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Abstract An Account of Wireless Systems and

The present-day wireless connectivity architecture in a commercial vehicle Technolo g ies for Connected Vehicles

might be suitable up to the standard Level 2 of automated driving. However, Services in a modern vehicle, such as infotainment, navigation, communications,
itis still questionable if it will fulfill the performance requirements for Level 3 and broadcast require wireless access systems. The RF spectrum range for the
and above. In this context, we present future connectivity architecture for systems delivering these services is very broad, from 90 MHz (broadcast radio)
autonomous vehicles. It is based on the remote radio head (RRH) concept to 5.9 GHz (V2X and Wi-Fi). Future systems are targeting frequencies correspond-
using a software-defined radio (SDR). The new architecture can provide two- ing to millimeter waves (for example, 56 mmWave, 24 GHz to 29 GHz). Figure 1
fold gains. On one side, it can fulfill the performance requirements of future illustrates multiple wireless systems that are used to deliver a single service.

use cases, and on the other side, it enhances reliability by facilitating the use
of multiple wireless access for a given service. We provide an example of how
two wireless access technologies can be implemented using this architecture.
The overall approach is to exploit the power of softwarization, which aligns
with the future of in-car computing technologies.

A commercial radio connectivity unit provides the interface between the
application space and the corresponding wireless systems. The following list
highlights the functions and the frequency bands of operation for some of these
wireless systems:

> GNSS/GPS: Provides location services and positioning information. It often

Introduction provides service to other wireless systems for synchronization. There are
The focus of this article is on the wireless connectivity architecture in an ever- multiple regional standards and allocated frequency bands ranging from

. . . . 1176 MHz to 1602 MHz.
evolving connected vehicle. For this purpose, we have selected related services
and provided their brief description. Most of these services have two-way > Cellular 26, 3G, 46, and 56: Used for voice and data services such as
communications and rely on multiple/hybrid wireless communication standards telematics, infotainment, over-the-air updates, and V2X communications.
or multiple frequency bands, mainly to ensure reliability and quality of service. It covers a huge number of cellular bands and channels from 300 MHz to
Designing an RF system for covering multiple bands and multiple wireless 5.9 GHz.
standards for vehicle connectivity is a very challenging task. First, we will discuss »  Wi-Fi: For multiple applications including over-the-air updates, diagnostics,
the challenges of designing vehicle connectivity units using a conventional RF and data download. Different regions have different allocations of bands and
approach. This helps us to develop an understanding that the realization of some channels specified for internal and external use. Most common are the chan-
of these services is suboptimal in many aspects (for example, radio perfor- nels in the 2.4 GHz and 5.8 GHz bands. In Japan, some channels are allocated
mance). Learning from the drawbacks of conventional RF design has led us to in the 5 GHz band.

a new architecture for commercial vehicle radio connectivity units. This new >
architecture is based on the RRH concept. In the article “Enabling 56 and DSRC
V2Xin Autonomous Driving Vehicles,” we introduced a sub-6 GHz, 4-channel

multiband SDR-based transceiver RF IC, the ADRVI026. Here we extend the

discussion from that article with an example that uses the RRH concept and a

single SDR RF IC, from which we can build a dual-band V2X connectivity unit for
56 and DSRC. This unit will not only provide enhanced radio performance, but
it will also enable the implementation of advanced coordination and coopera-
tion algorithms for V2X wireless access.

ITS-65/DSRC: For V2X communications, the 70 MHz spectrum is allocated in
5.9 GHz in most of the regions in the world.

> Radio Broadcast: From 90 MHz to 240 MHz, there are different channels and
bands in different regions. Please note that broadcast systems could also
be covered by a radio connectivity unit, but usually they are implemented
separate from the two-way communication systems.
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Figure 1. Major wireless systems in a vehicle.

Classical Implementation of Complex
RF Systems

Due to all of the wireless systems present in a vehicle, it is evolving like a
smartphone on wheels. However, there is a huge difference between a smart-
phone and vehicle user equipment (UE) when it comes to the implementation
of functionalities. Consider an example of 4G cellular system implementation
architecture in a commercial vehicle. In Figure 2a, a wideband antenna covering
46 bands is put on the outer side of the body of the vehicle, usually on the rooftop.
The antenna is connected to a coaxial transmission line cable that runs through
the body of the vehicle to the control unit hosting the 46 module.

Now, let’s focus on the RF front end (RFFE) in the receiver RF path. After filtering

the bands, the low noise amplifier (LNA)-with a very low noise figure (NF) and
high gain—amplifies the incoming RF signal, including the additional noise intro-
duced by the cable. There could be multiple stages of amplifications, then the
signal is fed to the 46 module for baseband and higher layer processing. After
the 4G protocol stack, the data goes to the application processor. Now, if we do
a simplified RF analysis of this architecture we find out that the overall RF chain
has very poor noise performance. The coaxial cable has higher NF than an LNA,
and the signal loss is proportional to the frequency and the length of the cable.
We know from noise cascade analysis that the NF of the complete RF chain is

overweighted by the NF of the first compaonent in the RF signal chain. Hence,

even an LNA cannot overcome this problem. To save cost and to reduce weight,
normally a lighter cable is selected, which unfortunately adds to the RF problem.
The overall noise performance could be improved by bringing the RF front-end

components closer to the antenna, but still the impact of coaxial cable will be
present in the system.
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Figure 2. Classical architectures for cellular wireless connectivity and other wireless systems.

We skip the details of the transmit RF path where you must do proper amplifica-
tion of the signal before transmission. However, we emphasize the fact that any
transmitting device connected to a cellular network must also get the approval
of the network operator. Hence, proper design is required in both receive and
transmit RF paths.

In Figure 2b, we outline how other wireless systems are normally implemented.
This is to demonstrate how much coaxial cable is used to connect relative

antennas and how much RF signal loss (attenuation in dBM) occurs in each system.
This loss increases rapidly if we have multiple antennas for a single system. In

addition to that, achieving synchronization among the signals on multiple anten-
nas and running them through the coaxial cable is not an easy task. Moreover,
in the case of 56 mmWave frequencies (24 GHz to 29 GHz), the RF signal loss in
the coaxial cable will be higher than the sub-6 GHz frequencies.

Remote Radio Head (RRH) Architecture for
Vehicle Connectivity

The concept of RRH is well established and in use for base station implementa-
tions to overcome the problems caused by the coaxial transmission line cables.
The strategy is to transport the digital signal instead of the RF signal. For this
purpose, the RFFE and the transceiver (RF IC) is moved closer to the antenna.
The RF signal is converted into digital I/Q bits that are transported using a high
speed digital data link. Further processing of digital data is done in the general-
purpose baseband pracessing pool. We propose that similar RF architecture can
be used in the vehicle. Figure 3 depicts this architecture where coaxial cables
are replaced by a high speed link. Moreaver, for the conversion of RF signal
into digital I/Q samples, we propose using an RF IC that transforms RF to bits
and vice versa. These bits are transported between the RF IC and the baseband
processor by the digital link (for example, gigabit Ethernet). Further processing
is done by the application processor. These processors could be hosted by a
radio connectivity unit or by a centralized computing platform. Computational
resources and the trend of centralized computing in a vehicle are increasing at
a great pace,” hence a gradual change toward this architecture is well aligned
with the future computing architecture in vehicles.

Keeping only the RF-to-bits functionality close to the antenna has two-fold gains.
First, only the minimum required transformation to avoid RF signal loss will be done
close to the antenna where space and power is already a problem. Second, the
requirements on the digital high speed link will be relaxed in terms of data rates.
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(b) Implementation of Several Other Wireless Systems
Using a Similar Architecture
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Figure 3. Future connectivity architecture.

RRH and SDR-Based V2X Implementation

We can enhance the benefits of RRH architecture by using a multiband RF IC. The
V2X communications service is a perfect example to exploit this combination.
As mentioned in the article “Enabling 56 and DSRC V2X in Autonomous Driving
Vehicles,” V2X service can use two different wireless access technologies: one is
based on DSRC/ITS-G5 (IEEE 802.Tp), and the other is based on cellular technology
(C-V2X), be it 4G-LTE or 5G. It can use both access types in a coordinated/coopera-
tive manner to guarantee required reliability and safety. A single-chip multiband
V2X system could be designed with the help of the newly introduced RF IC, ADI's
ADRV3026. Figure 4 shows that the ADRV026 could be integrated into the RRH,
which could be placed on the rooftop antenna box. It contains four main transmit
and four main receive channels, each with the possibility of maximally four inde-
pendent digital datapaths to the baseband processor. Using the advanced local
oscillator architecture, the ADRV3026 can transmit and receive simultaneously in
multiple frequency bands below 6 GHz. Using the V2X wireless access manage-
ment (WAM) function, both wireless access types can efficiently share 70 MHz in
the 5.9 GHz band allocated (in most regions of the world) for V2X service.

In line with the future trends, we have assumed that centralized computational
resources are available in the vehicle (see Figure 4). Baseband processing,
modem protocol stacks, and application processing could be implemented using
the centralized platform. The ADRV9026 complies with JESD204B and JESD204C°
protocol for serial data transmission and reception. 0ff-the-shelf cables are
available, which can be used to transport 10 Gbps at up to 1 m. In case more
flexibility and data rates are required, one can use any processing hardware to
convert the JESD-based serial data into any other suitable format—for example,

As shown in Figure 4, we have allocated two transmit and two receive channels
each for DSRC V2X and 56 cellular. The 56 can use the two channels for full

56 communications including the Cellular V2X service. With two channels, a
2 x 2 MIMO scenario could also be implemented. Unlike current architectures,
it requires that the modems for each wireless standard are implemented in
the centralized computing platform. The I/Q0 samples of respective wireless
standards are processed by their software modems. We anticipate that such a
change could be challenging to adopt for current generations. However, with the
advent of softwarization and virtualization, we see it coming.®

Conclusion

We have highlighted the classical vehicle connectivity architecture where each
wireless system is implemented individually by installing antennas, cables, RF
processing hardware, and software processing hardware. Based on the qualita-
tive analysis, the negative impacts on service performance due to the classical
architecture are presented. With the help of the RRH concept and dual-band RF
IC, a new architecture approach for vehicle connectivity was proposed. We see
multifold benefits for this architecture, such as:

> Reduction in the use of coaxial cables, thus enhancing RF performance and
radio link reliability.

Compliance with the software architecture of future vehicles.

The ability to manage some new features through software updates.
Multiple standards could be realized with a single RF IC.

Enhanced control of quality of service guarantee.

vV v v v VY

Better coordination possibility for services applying multiple wireless
standards.

> Ready to adopt new wireless standard implementations in future vehicles
such as 56 mmWave.

Our approach provides higher performance (which is required by automated
driving scenarios) and the possibility of multiple wireless systems being imple-
mented with a common hardware. We have shown that V2X service, which is
essential for automated driving use cases such as platooning and teleoperated
driving—bath requiring high reliability in wireless connectivity—could exploit the
benefits of this architecture.
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Figure 4. Advanced 56 and V2X connectivity using SDR-based RRH architecture.
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