LENESAS Application Note

RL78 Family
CTSU Module Software Integration System

Introduction
This application note describes the CTSU Module.

Target Device
RL78/G23 Group
RL78/G22 Group
RL78G16 Group

Related Documents
RL78 Family TOUCH Module (R11AN0485)

R11AN0484EJ0140 Rev.1.40 Page 1 of 37



RL78 Family CTSU Module Software Integration System

Contents
L @ Y=Y V1 PP URPRR 3
1.1 T T £ o 1 3
1.1.1 QE for Capacitive TOUCH USAGE .......ccooiiiiiiiiiiiiie ittt e e s saneee e 3
1.1.2 Measurements and Obtaining Data ............ccccuviiiiii e 3
1.1.3 Sensor ICO Correction FUNCHON .........coccuiiiiiee e e e e e e e e e 3
1.1.4 Initial Offset AQJUSIMENT ......ooiii e e e e e e e 4

The measurement time changes depending on CTSUSNUM. If STCLK cannot be set to 0.5MHz, it will
not support the table above. When setting STCLK to other than 0.5MHz because the CTSU clock is not

an integer, follow the hardware manual for the measurement time. ..........c.ccccooviiiii e, 4
1.1.5 Random Pulse Frequency Measurement (CTSUT) .....ccuvveveieiiiiiiiiieiee e 4
1.1.6 Multi-frequency Measurements (CTSUZL) .......eeiiiiiiiiiiiiiiieee et e 5
1.1.7 Shield FUNCHON (CTSUZL) .. ..ttt e e e e e e e e e e e e e e e e e s snaaneeeaaeeeeaans 6
1.1.8 Measurement ErrOr MESSAQJE .....ocvviiiiiiiiiiieieeeeee ettt ettt ettt ettt e e e e e e et e e e e e e e e e e e e e e eeeeeeees 6
1.1.9 0N T Y= =T = 7
10 0 O 1 =Y [ o =7 =8 U g o3 1T o 7
1.1.11  Automatic judgment measurement using SMS (CTSUZ2L) .......ccccvviiiieeeie i 7
1.1.12  MEC Function (RL78/G16, RL78/G22) ......cuuuteiiiiie ettt a e e enae e 8

1.2 MeasUremMENT IMOAE...... ...ttt e e e e e e st e e e e e e e e e nnnreeeaaeeeas 10
1.21 Self-capacitanCe MOGE ............uiiiiiiie e e 10
1.2.2 Mutual CapacitanCe MOAE ..........cuuiiiiiiie e e e e e e 10
1.2.3 Current MeasuremMeENt MOGE ........cuuiiiiiiiiie ettt et e e et e e e snaee e e anneeeeas 11
1.2.4 Temperature Correction Mode (CTSU2ZL)........uiiiiiiiiieiiiiie et e e 11
1.2.5 1 E=To Tq o T 30 1Y o Yo [ YRS PPPPPPPRt 12

1.3 Measurement TIMING .......coooiiiiiiii 13

1.4 F o IO Y= Y =S SR 13

S N e T [ ) o] o 4 =Y (o o TSR 14

2.1 Hardware ReqUIrEMENtS...........ooooiiiiiii 14

2.2 Software REQUITEMENES .........eiiiiiiiiiiieee e e e e e e et e e e e e e s e e aaareeeaeaeeas 14

2.3 SUPPOrted TOOICNAINS .........uiiiiiie e e e e e e e e et e e e e e e e e e aaareeeaaaeeas 14

2.4 RESIFICHIONS ...ttt e e e e e ettt e e e e e e s bbb et e e e e e e e aannrreeeaaaeeas 14

2.5 [ [ST= Lo (=T 1 PP 15

2.6 T C=To =T Y] o= TS PP PRRRP 15

2.7 (7] 10T ]| F=Y o] g IR T= 111 o < PP 16

2.8 (7o (SIS - L PP PRR 18

29 o U LT o1 (PO UUUTRR 18

210 REMUMN VAIUBS ...ttt e e e e ettt e e e e e e e s et e e e e e e e e e e annneeeeaaaaeas 22

R T N o I U o T[] 1 U PPURPR 23

3.1 L O 11U o =Y o PSPPSR 23

3.2 RUCTSU _SCANSTAIT......eiiiiiiiie ettt et e e e sttt e e e s bt e e e e sttt eeestaeeeeasteeeesanseeaesanseeeeanns 25

3.3 N O IS U - | = 7= USRS 26

3.4 R_CTSU_CallDACKSEL ...ttt ettt e e ettt e e e sttt e e e snte e e e snaeeeeenneeeeeanns 27

3.5 R UCTSU _SMSSEE .. iiiii ittt et e e ettt e e e sttt e e e sttt eeesbaeeeeasteeeesanteeeesanseeaeanns 28

3.6 R UCTSU _ClOSE ..vtieeeiittiie ettt eteee e ettt e ettt e e e sttt e e e sttt e e e stteeeeatteeeesseeeeessaeaeeaanteeaesanseeaesanseeaeanns 30

3.7 O IS 6 =T g o L PP PPRR 31

3.8 R_CTSU _SCaNSIOPD ..o i 33

3.9 R_CTSU_SpecificDataGet ... 34

310 R _CTSU Datalnsert........ccooooiiiii 36

Tt I O G O IS @151 U g1 1 o USSP 37

R11AN0484EJ0140 Rev.1.40 Page 2 of 37



RL78 Family CTSU Module Software Integration System

1. Overview

The CTSU module is a CTSU driver for the Touch Module. The CTSU module is configured assuming
access via the Touch middleware layer, but can also be accessed from the user application.

These are functionally different, so these are described in this application note as below.
» Common description for CTSU, CTSU2L -> CTSU

* Description only for CTSU -> CTSU1

* Description only for CTSU2L -> CTSUZ2L

* Without mention, it means the common description for CTSU, CTSU2L

1.1 Functions
The CTSU module supports the following functions.

1.1.1 QE for Capacitive Touch Usage
The module provides various capacitive touch measurements based on configuration settings generated
by QE for Capacitive Touch.

As a part of the configuration settings, the touch interface configuration displays the combination of
terminals to be measured (referred to as TS) and the corresponding measurement mode. Multi-touch
interface configurations are necessary when the development product has a combination of different
measurement modes or when the active shield is used.

1.1.2 Measurements and Obtaining Data

Measurements can be started by a software trigger or by an external event triggered by the Event Link
Controller (RL78/G23 : ELCL ,RL78/G22 : ELC). The RL/78G16 group does not have an Event Link
Controller, so external events cannot be specified. Use an interval timer for external triggering.

As the measurement process is carried out by the CTSU peripheral, it does not use up main processor
processing time.

The CTSU module processes INTCTSUWR and INTCTSURD if generated during a measurement. The
data transfer controller (DTC) can also be used for these processes. The RL78/G16 group does not have a
DTC, so DTC cannot be used.

When the measurement complete interrupt (INTCTSUFN) process is complete, the application is notified in
a callback function. Make sure you obtain the measurement results before the next measurement is started
as internal processes are also executed when a measurement is completed.

Start the measurement with API function R_CTSU_ScanStart().
Obtain the measurement results with API function R_CTSU_DataGet().

1.1.3 Sensor ICO Correction function
The CTSU peripheral has a built-in correction circuit to handle the potential microvariations related to the
manufacturing process of the sensor ICO MCU.

The module temporarily transitions to the correction process during initialization after power is turned on. In
the correction process, the correction circuit is used to generate a correction coefficient (factor) to ensure
accurate sensor measurement values.

When temperature correction for CTSU2L is enabled, an external resistor connected to a TS terminal is
used to periodically update the correction coefficient. By using an external resistor that is not dependent on
temperature, you can even correct the temperature drift of the sensor ICO.

R11AN0484EJ0140 Rev.1.40 Page 3 of 37



RL78 Family CTSU Module Software Integration System

1.14 Initial Offset Adjustment

The CTSU peripheral was designed with a built-in offset current circuit in consideration of the amount of
change in current due to touch. The offset current circuit cancels enough of the parasitic capacitance for it to
fit within the sensor ICO dynamic range.

This module automatically adjusts the offset current setting. As the adjustment uses the normal
measurement process, R_CTSU_ScanStart() and R_CTSU_DataGet() must be repeated several times after
startup. Because the ctsu_element_cfg_t member “so” is the starting point for adjustments, you can set the
appropriate value for “so” in order to reduce the number of times the two functions must be run to complete
the adjustment. Normally, the value used for “so” is a value adjusted by QE for Capacitive Touch.

This function can be turned off in the configuration settings.

Default target value

Mode Default target value
Self-capacitance 15360 (37.5%)
Self-capacitance using active shield 6144 (15%)
Mutual-capacitance 10240 (20%)

The percentage is for the CCO's input limit. 100% is the measured value 40960.The default target value is
based on 256us.When the measurement time is changed, the target value is adjusted by the ratio with the
base time.

Example of target value in combination of CTSUSNUM and CTSUSDPA
» CTSU1 (CTSU clock = 32MHz. Self-capacitance mode)

Target value CTSUSNUM CTSUSDPA Measurement time
15360 0x3 0x7 526us

30720 0x7 0x7 1052us

30720 0x3 OxF 1052us

7680 0x1 0x7 263us

7680 0x3 0x3 263us

The measurement time changes depending on the combination of CTSUSNUM and CTSUSDPA.
In the above table, CTSUPRRTIO is the recommended value of 3, and CSTUPRMODE is the recommended
value of 2. When changing CTSUPRRATIO and CTSUPRMODE from the recommended values, follow the
Hardware Manual for the measurement time.

- CTSU2 (Self-capacitance mode)

Target value Target value (multi frequency) CTSUSNUM Measurement time
7680 15360 (128us + 128us) 0x7 128us

15360 30720 (256us + 256us) OxF 256us

3840 7680 (64us + 64us) 0x3 64us

The measurement time changes depending on CTSUSNUM. If STCLK cannot be set to 0.5MHz, it will not
support the table above. When setting STCLK to other than 0.5MHz because the CTSU clock is not an
integer, follow the hardware manual for the measurement time.

1.15 Random Pulse Frequency Measurement (CTSU1)
The CTSU1 peripheral measures at one drive frequency.

The drive frequency determines the amperage to the electrode and generally uses the value tuned with QE
for Capacitive Touch.

R11AN0484EJ0140 Rev.1.40 Page 4 of 37




RL78 Family CTSU Module Software Integration System

The drive frequency is calculated as below.

It is determined by PCLK frequency input to CTSU, CTSU Count Source Select bit(CTSUCLK), and CTSU
Sensor Drive pulse Division Control bit(CTSUSDPA). For example, If it is set PCLK =32MHz, CTSUCLK =
PLCK/2, and CTSUSDPA = 1/16, then drive frequency is 0.5MHz. CTSUSDPA can change for each TS port.

T lock i i
CTSU operating clock CTSU base clock setting bit
selection bit 2 divisions
PCLK » 4 divisi Drive
PCLK » ivisions » frequency
PCLK/2 g
PCLK/4
64 divisions

Figure 1 Drive Frequency Settings

The actual drive pulse is phase-shifted and frequency-spread with respect to the clock based on the drive
frequency as a measure against external environmental noise. This module is fixed at initialization and sets
the following.

CTSUSOFF =0, CTSUSSMOD = 0, CTSUSSCNT =3

1.1.6 Multi-frequency Measurements (CTSU2L)
The CTSUZ2L peripheral can measure in one of four drive frequencies to avoid synchronous noise.

With the default settings, the module takes measurements at three different frequencies. After
standardizing the results obtained at the three frequencies in accordance with the first frequency reference
value, the measured value is determined based on majority in a process referred to as “normalization.”

The user can get the data before the majority decision. The user can also use this data for your own noise
filtering. If the processed data is written back to the module buffer, it can be judged by the TOUCH module.
See Chapters 3.9 and 3.10 for details.

nMHz (n-x)MHz (n+x)MHz nMHz (n-x)MHz (n+x)MHz
measurement measurement measurement measurement measurement measurement

Detection

Figure 2 Multi-frequency Measurements

Drive frequency is determined based on the config settings. The module sets registers according to the
config settings, and sets the three drive frequencies.

Drive frequency is calculated in the following equation:
(fek frequency / CLK / STCLK) x SUMULTIn / 2 / SDPA : n=0,1,2

The figure below shows the settings for generating a 2MHz drive frequency when the foLk frequency is 32
MHz. SDPA can be set for each touch interface configuration.

R11AN0484EJ0140 Rev.1.40 Page 5 of 37



RL78 Family CTSU Module Software Integration System

Clock Register Config Setting
32MHz foik CTSU_CFG_PCLK_DIVISION

CLK  1div (/1,/2, /4, 18)
Auto-set STCLK bit so that STCLK is 0.5MHz

STCLK  64div (/2, /4,,, ,,1128)
0.5MHz = STCLK

SUMULTIn = 64mul (*1, *2,,,°64,,,*256) CTSU_CFG_SUMULTIn
32MHz  2div
16MHz ~ SUCLK

, Common setting for 3 frequencies
SDPA  &div (11, /2,,/8,,,/256) adpa of 1 element ofg

2MHz

Figure 3 Drive Frequency Settings

1.1.7 Shield Function (CTSUZ2L)

The CTSUZ2L peripheral has a built-in function that outputs a shield signal in phase with the drive pulse
from the shield terminal and the non-measurement terminal in order to shield against external influences
while suppressing any increase in parasitic capacitance. This function can only be used during self-
capacitance measurements.

This module allows the user to set a shield for each touch interface configuration.

For example, for the electrode configuration shown in, the members of ctsu_cfg_t should be set as follows.
Other members have been omitted for the example.

. txvsel = GTSU_TXVSEL_INTERNAL_POWER,
. txvsel2 = CTSU_TXVSEL_MODE,

. md = CTSU_MODE_SELF_MULTI_SCAN,
. posel = CTSU_POSEL_SAME_PULSE,

. ctsuchac0 = OxOF,

. ctsuchtrc0 = 0x08,

Figure 4 Example of Shield Electrode Structure

1.1.8 Measurement Error Message
When the CTSU peripheral detects an abnormal measurement, it sets the status register bit to 1.

In the measurement complete interrupt process, the module reads ICOMP1, ICOMPO, and SENSOVF of the
status register and notifies the results in the callback function. The status register is reset after the contents
are read. For more details on abnormal measurements, refer to “member event” in the ctsu_callback_args_t
callback function argument.

R11AN0484EJ0140 Rev.1.40 Page 6 of 37



RL78 Family CTSU Module Software Integration System

1.1.9 Moving Average
This function calculates the moving average of the measured results.

Set the number of times the moving average should be calculated in the config settings.

1.1.10 Diagnosis Function

The CTSU peripheral has a built-in function that diagnoses its own inner circuit. This diagnosis function
provides the API for diagnosing the inner circuit.

The diagnostic requirements are different for CTSU1 and CTSU2L providing 5 types of diagnosis for

CTSU1 and 9 types for CTSU2L.The diagnosis function is executed by calling the API function. This is
executed independently from the other measurements and does not affect them.

To enable the diagnosis function, set CTSU_CFG_DIAG_SUPPORT_ENABLE to 1.
CTSU1 and CTSU2L use ADC.

1.1.11 Automatic judgment measurement using SMS (CTSUZ2L)

This function uses SMS to operate from measurement to touch judgment without CPU operation. Since the
CPU operates only in STOP mode and SNOOZE mode, it can measure with low power consumption. Only
external trigger setting and DTC setting is supported. Please use 32-bit interval timer with fsxp selected for the
external trigger.

For the touch interface for which you want to use this function, please call R_CTSU_SmsSet () and then
start measurement with R_CTSU_ScanStart (). It is recommended to execute after the initial offset
adjustment is completed.

Every time the CTSU peripheral measures with an external trigger and reads the result, SMS performs the
processing equivalent to R_CTSU_DataGet () and the touch judgment processing.

When touch ON is determined, an INTSMSE interrupt is occurred and the same callback function as for
normal measurement is called and cancel the SMS measurement setting. At that time the application can get
the measurement result by calling R_CTSU_DataGet () as in the normal operation.

When using this function, SMS cannot be used for other processing of the system.

To enable this function, set the measurement setting by external trigger and
CTSU_CFG_DTC_SUPPORT_ENABLE to 1 and CTSU_CFG_SMS_SUPPORT_ENABLE to 1. Since DTC
repeat transmission is used, the lower 8 bits of the variable specified in the repeat area must be 00H.
Therefore, set the address of the RAM area and the address where the lower 8 bits are 00H in
CTSU_CFG_SMS_TRANSFER ADDRESS and CTSU_CFG_SMS_CTSUWR_ADDRESS. Variables placed
in CTSU_CFG_SMS_TRANSFER_ADDRESS use 544 bytes. The variable placed in
CTSU_CFG_SMS_CTSUWR_ADDRESS uses (4 * number of elements * number of multi-frequency). For
example, 36 bytes are used for 3 frequency measurement with 3 self-capacity buttons.

To tuning with the QE for Capacitive Touch, set CTSU_CFG_SMS_TRANSFER_ADDRESS to value other
than OXxFEF0O0 to OxFC800, and CTSU_CFG_SMS_CTSUWR_ADDRESS to value other than 0xFF200 to
0xFCBOO.

Figure 5 shows the flow of modules used for SMS measurement with RL78/G22.

Port output using DTC from CTSUZ2L. An interrupt signal is generated using the signal output from the port.
An interrupt signal triggers the ELC to start SMS processing.

cTsuzL |mmmp| DOTC |mmmp| Pot |mmmp| NTP |mmmp| ELC |(mmmp| SMS

Figure 5 Module flow used for SMS measurement with RL78/G22

R11AN0484EJ0140 Rev.1.40 Page 7 of 37



RL78 Family CTSU Module Software Integration System

To perform automatic judgment measurement using SMS in the RL78/G22, set the following.
Setting Port

Set the port register to CTSU_CFG_SMS_EXTRIGGER_PORT, and set the bit used by the register to
CTSU_CFG_SMS_EXTRIGGER_BIT. For example, when using P140 register, set
CTSU_CFG_SMS_EXTRIGGER_PORT to P14 and CTSU_CFG_SMS_EXTRIGGER_BIT to 1. Also,
before starting measurement, set the port to be used to output and set it to low output.

External interrupt

Set the interrupt number to CTSU_CFG_SMS_ELC_INTP. For example, when using INTP1, set
CTSU_CFG_SMS _ELC_INTP to 1. Also, set the external interrupt to be used to enable interrupt before
starting measurement.

Connect the port and the external interrupt on the board.

This feature does not perform with the self-capacitance to 9 elements or more and the mutual capacitance
to 8 elements or more.

1.1.12 MEC Function (RL78/G16, RL78/G22)

The CTSU peripheral in RL78/G16 and RL78/G22 has MEC (Multiple Electrode Connection) function that
connects multiple electrodes and measures them as a single electrode. This feature is only available in self-
capacitance mode.

This is an example when using three electrodes. In normal times, normal measurement is performed, and
3 channels are measured to get each measured value. In power saving, MEC measurement is performed,
and one channel is measured by combining three channels to acquire one measured value.

Figure 6 shows a compare of time of normal measurement and MEC measurement. Since multi channels
are measured at the same time, the measurement time is shortened.

Normal Scan
R_CTSU_ScanStart() CHl_ CHZ_ CH3< R_CTSU_DataGet()
Measuring Measuring Measuring -
| : Time
| Start
Reduction
MEC Scan |
R_CTSU_ScanStart() CH1+CH2TCH3 R_CTSU_DataGet()
Measuring .
‘ — Time
'Start Finish

Figure 6 Compare of time between normal measurement and MEC measurement

To enable the code for the MEC feature, set
CTSU_CFG_MULTIPLE_ELECTRODE_CONNECTION_ENABLE to 1.

When using MEC, create a touch interface configuration different from the normal touch interface
configuration for the same TS. The following settings are required for the touch interface configuration for
MEC measurement.

To enable MEC for touch interface configurations by setting tsod in ctsu_cfg_t to 1.
Set mec_ts of ctsu_cfg_t to one of the TS numbers to be measured.

If you want to use the shield function at the same time, set the TS number of the shield terminal in
mec_shield_ts of ctsu_cfg_t. In this case, only one TS can be used as a shield terminal.

R11AN0484EJ0140 Rev.1.40 Page 8 of 37



RL78 Family CTSU Module Software Integration System

Set num_rx of ctsu_cfg_tto 1.

For example, in the case of the electrode configuration shown in 7, set the members of ctsu_cfg_t as shown
below. Other members are omitted here.

.tsod =1,
.mec_ts = 0,
.mec_shield_ts = 3,

.num_rx =1,

Figure 7 Example of MEC and shield electrode configuration

R11AN0484EJ0140 Rev.1.40 Page 9 of 37



RL78 Family CTSU Module Software Integration System

1.2 Measurement Mode

This module supports all three modes offered by the CTSUZ2L peripheral: self-capacitance, mutual
capacitance, and current measurement modes. The temperature correction mode is also offered as a mode
for updating the correction coefficient.

1.21 Self-capacitance Mode
The self-capacitance mode is used to measure the capacitance of each terminal (TS).

The CTSU peripheral measures the terminals in ascending order according to the TS numbers, then stores
the data. For example, even if you want to use TS5, TS8, TS2, TS3 and TS6 in your application in that order,
they will still be measured and stored in the order of TS2, TS3, TS5, TS6, and TS8. Therefore, you will need
to reference buffer indexes [2], [4], [0], [1], and [3].

[CTSU1]
In default settings, the measurement period for each TS is wait-time plus approximately 526us.

132us 526uUs . Gﬁgs 526Us . 33us 526us 16..‘5us 526us .
ot |
t t t t t t ¢ EEEEEXRE:
SNUM = Measurement time 1 1 2 1 2 3 4 1234518678
Wait time is changed depend on the Sensor Drive Pulse setting as above.
SST: 32

CTSUPRMODE : 2
CTSUPRRATIO : 3

Figure 8 Self-capacitance Measurement Period (CTSU1)
[CTSU2L]

In default settings, the measurement period for each TS is approximately 576us.

1st 2nd m

»
»

A

576us approx. STCLK: 0.5
SNUM : 7
Measurement Period = (1/STCLK) * 8 * (SNUM+1) * 3 = 384us SST :31

Wait time = (1/STCLK) * (SST+1) * 3 = 192us

Figure 9 Self-capacitance Measurement Period

1.2.2 Mutual Capacitance Mode
The mutual capacitance mode is used to measure the capacitance generated between the receive TS (Rx)
and transmit TS (Tx), and therefore requires at least two terminals.

The CTSU peripheral measures all specified combinations of Rx and Tx. For example, when Rx is TS1
and TS3, and Tx is TS2, TS7 and TS4, the combinations are measured in the following order and the data is
stored.

TS3-TS2, TS3-TS4, TS3-TS7, TS10-TS2, TS10-TS4, TS10-TS7

To measure the mutual capacitance generated between electrodes, the CTSU peripheral performs the
measurement process on the same electrode twice.

R11AN0484EJ0140 Rev.1.40 Page 10 of 37



RL78 Family CTSU Module Software Integration System

The mutual capacitance is obtained by inverting the phase relationship of the pulse output and switched
capacitor in the primary and secondary measurements, and calculating the difference between the two
measurements. This module does not calculate the difference, but outputs the secondary measured result.

[CTSU1]

In default settings, the measurement period for each TS is twice of wait-time plus approximately 526us.
[CTSU2L]

In default settings, the measurement period for each TS is approximately 1152us.

Primary ~ Secondary Primary Secondary Primary Secondary

BB B BT

1152us approx.

Measurement Period = (1/STCLK) * 8 * (SNUM+1) * 3 * 2= 768us STCLK: 0.5
Wait time = (1/STCLK) * (SST+1) * 3 * 2= 384us SNUM : 7
SST : 31

Figure 10 Mutual Capacitance Measurement Period

123 Current Measurement Mode
The current measurement mode is used to measure the minute current input to the TS terminal.

The order of measurement and data storage is the same as that of the self-capacitance mode.

As this does not involve the switched capacitor operation, the measurement is only performed once. The
measurement period for one TS under default settings is approximately 256us. The current measurement
mode requires a longer stable wait time than the other modes, so the SST is set to 63.

1st
“«—>
256uUs approx. STCLK: 0.5
SNUM : 7
Measurement Period = (1/STCLK) * 8 * (SNUM+1) = 128us SST :63

Wait time = (1/STCLK) * (SST+1) = 128us

Figure 11 Current Measurement Period

1.2.4 Temperature Correction Mode (CTSUZ2L)

The temperature correction mode is used to periodically update the correction coefficient using an external
resistor connected to a TS terminal. This involves three processes as described below. Also refer to the
timing chart in Figure 12.

1. Measure the correction circuit. One set comprises twelve measurements.

2. Measure the current when TSCAP voltage is applied to the external resistor to create a correction
coefficient based on an external resistor that does not depend on temperature. Execute the next
measurement after the previous measurement set is completed (as described in step 1).

3. Flow offset current to the external resistor and measure the voltage with the ADC. This will adjust the
RTRIM register and handle the temperature drift of the internal reference resistor. In the config settings, set
the number of times step 2 should be executed before carrying out this measurement.

R11AN0484EJ0140 Rev.1.40 Page 11 of 37



RL78 Family CTSU Module Software Integration System

Measurement
le Period N
Normal Normal Normal Normal Normal
Sl Measurement L Measurement Lt Measuremem‘ Sl Measurement Lt Measuremem‘
192us b
approx.
Update coefficient Update coefficient

Adjust RTRIM
Number of times
CTSU_CFG_TEMP_CORRECTION_TIME

Figure 12 Temperature Correction Measurement Timing Chart

1.2.5 Diagnosis Mode

The diagnosis mode is a mode in which various internal measurement values are scanned by using this
diagnosis function.

The details are described in 1.1.10.

R11AN0484EJ0140 Rev.1.40 Page 12 of 37



RL78 Family

CTSU Module Software Integration System

1.3 Measurement Timing

As explained in section 1.1.2, measurements are initiated by a software trigger or an external event which
is triggered by the Event Link Controller (ELCL/ELC).

The most common method is using a timer to carry out periodic measurements. Make sure to set the timer
interval to allow the measurement and internal value update processes to complete before the next
measurement period. The measurement period differs according to touch interface configuration and
measurement mode. See section 1.2 for details.

The execution timing of software triggers and external triggers differ slightly.

Since a software trigger sets the start flag after setting the touch interface configuration with
R_CTSU_ScanStart (), there is a slight delay after the timer event occurrence. However, as the delay is
much smaller than the measurement period, a software trigger is recommended for most instances as it is

easy to set.

An external trigger is recommended for applications in which this slight delay is not acceptable or that
require low-power consumption operations. When using an external trigger with multiple touch interface
configurations, use R_CTSU_ScanStart() to set another touch interface configuration after one measurement

is completed.

14 API Overview

The CTSU module includes the following functions.

Function

Description

R_CTSU_Open()

Initializes the specified touch interface configuration.

R_CTSU_StartScan()

Starts measurement of specified touch interface configuration.

R_CTSU_DataGet()

Gets measured values of specified touch interface configuration.

R_CTSU_CallbackSet()

Set callback function of specified touch interface configuration.

R_CTSU_SmsSet()

Makes settings for automatic judgment measurement using SMS of the
specified touch interface configuration.

R_CTSU_Close()

Closes specified touch interface configuration.

R_CTSU_Diagnosis()

Executes diagnosis.

R_CTSU_StartStop()

Stops measurement of the specified touch interface configuration.

R_CTSU_SpecificDataGet()

Read the measurements for the specified data type for the specified
touch interface.

R_CTSU_Datalnsert()

Inserts the specified data in buffer of touch measurement results for the
specified touch interface configuration.

R_CTSU_OffsetTuning

Adjusts the offset register (SO) for the specified touch interface
configuration.

R11AN0484EJ0140 Rev.1.40
Jun.14.23

Page 13 of 37
RENESAS




RL78 Family

CTSU Module Software Integration System

2. API Information

Operations of this module has been confirmed under the following conditions.

2.1 Hardware Requirements

The MCU used in the development must support the following function.

® CTSU
® CTSu2L
2.2 Software Requirements

This driver depends on the following module:

® Board Support Package (r_bsp) v1.50 or newer.

According to the configuration settings, the driver may also depend on the following modules:

® Code generator DTC v1.00 or newer

This driver assumes use of the capacitive touch sensor development support tool:
® QE for Capacitive Touch V3.3.0 or newer.

2.3 Supported Toolchains

Module operations have been confirmed on the following toolchains.

® Renesas CC-RL Toolchain v1.12.00

® |AR Embedded Workbench for Renesas RL78 v4.21.3

® L|LVM for Renesas RL78 v10.0.202209

24 Restrictions

The module code is non-reentrant and protects simultaneous calls for multiple function.
When using the LLVM compiler in the RL78/G16 group, it is necessary to check the following CPU Options
when creating a project. After the project is created, it can be set from the project properties.

[ ] o

Select Additional CPU Options

[ Make the double data type 64-bits wide (-mé

[ Emit section containing metadata on function stack sizes (-fstack-size-saction)

LLVM for Renesas RL78 —_—

& Properties for Ivm_Project a X ‘

Settings

Configuration: HardwareDebug [ Active | ¥ Manage Configurations.

® Tool Settings | B Toolchain 8 Device | # Build Steps Build Artifact| w4 Binary Parsers @ Error Parsers

Ecry CPU Type S2-core =
=)

| [ Disable
T Make the double data type be 64 bits in size (-m64bit-doubles)

ion code generation

Project Natures

Project Refarances or || Make variables and painters without explicit address space qualifiers far (-mfar-rom)

Refactoring History

R11AN0484EJ0140 Rev.1.40
Jun.14.23

Page 14 of 37
RENESAS



RL78 Family CTSU Module Software Integration System

2.5 Header File

All interface definitions to be called and used in the API are defined in "r_ctsu_api.h”.

Select “r_ctsu_config.h” as the configuration option in each build.

2.6 Integer Type

This driver uses ANSI C99. The types are defined in “stdint.h”.

R11AN0484EJ0140 Rev.1.40 Page 15 of 37



RL78 Family

CTSU Module Software Integration System

2.7 Compilation Settings

The following table provides the names and setting values for the configuration option settings used the

CTSU module.

r_ctsu_config.h Configuration Options

CTSU_CFG_PARAM_CHECKING_ENABLE

*Default value:
“BSP_CFG_PARAM_CHECKING_ENABLE”

Selects whether to include the parameter check process in the
code.

Selecting “0” allows the user to omit the parameter check process
from the code to shorten the code size.

“1”: Omit parameter check process from code.

“2”: Include parameter check process in code.
“BSP_CFG_PARAM_CHECKING_ENABLE”: Selection depends on
BSP setting.

CTSU_CFG_USE_DTC
*Default value: “0”

Select “1” to use the DTC, rather than the main processor, to run
the CTSU2L’s CTSUWR interrupt and CTSURD interrupt
processes.

Note:

If the DTC is used elsewhere in the application, it may compete with
the use of this driver.

CTSU_CFG_DTC_USE_SC
*Default value: “0”

When using DTC, select whether to use the DTC settings of Smart
Configurator.

“0”: DTC setting inside the CTSU module is used.

“1”: DTC setting in Smart Configurator.

When using the DTC setting in the RL78/G23 group, assign
CTSUWR to No.22 and CTSURD to No.23, and set normal mode
and 16-bit transfer.

When using the DTC setting in the RL78/G22 group, assign
CTSUWR to 21 and CTSURD to 22, set normal mode, 16-bit
transfer, and DTC base address to OxFFBO0O.

CTSU_CFG_SMS_SUPPORT_ENABLE
*Default value: “0”

Select whether to enable the automatic judgment measurement
function using SMS.

CTSU_CFG_SMS_TRANSFER_ADDRESS
*Default value: “OxFF800”

This is the address setting of the repeat area used for DTC repeat
transfer. See Section 1.1.11.

CTSU_CFG_SMS_CTSUWR_ADDRESS
*Default value: “OxFFB00”

This is the address setting of the repeat area used for DTC repeat
transfer. See Section 1.1.11.

CTSU_CFG_INTCTSUWR_PRIORITY_LEVEL
*Default value: “2”

Sets the CTSUWR interrupt priority level (also necessary when
using the DTC). The priority level range is from 0 (high) to 3 (low).

CTSU_CFG_INTCTSURD_PRIORITY_LEVEL
*Default value: “2”

Sets the CTSURD interrupt priority level (also necessary when
using the DTC). The priority level range is from 0 (high) to 3 (low).

CTSU_CFG_INTCTSUFN_PRIORITY_LEVEL
*Default value: 2

Sets the CTSUFN interrupt priority level. The priority level range is
from 0 (high) to 3 (low).

CTSU_CFG_SMS_EXTRIGGER_PORT
*Default value: “P14”

Set the output port for calling SMS. The range is PO ~ P7, P12 ~
P14 that can be set as an output port.

CTSU_CFG_SMS_EXTRIGGER_BIT
*Default value: “1”

Sets the output port bitmap for calling SMS.

CTSU _CFG_SMS _ELC_INTP
*Default value: “1”

Set the number of the interrupt input function to call SMS. The
range is 0 to 7.

The following configurations depend on the touch interface configuration and cannot be set using Smart Configurator.
These configurations are set when using QE for Capacitive Touch. In this case, QE_TOUCH_CONFIGURATION is
defined in the project. Although r_ctsu_config.h becomes invalid, ge_touch_define.h is defined instead.

R11AN0484EJ0140 Rev.1.40
Jun.14.23

Page 16 of 37
RENESAS




RL78 Family

CTSU Module Software Integration System

CTSU_CFG_NUM_SELF_ELEMENTS

Sets the total number of TS for self-capacitance, current
measurement, and temperature correction.

CTSU_CFG_NUM_MUTUAL_ELEMENTS

Sets the total number of matrixes for mutual capacitance

CTSU_CFG_LOW_VOLTAGE_MODE

Enables/disables the low voltage mode. This value is set in the
CTSUCRAL register's ATUNEO bit.

CTSU_CFG_PCLK_DIVISION

Sets the PCLK frequency division rate. This value is set in the
CTSUCRAL register’s CLK bit.

CTSU_CFG_TSCAP_PORT

Sets the TSCAP port.
Example: For P30, set 0x0300.

CTSU_CFG_VCC_MV

Sets the VCC (voltage).
Example: for 5.00V, set 5000.

CTSU_CFG_NUM_SUMULTI

Sets the number of multi-frequency measurements.

CTSU_CFG_SUMULTIO

Sets the multiplication factor for the first frequency in a multi-
frequency measurement.
Recommended: Ox3F

CTSU_CFG_SUMULTH

Sets the multiplication factor for the second frequency in a multi-
frequency measurement.
Recommended: 0x36

CTSU_CFG_SUMULTI2

Sets the multiplication factor for the third frequency in a multi-
frequency measurement.
Recommended: 0x48

CTSU_CFG_TEMP_CORRECTION_SUPPORT

Enables/disables temperature correction.

CTSU_CFG_TEMP_CORRECTION_TS

Sets the temperature correction terminal number.

CTSU_CFG_TEMP_CORRECTION_TIME

Sets the update interval for the correction coefficient of the
temperature correction. Assuming 13 measurements per set in the
temperature correction mode, indicate the number of sets per
update.

CTSU_CFG_CALIB_RTRIM_SUPPORT

Enables/disables RTRIM correction for temperature correction.
The ADC must be selected to operate with RTRIM correction
enabled.

CTSU_CFG_DIAG_SUPPORT_ENABLE

Enables/disables diagnosis function.

R11AN0484EJ0140 Rev.1.40
Jun.14.23

Page 17 of 37

RENESAS




RL78 Family CTSU Module Software Integration System

2.8 Code Size

ROM (code and constants) and RAM (global data) size are determined according to the configuration
options as described in “section 2.7 Compilation Setting” during a build. The values shown are reference
values when the compile option is the default for the CC-RL C compiler listed in “section 2.3 Supported
Toolchains”. The code size varies according to the C compile version and compile options.

This is the value when one self-capacity button is set in the default setting of Smart Configurator. It also
includes sample applications generated by the TOUCH module and QE for Capacitive Touch.

Depending on the application and the number of elements, your program may exceed the RAM size.
Please note that the RL78/G16 group has 2KB of RAM.

[CTSU1]

ROM and RAM Usage

Self-capacitance 1element

ROM: 3400 bytes
RAM: 146 bytes

CTSU_CFG_PARAM_CHECKING_ENABLE 0
CTSU_CFG_DTC_SUPPORT_ENABLE 0

ROM and RAM Usage
Size of each mode, amount of increase by adding elements

Mode and Self-capacitance 1 + 1 element Mutual capacitance +1 element

element num element 1 element

ROM 3400 bytes +20 bytes 3749 bytes +30 bytes
RAM 146 bytes +22 bytes 156 bytes +28 bytes
[CTSU2L]

ROM and RAM Usage

the configuration options with Self-capacitance 1element

ROM: 7008 bytes
RAM: 290 bytes

CTSU_CFG_PARAM_CHECKING_ENABLE 0
CTSU_CFG_DTC_SUPPORT_ENABLE 0

ROM and RAM Usage
Size of each mode, amount of increase by adding elements

Mode and Self-capacitance 1 + 1 element Mutual capacitance +1 element
element num element 1 element

ROM 7008 bytes +19bytes 7312 bytes +167 bytes
RAM 290 bytes +34 bytes 306 bytes +50 bytes

2.9 Arguments

The following are the structures and enums used as arguments of the API functions. Many of the
parameters used in the API functions are defined by the enums, which provides a way to check types and
reduce errors.

These structures and enums are defined in r_ctsu_api.h along with the prototype declaration.

The following is the control structure for the touch interface configuration. This does not need to be set in
the application. Using QE for Capacitive Touch allows the variables corresponding to the touch interface
configuration to be output by ge_touch_config.c. Make sure to set ge_touch_config.c in the module’s first
API argument.

R11AN0484EJ0140 Rev.1.40 Page 18 of 37



RL78 Family

CTSU Module Software Integration System

typedef struct st_ctsu_instance_ctrl

{

uint32_t open;

volatile ctsu_state_t state;

ctsu_md_t md;

ctsu_tuning_t tuning;

uint16_t num_e lements;

uint16_t wr_index;

uint16_t rd_index;

uint8_t * p_element_complete_flag;

g_ctsu_element_complete flag[] is set by Open API
#if (BSP_FEATURE_CTSU_VERSION == 2)
uint8_t * p_frequency_complete_flag;

g_ctsu_frequency_complete_flag[] is set by Open API.

#endif
int32_t

* p_tuning_diff,

g_ctsu_tuning_diff[] is set by Open API.

uint16_t
uint16_t
uint8_t

average,

///< Whether or not driver is open

///< GTSU run state

///< GTSU Measurement Mode Select (copy from cfg)
///< CTSU Initial offset tuning status

///< Number of elements to scan

///< Word index into ctsuwr register array

///< Word index into scan data buffer.

///< Pointer to complete flag of each element

///< Pointer to complete flag of each frequency

///< Pointer to difference from base value of each element

///< GTSU Moving average counter

num_moving_average; ///< Copy from config by Open API.

ctsucrl;

and PON is set by HAL driver.

ctsu_ctsuwr_t
ctsu_self_buf_t
uint16_t
Open API.
ctsu_data_t
by Open API.
ctsu_mutual_buf_t
API.
uint16_t
g_ctsu_mutual_pri_corr[]
uint16_t
g_ctsu_mutual_snd_corr[]
ctsu_data_t
g_ctsu_mutual_pri_data[]
ctsu_data_t
g_ctsu_mutual_snd_data[]

* p_ctsuwr;
* p_self_raw;
* p_self_corr;

*

p_self_data;
* p_mutual _raw;

* p_mutual_pri_corr;
is set by Open API.

* p_mutual_snd_corr;
is set by Open API.

* p_mutual_pri_data;
is set by Open API.

* p_mutual_snd_data;

///< Copy from (atunel << 3, md << 6) by Open API. CLK, ATUNEO, CSW
///< GTSUWR write register value. g_ctsu_ctsuwr[] is set by Open API.
///< Pointer to Self raw data. g_ctsu_self_raw[] is set by Open API.
///< Pointer to Self correction data. g_ctsu_self_corr[] is set by
///< Pointer to Self moving average data. g ctsu_self_data[] is set
///< Pointer to Mutual raw data. g_ctsu_mutual_raw[] is set by Open
///< Pointer to Mutual primary correction data

///< Pointer to Mutual secondary correction data

///< Pointer to Mutual primary moving average data

///< Pointer to Mutual secondary moving average data

is set by Open API.g_ctsu_mutual_snd_data[] is set by Open API.

ctsu_correction_info_t * p_correction_info;

ctsu_txvsel_t txvsel;
ctsu_txvsel2_t txvsel2;
uint8_t ctsuchacO;
uint8_t ctsuchacl;
uint8_t ctsuchac2;
uint8_t ctsuchac3;
uint8_t ctsuchac4;
uint8_t ctsuchtrc0;
uint8_t ctsuchtrcl;
uint8_t ctsuchtrc2;
uint8_t ctsuchtrc3;
uint8_t ctsuchtrc4;
uint16_t self_elem_index;
uint16_t mutual_elem_index;
uint16_t ctsu_elem_index;
#if (BSP_FEATURE_CTSU_VERSION == 2)

uint8_t * p_selected_freq_self;
uint8_t * p_selected_freq mutual;

#endif

#if (BSP_FEATURE_CTSU_VERSION == 1)
#if (CTSU_CFG_DIAG_SUPPORT_ENABLE == 1)
ctsu_diag_info_t * p_diag_info;

#endif
#endif

#if (BSP_FEATURE_CTSU_VERSION == 2)

ctsu_range_t
uint8_t

range;
ctsucr2;

LOAD is set by HAL driver.

uint8_t

sms;

#if (CTSU_CFG_DIAG_SUPPORT_ENABLE == 1)

ctsu_diag_info_t

* p_diag_info;

///< Pointer to correction info

///< CTSU Transmission Power Supply Select
///< CTSU Transmission Power Supply Select 2 (CTSU2 Only)
///< TS00-TSO7 enable mask

///< TS08-TS15 enable mask

///< TS16-TS23 enable mask

///< TS24-TS31 enable mask

///< T832-TS39 enable mask

///< TS00-TSO7 mutual-tx mask

///< TS08-TS15 mutual-tx mask

///< T816-TS23 mutual-tx mask

///< T824-TS31 mutual-tx mask

///< T832-TS39 mutual-tx mask

///< Self element index

///< Mutual element index

///< CTSU element index

///< Frequency selected by self-capacity
///< Frequency selected by mutual-capacity

///< pointer to diagnosis info

///< According to atunel2. (20uA : 0, 40uA : 1,
///< Copy from (posel, atunel, md) by Open API.

80uA @ 2, 160uA : 3)
FCMODE and SDPSEL and

///< Whether or not SMS use

///< pointer to diagnosis info

R11AN0484EJ0140 Rev.1.40

Jun.14.23

Page 19 of 37
RENESAS



RL78 Family CTSU Module Software Integration System

#endif

#tendif
ctsu_cfg_t const * p_ctsu_cfg: ///< Pointer to initial configurations.
void (* p_callback) (ctsu_callback_args_t *); ///< Callback provided when a GTSUFN occurs.
ctsu_event_t error_status; ///< Error status variable.
void const * p_context; ///< Placeholder for user data.
bool serial_tuning_enable; ///< Flag of serial tuning status.
uint16_t serial_tuning_mutual_cnt; ///< Word index into ctsuwr register array.
uint16_t tuning_self_target_value; ///< Target self value for initial offset tuning
uint16_t tuning_mutual_target_value; ///< Target mutual value for initial offset tuning
uint8_t tsod; ///< Copy from tsod by Open API.
uint8_t mec_ts; ///< Copy from mec_ts by Open API.
uint8_t mec_shield_ts; ///< Copy from mec_shield_ts by Open API.

} ctsu_instance_ctr|_t;

The following is the configuration setting structure for the touch interface configuration.

Using QE for Capacitive Touch allows the variables and initialization values corresponding to the touch
interface configuration to be output by qe_touch_config.c. Make sure to set ge_touch_config.c in the
second argument of R_CTSU_Open().

typedef struct st_ctsu_cfg
{

ctsu_cap_t cap; ///< CTSU Scan Start Trigger Select
ctsu_txvsel_t txvsel; ///< GTSU Transmission Power Supply Select
ctsu_txvsel2_t txvsel2; ///< CTSU Transmission Power Supply Select 2 (CTSU2 Only)
ctsu_atunel_t atunel; ///< GTSU Power Supply Capacity Adjustment (CTSU Only)
ctsu_atunel2_t atunel2; ///< GTSU Power Supply Capacity Adjustment (CTSU2 Only)
ctsu_md_t md; ///< GTSU Measurement Mode Select
ctsu_posel_t posel ; ///< GTSU Non-Measured Channel Output Select (GTSU2 Only)
uint8_t tsod; ///< TS all terminal output control for multi electrode scan
uint8_t mec_ts; ///< TS number used when using the MEC function
uint8_t mec_shield_ts; ///< TS number of active shield used when using MEC function
uint8_t ctsuchac0; ///< TS00-TS07 enable mask
uint8_t ctsuchact; ///< TS08-TS15 enable mask
uint8_t ctsuchac?; ///< T816-TS23 enable mask
uint8_t ctsuchac3; ///< TS24-TS31 enable mask
uint8_t ctsuchac4; ///< T832-TS39 enable mask
uint8_t ctsuchtrcO; ///< TS00-TS07 mutual-tx mask
uint8_t ctsuchtret; ///< TS08-TS15 mutual-tx mask
uint8_t ctsuchtre?2; ///< T816-TS23 mutual-tx mask
uint8_t ctsuchtre3; ///< TS24-TS31 mutual-tx mask
uint8_t ctsuchtred; ///< T832-T839 mutual-tx mask
ctsu_element_cfg_t const * p_elements; ///< Pointer to elements configuration array
uint8_t num_rx; ///< Number of receive terminals
uint8_t num_tx; ///< Number of transmit terminals
uint16_t num_mov ing_average; ///< Number of moving average for measurement data
uint8_t tunning_enable; ///< Initial offset tuning flag
uint8_t judge_multifreq_disable; ///< Disable to judge multi frequency
void (* p_callback) (ctsu_cal Iback_args_t * p_args): ///< Callback provided when CTSUFN ISR occurs.
void const * p_context: ///< User defined context passed into cal lback function.
void const * p_extend; ///< Pointer to extended configuration by instance of

interface.
uint16_t tuning_self_target_value; ///< Target self value for initial offset tuning
uint16_t tuning_mutual_target_value; ///< Target mutual value for initial offset tuning

} ctsu_cfg_t;

The following are the enums used for the above listed structures.

/#x GTSU Events for callback function */
typedef enum e_ctsu_event

{
CTSU_EVENT_SCAN_COMPLETE = 0x00,  ///< Normal end

CTSU_EVENT_OVERFLOW = 0x01, ///< Sensor counter overflow (CTSUST.CTSUSOVF set)
CTSU_EVENT_ICOMP = 0x02, ///< Abnormal TSCAP voltage (CTSUERRS. CTSUICOMP set)
R11AN0484EJ0140 Rev.1.40 Page 20 of 37



RL78 Family CTSU Module Software Integration System

GTSU_EVENT_ICOMP1 = 0x04 ///< Abnormal sensor current (CTSUSR. ICOMP1 set)
} ctsu_event_t;

/#% CTSU Scan Start Trigger Select */
typedef enum e_ctsu_cap
{
GTSU_CAP_SOFTWARE, ///< Scan start by software trigger
CTSU_CAP_EXTERNAL ///< Scan start by external trigger
} ctsu_cap_t;

/%% CTSU Transmission Power Supply Select */
typedef enum e_ctsu_txvsel
{
GCTSU_TXVSEL_VCC, ///< VGG selected
CTSU_TXVSEL_INTERNAL_POWER ///< Internal logic power supply selected
} ctsu_txvsel_t;

/*% CTSU Transmission Power Supply Select 2 (CTSU2 Only) */
typedef enum e_ctsu_txvsel2
{
GTSU_TXVSEL_MODE, ///< Follow TXVSEL setting
GTSU_TXVSEL_VCG_PRIVATE, ///< GG private selected
} ctsu_txvsel2_t;

/%% GTSU Power Supply Capacity Adjustment (CTSU Only) */
typedef enum e_ctsu_atunel
{
CTSU_ATUNE1_NORMAL, ///< Normal output (40uA)
CTSU_ATUNE1_HIGH ///< High-current output (80uA)
} ctsu_atunel_t;

/#x GTSU Power Supply Capacity Adjustment (CTSU2 Only) */
typedef enum e_ctsu_atunel2

{

CTSU_ATUNE12_80UA, ///< High-current output (80uA)
CTSU_ATUNE12_40UA, ///< Normal output (40uA)
CTSU_ATUNE12_20UA, ///< Low-current output (20uA)
CTSU_ATUNE12_160UA ///< Very high-current output (160uA)

} ctsu_atunel2_t;

/#x GTSU Measurement Mode Select */
typedef enum e_ctsu_mode
{
CTSU_MODE_SELF_MULTI_SCAN
CTSU_MODE_MUTUAL_FULL_SCAN
CTSU_MODE_CURRENT_SCAN
CTSU_MODE_CORREGTION_SCAN
} ctsu_md_t;

///< Self-capacitance multi scan mode
///< Mutual capacitance full scan mode
///< Gurrent scan mode

7 ///< Correction scan mode

[ I T
—_ O W —

/#x GTSU Non-Measured Channel Output Select (CTSU2 Only) */
typedef enum e_ctsu_posel

{

CTSU_POSEL_LOW_GPIO, ///< Output low through GPIO

CTSU_POSEL_HI_Z, ///< Hi-Z

CTSU_POSEL_LOwW, ///< Output low through the power setting by the TXVSEL[1:0] bits
CTSU_POSEL_SAME_PULSE ///< Same phase pulse output as transmission channel through the power setting

by the TXVSEL[1:0] bits

} ctsu_posel_t;

/#% CTSU Spectrum Diffusion Frequency Division Setting (CTSU Only) */
typedef enum e_ctsu_ssdiv

{

CTSU_SSDIV_4000, ///< 4.00 <= Base clock frequency (MHz)

CTSU_SSDIV_2000, ///< 2.00 <= Base clock frequency (MHz) < 4.00
CTSU_SSDIV_1330, ///< 1.33 <= Base clock frequency (MHz) < 2.00
CTSU_SSDIV_1000, ///< 1.00 <= Base clock frequency (MHz) < 1.33
CTSU_SSDIV_0800, ///< 0.80 <= Base clock frequency (MHz) < 1.00
CTSU_SSDIV_0670, ///< 0.67 <= Base clock frequency (MHz) < 0.80
CTSU_SSDIV_0570, ///< 0.57 <= Base clock frequency (MHz) < 0.67
CTSU_SSDIV_0500, ///< 0.50 <= Base clock frequency (MHz) < 0.57
CTSU_SSDIV_0440, ///< 0.44 <= Base clock frequency (MHz) < 0.50

R11AN0484EJ0140 Rev.1.40 Page 21 of 37



RL78 Family

CTSU Module Software Integration System

CTSU_SSDIV_0400
CTSU_SSDIV_0360
CTSU_SSDIV_0330
CTSU_SSDIV_0310
CTSU_SSDIV_0290
CTSU_SSDIV_0270
CTSU_SSDIV_0000

} ctsu_ssdiv_t;

///< 0.40 <= Base
///< 0.36 <= Base
///< 0.33 <= Base
///< 0.31 <= Base
///< 0.29 <= Base
///< 0.27 <= Base
///< 0.00 <= Base

/** Cal lback function parameter data */

typedef struct st_ctsu_cal Iback_args

{

ctsu_event_t event;

void const * p_context;

in :ctsu_cfg_t
} ctsu_cal lback_args_t;

/** Element Configuration */
typedef struct st_ctsu_element

{

ctsu_ssdiv_t ssdiv;
uint16_t s0;

uint8_t snum;
uint8_t sdpa;

} ctsu_element_cfg_t;

clock frequency
clock frequency
clock frequency
clock frequency
clock frequency
clock frequency
clock frequency

(MHz)
(MHz)
(MHz)
(MHz)
(MHz)
(MHz)
(MHz)

AAANAAAANAN
cCoocoeooe o
NOR W W WS
PRSP ARSI N

///< The event can be used to identify what caused the cal Iback
///< Placeholder for user data. Set in CTSU_api_t::open function

///< GTSU Spectrum Diffusion Frequency Division Setting (CTSU Only)

///< GTSU Sensor Offset Adjustment

///< CTSU Measurement Count Setting

///< GTSU Base Clo

ck Setting

2.10

Return Values

The following provides return values for the API functions. The enum is defined in fsp_common_api.h,

along with the API function prototype declaration.

/** Common error codes */

typedef enum e_fsp_err

{

FSP_SUCCESS = 0,

FSP_ERR_ASSERTION

FSP_ERR_INVALID_POINTER
FSP_ERR_INVALID_ARGUMENT
FSP_ERR_INVALID_CHANNEL
FSP_ERR_INVALID_MODE

FSP_ERR_UNSUPPORTED
FSP_ERR_NOT_OPEN
FSP_ERR_ABORTED

S N N e

8,

/* Start of GCTSU Driver specific */

FSP_ERR_CTSU_SCANNING
FSP_ERR_CTSU_NOT_GET_DATA
FSP_ERR_CTSU_INCOMPLETE_TUNING
FSP_ERR_CTSU_DIAG_NOT_YET

FSP_ERR_CTSU_DIAG_LDO_OVER_VOLTAGE

FSP_ERR_CTSU_DIAG_CCO_HIGH
FSP_ERR_CTSU_DIAG_CCO_LOW
FSP_ERR_CTSU_DIAG_SSCG
FSP_ERR_CTSU_DIAG_DAC
FSP_ERR_CTSU_DIAG_OUTPUT_VOLTAGE
FSP_ERR_CTSU_DIAG_OVER_VOLTAGE
FSP_ERR_CTSU_DIAG_OVER_CURRENT

FSP_ERR_CTSU_DIAG_LOAD_RESISTANGE

FSP_ERR_CTSU_DIAG_CURRENT_SOURCE
FSP_ERR_CTSU_DIAG_SENSCLK_GAIN
FSP_ERR_CTSU_DIAG_SUCLK_GAIN

FSP_ERR_CTSU_DIAG_CLOCK_RECOVERY

FSP_ERR_CTSU_DIAG_CFC_GAIN

} fsp_err_t

= 6000, ///<
= 6001, ///<
= 6002, /1<
= 6008, ///<
= 6004, ///<
= 6005, /1<
= 6006, ///<
= 6007, ///<
= 6008, /1/<
= 6009, ///<
= 6010, ///<
= 6011, /1/<
= 6012, ///<
= 6013, ///<
= 6014, /1/<
= 6015, ///<
= 6016, ///<
= 6017, /1<

///< A critical assertion has failed

///< Pointer points to invalid memory location

///< Invalid input parameter
///< Selected channel does not exist
///< Unsupported or incorrect mode

///< Selected mode not supported by this API
///< Requested channel is not configured or API not open

///< An operation was aborted

Scanning

Not processed previous scan data.
Incomplete initial offset tuning
Diagnosis of data collected no yet.
Diagnosis of LDO over voltage failed
Diagnosis of CCO into 19. 2uA failed.
Diagnosis of CCO into 2. 4uA failed.
Diagnosis of SSCG frequency failed.
Diagnosis of non-touch count value failed.
Diagnosis of LDO output voltage failed

Diagnosis of over voltage detection circuit failed
Diagnosis of over current detection circuit failed
Diagnosis of LDO internal resistance value failed

Diagnosis of Current source value failed.
Diagnosis of SENSCLK frequency gain failed.
Diagnosis of SUCLK frequency gain failed.

Diagnosis of SUCLK clock recovery function failed

Diagnosis of CFC oscillator gain failed.

R11AN0484EJ0140 Rev.1.40

Jun.14.23

REN

ESAS

Page 22 of 37



RL78 Family CTSU Module Software Integration System

3. API Functions

3.1 R=CTSU=Open

This function initializes the module and must be executed before using any of the other API functions.

Please execute this function for each touch interface.

Format
fsp err t R CTSU Open (ctsu ctrl t * const p ctrl,
ctsu cfg t const * const p cfqg)

Parameters
p_ctrl Pointer to the control structure (normally generated by QE for Capacitive Touch)
p_cfg Pointer to the config structure (normally generated by QE for Capacitive Touch)

Return Values

FSP_SUCCESS /* Successfully completed */
FSP_ERR _ASSERTION /* Argument pointer not specified */
FSP_ERR ALREADY OPEN /* Open() is called without calling Close() */

FSP_ERR _INVALID_ARGUMENT  /* Configuration parameters are invalid */

Properties
Prototype is declared in r_ctsu_api.h

Description

This function enables control structure initialization, register initialization, and interrupt setting according to
the argument p_cfg.

Also, the correction coefficient generation process is executed while processing the first touch interface
structure. The process takes approximately 120ms.

The DTC is initialized if CTSU_CFG_USE_DTC is enabled when the first touch interface configuration is

processed.

Example

R11AN0484EJ0140 Rev.1.40 Page 23 of 37



RL78 Family CTSU Module Software Integration System

fsp err t err;

/* Initialize pins (function created by Smart Configurator) */
R _CTSU_PinSetInit();

/* Initialize the API. */
err = R CTSU Open (&g _ctsu ctrl, &g ctsu cfqg);

/* Check for errors. */
if (err != FSP_SUCCESS)
{

}

Special Notes:
The port must be initialized before calling this function. We recommend using the R_CTSU_PinSetlInit()

function generated by SmartConfigurator as the port initialization function

R11AN0484EJ0140 Rev.1.40 Page 24 of 37



RL78 Family CTSU Module Software Integration System

3.2 R=CTSU=ScanStart

This function starts measurement of the specified touch interface configuration.

Format
fsp err t R CTSU ScanStart (ctsu ctrl t * const p ctrl)

Parameters
p_ctrl Pointer to the control structure (normally generated by QE for Capacitive Touch)

Return Values

FSP_SUCCESS /* Successfully completed */
FSP_ERR ASSERTION /* Argument pointer not specified */
FSP_ERR _NOT_OPEN /* Called without calling Open() */
FSP_ERR _CTSU_SCANNING /* Now scanning */

FSP_ERR_CTSU_NOT_GET_DATA /* Did not obtain previous results */

Properties
Prototype is declared in r_ctsu_api.h.

Description

When a software trigger occurs, this function sets and starts the measurement based on the touch
interface configuration. With an external trigger, the function sets the measurement and goes to the trigger
wait state.

If CTSU_CFG_USE_DTC is enabled, the function also sets the DTC.

The resulting value is notified in the callback generated from the INTCTSUFN interrupt handler.

Example
fsp err t err;

/* Initiate a sensor scan by software trigger */
err = R CTSU ScanStart (&g ctsu ctrl);

/* Check for errors. */
SEEN((E e =S PRIS UCCHISIS))
{
}

Special Notes:
None

R11AN0484EJ0140 Rev.1.40 Page 25 of 37



RL78 Family CTSU Module Software Integration System

3.3 R_CTSU_DataGet

This function reads all the values previously measured in the specified touch interface configuration.

Format
fsp err t R CTSU DataGet (ctsu ctrl t * const p ctrl, uintl6 t * p data)

Parameters
p_ctrl Pointer to the control structure (normally generated by QE for Capacitive Touch)
p_data Pointer to the buffer that stores the measured value.

Return Values

FSP_SUCCESS /* CTSU initialization successfully completed */

FSP_ERR _ASSERTION /* Argument pointer not specified */

FSP_ERR NOT_OPEN /* Called without calling Open() */

FSP_ERR _CTSU_SCANNING /* scanning */

FSP_ERR _CTSU_INCOMPLETE_TUNING /*Tuning initial offset */
Properties

Prototype is declared in r_ctsu_api.h.

Description

This function reads all previously measured values into the specified buffer. The required buffer size varies
depending on the measurement mode. Prepare twice the number of TS for the self-capacitance and current
measurement modes, and twice the number of matrixes for the mutual-capacitance mode. If normalization
(majority frequency) is turned off, prepare multiple CTSU_CFG_NUM_SUMULTI terminals for each mode.
The value measured in the temperature correction mode is not stored. When RTRIM adjustment is
performed, the RTRIM value is stored. At this time, the ADC settings have been changed in this function, so
perform the process to return to the ADC settings you are using. Otherwise, store OxFFFF.

When initial offset adjustment is on, FSP_ERR_INCOMPLETE_TUNING is returned several times until the
adjustment is complete. Measured values are not stored in the buffer at this time. For more details on initial
offset adjustment, refer to section 1.1.6. The measured value is the value resulting from the sensor ICO

correction, normalization (when on), and moving average processes executed in this function.

Example:
fsp err t err;
uintl6 t buf [CTSU CFG _NUM SELF ELEMENTS] ;

/* Get all sensor values */
err = R CTSU DataGet (&g ctsu ctrl, buf);

Special Notes:
None

R11AN0484EJ0140 Rev.1.40 Page 26 of 37



RL78 Family CTSU Module Software Integration System

34 R=CTSU=CaIIbackSet

This function sets the function specified for the measurement completion callback function.

Format
fsp err t R CTSU CallbackSet (ctsu ctrl t * const p api ctrl,
void (* p_callback) (ctsu callback args t *),
void const * const p_ context,
ctsu callback args t * const p callback memory)

Parameters
p_api_ctrl Pointer to the control structure (normally generated by QE for Capacitive Touch)

p_callback  Pointer to callback function
p_context Pointer to send to callback function
p_callback_memory Setto NULL

Return Values

FSP_SUCCESS /* Successfully completed */

FSP_ERR _ASSERTION /* Argument pointer not specified */

FSP_ERR NOT_OPEN /* Called without calling Open() */
Properties

Prototype is declared in r_ctsu_api.h.

Description

This function sets the function specified for the measurement completion callback function. By default, the
callback function is set to the function of member p_callback of ctsu_cfg_t, so use it when you want to
change to another function during operation.

You can also set the context pointer. If not used, set p_context to NULL. Set p_callback_memory to NULL.

Example:
fsp err t err;

/* Set callback function */

err = R CTSU CallbackSet (&g ctsu ctrl, ctsu callback, NULL, NULL);

Special Notes:
None

R11AN0484EJ0140 Rev.1.40 Page 27 of 37



RL78 Family CTSU Module Software Integration System

3.5 R_CTSU_SmsSet

This function makes settings for automatic judgment measurement using SMS of the specified touch

interface configuration.

Format
fsp err t R CTSU SmsSet (ctsu ctrl t * const p ctrl,
uintl6é t * p threshold,
uintl6é t * p hysteresis,
uintl6 t count filter)

Parameters
p_ctrl Pointer to the control structure (normally generated by QE for Capacitive Touch)

p_threshold Pointer to the touch judgement threshold
p_context Pointer to the touch judgement hysteresis

count_filter  Touch count match filter value (upper 8 bits are for OFF, lower 8 bits are for ON)

Return Values
FSP_SUCCESS /* Successfully completed */

FSP_ERR ASSERTION /* Argument pointer not specified */
FSP_ERR NOT_OPEN /* Called without calling Open() */

Properties
Prototype is declared in r_ctsu_api.h.

Description

This function sets the following: Use the argument setting for touch judgment processing.

- Disable CTSUFN interrupts

- Enable SMS module

- SMS settings

- ELCL setting (when using RL78/G23 group)

- ELC settings (when using the RL78/G23 group)

- Start SMS

To start automatic judgment measurement, call R_CTSU_ScanStart () for the same touch interface after
calling this function. When touch ON is determined, INTSMSE occurs, and the following settings are made in
the interrupt handler of the CTSU module.

- Set the measurement status as an argument of the callback function

- Set the measured value as a variable

- Callback function call

- Allow CTSUFN interrupts

- Disable SMS module

R11AN0484EJ0140 Rev.1.40 Page 28 of 37



RL78 Family CTSU Module Software Integration System

Example:
fsp err t err;
uintl6é t threshold[3] = {1000, 1500, 2000};
uintlé t hysteresis[3] = {50, 75, 100};

uintle t buf[3];
/* Start SMS measurement */
err = R CTSU SmsSet (&g ctsu ctrl, threshold, hysteresis[3], 0x0303);
err = R CTSU_ScanStart (&g ctsu ctrl);

__stop ()’

err = R CTSU DataGet (&g ctsu ctrl, buf);

Special Notes:
None

R11AN0484EJ0140 Rev.1.40 Page 29 of 37



RL78 Family CTSU Module Software Integration System

3.6 R_CTSU_Close

This function closes the specified touch interface configuration.

Format
fsp err t R CTSU Close (ctsu ctrl t * const p ctrl)

Parameters
p_ctrl Pointer to the control structure (normally generated by QE for Capacitive Touch)

Return Values
FSP_SUCCESS /* Successfully completed */
FSP_ERR ASSERTION /* Argument pointer not specified */
FSP_ERR _NOT_OPEN /* Called without calling Open() */

Properties
Prototype is declared in r_ctsu_api.h.

Description
This function closes the specified touch interface configuration.

Example:
fsp err t err;

/* Shut down peripheral and close driver */
err = R CTSU Close(&g ctsu ctrl);

Special Notes:
None

R11AN0484EJ0140 Rev.1.40 Page 30 of 37



RL78 Family CTSU Module Software Integration System

3.7 R=CTSU=Diagnosis

This is the API function providing the function for diagnosis of the CTSU inner circuit.

Format
fsp err t R CTSU Diagnosis (ctsu ctrl t * const p ctrl)

Parameters
p_ctrl Pointer to the control structure (normally, generated by QE for Capacitive Touch)

Return Values

FSP_SUCCESS /* All diagnoses are normal */
FSP_ERR ASSERTION /* Missing argument pointer */
FSP_ERR _NOT_OPEN /* Called without calling Open() */
FSP_ERR_CTSU_NOT_GET_DATA /*Not processed previous scan data. */
FSP_ERR CTSU _DIAG LDO OVER VOLTAGE /*Diagnosis of LDO over voltage failed. */
FSP_ERR CTSU DIAG CCO_HIGH /*Diagnosis of CCO into 19.2uA failed. */
FSP_ERR CTSU DIAG _CCO_LOW /*Diagnosis of CCO into 2.4uA failed. */
FSP_ERR CTSU DIAG_SSCG /*Diagnosis of SSCG frequency failed. */
FSP_ERR CTSU _DIAG _DAC /*Diagnosis of non-touch count value failed. */
FSP_ERR_CTSU_DIAG_OUTPUT_VOLTAGE /*Diagnosis of LDO output voltage failed. */
FSP_ERR CTSU DIAG_OVER VOLTAGE /*Diagnosis of over voltage detection circuit failed.”/
FSP_ERR CTSU DIAG_OVER CURRENT /*Diagnosis of over current detection circuit failed. */
FSP_ERR CTSU DIAG LOAD RESISTANCE /*Diagnosis of LDO internal resistance value
failed.”/
FSP_ERR CTSU _DIAG_CURRENT_SOURCE /*Diagnosis of Current source value failed.”/
FSP_ERR CTSU _DIAG_SENSCLK_GAIN /*Diagnosis of SENSCLK frequency gain failed.”/
FSP_ERR CTSU _DIAG_SUCLK_GAIN /*Diagnosis of SUCLK frequency gain failed.
FSP_ERR CTSU _DIAG_CLOCK _RECOVERY /*Diagnosis of SUCLK clock recovery function
failed.”/
Properties

Prototyped in file “r_ctsu_qge.h

Description
This is the API function providing the function for diagnosis of the CTSU inner circuit
Call when the return value of the function R_CTSU_DataGet is FSP_SUCCESS.

Example:

R11AN0484EJ0140 Rev.1.40 Page 31 of 37



RL78 Family CTSU Module Software Integration System

fsp err t err;
uintlé t dummy;

/* Open Diagnosis function */
R CTSU Open(g ge ctsu instance diagnosis.p ctrl,
g_ge_ ctsu instance diagnosis.p cfg);

/* Scan Diagnosis function */

R CTSU_ScanStart (g _ge ctsu instance diagnosis.p ctrl);
while (0 == g ge touch flag) ({}

g _ge_touch flag = 0;

err = R CTSU DataGet (g ge ctsu instance diagnosis.p ctrl, &dummy) ;
if (FSP_SUCCESS == err)
{
err = R CTSU Diagnosis (g _ge ctsu instance diagnosis.p ctrl);
if ( FSP_SUCCESS == err )
{

/* Diagnosis was succssed. */

Special Notes:
None

R11AN0484EJ0140 Rev.1.40 Page 32 of 37



RL78 Family CTSU Module Software Integration System

3.8 R=CTSU=ScanStop

This function stops measuring the specified touch interface configuration.

Format
fsp err t R CTSU ScanStop (ctsu ctrl t * const p ctrl)

Parameters
p_ctrl Pointer to the control structure (normally, generated by QE for Capacitive Touch)

Return Values
FSP_SUCCESS /* Successfully completed */
FSP_ERR ASSERTION /* Argument pointer not specified */
FSP_ERR NOT_OPEN /* Called without calling Open() */

Properties
Prototype is declared in r_ctsu_api.h.

Description
This function stops measuring the specified touch interface configuration.

Example:
fsp err t err;

/* Stop CTSU module */
err = R CTSU ScanStop (&g ctsu ctrl);

Special Notes:
None

R11AN0484EJ0140 Rev.1.40 Page 33 of 37



RL78 Family CTSU Module Software Integration System

3.9 R=CTSU=SpecificDataGet

This function reads the measurements for the specified data type for the specified touch interface

configuration.
Format
fsp err t R CTSU SpecificDataGet (ctsu ctrl t * const p_ctrl,
uintlé t * p specific data,
ctsu specific data type t specific data type)
Parameters
p_ctrl Pointer to the control structure (normally generated by QE for Capacitive Touch)
p_specific_data Pointer to specific data array.

specific_data_type  Specific data type to get

Return Values

FSP_SUCCESS /* CTSU initialization successfully completed */

FSP_ERR ASSERTION /* Argument pointer not specified */

FSP_ERR NOT_OPEN /* Called without calling Open() */

FSP_ERR _CTSU_SCANNING /* Scanning */

FSP_ERR CTSU_INCOMPLETE TUNING /* Tuning initial offset */

FSP_ERR _NOT_ENABLED /* CTSU_SPECIFIC_SELECTED _FREQ for CTSU1 */
Properties

Prototype is declared in r_ctsu_api.h.

Description
When CTSU_SPECIFIC_RAW_DATA is set for specific_data_type, RAW data will be stored in

p_specific_data. These are the data before the calculation of the sensor ICO correction in 1.1.3.

When CTSU_SPECIFIC_CORRECTION_DATA is set for specific_data_type, the corrected data is stored
in p_specific_data. These are the data after the calculation of the sensor ICO correction in 1.1.3.

In CTSUZ2, these store the number of data obtained by multiplying the number of channels by the number
of multi-frequency.

When CTSU_SPECIFIC_SELECTED_DATA is set for specific_data_type, p_specific_data stores the
bitmap of the frequency used by the majority vote. Only valid for CTSUZ2. For example, store 0x05 if the 1st
and 3rd frequencies were used.

Example:
fsp err t err;
uintl6 t specific data[CTSU CFG NUM SELF ELEMENTS * CTSU CFG NUM SUMULTI]

/* Get Specific Data */
err = R CTSU SpecificDataGet (&g ctsu ctrl, &specific datal0],
CTSU SPECIFIC CORRECTION DATA) ;

R11AN0484EJ0140 Rev.1.40 Page 34 of 37



RL78 Family CTSU Module Software Integration System

Special Notes:
None

R11AN0484EJ0140 Rev.1.40 Page 35 of 37



RL78 Family CTSU Module Software Integration System

3.10 R=CTSU=DataInsert

This function inserts the specified data in buffer of touch measurement results for the specified touch

interface configuration.

Format
fsp err t R CTSU Datalnsert (ctsu ctrl t * const p ctrl,
uintl6 t * p insert data)

Parameters
p_ctrl Pointer to the control structure (normally generated by QE for Capacitive Touch)
p_insert_data Pointer to insert data array.

Return Values

FSP_SUCCESS /* CTSU initialization successfully completed */

FSP_ERR _ASSERTION /* Argument pointer not specified */

FSP_ERR NOT_OPEN /* Called without calling Open() */

FSP_ERR CTSU_SCANNING /* scanning */

FSP_ERR _CTSU_INCOMPLETE_TUNING /*Tuning initial offset */
Properties

Prototype is declared in r_ctsu_api.h.

Description

This function is supposed to process the data acquired by R_CTSU_SpecificDataGet () in the user
application, such as noise suppression, and store the data in this function. Set the start address of the data
array to be stored in p_insert_data. For self-capacity mode, store in p_ctrl-> p_self data. For mutual

capacity, store in p_ctrl-> p_mutual_pri_data and p_crtl-> p_mutual_snd_data.

Example:
fsp err t err;
uintl6 t specific data[CTSU CFG NUM SELF ELEMENTS * CTSU CFG NUM SUMULTI]

/* Get Specific Data */
err = R CTSU DataGet (&g ctsu ctrl, &specific data[0],
CTSU _SPECIFIC CORRECTION DATA) ;

/* Noise filter process */

/* Insert data */
err = R CTSU Datalnsert (&g ctsu ctrl, &specific datal0]);

Special Notes:
None

R11AN0484EJ0140 Rev.1.40 Page 36 of 37



RL78 Family CTSU Module Software Integration System

3.11 R _CTSU_OffsetTuning

This function adjusts the offset register (SO) for the specified touch interface configuration.

Format
fsp err t R CTSU OffsetTuning (ctsu ctrl t * const p ctrl);

Parameters
p_ctrl
Pointer to the control structure (normally generated by QE for Capacitive Touch)

Return Values

FSP_SUCCESS /* CTSU successfully configured */

FSP_ERR ASSERTION /* Argument pointer not specified */

FSP_ERR NOT_OPEN /* Called without calling Open() */

FSP_ERR CTSU_SCANNING /* scanning */

FSP_ERR CTSU_INCOMPLETE TUNING /*Tuning initial offset */
Properties

Prototype is declared in r_ctsu_api.h.

Description

This function adjusts the offset using all the previously measured values. Call this function after the
measurement is complete. Execute this function once, it returns FSP_ERR_CTSU_INCOMPLETE_TUNING
until the offset adjustment is completed. Return FSP_SUCCESS when the offset adjustment is complete.
Repeat the measurement and this function call until the offset adjustment is completed. See Chapter 1.1.4
for offset adjustment. If automatic judgement is enabled, set the baseline initialization bit flag after offset

adjustment is complete.

Example:
fsp err t err;
err = R CTSU ScanStart (g ge ctsu instance config0l.p ctrl);
while (0 == g ge touch flag) ({}
g _ge_touch flag = 0;
err = R CTSU OffsetTuning (g _ge ctsu instance config0l.p ctrl);

Special Notes:
None

R11AN0484EJ0140 Rev.1.40 Page 37 of 37



RL78 Family

CTSU Module Software Integration System

Revision History

Description
Rev. Date Page Summary
1.00 Apr.13.21 - First edition issued
1.10 Aug.31.21 5 Added 1.1.9 Diagnosis Function
5 Added 1.1.10 Automatic judgment measurement using SMS
8 Added 1.2.5 Diagnosis Mode
9 Updated 1.4 API overview
11 Updated 2.7 Compilation settings
13 Updated 2.8 Code size
13 Updated 2.9 Arguments
16 Updated 2.10 Return Values
- Deleted R_CTSU_VersionGet
24 Added 3.5 R_CTSU_SmsSet
27 Added 3.7 R_CTSU_Diagnosis
29 Added 3.8 R_CTSU_ScanStop
1.11 Jan.18.22 34 Added 1.1.4 Initial offset adjustment
5 Added 1.1.6 multi-measurement frequency (CTSUZ2L)
9 Updated 1.4 API overview
10 Updated 2.2 Software Requirements
Updated 2.3 Supported Toolchains
13 Updated 2.8 Code size
13-14 Updated 2.9 Arguments
30-31 Added 3.8 R_CTSU_SpecificDataGet
31-32 Added 3.9 R_CTSU_Datalnsert
1.20 Apr.20.22 6 Added 1.1.10 Automatic judgment measurement using SMS
4,5 Fixed PCLKB to fcik
9 Updated 1.4 API overview
33 Added 3.11 R_CTSU_OffsetTuning
24 Fixed Example: in 3.5 R_CTSU_SmsSet
1.30 Feb.14.23 1 Added RL78/G22 to Target Device
6 Updated 1.1.11 Automatic judgment measurement using
SMS
7 Added 1.1.12 MEC Function (RL78/G16, RL78/G22)
12 Updated 2.2 Software Requirements
12 Updated 2.3 Supported Toolchains
13,14 Updated 2.7 Compilation Settings
13 Updated 2.8 Code Size
15,16 Updated 2.9 Arguments
18 Updated 2.10 Return Values
24 Updated 3.5 R_CTSU_SmsSet
1.40 Jun.14.23 1 Added RL78/G16 group to Target Device
3 Added CTSU description to 1 Overview
3 Updated 1.1.2 Measurements and Obtaining Data
4 Added CTSU1 function description to 1.1.4 Initial Offset
Adustment

R11AN0484EJ0140 Rev.1.40
Jun.14.23

Page 38 of 37
RENESAS



RL78 Family

CTSU Module Software Integration System

10,11
14
14
14
18
18
31

Added 1.1.5 Random Pulse Frequency Measurement
(CTSU1)

Added CTSU1 function description to 1.1.10 Diagnosis
Function

Added CTSU1 function description to 1.2 Measurement Mode
Updated 2.1 Hardware Requirements

Updated 2.2 Software Requirements

Updated 2.4 Restrictions

Updated 2.8 Code Size

Updated 2.9 Arguments

Updated 3.7 R_CTSU_Diagnosis

R11AN0484EJ0140 Rev.1.40
Jun.14.23

Page 39 of 37
RENESAS



General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the

products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LS| are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an 1/0 pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between Vi
(Max.) and Vi (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between V. (Max.) and Viu (Min.).
7. Pronhibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSl is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-
evaluation test for the given product.



Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. Nolicense, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics

or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home
electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’'s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such

specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance

with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. ltis the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

(Rev.5.0-1 October 2020)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2023 Renesas Electronics Corporation. All rights reserved.



