LENESAS Application Note

RL78 Family
TOUCH Module Software Integration System

Introduction
This application note describes the RL78 Family TOUCH Module.

Target Device
RL78/G23 Group
RL78/G22 Group
RL78/G16 Group

Related Documents
RL78 Family CTSU Module Software Integration System (R11AN0484)

R11AN0485EJ0140 Rev.1.40 Page 1 of 33

RL78 Family TOUCH Module Software Integration System

Contents
S O 1YY 1= PRSP 3
1.1 FUNCHIONS <.ttt e e oo ettt et e e e e e s bbb e e et e e e e e s b e neeeeaeeeeaaaas 3
1.1.1 QE for Capacitive TOUCH USAGEccooiiiiiiiiiiiiie ittt e e s saneee e 3
1.1.2 Measurements and Data ProCessing.........couvvviiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee ettt 3
1.1.3 Button Touch Determinationoooiiiiii e 3
1.1.4 Touch Position Detection of SIAer/WHeEelcoooiuiiiiiiiiii e 5
1.1.5 Tuning the Touch Determination Threshold ... 5
1.1.6 Automatic judgment measurement USINg SMS............ccviiiiiii i 6
1.2 Y e IO Y= =SSR 8
A N e T [) o] o 4 =Y (o o TSR 9
2.1 Hardware ReQUIrEMENTS...........ooiiiiiiieeee ettt 9
2.2 Software REQUITEMENESuuiiiii it e e e e e e e e e e e e e st ee e e e e e e e s e s asnraeeaaaeeaaans 9
2.3 Y0 o %o g (=To J WoTo) o1 g =11 o F- U PPPPUPURR 9
2.4 RESIIICHIONS ...ttt e e e e e e et e e e e e e e e s bbb e e e e e e e e e s anbrneeeeaaaeeaaans 9
2.5 [[ST= Lo (=Tl 1 PRSPPI 10
2.6 I TY P e 10
2.7 ComPpilation SEtHNGS ...t e e e e e e e e e e e e e e e e e aaaaaan 11
2.8 L0700 [T = S SRR 12
2.9 ArQUMENTES .. 12
210 REMUM VAIUBS ...ttt e e ettt e e e e e e e e s a b et e e e e e e e e nnnbeeeaaeeeean 13
R T N o I U o T o] LU PPPRPPPRN 15
3.1 RIM_TOUGCH _OPEN......ceeiiiitiiie ettt e sttt e e et e e e st e e e staeeeessteeaeaseeeaeabaeaeeaaseeeeesanseeaesanseeeeanns 15
3.2 RM_TOUGCH _SCANSAIeeeiiiiiiiieiee et e e e e e e et e e e e e e e s narreeeaaaeeas 17
3.3 RM_TOUCH _DataGetc.eeeiieiiiiie ettt stete e sttt e e e sttt e e e st eaesbaeaeesnteeeesnnteeeesanseeeeann 18
3.4 RM_TOUCH_CallDACKSELccctiiieeiiiiie ettt ettt e sttee e st e e e ettt e e e sbae e e e sneeeeesnsaeeeeeanseeeeann 19
3.5 RM_TOUGCH _SMSSEL....ciiiiiiiie ittt ettt e st e e st e e e sette e e e setteeeestaeaeesnsteeeesanteeeeaanseeeeanns 20
3.6 RIM_TOUGCH _CIOSEeiiieitiiieeitiiee ettt e ettt e e e ettt e e sttt e e e sttt e e e sateeeeessteeeessaeaeeaaseeeaesanseeasaanseeeeanns 23
3.7 Y I O 1010 o IS Tor=T 01 (o] o RSP ORRRR 24
3.8 RM_TOUCH_SensitivityRatioGetcoooi i 25
3.9 RM_TOUCH_ThresholdAJUST ...ttt e et e e e snae e e e snaeeeeanes 28
3.10 RM_TOUCH_DriftCONIIONeiiiiiiiiiie it eee sttt e sttt e e st e e s ense e e e s snsaeeessnneeeeeannseeens 31
R11AN0485EJ0140 Rev.1.40 Page 2 of 33

Jun.14.23

RENESAS

RL78 Family TOUCH Module Software Integration System

1. Overview

The TOUCH Module is middleware that uses the CTSU module to provide capacitive touch detection. The
TOUCH module assumes access from the user application is possible.

1.1 Functions
The TOUCH module supports the following functions.

1.1.1 QE for Capacitive Touch Usage

Similar to the CTSU module, this module provides various capacitive touch detections based on
configuration settings generated by QE for Capacitive Touch (referred to as QE)

As a part of the configuration settings, the touch interface configuration displays configuration information
for the CTSU link information and buttons, sliders, and wheels. A multiple touch interface configuration is
necessary when both self and mutual capacitance buttons are used in the same product or when using the
active shield function.

This module also supports the QE monitor function. The monitor determines whether to use debugger or
serial communications, determines the type of the information from QE and sends only the necessary
information.

This module also supports the QE monitor function. The monitor determines whether to use debugger or
serial communications, determines the type of the information from QE and sends only the necessary
information.

1.1.2 Measurements and Data Processing

The module determines whether the button has been touched based on the change in capacitance and
detects the position of the slider or wheel. This requires continued periodic measurements of capacitance.
When developing your application, make sure to periodically call R_TOUCH_ScanStart() and
R_TOUCH_DataGet(). For more details, refer to the sample application.

1.1.3 Button Touch Determination
(a) Creating reference value and threshold

A touch button is not a mechanical button in which the ON/OF state is switched by hardware. The ON/OFF
state is determined via software.

First, a reference value is created based on measurement results in the non-touch state. The initial
reference value is the first measured value. The threshold is then determined with an arbitrary offset. If a
measured value exceeds the threshold, the button is determined to be in the ON state, if it does not exceed
the threshold, it is in the OFF state.

Processing for self-capacitance and mutual capacitance are basically the same. However, because the
amount of capacitance decreases when a mutual capacitance button is touched, the user needs to set the
threshold based on decreasing measured values to determine the ON/OFF state.

You can set the threshold for each button separately in the configuration settings (threshold in
touch_button_cfg). The following functions are also included to deal with issues such as chattering
suppression and changes in the external environment which affect actual touch recognition.

(b) Positive Noise Filter/Negative Noise Filter

As a chattering countermeasure, you can confirm the ON/OFF state after a set number of consecutive ON
or OFF determinations.

In the configuration settings (on_freq and off _freq in touch_cfg_t) set the number of consecutive ON or
OFF states. You can do this for all buttons in the touch interface configuration. Be aware that, although this is

R11AN0485EJ0140 Rev.1.40 Page 3 of 33

RL78 Family TOUCH Module Software Integration System

an effective solution to improving chattering, the greater the number of consecutive states, the slower the
response to actual touch.

(c) Hysteresis

This is another chattering countermeasure. Offset the constant to the threshold after the state goes to ON,
and prevent chattering by using hysteresis as the OFF-to-ON and ON-to-OFF threshold.

You can set the hysteresis value for each button in the configuration settings (hysteresis in
touch_button_cfg_t). The larger the hysteresis, the more effective the countermeasure is in suppressing
chattering. However, keep in mind that this will make it more difficult to return the state from ON-to-OFF of
OFF-to-ON.

(d) Chattering suppression type (Build option)

This build option is a function to supplement the above functions (Positive Noise Filter/Negative Noise
Filter and Hysteresis) for performing touch judgment.

This build option changes the processing method for Counter of exceed threshold to TypeA or TypeB.
TypeA of chattering suppression : Counter of exceed threshold is hold within hysteresis range.

TypeB of chattering suppression : Counter of exceed threshold is reset within hysteresis range.

TypeA TypeB

No reset counter Reset counter
counter++ counter++

counter = counter+1 ;] counter = counter+1

thr

thr

counter = counter counter =0 (Reset)

thr - hys thr - hys

counter =0 (Reset) counter = 0 (Reset)

counter {Counter of exceed threshold) counter (Counter of exceed threshold)
I Touch ON judgement — Touch ON judgement

Figure 1 Example of chattering suppression operation

(e) Drift Correction Process

As a countermeasure for changes in the external environment, the drift correction process refreshes the
reference value.

After averaging the measured value in the OFF state over a set period, if the button is in the touch OFF
state after a set period, the reference value is refreshed. The drift correction is only executed in the OFF
state and is cleared when touch ON is determined.

Set the period in the configuration settings (drift_freq in touch_cfg_t). You can do this for all buttons in the
touch interface configuration. This allows you to adjust the ability to determine the touch state despite
changes in the external environment.

Figure 2 shows an example of the drift correction process.

R11AN0485EJ0140 Rev.1.40 Page 4 of 33

RL78 Family TOUCH Module Software Integration System

Measurement value

1

Count Value

Threshold value Threshold \

Reference value

Touch OFF Touch ON Touch OFF ‘

Time —

Figure 2 Button Touch Determination

(f) Press and hold cancel

Strong noise or other sudden environment changes can disable the drift correction process, preventing
return from the ON state. The press and hold cancel function implements the drift correction process and
returns the button from the ON state by forcibly turning the state to OFF after a certain number of
consecutive ON state periods.

Set the number of consecutive ON periods required for the press and hold cancel function to return the
button to the OFF state in the configuration settings (cancel_freq in touch_cfg_t). You can do this for all
buttons in the touch interface configuration.

1.1.4 Touch Position Detection of Slider/Wheel

Configure a slider with multiple terminals to be measured (TS) physically arranged in a straight line.
Configure a wheel with multiple terminals physically arranged in a circle.

The touch position is calculated from the measured values of the TS in the configuration. The calculation
method for sliders and wheels is fundamentally the same.

1. Detect the maximum value (TS_MAX) among the terminals in the configuration.

2. Calculate the difference (d1, d2) between TS_MAX and the terminals on either side. (If the TS_MAX
terminal is at one end of the slider, use the values of the two terminals to the right or left, accordingly.)

3. If the total of d1 and d2 exceeds the threshold, position calculation is initiated. If the total amount does
not exceed the threshold, the position calculation process is ended.

4. With TS_MAX as the middle position, the ratio of d1 to d2 is used to calculate the position. The slider
has a range of 1 to 100, and the while has a range of 1 to 360.

1.1.5 Tuning the Touch Determination Threshold

When QE tuning, a measurement is performed with a finger touching the button and the tuned parameters
are output in the configuration file. The setting value of the threshold is 60% of the touch sensitivity between
touch and non-touch state, and the setting value of the hysteresis coefficient is 5% of the threshold.

This module provides the functions for dynamic adjusting of these threshold and hysteresis coefficient.
They are two functions as below.
1. Adjusting the threshold and hysteresis coefficient to an arbitrary ratio.
Use RM_TOUCH_ThresholdAdjust ()
[Example of use]

Wanting to change the threshold to 70% of the touch sensitivity against EMC noise.

R11AN0485EJ0140 Rev.1.40 Page 5 of 33

RL78 Family TOUCH Module Software Integration System

Touch sensitivity

2500
Touch determination Ratio
threshold 1750 70 (Specified by user)
1500 60 (Set by QE) >

Figure 3 Example of changing the threshold ratio

2. Adjusting the threshold and hysteresis coefficient according to the current touch sensitivity

Use RM_TOUCH_SensitivityRatioGet (), RM_TOUCH_ThresholdAdjust (), and
RM_TOUCH_DriftControl().

[Example of use]

When changing the kind of the overlay panel, the touch sensitivity differs from the one QE tuned. Wanting to
use the software as it is without re-tuning. If you use a thicker overlay than that at QE tuning, the touch
sensitivity decreases, and a touch may not be determined because of the same touch determination
threshold. This function adjusts the touch determination threshold based on the ratio of the touch sensitivity
after changing the overlay to the touch sensitivity at the QE tuning.

Touch sensitivity When the touch sensitivity after
2500 changing overlay is 40% of that at
) QE tuning, the adjusted touch
Touch determin determination threshold is 600.
threshold Touch
ouc
1500 ‘ determination
|:> I:> threshold
1000
Touch Incapable of 600
sensitiv touch
determination
QE tuning After After
changing adjustment
overlay

Figure 4 Example of threshold adjustment in the change of touch change amount

This is an example of the application for adjustment using data flash without re-tuning or software rewriting.
Enable UART communication to PC and ‘tuning mode’. In tuning mode, the MCU transmits the ratio of the
touch sensitivity in the touch state to the PC in real time. A user sends a command to decide the ratio while
monitoring on the PC. The MCU stores the received ratio in the data flash. Make sure that the ratio stored in
the data flash is read at the software activation, and the touch determination threshold is adjusted based on
this stored value.

1.1.6 Automatic judgment measurement using SMS
This function uses SMS to operate from measurement to touch judgment without CPU operation.

R11AN0485EJ0140 Rev.1.40 Page 6 of 33

RL78 Family TOUCH Module Software Integration System

For the touch interface to use this function, call RM_TOUCH_SmsSet () and then start the measurement
with RM_TOUCH_ScanStart (). Since the CPU operates only in STOP mode and SNOOZE mode until the
touch is judged to be ON, measurement can be performed with low power consumption. In
RM_TOUCH_SmsSet (), the positive noise filter is set to on_freq value and the negative noise filter is set to
0. Therefore In application, call RM_TOUCH_DataGet () to get the button judgment result as in normal
operation.

See Chapter 3.5 and the RL78 Family CTSU Module (R11AN0484) for more information.

R11AN0485EJ0140 Rev.1.40 Page 7 of 33

RL78 Family

TOUCH Module Software Integration System

1.2 API Overview

The TOUCH module includes the following functions.

Function

Description

RM_TOUCH_Open()

Initializes the specified touch interface configuration.

RM_TOUCH_StartScan()

Starts measurement of specified touch interface configuration.

RM_TOUCH_DataGet()

Gets measured values of specified touch interface configuration.

RM_TOUCH_CallbackSet()

Sets callback function of specified touch interface configuration.

RM_TOUCH_SmsSet()

Makes settings for automatic judgment measurement using SMS
of the specified touch interface configuration.

RM_TOUCH_Close()

Closes specified touch interface configuration.

RM_TOUCH_ScanStop()

Stops measurement of specified touch interface configuration.

RM_TOUCH_GetSensitivityRatio()

Calculates the ratio of the current touch sensitivity to that at QE
settings.

RM_TOUCH_AdjustThresholdRatio()

Changes the ratio of touch determination threshold and the
hysteresis value to the touch sensitivity and adjusts the touch
determination threshold and the hysteresis value based on the
ratio of the current touch sensitivity.

RM_TOUCH_DriftControl()

Changes drift correction settings.

R11ANO485EJ0140 Rev.1.40
Jun.14.23

Page 8 of 33
RENESAS

RL78 Family TOUCH Module Software Integration System

2. API Information

Operations of this module has been confirmed under the following conditions.

2.1 Hardware Requirements

The MCU used in the development must support the following function:

® CTSU
® CTSuU2L

2.2 Software Requirements

This driver depends on the following modules:

® Board Support Package (r_bsp) v1.50 or newer

® CTSU module (r_ctsu) v1.40

This driver assumes use of the capacitive touch sensor development support tool:

® QE for Capacitive Touch V3.3.0 or newer

2.3 Supported Toolchains

Module operations have been confirmed on the following toolchains.

® Renesas CC-RL Toolchain v1.12.00

® |AR Embedded Workbench for Renesas RL78 v4.21.3

® |LVMforRL78 10.0.0.202209

24 Restrictions

The module code is non-reentrant and protects simultaneous calls for multiple functions.

When using the LLVM compiler in the RL78/G16 group, it is necessary to check the following CPU Options

when creating a project. After the project is created, it can be set from the project properties.

8 Properties for lvm_Project o X ‘
pe filte Settings M
Resor
Configuration: HardwareDebug [Active | ¥ Manage Configurations.
o ® Tool Settings | ® Toolchain ¥ Device| # Build Steps Build Artifact| s Binary Parsers €@ Error Parsers
.
2 Seftings —
Tool Chain Editor Bcr CPUType S2-care -
= .
C/C++ Ge S0 : |ﬂ Disable multiplication cade generation (-mdisable-mda) |
3 Debu
Project Na 5 W N [IMake the double data type be 64 bits in size (-mb4bit-doubles)
Project References i (] Make variables and painters without explicit address space qualifiers far (-mfar-rom)
Refactoring History ve \:!blaw Generator '
) Back Next Finish Cancel

RL78 Family TOUCH Module Software Integration System

2.5 Header File

All interfaces definitions to be called and used in the API are defined in “rm_touch_api.h”.

Select 'rm_touch_config.h” as the configuration option in each build.

2.6 Integer Type

This driver uses ANSI C99. The types are defined in stdint.h.

R11AN0485EJ0140 Rev.1.40 Page 10 of 33

RL78 Family TOUCH Module Software Integration System

2.7 Compilation Settings

The following table provides the names and setting values for the configuration option settings used the
TOUCH module.

rm_touch_config.h Configuration Options

TOUCH_CFG_PARAM_CHECKING_ENABLE

*Default value:
“BSP_CFG_PARAM_CHECKING_ENABLE”

Selects whether to include the parameter check process in the
code.

Selecting “0” allows the user to omit the parameter check process
from the code to shorten the code size.

“1”: Omit parameter check process from code.

“2”: Include parameter check process in code.
“BSP_CFG_PARAM_CHECKING_ENABLE”: Selection depends on
BSP setting.

TOUCH_CFG_MONITOR_ENABLE

This option is not available for rm_touch_config.h.
The option is defined in the ge_touch_define.h
output by the QE; the default value is “1”.

Select 1 to enable data generation for the QE monitor.

TOUCH_CFG_UART_MONITOR_SUPPORT
*Default value: “0”

This option is used when TOUCH_CFG_MONITOR_ENABLE is
enabled.

Set to “1” to enable QE and serial communications.

Note:

When using the UART module, generate this option with the Smart
Configurator.

TOUCH_CFG_UART_TUNING_SUPPORT

Set the use of UART tuning. 0: Disable, 1: Enable

TOUCH_CFG_UART_NUMBER

Set the UART channel number.

TOUCH_CFG_DETECTION_OPTION
*Default value: “0”

Set the chattering suppression type.

Set “0”, it is set to TypeA. The counter of the number of times the
threshold is exceeded is held within the hysteresis range.

Set “1”, it is set to TypeB. Resets the counter of the number of times
the threshold is exceeded within the hysteresis range.

The following configurations depend on the touch interface configuration and cannot be set using Smart Configurator.
These configurations are set when using QE. In this case, QE_ TOUCH_CONFIGURATION is defined in the project.
Although rm_touch_config.h is invalid, qe_touch_define.h is defined instead.

CTSU_CFG_NUM_BUTTONS

Sets the total number of buttons.

CTSU_CFG_NUM_SLIDERS

Sets the total number of slides.

CTSU_CFG_NUM_WHEELS

Sets the total number of wheels.

R11ANO485EJ0140 Rev.1.40
Jun.14.23

Page 11 of 33

RENESAS

RL78 Family TOUCH Module Software Integration System

2.8 Code Size

ROM (code and constants) and RAM (global data) size are determined according to the configuration
options as described in “section 2.7 Compilation Settings”. Compilation Setting” during a build. The values
shown are reference values when the compile option is the default for the CC-RL C compiler listed in
“section 2.3 Supported Toolchains”. The code size varies according to the C compile version and compile
options.

This is the value when one self-capacity button is set in the default setting of Smart Configurator. It also
includes sample applications generated by the CTSU module and QE for Capacitive Touch.

Depending on the application and the number of buttons, your program may exceed the RAM size. Please
note that the RL78/G16 group has 2KB of RAM.

ROM and RAM Usage

the configuration options with Self-capacitance 1 button

TOUCH_CFG_PARAM_CHECKING_ENABLE 0 ROM: 2194 bytes
TOUCH_CFG_MONITOR_ENABLE 0

TOUCH_CFG_UART_MONITOR_SUPPORT 0 RAM: 89 bytes
TOUCH_CFG_UART_TUNING_SUPPORT 0

ROM and RAM Usage
Size of each mode, amount of increase by adding

Self- +Self- +Wheel +Slider Mutual- +Mutual-

capacitance capacitance capacitance capacitance

button 1 button button 1 button
ROM 2194 bytes + 6 bytes +584 bytes +588 bytes 2305 bytes +6 bytes
RAM 89 bytes +18 bytes +13bytes +15 bytes 91 bytes +20 bytes

2.9 Arguments

The following are the structures and enums used as arguments of the API functions. Many of the
parameters used in the API functions are defined by the enums, which provides a way to check types and
reduce errors.

These structures and enums are defined in rm_touch_api.h along with the prototype declaration.

The following is the control structure for the touch interface configuration. This does not need to be set in
the application. Using QE allows the variables corresponding to the touch interface configuration to be
output by ge_touch_config.c. Make sure to set qe_touch_config.c in the module’s first APl argument.

typedef struct st_touch_instance_ctrl

{

uint32_t open; ///< Whether or not driver is open.
touch_button_info_t binfo; ///< Information of button.
touch_slider_info_t sinfo; ///< Information of slider.
touch_wheel_info_t winfo; ///< Information of wheel.

bool serial_tuning_enable; ///< Serial tuning enabled flag.
touch_cfg_t const * p_touch_cfg; ///< Pointer to initial configurations.

ctsu_instance_t const * p_ctsu_instance; ///< Pointer to CTSU instance.
} touch_instance_ctrl_t;

The following is the configuration setting structure for the touch interface configuration.

Using QE for Capacitive Touch allows the variables and initialization values corresponding to the touch
interface configuration to be output by qe_touch_config.c. Make sure to set qe_touch_config.c in the
second argument of RM_TOUCH_Open().

R11AN0485EJ0140 Rev.1.40 Page 12 of 33

RL78 Family

TOUCH Module Software Integration System

typedef struct st_touch_cfg

{

touch_button_cfg_t const * p_buttons;
touch_slider_cfg_t const * p_sliders;

touch_wheel_cfg_t const * p_wheels;

uint8_t num_buttons;
uint8_t num_s|iders;
uint8_t num_wheels;
uint8_t on_freq:
uint8_t off_freq;
uint16_t drift_freq;
uint16_t cancel_freq;
uint8_t number ;
ctsu_instance_t const * p_ctsu_instance;
void const * p_context;
void const * p_extend;

} touch_cfg_t;

///< Pointer to array of button configuration

///< Pointer to array of slider configuration

///< Pointer to array of wheel configuration.

///< Number of buttons

///< Number of sliders

///< Number of wheels

///< The cumulative number of determinations of ON
///< The cumulative number of determinations of OFF.
///< Base value drift frequency. [0 : no use]

///< Maximum continuous ON. [0 : no usel]

///< CGonfiguration number for QE monitor

///< Pointer to CTSU instance.

///< User defined context passed into callback function

///< Pointer to extended configuration by instance of interface

The following are the enums used for the above listed structures.

/[

Configuration of each button */

typedef struct st_touch_button_cfg

{

uint8_t elem_index; ///< Element number used by this button.
uint16_t threshold; ///< Touch/non-touch judgment threshold
uint16_t hysteresis; ///< Threshold hysteresis for chattering prevention

} touch_button_cfg_t;

/%

Configuration of each slider */

typedef struct st_touch_slider_cfg

{

uint8_t const * p_elem_index; ///< Element number array used by this slider.
uint8_t num_e |lements; ///< Number of elements used by this slider.
uint16_t threshold; ///< Position calculation start threshold value

} touch_slider_cfg_t;

VeSS

Configuration of each wheel */

typedef struct st_touch_wheel_cfg_t

{

uint8_t const * p_elem_index; ///< Element number array used by this wheel
uint8_t num_e lements; ///< Number of elements used by this wheel
uint16_t threshold; ///< Position calculation start threshold value

} touch_wheel_cfg_t;

/*x

Cal Iback function parameter data */

typedef struct st_ctsu_callback_args touch_cal Iback_args_t;/*x CTSU Events for callback function */

2.10

Return Values

The following provides return values for the API functions. The enum is defined in fsp_common_api.h,

along with the API function prototype declaration.

R11ANO485EJ0140 Rev.1.40
Jun.14.23

RENESAS

Page 13 of 33

RL78 Family

TOUCH Module Software Integration System

/*x Common error codes */
typedef enum e_fsp_err
{

FSP_SUCCESS = 0,

FSP_ERR_ASSERTION
FSP_ERR_INVALID_POINTER
FSP_ERR_INVALID_ARGUMENT
FSP_ERR_NOT_OPEN
FSP_ERR_ALREADY_OPEN
configuration
FSP_ERR_INVALID_HW_CONDITION =

oo
=D

4,

21,

/* Start of CTSU Driver specific */

FSP_ERR_CTSU_SCANNING = 6000,
FSP_ERR_CTSU_NOT_GET_DATA = 6001,
FSP_ERR_CTSU_INCOMPLETE_TUNING = 6002,
FSP_ERR_CTSU_DIAG_NOT_YET = 6003,
FSP_ERR_CTSU_DIAG_LDO_OVER_VOLTAGE = 6004,
FSP_ERR_CTSU_DIAG_CCO_HIGH = 6005,
FSP_ERR_CTSU_DIAG_CCO_LOW = 6006,
FSP_ERR_CTSU_DIAG_SSCG = 6007,
FSP_ERR_CTSU_DIAG_DAC = 6008,
FSP_ERR_CTSU_DIAG_OUTPUT_VOLTAGE = 6009
FSP_ERR_CTSU_DIAG_OVER_VOLTAGE = 6010
FSP_ERR_CTSU_DIAG_OVER_CURRENT = 6011,
FSP_ERR_CTSU_DIAG_LOAD_RESISTANCE = 6012,
FSP_ERR_CTSU_DIAG_CURRENT_SOURCE = 6013
FSP_ERR_CTSU_DIAG_SENSCLK_GAIN 6014,
FSP_ERR_CTSU_DIAG_SUCLK_GAIN = 6015,
FSP_ERR_CTSU_DIAG_CLOCK_RECOVERY = 6016,
FSP_ERR_CTSU_DIAG_CFC_GAIN = 6017,

} fsp_err_t;

///< A critical assertion has failed

///< Pointer points to invalid memory location

///< Invalid input parameter

///< Requested channel is not configured or APl not open
///< Requested channel is already open in a different

///< Detected hardware is in invalid condition

///< Scanning.

///< Not processed previous scan data.
///< Incomplete initial offset tuning.

///< Diagnosis
///< Diagnosis
///< Diagnosis
///< Diagnosis
///< Diagnosis
///< Diagnosis
///< Diagnosis
///< Diagnosis
///< Diagnosis
///< Diagnosis
///< Diagnosis
///< Diagnosis
///< Diagnosis
///< Diagnosis
///< Diagnosis

of data collected no yet.

of LDO over voltage failed.

of CCO into 19. 2uA failed.

of CCO into 2. 4uA failed.

of SSCG frequency failed.

of non-touch count value failed.

of LDO output voltage failed.

of over voltage detection circuit failed.
of over current detection circuit failed.
of LDO internal resistance value failed.
of Current source value failed.

of SENSCLK frequency gain failed.

of SUCLK frequency gain failed.

of SUCLK clock recovery function failed.
of CFC oscillator gain failed.

R11ANO485EJ0140 Rev.1.40
Jun.14.23

RENESAS

Page 14 of 33

RL78 Family TOUCH Module Software Integration System

3. API Functions

3.1 RM=TOUCH=Open

This function initializes the module and must be executed before using any of the other API functions.

Please execute this function for each touch interface.

Format
fsp err t RM TOUCH Open (touch ctrl t * const p ctrl,
touch cfg t const * const p cfg)

Parameters
p_ctrl Pointer to the control structure (normally generated by QE)
p_cfg Pointer to the config structure (normally generated by QE)

Return Values

FSP_SUCCESS /* Successfully completed */
FSP_ERR _ASSERTION /* Argument pointer not specified */
FSP_ERR_ALREADY _OPEN /* Open() is called without calling Close() */

FSP_ERR _INVALID_ARGUMENT /* Configuration parameters are invalid */

Properties
Prototype is declared in r_touch_api.h.

Description

This function enables control structure initialization, calls R_CTSU_Open(), and initializes the CTSU2L
module according to the argument p_cfg.

By setting TOUCH_CFG_MONITOR_ENABLE, the monitor buffer is initialized. By setting
TOUCH_CFG_UART_MONITOR_SUPPORT, the UART monitor and UART module are initialized.

Example
fsp err t err;

/* Initialize pins (function created by Smart Configurator) */
R CTSU_PinSetInit();

/* Initialize the API. */
err = RM TOUCH Open (&g _touch ctrl, &g touch cfqg);

/* Check for errors. */
if (err != FSP SUCCESS)
{
}

Special Notes:
The port must be initialized before calling this function. We recommend using the R_CTSU_PinSetlnit()

R11AN0485EJ0140 Rev.1.40 Page 15 of 33

RL78 Family TOUCH Module Software Integration System

function generated by SmartConfigurator as the port initialization function.
This function calls the CTSU module’s R_CTSU_Open().

R11AN0485EJ0140 Rev.1.40 Page 16 of 33

RL78 Family TOUCH Module Software Integration System

3.2 RM=TOUCH=ScanStart

This function starts measurement of the specified touch interface configuration.

Format
fsp err t RM TOUCH ScanStart (touch ctrl t * const p ctrl)

Parameters
p_ctrl Pointer to the control structure (normally generated by QE)

Return Values

FSP_SUCCESS /* Successfully completed */

FSP_ERR _ASSERTION /* Argument pointer not specified */

FSP_ERR NOT_OPEN /* Called without calling Open() */

FSP_ERR CTSU_ERR _SCANNING /* Now scanning */

FSP_ERR CTSU NOT_GET DATA /* Did not obtain previous results */
Properties

Prototype is declared in r_touch_api.h.

Description
This function calls R_CTSU_ScanStart() and starts the measurement.

Example
fsp err t err;

/* Initiate a sensor scan by software trigger */
err = RM TOUCH ScanStart (&g touch ctrl);

/* Check for errors. */
if (err != FSP SUCCESS)
{

}
Special Notes:

This function calls the CTSU module’s R_CTSU_ScanStart(). Reference the R_CTSU_ScanStart()

document for more details.

R11AN0485EJ0140 Rev.1.40 Page 17 of 33

RL78 Family TOUCH Module Software Integration System

3.3___RM_TOUCH_DataGet

This function reads the specified touch interface configuration.

Format
fsp err t RM TOUCH DataGet (touch ctrl t * const p ctrl,
uint64 t * p button status,
uintlé6_t * p_slider position,
uintlé6_t * p _wheel position)
Parameters
p_ctrl Pointer to the control structure (normally generated by QE)
p_button_status Pointer to the buffer that stores button state.
p_slider_position Pointer to the buffer that stores slider position.

p_wheel_position Pointer to the buffer that stores wheel position.

Return Values

FSP_SUCCESS /* Successfully completed */

FSP_ERR ASSERTION /* Argument pointer not specified */

FSP_ERR NOT_OPEN /* Called without calling Open() */

FSP_ERR_CTSU_SCANNING /* Now scanning */

FSP_ERR _CTSU_NOT_GET_DATA /* Did not obtain previous results */

FSP_ERR_CTSU_INCOMPLETE_TUNING /* Tuning initial offset */

FSP_ERR_INVALID_HW _CONDITION / * Values scanned by CTSU show abnormal values */
Properties

Prototype is declared in r_touch_api.h.

Description

This function calls R_CTSU_DataGet() and reads all measured values from the previous measurement to
determine the touch/non-touch state or position. By setting TOUCH_CFG_MONITOR_ENABLE, data is
stored in the monitor buffer. By setting TOUCH_CFG_UART_MONITOR_SUPPORT, the data in the monitor
buffer is sent to the UART module.

Example:
fsp err t err;
uint64 t button status;
uintlé t slider position[TOUCH CFG NUM SLIDERS];
uintl6é t wheel position[TOUCH CFG NUM WHEELS] ;

/* Get all sensor values */
err = RM TOUCH DataGet (&g touch ctrl, &button status, slider position,
wheel position);

Special Notes:
This function calls the CTSU module’s R_CTSU_DataGet(). Reference the R_CTSU_DataGet() document

for more details.

R11AN0485EJ0140 Rev.1.40 Page 18 of 33

RL78 Family TOUCH Module Software Integration System

34 RM=TOUCH=CaIIbackSet

This function sets the function specified for the measurement completion callback function.

Format
fsp err t RM TOUCH CallbackSet (touch ctrl t * const p api ctrl,
void (* p callback) (touch callback args t *),
void const * const p_ context,
touch callback args t * const p callback memory)

Parameters
p_api_ctrl Pointer to the control structure (normally generated by QE for Capacitive Touch)
p_callback Pointer to callback function
p_context Pointer to send to callback function
p_callback_memory Setto NULL

Return Values

FSP_SUCCESS /* Successfully completed */

FSP_ERR _ASSERTION /* Argument pointer not specified */

FSP_ERR NOT_OPEN /* Called without calling Open() */
Properties

Prototype is declared in rm_touch_api.h.

Description
This function calls R_CTSU_CallbackSet() and sets the callback function.

Example:
fsp err t err;

/* Set callback function */
err = RM TOUCH CallbackSet (&g ctsu ctrl, ctsu callback, NULL, NULL);

Special Notes:
This function calls the CTSU module’s R_CTSU_CallbackSet(). Reference the R_CTSU_CallbackSet()
document for more details.

R11AN0485EJ0140 Rev.1.40 Page 19 of 33

RL78 Family TOUCH Module Software Integration System

3.5 RM_TOUCH_SmsSet

This function makes settings for automatic judgment measurement using SMS of the specified touch
interface configuration.

Format
fsp err t RM TOUCH SmsSet (touch ctrl t * const p ctrl)

Parameters
p_ctrl Pointer to the control structure (normally, generated by QE for Capacitive Touch)

Return Values
FSP_SUCCESS /* Successfully completed */
FSP_ERR _ASSERTION /* Argument pointer not specified */
FSP_ERR NOT_OPEN /* Called without calling Open() */

Properties
Prototype is declared in rm_touch_ge.h.

Description

This function sets the specified touch interface for automatic judgment measurement using SMS. To start
automatic judgment measurement, call RM_TOUCH_ScanStart () for the same touch interface after calling
this function. When the touch is judged to be ON, the callback function is called. Call RM_TOUCH_DataGet ()
to get the status of the button.

Example:

R11AN0485EJ0140 Rev.1.40 Page 20 of 33

RL78 Family TOUCH Module Software Integration System

fsp err t err;
uint64 t button status;

/* Initialize pins (function created by Smart Configurator) */
R CTSU PinSetInit();

/* for ExternalTrigger */
ELISEL7 = 0x17;

ELLISELO 0x08;

ELL1LNKO 0x01;

ELOSEL6 = 0x01;

ELOENCTL = 0x40;

/* Open Touch middleware */
err = RM TOUCH Open (&g touch ctrl, &g touch cfgqg);
if (FSP_SUCCESS != err)
{
while (true) ({}

/* Offset tuning cannot be performed by SMS measurement, so it should be
performed in advance. */

/* for ExternalTrigger */
err = RM TOUCH ScanStart (&g touch ctrl);
if (FSP_SUCCESS != err)
{
while (true) {}
}
R ITL Start Interrupt();
R Config ITLOOO_ Start():;

/* Measurement loop */
while (true)
{
/* for [CONFIGO1l] configuration */
while (0 == g ge touch flag) ({}
g_ge_touch flag = 0;
err = RM TOUCH DataGet (&g touch ctrl, &button status, NULL, NULL);
if (FSP_SUCCESS == err)
{
R Config ITLO0OO Stop();
break;

/* Start SMS measurement */
err = RM TOUCH SmsSet (&g touch ctrl);
err = RM TOUCH ScanStart (&g touch ctrl);

R Config ITLOOO_ Start():;

/* Measurement loop for low power consumption */
__stop();

err = RM TOUCH DataGet (&g touch ctrl, &button status, NULL, NULL);
if (FSP_SUCCESS == err)
{

R11AN0485EJ0140 Rev.1.40 Page 21 of 33

RL78 Family TOUCH Module Software Integration System

if (button_ status)
{

/* LED ON */
}

else

{
/* LED OFF */ }

Special Notes:
This function calls the CTSU module’s R_CTSU_SmsSet(). Reference the R_CTSU_SmsSet() document

for more details

R11AN0485EJ0140 Rev.1.40 Page 22 of 33

RL78 Family TOUCH Module Software Integration System

3.6___RM_TOUCH_Close

This function closes the specified touch interface configuration.

Format
fsp err t RM TOUCH Close (touch ctrl t * const p ctrl)

Parameters
p_ctrl Pointer to the control structure (normally generated by QE)

Return Values

FSP_SUCCESS /* Successfully completed */

FSP_ERR _ASSERTION /* Argument pointer not specified */

FSP_ERR NOT_OPEN /* Called without calling Open() */
Properties

Prototype is declared in r_touch_api.h.

Description
This function closes the specified touch interface configuration.

Example:
fsp err t err;

/* Shut down peripheral and close driver */
err = RM TOUCH Close (&g _touch ctrl);

Special Notes:

This function calls the CTSU module’s R_CTSU_Close(). Reference the R_CTSU_Close() document for

more details

R11AN0485EJ0140 Rev.1.40

Page 23 of 33

RL78 Family TOUCH Module Software Integration System

3.7 RM=TOUCH=ScanStop

This function stops measuring the specified touch interface configuration.

Format
fsp err t RM TOUCH ScanStop (touch ctrl t * const p ctrl)

Parameters
p_ctrl Pointer to the control structure (normally, generated by QE for Capacitive Touch)

Return Values
FSP_SUCCESS /* Successfully completed */

FSP_ERR ASSERTION /* Argument pointer not specified */
FSP_ERR NOT_OPEN /* Called without calling Open() */

Properties
Prototype is declared in rm_touch_qe.h.

Description
This function stops measuring the specified touch interface configuration.

Example:
fsp err t err;

/* Stop CTSU module */
err = RM TOUCH ScanStop (&g _touch ctrl);

Special Notes:
None

R11AN0485EJ0140 Rev.1.40 Page 24 of 33

RL78 Family TOUCH Module Software Integration System

3.8 RM_TOUCH_SensitivityRatioGet

This function returns the ratio of the current touch sensitivity to that at the QE tuning.

Format
fsp err t RM TOUCH SensitivityRatioGet (touch ctrl t * const p ctrl,
touch sensitivity info t * p touch sensitivity info);

Parameters
p_ctrl
Pointer to the control structure (normally, generated by QE for Capacitive Touch)
p_modifier

Pointer to the variable storing table information of touch sensitivity ratio calculation

Return Values

FSP_SUCCESS /* Successfully got the ratio of touch sensitivity */
FSP_ERR _INVALID _POINTER /* Pointing to the invalid memory location */
FSP_ERR CTSU NOT_GET DATA /* Did not obtain previous results */

FSP_ERR_CTSU_INCOMPLETE_TUNING /* Tuning initial offset */

Properties
Prototyped in file “rm_touch_qge.h”

Description
This function outputs the ratio of the current touch sensitivity assuming that the touch sensitivity at the QE
setting is 100%.

The following figure shows the case where an overlay panel is thinner and the touch sensitivity increases.

R11AN0485EJ0140 Rev.1.40 Page 25 of 33

RL78 Family TOUCH Module Software Integration System

Present

Touch
Assume sensitivity:
Touch 100% 3500
sensitivity:
2500
Touch
determination .
threshold: Ratio:
1500 60 %

At QE settings

Following figure shows the case where an overlay panel is thicker and the touch sensitivity decreases.

Assume
Touch 100%
sensitivity:
2500
Touch Touch
determination .. sensitivityl
threshold: Ratio: 1500
1500 60 % I
At QE settings Present
Example:
R11AN0485EJ0140 Rev.1.40 Page 26 of 33
Jun.14.23

RENESAS

RL78 Family TOUCH Module Software Integration System

ge err t err;
touch sensitivity info t touch sensitivity table[QE NUM METHODS];
uintlé t touch sensitivity first[CONFIGOl NUM BUTTONS] = { 100 };

touch sensitivity table[QE METHOD CONFIGOl].p touch sensitivity ratio =
touch sensitivity first;

touch sensitivity table[QE METHOD CONFIGO1l].old threshold ratio = 60;

touch sensitivity table[QE METHOD CONFIGO1l].new threshold ratio = 70;

touch sensitivity table[QE METHOD CONFIGO1l].new hysteresis ratio = 5;

err = RM TOUCH SensitivityRatioGet (g ge touch instance configOl.p ctrl,
&touch sensitivity table[QE METHOD CONFIGO1]);

R11AN0485EJ0140 Rev.1.40 Page 27 of 33

RL78 Family TOUCH Module Software Integration System

3.9 RM_TOUCH_ThresholdAdjust

This function changes the ratio of touch determination threshold and hysteresis value to the touch sensitivity

and changes the touch determination threshold corresponding to the current touch sensitivity.

Format
fsp err t RM TOUCH ThresholdAdjust (touch ctrl t * const p ctrl,
touch sensitivity info t * p touch sensitivity info);

Parameters
p_ctrl
Pointer to the control structure (normally, generated by QE for Capacitive Touch)

p_modifier

Pointer to the variable storing table information of touch sensitivity ratio calculation

Return Values
FSP_SUCCESS /* Successfully changed touch determination threshold. */
FSP_ERR _INVALID _POINTER /* Pointing to the invalid memory location */
FSP_ERR_INVALID_ARGUMENT /* Configuration parameters are invalid */

Properties
Prototyped in file “rm_touch_qge.h”

Description
When changing the touch determination threshold ratio from 60% QE set to 70% user specified, the touch
determination thresholds are as below.

Touch sensitivity:

2500

Touch determination Ratio:

threshold: 1750 70 (User specified) >
1500 60 (QE set)

If you want to make this setting, set the member of the second argument as follows. It is also necessary to set
the ratio of the amount of touch change and the hysteresis value.

R11AN0485EJ0140 Rev.1.40 Page 28 of 33

RL78 Family

TOUCH Module Software Integration System

* p_touch_sensitivity ratio = 100
old_threshold_ratio = 60
new_threshold_ratio = 70
new_hysteresis_ratio =5

Sets the new touch determination threshold and the hysteresis value by using the touch sensitivity ratio
obtained with RM_TOUCH_SensitivityRatioGet () as arguments.

Example of calculation 1: The touch sensitivity ratio is 140%, and the threshold set by QE is 1500.

140 * 1500/ 100 = 2100

Touch sensitivity: Touch sensitivity:
3500 3500
Touch
determination
Touch threshold:
.. 2100
determination
threshold:
1500
140%
Threshold
Present

*p_touch_sensitivity ratio = 140
old_threshold_ratio = 60
new_threshold_ratio = 60
new_hysteresis_ratio = 5

Example of calculation 2: The touch sensitivity ratio is 60%, and the threshold set by QE is 1500.

60 * 1500/ 100 = 900

60%
Touch Threshold
Touch sensitivity: Touch sensitivity:
determination
1500
threshold: Touch 1500
1500 determination
threshold:
900
Present

*p_touch_sensitivity ratio = 60
old_threshold_ratio = 60
new_threshold_ratio = 60
new_hysteresis_ratio = 5

R11AN0485EJ0140 Rev.1.40
Jun.14.23

Page 29 of 33
RENESAS

RL78 Family TOUCH Module Software Integration System

Example:
ge_err t err;
touch sensitivity info t touch sensitivity table[QE NUM METHODS] ;
uintlé t touch sensitivity first[CONFIGO01l NUM BUTTONS] = { 100 };

touch sensitivity table[QE METHOD CONFIGOl].p touch sensitivity ratio =
touch sensitivity first;

touch sensitivity table[QE METHOD CONFIGOl].old threshold ratio = 60;

touch sensitivity table[QE METHOD CONFIGO1l].new threshold ratio = 70;

touch sensitivity table[QE METHOD CONFIGOl].new hysteresis ratio = 5;

err = RM TOUCH SensitivityRatioGet (g ge touch instance config0Ol.p ctrl,
&touch sensitivity table[QE METHOD CONFIGO1]);

err = RM TOUCH ThresholdAdjust (g ge touch instance config0l.p ctrl,
&touch sensitivity table[QE METHOD CONFIGO1]);

Special Notes:

If you want to change the touch change amount without changing the ratio of the touch change amount
and the threshold value during QE tuning, set the element of the second argument of
RM_TOUCH_ThresholdAdjust () as follows.

old_threshold_ratio = 60
new_threshold_ratio = 60

new_hysteresis_ratio =5

R11AN0485EJ0140 Rev.1.40 Page 30 of 33

RL78 Family TOUCH Module Software Integration System

3.10 RM_TOUCH_DiriftControl

This function changes the settings of drift correction.

Format
fsp err t RM TOUCH DriftControl (touch ctrl t * const p ctrl,
uintlé t input drift freq);

Parameters
p_ctrl
Pointer to the control structure (normally, generated by QE for Capacitive Touch
input_drift_freq

Enables / disables interval of drift correction

Return Values

FSP_SUCCESS /* Successfully changed drift correction */
FSP_ERR _ASSERTION /* Missing required argument pointer */
Properties

Prototyped in file rm_touch_ge.h.

Description

Set the drift correction to the number of times set in input_drift_freq. Set to 0 to stop the drift correction
function.

As an example of using this API, when calculating the ratio of the touch change amount using
RM_TOUCH_SensitivityRatioGet (), the touch change amount decreases due to the thick overlay, and the
threshold value is not exceeded even if touched. Prevents the reference value from drifting.

Touch
sensitivity:
2500 Touch
Touch ..
determination determination
throshold: threshold: If the touch
1500 1500 sensitivity does not
Touch sensitivity: 1000 exceed the
Reference threshold, the
value: 15000 reference value is
drifted upper, and the
touch sensitivity
becomes smaller.
At QE settings Present
R11AN0485EJ0140 Rev.1.40 Page 31 of 33

RL78 Family TOUCH Module Software Integration System

Example:
ge _err t err;

err = RM TOUCH DriftControl (g ge touch instance configOl.p ctrl, 0);

Special Notes:
None

R11AN0485EJ0140 Rev.1.40 Page 32 of 33

RL78 Family

TOUCH Module Software Integration System

Revision History

Description
Rev. Date Page Summary
1.00 Apr.13.21 - First edition issued
1.10 Aug.31.21 3 Updated 1.1.1 QE for Capacitive Touch Usage
5 Added 1.1.5 Tuning the Touch Determination Threshold
6 Added 1.1.6 Automatic judgment measurement using SMS
9 Updated 2.7 Compilation settings
10 Updated 2.8 Code Size
10 Updated 2.9 Arguments
11 Updated 2.10 Return Values
- Deleted RM_TOUCH_VersionGet
19 Added 3.5 RM_TOUCH_SmsSet
23 Added 3.7 RM_TOUCH_ScanStop
24 Added 3.8 RM_TOUCH_ SensitivityRatioGet
26 Added 3.9 RM_TOUCH_Threshold Adjust
28 Added 3.10 RM_TOUCH_ DriftControl
1.11 Jan.18.22 8 Updated 2.2 Software Requirements
Updated 2.3 Supported Toolchains
10 Updated 2.8 Code size
1.20 Apr.20.22 6 Updated 1.1.6 Automatic judgment measurement using SMS
24 Fixed Example: in 3.5 RM_TOUCH_SmsSet
1.30 Feb.14.23 1 Added RL78/G22 to Target Device
4 Updated 1.1.3 Button Touch Determination
9 Updated 2.2 Software Requirements
9 Updated 2.3 Supported Toolchains
11 Fixed 2.8 Code Size
13 Updated 2.10 Return Values
17 Updated 3.3 RM_TOUCH_DataGet
1.40 Jun.14.23 1 Added RL78/G16 group to Target Device
9 Updated 2.1 Hardware Requirements
9 Updated 2.2 Software Requirements
9 Updated 2.4 Restrictions
12 Fixed 2.8 Code Size

R11ANO485EJ0140 Rev.1.40

Jun.14.23

RENESAS

Page 33 of 33

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the

products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an 1/0 pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V.
(Max.) and Vi1 (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between Vi. (Max.) and Viu (Min.).
7. Pronhibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSl is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-
evaluation test for the given product.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infingement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics

or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home
electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’'s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such

specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance

with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. ltis the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

(Rev.5.0-1 October 2020)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2023 Renesas Electronics Corporation. All rights reserved.

