adi_adrv9025_GpioPinSel_e
adi_adrv9025_GpioPinSel_e
adi_adrv9025_GpioPinSel_e
adi_adrv9025_GpioPinSel_e
adi_adrv9025_GpioPinSel_e
adi_adrv9025_GpioPinSel_e
adi_adrv9025_GpioPinSel_e
adi_adrv9025_GpioPinSel_e
adi_adrv9025_GpioPinSel_e
adi_adrv9025_GpioPinSel_e

adi_adrv9025_GpioPinSel_e

Select desired GPIO pin input to stream processor GP Input 0 (valid GPIO0 to GPIO15).
To disable select ADI_ADRV9025_GPIO_INVALID.

Select desired GPIO pin input to stream processor GP Input 1 (valid GPIOO0 to GPIO15).
To disable select ADI_ADRV9025_GPIO_INVALID.

Select desired GPIO pin input to stream processor GP Input 2 (valid GPIOO0 to GPIO15).
To disable select ADI_ADRV9025_GPIO_INVALID.

Select desired GPIO pin input to stream processor GP Input 3 (valid GPIOO to GPIO15).
To disable select ADI_ADRV9025_GPIO_INVALID.

Select desired GPIO pin input to stream processor GP Input 4 (valid GPIO0 to GPIO15).
To disable select ADI_ADRV9025_GPIO_INVALID.

Select desired GPIO pin input to stream processor GP Input 5 (valid GPIOO0 to GPIO15).
To disable select ADI_ADRV9025_GPIO_INVALID.

Select desired GPIO pin input to stream processor GP Input 6 (valid GPIOO to GPIO15).
To disable select ADI_ADRV9025_GPIO_INVALID.

Select desired GPIO pin input to stream processor GP Input 7 (valid GPIOO0 to GPIO15).
To disable select ADI_ADRV9025_GPIO_INVALID.

Select desired GPIO pin input to stream processor GP Input 8 (valid GPIOO0 to GPIO15).
To disable select ADI_ADRV9025_GPIO_INVALID.

Select desired GPIO pin input to stream processor GP Input 9 (valid GPIOO to GPIO15).
To disable select ADI_ADRV9025_GPIO_INVALID.

Select desired GPIO pin input to stream processor GP Input 10 (valid GPIOO to GPIO15).
To disable select ADI_ADRV9025_GPIO_INVALID.

Select desired GPIO pin input to stream processor GP Input 11 (valid GPIOO to GPIO15).
To disable select ADI_ADRV9025_GPIO_INVALID.

Select desired GPIO pin input to stream processor GP Input 12 (valid GPIOO0 to GPIO15).
To disable select ADI_ADRV9025_GPIO_INVALID.

Select desired GPIO pin input to stream processor GP Input 13 (valid GPIOO0 to GPIO15).
To disable select ADI_ADRV9025_GPIO_INVALID.

Select desired GPIO pin input to stream processor GP Input 14 (valid GPIOO to GPIO15).
To disable select ADI_ADRV9025_GPIO_INVALID.

Select desired GPIO pin input to stream processor GP Input 15 (valid GPIO0 GPIO15). To
disable select ADI_ADRV9025_GPIO_INVALID.

It is recommended to use the GUI to determine the values required for this data structure. This helps ensure that features assigned the
stream GPIO pins are properly assigned.
Output GPIO Features

This section outlines digital GPIO output features available on the device. Output GPIO features on the transceiver use a concept called
source control. The source control describes the source of the signals routed to GPIO pins, whether they are from the monitor feature or
the Arm. Table 211 summarizes the available source control selections. Source control is relevant for GPIO pins that are configured in the
output mode. GPIO pins operating in the input mode do not require a source control setup.

adi_adrv9025_GpioOutSourceCtrlSet
adi_adrv9025_GpioOutSourceCtriSet(adi_adrv9025 Device_t* device, uint32_t gpioSrcCtrl);

Description

Rev. PrA | Page 193 of 267

UG-1727

Sets the source control.

Parameters

Table 209.

Parameter | Description

*device Pointer to device structure.

gpioSrcCtrl | The nibble-based source control - this is a 32-bit value containing 5 nibbles that set the output source control for each set of
four GPIO pins. This parameter is set in 4-bit nibble groupings as shown in Table 210.

Table 210. Description of the Nibble Groups Configured Via gpioSrcCtrl

gpioSrcCtri[bits] Description

gpioSrcCtrl[d3:d0] GPIO output source for GPIO_[3:0] pins
gpioSrcCtrl[d7:d4] GPIO output source for GPIO_[7:4] pins
gpioSrcCtrl[d11:d8] GPIO output source for GPIO_[11:8] pins
gpioSrcCtrl[d15:d12] GPIO output source for GPIO_[15:12] pins
gpioSrcCtrl[d19:d16] GPIO output source for GPIO_[18:16] pins

The values for these nibble groupings can be formed with the adi_adrv9025_GpioOutputModes_e enumeration. This enum is described
in Table 211.

Table 211. Description of adi_adrv9025_GpioOutputModes_e Enumeration

Enum Name Enum Value | Comments
ADI_ADRV9025_GPIO_BITBANG_MODE 3 Manual mode, API function sets output pin levels and reads input pin levels
ADI_ADRV9025_GPIO_SLICER_OUT_MODE | 10 Allows slicer position to be output on GPIO pins

Note that if a GPIO is not designated as an output pin that it can be set as an input pin. As an example, consider a use case where 3 pins in
a 4-pin nibble group are dedicated for slicer output mode, the 4" pin in the group can be set as an input pin for gain control. As a
constraint on customer applications, multiple source control selections cannot be used within a single 4 pin nibble group.

Manual Pin Toggle (Bitbang) Mode

This mode allows control of the logic level of individual GPIO pins.

adi_adrv9025_GpioOutPinLevelSet

adi_adrv9025_GpioOutPinLevelSet(adi_adrv9025 Device_t* device, uint32_t gpioOutPinLevel)
Description

Sets the output logic level of the GPIO pins (after configuring the I/O direction and source control).

Parameters

Table 212.

Parameter Description

*device Pointer to device structure.

gpioOutPinLevel Determines the level to output on each GPIO pin. 0 = low output, 1 = high output.
Slicer Output Mode

A general description of this feature is provided in the Mode 2: Digital Gain Compensation with Slicer GPIO Outputs section.

Rev. PrA | Page 194 of 267

UG-1721

GPIO_ANA OPERATION

The main purpose of the GPIO_ANA pins is to serve as control pins for an external control element, such as a Digital Step Attenuator
(DSA) or Low Noise Amplifier (LNA). Other features may be exposed in future software releases. A high-level overview of the
GPIO_ANA features are provided below.

Table 213. Summary of GPIO_ANA Features

Feature Description GPIO Pins Available for Feature

Rx Gain The Rx gain table includes a column for 2-bit control of an external gain element. | GPIO_ANA_[1:0]: Rx1 External Control
Table Each Rx channel has 2 fixed GPIO_ANA pins associated with it. The 2-bit value Word, GPIO_ANA_[3:2]: Rx2 External
External expressed on the pins depends on the gain index and gain table column. API Control Word, GPIO_ANA_[5:4]: Rx3
Control Function for Configuration: adi_adrv9025_RxGainTableExtCtrIPinsSet(...) External Control Word,

Word GPIO_ANA_[7:6]: Rx4 External Control
Output Word

Gain Table External Control Word

For proper use of this feature, a custom gain table must be created that uses the external control column. When a gain index with a non-
zero value in the external control column of the gain table is selected, the value of the external control column is output on a pair of
GPIO_ANA pins. The configuration of the GPIO pins for gain table external control word is performed with the following API
command.

adi_adrv9025_RxGainTableExtCtrlPinsSet

adi_adrv9025_ RxGainTableExtCtriPinsSet(adi_adrv9025 Device_t* device,
adi_adrv9025_RxExtCtrIPinOuputEnable_e extCtrlGpioChannelEn)

Description

Configures the GPIO pins for the gain table external control word.

Parameters

Table 214.

Parameter Description

*device Pointer to device structure.

extCtrlGpioChannelEnable | Determines the adi_adrv9025_RxChannels_e enum type to select which set of gain table external control
words to output on analog GPIOs.

Table 215 describes the adi_adrv9025_RxExtCtrlPinOutputEnable_e enumeration.

Table 215. Description of adi_adrv9025_RxExtCtrlPinOuputEnable_e Enumeration

Enum Name Comments

ADI_ADRV9025_DISABLE_RX1_RX2_EXT_CTRL_GPIOS Disable Rx1 and Rx2 Ext Ctrl Word output on Analog GPIOs
ADI_ADRV9025_ENABLE_RX1_RX2_EXT_CTRL_GPIOS Enable Rx1 and Rx2 Ext Ctrl Word output on Analog GPIOs
ADI_ADRV9025_DISABLE_RX3_RX4_EXT_CTRL_GPIOS Disable Rx3 and Rx4 Ext Ctrl Word output on Analog GPIOs
ADI_ADRV9025_ENABLE_RX3_RX4_EXT_CTRL_GPIOS Enable Rx3 and Rx4 Ext Ctrl Word output on Analog GPIOs
ADI_ADRV9025_DISABLE_RX1_RX2_RX3_RX4_EXT_CTRL_GPIOS Disable Rx1, Rx2, Rx3 and Rx4 Ext Ctrl Word output on Analog GPIOs
ADI_ADRV9025_ENABLE_RX1_RX2_RX3_RX4 EXT_CTRL_GPIOS Enable Rx1, Rx2, Rx3 and Rx4 Ext Ctrl Word output on Analog GPIOs

Rev. PrA | Page 195 of 267

UG-1727

GENERAL-PURPOSE INTERRUPT

The device features two General Purpose Interrupt pins, GPINT1 and GPINT2 per the data sheet pinout. Note that the data sheet pinout
conventions of GPINT1 and GPINT?2 are referenced within the API as GPINTO0 and GPINT1, respectively. In this section, references are
made to the GPINT conventions on the data sheet pinout except when listed in an API code example. A summary of API commands
relevant for the GPINT functionality is provided in the API Commands for GPINT section.

The GPINT pins provide an interface that allows the device to inform the baseband processor of an error in normal operation. Examples
of the interrupt sources include PLL unlock events, SERDES link status, a stream processor error, or Arm exception. A full list of interrupt
sources is provided in Table 216. The GPINT?2 pin acts as the high priority interrupt pin and GPINT1 acts as the low priority interrupt
pin. The pins can be configured with independent bitmasks that controls which signals can assert GPINT1 or GPINT?2. A high-level block
diagram of the GPINT operation is shown in Figure 112.

—~

ON-CHIP OFF-CHIP
GP_INT STATUS REGISTER: | 30 .
gpintStatus[d49:d0] D49:D0 GP_INT2
)_
y gpint1Mask[d49:d0]
x50 x50
INTERRUPT SOURCES
D49:D0 GP_INT1
)_
gpIntOMask[d49:d0]
x50 x50 =

=

The GPINT1 and GPINT2 pins are a bitwise OR of all unmasked GPINT sources. The status register represents all possible interrupt
sources that can assert on the device. Any time the GPINT pin asserts, the GPINT status indicates what interrupt source(s) asserted the
GPINT pin.

Note that the GPINT status and the GPINT pins have different behaviors. The GPINT pins are real-time indicators of error status. For
example, if a PA protection error occurs when PA protection is configured in the autoclear mode, the GPINT pin deasserts after the
power returns to normal. The GPINT status bit fields are sticky and remain asserted until the user clears the register. If the PA protection
error occurs and disappears in autoclear mode, the GPINT status still indicates a PA protection error occurred until the user manually
clears the GPINT status.

Figure 112. Block Diagram of General-Purpose Interrupt Outputs

A description of the interrupt sources and their bit positions within the 50-bit general purpose interrupt mask is provided in Table 216.

Table 216. GP_INTERRUPT Bitmask Description

Bit Position | Brief Description Sub-System API Recovery Action

D49 Deframer IRQ 11: Deframer1 JESD204C CRC Error Deframer ADI_ADRV9025_ACT_ERR_BBIC_LOG_ERROR
D48 Deframer IRQ 10: Deframer1 JESD204C Loss of Sync

D47 LO1 PLL Unlock PLL ADI_COMMON_ACT_ERR_RESET_MODULE
D46 LO2 PLL Unlock ADI_COMMON_ACT_ERR_RESET_MODULE
D45 AUX PLL Unlock ADI_COMMON_ACT_ERR_RESET_MODULE
D44 CLK PLL Unlock ADI_COMMON_ACT_ERROR_RESET_FULL
D43 LO1 PLL Charge Pump Overrange ADI_ADRV9025_ACT_ERR_BBIC_LOG_ERROR
D42 LO2 PLL Charge Pump Overrange

D41 AUX PLL Charge Pump Overrange

D40 CLK PLL Charge Pump Overrange

D39 SERDES PLL Unlock ADI_COMMON_ACT_ERROR_RESET_FULL

Rev. PrA | Page 196 of 267

UG-1721

Bit Position | Brief Description Sub-System API Recovery Action
D38 Deframer IRQ 9: Deframer1 JESD204B QBD IRQ Deframer ADI_ADRV9025_ACT_ERR_BBIC_LOG_ERROR
D37 Deframer IRQ 8: Deframer1 SYSREF Out of Phase
D36 Deframer IRQ 7: Deframer1 Elastic Buffer Error
D35 Deframer IRQ 6: Deframer1 Lane FIFO Pointer Error
D34 Deframer IRQ 5: Deframer0 JESD204C CRC Error
D33 Deframer IRQ 4: Deframer0 JESD204C Loss of Sync
D32 Deframer IRQ 3: Deframer0 JESD204B QBD IRQ
D31 Deframer IRQ 2: Deframer0 SYSREF Out of Phase
D30 Deframer IRQ 1: Deframer0 Elastic Buffer Error
D29 Deframer IRQ 0: Deframer0 Lane FIFO Pointer Error
D28 Framer IRQ 8: Framer2 Transport Not Sending Data Framer
D27 Framer IRQ 7: Framer2 SYSREF Out of Phase
D26 Framer IRQ 6: Framer2 Lane FIFO Pointer Error
D25 Framer IRQ 5: Framer1 Transport Layer Not Sending
Data
D24 Framer IRQ 4: Framer1 SYSREF Out of Phase
D23 Framer IRQ 3: Framer1 Lane FIFO Pointer Error
D22 Framer IRQ 2: FramerQ Transport Layer Not Sending
Data
D21 Framer IRQ 1: Framer0 SYSREF Out of Phase
D20 Framer IRQ 0: Framer0 Lane FIFO Pointer Error
D19 PA Protection Error (Threshold Exceeded) Tx4 Transmitter ADI_ADRV9025_ACT_ERR_BBIC_LOG_ERROR
D18 PA Protection Error (Threshold Exceeded) Tx3
D17 PA Protection Error (Threshold Exceeded) Tx2
D16 PA Protection Error (Threshold Exceeded) Tx1
D15 Arm Has Forced Interrupt Arm ADI_COMMON_ACT_ERROR_RESET_FULL
D14 Arm Watchdog Timer Timeout ADI_COMMON_ACT_ERROR_RESET_FULL
D13 Slew Rate Limiter IRQ ADI_ADRV9025_ACT_ERR_BBIC_LOG_ERROR
D12 Arm System Error ADI_ADRV9025_ACT_ERR_BBIC_LOG_ERROR
D11 ORx3/4 Stream Processor Error Stream Processor | ADI_COMMON_ACT_ERROR_RESET_FULL
D10 ORx1/2 Stream Processor Error
D9 Tx4 Stream Processor Error
D8 Tx3 Stream Processor Error
D7 Tx2 Stream Processor Error
D6 Tx1 Stream Processor Error
D5 Rx4 Stream Processor Error
D4 Rx3 Stream Processor Error
D3 Rx2 Stream Processor Error
D2 Rx1 Stream Processor Error
D1 Core Stream Processor Error
DO Memory ECC Error Arm ADI_COMMON_ACT_ERROR_RESET_FULL

Table 216 can be used to form bitmasks for GPINT2 and GPINT1. Note that in the API, GPINT1 is linked to the GPINT2 pin and
GPINTO is linked to the GPINT1 pin.

Further description of these event sources is provided in the following sections.

Rev. PrA | Page 197 of 267

UG-1727

PLL GPINT SOURCES

The PLL GPINT sources include two types of interrupt for the PLLs: PLL unlock events and PLL Charge Pump (CP) overrange events. It
must be noted that if initial calibrations are run, it is expected that some PLLs are used during this time and a PLL unlock event may show

up in the GPINT status register. PLL unlocks during successful runs of initialization calibrations are expected and is not a concern.
PLL Unlock Event Bits

The PLL unlock event bits, if asserted, indicate that a PLL has unlocked and is not operating properly. The PLLs are designed to maintain
lock over the full temperature range and operation of the device. In extremely rare cases the PLL may unlock due to external or internal
factors. There are two recovery procedures for PLL unlocks depending on the PLL that unlocks.

e If CLK PLL unlocks: Reset Device. It is not expected the device can recover from the loss of the primary clock within the transceiver.
e IfLO2,LOI1 or AUX PLL unlocks, call adi_adrv9025_PllIFrequencySet(...) to see if the PLL relocks.

e If the unlocked PLL re-locks, then follow procedures to re-run certain initialization calibrations as this is effectively a PLL
frequency change procedure. If the user has configured attenuation ramp down/up events to occur based on PLL lock status, the
attenuation ramp down/up event must be cleared prior to running initial calibrations.

e Ifthe unlocked PLL fails to achieve lock, then reset the device.

The real time lock status of the PLL can be verified with the command adi_adrv9025_PllIStatusGet(...).

CP Overrange Event Bits

CP Overrange Event Bits must not be unmasked for the GPINT pins. These bits may assert intermittently but do not indicate a significant
device issue.

JESD204B/JESD204C GPINT SOURCES

The deframer and framer, in both JESD204B and JESD204C modes of operation, may send information to the user regarding error events
over the GPINT pin.

Note: Due to a hardware issue, the JESD204C CRC error can assert when the link is configured for JESD204B mode. Ignore the
JESD204C CRC Error when detected in JESD204B use cases. Additionally, do not allow JESD204C errors assert the GPINT pins when
configured in JESD204B mode since there is no value provided in this configuration.

Table 217 provides some additional detail regarding the deframer and framer interrupts that can assert the GPINT pin. In general,
referring to JESD204B/JESD204C documentation can help explain these events in more detail and possible recovery mechanisms.

Table 217. Framer and Deframer Interrupt List
GP_INT | Brief
Bits Description Technical Description Further Actions, If Necessary
D34, Deframer A cyclic redundancy check (CRC) error | Log event. Customer to decide how to react to the event.
D49 JESD204 CRC has been detected on one of the
Error active deframer lanes. Tx data possibly
corrupted.
D33, Deframer The JESD204C link layer has lost sync. | Log event. If link is down, reestablish link.
D48 JESD204C Loss | This can be due to loss of sync header
of Sync alignment, or multi-block alignment.
Typically, the link has dropped and
needs to be reestablished.
D32, Deframer The Quad Byte Deframer (QBD) Log event. Call adi_adrv9025_DfrmirqSourceGet(...) to retrieve the
D38 JESD204B QBD | Interrupt (IRQ) indicates that a specific interrupt that asserted. Typically this is an informational
IRQ deframer IRQ source has asserted. interrupt, but some cases may require link reset.
Deframer IRQ sources include Bad
Disparity (BD), Not-in-Table (NIT),
Unexpected K (UEK). Most errors are
considered minor.
D31, Deframer SYSREF registered at the wrong phase | Log event. Something is likely incorrect in overall system timing and
D37 SYSREF Out of in the link. needs to be adjusted.
Phase

Rev. PrA | Page 198 of 267

UG-1721

GP_INT | Brief
Bits Description Technical Description Further Actions, If Necessary
D30, Deframer The phase of lane data in the link with | Log event. Reassess ImfcOffset value selection if deterministic
D36 Elastic Buffer respect to global LMFC has shifted latency is required.
Error such that the buffer is in “protect”
mode to avoid corrupt data transfer.
Deterministic latency is lost.
D29, Deframer Lane | Lane FIFO pointers have moved in the | Log event. Reset link.
D35 FIFO Pointer link. This may or may not be
Error associated with SYNC going low.
D22, Framer The framer is not sending user data. Log event.
D25, Transport Layer | This occurs if the LMFC from the link
D28 Not Sending layer is out of phase with the
Data transport layer LMFC. This forces a
relink by taking SYNC low.
D21, Framer SYSREF | SYSREF is registered at the wrong Log event. Something is likely incorrect in overall system timing and
D24, Out of Phase phase in the framer link. If JESD is needs to be adjusted.
D27 configured to attempt re-link with the
new phase, no action required.
D20, Framer Lane The lane FIFO pointer has changed. Log event.
D23, FIFO Pointer
D26 Error

These deframer interrupts can be used to assert the rampdown of Tx attenuation as described in the Transmitter Power Amplifier
Protection section of this document.

PA PROTECTION GPINT SOURCES

The PA protection feature must be enabled for these interrupts to assert. The PA protection block refers specifically to the peak and
average power measurement capabilities within the Tx data path and must not be misconstrued for the general Tx attenuation ramp

features.

PA protection GPINT sources indicate to the user that a peak or average power measurement within the Tx data path has exceeded the
thresholds as configured on the device. When the power measurement exceeds the threshold, this is also referred to as a PA protection
error. Log this event and take appropriate action within their system to resolve the reason for the power increase in the Tx data path.

The user can configure the PA protection block to enforce a ramp (or increase) of Tx attenuation with the command
adi_adrv9025_PaPlIDfrmEventRampDownEnableSet(...). Control over whether the attenuation ramp is sticky or autoclears is
determined by adi_adrv9025_TxAttenuationRampUpStickyModeEnable(...) command. Refer to the Transmitter Power Amplifier
Protection section for more information.

ARM GPINT SOURCES
There are four Arm interrupt sources available.
Arm Has Forced Interrupt

The Arm asserts this interrupt in the case a fatal error occurs within the FW. If possible, acquire an Arm memory dump to assist in debug.
Reset the device.

Arm Watchdog Timer Timeout

The Arm asserts this interrupt when the watchdog timer within the Arm reaches its timeout value. If the Arm was unable to reset this
timer there is a fatal error within the Arm. If possible, acquire an Arm memory dump s to assist in debug. Reset the device.

Slew Rate Limiter IRQ

As of SW 2.0.5 versions, this bit represents the Slew Rate Limiter (SRL) error interrupt for the Tx datapaths. If this interrupt asserts, then
it indicates an SRL error event has occurred. Check the SRL statistics for each channel to check which channel generated the interrupt.

Arm System Error

The Arm asserts this interrupt when the Arm detects an issue with any calibration or system related issue managed by the Arm. Some
events may be fatal. To acquire more information about the error, call the API command adi_adrv9025_ArmSystemErrorGet(...). This bit
also represents any issues with tracking calibrations.

Rev. PrA | Page 199 of 267

UG-1727

STREAM PROCESSOR SOURCES

Assertion of any stream processor interrupt bits indicate that a significant problem has occurred within the stream processor. The stream
processor does not have a way to recover from these events. Reset the device if stream processor errors are detected.

MEMORY ECC ERROR

A memory ECC error indicates that a bit error has occurred in a memory circuit within the chip. This is an extremely rare event. The
device must be reset if this is detected.

SOFTWARE PROCEDURES FOR GPINT

Referring to the device programming sequence in adi_adrv9025_daughter_board.c, the GPINT feature setup is one of the last steps in
device initialization, occurring after both adi_board_adrv9025_JesdBringup(...) and adi_adrv9025_TxRampDownlnit(...). The GPINT
masks for GPINT2/GPINT1 physical pins are stored in the adi_adrv9025_GpInterruptSettings_t structure and applied to the device
during adi_adrv9025_GpIntInit(...). This configures both GPINT pins and no further action is needed for setup.

If it is necessary to reconfigure the GPINT masks after initialization, use the command adi_adrv9025_GpIntMaskSet(...). The primary
difference between the two GPINT setup commands is that adi_adrv9025_GpIntMaskSet(...) allows selection regarding which pin
bitmask to program.

The baseband processor monitors the status of the GPINT2 and GPINT1 pins after configuring the mask bits. If either pin asserts, this
indicates that the transceiver has run into a problem that may require user intervention to resolve. The GPINT handler functions tries to
resolve the error by reading back the status and then clearing the status bit fields. The bits in the status register are sticky, but the pin is
not. The pin represents whether the interrupt source is active or not. The register indicates which interrupts have occurred since the
status was last cleared.

The general setup and usage for the GPINT command is detailed as follows:

1. Initialize device (call adi_adrv9025_GplntInit(...) or adi_adrv9025_GpIntMaskSet(...) to set up the GPINT feature).

2. Operate device. The baseband processor monitors the GPINT2 and/or GPINT1 pins for rising edges indicating an interrupt has
occurred.

3. Ifthe GPINT2 and/or GPINT1 pins assert, call their associated interrupt handler API command, either
adi_adrv9025_GplInt1Handler(...) or adi_adrv9025_GpIntOHandler(...), respectively. The interrupt handler returns information
related to the interrupt source to the user. Calling this command may be sufficient to clearing the error. Either handler function
returns a recovery action which suggests further action if necessary.

a. Alternatively, the user can call adi_adrv9025_GplIntStatusGet(...), which only returns the interrupt status bits. The status word
is not maskable and indicates all errors since the previous clearing of the status word.

b. If the device does not need to be reset and the error state has been eliminated, it is necessary to call
adi_adrv9025_GPIntClearStatusRegister(...) to clear all error bits asserted in the GPINT status register.

4. Perform recovery action(s).

API COMMANDS FOR GPINT

The following section outlines API commands for configuring and using the GPINT feature.

adi_adrv9025_GpIntMaskSet

adi_adrv9025_GplntMaskSet(adi_adrv9025_Device_t* device, adi_adrv9025 gpMaskSelect_e maskSelect,
adi_adrv9025_gp_MaskArray_t *maskArray)

Description

Applies the desired bitmasks to the device.

Parameters

Table 218.

Parameter Description

*device Pointer to device structure.

maskSelect The enum indicating which GP_INTERRUPT bitmask (GPINT1 or GPINTO) to write.
*maskArray Pointer to the data structure holding the GP_INTERRUPT bitmasks to write.

Rev. PrA | Page 200 of 267

UG-1721

Table 219 describes the adi_adrv9025_gpMaskSelect_e enumeration. This parameter describes which pin to write the mask to.

Table 219. Description of adi_adrv9025_gpMaskSelect_e Enumeration

Enum Name Comments

ADI_ADRV9025_GPINTO GPINT1 Select (GPINTO bitmask). Only adi_adrv9025_gp_MaskArray_t -> gpIlntOMask is programmed to the
device.

ADI_ADRV9025_GPINT1 GPINT2 Select (GPINT1 bitmask). Only adi_adrv9025_gp_MaskArray_t -> gpInt1Mask is programmed to the
device.

ADI_ADRV9025_GPINTALL | GPINT1 and GPINT2 Select. Both members of adi_adrv9025_gp_MaskArray_t are programmed to the device.

Table 220 describes the adi_adrv9025_gp_MaskArray_t data structure. Refer to Table 216 for a description of the bitmasks.

Table 220. Description of adi_adrv9025_gp_MaskArray_t Data Structure

Data Parameter

Type Name Comments

uint64_t gpIntOMask Bitmask for the GPINT1 pin. If a bit within the mask is set to 1, the associated interrupt source cannot
assert the GPINT2 pin.

uint64_t gplInt1Mask Bitmask for the GPINT2 pin. If a bit within the mask is set to 1, the associated interrupt source cannot
assert the GPINT1 pin.

When either GPINT pin asserts, there are interrupt handler API commands to assist with determining the error. The following
commands are the GPINT2 and GPINT1 interrupt handlers.

adi_adrv9025_Gpint1Handler

adi_adrv9025_GplIntlHandler(adi_adrv9025 Device_t* device, adi_adrv9025_gplntStatus_t
*gpIntlStatus)

Description

Sets up the GPINT?2 interrupt handler.

Parameters

Table 221.

Parameter Description

*device Pointer to device structure.

*gplnt1Status Pointer to the status read-back word containing the GPINT2 source registers.

adi_adrv9025_GplintOHandler

adi_adrv9025_GplIntOHandler(adi_adrv9025 Device_t* device, adi_adrv9025_gplIntStatus_t
*gpIntOStatus)

Description

Sets up the GPINT1 interrupt handler.

Parameters

Table 222.

Parameter Description

*device Pointer to device structure.

*gplnt0Status Pointer to the status read-back word containing the GPINT1 source registers.

When either handler command is called, the first step in the procedure is to temporarily modify the interrupt bitmask such that no other
interrupts can assert GPINT2 or GPINT1 while the handler is invoked. This masking is followed by retrieval of the GPINT status. The
final step in the handler is to restore initial bitmask for GPINT2/GPINT1. In some cases, reading the error is sufficient to clearing the
error - this is the case for short-term, intermittent errors. If the error persists, then the status continues to indicate the interrupt and
further intervention is necessary.

Rev. PrA | Page 201 of 267

UG-1727

adi_adrv9025_GplintStatusGet
adi_adrv9025_GplIntStatusGet(adi_adrv9025 Device_t* device, uint64_t *gplntStatus)
Description

Provides direct readback of the GPINT status word.

Parameters

Table 223.

Parameter Description

*device Pointer to device structure.

*gplntStatus Pointer to the status read-back word. Refer to Table 216 for bitmask description.

adi_adrv9025_GPIntClearStatusRegister
adi_adrv9025_GPIntClearStatusRegister(adi_adrv9025_Device_t *device, uint64_t *gplntStatus)

Description

Clears the GPINT status register.

Parameters

Table 224.

Parameter Description

*device Pointer to device structure.

*gplntStatus Pointer to the status read-back word. Refer to Table 216 for bitmask description.

Rev. PrA | Page 202 of 267

UG-1721

AUXILIARY CONVERTERS AND TEMPERATURE SENSOR

The transceiver features auxiliary data converters including eight 12-bit auxiliary digital-to-analog converters (AuxDAC) and two 12-bit
auxiliary analog-to-digital converters (AuxADC). An integrated diode-based temperature sensor is available to readback the approximate
die temperature of the device. These features are included to simplify control tasks and reduce pin count requirements on the baseband
processor by offloading these tasks to the transceiver. Example usage of the auxiliary converters include static voltage measurements
performed by the AuxADC and flexible voltage control performed by the AuxDAC. This section outlines the operation of these features
along with API command for configuration and control.

The AuxDAC and AuxADC are not precision data converters. DC offset and gain/slope errors are present and may vary on different
channels. Refer to specifications in data sheet. The AuxDAC and AuxADC are best used in feedback systems rather than in open-loop
systems for precision voltage readback or control.

AUXILIARY DAC (AUXDACQ)

There are eight independent 12-bit AuxDACs integrated on the transceiver. The voltage range of the AuxDAC is from ground (0 V) to
1.8 V. The AuxDACs use the enumeration adi_adrv9025_AuxDacs_e when referenced in the API. The pins used for the AuxDAC features
are listed in Table 225.

Table 225. AuxDAC Pin Mapping and adi_adrv9025_AuxDacs_e Enum Description

Auxiliary DAC Number Pin Name Pin Number Enum Name Enum Value
AUXDAC[0] GPIO_ANA_0 c4 ADI_ADRV9025_AUXDACO 0x01
AUXDAC[1] GPIO_ANA_1 () ADI_ADRV9025_AUXDAC1 0x02
AUXDAC[2] GPIO_ANA_2 L1 ADI_ADRV9025_AUXDAC2 0x04
AUXDAC[3] GPIO_ANA_3 L2 ADI_ADRV9025 _AUXDAC3 0x08
AUXDAC[4] GPIO_ANA_4 L17 ADI_ADRV9025_AUXDAC4 0x10
AUXDAC[5] GPIO_ANA_5 L16 ADI_ADRV9025_AUXDAC5 0x20
AUXDAC[6] GPIO_ANA_6 C12 ADI_ADRV9025_AUXDAC6 0x40
AUXDAC[7] GPIO_ANA_7 ci13 ADI_ADRV9025_AUXDAC7 0x80

The capacitive load of the AuxDAC pins must not exceed more than 100 pF or stability issues may occur.

The AuxDAC uses the GPIO_ANA pins on the device. Conflicts between GPIO_ANA and AuxDAC functionality may occur. In case of
these conflicts, the AuxDAC takes precedence over all other GPIO_ANA functionality when AuxDAC is enabled for a specific pin. When
the AuxDAC is disabled, the configured GPIO_ANA functionality is applied. The AuxDAC can be enabled one pin at a time to allow
flexibility between AuxDAC and GPIO_ANA functionality.

The AuxDAC is typically used in applications requiring analog control signals. The data interface used to set the output level of the
AuxDAC is SPI based. There is no CMOS/LVDS data interface to provide input data to the AuxDAC.

The (ideal) output voltage expressed on the AuxDAC is based on the following equation:

AuxDACValue N
4096

V auspac = 1.8V

where parameter AuxDacValue is the 12-bit digital code applied to the AuxDAC.

As previously mentioned, the AuxDAC is not a precision converter. It is best used in feedback systems. Figure 113 shows AuxDAC output
voltage vs. input codes for a full range code sweep of the AuxDAC. Channel to channel variability in slope and dc offset are expected.

Rev. PrA | Page 203 of 267

UG-1727

AuxDac Output Voltage versus Code
T I I T T

AuxDac Voltage (V)
o o
o @
T T
¥
A
| |

o

s
T
|

o

o
I
|

| | | | | | | |
0 500 1000 1500 2000 2500 3000 3500 4000
AuxDac Code

o

22770118

Figure 113. AuxDAC Channel Comparison over Full Range Code Sweep
AuxDAC Configuration

The AuxDAC is configured using the API command adi_adrv9025_AuxDacCfgSet(...). This command must be called after device
initialization to use the AuxDACs.

adi_adrv9025_ AuxDacCfgSet(adi_adrv9025_Device_t *device, adi_adrv9025_AuxDacCfg_t
auxDacConfigl[],

uint8_t numberOfCfg)

Table 226. AuxDAC Configuration Parameters

Parameter Description

*device Pointer to the device settings structure

auxDacConfig[] The pointer to an array of AuxDAC configuration structure
numberOfCfg The number of configurations at the auxDacConfig array

A data structure used in this command is the adi_adrv9025_AuxDacCfg_t data structure. The elements within this structure are
described in Table 227.

Table 227. Description of adi_adrv9025_AuxDacCfg_t Data Structure

Data Type Parameter Name Comments

uint32_t auxDacMask AuxDAC selection. Bit 0 = AuxDACO, Bit1 = AuxDACT1, ..., Bit7 = AuxDAC7
uint8_t enable 1 =Enable selected AuxDAC per auxDacMask. 0 = Disable selected AuxDAC.
AuxDAC Ouput Setup

After enabling the AuxDAC, the user can set the output value of one or more AuxDACs with the API command
adi_adrv9025_AuxDacValueSet(...). This command is described below.

adi_adrv9025_ AuxDacValueSet(adi_adrv9025 Device_t* device,adi_adrv9025_ AuxDacValue_t
auxDacValues[], uint8_t numberOfCfg)

Parameters

Table 228.

Parameter Description

*device Pointer to the device settings structure

auxDacValues|] The array of DAC value data structures to set
numberOfCfg The number of configurations at the auxDacValues array

Rev. PrA | Page 204 of 267

UG-1721

A data structure used in this command is the adi_adrv9025_AuxDacValue_t data structure. The elements within this structure are
described in Table 229.

Table 229. Description of adi_adrv9025_AuxDacValue_t Data Structure

Data Type Parameter Name Comments

uint32_t auxDacMask AuxDAC selection. Bit 0 = AuxDACO, Bit1 = AuxDACI, ..., Bit7 = AuxDAC7
uint16_t value 12-bit AuxDAC word to apply to AuxDACs selected by auxDacMask
AUXILIARY ADC (AUXADC)

There are two physical AuxADCs integrated on the device. Each AuxADC has two inputs for a total of four AuxADC pins. The different
AuxADCs are designated ADI_ADRV9025_AUXADC_A and ADI_ADRV9025_AUXADC_B per the enumeration
adi_adrv9025_AuxAdcSelect_e.

The AuxADC is a 12-bit A-X converter. It is most useful for relative voltage measurements rather than precision measurements due to
slope and dc offset variability. The decimator state at the AuxADC output is linear to 10 bits. The input voltage range of the AuxADC is 50
mV to 950 mV. Readback of the AuxADC data word is performed using API commands. Accuracy of the AuxADC is dependent upon
the supply voltages provided to VCONV1_1P0 for AUXADC_A and VCONV2_1P0 for AUXADC_B.

There are no on-chip calibrations executed or available for the AuxADC.

Each physical converter has two inputs providing four possible measurement channels (see Figure 114).

—

O AUXADC_0 (Pin F17)
[Input 0]

DECIMATOR AUXADC_A

AUXADC_1 (Pin E17)

—
) [Input 1]

auxAdclnputSelect for AUXADC_A

e} AUXADC_2 (Pin F1)
[Input 0]

DECIMATOR AUXADC_B

AUXADC_3 (Pin E1)
[Input 1]

————0

auxAdclnputSelect for AUXADC_B

45—

Figure 114. AuxADC On-Chip Block Diagram

22770-119

The following (ideal) equation describes the output code in relation to an input voltage, Vix. In practice, the AuxADC has slope and dc
offset variability.

Dour = 4096(Viv - 0.5 V) + 2048
AuxADC Configuration
The AuxADC is configured with the following API command.

adi_adrv9025_ AuxAdcCfgSet(adi_adrv9025 Device_t *device, adi_adrv9025 AuxAdcCfg_t *auxAdcConfig,
uint8_t arraySize)

Parameters

Table 230.

Parameter Description

*device Pointer to the device settings structure
*auxAdcConfig Pointer to the supplied ADC configuration structure(s)
arraySize The number of supplied configuration structures

An important data structure used in this command is adi_adrv9025_AuxAdcCfg_t. Table 231 describes the parameters used in this
structure.
Rev. PrA | Page 205 of 267

UG-1727

Table 231. Description of adi_adrv9025_AuxDacValueAuxDacAdcValueCfg_t Data Structure

Data Type Parameter Name | Comments
AdiAadi_adrv9025_AuxAdcEnable_e auxAdcEnable Enable = 1, Disable =0
AdiAadi_adrv9025_AuxAdcSelect_e auxAdcSelect Select which ADC to configure (AUXADC_A or AUXADC_B)

AdiAadi_adrv9025_AuxAdclnputSelect_e | auxAdclnputSelect | Select which input of the selected AuxADC to use (INPUT_O or INPUT_1)
AdiAadi_adrv9025_AuxAdcClkDivide_e auxAdcClkDivide ADC CLK Divider Setting

The enumerations used in this structure are described further in the following tables.

Table 232. Description of adi_adrv9025_AuxAdcEnable_e Enumeration

Enum Name Enum Value Comments
ADI_ADRV9025_AUXADC_DISABLE 0 Aux ADC Disabled
ADI_ADRV9025_AUXADC_ENABLE 1 Aux ADC Enabled

Table 233 provides the enumerations describing the two physical converters on the device.

Table 233. Description of adi_adrv9025_AuxAdcSelect_e Enumeration

Enum Name Enum Value Comments
ADI_ADRV9025_AUXADC_A 0 Aux ADC A Selection
ADI_ADRV9025_AUXADC_B 1 Aux ADC B Selection

Table 234 provides the enumerations describing the two input selections that can be applied to each converter.

Table 234. Description of adi_adrv9025_AuxAdcInputSelect_e Enumeration

Enum Name Enum Value Comments

ADI_ADRV9025_AUXADC_INPUT_0 3 Aux ADC Input 0 Selection
ADI_ADRV9025_AUXADC_INPUT_1 2 Aux ADC Input 1 Selection

The AuxADC clock can be set based on a divider. The AuxADC input clock is supplied by the device clock input to the device
(DEVCLKH#). The valid options are provided in Table 235. Select the AuxADC divider setting such that the sampling clock frequency is
set as low as possible without resulting in aliasing.

Table 235. Description of adi_adrv9025_AuxAdcClkDivide_e Enumeration

Enum Name Enum Value Comments
ADI_ADRV9025_AUXADC_CLKDIVIDE_32 0 Input clock divide by 32
ADI_ADRV9025_AUXADC_CLKDIVIDE_1 1 No Clock Divide
ADI_ADRV9025_AUXADC_CLKDIVIDE_2 2 Input Clock divide by 2
ADI_ADRV9025_AUXADC_CLKDIVIDE_3 3 Input Clock divide by 3
ADI_ADRV9025_AUXADC_CLKDIVIDE_4 4 Input Clock divide by 4
ADI_ADRV9025_AUXADC_CLKDIVIDE_5 5 Input Clock divide by 5
ADI_ADRV9025_AUXADC_CLKDIVIDE_6 6 Input Clock divide by 6
ADI_ADRV9025_AUXADC_CLKDIVIDE_7 7 Input Clock divide by 7
ADI_ADRV9025_AUXADC_CLKDIVIDE_8 8 Input Clock divide by 8
ADI_ADRV9025_AUXADC_CLKDIVIDE_9 9 Input Clock divide by 9
ADI_ADRV9025_AUXADC_CLKDIVIDE_10 10 Input Clock divide by 10
ADI_ADRV9025_AUXADC_CLKDIVIDE_11 11 Input Clock divide by 11
ADI_ADRV9025_AUXADC_CLKDIVIDE_12 12 Input Clock divide by 12
ADI_ADRV9025_AUXADC_CLKDIVIDE_13 13 Input Clock divide by 13
ADI_ADRV9025_AUXADC_CLKDIVIDE_14 14 Input Clock divide by 14
ADI_ADRV9025_AUXADC_CLKDIVIDE_15 15 Input Clock divide by 15

Rev. PrA | Page 206 of 267

UG-1721

AuxADC Readback

After the AuxADC has been configured, the command that retrieves the AuxADC readback value is adi_adrv9025_AuxAdcValueGet(...).
This command is described below.

adi_adrv9025_ AuxAdcValueGet(adi_adrv9025 Device_t *device, adi_adrv9025 AuxAdcSelect_e
auxAdcSelect, adi_adrv9025_ AuxAdcValue_t *auxAdcValue)

Parameters

Table 236.

Parameter Description

*device Pointer to the device settings structure

auxAdcSelect Selects the desired AuxADC to read a sample from
*auxAdcValue Pointer to the supplied AuxADC value structure to populate

A data structure used in the above command is the adi_adrv9025_AuxAdcValue_t. Table 237 describes the members within this data
structure.

Table 237. Description of adi_adrv9025_AuxAdcValue_t Data Structure

Data Type Parameter Name Comments

adi_adrv9025_AuxAdcSelect_e auxAdcSelect Selects which AuxADC to read from.

uint16_t auxAdcValue 12-bit ADC sample from the selected AuxADC
TEMPERATURE SENSOR

The device features a temperature sensor that measures the temperature on the die. The temperature sensor uses an ADC similar to the
AuxADC, however it is a separate instantiation and has no connections to a device pin.

The initiation of a temperature measurement is performed without user intervention by the Arm processor. The user can retrieve this
measurement results in degrees C through an API command. The API command to readback the temperature sensor measurement is
described below.

adi_adrv9025_ TemperatureGet(adi_adrv9025 Device_t *device, intl6_t *temperatureDegC)

Parameters

Table 238.

Parameter Description

*device Pointer to the device settings structure

*temperatureDegC Pointer to a single int16_t element that returns the current 12-bit temperature sensor in degrees C

Rev. PrA | Page 207 of 267

UG-1727

SP12 DESCRIPTION

The ADRV9026 uses the primary SPI port for nearly all SPI transactions needed during operation. The device also features a secondary
SPI (SP12) port that can be used to control Tx, Rx and ORx attenuation settings.

SP12 CONFIGURATION
The SPI2 port can be enabled by calling the following API and setting spi2Enable to 1:
adi_adrv9025_Spi2CfgSet(adi_adrv9025_Device_t *device, uint8_t spi2Enable);

When this feature is enabled, the GPIO pins listed in Table 239 are configured automatically to the correct IO port direction to support
the SPI Interface.

Table 239. SPI2 GPIO Pin Assignments

Pin Number SPI2 Functionality Pin Direction

GPIO_3 [<3 Input

GPIO_2 SCLK Input

GPIO_1 SDO Input/Output (depending on 3-wire or 4-wire wire mode)
GPIO_0 SDIO Input/Output (depending on 3-wire or 4-wire wire mode)

The primary SPI and SPI2 share the same configuration: LSB first/MSB first, 3-wire/4-wire and single-instruction mode. Whichever
configuration is selected for SPI is automatically assigned to SPI2.

TRANSMITTER CONTROL WITH SPI2

SPI2 provides the option to switch between two distinct attenuation states for the transmitters by toggling a single GPIO pin, bypassing
the need to access the main SPI bus. The user can program four 10-bit attenuation words into registers designated State 1 (S1) and State 2
(S2). When the GPIO is low, the S1 registers set the attenuation values for the four transmitters. When the GPIO is high, the S2 registers
set the attenuation values for the four transmitters. The user must select which GPIO is to be used to control the attenuation state. The
valid selection values range from GPIO4 to GPIO18. The GPIO selection is performed by calling the following API

adi_adrv9025_TxAttenSpi2PinCtriCfgSet(adi_adrv9025_Device_t *device,
adi_adrv9025_TxAttenSpi2PinCfg_t txAttenSpi2PinCFfg[], uint8_t numTxAttenSpi2PinConfigs);

Parameters

Table 240.

Parameter Description

*device Pointer to the device settings structure

txAttenSpi2PinCfg([] An array of structures of type adi_adrv9025_TxAttenSpi2PinCfg_t detailed in Table 241
numTxAttenSpi2PinConfigs The number of configurations passed in the array

Rev. PrA | Page 208 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1721

Table 241. SPI2 Configuration Parameters

Parameter

Comments

txChannelMask

This selects the channels upon which the APl acts. It is a bit mask with each bit corresponding to a channel. The

desired mask can be generated by OR'ing the desired channel enums as listed below.

Data type: uint32_t

adi_adrv9025 TxChannels_e

Tx Channel

ADI_ADRV9025_TXOFF
ADI_ADRV9025_TX1
ADI_ADRV9025_TX2
ADI_ADRV9025_TX3
ADI_ADRV9025_TX4

No Tx channels selected
Tx1 channel selected
Tx2 channel selected
Tx3 channel selected
Tx4 channel selected

txAttenSpi2Pin

This parameter selects which GPIO pin is us

Data type: adi_adrv9025_Spi2TxAttenGpioSel_e

ed to select between Tx attenuation state 1 and state 2.

txAttenSpi2Pin

GPIO Selected

ADI_ADRV9025_SPI2_TXATTEN_DISABLE

ADI_ADRV9025_SPI2_TXATTEN_GPIO4
ADI_ADRV9025_SPI2_TXATTEN_GPIO5
ADI_ADRV9025_SPI2_TXATTEN_GPIO6
ADI_ADRV9025_SPI2_TXATTEN_GPIO7
ADI_ADRV9025_SPI12_TXATTEN_GPIO8
ADI_ADRV9025_SPI2_TXATTEN_GPIO9
ADI_ADRV9025_SPI2_TXATTEN_GPIO10
ADI_ADRV9025_SPI2_TXATTEN_GPIO11
ADI_ADRV9025_SPI2_TXATTEN_GPIO12
ADI_ADRV9025_SPI2_TXATTEN_GPIO13
ADI_ADRV9025_SPI2_TXATTEN_GPIO14
ADI_ADRV9025_SPI2_TXATTEN_GPIO15
ADI_ADRV9025_SPI2_TXATTEN_GPIO16
ADI_ADRV9025_SPI2_TXATTEN_GPIO17
ADI_ADRV9025_SPI2_TXATTEN_GPIO18

Select GPIO 4 for Tx state selection
Select GPIO 5 for Tx state selection
Select GPIO 6 for Tx state selection
Select GPIO 7 for Tx state selection
Select GPIO 8 for Tx state selection
Select GPIO 9 for Tx state selection
Select GPIO 10 for Tx state selection
Select GPIO 11 for Tx state selection
Select GPIO 12 for Tx state selection
Select GPIO 13 for Tx state selection
Select GPIO 14 for Tx state selection
Select GPIO 15 for Tx state selection
Select GPIO 16 for Tx state selection
Select GPIO 17 for Tx state selection
Select GPIO 18 for Tx state selection

Remove GPIO selection - this choice is only used if SPI2 is being disabled.
This removes the previously selected GPIO from the list of used resources

ATTENUATION STATE 0

ATTENUATION STATE 1

GPIO

tx_atten_upd_core_spi2_en

2:1 MUX

tx_atten_upd_core_spi2 _

-

RETIMING BLOCK

22770-120

Figure 115. SPI2 Transmitter Attenuation Update Options

Rev. PrA | Page 209 of 267

UG-1727

There are two update modes selectable for updating the attenuation applied to the transmitters, selected by bit DO in SPI2 register 0x2A.
When SPI2 0x2A[DO] is 0, updates to the attenuation state registers or MUX select GPIO take immediate effect. When SPI2 0x2A[DO0] is
1, a retiming block is used to block updates to the transmit attenuation until a latch bit (one per transmitter channel) is set. The latch bits
are in SPI2 register 0x2A, bits D4 to D1. Note that these bits are not self-clearing and must be written to zero before being used to latch
new attenuation values.

Table 242. SPI2 Register 0x2A details

Register 0x2A Comments
D4 Latch bit for Tx3 attenuation words (not self-clearing)
D3 Latch bit for Tx2 attenuation words (not self-clearing)
D2 Latch bit for Tx1 attenuation words (not self-clearing)
D1 Latch bit for Tx0 attenuation words (not self-clearing)
DO Attenuation update mode selection bit.
0 = Update attenuation when LSB is written.
1 = Update attenuation when latch bit is set transitioned from low to high

It is generally preferred to synchronize the attenuation change of all the Tx channels in one device, or across an antenna array comprising
many devices. An example of how to do this is given in the following steps:

1. Set 0x2A[DO0] low to allow immediate updates of attenuation

2. Update the attenuation values of the attenuation state not in use

3. Toggle the selected attenuation state by toggling the GPIO pin which selects between states. The new attenuation values are now
simultaneously applied to all transmitters in the product/antenna array

As this sequence is repeated, the Tx attenuation values of an entire antenna array can be adjusted simultaneously, with real time
attenuation changes triggered by the GPIO transition.

The two different attenuation states for each transmitter can be stored in the SPI2 register map shown in Table 243. Values are written to
these registers using the SPI protocol that is defined in the Serial Peripheral Interface (SPI) section.

Rev. PrA | Page 210 of 267

UG-1721

RECEIVER AND OBSERVATION RECEIVER CONTROL WITH SPI2

SPI2 can also be used to control both receiver and observation receiver attenuation settings. Dual states like those used by the transmitters
are not implemented for the receiver and observation receiver attenuation settings. When a new attenuation setting is written to one of
the gain index registers shown in Table 243, an immediate update occurs. The value of each register can be written or read back using the

SPI protocol that is defined in the Serial Peripheral Interface (SPI) section.

Table 243. SPI2 Register Map

Address | Register Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0

0x0002 orx0_agc_manual_gain_index agc_orx0_manual_gain_index

0x0003 orx1_agc_manual_gain_index agc_orx1_manual_gain_index

0x0004 orx2_agc_manual_gain_index agc_orx2_manual_gain_index

0x0005 orx3_agc_manual_gain_index agc_orx3_manual_gain_index

0x0006 orx0_agc_gain_index_readback agc_orx0_gain_index_readback

0x0007 orx1_agc_gain_index_readback agc_orx1_gain_index_readback

0x0008 orx2_agc_gain_index_readback agc_orx2_gain_index_readback

0x0009 orx3_agc_gain_index_readback agc_orx3_gain_index_readback

0x000a rx0_agc_manual_gain_index agc_rx0_manual_gain_index

0x000b rx1_agc_manual_gain_index agc_rx1_manual_gain_index

0x000c rx2_agc_manual_gain_index agc_rx2_manual_gain_index

0x000d rx3_agc_manual_gain_index agc_rx3_manual_gain_index

0x000e rx0_agc_gain_index_readback agc_rx0_gain_index_readback

0x000f rx1_agc_gain_index_readback agc_rx1_gain_index_readback

0x0010 rx2_agc_gain_index_readback agc_rx2_gain_index_readback

0x0011 rx3_agc_gain_index_readback agc_rx3_gain_index_readback

0x0012 tx0_attenuation_readback_Isb tx0_attenuation_readback[7:0]

0x0013 tx0_attenuation_readback_msb Reserved | tx0_attenuation_readback[9:8]
0x0014 tx0_attenuation_s1_Isb tx0_attenuation_s1[7:0]

0x0015 tx0_attenuation_s1_msb Reserved | tx0_attenuation_s1[9:8]
0x0016 tx0_attenuation_s2_Isb tx0_attenuation_s2[7:0]

0x0017 tx0_attenuation_s2_msb Reserved | tx0_attenuation_s2[9:8]
0x0018 tx1_attenuation_readback_Isb tx1_attenuation_readback[7:0]

0x0019 tx1_attenuation_readback_msb Reserved | tx1_attenuation_readback[9:8]
0x001a tx1_attenuation_s1_Isb tx1_attenuation_s1[7:0]

0x001b tx1_attenuation_s1_msb Reserved | tx1_attenuation_s1[9:8]
0x001c tx1_attenuation_s2_lsb tx1_attenuation_s2[7:0]

0x001d tx1_attenuation_s2_msb Reserved | tx1_attenuation_s2[9:8]
0x001e tx2_attenuation_readback_Isb tx2_attenuation_readback[7:0]

0x001f tx2_attenuation_readback_msb Reserved | tx2_attenuation_readback[9:8]
0x0020 tx2_attenuation_s1_Isb tx2_attenuation_s1[7:0]

0x0021 tx2_attenuation_s1_msb Reserved | tx2_attenuation_s1[9:8]
0x0022 tx2_attenuation_s2_lsb tx2_attenuation_s2[7:0]

0x0023 tx2_attenuation_s2_msb Reserved | tx2_attenuation_s2[9:8]
0x0024 tx3_attenuation_readback_Isb tx3_attenuation_readback[7:0]

0x0025 tx3_attenuation_readback_msb Reserved | tx3_attenuation_readback[9:8]
0x0026 tx3_attenuation_s1_Isb tx3_attenuation_s1[7:0]

0x0027 tx3_attenuation_s1_msb Reserved | tx3_attenuation_s1[9:8]
0x0028 tx3_attenuation_s2_lsb tx3_attenuation_s2[7:0]

0x0029 tx3_attenuation_s2_msb Reserved | tx3_attenuation_s2[9:8]
0x002a tx_atten_upd_spi2 Reserved tx_atten_upd_core_spi2 | tx_atten_upd_core_spi2_en

Rev. PrA | Page 211 of 267

UG-1727

RF PORT INTERFACE OVERVIEW

This section describes the recommended RF transmitter and receiver interfaces to obtain optimal device performance. This section
includes data regarding the expected RF port impedance values and examples of impedance matching networks used in the evaluation
platform. Some reference is also provided regarding board layout techniques and balun selection guidelines.

The ADRV9026 is a highly integrated transceiver with transmit, receive and observation receive signal chains. External impedance
matching networks are required on transmitter and receiver ports to achieve performance levels indicated on the data sheet. Analog
Devices Inc. recommends the utilization of simulation tools in the design and optimization of impedance matching networks. To achieve
best correlation from simulation to PCB, accurate models of the board environment, SMD components (for example, baluns and filters),
and device port impedances are required.

RF PORT IMPEDANCE DATA

This section provides the port impedance data for all transmitters and receivers in the device. Note the following:

e Z,isdefined as 50 Q for Tx and as 100 Q2 for Rx/ORx.

e The reference plane for this data is the device ball pads.

e Single ended mode port impedance data is not available. However, a rough assessment is possible by taking the differential mode
port impedance data and dividing both the real and imaginary components by 2.

e Contact Analog Devices Applications Engineering for the impedance data in Touchstone format.

m4

FREQUENCY = 3.500GHz

S(1,1) = 0.221/171.325
IMPEDANCE = Z0 x (0.640 + j0.045)

m1

FREQUENCY = 100.0MHz

$(1,1) = 0.005/156.393

IMPEDANCE = 49.550 — j0.196

m2

FREQUENCY = 1.000GHz

$(1,1) = 0.060/-127.659
IMPEDANCE = Z0 x (0.926 — j0.088)

m5

FREQUENCY = 4.500GHz

S(1,1) = 0.290/146.279
IMPEDANCE = Z0 x (0.585 + j0.205)

mé6

FREQUENCY = 6.000GHz

S(1,1) = 0.392/109.862
IMPEDANCE = Z0 x (0.596 + j0.519)

m3

FREQUENCY = 2.000GHz

S(1,1) = 0.122/-150.540
IMPEDANCE = Z0 x (0.803 — j0.098)

22770-121

FREQUENCY (0.000Hz TO 6.000Hz)
Figure 116. Tx1 and Tx4 SEDZ and PEDZ Data

Rev. PrA | Page 212 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1721

m1

FREQUENCY = 100.0MHz

$(1,1) = 0.006/170.987
IMPEDANCE = 49.416 +j0.092

m2

FREQUENCY = 1.000GHz

S(1,1) = 0.060/-124.931
IMPEDANCE = Z0 x (0.929 - j0.091)

m3

FREQUENCY = 2.000GHz

S(1,1) = 0.121/-144.639
IMPEDANCE = Z0 x (0.813 - j0.115)

m1

FREQUENCY = 100.0MHz
RC_SEDZ_Rref2 = 0.098/-58.372
IMPEDANCE = Z0 % (1.092 - j0.185)

m2

FREQUENCY = 1.000GHz
RC_SEDZ_Rref2 = 0.083/-109.461
IMPEDANCE = Z0 x (0.935 - j0.147)

m3

FREQUENCY = 2.000GHz
RC_SEDZ_Rref2 = 0.084/-142.6 11
IMPEDANCE = Z0 % (0.871 - j0.089)

S(1,1)

RC_SEDZ_Rref2

FREQUENCY (0.000Hz TO 6.000Hz)

Figure 117. Tx2 and Tx3 SEDZ Data

FREQUENCY (100.0MHz TO 6.000GHz)
Figure 118. Rx1 and Rx4 SEDZ Data

Rev. PrA | Page 213 of 267

m4

FREQUENCY = 3.500GHz

S$(1,1) = 0.217/-178.721
IMPEDANCE = Z0 x (0.643 — j0.007)

m5

FREQUENCY = 4.500GHz

S(1,1) = 0.285/158.552

IMPEDANCE = Z0 x (0.570 + j0.129)

m6

FREQUENCY = 6.000GHz

S(1,1) = 0.387/125.242

IMPEDANCE = Z0 x (0.533 + j0.396)

22770-122

m4

FREQUENCY = 3.500GHz
RC_SEDZ_Rref2 = 0.118/167.935
IMPEDANCE = Z0 x (0.792 + j0.040)

m5

FREQUENCY = 4.500GHz
RC_SEDZ_Rref2 = 0.139/130.357
IMPEDANCE = Z0 x (0.818 +j0.176)
mé

FREQUENCY = 6.000GHz
RC_SEDZ_Rref2 = 0.179/70.979
IMPEDANCE = Z0 x (1.057 + j0.369)

22770-123

UG-1727

m1

FREQUENCY = 100.0MHz
RC_SEDZ_Rref2 = 0.098/-58.288
IMPEDANCE = Z0 x (1.092 - j0.183)

m2

FREQUENCY = 1.000GHz
RC_SEDZ_Rref2 = 0.082/-109.796
IMPEDANCE = Z0 x (0.935 — j0.145)

m3

FREQUENCY = 2.000GHz
RC_SEDZ_Rref2 = 0.082/-143.472
IMPEDANCE = Z0 x (0.873 - j0.085)

m1

FREQUENCY = 100.0MHz
RC_SEDZ_Rref2 = 0.124/-49.378
IMPEDANCE = Z0 x (1.153 — j0.221)

m2

FREQUENCY = 1.000GHz
RC_SEDZ_Rref2 = 0.109/-85.458
IMPEDANCE = Z0 x (0.993 - j0.218)

m3

FREQUENCY = 2.000GHz
RC_SEDZ_Rref2 = 0.140/-107.096
IMPEDANCE = Z0 x (0.890 — j0.243)

RC_SEDZ_Rref

RC_SEDZ_Rref

FREQUENCY (100.0MHz TO 6.000GHz)
Figure 119. Rx2 and Rx3 SEDZ Data

FREQUENCY (100.0MHz TO 6.000GHz)
Figure 120. ORx1 and ORx4 SEDZ Data

Rev. PrA | Page 214 of 267

m4

FREQUENCY = 3.500GHz
RC_SEDZ_Rref2 = 0.115/166.645
IMPEDANCE = Z0 x (0.797 + j0.043)

m5

FREQUENCY = 4.500GHz
RC_SEDZ_Rref2 = 0.136/128.770
IMPEDANCE = Z0 % (0.826 + j0.178)

mé6

FREQUENCY = 6.000GHz
RC_SEDZ_Rref2 = 0.177/68.966
IMPEDANCE = Z0 % (1.071 + j0.365)

m4

FREQUENCY = 3.500GHz
RC_SEDZ_Rref2 = 0.207/-133.176
IMPEDANCE = Z0 % (0.722 + j0.227)

m5

FREQUENCY = 4.500GHz
RC_SEDZ_Rref2 = 0.242/-149.161
IMPEDANCE = Z0 x (0.638 — j0.169)

mé6

FREQUENCY = 6.000GHz
RC_SEDZ_Rref2 = 0.277/-172.444
IMPEDANCE = Z0 x (0.568 — j0.045)

22770-125

22770-124

UG-1721

m1

FREQUENCY = 100.0MHz
RC_SEDZ_Rref2 = 0.127/-51.004
IMPEDANCE = Z0 x (1.149 - j0.231)
m2

FREQUENCY = 1.000GHz
RC_SEDZ_Rref2 = 0.113/-85.635
IMPEDANCE = Z0 x (0.992 — j0.226)

m4

FREQUENCY = 3.500GHz
RC_SEDZ_Rref2 = 0.214/-138.082
IMPEDANCE = Z0 x (0.700 — j0.209)

m5

FREQUENCY = 4.500GHz
RC_SEDZ_Rref2 = 0.248/-156.131
IMPEDANCE = Z0 % (0.619 —j0.132)

mé6

FREQUENCY = 6.000GHz
RC_SEDZ_Rref2 = 0.276/177.077
IMPEDANCE = Z0 % (0.567 + j0.017)

m3

FREQUENCY = 2.000GHz
RC_SEDZ_Rref2 = 0.146/-108.917
IMPEDANCE = Z0 x (0.877 — j0.248)

RC_SEDZ_Rref

22770-126

FREQUENCY (100.0MHz TO 6.000GHz)
Figure 121. ORx2 and ORx3 SEDZ Data

ADS SETUP USING DAC (DATA ACCESS COMPONENT) AND SEDZ FILE

The port impedances are supplied as an *.s1p Series Equivalent Differential Z (impedance) file. This format allows simple interface to
ADS by using the Data Access Component. In Figure 122, Term1 is the single ended input or output and Term?2 represents the differential
input or output RF port. The Pi network on the single ended side and the differential Pi configuration on the differential side allow
maximum flexibility in designing matching circuits and is suggested for all design layouts as it can step the impedance up or down as
needed with appropriate component selection.

Simple Port Impedance Matching Schematic

=il]

L b it bl =L e
' I plmr M arghs e
[E I S P P T

e

' | =Ty
ol V=g
=
PO e o TS (Rl
= 5
S
VAR g
VOl i e, flte 1B g
S
N

Figure 122. Simulation Setup in ADS with SEDZ s1p Files and DAC Ccomponent
Operation is as follows:

1. 1. The DAC bBlock reads the rf port *.s1p file. This is the device rf port reflection coefficient.
2. 2.The two equations convert the RF port reflection coefficient to a complex impedance. The end result is the RX_SEDZ variable.
3. 3. The RF port calculated complex impedance (RX_SEDZ) is utilized to define the Term2 impedance.

Term?2 is used in a differential mode and Term1 is used in a single-ended mode. Setting up the simulation this way allows measurement of
S11, S22, and S21 of the 3-port system without complex math operations within the display page.

For highest accuracy, use EM modeling results of the PCB artwork and S parameters of the matching components and balun in the
simulations.

Rev. PrA | Page 215 of 267

UG-1727

TRANSMITTER BIAS AND PORT INTERFACE

This section considers the dc biasing of the transmitter (Tx) outputs and how to interface to each Tx port. The transmitters operate over a
range of frequencies. At full output power, each differential output side draws approximately 100 mA of dc bias current. The Tx outputs
are dc biased to a 1.8 V supply voltage using either RF chokes (wire-wound inductors) or a transformer center tap connection.

Careful design of the dc bias network is required to ensure optimal RF performance levels. When designing the dc bias network, select
components with low dc resistance (Rocr) to minimize the voltage drop across the series parasitic resistance element with either of the
suggested dc bias schemes suggested in Figure 123. The red resistors (R_DCR) indicate the parasitic elements. As the impedance of the
parasitics increase, the voltage drop (AV) across the parasitic element increases, causing the transmitter RF performance (for example,
Po,as and Pomax) to degrade. Select the choke inductance (Lc) high enough relative to the load impedance such that it does not degrade
the output power.

The recommended dc bias network is shown in Figure 124. This network has fewer parasitics and fewer total components.
Vpe = 1.8V

Cs
g Lc Lc

+ +
Rpcr “AV AV : Rpcr

TX1_OUT+
TX2_OUT+

1 lgias =~100mA

Tx1 OR Tx2 VBias = 1.8V - AV

OUTPUT
STAGE Vgias = 1.8V — AV

TX1_OUT—/
/ TX2_OUT-

Figure 123. RF DC Bias Configurations Depicting Parasitic Losses Due toWire Wound Chokes

iy

22770-128

\ TX1_OUT+/
TX2_OUT+_ lBias = ~100mA - AV +
T Rpcr
Vpias = 1.8V — AV 1.8V
Tx1 OR Tx2
OUTPUT
STAGE Vgias = 1.8V - AV
T laias = ~100mA g T Rocr o
TX1_OUT—/ - VYV - AV + g
/ TX2_OUT- &

Figure 124. RF DC Bias Configurations Depicting Parasitic Losses Due to Center Tapped Transformers

Figure 125 to Figure 128 identifyfour basic differential transmitter output configurations. Impedance matching networks (balun single-
ended port) are most likely required to achieve optimum device performance from the device. Also, the transmitter outputs must be ac-
coupled in most applications due to the dc bias voltage applied to the differential output lines of the transmitter.

The recommended RF transmitter interface featuring a center tapped balun is shown in Figure 125. This configuration offers the lowest
component count of the options presented.

Brief descriptions of the Tx port interface schemes are provided as follows:

e Center tapped transformer passes the bias voltage directly to the transmitter outputs

e RF chokes are used to bias the differential transmitter output lines. Additional coupling capacitors (Cc) are added in the creation of a
transmission line balun

e RF chokes are used to bias the differential transmitter output lines and connect into a transformer

e RF chokes are used to bias the differential output lines that are ac-coupled into the input of a driver amplifier.

Rev. PrA | Page 216 of 267

UG-1721

/

Tx1_OUTP/
Tx2_OUTP

1.8 i
Tx1 OR Tx2 b

OUTPUT STAGE

TX1_OUTN/ C b=
Tx2_OUTN J;

<
22770-129

Figure 125. ADRV9026 RF Transmitter Interface Configuration A

1.8V

/

Tx1_OUTP/ C_c

Tx20uTP |1.8v|]
. |
Tx1 OR Tx2
OUTPUT STAGE
Tx1_OUTN/ m

Tx2_OUTN 1.8V |

\

S
8
o
£
&
B

Figure 126. ADRV9026 RF Transmitter Interface Configuration

1.8V
Cb
\ I Lc Lc
Tx1_OUTP/
Tx2_OUTP 1.8V
Tx1 OR Tx2

OUTPUT STAGE Tx1_OUTN/

Tx2_OUTN 1.8V

Figure 127. ADRV9026 RF Transmitter Interface Configuration C

1.8V

/

Tx1_OUTP/
Tx2_OUTP

Tx1 OR Tx2
OUTPUT STAGE
Tx1_OUTN/
Tx2_OUTN 1.8V

22770-532

Figure 128. ADRV9026 RF Transmitter Interface Configuration D

If a Tx balun is selected that requires a set of external dc bias chokes, careful planning is required. It is necessary to find the optimum
compromise between the choke physical size, choke dc resistance (Rocr) and the balun low frequency insertion loss. In commercially
available dc bias chokes, resistance decreases as size increases. However, as choke inductance increases, resistance increases. Therefore, it
is undesirable to use physically small chokes with high inductance as they exhibit the greatest resistance. For example, the voltage drop of
a 500 nH, 0603 choke at 100 mA is roughly 50 mV.

Rev. PrA | Page 217 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1727

Table 244. Sample Wire-Wound DC Bias Choke Resistance vs. Size

Inductance (nH) Resistance (Size: 0603) Resistance (Size: 1206)
100 0.10 0.08
200 0.15 0.10
300 0.16 0.12
400 0.28 0.14
500 0.45 0.15
600 0.52 0.20

GENERAL RECEIVER PATH INTERFACE

The device has two types of receivers. These receivers include four main receive pathways (Rx1, Rx2, Rx3 and Rx4) and four observation
receivers (ORx1, ORx2, ORx3 and ORx4). The Rx and ORx channels are designed for differential use only.

The receivers support a wide range of operation frequencies. In the case of the Rx and ORx channels, the differential signals interface to
an integrated mixer. The mixer input pins have a dc bias of approximately 0.7 V present on them and may need to be ac-coupled
depending on the common mode voltage level of the external circuit.

Important considerations for the receiver port interface are as follows:

¢ Device to be interfaced: filter, balun, T/R switch, external LNA, and external PA. Determine if this device represents a short to
ground at dc.

¢ Rxand ORx maximum safe input power is +18 dBm (peak).

¢ Rxand ORx optimum dc bias voltage is 0.7 V bias to ground.

e Board Design: reference planes, transmission lines, and impedance matching.

Figure 129 shows possible differential receiver port interface circuits. The options in Figure 129 and Figure 130 are valid for all receiver
inputs operating in differential mode, though only the Rx1 signal names are indicated. Impedance matching may be necessary to obtain
data sheet performance levels.

Rx—
RECEIVER
INPUT
STAGE
(MIXER OR LNA) -
Rx+ 2

Figure 129. Differential Receiver Input Interface Circuits

C_Ic Rxe
T

RECEIVER
INPUT STAGE

(MIXER OR LNA)
m_lc .
I

Figure 130. Differential Receiver Input Interface Circuits

22770-631

Given wide RF bandwidth applications, SMD balun devices function well. Decent loss and differential balance are available in a relatively
small (0603, 0805) package.

IMPEDANCE MATCHING NETWORK EXAMPLES

Impedance matching networks are required to achieve performance levels noted on the data sheet. This section provides example
topologies and components used on the CE board.

Models of the devices, board, balun and SMD components are required to build an accurate system level simulation. The board layout
model may be obtained from an EM (electro-magnetic: Momentum) simulator. The balun and SMD component models may be obtained
from the device vendors or built locally. Contact Analog Devices Applications Engineering for device modeling details.

Rev. PrA | Page 218 of 267

UG-1721

RX AND ORX TOPOLOGY

T

ek
bl

RX+

BAL_OUT1
UNBAL_IN BAL_OUT2
NC_6 GND GND_DC_FEED_RFGND
6l 5 2
v

Figure 131. Impedance Matching Topology

RX-

22770-131

The impedance matching networks provided in this section have not been evaluated in terms of Mean Time to Failure (MTTF) in high
volume production. Consult with component vendors for long-term reliability concerns. Additionally, consult with balun vendors to

determine appropriate conditions for dc biasing.

The schematics in Figure 132, Figure 133, and Figure 134 show two or three circuit elements in parallel marked DNI (Do Not Include).
This was done on the evaluation board schematic to accommodate different component configurations for different frequency ranges.
Only one set of SMD component pads are placed on the board to provide a physical location that can be used for the selected parallel
circuit element. For example, R302, L302, and C302 components only have one set of SMD pads for one SMD component. The schematic
shows that in a generic port impedance matching network, the series elements may be either a resistor, inductor or a capacitor whereas
the shunt elements may be either an inductor or a capacitor. Only one component of each parallel combination is placed in a practical
application. Note that in some matching circuits, some shunt elements may not be required. All components for a given physical location

remain DNI in those particular applications.
1.8V

l

OPTIONAL

Tx OUTPUT

Figure 132. Transmitter Generic Matching Network Topology from CE Board

Tx+
7 B
I
BALUN
AMA
Tx— J’
1.8V g
AN
_L OPTIONAL _L _L .
I RF CHOKE FEED ;I' I]
v
AA ANA
Rx INPUT vV Vv

g

22770132

! i

BALUN

L L

?l

Figure 133. Receiver Generic Matching Network Topology from CE Board

ORXx INPUT

BALUN

! ::
L

L

gl

Rx+
]

—| Rx—

A\

LYY Y\ ORx+
| j
LI

ORXx—

Figure 134. Observation Receiver Generic Matching Network Topology from CE Board

Rev. PrA | Page 219 of 267

22770-134

UG-1727

MATCHING COMPONENT RECOMMENDATIONS

Table 245 through Table 250 show the balun and matching components used on the CE boards. DNI stands for do not install (leave
open). Note that all tolerances are 3% unless listed. Tolerance notations are either shown as a percentage of the nominal value (%) or as a

range in the units of the component. Component reference designators can be cross-referenced with the schematic drawings for the CE

boards.

Table 245. Receiver Matching Components—Rx1 and Rx4

Component Location on PCB (All Tolerances Are 3% Unless Noted)

C301/ C303/ C305/ C306/ C309/
Frequency | L301, C302/L302/ | L303, C304/L304/ R305, L306, C307/L307/ C308/L308/ L309,
Band C331/ R302,C332/ | €333/ R304, C334/ C335/ C336/ | R307,C337/ R308, C338/ | €339/
(MHz) L331 L332/R332 L333 L334/R334 R335 L336 L337/R337 L338/R338 L339 T301,T307
650 to 2800 | DNI 00 DNI 0Q 0Q 91 nH 39pF+ 39pF+ 47 nH Johanson
0.1 pF 0.1 pF 1720BL15A0100
2800 to DNI 1.2nH+ DNI 0Q 1.8pF+ | 9.1nH 0.7nH £ 0.7nH £ 30nH Johanson
6000 0.1 nH 0.1 pF 0.1 nH 0.1 nH 4400BL15A0100E
Table 246. Receiver Matching Components—Rx2 and Rx3
Component Location on PCB (All Tolerances Are £3% Unless Noted)
c311/ C313/ C315/ C316/ C317/ C319/
L311, | C312/L312/ L313, C314/L314/ R315, L316, L317/R317, C318/L318/ L319,
Frequency C321/ | R312,C322/ | €323/ R314,C324/ C325/ C326/ C327/ R318,C328/ C329/
Band (MHz) L321 L322/R322 L323 L324/R324 R325 L326 L327/R327 L328/R328 L329 T303,T305
650 to 2800 DNI 0Q DNI 0Q 0Q 100 nH 39pF+ 39pF £0.1pF | 43nH Johanson
0.1 pF 1720BL15A0100
2800 to 6000 | DNI 1.2nH+ 02pF+ | 0Q 48pF+ | 9.1nH 0.7nH = 0.7nH+0.1nH | 30nH Johanson
0.1 nH 0.05 pF 0.1 pF 0.1 nH 4400BL15A0100E
Table 247. Observation Receiver Matching Components—ORx2 and ORx4
Component Location on PCB (All Tolerances Are +£3% Unless Noted)
C401/ C403/ C405/ C406/ C409/
Frequency L401, C402/L402/ L403, C404/L404/ R405, L406, C407/L407/ | C408/L408/ L409,
Band C431/ R402,C432/ | C433/ R404, C434/ | C435/ C436/ | R407,C437/ | R408,C438/ | C439/
(MHz) L431 L432/R432 L433 L434/R434 R435 L436 L437/R437 L438/R438 L439 T401, T407
650t0 2800 | DNI 0Q DNI 0Q 0Q 82 nH 4.7 pF + 4.7 pF + 75nH + Johanson
0.1 pF 0.1 pF 5% 1720BL15A0100
2800 to DNI 1.3nH+ 0.2pF+ 0Q 5.6 pF 7.5nH 0.6 nH+ 0.6 nH+ 0.1pF + Johanson
6000 0.1 nH 0.05 pF +0.1 0.1 nH 0.1 nH 0.05 pF 4400BL15A0100E
pF
Table 248. Observation Receiver Matching Components—ORx1 and ORx3
Component Location on PCB (All Tolerances Are £3% Unless Noted)
c411/ C413/ C415/ c4a16/ Cc419/
Frequency L411, C432/L412/ | L413, C414/L414/ R415, L416, C417/L417/ C418/L418/ L419,
Band c421/ R412,C422/ | C423/ R414,C424/ C425/ C426/ R417,C427/ R418,C428/ C429/
(MHz) L421 L422/R422 L423 L424/R424 R425 L426 L427/R427 L428/R428 L429 T403, T405
650 to0 2800 | DNI 0Q DNI 0Q 0Q 200 nH 10 pF +5% 10 pF +5% 200 nH Johanson
1720BL15A0100
2800 to 13 nH 05nH+ DNI 03nH+ 1.6 pF 11 nH 0.5nH £ 0.5nH + 39nH Johanson
6000 0.1 nH 0.1 nH +0.1 pF 0.1 nH 0.1 nH 4400BL15A0100E

Rev. PrA | Page 220 of 267

UG-1721

Table 249. Transmitter Matching Components—Tx1 and Tx4

Component Location on PCB (All Tolerances Are 3% Unless Noted)

C512/ c510/ C508/ C503/
Frequency L512, C511/L511/ L510, C509/L509/ L508, C506/L506/ C507/L507/ L503,
Band C572/ R511,C571/ | €570/ R509,C569/ | €568/ | R506,C566/ | R507,C567/ | C563/ C516,
(MHz) L572 L571/R571 L570 L569/R569 L568 L566/R566 L567/ R567 L563 C576 T501, T507
65010 2800 | DNI 0.8nH+ 33nH 51pF+ DNI 0Q 0Q DNI 82 pF Johanson
0.1 nH 0.1 pF 1720BL15A0100
2800 to 32nH+ | 82pF+ DNI 2 pF£0.1pF 16 nH 11nH+ 1.1 + 12nH 6.2 pF £ Johanson
6000 0.1 nH 0.1 pF 0.1 nH 0.1 0.1 pF 4400BL15A0100E
Table 250. Transmitter Matching Components—Tx2 and Tx3
Component Location on PCB (All Tolerances Are £3% Unless Noted)
C532/ C530/ C528/ C527/ C523/
Frequency L532, C531/L531/ L530, C529/L529/ L528, C526/L526/ L527/R527, | L523,
Band C552/ R531,C551/ C550/ R529, C549/ C548/ R526, C546/ C547/ C543/ C536,
(MHz) L552 L551/R551 L550 L549/R549 L548 L546/ R546 L547/ R547 L543 C556 T503, T505
650102800 | DNI 09nH+ 200 nH 6.8 pF £ DNI 0Q 0Q DNI 82 pF Johanson
0.1 nH 0.1 pF 1720BL15A0100
2800 to 62 nH 1.8nH = 02pF+ | 0.5nH% 12 nH TnHx0.1nH | TnH= 20nH 49 pF = | Johanson
6000 0.1 nH 0.05 pF 0.1 nH 0.1 nH 0.1 pF 4400BL15A0100E

Rev. PrA | Page 221 of 267

UG-1727

POWER MANAGEMENT CONSIDERATIONS

The ADRV9026 requires five different power supply domains:

e 1.0 V digital: this supply is connected to the device through the three VDIG_1PO0 pins. This is the supply that feeds all digital
processing and clock generation. Take care to properly isolate this supply from all analog signals on the PCB to avoid noise
corruption. This supply input can have a tolerance of 5%, but note that the total tolerance must include the tolerance of the supply
device added to the voltage drop of the PCB. This supply is a high-current input, so it is critical that the input traces for these three
inputs be balance (same impedance for inputs) and as thick as possible to minimize the I x R drop.

e 1.0 V analog: these supplies are collectively referred to in the data sheet as the VANA_1PO0 supply. This covers the VDES_1PO0,
VSER_1P0, VIT_DES, and VJSY_1P0 supplies. All of these inputs provide power for various functions in the JESD interface blocks.
They can be connected directly to the same supply as VDIG_1P0 if the source has the current capability to supply the extra current
needed for the JESD interface and if proper isolation is included to prevent digital noise from corrupting these inputs. Alternatively,
these supply inputs can be connected to a separate 1.0 V regulator to keep them isolated from digital domains inside the device. This
supply input also has a tolerance of +5%.

e 1.3 V analog: these supplies connect to all functional blocks in the device through 14 different input pins. They are collectively
referred to in the data sheet as the VANA_1P3 supply. Treat each input as a noise susceptible input, meaning proper decoupling and
isolation techniques must be followed to avoid crosstalk between channels. The tolerance on these supply inputs is £2.5%.

e 1.8V analog: these supplies are primarily used to supply the transmitter outputs, but they also supply current for multiple
transmitter, receiver, converter, and auxiliary converter blocks. They are collectively referred to in the data sheet as the VANA_1P8
supply. This supply has a tolerance of £5%.

o Interface supply: the VIF supply is a separate power domain shared with the baseband processor interface. The nominal input voltage
on this supply is 1.8 V with a tolerance of £5%. This input serves as the voltage reference for the digital interface (SPI), GPIO, and
digital control inputs.

IMPORTANT

During operation, supply currents can vary significantly, especially if operating in TDD mode. The supply needs to have adequate
capacity to provide the necessary current (as indicated on the data sheet) so that performance criteria over all process and temperature
variations are maintained. Analog Devices recommends adding 900 mA to the digital and 20% margin to all analog supply maximums to
ensure proper operation under all conditions.

POWER SUPPLY SEQUENCE

The device requires a specific power-up sequence to avoid undesirable power-up currents. In the optimal sequence, the VDIG_1PO0 supply
must come up first. If the VANA_1P0 supplies are connected to the same source as the VDIG_1P0 supply, then it is acceptable for these
inputs to power up at the same time as the VDIG_1P0 supply. After the VDIG_1PO0 source is enabled, the other supplies can be enabled in
any order or all together. Note that the VIF supply can be enabled at any time without affecting the other circuits in the device. In

addition to this sequence, it is also recommended to toggle the RESET signal after power has stabilized prior to initializing the device.

The power-down sequence recommendation is similar to power-up. Disable all analog supplies in any order (or all together) before
VDIG_1P0 is disabled. If such a sequence is not possible, then disable the sources of all supplies simultaneously to ensure there is no back
feeding circuits that have been powered down.

POWER SUPPLY DOMAIN CONNECTIONS

lists the pin number, the pin name, the recommended routing technique for that pin from the main 1.3 V analog supply (if applicable),
and a brief description of the block it powers in the chip.

The information listed in Table 251 shows which power supply pins must be powered by designated traces and which pins are tied
together and share a common trace. In some cases, a separate trace from a common power plane is used to power up two to three 1.3 V
power supply pins, wheras in other cases, there are power supply pins that are powered from a separate trace.

The recommendation for VDDA1P3_DES is to keep it separate from the VDDA1P3_SER supplies using a separate trace. It is acceptable
to power this input from the other 1.3 V analog supply. Noise from this supply can affect the JESD link performance directly.

Rev. PrA | Page 222 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1721

Table 251. Power Supply Pins and Functions

Pin Name Pin No. | Type Voltage (V) | Recommended Routing/Notes Description
VDIG_1P0 G9,J9, | Digital | 1.0 Ensure all connections are matched to avoid Digital clocks and processing
L9 variations in voltage among the pins. Minimize blocks
total impedance to ensure as little voltage drop as
possible.
VIF N9 Analog | 1.8 CMOS/LVDS Interface Supply (routing typically Supply for SPl interface, GPIO,
not critical). control signals
TX1+ (RF N17, Analog | 1.8 Star connect from the 1.8V plane, isolated by Alternative Tx supply if power is
Choke Feed) P17 ground from other transmitter supplies, not supplied via a center-tapped
connected to pins using RF chokes (part depends | balun
on frequency range)
TX2+ (RF A13, Analog | 1.8 Star connect from the 1.8V plane, isolated by Alternative Tx supply if power is
Choke Feed) Al14 ground from other transmitter supplies, not supplied via a center-tapped
connected to pins using RF chokes (part depends | balun
on frequency range)
TX3+ (RF A4,A5 | Analog | 1.8 Star connect from the 1.8V plane, isolated by Alternative Tx output supply if
Choke Feed) ground from other transmitter supplies, power is not supplied via a
connected to pins using RF chokes (part depends | center-tapped balun
on frequency range)
TX4+ (RF P1, N1 Analog | 1.8 Star connect from the 1.8V plane, isolated by Alternative Tx output supply if
Choke Feed) ground from other transmitter supplies, power is not supplied via a
connected to pins using RF chokes (part depends | center-tapped balun
on frequency range)
VANA1_1P8 N16 Analog | 1.8 Star connect from the 1.8V plane. Isolate from 1.8V supply for: Tx1 analog
other 1.8V inputs with a ferrite bead if necessary. | output, Rx1 LO buffer, RF synthT,
AUXADC_0, AUXADC_1,Rx1TIA,
ORx1 mixer, Converter1 LDO
VANA2_1P8 B14 Analog | 1.8 Star connect from the 1.8V plane. Isolate from 1.8V supply for: Tx2 analog
other 1.8V inputs with a ferrite bead if necessary. | output, Tx1_2 LO buffers and LO
delay, Analog SPI, DEVCLK, AUX
PLL and AUX LO generation, Rx
LO mux and mbias, Rx2 LO
buffer, RF PLL1T and LOGENT1,
ORx1_2 LO buffers and TxLB1_2
LO buffer, Rx2 TIA, ORx2 mixer,
ORx1 and ORx2 TIA
VANA3_1P8 B4 Analog | 1.8 Star connect from the 1.8V plane. Isolate from 1.8V supply for: Tx3 analog
other 1.8V inputs with a ferrite bead if necessary. | output, Aux synth, Tx3_4 LO,
Analog SPI, Rx3 LO buffer, RF
PLL2 and LOGEN2, ORx3_4 LO
buffers and TxLB3_4 LO buffers,
Rx3 TIA, ORx3 mixer, ORx3_4 TIA
VANA4_1P8 N2 Analog | 1.8 Star connect from the 1.8V plane. Isolate from 1.8V supply for: Tx4 analog
other 1.8V inputs with a ferrite bead if necessary. | output, RF synth2, Rx4 LO buffer,
Clock PLL and CLKGEN, Clock
synth, AUXADC_2, AUXADC_3,
Rx4 TIA, ORx4 mixer, Converter2
LDO
VCONV1_1P8 H15 Analog | 1.8 Star connect from the 1.8 V plane. Isolate from 1.8V supply for: Tx1,2 DACs,
other 1.8V inputs with a ferrite bead if necessary. Rx1,2 ADCs, ORx1,2 ADCs
VCONV2_1P8 H3 Analog | 1.8 Star connect from the 1.8 V plane. Isolate from 1.8V supply for: Tx3,4 DACs,
other 1.8V inputs with a ferrite bead if necessary. Rx3,4 ADCs, ORx3,4 ADCs
VJVCO_1P8 P11 Analog | 1.8 Star connect from the 1.8V plane. Isolate from 1.8V supply for JESD VCO/PLL
other 1.8V inputs with a ferrite bead if necessary.
VANA1_1P3 D15 Analog | 1.3 Star connect from the 1.3V plane. Use wide 1.3V supply for: Tx1 phase

traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.8 V inputs
with a ferrite bead if necessary.

detector, BBF, Tx2 phase
detector, BBF, Rx1, Rx2 TIA,
ORx1_2TIA, Analog SPI

Rev. PrA | Page 223 of 267

UG-1727

Pin Name

Pin No.

Type

Voltage (V)

Recommended Routing/Notes

Description

VANA2_1P3

VCONV1_1P3

VCONV2_1P3

VRFVCO1_1P3

VRFVCO2_1P3

VRFSYN1_1P3

VRFSYN2_1P3

VAUXVCO_1P3

VAUXSYN_1P3

VCLKSYN_1P3

VCLKVCO_1P3

VRXLO_1P3

D3

J15

J3

G15

G3

J13

J5

C12

c6

R7

N5

A9

Analog

Analog

Analog

Analog

Analog

Analog

Analog

Analog

Analog

Analog

Analog

Analog

13

Star connect from the 1.3V plane. Use wide
traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.8 V inputs
with a ferrite bead if necessary.

Star connect from the 1.3V plane. Use wide
traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.8 V inputs
with a ferrite bead if necessary.

Star connect from the 1.3V plane. Use wide
traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.8 V inputs
with a ferrite bead if necessary.

Star connect from the 1.3V plane. Use wide
traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.8 V inputs
with a ferrite bead if necessary. Very sensitive to
aggressors.

Star connect from the 1.3V plane. Use wide
traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.8 V inputs
with a ferrite bead if necessary. Very sensitive to
aggressors.

Star connect from the 1.3V plane. Use wide
traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.8 V inputs
with a ferrite bead if necessary. Very sensitive to
aggressors.

Star connect from the 1.3V plane. Use wide
traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.8 V inputs
with a ferrite bead if necessary. Very sensitive to
aggressors.

Star connect from the 1.3V plane. Use wide
traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.8 V inputs
with a ferrite bead if necessary. Very sensitive to
aggressors.

Star connect from the 1.3V plane. Use wide
traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.8V inputs
with a ferrite bead if necessary. Very sensitive to
aggressors.

Star connect from the 1.3V plane. Use wide
traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.8 V inputs
with a ferrite bead if necessary. Very sensitive to
aggressors.

Star connect from the 1.3V plane. Use wide
traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.8 V inputs
with a ferrite bead if necessary. Very sensitive to
aggressors.

Star connect from the 1.3V plane. Use wide
traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.8 V inputs
with a ferrite bead if necessary. Very sensitive to
aggressors.

1.3V supply for: Tx3 phase
detector, BBF, Tx4 phase
detector, BBF, Rx3,4 TIA, ORx3_4
TIA, Analog SPI

1.3V supply for: Tx1,2 DACs,
Rx1,2 ADCs, ORx1_2 ADCs

1.3V supply for: Tx3,4 DACs, Rx3,
Rx4 ADCs, ORx3_4 ADCs

1.3V supply for: RF VCO1,

LOGEN1

1.3V supply for: RF VCO2,
LOGEN2

1.3V supply for RF1 synth

1.3V supply for RF1 synth

1.3V supply for: Aux VCO, Aux
LOGEN1_2, Aux LOGEN3_4

1.3V supply for Aux synth

1.3V supply for: DEVCLK, Clock
synth

1.3V supply for: Clock VCO, Clock
generation, Clock distribution

1.3V supply for: Rx1,2 LO mux;
Rx3, Rx4 LO mux

Rev. PrA | Page 224 of 267

UG-1721

Pin Name Pin No. | Type Voltage (V) | Recommended Routing/Notes Description
VTXLO_1P3 A7 Analog | 1.3 Star connect from the 1.3V plane. Use wide 1.3V supply for: Tx1, Tx2 LO mux;
traces/shapes to minimize trace resistance as Tx3, Tx4 LO mux
much as possible. Isolate from other 1.8V inputs
with a ferrite bead if necessary. Very sensitive to
aggressors.
VSER_1P0O R3, R4 Analog | 1.0 Connect directly toVDIG_1POortoa 1.0V 1.0V supply for JESD serializer
regulator using a separate wide trace to minimize
resistance as much as possible. Connect using a
ferrite bead if concerned with digital noise.
VDES_1P0 P12, Analog | 1.0 Connect directly to VDIG_1POortoa 1.0V 1.0V supply for JESD deserializer
P13 regulator using a separate wide trace to minimize
resistance as much as possible. Connect using a
ferrite bead if concerned with digital noise.
VTT_DES P14 Analog | 1.0 Connect directly to VDIG_1POortoa 1.0V 1.0V supply for JESD deserializer
regulator. Connect using a ferrite bead if Vit
concerned with digital noise.
VIJSYN_1PO R9 Analog | 1.0 Connect directly toVDIG_1POortoa 1.0V 1.0V supply for the JESD synth
regulator. Connect using a ferrite bead if
concerned with digital noise.
VCONV1_1PO K12 Analog | 1.0 Connect a 4.7 uF bypass capacitor to ground. Bypass connection point for
internal converter regulator.
VCONV2_1P0 K3 Analog | 1.0 Connect a 4.7 puF bypass capacitor to ground. Bypass connection point for
internal converter regulator.
VAUXVCO_1P0 | B11 Analog | 1.0 Connect a 4.7 yF bypass capacitor to ground. Bypass connection point for
internal AUXVCO regulator.
VCLKVCO_1PO | P5 Analog | 1.0 Connect a 4.7 yF bypass capacitor to ground. Bypass connection point for
internal CLKVCO regulator.
VRFVCO1_1P0 | G13 Analog | 1.0 Connect a 4.7 yF bypass capacitor to ground. Bypass connection point for
internal RFVCO1 regulator.
VRFVCO2_1P0 | G5 Analog | 1.0 Connect a 4.7 puF bypass capacitor to ground. Bypass connection point for

internal RFVCO2 regulator.

POWER SUPPLY ARCHITECTURE

The diagram in Figure 135 outlines the power supply configuration used on the CE board. This configuration follows the
recommendations outlined in Table 251. This diagram includes the use of ferrite beads for additional RF isolation and 0 Q) resistors. The
use of 0 Q resistors accomplishes three goals.

e Serve as place holders for ferrite beads or other filter devices that may be needed when users encounter RF noise problems in their

application and additional isolation is required.

¢ Ensure that layout follows power routing, forcing traces to be star connected to a central supply.

e Provide a place in the circuit where the current can be monitored and measured for debugging purposes. For this case, the 0 Q
components can be replaced by very low impedance shunt resistors and the voltage measured to determine total current to the
specified input ball.

For more details on exact power supply implementation, refer to the ADRV9026 CE board schematic that is supplied by the Analog
ADRV9026 design support package with this user guide.

Rev. PrA | Page 225 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1727

INTERFACE SUPPLY (1.8V % 5%) 4-—|
100uF | o

VANA_1P8 (1.8V * 5%) [BERD T}——{BEAD 2 obF * WP + 1000F | /01 1pg
— — T0uF + TuF ¥ 1000F | <00 = oo

T0uF + 1uF + 100nF | o 1o 0
10yF + 1uF + 100nF -
T0uF + 1uF + 100nF | VANA2_1P8
T0uF + 1uF + 100nF | VANA3_1P8
T0uF + 1uF + 100nF | VANA4_1P8
VJVCO_1P8

10pF + 1yF + 100nF
10uF + 1yF + 100nF
10F + 1yF + 100nF
AOF + AF + 100nF | /om0
10pF + 1yF + 100nF

TOWF + TuF + 100nF | VRFVCO1_1P3

VRFVCO2_1P3
| (BEAD QU + 1R+ 100nF) yvco_1p3

10uF + F + 100nF
[BEAD 25 T+ 1uF + 100nF | VCLKVCO_1P3
VAUXSYN_1P3

T0uF + 1pF + 100nF

TOuF+ TuF +10onE | VCLKSYN_1P3

TOuF T TuF +1oonE | VRFSYN1_1P3

10uF + 1uF +100nF x';;f;"f';l"a

10uF + 1uF + 100nF -
VTXLO_1P3

L e 10yF + 1uF + 100nF
00 VJSYN_1P0
LDO v 104F + AuF + 100nF | oo "n

13".2 : :":: 1gg:E VSER_1POVDES_1P0
E pr* Ty VDES_1P0

VANA_1P3 (1.3V £ 2.5%) BEAD1 BEAD

VCONV1_1P3
VCONV2_1P3
VANA1_1P3

10pF + 1uF + 100nF
10pF + 1uF + 100nF VTT_DES

VRFVCO1_1P0

VRFVCO2_1P0

|— VAUXVCO_1P0

VDIG_1P0 (1.0V % 5%) oo} 2x2000F + WP+ SX 1000 o | ypiG_1P0
VDIG_1P0
VDIG_1P0

VCONV2_1P0
VCLKVCO_1P0

|—| |— VCONV1_1P0
|__
F—

|||—I:—|

———
—]

5]

4.7uF INTERNAL LDO
OUTPUT CAPS
NOTES

* BEAD1 IS HIGH CURRENT

* BEAD2 IS LOW CURRENT, HIGH REJECTION

» 0Q CAN BE REPLACED WITH BEAD1 IF NOISE PROBLEMS OCCUR

+ DECOUPLING CAP RECOMMENDATIONS ARE SHOWN FOR EACH INPUT PIN

22770-135

Figure 135. Power Supply Connection Diagram

CURRENT CONSUMPTION

Current consumption in each block can vary depending on the device configuration for the profile in use. Clock frequencies, data rates,
calibrations, and number of channels in operation all influence the amount of current required for transceiver operation. The following
information is a sample of a typical use case profile and the resulting current consumption in different modes. Note that this is a typical
example, but do not consider the values maximums for design purposes. Follow the design margins noted previously in this section when
sizing power supplies.

Current Measurements: Use Case 26C-Link Sharing Profile

The setup parameters are as follows:

e Txchannels: 4

e Rxchannels: 4

¢ ORxchannels: 1

e Device clock: 491.52 MHz

e Tx/Rx primary signal bandwidth: 200 MHz
e Tx/ORx synthesis bandwidth: 450 MHz

e Rxdata sample rate: 245.76 MSPS

e Tx/ORx data sample rate: 491.52 MSPS

e JESD lane rate: 16.22016 Gbps

Rev. PrA | Page 226 of 267

UG-1721

Table 252. Typical Current Consumption—Use Case 26-NLS

Measured Current (mA)
Pin Name Pins Type Voltage (V) Rx Enabled Tx + ORx Enabled Rx + Tx + ORx Enabled
VDIG_1P0 G9, J9, L9 Digital 1.0 985 1193 1540
VSER_1P0O R3, R4 Analog 1.0 155 155 156
VDES_1P0O P12,P13 Analog 1.0 416 418 419
VTT_DES P14 Analog 1.0 4 4 4
VIJSYN_1PO R9 Analog 1.0 8 8 8
VIF N9 Analog 1.8 5 5 5
VANAT1_1P8 N16 Analog 1.8 5 130 130
VANA2_1P8 B14 Analog 1.8 13 131 131
VANA3_1P8 B4 Analog 1.8 8 130 130
VANA4_1P8 N2 Analog 1.8 8 130 130
VCONV1_1P8 H15 Analog 1.8 102 64 141
VCONV2_1P8 H3 Analog 1.8 102 25 102
VJVCO_1P8 P11 Analog 1.8 43 43 43
VANAT1_1P3 D15 Analog 1.3 321 359 475
VANA2_1P3 D3 Analog 1.3 317 310 417
VCONV1_1P3 J15 Analog 1.3 377 299 662
VCONV2_1P3 J3 Analog 1.3 372 116 476
VRFVCO1_1P3 G15 Analog 1.3 179 177 179
VRFVCO2_1P3 G3 Analog 1.3 177 176 179
VRFSYN1_1P3 J13 Analog 1.3 10 10 10
VRFSYN2_1P3 J5 Analog 1.3 10 10 10
VAUXVCO_1P3 c12 Analog 1.3 189 214 218
VAUXSYN_1P3 c6 Analog 1.3 7 8 8
VCLKSYN_1P3 R7 Analog 13 22 22 22
VCLKVCO_1P3 N5 Analog 1.3 103 103 132
VRXLO_1P3 A9 Analog 1.3 169 19 171
VTXLO_1P3 A7 Analog 1.3 11 184 187

Table 253. Total Current Consumption per Supply Rail

Mode of Operation

1.8 V Source Current (mA)

1.3V Source Current (mA)

1.0V Source Current (mA)

Rx Enabled

Tx + ORx Enabled
Rx + Tx + ORx Enabled

281
653
807

2264
2007
3146

1568
1778
2127

Rev. PrA | Page 227 of 267

UG-1727

PCB LAYOUT CONSIDERATIONS

OVERVIEW

The ADRV9026 is a highly integrated RF agile transceiver with significant signal conditioning integrated onto one chip. Due to the high
level of complexity of the device and its high pin count, careful printed circuit board (PCB) layout is important to obtain optimal
performance. This document provides a checklist of issues to look for and general guidelines on how to optimize the PCB to mitigate
performance issues. The goal of this document is to help achieve the best performance from the ADRV9026 while reducing board layout
effort. This section assumes that the reader is an experienced analog/RF engineer who understands RF PCB layout as well as RF and high
speed transmission lines.

The ADRV9026 evaluation board represents one of the most complex implementations of the device. All RF inputs and outputs, JESD
serial data lanes, and digital control and monitoring signals are implemented in this design. As such, a high level of PCB technology is
used to achieve maximum device performance while seeking to maintain a high level of performance in the face of constraints presented
by the routing density. Depending on the intended application, users may not require all signals to be routed and can, therefore, use
alternate PCB layout techniques to reach their design goals. This includes but is not limited to a traditional BGA fan-out, fewer layers,
through hole vias only, and lower grade PCB materials.

This section discusses the following issues and provides guidelines for system designers to get the best performance out of the ADRV 9026
device:

e PCB material and stack up selection

e Fan-out and trace-space layout guidelines

e Component placement and routing priorities

e RFandJESD transmission line layout

e Isolation techniques used on the ADRV9026 CE board
e Power management routing considerations

e Analog signal routing recommendations

¢ Digital signal routing recommendations

e Unused pin instructions

PCB MATERIAL AND STACK UP SELECTION

The ADRV9026 evaluation board utilizes Isola I-Speed dielectric material. It was selected for its low loss tangent and low dielectric
constant characteristics. On previous evaluation systems, Analog Devices has chosen a combination of low loss, RF capable dielectric for
the outer edge layers and standard FR4-370 HR dielectric for interior layers. RF signal routing on these boards was confined to the top
and bottom layers. Therefore, the material mix was a good compromise to obtain optimum RF performance and low overall board cost.
Given the need to route RF and high speed digital data lanes on multiple layers due to the increased number of RF channels and JESD
lanes, I-Speed material was chosen for all layers on this board. There are several other material options on the market from other PCB
material vendors that are also valid options for use with the ADRV9026 device. The key comparison metric for these materials is the
dielectric constant and the loss tangent. Designers must also be careful to ensure that the thermal characteristics of the material are
adequate to handle high reflow temperatures for short durations and expected operating temperatures for extended durations.

Figure 136 shows the PCB stack up used for the ADRV9026 evaluation board. Layer 1 and Layer 16 are primarily used for RF IO signal
routing and I-Speed prepreg material was selected to support the required controlled impedance traces. Layer 2 and Layer 15 have
uninterrupted ground copper flood beneath all RF routes on Layer 1 and Layer 16. Layer 2 is also used in combination with Layer 4 to
route high speed digital JESD lanes. These signal layers use Layer 3 and Layer 4 as references. Clean reference planes are important to
maintain signal integrity on sensitive RF and high speed digital signal paths. Layer 3, Layer 5, and Layer 7 are used to route analog power
domains. Routing of analog power planes and traces are discussed in more detail in the power supply layout section. Layer 9 is a solid
ground plane used to help isolate sensitive analog signal and power layers from potentially noisy digital signals routed in the lower half of
the PCB. Layer 10 through Layer 14 are used to route a variety of digital power, GPIO, and control signals. Table 254 describes the drill
table for via structures used in the evaluation board to route all signals from the transceiver. Note that the metal and dielectric thicknesses
have been balanced to ensure that the thickness of each half of the PCB is relatively equal to avoid uneven flexing or deforming under
pressure or temperature changes.

Via structures were selected based on signal routing requirements and manufacturing constraints. Ground planes are full copper floods
with no splits except for vias, through-hole components, and isolation structures. Ground and power planes are all routed to the edge of
the PCB with a 10 mil pullback from the edge to decrease the risk of a layer to layer shorts at the exposed board edge.

Rev. PrA | Page 228 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1721

Cu Thick. Cu Foll Lam. Thick.
Layer (mils) wt (0z) DK (mils) Description
1 215 3750z [—— | Foil .375 oz
3.35 6.15 Prepreg I-Speed 1035(77)/1035(77) 18.25Gx24 25
2 0.55 3750z Foil .375 0z
| 3.56 3.20 Prepreq I-Speed 1086(66.5) 18.25Gx24.25
3 1.85 350z Foil 375 0z
3.46 469 Prepreq I-Speed 1035(71.5)/1035(71.5) 18.25Gx24.25
4 060 050z Al A 4
.- 377 400 Core |-Speed 4 00mils 3313 050z / 1 0oz VLP2 18 5Gx24 5
5 1.20 1oz ==
._ 3.50 6.88 Prepreg I-Speed 1078(69.5)/1078(69.5) 18.25Gx24 25
6 0.60 050z v
.- 377 4.00 Core |I-5peed 4.00mils 3313 0.5 0z / 1 0z VLP2 18.5Gx24.5
7 1.20 1oz ey
... 3.35 288 Prepreg I-Speed 1035(77) 18.25Gx24 .25
8 1.85 350z i Foil 375 0z
3.46 425 Prepreq I-Speed 1035(71.5)/1035(71.5) 18.25Gx24.25
9 185 3507 ¢ Foil 375 oz
335 298 Prepreg I-Speed 1035(77) 18 25Gx24 25
10 0.60 050z
397 4.00 Core |-Speed 4.00mils 3313 0.5 0z / 0.5 oz VLP2 18.25Gx24 25
" 0.60 050z
3.50 6.96 Prepreg I-Speed 1078(69.5)/1078(69.5) 18.25Gx24 .25
12 0.60 050z
307 4.00 Core |-Speed 4.00mils 3313 0.5 0z / 1 oz VLP2 18.5Gx24 .5
13 1.20 1oz
3.46 458 Prepreq I-Speed 1035(71.5)/1035(71.5) 18.25Gx24.25
14 185 37507 Foil 375 0z
|_‘ 356 320 Prepreqg I-Speed 1086(66 5) 18 25Gx24 25
15 0.55 3750z = Foil 375 0z
3.35 6.16 Prepreg I-Speed 1035(77)/1035(77) 18.25Gx24 25 8
16 215 350z Foil 375 0z E

[4
Figure 136. PCB Material Stack Up Diagram

Table 254. Drill Table

Start End Drill Plate Drill Size Drill Pad Stacked
Layer Layer Type Type ViaFill (min) Depth Size(min) Vias
1 16 Mech PTH Not applicable 45.30 83.35

3 8 Mech Via Resin fill 11.80 26.96

9 14 Mech Via Resin fill 11.80 26.42

1 16 Mech Via Nonconductive via fill 7.90 83.35

15 14 Laser Microvia CuVF_Button pattern 7.90 3.65 Y

16 15 Laser Microvia Nonconductive via fill 7.90 6.61 Y

8 7 Laser Microvia CuVF_Button pattern 11.80 333 Y

1 2 Laser Microvia Non-Conductive viafill | 7.90 6.60 Y

2 3 Laser Via CuVF_Button pattern 7.90 3.65 Y

3 4 Laser Microvia CuVF_Button pattern 7.90 5.14 Y

Rev. PrA | Page 229 of 267

UG-1727

Controlled impedance traces, single ended and differential, are required to obtain best RF performance. Impedances of 50 Q and 100 Q

are required for RE high speed digital, and clock signals. Table 255 describes details about trace impedance controls used in the

ADRV9026 evaluation board and types of line structures used to obtain desired impedance and performance on and for given layers and
impedances.

Table 255. Impedance Table

Target Edge Modeled Modeled Coplanar

Structure Impedance Impedance Target Line Coupled Reference Line Width Impedance Space

Layer | Type Q) Tolerance (Q) | Width (mils) | Pitch (mils) | Layers (mils) Q) (mils)

1 Single-ended 50.00 +5 11.00 0.00 (2) 11.50 51.48 9.75

1 Edge coupled | 50.00 +5 27.00 32.00 (2) 27.50 50.99 9.75
differential

1 Edge coupled | 100.00 +10 7.50 14.50 2) 8.25 102.70 9.62
differential

2 Edge coupled | 100.00 +10 4.25 12.00 (1,3) 4.10 102.17 12.07
differential

4 Edge coupled | 100.00 +10 3.75 9.50 (3,5) 3.75 100.60 12.00
differential

4 Single-ended 50.00 +5 4.50 0.00 (3,5) 4.25 50.00 12.13

12 Single-ended 50.00 +5 4.50 0.00 (11,13) 475 51.77 11.88

12 Edge coupled | 100.00 +10 4.00 9.00 (11,13) 4.00 101.61 12.00
differential

16 Single-Ended 50.00 +5 11.00 0.00 (15) 11.50 51.51 9.75

16 Edge coupled | 100.00 +10 7.50 14.50 (15) 8.25 102.71 9.62
differential

Rev. PrA | Page 230 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1721

FANOUT AND TRACE SPACING GUIDELINES

The ADRV9026 uses a 289-ball BGA 14 mm x 14 mm package. The pitch between the pins is 0.8 mm. This small pitch makes it
impractical to route all signals on a single layer. RF and high speed data pins have been placed on the perimeter rows of the BGA to
minimize complexity of routing of these critical signals. Via in pad technology is used to escape all other signals to layers on which they
are routed. The recommended via size includes an 8 mil drill hole with a 12 mil capture pad. A combination of stacked micro vias, buried
vias, and through vias are used to route signals to appropriate inner layers for further routing. JESD interface signals are routed on two
inner signal layers utilizing controlled impedance traces.

Figure 137 illustrates the fanout of RF differential channels from the device on the top layer of the PCB. Note that each signal pair is
designed with the required characteristic impedance and isolation to minimize crosstalk between channels. The isolation structures
include a series of ground balls around each RF channel and the digital interface section of the device. Connect these ground balls by
traces to form a wall around each section, and then fill the area to make the ground as continuous as possible underneath the device.

22770-137

Figure 137. ADRV9026 CE Board RF Receiver and Transmitter Fanout and Layout

Rev. PrA | Page 231 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-17217 Preliminary Technical Data

COMPONENT PLACEMENT AND ROUTING GUIDELINES

The ADRV9026 transceiver requires few external components to function. Those that are required must be carefully placed and routed to
optimize performance. This section provides a checklist for properly placing and routing some of those critical signals and components.

Signals with Highest Routing Priority

RF inputs and outputs, clocks, and high speed digital signals are the most critical for optimizing performance and must be routed with the
highest priority. Figure 138 shows the general directions in which each of the signals must be routed so that they can be effectively
isolated from aggressor signals. It may be difficult to keep all RF channels on a single outer layer. In such cases, it is recommended to
route the receiver and transmitter channels on the top PCB layer with adequate channel-to-channel isolation and the observation
receivers on internal layers or on the bottom layers. Ensure that the trace impedance is properly designed to 100 Q differential including
the vias needed to transfer the signals between PCB layers.

22770-138

Figure 138. RF 10, DEVCLK, EXT LO, and JESD204B Routing Guidelines

Rev. PrA | Page 232 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1721

Tx, Rx, and ORx routing (also referred to as trace routing), physical design (trace width/spacing), matching network design, and balun
placement significantly impact RF transceiver performance. Make every effort to optimize path design, component selection, and
placement to avoid performance degradation. The RF Routing Guidelines section describes proper matching circuit placement and
routing in greater detail. Additional related information can be found in the RF Port Interface Overview section.

To achieve desire levels of isolation between RF signal paths, use the considerations and techniques described in the Isolation Techniques
section in designs.

For RF Tx outputs, install a 10 pF capacitor near the Tx balun(s) VANAx_1P8 dc feed(s). This capacitor acts as a reservoir for the Tx
supply current. The Tx Bias Supply Guidelines section discusses Tx dc supply design in detail.

Connect external clock inputs to DEVCLK+ and DEVCLK- through ac coupling capacitors. Place a 100) termination across the input
near Pin C8 and Pin C9, as shown in Figure 139. Shield traces by ground planes above and below with vias staggered along the edges of
the differential pair routing. This shielding is important because it protects the reference clock inputs from spurious signals that can
transfer to different clock domains within the device. Refer to the Synthesizer Configuration section for more details regarding the clock
signals.

SYSREE INF
SYSREEIN-

=
o
S
w
(a]

22770-139

Figure 139. DEVCLK and SYSREF Termination

Route JESD204B high speed digital interface traces at the beginning of the PCB design process with the same priority as the RF signals.
The JESD204B/JESD204C Routing Recommendations section outlines launch and routing guidelines for these signals. Provide adequate
isolation between interface differential pairs.

If an external LO source is used, connect to the port through ac coupling capacitors. EXT_LO1+ (E16, F16) and EXT_LO2+ (E2, F2) pins
are internally dc biased. An on-chip 100) termination is provided.

Signals with Second Routing Priority

Power supply routing and quality has a direct impact on overall system performance. The Power Management Layout section provides
recommendations for how to best route power supplies to minimize loss as well as interference between RF channels. Follow
recommendations provided in this section to ensure optimal RF and isolation performance.

Signals with Lowest Routing Priority

Route remaining low frequency digital inputs and outputs, auxiliary ADCs and DACs, and SPI signals. It is important to route all digital
signals bounded between rows E and R and Column 6 and Column 15 down and away from sensitive analog signals on PCB signal layers
with a solid ground layer shielding other sensitive signals from the potentially noisy digital signals (refer to Figure 138 for the ball
diagram). The ADRV9026 CE board uses Layer 9 as a solid ground flood on the entire layer to act as a shield and delineation between
analog and digital domains. All RF, analog power, and high speed signaling is routed on Layer 1 through Layer 8 and Layer 16, while
digital power and signaling is routed on Layer 10 through Layer 15. Auxiliary ADC and DAC signal traces are routed on layers separated
from RF 10 and high speed digital, but still on the analog side of the PCB.

Rev. PrA | Page 233 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1727

RF AND JESD TRANSMISSION LINE LAYOUT
RF Routing Guidelines

The ADRV9026 evaluation boards use both surface coplanar waveguide and surface edge coupled coplanar waveguide transmission lines
for Tx, Rx, and ORx RF signals. In general, Analog Devices does not recommend using vias to route RF traces unless a direct route on the
same layer as the device is not possible. Keep balanced lines for differential mode signaling used between the device and the RF balun as
short as possible. Keep the length of the single ended transmissions lines for RF signals as short as possible. Keeping signal paths as short
as possible reduce susceptibility to undesired signal coupling and reduce the effects of parasitic capacitance, inductance, and loss on the
transfer function of the transmission line and impedance matching network system. The routing of these signal paths is the most critical
factor in optimizing performance and, therefore, must be routed prior to any other signals and maintain the highest priority in the PCB
layout process.

All 12 RF ports are impedance matched using PI matching networks, both differential and single ended. Take care in the design of
impedance matching networks including balun, matching components, and ac coupling capacitor selection. Additionally, external LO
ports and DEVCLK may require impedance matching to ensure optimal performance. Figure 140 depicts the path from device to external
connector that is used to route Tx4 on the CE board. Component placement for matching components are highlighted in red. Refer to the
RF Port Interface Overview section for more information on RF impedance matching recommendations.

Rev. PrA | Page 234 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1721

Figure 140. Tx RF Routing and Matching Network

22770-140

All the RF signals must have a solid ground reference under each path to maintain the desired impedance. Ensure that none of the critical

traces run over a discontinuity in the ground reference.

Rev. PrA | Page 235 of 267

UG-1727

Tx Bias Supply Guidelines

Each transmitter requires approximately 125 mA supplied through an external connection. In the ADRV9026 CE board, bias voltages are
supplied at the dc feed of a center tapped balun in the RF signal path as shown in Figure 141.

22770-141

Figure 141. 1.8V TX Bias Routing at Balun

To reduce switching transients due to attenuation setting changes, power the balun dc feed directly from the 1.8 V supply plane. Design
the geometry of the plane to isolate each transmitter from the others. Figure 142 shows the 1.8 V supply distribution on the ADRV9026
CE board. The primary 1.8 V distribution is through a plane that transitions to two wide fingers on Layer 5, which run up both sides of
the device. The finger width is designed to minimize voltage drop at the tap points. Each transmitter is biased with a finger on layer 3 that
taps the main 1.8 V supply. The fingers are designed and routed to present a low impedance at the connection point to the Tx input.

22770-142

Figure 142. 1.8V Supply Distribution

As previously mentioned, the ADRV 9026 evaluation board couples the supply into the transmitter via a center tapped balun, but it is also
provisioned for an external choke feed inductor with an ac decoupling capacitor. This topology helps in improving transmitter-to-
transmitter isolation.

When a balun is selected that does not have a dc feed capability, RF chokes must be used to supply current to the transmitters. Chokes are
connected from the 1.8 V supply to each Tx output. Note that in this scenario, the Tx balun must be ac-coupled. The RF chokes must also

Rev. PrA | Page 236 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1721

be decoupled by capacitors from the power feed to ground. Place the ground connections to these capacitors as close as possible to the Tx
output pins. Take care to match both chokes and their layout to avoid peaking due to current transients.

JESD204B/JESD204C Routing Recommendations

The ADRV9026 uses a JESD204B/JESD204C high speed serial interface. To ensure performance of this interface, keep the differential
traces as short as possible by placing the device as close as possible to the baseband processor and routing the traces as directly as possible
between the devices. Using a PCB material with a low dielectric constant and loss tangent is also strongly recommended. For a specific
application, loss must be modeled to ensure adequate drive strength is available in both the ADRV9026 and the baseband processor.

Route the differential pairs on a single plane using a solid ground plane as a reference on the layers directly above and/or below the signal
layer. Reference planes for the impedance controlled traces must not be segmented or broken along the entire length of a trace.

Al JESD lane traces must be impedance controlled, targeting 100 Q differential. Ensure that the pair is loosely coplanar edge-coupled.
The ADRV9026 CE board uses 4 mil wide traces and a separation of approximately 10 mil. This varies depending on the stack up and
selected dielectric material. Minimize the pad area for all the connector and passive components to reduce parasitic capacitance effects on
the transmission lines, which can negatively impact signal integrity. Via use to route these signals must be minimized as much as possible.
Use blind vias wherever possible to eliminate via stub effects and use micro vias to minimize inductance. If using standard vias, use
maximum length vias to minimize the stub size. For example, on an 8-layer board, use Layer 7 for the stripline pair, thus reducing the
stub length of the via to that of the height of a single layer. For each via pair, a pair of ground vias must be placed nearby to minimize the
impedance discontinuity.

For JESD signal traces, the recommendation is to route them on the top side of the board as a 100 Q differential pair (coplanar edge
coupled waveguide). In the case of the ADRV9026 CE board, the JESD signals are routed on inner Layer 2 and Layer 4. To minimize
coupling, these signals are placed on an inner layer using a via in pad of the component footprint. ac coupling capacitors (100 nF) are
places in series near the FMC connector away from the chip. The JESD interface can operate at frequencies up to 16 GHz.

Figure 143 and Figure 144 show the transition between ball and launch. Surrounding ground references, above and below the signal layer
are designed to tune the modal impedances ideal for the high speed signaling and according to the JESD204B standard.

22770-143

Figure 143. JESD Signal Launch on Layer 2

Rev. PrA | Page 237 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1727

22770-144

Figure 144. JESD Signal Launch on Layer 4

ISOLATION TECHNIQUES

Given the density of sensitive and critical signals, significant isolation challenges are faced when designing a PCB for the ADRV 9026
device. Isolation requirements listed below were followed to accurately evaluate the ADRV9026 device performance. Analytically
determining aggressor-to-victim isolation in a system is very complex and involves considering vector combinations of aggressor signals
and coupling mechanisms.

Isolation Goals
Table 256 lists the isolation targets for each RF channel-to-channel combination type. To meet these goals with significant margin,

isolation structures were designed into the ADRV9026 CE board.

Table 256. Port to Port Isolation Goals

Port 650 MHz to 4 GHz 4 GHz to 6 GHz
Tx to Tx 65 dB 60 dB
Tx to Rx 70dB 65 dB
Tx to ORx 70dB 65 dB
Rx to Rx 65 dB 60 dB
Rx to ORx 70dB 65 dB

Isolation Between RF 10 Ports
These are the primary coupling mechanisms between RF IO paths on the evaluation board:
e Magnetic field coupling

e Surface propagation
e Cross domain coupling via ground

To reduce the impact of these coupling mechanisms on the ADRV9026 CE board, several strategies were used. Large slots are opened in
the ground plane between RF IO paths. These discontinuities prevent surface propagation. A careful designer may notice various bends in
the routing of differential paths. These routes were developed and tuned through iterative electromagnetic simulation to minimize
magnetic field coupling between differential paths. These techniques are illustrated in Figure 145.

Rev. PrA | Page 238 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1721

Figure 145. RF IO Isolation Structures

22770-145

Additional shielding is provided by using connecting VSSA balls under the device to form a shield around RF IO ball pairs. This ground

provides a termination for stray electric fields. Figure 146 shows how this is done for Tx1. The same is done for each set of sensitive RF IO
ports. Ground vias are used along single ended RF IO traces. Optimal via spacing is 1/10 of a wavelength for the highest signal frequency,
but that spacing can vary somewhat due to practical layout considerations.

wavelength (m) =

300

frequency (MHz)x \/;;T

Figure 146. Shielding of TX Launches

Rev. PrA | Page 239 of 267

22770-146

UG-1727

RF IO baluns are spaced and aligned to reduce magnetic coupling from the structures in the balun package. Care must also be taken to
reduce cross talk over shared grounds between baluns. Another precaution taken involved placing and orienting SMA connectors to
minimize connector to connector coupling between ports.

Isolation Between JESD204B Lines

The JESD204B interface uses 16 lane pairs that can operate at speeds up to 16 GHz. Take care when doing PCB layout to make sure those
lines are routed following rules described in the JESD204B/JESD204C Routing Recommendations section. In addition, use isolation
techniques to prevent crosstalk between the different JESD204B lane pairs. Via fencing is the primary technique used on the ADRV9026
CE board.

Figure 147 illustrates this technique. Ground vias are placed along and between each pair of traces to provide isolation and decrease
crosstalk. Spacing between vias, marked as A in Figure 147 follows the rule provided in the equation below. For most accurate spacing of
fencing vias, use layout simulation software.

22770-147

Figure 147. JESD204B Lane Via Fencing

POWER MANAGEMENT LAYOUT DESIGN

Due to the complexity and high level of integration in the ADRV9026, power supply routing is critical to achieve optimum RF
performance. The device is designed to minimize power supply coupled noise by implementing several internal linear regulators that
isolate circuits from each other when connected to a common power supply rail. This provides an improved level of isolation compared to
previous products, but it is only one level of protection. Proper power supply layout can also help isolate individual circuits in the device.

Analog Power Ring Approach

The RF section is designed as two hemispheres with two transmitters, two receivers, and as many as two observation receivers on each
side. To reduce coupling between channels and keep each power supply input isolated from others, a star connection approach is used.
This approach involves connecting each power supply input to a common power supply bus using an isolated trace designed specifically
for the current requirements of the particular input. The ADRV 9026 evaluation board uses a power ring approach to provide the power
supply bus for the 1.8 V and 1.3 V analog supplies. The 1.8 V supply is routed as an inner ring to provide a more direct connection to the
1.8 V transmitter output supplies and the 1.3 V supply is routed in a similar fashion as an outer ring that can be star-connected to each 1.3
V supply on the device. Figure 148 shows this layout approach on the ADRV9026 CE board. The inner purple “u-shape” is the 1.8 V
supply and the outer pink shape is the 1.3 V supply. Note that neither shape forms a complete ring. This was done to better control the
current path for each supply and avoid current loops and coupling between the two hemispheres of the board. Also, there is a thin strip of
ground plane that is routed between the two supply rings, maintaining some separation and prevention of direct coupling on the same
layer.

Rev. PrA | Page 240 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1721

Figure 148. Analog Power Ring Layout Approach

Rev. PrA | Page 241 of 267

22770-148

UG-1727

Analog Power Star Connections

The analog power ring approach provides ample locations for the individual star connections to be made. This approach enables the
designer to control the current paths for each supply as well as design individual traces that better control the effect of voltage drops on
other circuits when large load current changes occur. Each individual power supply input is evaluated for its maximum current
consumption value, and the star connection trace is then designed to minimize the voltage drop for that particular supply input while still
providing isolation from the other inputs. Figure 149 and Figure 150 illustrate how these star connections are made to the individual
supply balls of the device. Some of the connections are made directly to the corresponding supply ring, some are made through a ferrite
bead or similar filter device. Note that the thickness and layer of each trace was determined to minimize voltage drops and maximize
isolation between aggressor and victim inputs. The layers with the thicker metal in the stackup drawing are used for the inputs with the
highest current consumption values.

|

|

i

|
22770-149

Figure 149. 1.8 V Supply Routing Using Star Connections

Rev. PrA | Page 242 of 267

UG-1721

22770-150

2 = Wl N
Figure 150. 1.3 V Supply Routing Using Star Connections

Digital Power Routing

The digital 1.0 V supply is the noisiest supply in the system, so it is important to keep this supply shielded from the other supplies. It is
also the highest current supply, so the thickness of the traces needs to be adequate to carry the load current to the device without
experiencing significant voltage drops. There are three digital power input pins to the device, so the routing into the device is also critical.
Each input that connects to an input pin must match the others in length and thickness so there is no additional voltage drop in one
connection compared to the others. Figure 151 illustrates the approach used on the CE board to supply this current. A digital power
channel is routed from the power supply to the device and the entire area is flooded with copper to provide a low resistance supply trace.
This channel is shielded on all sides so that it is isolated from other signals. Figure 152 shows a zoomed-in view of the connection to the
device. Note that all three connections are made using two traces to reduce the trace resistance. Each connection is equal in total copper
volume to the others, so their voltage drops are equal when the device is active.

Rev. PrA | Page 243 of 267

UG-1727

fOER SR E0 =

Figure 151. Digital Supply Routing

Rev. PrA | Page 244 of 267

22770-151

UG-1721

B2 2 & & 2 8 &

L‘.p-ll‘.l.lll
w (2 efefe mnﬁ &

e
e

Y |
A |
Bl

| |
!ﬂ

-]

e

®

& (1

]

i

& (

r.] % %
5 e
@

@

-]

e

®

]

o

W

2 e 8 5 & Bpsfi=p

Ve 2 ® 8 B 8§

|]
n

Figure 152. Digital Supply Connection to Three VDIG Input Pins of the Device

£ 8 8 & 3 ?Ta

Rev. PrA | Page 245 of 267

UG-1727

JESD 1.0 V Supply Inputs

After careful evaluation, it was determined that the 1.0 V supply needed for the JESD interface can be supplied directly from the 1.0 V
digital supply without any interference or noise problems. The CE boards have these supplies routed separately from the common 1.0 V
supply shared by VDIG_1P0 as traces using a similar star connection approach that was used by the analog 1.3 V and 1.8 V supplies. Note
that the serializer and deserializer supply inputs carry the majority of the current, so these traces are made by creating filled areas as wide
as possible to minimize voltage drop. The VITT_DES and VJSYN_1PO0 traces carry vary little current and are, therefore, routed using
standard traces. Figure 153 illustrates how these traces are routed to the device. Note that the VIT_DES and VJSYN_1P0 traces were
routed on a different PCB layer than the VSER_1P0 and VDES_1PO0 supplies.

— =
== . =

i

22770-153

Figure 153. SERDES Power Supply Input Routing
Interface Supply Input

The interface supply is a low current input that provides the supply reference for the SPI serial interface. It can be routed as a signal trace
with adequate thickness to minimize voltage drop when the device is active. Route this trace in the digital area like the VDIG_1P0 supply
and keep it isolated from other signals to ensure it is not corrupted by other active digital signals or by the JESD interface lanes.

Ground Returns

Another critical routing consideration is how to control the mixing of ground currents to avoid noise coupling between different power
domains. One way to keep domains separated is to provide different ground return planes for each supply domain. This approach can
complicate a dense PCB layout like what is required for the ADRV9026. Another option is to connect all ground to the same plane system
and use cutouts and channeling like those used in the RF sections to provide better channel to channel isolation. Creating such ground
channels can provide the benefit of steering ground currents in a desired path without the complexity of trying to keep ground planes
isolated from each other. The specifics of such designs are highly dependent on the PCB layout and the level of isolation is desired.

Rev. PrA | Page 246 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1721

Input Bypass Component Placement

There are subtle component placement techniques for placing power supply bypass components that can have a substantial impact on
radio performance. Follow these guidelines when placing components on power supply inputs:

e Each power supply pin requires 0.1 pF bypass capacitor near the pin at a minimum. For inputs that require a large current step, a 10
UF capacitor in parallel is recommended. Place the ground side of the bypass capacitor(s) so that ground currents flow away from
other power pins and their bypass capacitors.

¢ Route power supply input traces to the bypass capacitor and the connect capacitor(s) as close to the supply pin as possible through a
via to the component side of the PCB. If possible, it is reccommended that the via be located inside the power supply pin pad to
minimize trace inductance.

e Some power supplies require a ferrite bead in series with the supply line to prevent RF noise from coupling between different inputs,
while others can do without the extra protection. It is recommended that each line be connected with a series component - either a
ferrite bead or a 0 Q place holder. Ensure that the device is sized properly to handle the current load for the particular power supply
input of concern.

e Figure 154 and Figure 155 illustrate an example of how the power supply routing from the common power ring to a bypass capacitor
and into the ADRV9026 device is implemented. Note that the bypass capacitor is connected directly to the vias leading from the
bottom of the PCB to the ball pads on the top of the PCB.

VANAL_1P3

FERRITE
BEAD

22770-154

VANA1_1P3
Input Ball

Bypass
Capacitor

22770-155

Figure 155. Power Connection to Supply Ball with Bypass Capacitor Between Vias

Rev. PrA | Page 247 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1727

ANALOG SIGNAL ROUTING CONSIDERATIONS

Other analog signals in and out of the device such as the auxiliary ADCs and DACs do not require critical routing considerations. Use
standard routing techniques for these signals to keep them shielded from interference or noise that may affect their desired levels.

DIGITAL SIGNAL ROUTING CONSIDERATIONS

The digital signal routing (for example, SPI, enable controls, and GPIO) is the least sensitive area, but it is nevertheless very important to
isolate from other signals to avoid digital noise coupling into other circuits. In the evaluation board these signals are routed from the
bottom of the board up through the same channel created for the VDIG power supply on Layer 10, Layer 11, and Layer 12. This provides
the benefit of using the same ground return area as the VDIG supply, which keeps the return currents from intermixing with currents
from the analog and RF functions of the device. Most of these signals are static or infrequently changing state, so once signals are routed
out of the device, they can be fanned-out to other parts of the PCB without concern of interfering with radio functions. Figure 156
illustrates how the signals are routed out of the device following the same path as the VDIG supply (brown fill area). Note that there are
designated layers on the customer evaluation PCB for digital routing and these layers are isolated by ground layers from other sensitive
signals such as the JESD lanes and the RF inputs and outputs. It is strongly recommended to keep any traces that are non-static, such as
the SPI or SPI2 buses, isolated from the sensitive analog/RF/JESD signals by ensuring there is ample ground between the traces and that
there is also no overlap of signals from layer to layer.

I‘ i 'IT ||'|I L_
|h||||'||:.|i|;I|"| |'||1 [
l||||||||l||'||||. 1 iqh"i |||||I

“I‘ Ihl l l||||IIH 5 II|I

Iill'lglull I':::

|
I;E\ \|-‘I~|I
Rty

jil ||\.N\ '\ My
TN r*hh".
M | |-_\ kL-.‘ RN

22770-156

Figure 156. Digital Routing Out of ADRV9026

Rev. PrA | Page 248 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1721

UNUSED PIN INSTRUCTIONS

In some applications, the user may decide not to use all available inputs or outputs. In these cases, take care to follow the
recommendations listed in Table 257 for unused pins.

Table 257. Recommendations for Unused Pins

Pin No. Type | Mnemonic When pins are not used:
A4, A5, A13,A14,P1,N1,N17, (0] TX3+, TX3—, TX2+, TX2—, TX4+, TX4—, TX1+, Do not connect.
P17 TX1-
E4,E5,E13,E14,L4,L5,L13,L14 | | ORX3+, ORX3—, ORX1+, ORX1—, ORX4+, ORX4—, | Connect to VSSA.
ORX2+, ORX2—-
C1,B1,B17,C17,J1,H1,H17, (0] RX3+, RX3—, RX2+, RX2—, RX4+, RX4—, RX1+, Connect to VSSA.
J17 RX1-
F2,E2,E16,F16 1/0 EXT_LO2+, EXT_LO2—, EXT_LO1+, EXT_LO1- Do not connect.
C4,C5,L1,L2,L17,L16,C12,C13 | I/O GPIO_ANA_7 to GPIO_ANA_O Connect to VSSA with a 10 kQ resistor or
configure as outputs, drive low, and leave
disconnected.

E1,E17,F1,F17 | AUXADC_3, AUXADC_1, AUXADC_2, AUXADC_0 | Do not connect.

E7,E11, M7, M11 | TX3_EN, TX2_EN, TX4_EN, TX1_EN Connect to VSSA.

G7,G11,J)7,J11 | RX3_EN, RX2_EN, RX4_EN, RX1_EN Connect to VSSA.

F7,F11,L7,L11 | ORX_CTRL_C, ORX_CTRL_B, ORX_CTRL_D, Connect to VSSA directly or with a 10 kQ

ORX_CTRL_A pull-down resistor.
H11,K11,N11,E10, F10, G10, 1/0 GPIO_0to GPIO_18 Connect to VSSA with a 10 kQ resistor or
H10,J10, K10, E9, F9, E8, F8, configure as outputs, drive low, and leave
G8, H8, J8, K8, H7, K7 disconnected.
N7, N8 (0] GPINT2, GPINT1 Do not connect.
M8 (0] SPI_DO Do not connect.
P10 | TEST_EN Connect to VSSA.
N6, P6, N12,N13, P7, P8 | SYNCIN3+, SYNCIN3-, SYNCIN1+, SYNCIN1-, Connect to VSSA.
SYNCIN2+, SYNCIN2-

N14,N15,P15,R15 (0] SYNCOUT2+, SYNCOUT2-, SYNCOUT1+, Do not connect.
SYNCOUT1-

U1,U2,T3,T4,U5,U6,T7,T8 0 SERDOUTD+, SERDOUTD- SERDOUTC+, Do not connect.

U16,U17,T15,T14,U12,U13,
T11,T10,

SERDOUTC—, SERDOUTB+, SERDOUTB-,
SERDOUTA+, SERDOUTA-,

SERDIND+, SERDIND—, SERDINC+, SERDINC-,
SERDINB+, SERDINB—, SERDINA+, SERDINA—

Do not connect.

Rev. PrA | Page 249 of 267

UG-1727

TRANSCEIVER EVALUATION SOFTWARE (TES) OPERATION

The ADRV9026 demonstration system enables customers to evaluate the device without having to develop custom software or hardware.
The system comprises a radio daughtercard, an ADS9 motherboard, a microSD card with operating system, a power supply for the ADS9,
a 12 V power supply that connects to a wall outlet, and a C#-based evaluation software application. The evaluation system uses Ethernet
interface to communicate with the PC.

INITIAL SETUP

The ADRVTRX TES is the graphical user interface (GUI) used to communicate with the evaluation platform. It can run with or without
evaluation hardware connected. When TES runs without the hardware connected, it can be fully configured for a particular operating
mode. If the evaluation hardware is connected, the desired operating parameters can be setup with TES and then the software can
program the evaluation hardware. Once the device is configured, the evaluation software can be used to transmit waveforms generated
from the internal NCO block or using custom waveform files as well as observe signals received on one of the receiver or observation
input ports. An initialization sequence in form of an IronPython script can be generated and executed using TES if customized scripts are
desired.

HARDWARE KIT
The ADRV9026 demonstration system kit contains:

e The CE board in form of a daughter card with FMC connector
e One (1) 12 V wall connector power supply cable
e One (1) SD card containing image of Linux operating system with required evaluation software. SD card type is 16 GB size, Type 10

The ADS9 demonstration system kit contains:

e The ADS9 motherboard with FMC connector
e One (1) 12V, 1.5 A power supply for powering the board

REQUIREMENTS
The hardware and software require the following:

e The ADS9 demonstration system kit
e The ADRV9026 demonstration system kit
e The operating system on the controlling PC must be Windows 7 (x86 and x64) or Windows 10 (x86 and x64)
e The PC must have a free Ethernet port with the following constraints:
e If the Ethernet port is occupied by another LAN connection, a USB to Ethernet adapter can be used
e The PC must be able to access over this dedicated Ethernet connection via the following ports:
e Port 22: SSH protocol
e Port 55556: access to the evaluation software on the ADS9 platform
e TES: contact a local Analog Devices representative to obtain access to this software.
e The user must have administrative privileges. To run software automatic updates, the PC must have access to the internet. If
internet access is restricted, a manual software update can be performed.

Rev. PrA | Page 250 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1721

HARDWARE SETUP

Before setup, the ADS9 platform requires the user to insert the SD card included with the evaluation kit into the J6 slot of the ADS9
(MicroZED) platform. The evaluation hardware setup is shown in Figure 157 and Figure 158.

S$1: MUST BE IN
OFF POSITION

S4: POWER ON

DS13: 12V_PIN

J6: MicroSD
CARD SLOT
(UNDER ETHERNET)

J1: ETHERNET
CONNECTION

DS1-FPGA
ONLINE

SW1: SHUTDOWN

D3: BOOT STATUS

NOTE: BOOT TIME
IS 3 MINUTES

22770-157

£ o ot

Figure 157. Analog Devices ADS9 Mother Board Configured to Work with ADRV9026 Evaluation Boards

Rev. PrA | Page 251 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1727

PC RUNNING TRANSCEIVER
EVALUATION SOFTWARE

SIGNAL SYNTHESIZER
REFERENCE CLOCK SOURCE

o oo En O [e]e)
o oo o
ﬂngDaaE:aqugg]

ETHERNET
CONNECTION

SIGNAL ANALYZER

[=I=T=T=T=T-}¢}
oooooo g

Y c—
000 0
o000
i
$O

o
o
N—

cooooe 50000 O
=

MOTHERBOARD AC/DC
POWER SUPPLY

DAUGHTERCARD 12VI5A

Tx4 POWER SUPPLY
12V/1.5A

Figure 158. CE Board and ADS9 Motherboard with Connections Required for Tx Testing

22770-158

To set up the evaluation board for testing, follow steps listed below:

1.

4.
5.

Connect the ADRV9026 evaluation board and the ADS9 evaluation platform together as shown in Figure 158. Use the HPC FMC
connector (P1001/P2). Ensure the connectors are properly aligned.

Insert the SD card that came with the evaluation kit into ADS9 microSD card slot (J6).

On the ADRV9026 evaluation card, provide a reference clock source (122.88 MHz is the default, or frequency match the setting
selected on the AD9528 configuration tab), at a 7 dBm power level to the J613 connector. (This signal drives the reference clock into
the AD9528 clock generation chip on the board. The REFA/REFA_N pins of AD9528 generate the DEV_CLK for the device and
REF_CLK for the FPGA on the ADS9 platform).

Connect a 12V, 1.5 A power supply to the ADS9 evaluation platform at the P1 header.

Connect the ADS9 evaluation platform to the PC with an Ethernet cable (connect to P3). There is no driver installation required.

In the case when the Ethernet port is already occupied by another connection, use an USB to Ethernet adapter.

On an Ethernet connection dedicated to the ADS9 platform, the user must manually set the following:

IPv4 address: 192.168.1.2
IPv4 subnet mask: 255.255.255.0

Refer to Figure 159 for more details. Make sure that the following ports are not blocked by firewall software on their PC:

Port 22: SSH protocol
Port 55556: access to the evaluation software on ADS9 platform

Note that the ADS9 IP address is set by default to 192.168.1.10.

Rev. PrA | Page 252 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-1721

& Local Area Connection 3 Status [=] U Local Area Cannection 3 Properties =

| Internet Protocal Wersion 4 (TCP/IPw8) Properties 7| ==
General Netwarking | Sharing Genetal
Connection Connect using: ‘ou can get IP settings assigned automatically if your netwark supports
this capability. Otherwise, you need to ask vour network administrator
TPwd Connectivity: Mo Internet access wF ASIX A%88179 USE 3.0 to Gigabit Ethernet Adapter 'Z’ far thgpapprgpriatg (= sgft\ﬁ.g;, 4
IPwE Connectivity: Mo network access /'
Media State: Enabled ~) Obtain an IP address automatically
Duratian: 00:40:02 This connection uses the following items: / @) Use the Following IP address:
: e i

Speed: 1.0 Gbps vl ™% Client for Microsoft Networks 1P address: 102 168, 1 . 2

.‘_i,luas Packet Scheduler
SFi\e and Printer Sharing for Microsoft Metworks Subnet mask:

W] i loternet Protacal Viersion BITCRAPGE] Dl aat

efault gateway:
| i |nternet Protocol Version 4 [TCP/IPvd) I g i
Activiby =& Link-Layer [opology Liscovery Mapper 1/0 Driver .
<& Link-Layer Topology Discovery Respander Obtain DNS server address automatically
Received @) Use the following DMS server addresses:
B Install... Unirztall Properties Preferred DNS server:

Bytes: 365,126 26,094

Dezcription Alkernate DMS server:

Tranzmission Control Protocol/Intermet Protocol. The default
[properties @ Disable Diagnase wide area network, protocol that provides communication) . .
[[EProp]l &] [2] across diverse interconnected netwarks [valicate settings upon ext
Cloze Cancel
Figure 159. IP Settings for Ethernet Port Dedicated for ADS9 Platform

1. Turn on the evaluation system by switching the ADS9 motherboard power switch (S4) to the on position. If hardware is connected
correctly, the green LED (DS13) on the ADS9 motherboard turns on.

2. The ADS9 motherboard uses a Linux operating system. It takes approximately 3 minutes before the system is ready for operation and
can accept commands from PC software. Boot status can be observed on ADS9 LED (D3, on the MicroZED daughtercard). This
LED illuminates red for approximately 3 minutes after power on. When it goes off, this indicates that the board is booted properly.
When D3 transitions from red to off, the system is ready for normal operation and awaits connection with the PC over Ethernet
(which must be established using TES).

3. Connect the reference clock signal (122.88 MHz CW tone, 7 dBm maximum) to J613 on the underside of the CE board.

Before applying power to the CE board, ensure that each of the four Tx output ports (J501 to J504) are properly terminated.

5. After the ADS9 system has properly booted, LED DS801 on the evaluation board illuminates. At this point, power from the 12 V wall
adapter must be connected to the CE board. When power is applied, DS802 illuminates on the CE board.

6. For transmitter testing, connect a spectrum analyzer to any Tx output on the evaluation board. Use a shielded RG-58, 50 Q) coaxial
cable (1 m or shorter) to connect the spectrum analyzer. Terminate all Tx paths, either into spectrum analyzers or into 50 Q if
unused.

7. The CE board must be powered off before the motherboard by unplugging the wall adapter. When power is removed from the CE
board, click on disconnect in the TES window and then press and hold SW1 on the ADS9 evaluation board (MicroZED daugher
card) until LED D3 illuminates. When LED D3 goes off, it is safe to turn off the ADS9 power using Switch S4.

TES INSTALLATION

Customers must contact an Analog Devices representative to obtain access to TES. After the initial software download, copy the software
to the target system and unzip the files (if not already unzipped). The downloaded zip container has an executable file called ADRV9025
Transceiver Evaluation Software.exe.

Administrator privileges are required to install TES. After running an executable file, a standard installation process follows. Parts of the
installation build are Microsoft NET Framework 4.5 (which is mandatory for the software to operate) and IronPython 2.7.4 (which is
optional and recommended). Figure 160 shows the recommended configuration. Note that the Microsoft .NET Framework and the
IronPython 2.7.4 installations are not necessary to select once they have been installed. If you are updating the version of the TES, these
boxes can be left unchecked to save installation time.

Rev. PrA | Page 253 of 267

UG-1727

L1 ADRV9025 Transceiver Evaluation Software_x86_FULL Setup o | E &3

Choose Components

Choose which features of ADRVI02S Transceiver Evaluation Software_x86_FULL { ¢ 7
you want to install,

Check the components you want to install and uncheck the components you don't want to
install. Click Next to continue.

- 1 Description

Select components to install: Microsoft .NET Framewor] &

IronPython 2.7.4

[¥] vc_redist.x86

ADRWA010 Transceiver Ev

Space required: 197.9 MB

< 1 3

Y ’
| <Back | MNext> | | Cancel

22770-160

Figure 160. Software Installation Components

The last step of the instalation process is to select shortcut configuration as shown in Figure 161. The user can select a shortcut to be
placed in the Windows Start Menu and/or on the Windows desktop.

L1 ADRY9025 Transceiver Evaluation Software_x86_FULL Setup o || B | 23
Completing ADRV9025

(Eh Transceiver Evaluation
— Software_x86_FULL Setup

ADRVYS02S Transceiver Evaluation Software_x86_FULL has
been installed on your computer.

Click Finish to close Setup.

v | Create Start Menu Shortcut

v | Create Desktop Shortcut

| Finish nce

Figure 161. Transceiver Evaluation Software Shortcut Configuration

22770-161

Rev. PrA | Page 254 of 267

UG-1721

STARTING THE TRANSCEIVER EVALUATION SOFTWARE

Depending on the user selection during the installation process (see Figure 161), users can start the customer software by clicking on
Start > All Programs > Analog Devices > ADRV9025 Transceiver Evaluation Software_x86_FULL > ADRV9025 Transceiver
Evaluation Software or by clicking on the desktop shortcut called ADRV9025 Transceiver Evaluation Software. Figure 162 shows the
opening page of the TES after it is activated.

DEWCES

o Fie Tools Help B .
v T [cun 50 [oFE P Radio\erse
TCP P Connection
TCP 1P Address 1wz 168
Part Number 55556
PCB NAME Nat Connected
SERIAL & Not Connected
REF CLOCK FREQ. Not Connected
FPGA VERSION Naot Connected
CMD_SERVER Not Connected
o
&
2
Pintos [Discosnciod [RIGEC [T e ANALDG S
N

Figure 162. Transceiver Evaluation Software Interface

Demo Mode

Figure 162 shows the opening page of the TES. In the case when evaluation hardware is not connected, the user can still use the software
in demo mode by following these steps:

1. Click on Connect (top left corner).
2. The software moves into demo mode in which a superset of all transceiver family features is displayed.

Rev. PrA | Page 255 of 267

UG-1727

NORMAL OPERATION

When hardware is connected to a PC and the user wants to start using the complete evaluation system, TES establishes a connection with
the ADS9 system via Ethernet after clicking the Connect option in the drop down menu. When proper connection is established, the user
can click on the DaughterCard position in device tree on the left. After selecting DaughterCard, information about revisions of different
setup blocks appears in the main window. The bottom part of that window shows the TCP IP Address set to 192.168.1.10 and Port
Number set to 55556. Contact the Analog Devices Applications Engineering team if the ADRV9026 Evaluation System needs to operate
over a remote connection and a different IP address for the ADS9 platform is desired. Figure 163 shows an example of correct connection
between a PC and a ADS9 system with a daughter card connected to it.

[Araveoas Transceiver Evaiuation Software

acts Halp [, i
il P’ Radio\erse
TCP IP Connection
TCP IP Address 162 168 1
Part Number SEEEE
PCB NAME ADRVI025 CE Board
ok SERIAL 1 161264078
REF CLOCK FREQ.
FPGA VERSION Not Connected
CMD_SERVER 0109
o
! 8
[Finstors: |Cansacied | THIGES] RxigEC - ILoE |- s £
§

Figure 163. Setup Revision Information

Configuring the Device
Contained within the Config tab are sub tabs that contain setup options for the device. The first one displayed is the Overview tab. Figure 164
shows the initial screen for the device Tx. In this page the user can select the following:

e Device to be programmed
e Select profiles

Profile Options

The TES contains the following profile options:

e ADRV9025Init_StdUseCase50_nonLinkSharing
e ADRV9025Init_StdUseCase50_LinkSharing

e ADRV9025Init_StdUseCase51_LinkSharing
e ADRV9025Init_StdUseCase61_ LinkSharing

These profiles configure the device for different Tx, Rx, and ORx bandwidths, sample rates, and clock rates. They also set different JESD
configurations and lane rates. By default, the platform boots to JESD204B mode. Note the available use cases may vary based on the
version of the software being run.

Rev. PrA | Page 256 of 267

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf

UG-17271

3 ADRv902S Tramceiver Evaluntion Software slala]
Disconnect Frogram Dewcs Fis Took Hep D, -
it e yon e v o 0 [| ?"Radio\erse”
18 X
- Lo 4SD0OD 122BH0 0492 4S0000 245750 2456 100000 122080
nCale 50_nonLinkSharing 1566 GHz 18/ .
- Apasze :MH: .II!Z .GHZ _hll? .I.‘ll’ .G“Z _hllt .MH! | L] | 0. L
Clock i 16 AT |
) 450000 45760 0492 ASO.0D0 246780 24SE 200000 245760 -
51_LinkShafing Mtz MHz GHz MHz MHz GHz MHz Mz 4815 GHz }:J K
! ! | ! } |] B }
1300000 368 B40 1843 337500 368E40 3 EBE 300.000 368 640 |
o1 Linkshong 00 MHz GHz MHz Mtz GHz MHz MHz pasahe 1
vooa_ts]
VoK 173 L A A
VOOR_1PD i PR oM
Vi e
VDIG_1R8 re—
-
b} Ll Byrctaorss st
fe—i
e—
oo L.j‘m‘ wiren [T
.
- [eor
—
Contrt
e RX1, RX2, T, TAZ, ORX12 iy
Xk = e
oy F’:LI — - o 3
- — 1 e
Proom. Conpeced VRIGECTN - QRN - FESLOEN - oase |
B

Figure 164. Main Overview Tab

Additional 204C use cases are also available. The platform must be switched to 204C mode then the available 204C profiles are displayed.
To switch the platform select Device > FPGA switch JESD > Jesd 204C. At this point the platform reboots (which takes approximately 3
minutes). Upon reconnecting, the 204C profiles are available.

Initialization

The Initialization tab provides access to the settings that are used to configure the device at startup. This page allows the user to set the
LO frequencies used, initial Tx attenuation settings, initial Rx gain index settings, and the initial gain index for ORx1 (the only ORx
channel available at this stage in development). These and other settings that are provided in future revisions are shown in Figure 165.

[ADRv902s Transceiver Evaluation Sommware EErE]
_ Disconnect Frogam Devies Fle Tools Faip p H -
Coré=a [woe Pyhon | Recew | Tearuma | one [TED. [FE | Radio\lerse :
= GUI_SETUR .
S ADSE
- ADRVE025 CE Boary | || LG PLL Satup = Chonnsi Satup = -
£ ADRVEI2S | FiL L0 Source Frog (MHz) Channel | LOSelect AF PLL Phase Sync
n Sripcuing o1 [mrio =|sse0 o000 PxLO f -
: w2 (erio =) ssocoooo 3 TeLO =
Ofx AEELD = |||0.000000 gl Cosfex LO s
Jereendn -)
Insisization
InRCaly.
‘Dgf: Mazpeg 0P ey 3
T Chamnel ORKChannel | [e 850 E

Eable 0P (3 = || G Ensb 0RO o 1|

T —| oA v
1iid G Buked 0P oy v o
T2 ona. =11 = | ek .
Ta oha v]| oma Ebeomo [y .| opa Emabecso
T o = Eelea 0ROy e

B0 state persint £l

e r
P — z)
o it Mtwrstion {81) Ruclo Galn (kjwx) , 1Ot Inlt Giokr (Indhecx)
w1 |poa = Pt % = Obefut = -
T2 000 * R 255 4 OtsRe? 55 o
T oo £ Rl s Db | 258 %
Ted 000 Eud s 3 Dokl 255 £
@) i L @
| ! 3
Pratorm: Connactad TAIGEEII - | EIGECHI - | TRAOUII - | s | £

Figure 165. Initialization Configuration Tab

Rev. PrA | Page 257 of 267

UG-1727

InitCals
The InitCals tab is used to set which calibrations take place at initialization. The default settings are shown in Figure 166. These can be
enabled/disabled by clicking on the box next to the calibration. A check mark indicates the calibration is run at startup.

Eler=]

P Radio\erse-

3 ADRVa0ZS Transceiver Evaluation Software
Disconnect Frogem Dewcs Fie Tools Help

[Eor#a [iran Pyhon | Racewe | Trenms [Oke P ToO [oFE |
- e wewwes
= ADSE
= ADFVE02S

CE Board | || 4] ADC Tuner [¥] LB R DC Offset [V OFox DC Ofset W] Fox DG Offsst Ta Alten Delay
5 Crptortg ! eernal Pul Delay ¥ LB RXTIA OF LO Dl i Gam Dislay Tic Atten Tabls
?“"" oPo ¥ LB ROCLO Delay ¥ ORxTIA Fox Goun Phase] TxBE Finer
B ¥] Flash Cal L8 AX RX QEC It Fr LO Delay. 7| TXDAC
Jedz0ab HO2 WIRTIA
Inftinkzation o T T | E— T
pinva "1 Extomal Path Delay | | | |
S e A
- m
nit Cota
FcEC]
TxOEC =
Oba P OEC o
ntaml T LOL s

22770-166

> s

Piatorm: Gonnacied | TRIGEETTI] - | AQEET - | WRIROLTT - |
Figure 166. InitCals Tab with Default Settings

Tx Configuration

The Tx tab is primarily informative and is based on the profile selection in the Overview tab (Figure 164). In this tab, the user can check
clock rates at each filter node as well as filter characteristics and pass-band flatness. Quick zooming capability allows zooming of the pass-
band response as well as restoring to the full scale plot. Figure 167 shows an example of the Tx tab with the resulting composite filter

response for the chosen profile.

[e =g
Discorreet Tiogam Dewes Fds Toum Heb b i
s o By P e | o e 0565 Radio\erse
= GAS_BETUP
= .
(- —
plii
5 omcres i
~
o =7l
R R =z
o, 21 2x 22
peeoy
o
pd
T T
TiPe bken hrty =
T Prmary Sgral el) {]
Bessbard Fitwr 38 (MHr)
e e
T e
e
5
Tl
=
-
=
£ &
H [} Ao LA [l S
IN
i S R N

Figure 167. Tx Summary Tab

Rev. PrA | Page 258 of 267

UG-1721

Rx Configuration

The Rx tab is primarily informative and is based on the profile selection in the Overview tab (see Figure 164). In this tab, the user can
check clock rates at each filter node as well as filter characteristics and pass-band flatness. Quick zooming capability allows zooming of
the pass-band response as well as restoring to the full scale plot. Figure 168 shows an example of the Rx tab with the resulting composite
filter response for the chosen profile.

et P> Radio\erse

) R fugnal Chian

) Flt gt Semings
[Ty ——
R B s
Tidnsing Foes Bt (e)
Q) o Saqral Transfer Function.
|
! |
o
E e
L] S
IN
[—— - | - . [[N

Figure 168. Rx Summary Tab
ORx Configuration

The ORx tab is primarily informative and is based on the profile selection in the Overview tab (Figure 164). In this tab, the user can check
clock rates at each filter node as well as filter characteristics and pass-band flatness. Quick zooming capability allows zooming of the pass-
band response as well as restoring to the full scale plot. Figure 169 shows an example of the ORx tab with the resulting composite filter
response for the chosen profile.

B Radio\erse-

o Ofte Signal Toanstar Funition

22770-169

[— - i - | i - (> e

Figure 169. ORx Summary Tab

Rev. PrA | Page 259 of 267

UG-1727

JESD Configuration

The JESD tab is primarily informative and is based on the profile selection in the Overview tab (see Figure 164). In this tab, the user can
check the Tx Deframer settings and the Rx and ORx Framer settings. Figure 170 shows an example of the JESD tab with the settings for
Use Case 13.

ADRRIES T v Evmiaancn Sowwe. T=arg
Discermcl Propsm Dews Fle Tous Hep hi i
s e o] o] 0[5 Radio\erse
= G 5
o T
A0S CE Beard
L]
rpConf
oind
-
i 2
ST s
s
e
o
=
e
g
o = 3
I
e Comoced TRRGEGTT -+ RRIGRET - AR o §

Figure 170. JESD Summary Tab

Programming the Evaluation System

After all tabs are configured, the user must press the Program button. This kicks off initialization programming. TES sends a series of API
commands that are executed by a dedicated Linux application on the ADS9 platform.

When programming has completed, the system is ready to operate. There is a progress bar at the bottom of the window. Figure 171
displays the window with the progress bar and message after the device has been programmed.

» [T e —

=gl
o et s e i B’ Radio\erse-

B e e g
R
o e o

” mm A0 MH: 7 EO0MSE 062 GHe 450000 MG S TE0 M 7450 Gl VDM M 320 M 1088 Ol

22860 Mz 450000

b ;
-
o
B [=]
LIt L
L LIt oy
aewer
A2, R4, TH TRA, ORI 1 e
AR, A2, TR, TR O e
o 1 E-id
= =
== I
D [[F———=—=h — P ey

pom— e Tytem Fias m..mE)um

Figure 171. Device Programmed

LT
§ i 3
n
i1
listn]

P8

22770171

Rev. PrA | Page 260 of 267

UG-1721

Initialization Script

TES allows the user to create a script with all AP initialization calls in the form of IronPython functions. When the user clicks the Tools
> Save Python Script option, the script can be given a file name and stored in a location of the choosing of the user for future use. TES
generates the script in the form of a python (.py) file. That file can then be executed using the IronPython Script tab shown in Figure 176.
There is an option to save a MATLAB based initialization script for the chosen setup in the GUL

TRANSMITTER OPERATION

Selecting the Transmit tab opens a page as shown in Figure 172. The upper plot displays the FFT of the digital input data and the lower
plot shows its time domain waveform. When multiple Tx outputs are enabled, the user can select desired data to be displayed in the
Spectrum plot using the checkboxes below the plot. In the time domain plot, the user can select Tx1, Tx2, Tx3, Tx4, or any combination
of the data input channels, with I and/or Q data displayed.

Once the Transmit tab is open, the user can enter the RF Tx center frequency in MHz for Tx LO1 (used for Tx operation), change
attenuation level, and transmit CW tones.

[» Er e —

P Radioverse”

LOERL Frwa by 7% 50008 3 |

& T

T Ensten

22770-172

o Cossscwst TRAQECIIII - ERIGEEII - RRES - System s weriecaton was succmishi | progpasses ieccrssy I [4400

Figure 172. Transmit Data Tab

Rev. PrA | Page 261 of 267

UG-1727

Transmitter Data Options

The TES provides the following options for inputting transmitter data:

e A single tone from the internal NCO can be generated on each channel by the evaluation system using the Tone Parameters menu
shown in Figure 173. This window is accessed by pressing the TONES button near the upper left of the Transmit page. In that
window, the user can enable the tone (Number of Tones = 0 to 3) to be transmitted on the selected Tx output.

e The user can also chose to input a waveform file instead of using the internal NCO by selecting the LoadFile box and entering the
path to the waveform file.

Tone Parameters El
(~) ™ A
Number of Tones . ¥ Frequency Amplitude
C—]
1 5.00 = -10.00 =
2 . 0.00 ; 0.00 2
3 0.00 - . 0.00
File To Load Scaling (dB)
LoadFile 0
) ™
Number of Tones # Frequency Amplitude
1 - ! !
] J 1 4.00 = -10.00 =
o 0.00 - 0.00
3 . 0.00 5 . 0.00
_ File To Load Scaling (dB)
| | LoadFile 0 . -
Submit ‘ Cancel

22770-173

Figure 173. Tx Tone Parameters Setup Menu
Pressing the play symbol moves the device to the transmit state and starts a process where the NCO generated CW data is enabled.

The Tx2 Attenuation (dB) input allows the user to control analog attenuation in the Tx2 channel. It provides 0.05 dB of attenuation
control accuracy. The Tx3 Attenuation (dB) and Tx4 Attenuation (dB) perform the same operation on the Tx3 and Tx4 channels.

Rev. PrA | Page 262 of 267

UG-1721

RECEIVER OPERATION

Rx Signal Chain

The Receive tab opens a window as shown in Figure 174. The upper plot displays the FFT of the received input data and the lower plot
shows its time domain waveform. When multiple Rx inputs are enabled, the user can select the desired data to be displayed in the
Spectrum plot using the checkboxes below the plot. In the Time Domain plot, the user can select Rx1, Rx2, Rx3, Rx4, or any combination
of the input channels, with I and/or Q data displayed.

Once the Receive tab is open, the user can enter the RF LO frequencies for LO1 and LO2 PLLs, select which LO is used by Rx1 and Rx2,
select which LO is used by Rx3 and Rx4, select the Rx Trigger type, enter the sample time for the data, and select gain levels and tracking
calibrations for each channel. Pressing the play symbols enables the selected receivers and displays their waveform data.

o

P RadioVerse-

Magniada (413F5)

Froquancy (MHz)

Vi Hmsin

Time (wsee)

22770-174

. Tabe . iyt Files vetiication was sucosssihil | Progummed Gecces ity [[40400

Figure 174. Receive Data Tab

Observation Rx Signal Chain

The Obs Rx tab opens a window as shown in Figure 175. The upper plot displays the FFT of the received input data and the lower plot
shows its time domain waveform. When multiple ORx inputs are enabled, the user can select the desired data to be displayed in the
Spectrum plot using the checkboxes below the plot. In the Time Domain plot, the user can select Obs1, Obs2, Obs3, Obs4, or any
combination of the input channels, with I and/or Q data displayed.

Once the Obs Rx tab is open, the user can enter the RF LO frequencies for LO1, LO2, and Aux LO PLLs, select which LO is used by
ObsRx1 and ObsRx2, select which LO is used by ObsRx3 and ObsRx4, select the Obs Rx Trigger type, enter the sample time for the data,
and select gain levels and QEC for each channel. Pressing the play symbols enables the selected receivers and displays their waveform

data.
Note that only Obs Rx1 is enabled for use at this stage in product development. All four channels are available in future software

revisions.

Rev. PrA | Page 263 of 267

UG-1727

= -y
B RadioVerse-

[r—rT

limn [Mamain

- ol

Q) Db Fixd 44
i | A i =l r ; F v . " "
e e
i . o e 9 ot) ot v IS
- - . . —_— ~
[RRPS—— - i ORRE T - Systers Files veicatn was sucomssful | programmed fvccrsoieny I [10405 5

Figure 175. Obs Rx Data Tab

SCRIPTING

The Iron Python tab allows the user to use IronPython language to write a unique sequence of events and then execute them using the
evaluation system. Scripts generated using this tab can be loaded, modified if needed, and run on the evaluation system. Figure 176 shows
the Iron Python tab after executing the File > New script function. The top part of the window contains IronPython commands while the
bottom part of the window displays the script output. Scripts are run by selecting Build > Run. Scripts that provide useful functions that
the user may want to use in the future can be saved by selecting File > Save and entering the path and file name for saving the script.

After the user configures the part to the desired profile, a script can be generated with all API initialization calls in the form of
IronPython functions. Selecting Tools > Create Script > Python accomplishes this task. This generates a script with the initialization
sequence and open a Dialogue box to save this file. Basic script with no initializaion sequence can be generated by selecting File > New

option.
] 0 [B Radioverse

1

2

3

4

5

© o

7 2

5

£l

18 #Isoort Reference to the DLL

11 import System

12 et clr

13 dmport time

14 from Systes dmport Array

15 clr.addfeferenceToFileAndPath("C:'\Program Files (x86)\\inalog Devices\\s0AvS0l5s Transceiver Evaluation Software_x86_FULL\\adrvirx_dll.dl1%)

16 from a6ry9010 dll isport AdiEvaluationsystem

17 from adrv90l@ dll isport Types

18 from adry9e10_dll import Ad9SZETypes

19

20 Edef spiReadiaddress):

21 data = adryS018.Hal.SpiByteRsad{sddress, 0}

2 print “SPI Fead 4cdress ° + hex{address) + “i " + hex(data[:]}

23

24 Sdef spikrite(adcress, data):

RST adrvd910.Hal SpiBytesrite{address, data)

26 print "SPT nrite add + hex{address) + " ° & hex{data)

27 L

25 strecte an Instance of the
e
R

trm Fies wnrfication s uccwssiul | ragyammed Tacerssety . [120008 &

o Commecd TRIGECT - QRG] - e
Figure 176. Iron Python Scripting Window

Rev. PrA | Page 264 of 267

UG-1721

IronPython Script Example
The following example sets the RF LO frequency of LO1 and LO2 and reads back the configured values.

HHHHHHH
#GUI Version: 0.1.0.19

#DLL Version: 0.1.0.11

#Cmd Server Version: 0.1.0.11

#FPGA Version: 0xC900000F

#Arm Version: 0.1.0.5(ADI_ADRV9025_ ARMBUILD_TESTOBJ)

#StreamVersion: 0.0.0.28

HHHHH

#Import Reference to the DLL
import System

import clr

import time

from System import Array

clr_AddReferenceToFileAndPath(*'C:\\Program Files (x86)\\Analog Devices\\ADRV9025 Transceiver
Evaluation Software_x86_ FULL\\adrvtrx_dil.dlI"")

from adrv9025_dll import AdiEvaluationSystem
from adrvo025_dll import Types
from adrvo025_dll import Ad9528Types

#Create an Instance of the Class
Link = AdiEvaluationSystem. Instance

if (Link.IsConnected):
fpga9025 = Link.FpgaGet()
adrv9025 = Link.ADRV9025Get(1)

print "Setting PLL LO1 and LO2"

adrv9025.RadioCtrl _PlIFrequencySet(Types.adi_adrv9025_PIlIName_e_ADI_ADRV9025 LO1 PLL,
3500000000)

adrv9025.RadioCtrl_PlIFrequencySet(Types.adi_adrv9025_PIIName_e.ADI_ADRV9025 LO2 PLL,
3550000000)

print ""Readback PLL"
lol = adrv9025.RadioCtrl.PlIFrequencyGet(Types.adi_adrv9025 PlIName_e.ADI_ADRV9025 LO1 PLL,

0)

print "LO1 set to :" + str(lol[1])

102 = adrv9025._RadioCtrl.PlIFrequencyGet(Types.adi_adrv9025 PlIName_e.ADI_ADRV9025 L02_PLL,
0)

print "LO2 set to :" + str(1o2[1])
else:

print "Not Connected"

print "Finished Setting RF PLL"

Rev. PrA | Page 265 of 267

UG-1727

s = ¥ Radio\erse:

ADT_ARL8_L0L

22770177

ot o [T - RSSR | NB - [+ =t

Figure 177.
When using the Iron Python window, the user can execute any API command that is available in the loaded software build.

C CODE GENERATION

It is possible to generate C initialization structure from the GUI. To generate this code, select Tools > Create Script > Init c files.

[save Init Struct File e
o
&3 ()=/1 > Computer ¥ DRIEC(C) b madura «[#3 | Search maatura I3
Organize « Mew folder Bz = 9
& OneCrive * Name Date modified Type
“ pibraries Na items match your search,
- Documents
4. Music L
5. Pictures
!. Videos
A Computer
<¥ DRIVE_C () - i '
File name: initdata.c -
Save as type: [All Other C Formar {*.c) -
I— R
' Hide Folders Save Cancel 2
§
Figure 178.

On selecting this option, GUI open a dialogue box for selecting a location and file name to store this code. preferred file name initdata.c.
You can choose to store resource files at the same location or another location by selecting Yes or No on the prompt.

Information 3G

ﬂ Init Files Sawved Successfully, do you want to copy the required
resaurce files to the same location?

22770-179

Figure 179.

Rev. PrA | Page 266 of 267

UG-1721

To use this code, follow these steps:

1. Copy the c_src folder from Adi.ADRV9025.Api\public\src to the location /home/analog/adrv9025_c_example/ on platform.
(create directory adrv9025_c_example if not present).

2. Copy the generated resources folder to the platform at the same location /home/analog/adrv9025_c_example/.

Copy the generated files, initdata.h, initdata.c, and main.c to /home/analog/adrv9025_c_example/c_src/app/example/.

Go the the example directory using the terminal and run following command command to enter the directory (see Figure 180).

»

* [:locument:ation: https://help.ubuntu.com/
Last login: Thu Oct 18 16: 5 2018 from 192.168.1.1

root@analog:~# cd /home/an: fadrvae25_c_e» /c_src/app/example/li

22770-180

Figure 180.

5. Run Comand make at this location. This compiles the code. If no errors, this generates an executable with name main in
/home/analog/adrv9025_c_example/c_src/app/example/.
Jocumentation:

st login: Thu Oct 18 16:
oot@analog:~# cd

oot@analog: /homes/analo

22770-181

Figure 181.

6. Run command ./main in the same folder to run the initialization sequence.

I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).

A EsDCaution

\ ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection
‘h circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third
parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their
respective owners. Information contained within this document is subject to change without notice. Software or hardware provided by Analog Devices may not be disassembled, decompiled or reverse
engineered. Analog Devices'standard terms and conditions for products purchased from Analog Devices can be found at: http://www.analog.com/en/content/analog_devices_terms_and_conditions/fca.html.

©2019 Analog Devices, Inc. All rights reserved. Trademarks and ANALOG
registered trademarks are the property of their respective owners.

UG22770-0-11/19(PrA) DEVICES

Rev. PrA | Page 267 of 267

www.analog.com

https://www.analog.com/?doc=ADRV9026-system-development-user-guide-UG-1727.pdf

	SCOPE
	TABLE OF CONTENTS
	GENERAL OVERVIEW
	SYSTEM OVERVIEW
	SYSTEM ARCHITECTURE DESCRIPTION
	SOFTWARE ARCHITECTURE
	API FOLDER STRUCTURE
	Devices Folder (/c_src/devices)
	Platforms Folder (/c_src/platforms)
	API doxygen (adrv9025.chm) File (/c_src/doc)

	PRIVATE vs. PUBLIC API FUNCTIONS
	HARDWARE ABSTRACTION LAYER
	Hardware Functions
	Logging Functions
	Multiple Device Support
	devHalInfo

	SOFTWARE INTEGRATION
	SOFTWARE INTEGRATION PROCESS OVERVIEW
	SOFTWARE PACKAGE FOLDER STRUCTURE OVERVIEW
	API SOFTWARE ARCHITECTURE
	IMPLEMENTING HARDWARE ABSTRACTION INTERFACE
	DEVELOPING THE APPLICATION
	Include Files
	API Error Handling and Debug
	API Recovery Action: ADI_COMMON_ACT_NO_ACTION
	API Recovery Action: ADI_COMMON_ACT_WARN_RERUN_FEATURE
	API Recovery Action: ADI_COMMON_ACT_WARN_CHECK_INTERFACE
	Issue: Logging Interface When the Log File Cannot Be Opened Or Written to
	Issue: Baseband Processor GPIO Failed to Operate Correctly, but the API Circumvented the Error by Using the SPI port or Other Control Mechanism
	Issue: adi_common Returns an Error Reporting that the Timer Is Not Working as Expected
	Issue: adi_common layer reports a HAL error while attempting to control the baseband processor GPIO pins

	API Recovery Action: ADI_COMMON_ACT_ERR_CHECK_PARAM
	API Recovery Action: ADI_COMMON_ACT_ERR_CHECK_DEVICE
	API Recovery Action: ADI_COMMON_ACT_ERR_RESET_INTERFACE
	API Recovery Action: ADI_COMMON_ACT_ERR_RESET_FEATURE
	API Recovery Action: ADI_COMMON_ACT_ERR_RESET_MODULE
	API Recovery Action: ADI_COMMON_ACT_ERR_RESET_DEVICE
	Restrictions
	Multiple Thread and Multiple Transceiver Application Considerations
	Delays, Waits and Sleeps

	SERIAL PERIPHERAL INTERFACE (SPI)
	SPI BUS SIGNALS
	SCLK
	SDIO and SDO

	SPI DATA TRANSFER PROTOCOL
	Phase 1 Instruction Format

	SPI CONFIGURATION USING API FUNCTION
	Single-Byte Data Transfer
	Multiple Byte Data Transfer (SPI Streaming)

	TIMING DIAGRAMS

	SYSTEM INITIALIZATION
	INITIALIZATION SEQUENCE

	SERIALIZER/DESERIALIZER (SERDES) INTERFACE
	JESD204 STANDARD
	DIFFERENCES BETWEEN JESD204B AND JESD204C
	CLOCK DISTRIBUTION
	RECEIVER (ADC) DATAPATH
	Supported Framer Link Parameters
	Serializer Configuration
	Framer
	Other Useful Framer IP Features
	PRBS Generator
	Pattern Generator

	API Software Integration
	JESD204B/JESD204C Framer API Data Structures
	adi_adrv9025_FrmCfg_t

	JESD204B/JESD204C Framer Enumerated Types
	adi_adrv9025_FramerDataSource
	adi_adrv9025_FramerDataInjectPoint
	adi_adrv9025_FramerSel

	API Functions
	adi_adrv9025_FramerSysrefCtrlSet(…)
	adi_adrv9025_FramerStatusGet(…)
	adi_adrv9025_FramerTestDataSet(…)
	adi_adrv9025_FramerTestDataInjectError (…)
	adi_adrv9025_FramerLinkStateSet (…)

	TRANSMITTER (DAC) DATAPATH
	SUPPORTED DEFRAMER LINK PARAMETERS
	Deserializer Configuration
	Deframer
	Other Useful Deframer IP Features
	PRBS Checker

	API Software Configuration
	JESD204B/JESD204C Deframer API Data Structures
	adi_adrv9025_DfrmCfg_t
	adi_adrv9025_ DataInterfaceCfg _t

	JESD204B/JESD204C Deframer Enumerated Types
	adi_adrv9025_ DeframerSel
	adi_adrv9025_ DeframerPrbsOrder
	adi_adrv9025_DeframerPrbsCheckLoc

	API Functions
	adi_adrv9025_DeframerSysrefCtrlSet(…)
	adi_adrv9025_DfrmLinkStateSet (…)
	adi_adrv9025_DeframerStatusGet(…)
	Return Values
	adi_adrv9025_DfrmPrbsCheckerStateSet(…)
	Return Values
	adi_adrv9025_DfrmPrbsCountReset(…)
	Return Values
	adi_adrv9025_DfrmPrbsErrCountGet(…)

	API SOFTWARE INTEGRATION
	JESD204B/JESD204C API Data Structures
	adi_adrv9025_ DataInterfaceCfg _t

	IMPLEMENTATION RECOMMENDATIONS
	LINK INITIALIZATION AND DEBUGGING
	JESD204B
	JESD204C

	FIRST TIME SYSTEM BRING UP—CHECKING LINK INTEGRITY
	SAMPLE IRON PYTHON CODE FOR PRBS TESTING
	PRBS ERRORS
	SPO (STATIC PHASE OFFSET) TEST TO VERIFY EYE WIDTH
	SPO Test Example Python Script

	CHECKING JESD204C LINK STATUS
	SELECTING THE OPTIMAL LMFC/LEMC OFFSET FOR A DEFRAMER
	Deterministic latency in JESD 204B mode
	Deterministic Latency in JESD204C Mode
	Programming the LMFC Offset for a Deframer
	Setting the LMFC/LEMC Offset in the Profile File
	Setting the LMFC/LEMC Offset in the adi_adrv9025_DfrmCfg Data Structure
	Setting the LMFC/LEMC Offset Through SPI Registers Controls
	Reading Back the Buffer Depths for Each Deframer Lanes

	Buffer Protection
	Checking if the Buffer Protection Is Active

	Disabling the Automatic Buffer Protection
	Selecting the optimal LMFC/LEMC offset for a system
	Selecting the Optimal LMFC Offset for a System in JESD204B Mode with Buffer Protection Enabled
	Selecting the Optimal LMFC Offset for a System in a JESD 204B Mode with Buffer Protection Disabled
	Selecting the Optimal LEMC Offset for a System in JESD 204C Mode When E ≤ 2 with Buffer Protection Enabled
	Selecting the Optimal LEMC Offset for a System in JESD 204C Mode When E ≤ 2 with Buffer Protection Disabled
	Selecting the Optimal LEMC Offset for a System in JESD204C Mode When E > 2

	SYNTHESIZER CONFIGURATION
	OVERVIEW
	CONNECTIONS FOR EXTERNAL REFERENCE CLOCK (DEVCLK)
	EXTERNAL REFERENCE CLOCK (DEVCLK) REQUIREMENTS
	CLOCK SYNTHESIZER
	RF SYNTHESIZER
	AUXILIARY SYNTHESIZER
	SETTING THE LO FREQUENCIES
	API Functions
	adi_adrv9025_PllFrequencySet(…)
	adi_adrv9025_PllFrequencyGet(…)
	adi_adrv9025_PllFrequencySet_v2(…)
	adi_adrv9025_PllLoopFilterSet(…)
	adi_adrv9025_PllLoopFilterGet(…)

	EXTERNAL LO
	EXT LO IN
	EXT LO OUT

	LOCK STATUS
	API Functions
	Adi_adrv9025_PllStatusGet(…)

	RF PLL PHASE SYNCHRONIZATION
	System Level Considerations

	ARM PROCESSOR AND DEVICE CALIBRATIONS
	ARM STATE MACHINE OVERVIEW
	SYSTEM INITIALIZATION
	PRE MCS INITIALIZATION
	POST MCS INITIALIZATION
	DEVICE CALIBRATIONS
	INITIAL CALIBRATIONS
	SYSTEM CONSIDERATIONS FOR INITIAL CALIBRATIONS
	Rx QEC Initial Calibration
	ORx QEC Initial Calibration
	Rx/ORx TIA Initial Calibration
	Internal Tx LO Leakage and Tx QEC Initial Calibrations
	External Tx LO Leakage Initial Calibration
	Rx Gain Delay Initial Calibration
	Rx Gain Phase
	Tx Attenuation Phase Initial Calibration
	Tx Attenuation Delay
	Tx to ORx Feedback
	Note Regarding AUX LO Settings During Initialization Calibrations
	Summary of Initial Calibration Requirements

	TRACKING CALIBRATIONS
	System Considerations for Tracking Calibrations
	Rx QEC Tracking Calibration
	ORx QEC Tracking Calibration
	Tx QEC Tracking Calibration
	Tx LOL Tracking Calibration

	CALIBRATION GUIDELINES AFTER PLL FREQUENCY CHANGES
	Type 1 Frequency Change Procedure
	Type 2 Frequency Change Procedure
	Initialization Calibrations Durations

	INITIALIZATION CALIBRATIONS TO BE RUN AFTER DEVICE INITIALIZATION
	TRACKING CALIBRATION TIMING

	STREAM PROCESSOR AND SYSTEM CONTROL
	SLICE STREAM PROCESSORS
	Core Stream Processor

	SYSTEM CONTROL
	API Control
	adi_adrv9025_RxTxEnableSet

	Pin Control
	adi_adrv9025_PostMcsInit

	ADC Crossbar Control

	USE CASES
	4 Tx/4 Rx/2 ORx Input Use Case
	4 Tx/4 Rx/4 ORx Input Use Case
	4 Tx/4 Rx/2 ORx input – Single Point of Feedback from 4 Tx to ORx Use Case

	TRANSMITTER OVERVIEW AND PATH CONTROL
	API COMMANDS
	adi_adrv9025_TxAttenCfgSet
	adi_adrv9025_TxAttenCfgGet
	adi_adrv9025_TxAttenSet
	adi_adrv9025_TxAttenGet
	adi_adrv9025_TxAttenModeSet
	Adi_adrv9025_TxTestToneSet

	DAC FULL-SCALE FUNCTION (DAC BOOST)
	ADI_ADRV9025_TXCHANNELCFG API STRUCTURE

	TRANSMITTER POWER AMPLIFIER PROTECTION
	PA PROTECTION DESCRIPTION
	PA Protection Configuration
	adi_adrv9025_TxPaProtectionCfgSet
	PA Protection Runtime Commands
	adi_adrv9025_TxPaProtectionErrFlagsGet

	Clearing PA Protection Error Flags
	adi_adrv9025_TxPaProtectionErrFlagsReset
	Adi_adrv9025_TxPaProtectionStatusGet
	adi_adrv9025_PaPllDfrmEventRampDownEnableSet

	Sticky Control for Tx Attenuation Ramp Down
	adi_adrv9025_TxAttenuationRampUpStickyModeEnable

	Determining the Interrupt Source of an Attenuation Ramp Down
	adi_adrv9025_PaPllDfrmEventGet

	Clearing Tx Attenuation Ramp Down Events
	adi_adrv9025_PaPllDfrmEventClear

	RECEIVER GAIN CONTROL AND GAIN COMPENSATION
	OVERVIEW
	Glossary of Important Terms

	RECEIVER DATA PATH
	GAIN CONTROL MODES
	adi_adrv9025_RxGainCtrlModeSet
	rxChannelMask

	MANUAL GAIN CONTROL (MGC)
	adi_adrv9025_RxGainSet
	adi_adrv9025_RxGainGet
	adi_adrv9025_RxGainPinCtrlCfgSet

	AUTOMATIC GAIN CONTROL
	Peak Detect Mode
	Priorities and Overall Operation
	Power Detect Mode

	AGC CLOCK AND GAIN BLOCK TIMING
	ANALOG PEAK DETECTOR (APD)
	HALF-BAND 2 PEAK DETECTOR
	POWER DETECTOR
	adi_adrv9025_RxDecPowerGet

	API PROGRAMMING
	adi_adrv9025_AgcCfgSet

	AGC HOLDOVER FUNCTION
	RX GAIN MODE SWITCHING USING GPIO
	StreamGpioConfigSet Function

	GAIN CONTROL DATA STRUCTURES
	SAMPLE PYTHON SCRIPT—PEAK DETECT MODE WITH FAST ATTACK
	GAIN COMPENSATION, FLOATING POINT FORMATTER AND SLICER
	Mode 1: No Digital Gain Compensation
	Mode 2: Digital Gain Compensation with Slicer GPIO Outputs
	Mode 3: Digital Gain Compensation with Embedded Slicer Position
	Mode 4: Digital Gain Compensation and Slicer Input
	Mode 5: Digital Gain Compensation and Floating-Point Formatting

	RECEIVER DATA FORMAT DATA STRUCTURE
	adi_adrv9025_RxDataFormatSet

	DIGITAL FILTER CONFIGURATION
	OVERVIEW
	RECEIVER SIGNAL PATH
	Transimpedance Amplifier (TIA)
	Decimation Stages
	DEC5
	Finite Impulse Response 2 (FIR2)
	Finite Impulse Response 1 (FIR1)
	Receive Half Band 3 (RHB3)
	Receive Half Band 2 (RHB2)
	Receive Half Band High Rejection 1 (RHB1 (HR))
	Receive Half Band Low Power 1 (RHB1 (LP))
	Rx Programmable Finite Impulse Response (PFIR)
	IF Conversion
	Complex Low-IF to Zero-IF
	Zero- IF to Real-IF
	Dual Band Mode
	Dual Band Mode (Real IF)
	HB Filter Only Mode

	RECEIVER SIGNAL PATH EXAMPLE
	RECEIVER FILTER API STRUCTURE
	Rx PFIR Settings
	Rx DDC Mode
	Rx NCO Shifter Configuration
	Range Checks (Total of 6 rules)

	TRANSMITTER SIGNAL PATH
	Analog Low Pass Filter (LPF)
	Interpolation By 5 Filter (INT5)
	Transmit Half Band 3 THB3
	Transmit Half Band 2 (THB2)
	Transmit Half Band 1 (THB1)
	Programmable Transmitter Finite Impulse Response (TFIR)

	TX SIGNAL PATH EXAMPLE
	TRANSMITTER FILTER API STRUCTURE
	Tx FIR Settings

	OBSERVATION RECEIVERS SIGNAL PATH
	Transimpedance Amplifier (TIA)
	DEC5
	Finite Impulse Response 1 (FIR1)
	Receive Half Band 3 (RHB3)
	Receive Half Band 2 (RHB2)
	Receive Half Band 1 High Rejection (RHB1 (HR))
	Receive Half Band 1 Low Power (RHB1 (LP))
	PFIR
	IF Conversion

	OBSERVATION RECEIVER SIGNAL PATH EXAMPLE
	OBSERVATION RECEIVER FILTER API STRUCTURE

	GENERAL-PURPOSE INPUT/OUTPUT CONFIGURATION
	DIGITAL GPIO OPERATION
	adi_adrv9025_GpioInputDirSet(…)
	adi_adrv9025_GpioOutputDirSet
	Input GPIO Features
	SPI2

	adi_adrv9025_Spi2CfgSet
	adi_adrv9025_TxAttenSpi2PinCtrlCfgSet
	Pin Based Rx Gain Control

	adi_adrv9025_RxGainPinCtrlCfgSet
	Pin-Based Tx Attenuation Control

	adi_adrv9025_TxAttenPinCtrlCfgSet
	External Slicer Mode
	adi_adrv9025_RxDataFormatSet
	Tx-ORx Mapping
	adi_adrv9025_StreamGpioConfigSet(…)

	Output GPIO Features
	adi_adrv9025_GpioOutSourceCtrlSet
	Manual Pin Toggle (Bitbang) Mode
	adi_adrv9025_GpioOutPinLevelSet
	Slicer Output Mode

	GPIO_ANA OPERATION
	Gain Table External Control Word
	adi_adrv9025_RxGainTableExtCtrlPinsSet

	GENERAL-PURPOSE INTERRUPT
	PLL GPINT SOURCES
	PLL Unlock Event Bits
	CP Overrange Event Bits

	JESD204B/JESD204C GPINT SOURCES
	PA PROTECTION GPINT SOURCES
	ARM GPINT SOURCES
	Arm Has Forced Interrupt
	Arm Watchdog Timer Timeout
	Slew Rate Limiter IRQ
	Arm System Error

	STREAM PROCESSOR SOURCES
	MEMORY ECC ERROR
	SOFTWARE PROCEDURES FOR GPINT
	API COMMANDS FOR GPINT
	adi_adrv9025_GpIntMaskSet
	adi_adrv9025_GpInt1Handler
	adi_adrv9025_GpInt0Handler
	adi_adrv9025_GpIntStatusGet
	adi_adrv9025_GPIntClearStatusRegister

	AUXILIARY CONVERTERS AND TEMPERATURE SENSOR
	AUXILIARY DAC (AUXDAC)
	AuxDAC Configuration
	AuxDAC Ouput Setup

	AUXILIARY ADC (AUXADC)
	AuxADC Configuration
	AuxADC Readback

	TEMPERATURE SENSOR

	SPI2 DESCRIPTION
	SPI2 CONFIGURATION
	TRANSMITTER CONTROL WITH SPI2
	RECEIVER AND OBSERVATION RECEIVER CONTROL WITH SPI2

	RF PORT INTERFACE OVERVIEW
	RF PORT IMPEDANCE DATA
	ADS SETUP USING DAC (DATA ACCESS COMPONENT) AND SEDZ FILE
	TRANSMITTER BIAS AND PORT INTERFACE
	GENERAL RECEIVER PATH INTERFACE
	IMPEDANCE MATCHING NETWORK EXAMPLES
	MATCHING COMPONENT RECOMMENDATIONS

	POWER MANAGEMENT CONSIDERATIONS
	IMPORTANT
	POWER SUPPLY SEQUENCE
	POWER SUPPLY DOMAIN CONNECTIONS
	POWER SUPPLY ARCHITECTURE
	CURRENT CONSUMPTION
	Current Measurements: Use Case 26C-Link Sharing Profile

	PCB LAYOUT CONSIDERATIONS
	OVERVIEW
	PCB MATERIAL AND STACK UP SELECTION
	FANOUT AND TRACE SPACING GUIDELINES
	COMPONENT PLACEMENT AND ROUTING GUIDELINES
	Signals with Highest Routing Priority
	Signals with Second Routing Priority
	Signals with Lowest Routing Priority

	RF AND JESD TRANSMISSION LINE LAYOUT
	RF Routing Guidelines
	Tx Bias Supply Guidelines
	JESD204B/JESD204C Routing Recommendations

	ISOLATION TECHNIQUES
	Isolation Goals
	Isolation Between RF IO Ports
	Isolation Between JESD204B Lines

	POWER MANAGEMENT LAYOUT DESIGN
	Analog Power Ring Approach
	Analog Power Star Connections
	Digital Power Routing
	JESD 1.0 V Supply Inputs
	Interface Supply Input
	Ground Returns
	Input Bypass Component Placement

	ANALOG SIGNAL ROUTING CONSIDERATIONS
	DIGITAL SIGNAL ROUTING CONSIDERATIONS
	UNUSED PIN INSTRUCTIONS

	TRANSCEIVER EVALUATION SOFTWARE (TES) OPERATION
	INITIAL SETUP
	REQUIREMENTS
	HARDWARE SETUP
	HARDWARE OPERATION
	TES INSTALLATION
	STARTING THE TRANSCEIVER EVALUATION SOFTWARE
	Demo Mode

	NORMAL OPERATION
	Configuring the Device
	Profile Options
	Initialization
	InitCals
	Tx Configuration
	Rx Configuration
	ORx Configuration
	JESD Configuration
	Programming the Evaluation System
	Initialization Script

	TRANSMITTER OPERATION
	Transmitter Data Options

	RECEIVER OPERATION
	Rx Signal Chain
	Observation Rx Signal Chain

	SCRIPTING
	IronPython Script Example

	C CODE GENERATION

