
 Application Note

R01AN6455EJ0102 Rev.1.02 Page 1 of 32
Jan.20.23

Azure RTOS sample projects
using e2 studio or IAR EW

Introduction
Azure RTOS sample projects for each component (ThreadX, FileX, GUIX, NetX Duo, and USBX) can be
created using Renesas e2 studio or IAR Embedded Workbench (EW) with the on-board emulator. All
samples are designed to run on RX family.

This document guides how to create and use these sample projects.

Supported Sample Projects
- ThreadX sample project

Contains ThreadX source code

- FileX RAM Disk sample project
Contains FileX source code

- NetX Duo Ping sample project
Contains NetX Duo ping sample project

- NetX Duo Iperf sample project
Contains NetX Duo iPerf sample project

- IoT Embedded SDK sample project
Sample project to connect to Azure IoT Hub using Azure IoT Middleware for Azure RTOS

- IoT Embedded SDK PnP sample project
Sample project to connect to Azure IoT Hub using Azure IoT Middleware for Azure RTOS via IoT Plug
and Play

- IoT Embedded SDK with IoT Plug and Play sample project
Sample project with IoT Plug and Play using multiple components

- GUIX 8bpp sample project
Contains sample for GUIX 8BPP

- GUIX 16bpp sample project
Contains sample for GUIX 16BPP

- GUIX 16bpp draw 2d sample project
Contains sample for GUIX 16BPP with 2D Draw

- USBX device CDC-ACM Class sample project
Contains USBX source code

- USBX Host Mass Storage Class sample project
Contains USBX source code

- ThreadX Low Power sample project
Contains ThreadX & low power utility source code

- Azure Device Update (ADU) sample project
Sample project for OTA firmware update via Microsoft Azure

- Secure bootloader sample project
Used together with ADU sample project to provide a secure boot

R01AN6455EJ0102
Rev.1.02

2023.1.20

Azure RTOS sample projects using e2 studio or IAR EW

R01AN6455EJ0102 Rev.1.02 Page 2 of 32
Jan.20.23

Supported Devices
- RX130
- RX140
- RX65N
- RX651
- RX660
- RX66T
- RX671
- RX72N

Supported sample projects are different by each device. For details, please refer to the following URL.

https://github.com/renesas/azure-rtos

Download Links for Development Environment
・e2 studio：2022-10 or later

https://www.renesas.com/software-tool/e-studio

- Renesas C/C++ Compiler for RX Family CC-RX：V3.04.00 or later
https://www.renesas.com/software-tool/cc-compiler-package-rx-family

- GCC for Renesas RX：8.3.0.202104 or later

https://gcc-renesas.com/rx-download-toolchains/

・IAR Embedded Workbench for RX：4.20.1 or later

https://www.iar.com/products/architectures/renesas/iar-embedded-workbench-for-renesas-rx/

- RX Smart Configurator：V2.13.0 and later

https://www.renesas.com/software-tool/smart-configurator

・Azure IoT Explorer

https://github.com/azure/azure-iot-explorer/releases

https://github.com/renesas/azure-rtos
https://www.renesas.com/software-tool/e-studio
https://www.renesas.com/software-tool/cc-compiler-package-rx-family
https://gcc-renesas.com/rx-download-toolchains/
https://www.iar.com/products/architectures/renesas/iar-embedded-workbench-for-renesas-rx/
https://www.renesas.com/software-tool/smart-configurator
https://github.com/azure/azure-iot-explorer/releases

Azure RTOS sample projects using e2 studio or IAR EW

R01AN6455EJ0102 Rev.1.02 Page 3 of 32
Jan.20.23

Contents

1. Getting Started .. 4
1.1 Creating project using e2 studio .. 4
1.2 Creating project using IAR EW .. 6

2. Sample Project Descriptions .. 7
2.1 ThreadX sample project .. 7
2.2 FileX RAM Disk sample project ... 8
2.3 NetX Duo Ping sample project .. 9
2.4 NetX Duo Iperf sample project .. 10
2.5 IoT Embedded SDK sample project .. 12
2.6 IoT Embedded SDK PnP sample project .. 18
2.7 IoT Embedded SDK with IoT Plug and Play sample project ... 20
2.8 GUIX 8bpp/16bpp/16bpp_draw2d sample project .. 21
2.9 USBX device CDC-ACM Class sample project ... 23
2.10 USBX Host Mass Storage Class sample project .. 24
2.11 ThreadX Low Power sample project ... 26
2.11.1 Overview of sample project ... 26
2.11.2 Execute sample project ... 27
2.11.3 Configuration of ThreadX Low Power by Smart Configurator ... 29
2.12 Azure Device Update (ADU) sample project ... 31

Revision History .. 32

Azure RTOS sample projects using e2 studio or IAR EW

R01AN6455EJ0102 Rev.1.02 Page 4 of 32
Jan.20.23

1. Getting Started
To create new Azure RTOS project, the procedure is different between e2 studio and IAR EW.

1.1 Creating project using e2 studio
1. Launch e2 studio, create new project: [File] > [New] > [Renesas C/C++ Project] and select Renesas RX

and create a new workspace.

Figure 1.1 Workspace Creation Window

2. Select GCC for Renesas RX C/C++ Executable Project or Renesas CC-RX C/C++ Executable
Project.

Figure 1.2 Toolchain Setting Window

3. Input the project name.

4. Click [Next].

Figure 1.3 Project Creation Window

Azure RTOS sample projects using e2 studio or IAR EW

R01AN6455EJ0102 Rev.1.02 Page 5 of 32
Jan.20.23

5. At RTOS, select “Azure RTOS”.

6. Click Manage RTOS Versions… to download software package.

7. At RTOS Version, select a version that downloaded at step 6.

8. At Target Board, select a board that you are working on.

9. Click [Next].

Figure 1.4 RTOS and Target Board Setting Window
10. Click [Next].

Figure 1.5 Coding Assistant Setting Window
11. Select an application.

12. Click [Finish].

Figure 1.6 Select Application Window

Azure RTOS sample projects using e2 studio or IAR EW

R01AN6455EJ0102 Rev.1.02 Page 6 of 32
Jan.20.23

13. Azure RTOS sample project including each component is created.

Figure 1.7 Created Sample Project Window

14. Build project: Select the sample project in the e2 studio workspace and right click and select build to build
the sample project.

15. Select Download and Debug to download and start execution of the project. By default, execution stops
at a breakpoint set at main.

Note: Other debugger settings may be required depending on the board type you specify.

In the case of Renesas Starter Kit+ for RX65N-2MB: click Debugger > Connection Settings >
Power Target From The Emulator, and set No.

16. Please review the sample descriptions later in this guide for additional setup and expected behavior.

1.2 Creating project using IAR EW
Please refer to following FAQ for the detailed instructions:
https://en-support.renesas.com/knowledgeBase/20533128

In AN ja, same update however changing URL
https://ja-support.renesas.com/knowledgeBase/20533124

https://en-support.renesas.com/knowledgeBase/20533128
https://ja-support.renesas.com/knowledgeBase/20533124

Azure RTOS sample projects using e2 studio or IAR EW

R01AN6455EJ0102 Rev.1.02 Page 7 of 32
Jan.20.23

2. Sample Project Descriptions
Additional setup and expected behavior of each sample project are described in this section.

2.1 ThreadX sample project
This sample is the standard 8-thread ThreadX example, that illustrates the use of the main ThreadX
services, including threads, message queues, timers, semaphores, byte memory pools, block memory pools,
event flag groups, and mutexes.

To run this sample, simply follow these steps (assuming the steps described in the previous section were
done):

1. Set a breakpoint at any line.

2. Select Go to start execution of the sample project.

Figure 2.1 e2 studio Debugger Screen

Figure 2.2 IAR EW Debugger Screen

After hitting Break, the debugger screen shot above shows various counters incremented by the ThreadX
sample as each of the main components of the ThreadX are exercised.

To learn more about Azure RTOS ThreadX, view https://docs.microsoft.com/azure/rtos/threadx/.

https://docs.microsoft.com/azure/rtos/threadx/

Azure RTOS sample projects using e2 studio or IAR EW

R01AN6455EJ0102 Rev.1.02 Page 8 of 32
Jan.20.23

2.2 FileX RAM Disk sample project
This sample illustrates the use of the FileX embedded FAT file system. The example creates a small RAM-
disk with a sample file and data, and reads the file data back into memory. The debugger can show the data
being read.

To run this sample, simply follow these steps (assuming the workspace is already open):

1. Open sample_filex_ram_disk.c and set a breakpoint around Line 201 at
if (status != FX_SUCCESS)

2. Select Go to start execution of the sample project

3. In the Expression window for e2 studio or Watch window for IAR EW, ensure you watch the
local_buffer variable as expression.

Figure 2.3 e2 studio Debugger Screen

Figure 2.4 IAR EW Debugger Screen

The debugger screen shot above shows the file data read back in the RAM disk
sample.

To learn more about Azure RTOS FileX, view
https://docs.microsoft.com/azure/rtos/filex/.

https://docs.microsoft.com/azure/rtos/filex/

Azure RTOS sample projects using e2 studio or IAR EW

R01AN6455EJ0102 Rev.1.02 Page 9 of 32
Jan.20.23

2.3 NetX Duo Ping sample project
This sample project illustrates the setup and use of NetX Duo IPv4/IPv6 TCP/IP stack via ping from another
node on the local network. By default, this demonstration requests an IP Address via DHCP, and displays
the status and assigned IP Address via Terminal program.

To run this sample project, simply follow these steps (assuming the workspace is already open):

1. Verify the serial port in your OS’s device manager. It should show up as a COM port

Figure 2.5 Device Manager
2. Open your favorite serial terminal program such as Putty and connect to the COM port discovered

above. Configure the following values for the serial port:
Baud rate: 115200
Data bits: 8
Parity: none
Stop bits: 1
Flow control: none

3. Select Go to start execution of the sample project

4. As the project runs you should observe the IP address assigned via DHCP in the output window

Figure 2.6 IP Address Assigned via DHCP
5. The example above shows that the assigned IP address of the RX MCU is 192.168.2.115. When the

demonstration is running it can be pinged by any machine on the network. The following is an example
of a ping from a Windows machine on the same local network (using the DOS command window).

Figure 2.7 Ping Response

To learn more about Azure RTOS NetX Duo, view https://docs.microsoft.com/azure/rtos/netx/.

https://docs.microsoft.com/azure/rtos/netx/

Azure RTOS sample projects using e2 studio or IAR EW

R01AN6455EJ0102 Rev.1.02 Page 10 of 32
Jan.20.23

2.4 NetX Duo Iperf sample project
This demonstration illustrates TCP and UDP network throughput, using NetX Duo IPv4/IPv6 TCP/IP stack,
and the industry-standard Iperf network throughput benchmark, with Jperf GUI. By default, this
demonstration requests an IP Address via DHCP, and displays the status and assigned IP Address via
Terminal program.

To run the NetX Duo Iperf Sample project, simply follow these steps (assuming the workspace is already
open):

Note: This sample is Ethernet based and therefore assumes an Ethernet cable is connected to the Ethernet
connector on the board.

1. Verify the serial port in your OS’s device manager. It should show up as a COM port.

Figure 2.8 Device Manager
2. Open your favorite serial terminal program such as Putty and connect to the COM port discovered

above. Configure the following values for the serial port:
Baud rate: 115200
Data bits: 8
Parity: none
Stop bits: 1
Flow control: none

3. Select Go to start execution of the sample project.

4. As the project runs you should observe the IP address assigned via DHCP in the output window.

Figure 2.9 IP address assigned via DHCP
5. Once running, simply browse to target IP address (in the screen shot above it is 10.172.14.40) to view

the NetX Duo Iperf server page, which provides options for running each Iperf test as well as displays
the results of each test. Here is as sample view after browsing 10.172.14.40:

Azure RTOS sample projects using e2 studio or IAR EW

R01AN6455EJ0102 Rev.1.02 Page 11 of 32
Jan.20.23

Figure 2.10 NetX Duo Iperf Server Page

Note: Static IP address assignment is also possible by disabling NX_ENABLE_DHCP in the project settings
and modifying the default static IP address of 192.168.1.211 in the source file “sample_netx_duo_iperf.c” file.

To learn more about Azure RTOS NetX Duo, view https://docs.microsoft.com/azure/rtos/netx/.

https://docs.microsoft.com/azure/rtos/netx/

Azure RTOS sample projects using e2 studio or IAR EW

R01AN6455EJ0102 Rev.1.02 Page 12 of 32
Jan.20.23

2.5 IoT Embedded SDK sample project
This demonstration connects to Azure IoT Hub using Azure IoT middleware for Azure RTOS. This
demonstration also publishes the message to IoT Hub every few seconds.

It is also possible to view device properties, view device telemetry, update device twin, call a direct method
on device and send cloud-to-device message using Azure IoT Explorer.

Following videos guide how to set up and run this Azure RTOS sample project in detail.
Azure RTOS Tutorial (1/3) CK-RX65N
Azure RTOS Tutorial (2/3) CK-RX65N: Program Build
Azure RTOS Tutorial (3/3) CK-RX65N: Cloud Operation

1. Prepare Azure resources such as creating an IoT Hub and registering an IoT device by referring
Microsoft document.
For details, please refer to the Application Note (RX65N Group: Visualization of Sensor Data using
RX65N Cloud Kit and Azure RTOS).

2. Confirm that you have the copied the following values to use in the next step.

- hostname
- deviceID
- primaryKey

3. Open sample_config.h to set the Azure IoT device information constants to the values that you saved
in step 2.

Constant name Value

HOST_NAME {Your IoT hub hostName value}

DEVICE_ID {Your deviceID value}

DEVICE_SYMMETRIC_KEY {Your primaryKey value}

4. Open main.c to set the Wi-Fi network parameters when you use the boards of which connectivity is Wi-
Fi.

Constant name Value

WIFI_SSID {Your Wi-Fi SSID value}

WIFI_PASSWORD {Your Wi-Fi password}

You don’t need to set specific parameters when you use the boards of which connectivity is ethernet or
cellular. Projects with cellular connectivity have “with EWF” at the end of the project name on Select
Application Window.

5. Verify the serial port in your OS’s device manager. It should show up as a COM port.

Figure 2.11 Device Manager

https://www.renesas.com/jp/ja/video/azure-rtos-tutorial-13-ck-rx65n-setup?rxsw-j
https://www.renesas.com/jp/ja/video/azure-rtos-tutorial-23-ck-rx65n-program-build?rxsw-j
https://www.renesas.com/jp/ja/video/azure-rtos-tutorial-33-ck-rx65n-cloud-operation?rxsw-j
https://www.renesas.com/search?keywords=%20R01AN6011
https://www.renesas.com/search?keywords=%20R01AN6011

Azure RTOS sample projects using e2 studio or IAR EW

R01AN6455EJ0102 Rev.1.02 Page 13 of 32
Jan.20.23

6. Open your favorite serial terminal program such as Putty and connect to the COM port discovered
above. Configure the following values for the serial port:
Baud rate: 115200
Data bits: 8
Parity: none
Stop bits: 1
Flow control: none

7. Build project

8. Select Download and Debug to download and start execution of the project

9. As the project runs, the demo prints out status information to the terminal output window. The demo also
publishes the telemetry message to IoT Hub every few seconds. Check the terminal output to verify that
messages have been successfully sent to the Azure IoT hub.

Figure 2.12 Status Information and Telemetry Message

You can use the Azure IoT Explorer to view and manage the properties of your devices. In the following
steps, you'll add a connection to your IoT hub in IoT Explorer.

1. Download and install latest (above v0.14.5) Azure IoT Explorer from: https://github.com/Azure/azure-iot-
explorer/releases

2. Copy the connection string: Microsoft Azure Portal > sign in > select your IoT Hub > [Share access
policies] > [iothubowner] > [Primary connection string].

Figure 2.13 Primary Connection String
3. In Azure IoT Explorer, select IoT hubs > Add connection.

4. Paste the connection string into the Connection string box.

5. Select Save.

https://github.com/Azure/azure-iot-explorer/releases
https://github.com/Azure/azure-iot-explorer/releases
https://azure.microsoft.com/en-us/features/azure-portal/

Azure RTOS sample projects using e2 studio or IAR EW

R01AN6455EJ0102 Rev.1.02 Page 14 of 32
Jan.20.23

Figure 2.14 Azure IoT Explorer
6. If the connection succeeds, the Azure IoT Explorer switches to a Devices view and lists your device.
To view device properties using Azure IoT Explorer:
1. Select the link for your device identity. IoT Explorer displays details for the device.
2. Inspect the properties for your device in the Device identity panel.

Figure 2.15 Azure IoT Explorer

To view device telemetry using Azure IoT Explorer:
1. In IoT Explorer select Telemetry. Confirm that Use built-in event hub is set to Yes.
2. Select Start.
3. View the telemetry as the device sends messages to the cloud.

Figure 2.16 Telemetry Message

Azure RTOS sample projects using e2 studio or IAR EW

R01AN6455EJ0102 Rev.1.02 Page 15 of 32
Jan.20.23

To update device twin using Azure IoT Explorer:
1. In IoT Explorer select Device twin.
2. Modify the desired section of the Device twin, you can add a custom twin:

3. Select Save.

Figure 2.17 Device Twin

4. View the notification for the device twin update status.
5. In the terminal output window, you can view the desired device twin properties are received.

Figure 2.18 Received Desired Device Twin Properties

To call a direct method on device using Azure IoT Explorer:
You can also use Azure IoT Explorer to call a direct method that you have implemented on your device.
Direct methods have a name, and can optionally have a JSON payload, configurable connection, and
method timeout. To call a direct method in Azure IoT Explorer:
1. In IoT Explorer select Direct method.

2. Send a direct method to mimic the device reboot with payload. The device will receive and output the
payload as dummy data.

"weather": {

"temperature": "25"

},

- Method name: reboot
- Payload: {"timeout": 500}

Azure RTOS sample projects using e2 studio or IAR EW

R01AN6455EJ0102 Rev.1.02 Page 16 of 32
Jan.20.23

Figure 2.19 Direct Method
3. Select Invoke method.

4. In the terminal output window, you can view the method is invoked on the IoT Device.

Figure 2.20 Invoked Method

To send cloud-to-device message using Azure IoT Explorer:
1. In IoT Explorer select Cloud-to-device message.
2. Enter the message in the Message body:

3. Check Add timestamp to message body.

Figure 2.21 Cloud-to-device message

4. Select Send message to device.
5. In the terminal output window, you can view the message is received by the IoT Device.

{ "Hello": "Azure RTOS" }

Azure RTOS sample projects using e2 studio or IAR EW

R01AN6455EJ0102 Rev.1.02 Page 17 of 32
Jan.20.23

Figure 2.22 Received Message

Azure RTOS sample projects using e2 studio or IAR EW

R01AN6455EJ0102 Rev.1.02 Page 18 of 32
Jan.20.23

2.6 IoT Embedded SDK PnP sample project
This demonstration connects to Azure IoT Hub using Azure IoT middleware for Azure RTOS. This
demonstration also publishes the message to IoT Hub every few seconds.

It is also possible to view device properties, view device telemetry, update device twin, call a direct method
on device and send cloud-to-device message using Azure IoT Explorer.

To run this project, simply follow 2.5 IoT Embedded SDK sample project.
Moreover, this sample can interact with IoT Plug and Play components using Azure IoT Explorer.

To interact with IoT Plug and Play components using Azure IoT Explorer:

You can use Azure IoT Explorer to interact with IoT Plug and Play components.

Azure IoT explorer needs a local copy of the model file that matches the Model ID your device sends. The
model file lets Azure IoT explorer display the telemetry, properties, and commands that your device
implements.

If you haven't already downloaded the sample model files:
1. Create a folder called models on your local machine.
2. Save TemperatureController.json file to the models folder.
3. Save Thermostat.json file to the models folder.

To use the Azure IoT explorer to verify the IoT Plug and Play device application is working:
1. In IoT Explorer, select the IoT Plug and Play Settings.
2. Select Add.
3. In Local folder section and select Pick a folder and open the local models folder where you saved your

model files. Then select Save.

Figure 2.23 IoT Plug and Play Setting

https://raw.githubusercontent.com/Azure/opendigitaltwins-dtdl/master/DTDL/v2/samples/TemperatureController.json
https://raw.githubusercontent.com/Azure/opendigitaltwins-dtdl/master/DTDL/v2/samples/Thermostat.json

Azure RTOS sample projects using e2 studio or IAR EW

R01AN6455EJ0102 Rev.1.02 Page 19 of 32
Jan.20.23

4. On the IoT hubs page, click on the name of the hub you want to work with. You see a list of devices
registered to the IoT hub.

5. Click on the Device ID of the device you created previously.
6. The menu on the left shows the different types of information available for the device.
7. Select IoT Plug and Play components to view the model information for your device.

Figure 2.24 Model Information

8. You can view the different components of the device. The default component and any additional ones.
Select a component to work with.

9. Select the Telemetry page and then select Start to view the telemetry data the device is sending for this
component.

10. Select the Properties (read-only) page to view the read-only properties reported for this component.
11. Select the Properties (writable) page to view the writable properties you can update for this

component.
12. Select a property by it's name, enter a new value for it, and select Update desired value.
13. To see the new value show up select the Refresh button.
14. Select the Commands page to view all the commands for this component.
15. Select the command you want to test set the parameter if any. Select Send command to call the

command on the device. You can see your device respond to the command in the command prompt
window where the sample code is running.

Figure 2.25 IoT Plug and Play Components

Azure RTOS sample projects using e2 studio or IAR EW

R01AN6455EJ0102 Rev.1.02 Page 20 of 32
Jan.20.23

2.7 IoT Embedded SDK with IoT Plug and Play sample project
This demonstration connects to Azure IoT Hub using Azure IoT middleware for Azure RTOS. This
demonstration also publishes the message to IoT Hub every few seconds.

It is also possible to view device properties, view device telemetry, update device twin, call a direct method
on device and send cloud-to-device message using Azure IoT Explorer.

Moreover, this sample can interact with IoT Plug and Play components using Azure IoT Explorer.

To run this project, simply follow 2.6 IoT Embedded SDK PnP sample project.

Azure RTOS sample projects using e2 studio or IAR EW

R01AN6455EJ0102 Rev.1.02 Page 21 of 32
Jan.20.23

2.8 GUIX 8bpp/16bpp/16bpp_draw2d sample project
This demonstration illustrates Washing Machine application using advanced GUIX features such as:

- Widget creation
- Creating multiple screens inside the main screen
- Attaching and detaching the child screen when you switch screens
- Double-buffer toggle control for screen transition without tearing
- Radial slider, vertical and horizontal slider creation
- Running animation

It also illustrates 2 kind of color depth and use of 2D drawing engine (DRW2D) on RX family.

- sample_guix_8bpp:
sample for display of size 480 * 272 with 8 bits color look-up table (CLUT8).

- sample_guix_16bpp:
sample for display of size 480 * 272 with 16 bits RGB 565.

- sample_guix_16bpp_draw2d:
sample for display of size 480 * 272 with 16 bits RGB 565 with 2D drawing engine.

To run each GUIX Sample project, simply follow these steps (assuming the steps described in the previous
section were done):

1. Select Go to start execution of the demonstration. As the project runs you should observe Washing
Machine GUI on board TFT panel. The four different screens are demonstrated as:

Figure 2.26 Main Screen

Figure 2.27 Garments selection screen

Figure 2.28 Water level selection screen

Azure RTOS sample projects using e2 studio or IAR EW

R01AN6455EJ0102 Rev.1.02 Page 22 of 32
Jan.20.23

Figure 2.29 Temperature selection screen

The application demonstrates the simulation of the Washing Machine controller from the GUI perspective.
This project initializes the GUIX system, configures the GUIX drivers, initializes Canvas, creates screens
using widget creation APIs, starts the GUIX and handles the Touch Events from the Touch driver. All these
are done from the Application Thread.
To learn more about Azure RTOS GUIX, view https://docs.microsoft.com/azure/rtos/guix/.

https://docs.microsoft.com/azure/rtos/guix/

Azure RTOS sample projects using e2 studio or IAR EW

R01AN6455EJ0102 Rev.1.02 Page 23 of 32
Jan.20.23

2.9 USBX device CDC-ACM Class sample project
This demonstration illustrates the setup and use of USBX device CDC-ACM Class to communicate with the
host as a serial device. This project initializes the USBX system and device stack, set the parameters for
callback when insertion/extraction of a CDC device, read from the CDC class and write to the CDC instance
using device CDC-ACM APIs.

Before build the sample and run, you need to connect the USB0 Function on Renesas Starter Kit+ for
RX65N-2MB to your computer using the USB-MiniB cable: (assuming Renesas Starter Kit+ for RX65N-2MB
is specified as Target Board)

Figure 2.30 USB0 Function on Renesas Starter Kit+ for RX65N-2MB

To run the device CDC-ACM Sample project, simply follow these steps (assuming the steps described in
the previous section were done):

1. Select Go to start execution of the demonstration.

2. Verify the serial port in your OS’s device manager. It should show up as a COM port for the CDC-ACM
device.

Figure 2.31 Device Manager

3. Open your favorite serial terminal program such as Putty and connect to the COM port discovered

above. In this sample project, it is not necessary to set any other settings on the terminal program.

4. As the project runs, you should be able to observe “abcdef” returned from the CDC-ACM device when
you input enter key to the CDC-ACM device via the terminal.

Figure 2.32 Serial Terminal Window

To learn more about Azure RTOS USBX, view https://docs.microsoft.com/azure/rtos/usbx/.

https://docs.microsoft.com/azure/rtos/usbx/

Azure RTOS sample projects using e2 studio or IAR EW

R01AN6455EJ0102 Rev.1.02 Page 24 of 32
Jan.20.23

2.10 USBX Host Mass Storage Class sample project
This demonstration illustrates the setup and communication with MSC device (USB flash drive) using USBX
HMSC. The sample program initializes the FileX, USBX system and USB driver stack. When a MSC device
is inserted, it reads and writes a file to MSC device using device FileX APIs.

1. Change the jumper pins (J7 and J16) on Renesas Start Kit+(RSK) for RX65N-2MB to set to USB Host
mode. (assuming Renesas Starter Kit+ for RX65N-2MB is specified as Target Board)

Note: Jumper pin numbers are different for each RSK.

2. Build USBX HMSC sample project and run.

3. Connect MSC device to USB Standard A connector (red frame) on RSK.

Figure 2.33 USB Standard A Connector on Renesas Starter Kit+ for RX65N-2MB

When the USBX HMSC driver recognizes that MSC device is connected, the sample application program
creates a ”counter.txt” file to MSC device using FileX API.

4. Disconnect MSC device from RSK and connect MSC drive to PC.

5. Confirm that “counter.txt” file is generated at the root folder in the MSC device.

Figure 2.34 Root Folder in MSC Device

6. Open “counter.txt” file using the binary editor on PC. It contains count up numbers from 0x0000 to
0x00FF from the address 0x00000000 as following.

Azure RTOS sample projects using e2 studio or IAR EW

R01AN6455EJ0102 Rev.1.02 Page 25 of 32
Jan.20.23

Figure 2.35 Content of “counter.txt”

7. Disconnect MSC device from PC and connect the MSC device to RSK. This sample program reads
“counter.txt” in MSC device and adds the count up data from the address (0x00000200) in this file.

8. Disconnect MSC device from RSK and connect the MSC drive to PC.

9. Open “counter.txt” file using the binary editor on PC. It contains count up numbers from 0x0000 to
0x00FF from the address 0x00000200 as following.

Figure 2.36 Content of “counter.txt”

10. By repeating steps 8 and 9 above, the sample program keeps updating count data to “counter.txt” file in
the MSC device.

To learn more about Azure RTOS USBX, view https://docs.microsoft.com/azure/rtos/usbx/.

https://docs.microsoft.com/azure/rtos/usbx/

Azure RTOS sample projects using e2 studio or IAR EW

R01AN6455EJ0102 Rev.1.02 Page 26 of 32
Jan.20.23

2.11 ThreadX Low Power sample project
This sample project illustrates how to use ThreadX's Low Power feature. You can confirm the transition to
and resume from the following low power modes supported by the device using the Low Power Consumption
Device Driver Module (r_lpc_rx).

Device RX130, RX140 RX65N, RX651, RX660, RX72N,
RX671

Supported low power mode Sleep Mode

Deep Sleep Mode

Software Standby Mode

Sleep Mode

Software Standby Mode

Deep Software Standby Mode

2.11.1 Overview of sample project
1. The sample project creates one thread thread_0. The thread_0 turns on the LED when it starts.

2. After executing for about 3 seconds, suspend the own thread by tx_thread_suspend.

3. Since there is no other thread to run, Demo_LowPower_Enter configured in ThreadX “Enter low power
function” configuration is called from tx_low_power_enter of ThreadX.

4. Demo_LowPower_Enter turns off the LED and transitions to the low power consumption mode.

5. The low power consumption mode is resumed by the interruption of pressing the user switch. The
interrupt handler Demo_callback is called and tx_thread_resume resumes thread_0. At this point,
thread_0 does not run.
If it has transitioned to the deep software standby mode, it will be resumed by the user switch press
interrupt or RTC alarm interrupt and reboots from the reset vector.

6. Next, the Demo_LowPower_Exit configured in the ThreadX “Exit low power function” configuration is
called from tx_low_power_exit of ThreadX. Demo_LowPower_Exit turns on the LED and returns to
ThreadX.

7. The resumed thread_0 runs.

8. Repeat the transition to the same low power consumption mode in steps 2 to 7 three times in total and
execute all low power consumption modes in the following order.

For RX130 and RX140:

Sleep Mode (3 times) => Deep Sleep Mode (3 times) => Software Standby Mode (3 times)

For RX65N, RX651, RX660, RX72N, RX671:

Sleep Mode (3 times) => Software Standby Mode (3 times) => Deep Software Standby Mode (1
time)

The figure shows the execution flow from suspending the thread_0 with tx_thread_suspend to resuming.

Figure 2.37 Execution Flow after tx_thread_suspend (&thread_0)

Azure RTOS sample projects using e2 studio or IAR EW

R01AN6455EJ0102 Rev.1.02 Page 27 of 32
Jan.20.23

2.11.2 Execute sample project
To run the sample project, simply follow these steps for each board:

Target Board for RX130 and Renesas Starter Kit for RX140:
1. Select Launch to download the program.

2. Select Resume to start execution of the project. The program stops at the breakpoint of main function.

3. Select Resume to restart.

4. The program turns LED0 on and runs for 3 seconds.

5. The program turns LED0 off and transitions to sleep mode. e2 studio status bar will change from
Running to Sleeping as below:

6. The program is resumed by pressing the user switch (SW1). This cycle is repeated 3 times.

7. Similarly, transitions to deep sleep mode and resume by pressing the user switch is repeated 3 times. e2
studio status bar will change from Running to Standby as below:

8. Similarly, transitions to software standby mode and resume by pressing the user switch is repeated 3
times. e2 studio status bar will change from Running to Standby as below:

9. Repeat from sleep mode to software standby mode.

RX65N Cloud Kit:
1. Select Launch to download the program.

2. Select Resume to start execution of the project. The program stops at the breakpoint of main
function.

3. Select Resume to restart.

4. The program turns LED1 on and runs for 3 seconds.

5. The program turns LED1 off and transitions to sleep mode. e2 studio status bar will change from
Running to Sleeping as below:

6. The program is resumed by pressing the user switch. This cycle is repeated 3 times.

7. Similarly, transitions to software standby mode and resume by pressing the user switch is repeat 3
times. e2 studio status bar will change from Running to Standby as below: (*)

8. The program transitions to deep software standby. e2 studio status bar will change from Running to
Standby as below: (*)

9. The program reboots by pressing the user switch.

Azure RTOS sample projects using e2 studio or IAR EW

R01AN6455EJ0102 Rev.1.02 Page 28 of 32
Jan.20.23

(*) e2 studio status bar when deep software standby and software standby is the same. So please check
SBYCR.SSBY and DPSBYCR.DPSBY register value before executing wait instruction.

- software standby: SBYCR.SSBY=1, DPSBYCR.DPSBY=0

- deep software standby: SBYCR.SSBY=1, DPSBYCR.DPSBY=1

Renesas Starter Kit+ for RX65N-2MB, Renesas Starter Kit for RX660, Renesas Starter Kit for RX671,
RX72N Envision Kit and CK-RX65N:

1. Select Launch to download the program.

2. Select Resume to start execution of the project. The program stops at the breakpoint of main
function.

3. Select Resume to restart.

4. The program turns LED (usually LED0) on and runs for 3 seconds.

5. The program turns LED off and transitions to sleep mode. e2 studio status bar will change from
Running to Sleeping as below:

6. The program is resumed by pressing the user switch (usually SW1). This cycle is repeated 3 times.

7. Similarly, transitions to software standby mode and resume by pressing the user switch is repeat 3
times. e2 studio status bar will change from Running to Standby as below: (*)

8. The program transitions to deep software standby. e2 studio status bar will change from Running to
Standby as below: (*)

9. The program reboots by RTC alarm interrupt after about 30 seconds.

(*) e2 studio status bar when deep software standby and software standby is the same. So please check
SBYCR.SSBY and DPSBYCR.DPSBY register value before executing wait instruction.

- software standby: SBYCR.SSBY=1, DPSBYCR.DPSBY=0
- deep software standby: SBYCR.SSBY=1, DPSBYCR.DPSBY=1

Azure RTOS sample projects using e2 studio or IAR EW

R01AN6455EJ0102 Rev.1.02 Page 29 of 32
Jan.20.23

2.11.3 Configuration of ThreadX Low Power by Smart Configurator
 You can develop own system low power operation for your product referring to this sample project and

using Smart Configurator’s component configuration feature as below. Each configurable item
description is displayed in Macro definition view by clicking the configuration item.

Figure 2.38 Configuration of ThreadX Low Power
 If the Low Power Consumption Device Driver Module (r_lpc_rx) is used, the module executes “WAIT”

instruction inside the r_lpc_rx module. Therefore, please note that “Enable threadx wait” must be
disabled.

 If you define your own function for “Enter low power function”, “Exit low power function”, “Low power
timer setup function” and “Low power user timer adjust function”, please modify the prototype definition
for each function in libs/threadx/tx_user.h manually as well.

Figure 2.39 libs/threadx/tx_user.h

Azure RTOS sample projects using e2 studio or IAR EW

R01AN6455EJ0102 Rev.1.02 Page 30 of 32
Jan.20.23

 The “tx_low_power_next_expiration” parameter is passed to the “TX_LOW_POWER_TIMER_SETUP”
function. Since the tx_low_power_next_expiration is the next timer deadline (i.e., the number of ticks
before the next wakeup), a low power mode timer must be set so that the low power mode is resumed
before this tick number elapses.
When the tx_low_power_next_expiration is 0xffffffff, there is no next timer expiration date (there is no
thread waiting for a timeout), so the user may resume from the low power mode at any time.
When the tx_low_power_next_expiration is very small value, the transition to the low power
consumption mode may be omitted by judging from the transition process time and the resume process
time because it depends on the processing time of the user-defined function.

 For the latest information of Low Power APIs, please refer to https://github.com/azure-
rtos/threadx/blob/master/utility/low_power/low_power.md .

https://github.com/azure-rtos/threadx/blob/master/utility/low_power/low_power.md
https://github.com/azure-rtos/threadx/blob/master/utility/low_power/low_power.md

Azure RTOS sample projects using e2 studio or IAR EW

R01AN6455EJ0102 Rev.1.02 Page 31 of 32
Jan.20.23

2.12 Azure Device Update (ADU) sample project
This sample project illustrates over-the-air (OTA) firmware update via Microsoft Azure. Azure ADU is a cloud
service provided by Microsoft that enables deployment of OTA updating of IoT devices.

When implementing ADU, secure boot loader sample project must be used together with this project. The
secure bootloader function is to verify that firmware to be run is reliable, make sure it has not been tempered,
and update it.

To run this sample, simply follow these steps: Please note that this project is not supported by IAR EW.

1. Select Azure Device Update (ADU) sample project on Select Application Window and create a
project.

2. Add new project: [File] > [New] > [Renesas C/C++ Project] and select Renesas RX. Then select

Secure bootloader sample project on Select Application Window and create the project specifying
the same device and same compiler as specified in step1.

After creating two projects, to setup and build the projects, please refer to Application Note (Creating a
Microsoft ADU Environment) from "3.3 File Output Settings".

Please note that there are some differences in the project structure between the imported projects based on
the Application Note and the created projects by e2 studio.

- Though ThreadX, FileX, NetX Duo will be built as library file using imported project, they will be
embedded in Azure Device Update (ADU) sample project in created project.

- “(Board Name)_adu_sample_secure_boot.esi” written in “3.9 Section Settings” does not exist in
created project. And the Application Note for imported project assumes that RX65N is used, so the
address information may differ on other MCUs. Please refer to the hardware manual of the MCUs used
and replace it with the desired value.

- There are some differences in source codes. So please ignore “3.10 Modifying the Source Code”.

Figure 2.40 imported projects based on Application Note

Figure 2.41 created projects by e2 studio

Where project name is as below
- Azure Device Update (ADU) sample project: sample_azure_iot_embedded_sdk_pnp
- Secure bootloader sample project: boot_loader

To learn more about Azure ADU, view https://learn.microsoft.com/azure/iot-hub-device-update/.

https://www.renesas.com/search?keywords=R01AN6357
https://www.renesas.com/search?keywords=R01AN6357
https://learn.microsoft.com/azure/iot-hub-device-update/

Azure RTOS sample projects using e2 studio or IAR EW

R01AN6455EJ0102 Rev.1.02 Page 32 of 32
Jan.20.23

Revision History

Rev. Date
Description
Page Summary

1.00 Jul. 20, 2022  First edition issued
1.01 Oct. 20, 2022 1, 22 Changed project name from “PnP Temperature Control

sample project” to “IoT Embedded SDK with IoT Plug and
Play sample project”

2 Added Azure IoT Explorer
1.02 Jan. 20, 2023 6 Improved creation procedure for IAR EW project

24, 25 Added USBX Host Mass Storage Class sample project
31 Added Azure Device Update sample project and secure

bootloader sample project

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2023 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Getting Started
	1.1 Creating project using e2 studio
	1.2 Creating project using IAR EW

	2. Sample Project Descriptions
	2.1 ThreadX sample project
	2.2 FileX RAM Disk sample project
	2.3 NetX Duo Ping sample project
	2.4 NetX Duo Iperf sample project
	2.5 IoT Embedded SDK sample project
	2.6 IoT Embedded SDK PnP sample project
	2.7 IoT Embedded SDK with IoT Plug and Play sample project
	2.8 GUIX 8bpp/16bpp/16bpp_draw2d sample project
	2.9 USBX device CDC-ACM Class sample project
	2.10 USBX Host Mass Storage Class sample project
	2.11 ThreadX Low Power sample project
	2.11.1 Overview of sample project
	2.11.2 Execute sample project
	2.11.3 Configuration of ThreadX Low Power by Smart Configurator

	2.12 Azure Device Update (ADU) sample project

	Revision History

