
 Application Note

R11AN0484EJ0140 Rev.1.40 Page 1 of 37

Jun.14.23

RL78 Family

CTSU Module Software Integration System

Introduction

This application note describes the CTSU Module.

Target Device

RL78/G23 Group

RL78/G22 Group

RL78G16 Group

Related Documents

 RL78 Family TOUCH Module (R11AN0485)

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0140 Rev.1.40 Page 2 of 37

Jun.14.23

Contents

1. Overview ..3
1.1 Functions ...3

1.1.1 QE for Capacitive Touch Usage ..3
1.1.2 Measurements and Obtaining Data ...3
1.1.3 Sensor ICO Correction function ...3
1.1.4 Initial Offset Adjustment ...4
 The measurement time changes depending on CTSUSNUM. If STCLK cannot be set to 0.5MHz, it will

not support the table above. When setting STCLK to other than 0.5MHz because the CTSU clock is not

an integer, follow the hardware manual for the measurement time. ...4
1.1.5 Random Pulse Frequency Measurement (CTSU1) ...4
1.1.6 Multi-frequency Measurements (CTSU2L) ..5
1.1.7 Shield Function (CTSU2L) ...6
1.1.8 Measurement Error Message ..6
1.1.9 Moving Average ...7
1.1.10 Diagnosis Function...7
1.1.11 Automatic judgment measurement using SMS (CTSU2L) ..7
1.1.12 MEC Function (RL78/G16, RL78/G22) ..8

1.2 Measurement Mode .. 10
1.2.1 Self-capacitance Mode ... 10
1.2.2 Mutual Capacitance Mode .. 10
1.2.3 Current Measurement Mode ... 11
1.2.4 Temperature Correction Mode (CTSU2L)... 11
1.2.5 Diagnosis Mode .. 12

1.3 Measurement Timing .. 13
1.4 API Overview .. 13

2. API Information ... 14
2.1 Hardware Requirements ... 14
2.2 Software Requirements .. 14
2.3 Supported Toolchains ... 14
2.4 Restrictions ... 14
2.5 Header File ... 15
2.6 Integer Type .. 15
2.7 Compilation Settings ... 16
2.8 Code Size ... 18
2.9 Arguments .. 18
2.10 Return Values ... 22

3. API Functions .. 23
3.1 R_CTSU_Open ... 23
3.2 R_CTSU_ScanStart.. 25
3.3 R_CTSU_DataGet .. 26
3.4 R_CTSU_CallbackSet .. 27
3.5 R_CTSU_SmsSet ... 28
3.6 R_CTSU_Close .. 30
3.7 R_CTSU_Diagnosis.. 31
3.8 R_CTSU_ScanStop .. 33
3.9 R_CTSU_SpecificDataGet ... 34
3.10 R_CTSU_DataInsert ... 36
3.11 R_CTSU_OffsetTuning ... 37

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0140 Rev.1.40 Page 3 of 37

Jun.14.23

1. Overview

The CTSU module is a CTSU driver for the Touch Module. The CTSU module is configured assuming

access via the Touch middleware layer, but can also be accessed from the user application.

These are functionally different, so these are described in this application note as below.

・Common description for CTSU, CTSU2L -> CTSU

・Description only for CTSU -> CTSU1

・Description only for CTSU2L -> CTSU2L

* Without mention, it means the common description for CTSU, CTSU2L

1.1 Functions

The CTSU module supports the following functions.

1.1.1 QE for Capacitive Touch Usage

The module provides various capacitive touch measurements based on configuration settings generated

by QE for Capacitive Touch.

As a part of the configuration settings, the touch interface configuration displays the combination of

terminals to be measured (referred to as TS) and the corresponding measurement mode. Multi-touch

interface configurations are necessary when the development product has a combination of different

measurement modes or when the active shield is used.

1.1.2 Measurements and Obtaining Data

Measurements can be started by a software trigger or by an external event triggered by the Event Link

Controller (RL78/G23 : ELCL ,RL78/G22 : ELC). The RL/78G16 group does not have an Event Link

Controller, so external events cannot be specified. Use an interval timer for external triggering.

As the measurement process is carried out by the CTSU peripheral, it does not use up main processor

processing time.

The CTSU module processes INTCTSUWR and INTCTSURD if generated during a measurement. The

data transfer controller (DTC) can also be used for these processes. The RL78/G16 group does not have a

DTC, so DTC cannot be used.

When the measurement complete interrupt (INTCTSUFN) process is complete, the application is notified in

a callback function. Make sure you obtain the measurement results before the next measurement is started

as internal processes are also executed when a measurement is completed.

Start the measurement with API function R_CTSU_ScanStart().

Obtain the measurement results with API function R_CTSU_DataGet().

1.1.3 Sensor ICO Correction function

The CTSU peripheral has a built-in correction circuit to handle the potential microvariations related to the

manufacturing process of the sensor ICO MCU.

The module temporarily transitions to the correction process during initialization after power is turned on. In

the correction process, the correction circuit is used to generate a correction coefficient (factor) to ensure

accurate sensor measurement values.

When temperature correction for CTSU2L is enabled, an external resistor connected to a TS terminal is

used to periodically update the correction coefficient. By using an external resistor that is not dependent on

temperature, you can even correct the temperature drift of the sensor ICO.

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0140 Rev.1.40 Page 4 of 37

Jun.14.23

1.1.4 Initial Offset Adjustment

The CTSU peripheral was designed with a built-in offset current circuit in consideration of the amount of

change in current due to touch. The offset current circuit cancels enough of the parasitic capacitance for it to

fit within the sensor ICO dynamic range.

This module automatically adjusts the offset current setting. As the adjustment uses the normal

measurement process, R_CTSU_ScanStart() and R_CTSU_DataGet() must be repeated several times after

startup. Because the ctsu_element_cfg_t member “so” is the starting point for adjustments, you can set the

appropriate value for “so” in order to reduce the number of times the two functions must be run to complete

the adjustment. Normally, the value used for “so” is a value adjusted by QE for Capacitive Touch.

This function can be turned off in the configuration settings.

Default target value

Mode Default target value

Self-capacitance 15360 (37.5%)

Self-capacitance using active shield 6144 (15%)

Mutual-capacitance 10240 (20%)

The percentage is for the CCO's input limit. 100% is the measured value 40960.The default target value is

based on 256us.When the measurement time is changed, the target value is adjusted by the ratio with the

base time.

Example of target value in combination of CTSUSNUM and CTSUSDPA

・CTSU1 (CTSU clock = 32MHz、Self-capacitance mode)

Target value CTSUSNUM CTSUSDPA Measurement time

15360 0x3 0x7 526us

30720 0x7 0x7 1052us

30720 0x3 0xF 1052us

7680 0x1 0x7 263us

7680 0x3 0x3 263us

The measurement time changes depending on the combination of CTSUSNUM and CTSUSDPA.

In the above table, CTSUPRRTIO is the recommended value of 3, and CSTUPRMODE is the recommended

value of 2. When changing CTSUPRRATIO and CTSUPRMODE from the recommended values, follow the

Hardware Manual for the measurement time.

・CTSU2 (Self-capacitance mode)

Target value Target value (multi frequency) CTSUSNUM Measurement time

7680 15360 (128us + 128us) 0x7 128us

15360 30720 (256us + 256us) 0xF 256us

3840 7680 (64us + 64us) 0x3 64us

The measurement time changes depending on CTSUSNUM. If STCLK cannot be set to 0.5MHz, it will not

support the table above. When setting STCLK to other than 0.5MHz because the CTSU clock is not an

integer, follow the hardware manual for the measurement time.

1.1.5 Random Pulse Frequency Measurement (CTSU1)

The CTSU1 peripheral measures at one drive frequency.

The drive frequency determines the amperage to the electrode and generally uses the value tuned with QE

for Capacitive Touch.

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0140 Rev.1.40 Page 5 of 37

Jun.14.23

The drive frequency is calculated as below.

It is determined by PCLK frequency input to CTSU, CTSU Count Source Select bit(CTSUCLK), and CTSU

Sensor Drive pulse Division Control bit(CTSUSDPA). For example, If it is set PCLK =32MHz, CTSUCLK =

PLCK/2, and CTSUSDPA = 1/16, then drive frequency is 0.5MHz. CTSUSDPA can change for each TS port.

Figure 1 Drive Frequency Settings

The actual drive pulse is phase-shifted and frequency-spread with respect to the clock based on the drive

frequency as a measure against external environmental noise. This module is fixed at initialization and sets

the following.

CTSUSOFF = 0, CTSUSSMOD = 0, CTSUSSCNT = 3

1.1.6 Multi-frequency Measurements (CTSU2L)

The CTSU2L peripheral can measure in one of four drive frequencies to avoid synchronous noise.

With the default settings, the module takes measurements at three different frequencies. After

standardizing the results obtained at the three frequencies in accordance with the first frequency reference

value, the measured value is determined based on majority in a process referred to as “normalization.”

The user can get the data before the majority decision. The user can also use this data for your own noise
filtering. If the processed data is written back to the module buffer, it can be judged by the TOUCH module.
See Chapters 3.9 and 3.10 for details.

Figure 2 Multi-frequency Measurements

Drive frequency is determined based on the config settings. The module sets registers according to the

config settings, and sets the three drive frequencies.

Drive frequency is calculated in the following equation:

(fCLK frequency / CLK / STCLK) x SUMULTIn / 2 / SDPA : n = 0, 1, 2

The figure below shows the settings for generating a 2MHz drive frequency when the fCLK frequency is 32

MHz. SDPA can be set for each touch interface configuration.

CTSU operating clock

selection bit

PCLK

PCLK/2

PCLK/4

CTSU base clock setting bit

2 divisions

4 divisions

・

・

64 divisions

PCLK
Drive

frequency

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0140 Rev.1.40 Page 6 of 37

Jun.14.23

Figure 3 Drive Frequency Settings

1.1.7 Shield Function (CTSU2L)

The CTSU2L peripheral has a built-in function that outputs a shield signal in phase with the drive pulse

from the shield terminal and the non-measurement terminal in order to shield against external influences

while suppressing any increase in parasitic capacitance. This function can only be used during self-

capacitance measurements.

This module allows the user to set a shield for each touch interface configuration.

For example, for the electrode configuration shown in, the members of ctsu_cfg_t should be set as follows.

Other members have been omitted for the example.

.txvsel = CTSU_TXVSEL_INTERNAL_POWER,

.txvsel2 = CTSU_TXVSEL_MODE,

.md = CTSU_MODE_SELF_MULTI_SCAN,

.posel = CTSU_POSEL_SAME_PULSE,

.ctsuchac0 = 0x0F,

.ctsuchtrc0 = 0x08,

Figure 4 Example of Shield Electrode Structure

1.1.8 Measurement Error Message

When the CTSU peripheral detects an abnormal measurement, it sets the status register bit to 1.

In the measurement complete interrupt process, the module reads ICOMP1, ICOMP0, and SENSOVF of the

status register and notifies the results in the callback function. The status register is reset after the contents

are read. For more details on abnormal measurements, refer to “member event” in the ctsu_callback_args_t

callback function argument.

fCLK

STCLK

SUCLK

STCLK

SUMULTIn

SDPA

Drive Freq

32MHz

0.5MHz

32MHz
16MHz

2MHz

2div

64div (/2, /4,,, /64 ,,,/128)

64mul (*1, *2,,,*64,,,*256)

8div (/1, /2,,, /8,,,/256)

Auto-set STCLK bit so that STCLK is 0.5MHz

CTSU_CFG_SUMULTIn

Common setting for 3 frequencies
sdpa of r_element_cfg

CLK 1div (/1, /2, /4, /8)

CTSU_CFG_PCLK_DIVISION

Config Setting Register Clock

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0140 Rev.1.40 Page 7 of 37

Jun.14.23

1.1.9 Moving Average

This function calculates the moving average of the measured results.

Set the number of times the moving average should be calculated in the config settings.

1.1.10 Diagnosis Function

The CTSU peripheral has a built-in function that diagnoses its own inner circuit. This diagnosis function

provides the API for diagnosing the inner circuit.

The diagnostic requirements are different for CTSU1 and CTSU2L providing 5 types of diagnosis for

CTSU1 and 9 types for CTSU2L.The diagnosis function is executed by calling the API function. This is

executed independently from the other measurements and does not affect them.

To enable the diagnosis function, set CTSU_CFG_DIAG_SUPPORT_ENABLE to 1.

CTSU1 and CTSU2L use ADC.

1.1.11 Automatic judgment measurement using SMS (CTSU2L)

This function uses SMS to operate from measurement to touch judgment without CPU operation. Since the

CPU operates only in STOP mode and SNOOZE mode, it can measure with low power consumption. Only

external trigger setting and DTC setting is supported. Please use 32-bit interval timer with fsxp selected for the

external trigger.

For the touch interface for which you want to use this function, please call R_CTSU_SmsSet () and then

start measurement with R_CTSU_ScanStart (). It is recommended to execute after the initial offset

adjustment is completed.

Every time the CTSU peripheral measures with an external trigger and reads the result, SMS performs the

processing equivalent to R_CTSU_DataGet () and the touch judgment processing.

When touch ON is determined, an INTSMSE interrupt is occurred and the same callback function as for

normal measurement is called and cancel the SMS measurement setting. At that time the application can get

the measurement result by calling R_CTSU_DataGet () as in the normal operation.

When using this function, SMS cannot be used for other processing of the system.

To enable this function, set the measurement setting by external trigger and

CTSU_CFG_DTC_SUPPORT_ENABLE to 1 and CTSU_CFG_SMS_SUPPORT_ENABLE to 1. Since DTC

repeat transmission is used, the lower 8 bits of the variable specified in the repeat area must be 00H.

Therefore, set the address of the RAM area and the address where the lower 8 bits are 00H in

CTSU_CFG_SMS_TRANSFER_ADDRESS and CTSU_CFG_SMS_CTSUWR_ADDRESS. Variables placed

in CTSU_CFG_SMS_TRANSFER_ADDRESS use 544 bytes. The variable placed in

CTSU_CFG_SMS_CTSUWR_ADDRESS uses (4 * number of elements * number of multi-frequency). For

example, 36 bytes are used for 3 frequency measurement with 3 self-capacity buttons.

To tuning with the QE for Capacitive Touch, set CTSU_CFG_SMS_TRANSFER_ADDRESS to value other

than 0xFEF00 to 0xFC800, and CTSU_CFG_SMS_CTSUWR_ADDRESS to value other than 0xFF200 to

0xFCB00.

Figure 5 shows the flow of modules used for SMS measurement with RL78/G22.

Port output using DTC from CTSU2L. An interrupt signal is generated using the signal output from the port.

An interrupt signal triggers the ELC to start SMS processing.

Figure 5 Module flow used for SMS measurement with RL78/G22

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0140 Rev.1.40 Page 8 of 37

Jun.14.23

To perform automatic judgment measurement using SMS in the RL78/G22, set the following.

i. Setting Port

Set the port register to CTSU_CFG_SMS_EXTRIGGER_PORT, and set the bit used by the register to

CTSU_CFG_SMS_EXTRIGGER_BIT. For example, when using P140 register, set

CTSU_CFG_SMS_EXTRIGGER_PORT to P14 and CTSU_CFG_SMS_EXTRIGGER_BIT to 1. Also,

before starting measurement, set the port to be used to output and set it to low output.

ii. External interrupt

Set the interrupt number to CTSU_CFG_SMS_ELC_INTP. For example, when using INTP1, set

CTSU_CFG_SMS_ELC_INTP to 1. Also, set the external interrupt to be used to enable interrupt before

starting measurement.

Connect the port and the external interrupt on the board.

This feature does not perform with the self-capacitance to 9 elements or more and the mutual capacitance

to 8 elements or more.

1.1.12 MEC Function (RL78/G16, RL78/G22)

The CTSU peripheral in RL78/G16 and RL78/G22 has MEC (Multiple Electrode Connection) function that

connects multiple electrodes and measures them as a single electrode. This feature is only available in self-

capacitance mode.

This is an example when using three electrodes. In normal times, normal measurement is performed, and

3 channels are measured to get each measured value. In power saving, MEC measurement is performed,

and one channel is measured by combining three channels to acquire one measured value.

Figure 6 shows a compare of time of normal measurement and MEC measurement. Since multi channels

are measured at the same time, the measurement time is shortened.

Figure 6 Compare of time between normal measurement and MEC measurement

To enable the code for the MEC feature, set

CTSU_CFG_MULTIPLE_ELECTRODE_CONNECTION_ENABLE to 1.

When using MEC, create a touch interface configuration different from the normal touch interface

configuration for the same TS. The following settings are required for the touch interface configuration for

MEC measurement.

To enable MEC for touch interface configurations by setting tsod in ctsu_cfg_t to 1.

Set mec_ts of ctsu_cfg_t to one of the TS numbers to be measured.

If you want to use the shield function at the same time, set the TS number of the shield terminal in

mec_shield_ts of ctsu_cfg_t. In this case, only one TS can be used as a shield terminal.

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0140 Rev.1.40 Page 9 of 37

Jun.14.23

Set num_rx of ctsu_cfg_t to 1.

For example, in the case of the electrode configuration shown in 7, set the members of ctsu_cfg_t as shown

below. Other members are omitted here.

.tsod = 1,

.mec_ts = 0,

.mec_shield_ts = 3,

.num_rx = 1,

Figure 7 Example of MEC and shield electrode configuration

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0140 Rev.1.40 Page 10 of 37

Jun.14.23

1.2 Measurement Mode

This module supports all three modes offered by the CTSU2L peripheral: self-capacitance, mutual

capacitance, and current measurement modes. The temperature correction mode is also offered as a mode

for updating the correction coefficient.

1.2.1 Self-capacitance Mode

The self-capacitance mode is used to measure the capacitance of each terminal (TS).

The CTSU peripheral measures the terminals in ascending order according to the TS numbers, then stores

the data. For example, even if you want to use TS5, TS8, TS2, TS3 and TS6 in your application in that order,

they will still be measured and stored in the order of TS2, TS3, TS5, TS6, and TS8. Therefore, you will need

to reference buffer indexes [2], [4], [0], [1], and [3].

[CTSU1]

In default settings, the measurement period for each TS is wait-time plus approximately 526us.

Figure 8 Self-capacitance Measurement Period (CTSU1)

[CTSU2L]

In default settings, the measurement period for each TS is approximately 576us.

Figure 9 Self-capacitance Measurement Period

1.2.2 Mutual Capacitance Mode

The mutual capacitance mode is used to measure the capacitance generated between the receive TS (Rx)

and transmit TS (Tx), and therefore requires at least two terminals.

The CTSU peripheral measures all specified combinations of Rx and Tx. For example, when Rx is TS1

and TS3, and Tx is TS2, TS7 and TS4, the combinations are measured in the following order and the data is

stored.

TS3-TS2, TS3-TS4, TS3-TS7, TS10-TS2, TS10-TS4, TS10-TS7

To measure the mutual capacitance generated between electrodes, the CTSU peripheral performs the

measurement process on the same electrode twice.

SST : 32

CTSUPRMODE : 2

CTSUPRRATIO : 3

576us approx.

Measurement Period = (1/STCLK) * 8 * (SNUM+1) * 3 = 384us
Wait time = (1/STCLK) * (SST+1) * 3 = 192us

STCLK : 0.5

SNUM : 7

SST : 31

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0140 Rev.1.40 Page 11 of 37

Jun.14.23

The mutual capacitance is obtained by inverting the phase relationship of the pulse output and switched

capacitor in the primary and secondary measurements, and calculating the difference between the two

measurements. This module does not calculate the difference, but outputs the secondary measured result.

[CTSU1]

In default settings, the measurement period for each TS is twice of wait-time plus approximately 526us.

[CTSU2L]

In default settings, the measurement period for each TS is approximately 1152us.

Figure 10 Mutual Capacitance Measurement Period

1.2.3 Current Measurement Mode

The current measurement mode is used to measure the minute current input to the TS terminal.

The order of measurement and data storage is the same as that of the self-capacitance mode.

As this does not involve the switched capacitor operation, the measurement is only performed once. The

measurement period for one TS under default settings is approximately 256us. The current measurement

mode requires a longer stable wait time than the other modes, so the SST is set to 63.

Figure 11 Current Measurement Period

1.2.4 Temperature Correction Mode (CTSU2L)

The temperature correction mode is used to periodically update the correction coefficient using an external

resistor connected to a TS terminal. This involves three processes as described below. Also refer to the

timing chart in Figure 12.

1. Measure the correction circuit. One set comprises twelve measurements.

2. Measure the current when TSCAP voltage is applied to the external resistor to create a correction

coefficient based on an external resistor that does not depend on temperature. Execute the next

measurement after the previous measurement set is completed (as described in step 1).

3. Flow offset current to the external resistor and measure the voltage with the ADC. This will adjust the

RTRIM register and handle the temperature drift of the internal reference resistor. In the config settings, set

the number of times step 2 should be executed before carrying out this measurement.

1152us approx.

Measurement Period = (1/STCLK) * 8 * (SNUM+1) * 3 * 2= 768us
Wait time = (1/STCLK) * (SST+1) * 3 * 2= 384us

STCLK : 0.5

SNUM : 7

SST : 31

256us approx.

Measurement Period = (1/STCLK) * 8 * (SNUM+1) = 128us
Wait time = (1/STCLK) * (SST+1) = 128us

STCLK : 0.5

SNUM : 7

SST : 63

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0140 Rev.1.40 Page 12 of 37

Jun.14.23

Figure 12 Temperature Correction Measurement Timing Chart

1.2.5 Diagnosis Mode

The diagnosis mode is a mode in which various internal measurement values are scanned by using this

diagnosis function.

The details are described in 1.1.10.

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0140 Rev.1.40 Page 13 of 37

Jun.14.23

1.3 Measurement Timing

As explained in section 1.1.2, measurements are initiated by a software trigger or an external event which

is triggered by the Event Link Controller (ELCL/ELC).

The most common method is using a timer to carry out periodic measurements. Make sure to set the timer

interval to allow the measurement and internal value update processes to complete before the next

measurement period. The measurement period differs according to touch interface configuration and

measurement mode. See section 1.2 for details.

The execution timing of software triggers and external triggers differ slightly.

Since a software trigger sets the start flag after setting the touch interface configuration with

R_CTSU_ScanStart (), there is a slight delay after the timer event occurrence. However, as the delay is

much smaller than the measurement period, a software trigger is recommended for most instances as it is

easy to set.

An external trigger is recommended for applications in which this slight delay is not acceptable or that

require low-power consumption operations. When using an external trigger with multiple touch interface

configurations, use R_CTSU_ScanStart() to set another touch interface configuration after one measurement

is completed.

1.4 API Overview

The CTSU module includes the following functions.

Function Description

R_CTSU_Open() Initializes the specified touch interface configuration.

R_CTSU_StartScan() Starts measurement of specified touch interface configuration.

R_CTSU_DataGet() Gets measured values of specified touch interface configuration.

R_CTSU_CallbackSet() Set callback function of specified touch interface configuration.

R_CTSU_SmsSet() Makes settings for automatic judgment measurement using SMS of the

specified touch interface configuration.

R_CTSU_Close() Closes specified touch interface configuration.

R_CTSU_Diagnosis() Executes diagnosis.

R_CTSU_StartStop() Stops measurement of the specified touch interface configuration.

R_CTSU_SpecificDataGet() Read the measurements for the specified data type for the specified

touch interface.

R_CTSU_DataInsert() Inserts the specified data in buffer of touch measurement results for the

specified touch interface configuration.

R_CTSU_OffsetTuning Adjusts the offset register (SO) for the specified touch interface

configuration.

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0140 Rev.1.40 Page 14 of 37

Jun.14.23

2. API Information

Operations of this module has been confirmed under the following conditions.

2.1 Hardware Requirements

The MCU used in the development must support the following function.

⚫ CTSU

⚫ CTSU2L

2.2 Software Requirements

This driver depends on the following module:

⚫ Board Support Package (r_bsp) v1.50 or newer.

According to the configuration settings, the driver may also depend on the following modules:

⚫ Code generator DTC v1.00 or newer

This driver assumes use of the capacitive touch sensor development support tool:

⚫ QE for Capacitive Touch V3.3.0 or newer.

2.3 Supported Toolchains

Module operations have been confirmed on the following toolchains.

⚫ Renesas CC-RL Toolchain v1.12.00

⚫ IAR Embedded Workbench for Renesas RL78 v4.21.3

⚫ LLVM for Renesas RL78 v10.0.202209

2.4 Restrictions

The module code is non-reentrant and protects simultaneous calls for multiple function.

When using the LLVM compiler in the RL78/G16 group, it is necessary to check the following CPU Options

when creating a project. After the project is created, it can be set from the project properties.

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0140 Rev.1.40 Page 15 of 37

Jun.14.23

2.5 Header File

All interface definitions to be called and used in the API are defined in ”r_ctsu_api.h”.

Select “r_ctsu_config.h” as the configuration option in each build.

2.6 Integer Type

This driver uses ANSI C99. The types are defined in “stdint.h”.

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0140 Rev.1.40 Page 16 of 37

Jun.14.23

2.7 Compilation Settings

The following table provides the names and setting values for the configuration option settings used the

CTSU module.

r_ctsu_config.h Configuration Options

CTSU_CFG_PARAM_CHECKING_ENABLE

*Default value:

“BSP_CFG_PARAM_CHECKING_ENABLE”

Selects whether to include the parameter check process in the

code.

Selecting “0” allows the user to omit the parameter check process

from the code to shorten the code size.

“1”: Omit parameter check process from code.

“2”: Include parameter check process in code.

“BSP_CFG_PARAM_CHECKING_ENABLE”: Selection depends on

BSP setting.

CTSU_CFG_USE_DTC

*Default value: “0”

Select “1” to use the DTC, rather than the main processor, to run

the CTSU2L’s CTSUWR interrupt and CTSURD interrupt

processes.

Note:

If the DTC is used elsewhere in the application, it may compete with

the use of this driver.

CTSU_CFG_DTC_USE_SC

*Default value: “0”

When using DTC, select whether to use the DTC settings of Smart

Configurator.

“0”: DTC setting inside the CTSU module is used.

“1”: DTC setting in Smart Configurator.

When using the DTC setting in the RL78/G23 group, assign

CTSUWR to No.22 and CTSURD to No.23, and set normal mode

and 16-bit transfer.

When using the DTC setting in the RL78/G22 group, assign

CTSUWR to 21 and CTSURD to 22, set normal mode, 16-bit

transfer, and DTC base address to 0xFFB00.

CTSU_CFG_SMS_SUPPORT_ENABLE

*Default value: “0”

Select whether to enable the automatic judgment measurement

function using SMS.

CTSU_CFG_SMS_TRANSFER_ADDRESS

*Default value: “0xFF800”

This is the address setting of the repeat area used for DTC repeat

transfer. See Section 1.1.11.

CTSU_CFG_SMS_CTSUWR_ADDRESS

*Default value: “0xFFB00”

This is the address setting of the repeat area used for DTC repeat

transfer. See Section 1.1.11.

CTSU_CFG_INTCTSUWR_PRIORITY_LEVEL

*Default value: “2”

Sets the CTSUWR interrupt priority level (also necessary when

using the DTC). The priority level range is from 0 (high) to 3 (low).

CTSU_CFG_INTCTSURD_PRIORITY_LEVEL

*Default value: “2”

Sets the CTSURD interrupt priority level (also necessary when

using the DTC). The priority level range is from 0 (high) to 3 (low).

CTSU_CFG_INTCTSUFN_PRIORITY_LEVEL

*Default value: 2

Sets the CTSUFN interrupt priority level. The priority level range is

from 0 (high) to 3 (low).

CTSU_CFG_SMS_EXTRIGGER_PORT

*Default value: “P14”

Set the output port for calling SMS. The range is P0 ~ P7, P12 ~

P14 that can be set as an output port.

CTSU_CFG_SMS_EXTRIGGER_BIT

*Default value: “1”

Sets the output port bitmap for calling SMS.

CTSU_CFG_SMS_ELC_INTP

*Default value: “1”

Set the number of the interrupt input function to call SMS. The

range is 0 to 7.

The following configurations depend on the touch interface configuration and cannot be set using Smart Configurator.

These configurations are set when using QE for Capacitive Touch. In this case, QE_TOUCH_CONFIGURATION is

defined in the project. Although r_ctsu_config.h becomes invalid, qe_touch_define.h is defined instead.

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0140 Rev.1.40 Page 17 of 37

Jun.14.23

CTSU_CFG_NUM_SELF_ELEMENTS Sets the total number of TS for self-capacitance, current

measurement, and temperature correction.

CTSU_CFG_NUM_MUTUAL_ELEMENTS Sets the total number of matrixes for mutual capacitance

CTSU_CFG_LOW_VOLTAGE_MODE Enables/disables the low voltage mode. This value is set in the

CTSUCRAL register’s ATUNE0 bit.

CTSU_CFG_PCLK_DIVISION Sets the PCLK frequency division rate. This value is set in the

CTSUCRAL register’s CLK bit.

CTSU_CFG_TSCAP_PORT Sets the TSCAP port.

Example: For P30, set 0x0300.

CTSU_CFG_VCC_MV Sets the VCC (voltage).

Example: for 5.00V, set 5000.

CTSU_CFG_NUM_SUMULTI Sets the number of multi-frequency measurements.

CTSU_CFG_SUMULTI0 Sets the multiplication factor for the first frequency in a multi-

frequency measurement.

Recommended: 0x3F

CTSU_CFG_SUMULTI1 Sets the multiplication factor for the second frequency in a multi-

frequency measurement.

Recommended: 0x36

CTSU_CFG_SUMULTI2 Sets the multiplication factor for the third frequency in a multi-

frequency measurement.

Recommended: 0x48

CTSU_CFG_TEMP_CORRECTION_SUPPORT Enables/disables temperature correction.

CTSU_CFG_TEMP_CORRECTION_TS Sets the temperature correction terminal number.

CTSU_CFG_TEMP_CORRECTION_TIME Sets the update interval for the correction coefficient of the

temperature correction. Assuming 13 measurements per set in the

temperature correction mode, indicate the number of sets per

update.

CTSU_CFG_CALIB_RTRIM_SUPPORT Enables/disables RTRIM correction for temperature correction.

The ADC must be selected to operate with RTRIM correction

enabled.

CTSU_CFG_DIAG_SUPPORT_ENABLE Enables/disables diagnosis function.

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0140 Rev.1.40 Page 18 of 37

Jun.14.23

2.8 Code Size

ROM (code and constants) and RAM (global data) size are determined according to the configuration

options as described in “section 2.7 Compilation Setting” during a build. The values shown are reference

values when the compile option is the default for the CC-RL C compiler listed in “section 2.3 Supported

Toolchains”. The code size varies according to the C compile version and compile options.

This is the value when one self-capacity button is set in the default setting of Smart Configurator. It also

includes sample applications generated by the TOUCH module and QE for Capacitive Touch.

Depending on the application and the number of elements, your program may exceed the RAM size.

Please note that the RL78/G16 group has 2KB of RAM.

[CTSU1]

ROM and RAM Usage

Self-capacitance 1element

CTSU_CFG_PARAM_CHECKING_ENABLE 0

CTSU_CFG_DTC_SUPPORT_ENABLE 0

ROM: 3400 bytes

RAM: 146 bytes

ROM and RAM Usage

Size of each mode, amount of increase by adding elements

Mode and

element num

Self-capacitance 1

element

+ 1 element Mutual capacitance

1 element

+1 element

ROM 3400 bytes +20 bytes 3749 bytes +30 bytes

RAM 146 bytes +22 bytes 156 bytes +28 bytes

[CTSU2L]

ROM and RAM Usage

the configuration options with Self-capacitance 1element

CTSU_CFG_PARAM_CHECKING_ENABLE 0

CTSU_CFG_DTC_SUPPORT_ENABLE 0

ROM: 7008 bytes

RAM: 290 bytes

ROM and RAM Usage

Size of each mode, amount of increase by adding elements

Mode and

element num

Self-capacitance 1

element

+ 1 element Mutual capacitance

1 element

+1 element

ROM 7008 bytes +19bytes 7312 bytes +167 bytes

RAM 290 bytes +34 bytes 306 bytes +50 bytes

2.9 Arguments

The following are the structures and enums used as arguments of the API functions. Many of the

parameters used in the API functions are defined by the enums, which provides a way to check types and

reduce errors.

These structures and enums are defined in r_ctsu_api.h along with the prototype declaration.

The following is the control structure for the touch interface configuration. This does not need to be set in

the application. Using QE for Capacitive Touch allows the variables corresponding to the touch interface

configuration to be output by qe_touch_config.c. Make sure to set qe_touch_config.c in the module’s first

API argument.

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0140 Rev.1.40 Page 19 of 37

Jun.14.23

typedef struct st_ctsu_instance_ctrl

{
 uint32_t open; ///< Whether or not driver is open.
 volatile ctsu_state_t state; ///< CTSU run state.

 ctsu_md_t md; ///< CTSU Measurement Mode Select(copy from cfg)
 ctsu_tuning_t tuning; ///< CTSU Initial offset tuning status.
 uint16_t num_elements; ///< Number of elements to scan

 uint16_t wr_index; ///< Word index into ctsuwr register array.
 uint16_t rd_index; ///< Word index into scan data buffer.
 uint8_t * p_element_complete_flag; ///< Pointer to complete flag of each element.

g_ctsu_element_complete flag[] is set by Open API
#if (BSP_FEATURE_CTSU_VERSION == 2)
 uint8_t * p_frequency_complete_flag; ///< Pointer to complete flag of each frequency.

g_ctsu_frequency_complete_flag[] is set by Open API.
#endif
 int32_t * p_tuning_diff; ///< Pointer to difference from base value of each element.

g_ctsu_tuning_diff[] is set by Open API.
 uint16_t average; ///< CTSU Moving average counter.
 uint16_t num_moving_average; ///< Copy from config by Open API.

 uint8_t ctsucr1; ///< Copy from (atune1 << 3, md << 6) by Open API. CLK, ATUNE0, CSW,
and PON is set by HAL driver.

 ctsu_ctsuwr_t * p_ctsuwr; ///< CTSUWR write register value. g_ctsu_ctsuwr[] is set by Open API.

 ctsu_self_buf_t * p_self_raw; ///< Pointer to Self raw data. g_ctsu_self_raw[] is set by Open API.
 uint16_t * p_self_corr; ///< Pointer to Self correction data. g_ctsu_self_corr[] is set by

Open API.

 ctsu_data_t * p_self_data; ///< Pointer to Self moving average data. g_ctsu_self_data[] is set
by Open API.

 ctsu_mutual_buf_t * p_mutual_raw; ///< Pointer to Mutual raw data. g_ctsu_mutual_raw[] is set by Open

API.
 uint16_t * p_mutual_pri_corr; ///< Pointer to Mutual primary correction data.

g_ctsu_mutual_pri_corr[] is set by Open API.

 uint16_t * p_mutual_snd_corr; ///< Pointer to Mutual secondary correction data.
g_ctsu_mutual_snd_corr[] is set by Open API.

 ctsu_data_t * p_mutual_pri_data; ///< Pointer to Mutual primary moving average data.

g_ctsu_mutual_pri_data[] is set by Open API.
 ctsu_data_t * p_mutual_snd_data; ///< Pointer to Mutual secondary moving average data.

g_ctsu_mutual_snd_data[] is set by Open API.g_ctsu_mutual_snd_data[] is set by Open API.

 ctsu_correction_info_t * p_correction_info; ///< Pointer to correction info
 ctsu_txvsel_t txvsel; ///< CTSU Transmission Power Supply Select
 ctsu_txvsel2_t txvsel2; ///< CTSU Transmission Power Supply Select 2 (CTSU2 Only)

 uint8_t ctsuchac0; ///< TS00-TS07 enable mask
 uint8_t ctsuchac1; ///< TS08-TS15 enable mask
 uint8_t ctsuchac2; ///< TS16-TS23 enable mask

 uint8_t ctsuchac3; ///< TS24-TS31 enable mask
 uint8_t ctsuchac4; ///< TS32-TS39 enable mask
 uint8_t ctsuchtrc0; ///< TS00-TS07 mutual-tx mask

 uint8_t ctsuchtrc1; ///< TS08-TS15 mutual-tx mask
 uint8_t ctsuchtrc2; ///< TS16-TS23 mutual-tx mask
 uint8_t ctsuchtrc3; ///< TS24-TS31 mutual-tx mask

 uint8_t ctsuchtrc4; ///< TS32-TS39 mutual-tx mask
 uint16_t self_elem_index; ///< Self element index
 uint16_t mutual_elem_index; ///< Mutual element index

 uint16_t ctsu_elem_index; ///< CTSU element index
#if (BSP_FEATURE_CTSU_VERSION == 2)
 uint8_t * p_selected_freq_self; ///< Frequency selected by self-capacity

 uint8_t * p_selected_freq_mutual; ///< Frequency selected by mutual-capacity
#endif
#if (BSP_FEATURE_CTSU_VERSION == 1)

 #if (CTSU_CFG_DIAG_SUPPORT_ENABLE == 1)
 ctsu_diag_info_t * p_diag_info; ///< pointer to diagnosis info
 #endif

#endif
#if (BSP_FEATURE_CTSU_VERSION == 2)
 ctsu_range_t range; ///< According to atune12. (20uA : 0, 40uA : 1, 80uA : 2, 160uA : 3)

 uint8_t ctsucr2; ///< Copy from (posel, atune1, md) by Open API. FCMODE and SDPSEL and
LOAD is set by HAL driver.

 uint8_t sms; ///< Whether or not SMS use.

#if (CTSU_CFG_DIAG_SUPPORT_ENABLE == 1)
 ctsu_diag_info_t * p_diag_info; ///< pointer to diagnosis info

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0140 Rev.1.40 Page 20 of 37

Jun.14.23

#endif
#endif
 ctsu_cfg_t const * p_ctsu_cfg; ///< Pointer to initial configurations.

 void (* p_callback)(ctsu_callback_args_t *); ///< Callback provided when a CTSUFN occurs.
 ctsu_event_t error_status; ///< Error status variable.
 void const * p_context; ///< Placeholder for user data.

 bool serial_tuning_enable; ///< Flag of serial tuning status.
 uint16_t serial_tuning_mutual_cnt; ///< Word index into ctsuwr register array.
 uint16_t tuning_self_target_value; ///< Target self value for initial offset tuning

 uint16_t tuning_mutual_target_value; ///< Target mutual value for initial offset tuning
 uint8_t tsod; ///< Copy from tsod by Open API.
 uint8_t mec_ts; ///< Copy from mec_ts by Open API.

 uint8_t mec_shield_ts; ///< Copy from mec_shield_ts by Open API.
} ctsu_instance_ctrl_t;

The following is the configuration setting structure for the touch interface configuration.

Using QE for Capacitive Touch allows the variables and initialization values corresponding to the touch

interface configuration to be output by qe_touch_config.c. Make sure to set qe_touch_config.c in the

second argument of R_CTSU_Open().

typedef struct st_ctsu_cfg
{
 ctsu_cap_t cap; ///< CTSU Scan Start Trigger Select

 ctsu_txvsel_t txvsel; ///< CTSU Transmission Power Supply Select
 ctsu_txvsel2_t txvsel2; ///< CTSU Transmission Power Supply Select 2 (CTSU2 Only)
 ctsu_atune1_t atune1; ///< CTSU Power Supply Capacity Adjustment (CTSU Only)

 ctsu_atune12_t atune12; ///< CTSU Power Supply Capacity Adjustment (CTSU2 Only)
 ctsu_md_t md; ///< CTSU Measurement Mode Select
 ctsu_posel_t posel; ///< CTSU Non-Measured Channel Output Select (CTSU2 Only)

 uint8_t tsod; ///< TS all terminal output control for multi electrode scan
 uint8_t mec_ts; ///< TS number used when using the MEC function
 uint8_t mec_shield_ts; ///< TS number of active shield used when using MEC function

 uint8_t ctsuchac0; ///< TS00-TS07 enable mask
 uint8_t ctsuchac1; ///< TS08-TS15 enable mask
 uint8_t ctsuchac2; ///< TS16-TS23 enable mask

 uint8_t ctsuchac3; ///< TS24-TS31 enable mask
 uint8_t ctsuchac4; ///< TS32-TS39 enable mask
 uint8_t ctsuchtrc0; ///< TS00-TS07 mutual-tx mask

 uint8_t ctsuchtrc1; ///< TS08-TS15 mutual-tx mask
 uint8_t ctsuchtrc2; ///< TS16-TS23 mutual-tx mask
 uint8_t ctsuchtrc3; ///< TS24-TS31 mutual-tx mask

 uint8_t ctsuchtrc4; ///< TS32-TS39 mutual-tx mask
 ctsu_element_cfg_t const * p_elements; ///< Pointer to elements configuration array
 uint8_t num_rx; ///< Number of receive terminals

 uint8_t num_tx; ///< Number of transmit terminals
 uint16_t num_moving_average; ///< Number of moving average for measurement data
 uint8_t tunning_enable; ///< Initial offset tuning flag

 uint8_t judge_multifreq_disable; ///< Disable to judge multi frequency
 void (* p_callback)(ctsu_callback_args_t * p_args); ///< Callback provided when CTSUFN ISR occurs.
 void const * p_context; ///< User defined context passed into callback function.

 void const * p_extend; ///< Pointer to extended configuration by instance of
interface.

 uint16_t tuning_self_target_value; ///< Target self value for initial offset tuning

 uint16_t tuning_mutual_target_value; ///< Target mutual value for initial offset tuning
} ctsu_cfg_t;

The following are the enums used for the above listed structures.

/** CTSU Events for callback function */

typedef enum e_ctsu_event
{
 CTSU_EVENT_SCAN_COMPLETE = 0x00, ///< Normal end

 CTSU_EVENT_OVERFLOW = 0x01, ///< Sensor counter overflow (CTSUST.CTSUSOVF set)
 CTSU_EVENT_ICOMP = 0x02, ///< Abnormal TSCAP voltage (CTSUERRS.CTSUICOMP set)

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0140 Rev.1.40 Page 21 of 37

Jun.14.23

 CTSU_EVENT_ICOMP1 = 0x04 ///< Abnormal sensor current (CTSUSR.ICOMP1 set)
} ctsu_event_t;

/** CTSU Scan Start Trigger Select */
typedef enum e_ctsu_cap
{

 CTSU_CAP_SOFTWARE, ///< Scan start by software trigger
 CTSU_CAP_EXTERNAL ///< Scan start by external trigger
} ctsu_cap_t;

/** CTSU Transmission Power Supply Select */
typedef enum e_ctsu_txvsel

{
 CTSU_TXVSEL_VCC, ///< VCC selected
 CTSU_TXVSEL_INTERNAL_POWER ///< Internal logic power supply selected

} ctsu_txvsel_t;

/** CTSU Transmission Power Supply Select 2 (CTSU2 Only) */

typedef enum e_ctsu_txvsel2
{
 CTSU_TXVSEL_MODE, ///< Follow TXVSEL setting

 CTSU_TXVSEL_VCC_PRIVATE, ///< VCC private selected
} ctsu_txvsel2_t;

/** CTSU Power Supply Capacity Adjustment (CTSU Only) */
typedef enum e_ctsu_atune1
{

 CTSU_ATUNE1_NORMAL, ///< Normal output (40uA)
 CTSU_ATUNE1_HIGH ///< High-current output (80uA)
} ctsu_atune1_t;

/** CTSU Power Supply Capacity Adjustment (CTSU2 Only) */
typedef enum e_ctsu_atune12

{
 CTSU_ATUNE12_80UA, ///< High-current output(80uA)
 CTSU_ATUNE12_40UA, ///< Normal output(40uA)

 CTSU_ATUNE12_20UA, ///< Low-current output(20uA)
 CTSU_ATUNE12_160UA ///< Very high-current output(160uA)
} ctsu_atune12_t;

/** CTSU Measurement Mode Select */
typedef enum e_ctsu_mode

{
 CTSU_MODE_SELF_MULTI_SCAN = 1, ///< Self-capacitance multi scan mode
 CTSU_MODE_MUTUAL_FULL_SCAN = 3, ///< Mutual capacitance full scan mode

 CTSU_MODE_CURRENT_SCAN = 9, ///< Current scan mode
 CTSU_MODE_CORRECTION_SCAN = 17 ///< Correction scan mode
} ctsu_md_t;

/** CTSU Non-Measured Channel Output Select (CTSU2 Only) */
typedef enum e_ctsu_posel

{
 CTSU_POSEL_LOW_GPIO, ///< Output low through GPIO
 CTSU_POSEL_HI_Z, ///< Hi-Z

 CTSU_POSEL_LOW, ///< Output low through the power setting by the TXVSEL[1:0] bits
 CTSU_POSEL_SAME_PULSE ///< Same phase pulse output as transmission channel through the power setting

by the TXVSEL[1:0] bits

} ctsu_posel_t;

/** CTSU Spectrum Diffusion Frequency Division Setting (CTSU Only) */

typedef enum e_ctsu_ssdiv
{
 CTSU_SSDIV_4000, ///< 4.00 <= Base clock frequency (MHz)

 CTSU_SSDIV_2000, ///< 2.00 <= Base clock frequency (MHz) < 4.00
 CTSU_SSDIV_1330, ///< 1.33 <= Base clock frequency (MHz) < 2.00
 CTSU_SSDIV_1000, ///< 1.00 <= Base clock frequency (MHz) < 1.33

 CTSU_SSDIV_0800, ///< 0.80 <= Base clock frequency (MHz) < 1.00
 CTSU_SSDIV_0670, ///< 0.67 <= Base clock frequency (MHz) < 0.80
 CTSU_SSDIV_0570, ///< 0.57 <= Base clock frequency (MHz) < 0.67

 CTSU_SSDIV_0500, ///< 0.50 <= Base clock frequency (MHz) < 0.57
 CTSU_SSDIV_0440, ///< 0.44 <= Base clock frequency (MHz) < 0.50

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0140 Rev.1.40 Page 22 of 37

Jun.14.23

 CTSU_SSDIV_0400, ///< 0.40 <= Base clock frequency (MHz) < 0.44
 CTSU_SSDIV_0360, ///< 0.36 <= Base clock frequency (MHz) < 0.40
 CTSU_SSDIV_0330, ///< 0.33 <= Base clock frequency (MHz) < 0.36

 CTSU_SSDIV_0310, ///< 0.31 <= Base clock frequency (MHz) < 0.33
 CTSU_SSDIV_0290, ///< 0.29 <= Base clock frequency (MHz) < 0.31
 CTSU_SSDIV_0270, ///< 0.27 <= Base clock frequency (MHz) < 0.29

 CTSU_SSDIV_0000 ///< 0.00 <= Base clock frequency (MHz) < 0.27
} ctsu_ssdiv_t;

/** Callback function parameter data */
typedef struct st_ctsu_callback_args
{

 ctsu_event_t event; ///< The event can be used to identify what caused the callback.
 void const * p_context; ///< Placeholder for user data. Set in CTSU_api_t::open function

in ::ctsu_cfg_t.

} ctsu_callback_args_t;

/** Element Configuration */

typedef struct st_ctsu_element
{
 ctsu_ssdiv_t ssdiv; ///< CTSU Spectrum Diffusion Frequency Division Setting (CTSU Only)

 uint16_t so; ///< CTSU Sensor Offset Adjustment
 uint8_t snum; ///< CTSU Measurement Count Setting
 uint8_t sdpa; ///< CTSU Base Clock Setting

} ctsu_element_cfg_t;

2.10 Return Values

The following provides return values for the API functions. The enum is defined in fsp_common_api.h,

along with the API function prototype declaration.

/** Common error codes */

typedef enum e_fsp_err
{
 FSP_SUCCESS = 0,

 FSP_ERR_ASSERTION = 1, ///< A critical assertion has failed
 FSP_ERR_INVALID_POINTER = 2, ///< Pointer points to invalid memory location

 FSP_ERR_INVALID_ARGUMENT = 3, ///< Invalid input parameter
 FSP_ERR_INVALID_CHANNEL = 4, ///< Selected channel does not exist
 FSP_ERR_INVALID_MODE = 5, ///< Unsupported or incorrect mode

 FSP_ERR_UNSUPPORTED = 6, ///< Selected mode not supported by this API
 FSP_ERR_NOT_OPEN = 7, ///< Requested channel is not configured or API not open
 FSP_ERR_ABORTED = 18, ///< An operation was aborted

 /* Start of CTSU Driver specific */
 FSP_ERR_CTSU_SCANNING = 6000, ///< Scanning.

 FSP_ERR_CTSU_NOT_GET_DATA = 6001, ///< Not processed previous scan data.
 FSP_ERR_CTSU_INCOMPLETE_TUNING = 6002, ///< Incomplete initial offset tuning.
 FSP_ERR_CTSU_DIAG_NOT_YET = 6003, ///< Diagnosis of data collected no yet.

 FSP_ERR_CTSU_DIAG_LDO_OVER_VOLTAGE = 6004, ///< Diagnosis of LDO over voltage failed.
 FSP_ERR_CTSU_DIAG_CCO_HIGH = 6005, ///< Diagnosis of CCO into 19.2uA failed.
 FSP_ERR_CTSU_DIAG_CCO_LOW = 6006, ///< Diagnosis of CCO into 2.4uA failed.

 FSP_ERR_CTSU_DIAG_SSCG = 6007, ///< Diagnosis of SSCG frequency failed.
 FSP_ERR_CTSU_DIAG_DAC = 6008, ///< Diagnosis of non-touch count value failed.
 FSP_ERR_CTSU_DIAG_OUTPUT_VOLTAGE = 6009, ///< Diagnosis of LDO output voltage failed.

 FSP_ERR_CTSU_DIAG_OVER_VOLTAGE = 6010, ///< Diagnosis of over voltage detection circuit failed.
 FSP_ERR_CTSU_DIAG_OVER_CURRENT = 6011, ///< Diagnosis of over current detection circuit failed.
 FSP_ERR_CTSU_DIAG_LOAD_RESISTANCE = 6012, ///< Diagnosis of LDO internal resistance value failed.

 FSP_ERR_CTSU_DIAG_CURRENT_SOURCE = 6013, ///< Diagnosis of Current source value failed.
 FSP_ERR_CTSU_DIAG_SENSCLK_GAIN = 6014, ///< Diagnosis of SENSCLK frequency gain failed.
 FSP_ERR_CTSU_DIAG_SUCLK_GAIN = 6015, ///< Diagnosis of SUCLK frequency gain failed.

 FSP_ERR_CTSU_DIAG_CLOCK_RECOVERY = 6016, ///< Diagnosis of SUCLK clock recovery function failed.
 FSP_ERR_CTSU_DIAG_CFC_GAIN = 6017, ///< Diagnosis of CFC oscillator gain failed.
} fsp_err_t

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0140 Rev.1.40 Page 23 of 37

Jun.14.23

3. API Functions

3.1 R_CTSU_Open

This function initializes the module and must be executed before using any of the other API functions.

Please execute this function for each touch interface.

Format
 fsp_err_t R_CTSU_Open (ctsu_ctrl_t * const p_ctrl,

ctsu_cfg_t const * const p_cfg)

Parameters

p_ctrl Pointer to the control structure (normally generated by QE for Capacitive Touch)

p_cfg Pointer to the config structure (normally generated by QE for Capacitive Touch)

Return Values

FSP_SUCCESS /* Successfully completed */

FSP_ERR_ASSERTION /* Argument pointer not specified */

FSP_ERR_ALREADY_OPEN /* Open() is called without calling Close() */

FSP_ERR_INVALID_ARGUMENT /* Configuration parameters are invalid */

Properties

Prototype is declared in r_ctsu_api.h

Description

This function enables control structure initialization, register initialization, and interrupt setting according to

the argument p_cfg.

Also, the correction coefficient generation process is executed while processing the first touch interface

structure. The process takes approximately 120ms.

The DTC is initialized if CTSU_CFG_USE_DTC is enabled when the first touch interface configuration is

processed.

Example

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0140 Rev.1.40 Page 24 of 37

Jun.14.23

fsp_err_t err;

/* Initialize pins (function created by Smart Configurator) */

R_CTSU_PinSetInit();

/* Initialize the API. */

err = R_CTSU_Open(&g_ctsu_ctrl, &g_ctsu_cfg);

/* Check for errors. */

if (err != FSP_SUCCESS)

{

 . . .

}

Special Notes:

The port must be initialized before calling this function. We recommend using the R_CTSU_PinSetInit()

function generated by SmartConfigurator as the port initialization function

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0140 Rev.1.40 Page 25 of 37

Jun.14.23

3.2 R_CTSU_ScanStart

This function starts measurement of the specified touch interface configuration.

Format
fsp_err_t R_CTSU_ScanStart (ctsu_ctrl_t * const p_ctrl)

Parameters

p_ctrl Pointer to the control structure (normally generated by QE for Capacitive Touch)

Return Values

FSP_SUCCESS /* Successfully completed */

FSP_ERR_ASSERTION /* Argument pointer not specified */

FSP_ERR_NOT_OPEN /* Called without calling Open() */

FSP_ERR_CTSU_SCANNING /* Now scanning */

FSP_ERR_CTSU_NOT_GET_DATA /* Did not obtain previous results */

Properties

Prototype is declared in r_ctsu_api.h.

Description

When a software trigger occurs, this function sets and starts the measurement based on the touch

interface configuration. With an external trigger, the function sets the measurement and goes to the trigger

wait state.

If CTSU_CFG_USE_DTC is enabled, the function also sets the DTC.

The resulting value is notified in the callback generated from the INTCTSUFN interrupt handler.

Example
fsp_err_t err;

/* Initiate a sensor scan by software trigger */

err = R_CTSU_ScanStart(&g_ctsu_ctrl);

/* Check for errors. */

if (err != FSP_SUCCESS)

{

 . . .

}

Special Notes:

None

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0140 Rev.1.40 Page 26 of 37

Jun.14.23

3.3 R_CTSU_DataGet

This function reads all the values previously measured in the specified touch interface configuration.

Format
fsp_err_t R_CTSU_DataGet (ctsu_ctrl_t * const p_ctrl, uint16_t * p_data)

Parameters

p_ctrl Pointer to the control structure (normally generated by QE for Capacitive Touch)

p_data Pointer to the buffer that stores the measured value.

Return Values

FSP_SUCCESS /* CTSU initialization successfully completed */

FSP_ERR_ASSERTION /* Argument pointer not specified */

FSP_ERR_NOT_OPEN /* Called without calling Open() */

FSP_ERR_CTSU_SCANNING /* scanning */

FSP_ERR_CTSU_INCOMPLETE_TUNING /*Tuning initial offset */

Properties

Prototype is declared in r_ctsu_api.h.

Description

This function reads all previously measured values into the specified buffer. The required buffer size varies

depending on the measurement mode. Prepare twice the number of TS for the self-capacitance and current

measurement modes, and twice the number of matrixes for the mutual-capacitance mode. If normalization

(majority frequency) is turned off, prepare multiple CTSU_CFG_NUM_SUMULTI terminals for each mode.

The value measured in the temperature correction mode is not stored. When RTRIM adjustment is

performed, the RTRIM value is stored. At this time, the ADC settings have been changed in this function, so

perform the process to return to the ADC settings you are using. Otherwise, store 0xFFFF.

When initial offset adjustment is on, FSP_ERR_INCOMPLETE_TUNING is returned several times until the

adjustment is complete. Measured values are not stored in the buffer at this time. For more details on initial

offset adjustment, refer to section 1.1.6. The measured value is the value resulting from the sensor ICO

correction, normalization (when on), and moving average processes executed in this function.

Example:
fsp_err_t err;

uint16_t buf[CTSU_CFG_NUM_SELF_ELEMENTS];

/* Get all sensor values */

err = R_CTSU_DataGet(&g_ctsu_ctrl, buf);

Special Notes:

None

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0140 Rev.1.40 Page 27 of 37

Jun.14.23

3.4 R_CTSU_CallbackSet

This function sets the function specified for the measurement completion callback function.

Format
fsp_err_t R_CTSU_CallbackSet (ctsu_ctrl_t * const p_api_ctrl,

 void (* p_callback)(ctsu_callback_args_t *),

 void const * const p_context,

 ctsu_callback_args_t * const p_callback_memory)

Parameters

p_api_ctrl Pointer to the control structure (normally generated by QE for Capacitive Touch)

p_callback Pointer to callback function

p_context Pointer to send to callback function

p_callback_memory Set to NULL

Return Values

FSP_SUCCESS /* Successfully completed */

FSP_ERR_ASSERTION /* Argument pointer not specified */

FSP_ERR_NOT_OPEN /* Called without calling Open() */

Properties

Prototype is declared in r_ctsu_api.h.

Description

This function sets the function specified for the measurement completion callback function. By default, the

callback function is set to the function of member p_callback of ctsu_cfg_t, so use it when you want to

change to another function during operation.

You can also set the context pointer. If not used, set p_context to NULL. Set p_callback_memory to NULL.

Example:
fsp_err_t err;

/* Set callback function */

err = R_CTSU_CallbackSet(&g_ctsu_ctrl, ctsu_callback, NULL, NULL);

Special Notes:

None

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0140 Rev.1.40 Page 28 of 37

Jun.14.23

3.5 R_CTSU_SmsSet

This function makes settings for automatic judgment measurement using SMS of the specified touch

interface configuration.

Format
fsp_err_t R_CTSU_SmsSet (ctsu_ctrl_t * const p_ctrl,

 uint16_t * p_threshold,

 uint16_t * p_hysteresis,

 uint16_t count_filter)

Parameters

p_ctrl Pointer to the control structure (normally generated by QE for Capacitive Touch)

p_threshold Pointer to the touch judgement threshold

p_context Pointer to the touch judgement hysteresis

count_filter Touch count match filter value (upper 8 bits are for OFF, lower 8 bits are for ON)

Return Values

FSP_SUCCESS /* Successfully completed */

FSP_ERR_ASSERTION /* Argument pointer not specified */

FSP_ERR_NOT_OPEN /* Called without calling Open() */

Properties

Prototype is declared in r_ctsu_api.h.

Description

This function sets the following: Use the argument setting for touch judgment processing.

- Disable CTSUFN interrupts

- Enable SMS module

- SMS settings

- ELCL setting (when using RL78/G23 group)

- ELC settings (when using the RL78/G23 group)

- Start SMS

To start automatic judgment measurement, call R_CTSU_ScanStart () for the same touch interface after

calling this function. When touch ON is determined, INTSMSE occurs, and the following settings are made in

the interrupt handler of the CTSU module.

- Set the measurement status as an argument of the callback function

- Set the measured value as a variable

- Callback function call

- Allow CTSUFN interrupts

- Disable SMS module

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0140 Rev.1.40 Page 29 of 37

Jun.14.23

Example:
fsp_err_t err;

uint16_t threshold[3] = {1000, 1500, 2000};

uint16_t hysteresis[3] = {50, 75, 100};

uint16_t buf[3];

 /* Start SMS measurement */

 err = R_CTSU_SmsSet(&g_ctsu_ctrl, threshold, hysteresis[3], 0x0303);

err = R_CTSU_ScanStart(&g_ctsu_ctrl);

 __stop();

err = R_CTSU_DataGet(&g_ctsu_ctrl, buf);

Special Notes:

None

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0140 Rev.1.40 Page 30 of 37

Jun.14.23

3.6 R_CTSU_Close

This function closes the specified touch interface configuration.

Format
fsp_err_t R_CTSU_Close (ctsu_ctrl_t * const p_ctrl)

Parameters

p_ctrl Pointer to the control structure (normally generated by QE for Capacitive Touch)

Return Values

FSP_SUCCESS /* Successfully completed */

FSP_ERR_ASSERTION /* Argument pointer not specified */

FSP_ERR_NOT_OPEN /* Called without calling Open() */

Properties

Prototype is declared in r_ctsu_api.h.

Description

This function closes the specified touch interface configuration.

Example:
fsp_err_t err;

/* Shut down peripheral and close driver */

err = R_CTSU_Close(&g_ctsu_ctrl);

Special Notes:

None

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0140 Rev.1.40 Page 31 of 37

Jun.14.23

3.7 R_CTSU_Diagnosis

This is the API function providing the function for diagnosis of the CTSU inner circuit.

Format
fsp_err_t R_CTSU_Diagnosis (ctsu_ctrl_t * const p_ctrl)

Parameters

p_ctrl Pointer to the control structure (normally, generated by QE for Capacitive Touch)

Return Values

FSP_SUCCESS /* All diagnoses are normal */

FSP_ERR_ASSERTION /* Missing argument pointer */

FSP_ERR_NOT_OPEN /* Called without calling Open() */

FSP_ERR_CTSU_NOT_GET_DATA /*Not processed previous scan data. */

FSP_ERR_CTSU_DIAG_LDO_OVER_VOLTAGE /*Diagnosis of LDO over voltage failed. */

FSP_ERR_CTSU_DIAG_CCO_HIGH /*Diagnosis of CCO into 19.2uA failed. */

FSP_ERR_CTSU_DIAG_CCO_LOW /*Diagnosis of CCO into 2.4uA failed. */

FSP_ERR_CTSU_DIAG_SSCG /*Diagnosis of SSCG frequency failed. */

FSP_ERR_CTSU_DIAG_DAC /*Diagnosis of non-touch count value failed. */

FSP_ERR_CTSU_DIAG_OUTPUT_VOLTAGE /*Diagnosis of LDO output voltage failed. */

FSP_ERR_CTSU_DIAG_OVER_VOLTAGE /*Diagnosis of over voltage detection circuit failed.*/

FSP_ERR_CTSU_DIAG_OVER_CURRENT /*Diagnosis of over current detection circuit failed. */

FSP_ERR_CTSU_DIAG_LOAD_RESISTANCE /*Diagnosis of LDO internal resistance value

failed.*/

FSP_ERR_CTSU_DIAG_CURRENT_SOURCE /*Diagnosis of Current source value failed.*/

FSP_ERR_CTSU_DIAG_SENSCLK_GAIN /*Diagnosis of SENSCLK frequency gain failed.*/

FSP_ERR_CTSU_DIAG_SUCLK_GAIN /*Diagnosis of SUCLK frequency gain failed.

FSP_ERR_CTSU_DIAG_CLOCK_RECOVERY /*Diagnosis of SUCLK clock recovery function

failed.*/

Properties

Prototyped in file “r_ctsu_qe.h

Description

This is the API function providing the function for diagnosis of the CTSU inner circuit

Call when the return value of the function R_CTSU_DataGet is FSP_SUCCESS.

Example:

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0140 Rev.1.40 Page 32 of 37

Jun.14.23

fsp_err_t err;

uint16_t dummy;

/* Open Diagnosis function */

R_CTSU_Open(g_qe_ctsu_instance_diagnosis.p_ctrl,

g_qe_ctsu_instance_diagnosis.p_cfg);

/* Scan Diagnosis function */

R_CTSU_ScanStart(g_qe_ctsu_instance_diagnosis.p_ctrl);

while (0 == g_qe_touch_flag) {}

g_qe_touch_flag = 0;

err = R_CTSU_DataGet(g_qe_ctsu_instance_diagnosis.p_ctrl,&dummy);

if (FSP_SUCCESS == err)

{

 err = R_CTSU_Diagnosis(g_qe_ctsu_instance_diagnosis.p_ctrl);

 if (FSP_SUCCESS == err)

 {

 /* Diagnosis was succssed. */

 }

}

Special Notes:
None

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0140 Rev.1.40 Page 33 of 37

Jun.14.23

3.8 R_CTSU_ScanStop

This function stops measuring the specified touch interface configuration.

Format
fsp_err_t R_CTSU_ScanStop (ctsu_ctrl_t * const p_ctrl)

Parameters

p_ctrl Pointer to the control structure (normally, generated by QE for Capacitive Touch)

Return Values

FSP_SUCCESS /* Successfully completed */

FSP_ERR_ASSERTION /* Argument pointer not specified */

FSP_ERR_NOT_OPEN /* Called without calling Open() */

Properties

Prototype is declared in r_ctsu_api.h.

Description

This function stops measuring the specified touch interface configuration.

Example:
fsp_err_t err;

/* Stop CTSU module */

err = R_CTSU_ScanStop(&g_ctsu_ctrl);

Special Notes:

None

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0140 Rev.1.40 Page 34 of 37

Jun.14.23

3.9 R_CTSU_SpecificDataGet

This function reads the measurements for the specified data type for the specified touch interface

configuration.

Format
fsp_err_t R_CTSU_SpecificDataGet (ctsu_ctrl_t * const p_ctrl,

 uint16_t * p_specific_data,

 ctsu_specific_data_type_t specific_data_type)

Parameters

p_ctrl Pointer to the control structure (normally generated by QE for Capacitive Touch)

p_specific_data Pointer to specific data array.

specific_data_type Specific data type to get

Return Values

FSP_SUCCESS /* CTSU initialization successfully completed */

FSP_ERR_ASSERTION /* Argument pointer not specified */

FSP_ERR_NOT_OPEN /* Called without calling Open() */

FSP_ERR_CTSU_SCANNING /* Scanning */

FSP_ERR_CTSU_INCOMPLETE_TUNING /* Tuning initial offset */

FSP_ERR_NOT_ENABLED /* CTSU_SPECIFIC_SELECTED_FREQ for CTSU1 */

Properties

Prototype is declared in r_ctsu_api.h.

Description

When CTSU_SPECIFIC_RAW_DATA is set for specific_data_type, RAW data will be stored in

p_specific_data. These are the data before the calculation of the sensor ICO correction in 1.1.3.

When CTSU_SPECIFIC_CORRECTION_DATA is set for specific_data_type, the corrected data is stored

in p_specific_data. These are the data after the calculation of the sensor ICO correction in 1.1.3.

In CTSU2, these store the number of data obtained by multiplying the number of channels by the number

of multi-frequency.

When CTSU_SPECIFIC_SELECTED_DATA is set for specific_data_type, p_specific_data stores the

bitmap of the frequency used by the majority vote. Only valid for CTSU2. For example, store 0x05 if the 1st

and 3rd frequencies were used.

Example:
fsp_err_t err;

uint16_t specific_data[CTSU_CFG_NUM_SELF_ELEMENTS * CTSU_CFG_NUM_SUMULTI]

/* Get Specific Data */

err = R_CTSU_SpecificDataGet(&g_ctsu_ctrl, &specific_data[0],

CTSU_SPECIFIC_CORRECTION_DATA);

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0140 Rev.1.40 Page 35 of 37

Jun.14.23

Special Notes:

None

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0140 Rev.1.40 Page 36 of 37

Jun.14.23

3.10 R_CTSU_DataInsert

This function inserts the specified data in buffer of touch measurement results for the specified touch

interface configuration.

Format
fsp_err_t R_CTSU_DataInsert (ctsu_ctrl_t * const p_ctrl,

uint16_t * p_insert_data)

Parameters

p_ctrl Pointer to the control structure (normally generated by QE for Capacitive Touch)

p_insert_data Pointer to insert data array.

Return Values

FSP_SUCCESS /* CTSU initialization successfully completed */

FSP_ERR_ASSERTION /* Argument pointer not specified */

FSP_ERR_NOT_OPEN /* Called without calling Open() */

FSP_ERR_CTSU_SCANNING /* scanning */

FSP_ERR_CTSU_INCOMPLETE_TUNING /*Tuning initial offset */

Properties

Prototype is declared in r_ctsu_api.h.

Description

This function is supposed to process the data acquired by R_CTSU_SpecificDataGet () in the user

application, such as noise suppression, and store the data in this function. Set the start address of the data

array to be stored in p_insert_data. For self-capacity mode, store in p_ctrl-> p_self_data. For mutual

capacity, store in p_ctrl-> p_mutual_pri_data and p_crtl-> p_mutual_snd_data.

Example:
fsp_err_t err;

uint16_t specific_data[CTSU_CFG_NUM_SELF_ELEMENTS * CTSU_CFG_NUM_SUMULTI]

/* Get Specific Data */

err = R_CTSU_DataGet(&g_ctsu_ctrl, &specific_data[0],

CTSU_SPECIFIC_CORRECTION_DATA);

/* Noise filter process */

/* Insert data */

err = R_CTSU_DataInsert(&g_ctsu_ctrl, &specific_data[0]);

Special Notes:

None

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0140 Rev.1.40 Page 37 of 37

Jun.14.23

3.11 R_CTSU_OffsetTuning

This function adjusts the offset register (SO) for the specified touch interface configuration.

Format
fsp_err_t R_CTSU_OffsetTuning (ctsu_ctrl_t * const p_ctrl);

Parameters

p_ctrl

 Pointer to the control structure (normally generated by QE for Capacitive Touch)

Return Values

FSP_SUCCESS /* CTSU successfully configured */

FSP_ERR_ASSERTION /* Argument pointer not specified */

FSP_ERR_NOT_OPEN /* Called without calling Open() */

FSP_ERR_CTSU_SCANNING /* scanning */

FSP_ERR_CTSU_INCOMPLETE_TUNING /*Tuning initial offset */

Properties

Prototype is declared in r_ctsu_api.h.

Description

This function adjusts the offset using all the previously measured values. Call this function after the

measurement is complete. Execute this function once, it returns FSP_ERR_CTSU_INCOMPLETE_TUNING

until the offset adjustment is completed. Return FSP_SUCCESS when the offset adjustment is complete.

Repeat the measurement and this function call until the offset adjustment is completed. See Chapter 1.1.4

for offset adjustment. If automatic judgement is enabled, set the baseline initialization bit flag after offset

adjustment is complete.

Example:
fsp_err_t err;

err = R_CTSU_ScanStart (g_qe_ctsu_instance_config01.p_ctrl);

while (0 == g_qe_touch_flag) {}

g_qe_touch_flag = 0;

err = R_CTSU_OffsetTuning (g_qe_ctsu_instance_config01.p_ctrl);

Special Notes:

None

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0140 Rev.1.40 Page 38 of 37

Jun.14.23

Revision History

Rev. Date

Description

Page Summary

1.00 Apr.13.21 - First edition issued

1.10 Aug.31.21 5 Added 1.1.9 Diagnosis Function

 5 Added 1.1.10 Automatic judgment measurement using SMS

 8 Added 1.2.5 Diagnosis Mode

 9 Updated 1.4 API overview

 11 Updated 2.7 Compilation settings

 13 Updated 2.8 Code size

 13 Updated 2.9 Arguments

 16 Updated 2.10 Return Values

 - Deleted R_CTSU_VersionGet

 24 Added 3.5 R_CTSU_SmsSet

 27 Added 3.7 R_CTSU_Diagnosis

 29 Added 3.8 R_CTSU_ScanStop

1.11 Jan.18.22 3,4 Added 1.1.4 Initial offset adjustment

 5 Added 1.1.6 multi-measurement frequency (CTSU2L)

 9 Updated 1.4 API overview

 10 Updated 2.2 Software Requirements

Updated 2.3 Supported Toolchains

 13 Updated 2.8 Code size

 13-14 Updated 2.9 Arguments

 30-31 Added 3.8 R_CTSU_SpecificDataGet

 31-32 Added 3.9 R_CTSU_DataInsert

1.20 Apr.20.22 6 Added 1.1.10 Automatic judgment measurement using SMS

 4,5 Fixed PCLKB to fCLK

 9 Updated 1.4 API overview

 33 Added 3.11 R_CTSU_OffsetTuning

 24 Fixed Example: in 3.5 R_CTSU_SmsSet

1.30 Feb.14.23 1 Added RL78/G22 to Target Device

 6 Updated 1.1.11 Automatic judgment measurement using

SMS

 7 Added 1.1.12 MEC Function (RL78/G16, RL78/G22)

 12 Updated 2.2 Software Requirements

 12 Updated 2.3 Supported Toolchains

 13,14 Updated 2.7 Compilation Settings

 13 Updated 2.8 Code Size

 15,16 Updated 2.9 Arguments

 18 Updated 2.10 Return Values

 24 Updated 3.5 R_CTSU_SmsSet

1.40 Jun.14.23 1 Added RL78/G16 group to Target Device

 3 Added CTSU description to 1 Overview

 3 Updated 1.1.2 Measurements and Obtaining Data

 4 Added CTSU1 function description to 1.1.4 Initial Offset

Adustment

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0140 Rev.1.40 Page 39 of 37

Jun.14.23

 4 Added 1.1.5 Random Pulse Frequency Measurement

(CTSU1)

 7 Added CTSU1 function description to 1.1.10 Diagnosis

Function

 10,11 Added CTSU1 function description to 1.2 Measurement Mode

 14 Updated 2.1 Hardware Requirements

 14 Updated 2.2 Software Requirements

 14 Updated 2.4 Restrictions

 18 Updated 2.8 Code Size

 18 Updated 2.9 Arguments

 31 Updated 3.7 R_CTSU_Diagnosis

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the

products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2023 Renesas Electronics Corporation. All rights reserved.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your

product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,

or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this

document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics

or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,

manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any

and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for

each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to

human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space

system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics

disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product

that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics

hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but

not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS

ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING

RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,

HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND

ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT

PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH

RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO

THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for

Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by

Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas

Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such

specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific

characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability

product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics

products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily

injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as

safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for

aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are

responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas

Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of

controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these

applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance

with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations

promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date

version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics

Corporation. All trademarks and registered trademarks are the property

of their respective owners.

