REN ESAS Application Note

Azure RTOS sample projects ROTANG4SSE 0102
using e? studio or IAR EW 2023120

Introduction

Azure RTOS sample projects for each component (ThreadX, FileX, GUIX, NetX Duo, and USBX) can be
created using Renesas e? studio or IAR Embedded Workbench (EW) with the on-board emulator. All
samples are designed to run on RX family.

This document guides how to create and use these sample projects.

Supported Sample Projects

- ThreadX sample project
Contains ThreadX source code

- FileX RAM Disk sample project
Contains FileX source code

- NetX Duo Ping sample project
Contains NetX Duo ping sample project

- NetX Duo Iperf sample project
Contains NetX Duo iPerf sample project

- loT Embedded SDK sample project
Sample project to connect to Azure IoT Hub using Azure loT Middleware for Azure RTOS

- loT Embedded SDK PnP sample project
Sample project to connect to Azure loT Hub using Azure loT Middleware for Azure RTOS via loT Plug
and Play

- loT Embedded SDK with loT Plug and Play sample project
Sample project with 10T Plug and Play using multiple components

- GUIX 8bpp sample project
Contains sample for GUIX 8BPP

- GUIX 16bpp sample project
Contains sample for GUIX 16BPP

- GUIX 16bpp draw 2d sample project
Contains sample for GUIX 16BPP with 2D Draw

- USBX device CDC-ACM Class sample project
Contains USBX source code

- USBX Host Mass Storage Class sample project
Contains USBX source code

- ThreadX Low Power sample project
Contains ThreadX & low power utility source code

- Azure Device Update (ADU) sample project
Sample project for OTA firmware update via Microsoft Azure

- Secure bootloader sample project
Used together with ADU sample project to provide a secure boot

RO1AN6455EJ0102 Rev.1.02 Page 1 of 32
Jan.20.23 RENESAS

Azure RTOS sample projects using e2 studio or IAR EW

Supported Devices
- RX130
- RX140
- RX65N
- RX651
- RX660
- RX66T
- RX671
- RX72N

Supported sample projects are different by each device. For details, please refer to the following URL.
https://github.com/renesas/azure-rtos

Download Links for Development Environment
- €2 studio : 2022-10 or later

https://www.renesas.com/software-tool/e-studio

- Renesas C/C++ Compiler for RX Family CC-RX : V3.04.00 or later
https://www.renesas.com/software-tool/cc-compiler-package-rx-family

- GCC for Renesas RX : 8.3.0.202104 or later

https://gcc-renesas.com/rx-download-toolchains/

- AR Embedded Workbench for RX : 4.20.1 or later

https://www.iar.com/products/architectures/renesas/iar-embedded-workbench-for-renesas-rx/
- RX Smart Configurator : V2.13.0 and later

https://www.renesas.com/software-tool/smart-configurator

« Azure loT Explorer

https://github.com/azure/azure-iot-explorer/releases

RO1AN6455EJ0102 Rev.1.02 Page 2 of 32
Jan.20.23 RENESAS

https://github.com/renesas/azure-rtos
https://www.renesas.com/software-tool/e-studio
https://www.renesas.com/software-tool/cc-compiler-package-rx-family
https://gcc-renesas.com/rx-download-toolchains/
https://www.iar.com/products/architectures/renesas/iar-embedded-workbench-for-renesas-rx/
https://www.renesas.com/software-tool/smart-configurator
https://github.com/azure/azure-iot-explorer/releases

Azure RTOS sample projects using e2 studio or IAR EW

Contents

1. GetliNg StArted ... e e 4
1.1 Creating project using €2 StUAIOccccoiiiiiiiii i 4
1.2 Creating project USING TAR EW ettt et e et e e s et e e e s anteeeeeans 6
2. Sample ProjeCt DeSCIIPHONSo 7
D20 T N 011 Y= To) Q== 10 0] 0] (= o]) = o 7
D S 115) G YN Y I 1] Q== T a1 0] (=] (o] [T o 8
DG N \ V1= G 0 o B g T = 1 g 0] L= o o) = o A 9
2.4 NetX DUo Iperf SamPle PrOJECEo et e e e e e e e e e e e e e e e e e enneeeeeaaeeas 10
2.5 |oT Embedded SDK Sample ProJECT......coi ittt e e e e e e e e e e eeeaee s 12
2.6 |oT Embedded SDK PnP Sample ProjeCt ..ot e e e 18
2.7 10T Embedded SDK with 10T Plug and Play sample project...........cccceeeiiiiiiieiiie e 20
2.8 GUIX 8bpp/16bpp/16bpp_draw2d Sample ProjECEeeeiieiiiiiiiiiiee e e 21
2.9 USBX device CDC-ACM Class Sample ProjECL.........c.uuviiiiiiiiiiiciieiee et e 23
210 USBX Host Mass Storage Class sample Projectcooiiiiiiiiiiiiiiiieee et 24
211 ThreadX Low Power Sample ProjECE it e e e e e e enneeeeeeae s 26
2.11.1 Overview of SAMPIE PrOJECE..... ... et e e e e e e e e e e e e e e e e nnaeneeaae s 26
D e I = =T o U 1 (=YY= g] o[] o)1= o 27
2.11.3 Configuration of ThreadX Low Power by Smart Configurator.............cccocoviiiiieiiiiicieee e, 29
2.12 Azure Device Update (ADU) SAMPIE PrOJECE......ciiiii et e e e e e 31
REVISION HISTOIY ...t e e e e e e e e e e e e e e e e e st aeaaeas 32
RO1AN6455EJ0102 Rev.1.02 Page 3 of 32

Jan.20.23 RENESAS

Azure RTOS sample projects using e2 studio or IAR EW
1. Getting Started

To create new Azure RTOS project, the procedure is different between e? studio and IAR EW.

1.1 Creating project using e? studio

1. Launch e? studio, create new project: [File] > [New] > [Renesas C/C++ Project] and select Renesas RX
and create a new workspace.

@ ¢ studio Launcher X

Select a directory as workspace

e? studio uses the workspace directory to store its preferences and development artifacts.

Workspace: |D:\demo | [Browse.

[Use this as the default and do not ask again

» Recent Workspaces

Launch Cancel

Figure 1.1 Workspace Creation Window

2. Select GCC for Renesas RX C/C++ Executable Project or Renesas CC-RX C/C++ Executable
Project.

& New C/C++ Project O X

Templates for Renesas RX Project

GCC for Renesas RX C/C++ Executable Project

C/Ct+ €= A C/C++ Executable Project for Renesas RX using the GCC for Renesas RX Toolchain.

GCC for Renesas RX C/C++ Library Project
EE= A C/C++ Library Project for Renesas RX using the GCC for Renesas RX Toolchain.

Renesas CC-RX C/C++ Executable Project
€5 A C/C++ Project for Renesas RX using the Renesas CCRX toolchain.

Renesas CC-RX C/C++ Library Project
€= A C/C++ Library Project for Renesas RX using the Renesas CCRX toolchain.

< Back Next > Finish Cancel

Figure 1.2 Toolchain Setting Window

3. Input the project name.
4. Click [Next].

New Renesas CC-RX Executable Project —=

New Renesas CC-RX Executable Project

Project name: | demo I

Use default location
D:\demo\demo Browse
Create Directory for Project

default
Working sets

[JAdd project to working sets New...

<oack Cancel

Figure 1.3 Project Creation Window

RO1AN6455EJ0102 Rev.1.02 Page 4 of 32
Jan.20.23 RENESAS

Azure RTOS sample projects using e2 studio or IAR EW

5. AtRTOS, select “Azure RTOS".

© © N o

Click [Next].

Click Manage RTOS Versions... to download software package.
At RTOS Version, select a version that downloaded at step 6.

At Target Board, select a board that you are working on.

8 o x

New Renesas CC-RX Executable Project

Select toolchain, device debug settings

Toolchain Settings

Language: ®cOc++

Toolchain: Renesas CCRX v

Toolchain Version: v3.04.00 v
] Manage Toolchains.

RTOS: Azure RTOS v

RTOS Version: 6.1.11_rel-x-1.0.0 v

| Manage RTOS Versions.
Device Setting

Target Board: |RSKRX65N-2MB ~ I Create Hardware Debug Configuration

Download additional boards. E2 Lite (RX) v
Target Device: ROFSGSNEDXFC [Create Debug Configuration

Unlock Devices RX Simulator .

Endian: Little

[Create Release Configuration
Project Type: Default

@

<oack e Concl

Figure 1.4 RTOS and Target Board Setting Window

10. Click [Next].

e o x
New Renesas CC-RX Executable Project

Select Coding Assistant settings

I Code G
Smart Configurator is a single User Interface that combines the functionalies of Code Generator and FIT
Configurator which imports, configures and generates different types of drivers and middleware
modulos.
Smart Configurator s i dion view and pin

configuration view.

Hardware resources conflic in peripheral modules,interrupts and pins occurred in different types of
drivers and middleware modules will be notifi

(Smart Configurator is available only for the supported devices)

User Application

11. Select an application.
12. Click [Finish].

Figure 1.5 Coding Assistant Setting Window

[EG New Smart Configuration File [m] X

Smart Configuration Settings

Select RTOS Project Settings

Select application:

ThreadX sample project
. « Project includes ThreadX, BSP, and CMT. This sample is the standard 8-thread ThreadX
@ | 3| example, that illustrates the use of the main ThreadX services, including threads,
message queues, timers, semaphores, byte memory pools, block memory pools, event
flag groups, and mutexes
FileX RAM Disk sample project
le) () Project includes ThreadX, FileX, BSP, CMT. This sample illustrates the use of the FileX
embedded FAT file system. The example creates a small RAM-disk with a sample file and
data, and reads the file data back into memory
NetX Duo Ping sample project
. This sample project illustrates the setup and use of NetX Duo IPv4/IPv6 TCP/IP stack via
O [£3 ping from another node on the local network. By default, this demonstration requests an
IP Address via DHCP, and displays the status and assigned IP Address via terminal /O
window. Note: default baudrate setting is 115200 v

R RS Cone

Figure 1.6 Select Application Window

RO1ANG6455EJ0102 Rev.1.02
Jan.20.23

RENESAS

Page 5 of 32

Azure RTOS sample projects using e2 studio or IAR EW

13. Azure RTOS sample project including each component is created.

@ demo - demo/demo.scfg - €° studio
File Edit Navigale Search Project Renesas Views Run Window Help
&%= |# Debug 1 demo HardwareDebug =R 4 BYRvE WS Iy @R YR IL

E_ & demo.scig ©

- Sl spets] Overview information 2

e libs Allow general pin configuration and pin configuration for selected software component
Interrupt

@ demoscly Allow general interrupt configuration and interrupt configuration for selected software component

demo HardwareDebug launch

Click here to get User's Manual, Release Note Application Notes Tool News
* Current Configuration

Selected board/device: RSFSGSNEDXFC (ROM size: 2MB, RAM size: 640K, Pin count: 176)

Gen P Edit

Version Configuration
05 ThreadX 6111 rel..
S Object 10104 @

oard Support Packages. (r_bsp) 7.10
©CMT driver (r_cmt i) 510
<

Overview|Board| Clocks| System| Components| Pins|

& demo

© | EIMCU/MPU Package 5 | % MMU Layout

=
Incudes Generate Code Generate Report

© hsigned) DeaBosa

Figure 1.7 Created Sample Project Window

14. Build project: Select the sample project in the e? studio workspace and right click and select build to build

the sample project.

15. Select Download and Debug to download and start execution of the project. By default, execution stops

at a breakpoint set at main.

Note: Other debugger settings may be required depending on the board type you specify.

In the case of Renesas Starter Kit+ for RX65N-2MB: click Debugger > Connection Settings >

Power Target From The Emulator, and set No.

16. Please review the sample descriptions later in this guide for additional setup and expected behavior.

1.2 Creating project using IAR EW

Please refer to following FAQ for the detailed instructions:
https://en-support.renesas.com/knowledgeBase/20533128

In AN ja, same update however changing URL
https://ja-support.renesas.com/knowledgeBase/20533124

RO1AN6455EJ0102 Rev.1.02
Jan.20.23 RENESAS

Page 6 of 32

https://en-support.renesas.com/knowledgeBase/20533128
https://ja-support.renesas.com/knowledgeBase/20533124

Azure RTOS sample projects using e2 studio or IAR EW

2. Sample Project Descriptions

Additional setup and expected behavior of each sample project are described in this section.

2.1 ThreadX sample project

This sample is the standard 8-thread ThreadX example, that illustrates the use of the main ThreadX
services, including threads, message queues, timers, semaphores, byte memory pools, block memory pools,
event flag groups, and mutexes.

To run this sample, simply follow these steps (assuming the steps described in the previous section were
done):

1. Set a breakpoint at any line.

2. Select Go to start execution of the sample project.

- o ®
—
cebetug (=13 SN PN
1 [Conlg.SCRum. [0 Conlg 308m resetpry < sece
g else 3F (qutt ptr -3 t_gqucue_{d 1= TX_QUEVE_ID) %
5 n TX_QUELE_ERRDR; x
e oy .
t 5
G thoasd counter ULOMG 1S GulgRds
VoNG hE akc
e
NATT_ Enaca;
}
Fifaded TX_TIMR_PROCESS_TW_IS%
else
e] Proslems @ Smarteouner (@ DebuggerComsate [[] DebugSnel) Memory A il 8 D -5
[Renesss GO8 Masheare Debugaing]
s axtfeanses
5 ettemar
e @ wasom @ madates
D) scure t0s - 128 Embecided Warkoench IDE - RXA141 - o x
e .
ho@e & o 2C 24 Q252 BN MBS 8 G CcO O Ir 03 itw, A S
sample dveadec x - s =3 % Onsemtly ~ax
fo Expression Locaton Type Golo ~ | |Memory
fjj 0x16104 ULONG ‘Disassembly

0x16108 ULONG

0x16110 ULONG FERDZORL S R101

Ox16118 ULONG EEEICRYC 20 EL

0x1611C ULONG

SeTEIoml RONE FFEOZCRS 3F 66 01
hread 6 Ox18124 ULONG
ihresd_7_counter 400 ox16128 ULONG

thrasd_2_entry
FFEO2C8E 7E AS
eceived)) FFEO2CEA 60 40
FFEO2COC FB 6E 04 61

FFED2CHL 0D

FFEO2C32 62 11

FFEO2C36 AS EC
FFED2CSE BB 35 FF

EF 02
FFEO2C9D €2 14
FFED2COF AD EC
FFE02CAL 72 61 CB 05

FFEO2CAS 05 CA 0k 00
FFED2CAS 61 D1

FFEO2CAE 19
FFEO2CAC A9 61
FFED2CAE EC 02 v
ax
t Code @ sample_thrsadcc805
. 2020102753, Breakpaint ht Code @ sample_threadec1765
20201027 53 The stack pointer for stack User is K 0:3FB00)
Debuglog
Besgy 1h261,Col9 System 2Pt OvR S

Figure 2.2 IAR EW Debugger Screen

After hitting Break, the debugger screen shot above shows various counters incremented by the ThreadX
sample as each of the main components of the ThreadX are exercised.

To learn more about Azure RTOS ThreadX, view https://docs.microsoft.com/azure/rtos/threadx/.

RO1AN6455EJ0102 Rev.1.02 Page 7 of 32
Jan.20.23 RENESAS

https://docs.microsoft.com/azure/rtos/threadx/

Azure RTOS sample projects using e2 studio or IAR EW

2.2 FileX RAM Disk sample project

This sample illustrates the use of the FileX embedded FAT file system. The example creates a small RAM-
disk with a sample file and data, and reads the file data back into memory. The debugger can show the data

being read.

To run this sample, simply follow these steps (assuming the workspace is already open):

1. Open sample_filex_ram_disk.c and set a breakpoint around Line 201 at

if (status != FX_SUCCESS)

2. Select Go to start execution of the sample project

3. Inthe Expression window for e? studio or Watch window for IAR EW, ensure you watch the
local_buffer variable as expression.

¥R

£

8 1s FE_SUCCESS)

thresd_0_counters+;

|

2| RO+ o Sman Contiprntie [Dy
RS

Ragaten f] Proslems @) St Brower @ DebuggerComcle [Debughed () Memary EIE ™ 0.
dmareDebg Reness GOB Haidmure Dging]
onection stais - 0%
deload
point et ot address dxffei1711
Warduare breskooint set at sddress extiensed
tuien 00000 s @ttt
© wure s AR Erbedded iarbench D8 RKA1AT =
e B Vier Pojed Debug EEZUte Tooh Window Hep
> I A= ®cO 03 r sl - 03-0 s SR
- van i 5 -
fof expression vae Location Type Mencry
S (0x20) azano7oe e -,
1) A" (0xd1) Ox8007BD CHAR F2 7
o aw T
¥ = S FFEOOZFG 18
) T et FEOS2E? M 81
) e ek FFEOSZFS 7S 01 1C
n =] FRESRZFC 20 04
i R "
T ey FREOWFE 2
10 3 CHAR X
i v ey FFEOS300 B 1E IC 89
L ous Tl
i e S FROSIY EF 17
15] o CHAR
5] e R
i = e FREOQI0D 20 04
5] R’ cHAR
e b Sl FREOSIF 2£ 26
[20] ol CHAR fx i
1) i S s £2 3 70 61
2 S a FFEOSIL6 0 FB 05 00
. X AR FFEOSILA EF 17
2B i R
& L S FFEOSILE 20 04
28] 0' (0x00) Ox8007D Gua . %
-ax
_flex_romcisk|DebugiExelsamle_ies_som_disk out
T o 3Fo00
s oevegten
Ready Ln 198, Col 34 System Hum ove SR

Figure 2.4 IAR EW Debugger Screen

The debugger screen shot above shows the file data read back in the RAM disk

sample.

To learn more about Azure RTOS FileX, view
https://docs.microsoft.com/azure/rtos/filex/.

RO1ANG6455EJ0102 Rev.1.02
Jan.20.23

RENESAS

Page 8 of 32

https://docs.microsoft.com/azure/rtos/filex/

Azure RTOS sample projects using e2 studio or IAR EW

2.3 NetX Duo Ping sample project

This sample project illustrates the setup and use of NetX Duo IPv4/IPv6 TCP/IP stack via ping from another
node on the local network. By default, this demonstration requests an IP Address via DHCP, and displays
the status and assigned IP Address via Terminal program.

To run this sample project, simply follow these steps (assuming the workspace is already open):

1. Verify the serial port in your OS’s device manager. It should show up as a COM port

Figure 2.5 Device Manager
2. Open your favorite serial terminal program such as Putty and connect to the COM port discovered
above. Configure the following values for the serial port:
Baud rate: 115200
Data bits: 8
Parity: none
Stop bits: 1
Flow control: none

3. Select Go to start execution of the sample project

4. As the project runs you should observe the IP address assigned via DHCP in the output window

M COM3 - Tera Term VT - o X

File Edit Setup Window Help

Figure 2.6 IP Address Assigned via DHCP
5. The example above shows that the assigned IP address of the RX MCU is 192.168.2.115. When the
demonstration is running it can be pinged by any machine on the network. The following is an example
of a ping from a Windows machine on the same local network (using the DOS command window).

Figure 2.7 Ping Response

To learn more about Azure RTOS NetX Duo, view https://docs.microsoft.com/azure/rtos/netx/.

RO1AN6455EJ0102 Rev.1.02 Page 9 of 32
Jan.20.23 RENESAS

https://docs.microsoft.com/azure/rtos/netx/

Azure RTOS sample projects using e2 studio or IAR EW

2.4 NetX Duo Iperf sample project

This demonstration illustrates TCP and UDP network throughput, using NetX Duo IPv4/IPv6 TCP/IP stack,
and the industry-standard Iperf network throughput benchmark, with Jperf GUI. By default, this
demonstration requests an IP Address via DHCP, and displays the status and assigned IP Address via
Terminal program.

To run the NetX Duo Iperf Sample project, simply follow these steps (assuming the workspace is already
open):

Note: This sample is Ethernet based and therefore assumes an Ethernet cable is connected to the Ethernet
connector on the board.

1. Verify the serial port in your OS’s device manager. It should show up as a COM port.

Figure 2.8 Device Manager
2. Open your favorite serial terminal program such as Putty and connect to the COM port discovered
above. Configure the following values for the serial port:
Baud rate: 115200
Data bits: 8
Parity: none
Stop bits: 1
Flow control: none
3. Select Go to start execution of the sample project.

4. As the project runs you should observe the IP address assigned via DHCP in the output window.

& COMI10 - PuTTY u] X

Figure 2.9 IP address assigned via DHCP
5. Once running, simply browse to target IP address (in the screen shot above itis 10.172.14.40) to view
the NetX Duo Iperf server page, which provides options for running each Iperf test as well as displays
the results of each test. Here is as sample view after browsing 10.172.14.40:

RO1AN6455EJ0102 Rev.1.02 Page 10 of 32
Jan.20.23 RENESAS

Azure RTOS sample projects using e2 studio or IAR EW

[} Netx IPerf Demonstration x B

&« O O Notsecure | 10.172.14.40 w @ O o]

@ Microsoft Azure

NetX IP Address:
10.172.14.40
fe80:0:0:0:0:0:0:3

Destination IP Address:
Destination Port: 5001

Test Time(Seconds):

Packet size:

Test Time(Seconds):

Destination IP Address: EEEE
Destination Port:
Test Time(Seconds):

Start TCP Receive Test

Test Time(Seconds):

Start UDP Receive Test Choose a test from the left.

Figure 2.10 NetX Duo Iperf Server Page

Note: Static IP address assignment is also possible by disabling NX_ENABLE_DHCP in the project settings
and modifying the default static IP address of 192.168.1.211 in the source file “sample_netx_duo_iperf.c” file.

To learn more about Azure RTOS NetX Duo, view https://docs.microsoft.com/azure/rtos/netx/.

RO1AN6455EJ0102 Rev.1.02
Jan.20.23 RENESAS

Page 11 of 32

https://docs.microsoft.com/azure/rtos/netx/

Azure RTOS sample projects using e2 studio or IAR EW

2.5 loT Embedded SDK sample project

This demonstration connects to Azure lIoT Hub using Azure loT middleware for Azure RTOS. This
demonstration also publishes the message to loT Hub every few seconds.

It is also possible to view device properties, view device telemetry, update device twin, call a direct method
on device and send cloud-to-device message using Azure loT Explorer.

Following videos guide how to set up and run this Azure RTOS sample project in detail.
Azure RTOS Tutorial (1/3) CK-RX65N

Azure RTOS Tutorial (2/3) CK-RX65N: Program Build

Azure RTOS Tutorial (3/3) CK-RX65N: Cloud Operation

1. Prepare Azure resources such as creating an loT Hub and registering an loT device by referring
Microsoft document.
For details, please refer to the Application Note (RX65N Group: Visualization of Sensor Data using
RX65N Cloud Kit and Azure RTOS).

2. Confirm that you have the copied the following values to use in the next step.

- hostname
- devicelD
- primaryKey
3. Open sample_config.h to set the Azure IoT device information constants to the values that you saved
in step 2.
Constant name Value
HOST_NAME {Your loT hub hostName value}
DEVICE_ID {Your devicelD value}

DEVICE_SYMMETRIC_KEY {Your primaryKey value}

4. Open main.c to set the Wi-Fi network parameters when you use the boards of which connectivity is Wi-
Fi.

Constant name Value
WIFI_SSID {Your Wi-Fi SSID value}
WIFI_PASSWORD {Your Wi-Fi password}

You don’t need to set specific parameters when you use the boards of which connectivity is ethernet or
cellular. Projects with cellular connectivity have “with EWF” at the end of the project name on Select
Application Window.

5. Verify the serial port in your OS’s device manager. It should show up as a COM port.

Figure 2.11 Device Manager

RO1AN6455EJ0102 Rev.1.02 Page 12 of 32
Jan.20.23 RENESAS

https://www.renesas.com/jp/ja/video/azure-rtos-tutorial-13-ck-rx65n-setup?rxsw-j
https://www.renesas.com/jp/ja/video/azure-rtos-tutorial-23-ck-rx65n-program-build?rxsw-j
https://www.renesas.com/jp/ja/video/azure-rtos-tutorial-33-ck-rx65n-cloud-operation?rxsw-j
https://www.renesas.com/search?keywords=%20R01AN6011
https://www.renesas.com/search?keywords=%20R01AN6011

Azure RTOS sample projects using e2 studio or IAR EW

6. Open your favorite serial terminal program such as Putty and connect to the COM port discovered

above. Configure the following values for the serial port:
Baud rate: 115200
Data bits: 8
Parity: none
Stop bits: 1
Flow control: none
7. Build project

Select Download and Debug to download and start execution of the project

9. As the project runs, the demo prints out status information to the terminal output window. The demo also
publishes the telemetry message to loT Hub every few seconds. Check the terminal output to verify that

messages have been successfully sent to the Azure IoT hub.

re-devices.ret; Device

Figure 2.12 Status Information and Telemetry Message

You can use the Azure loT Explorer to view and manage the properties of your devices. In the following

steps, you'll add a connection to your loT hub in loT Explorer.

1. Download and install latest (above v0.14.5) Azure loT Explorer from: https://github.com/Azure/azure-iot-

explorer/releases

2. Copy the connection string: Microsoft Azure Portal > sign in > select your loT Hub > [Share access

policies] > [iothubowner] > [Primary connection string].

iothubowner

& | Shared access policies =

aredAccessKeyName=io

Figure 2.13 Primary Connection String
In Azure loT Explorer, select loT hubs > Add connection.
Paste the connection string into the Connection string box.

Select Save.

RO1AN6455EJ0102 Rev.1.02

Jan.20.23 RENESAS

Page 13 of 32

https://github.com/Azure/azure-iot-explorer/releases
https://github.com/Azure/azure-iot-explorer/releases
https://azure.microsoft.com/en-us/features/azure-portal/

Azure RTOS sample projects using e2 studio or IAR EW

Edit connection string

Figure 2.14 Azure loT Explorer
6. If the connection succeeds, the Azure loT Explorer switches to a Devices view and lists your device.

To view device properties using Azure loT Explorer:
1. Select the link for your device identity. loT Explorer displays details for the device.
2. Inspect the properties for your device in the Device identity panel.

Home > > Devices > MyDevKit > Device identity

& Manage keys

L Device identity

Device identity
& Device twin

Device ID

3 Telemetry
l MyDevkit I [a]

¢ Direct method

ry key

Cloud-to-device m.

& Module identity

&% 10T Plug and Play c.

Figure 2.15 Azure loT Explorer

To view device telemetry using Azure loT Explorer:

1. InloT Explorer select Telemetry. Confirm that Use built-in event hub is set to Yes.
2. Select Start.

3. View the telemetry as the device sends messages to the cloud.

Telemetry

Consumer group

Figure 2.16 Telemetry Message

RO1AN6455EJ0102 Rev.1.02 Page 14 of 32
Jan.20.23 RENESAS

Azure RTOS sample projects using e2 studio or IAR EW

To update device twin using Azure loT Explorer:

1. InloT Explorer select Device twin.

2. Modify the desired section of the Device twin, you can add a custom twin:

"weather": {

"temperature": "25"

3. Select Save.

File Edit View Window Help

Azure loT Explorer (preview)

> Devices > MyDevKit > Device twin

Notifications Settings

B Device identity
B3 Device twin

3 Telemetry

X Direct method
= Cloud-to-device m
& Module identity

% IoT Plug and Play c.

O Refresh & Save

Device twin ©

eported”: {
“Smetadata”: {

Figure 2.17 Device Twin

View the notification for the device twin update status.

5. In the terminal output window, you can view the desired device twin properties are received.

Telenetry message send: {"Message ID":68}) -
Telenetry message send: {“Message ID":69}
Telenetry message send: {"Message ID":70}
Telemnetry message send: {"Message ID":71}
Telenetry message send: {"Message ID":72}
Telemnetry nmessage send: {"Message ID":73}
Telenetry message send: {"Message ID":74}
eleustry a=nd. LM ID- 25}
I%ECEi‘-’E desired property call: {"veather”:{"temperature":"25"}."$version”:2} |
TertemetT s IDr=reY
Telenetry message send: {"Message ID":77}
Telenetry message send: {"Message ID":78}
Telenetry message send: {"Message ID":79}
Telenetry message send: {"Message ID":80}
Telenetry message send: {"Message ID":81}
Telenstry message send: {"Message ID":82}
Telemetry message send {"Message ID" 83}
Telemetry message send {"Message ID" 84}
'l mm s suie puosgr B Tn*.och

Figure 2.18 Received Desired Device Twin Properties

To call a direct method on device using Azure loT Explorer:

You can also use Azure loT Explorer to call a direct method that you have implemented on your device.
Direct methods have a name, and can optionally have a JSON payload, configurable connection, and
method timeout. To call a direct method in Azure IoT Explorer:

1. In loT Explorer select Direct method.

2. Send a direct method to mimic the device reboot with payload. The device will receive and output the

payload as dummy data.

- Method name: reboot
- Payload: {"timeout": 500}

RO1ANG6455EJ0102 Rev.1.02
Jan.20.23

Page 15 of 32

RENESAS

Azure RTOS sample projects using e2 studio or IAR EW

» Invoke method

E Devi

Direct method ©
B Device tw

Method name *

0 Telemetry
> Direct method

£ Cloud-to-device m {"timeout" 500}

& Module identity

& 10T Plug and Play ¢
Connection timeout in seconds

-0 10

Figure 2.19 Direct Method
3. Select Invoke method.

4. In the terminal output window, you can view the method is invoked on the loT Device.

Telemetry nessage send “"Message ID":227} -
Telenetry message send "Message ID":228}
Telenetry message send "Message ID":229}
Telenetry nessage send "Message ID":230}
Telemetry message send: {"Message ID":231}
Telemnetry mnessage send "Message ID":232}
Telemnetry nessage send “Message ID":233}
Telemnetry nessage send “Message ID":234}
Telemnetry nessage send “"Message ID":235}
Telenetry nessage send "Message ID":236}
Telenetry message send "Message ID":237}
Telemnetry message send "Message ID":238}
Telemetry message send: {"Message ID":239}
Telenetry message send “Message ID":240}
Telemnetry nessage send “Message ID":241}

Telemnetry message send “Message ID":242}
Telemnetry message send: {"Message ID":243}
Ielensty end an I0- 2440
|Receive method call: reboot. with payload:{“timeout®:500} |

Figure 2.20 Invoked Method

To send cloud-to-device message using Azure loT Explorer:
1. InloT Explorer select Cloud-to-device message.
2. Enter the message in the Message body:

{ "Hello": "Azure RTOS" }

3. Check Add timestamp to message body.

il rassage 15 device

Cloud-to-device message

Message body

T Plug and Play ¢ Properties

Figure 2.21 Cloud-to-device message

4. Select Send message to device.
5. Inthe terminal output window, you can view the message is received by the loT Device.

RO1AN6455EJ0102 Rev.1.02 Page 16 of 32
Jan.20.23 RENESAS

Azure RTOS sample projects using e2 studio or IAR EW

Terminal /O

x

Output

Telenetry
Telemetry
Telemetry
Telenetry
Telenetry
Telenetry
Telemetry
Telemetry
Telenstry
Telemetry
Telenetry
Telemetry
Telemetry

nessage
nessage
nessage
nessage
nessage
nessage
nessage
nessage
nessage
nessage
nessage
nessage
nessage

8
{
4
{
i
i
send: {"
o
{
s
{
L
{

Message
Hessage
Hessage
Message
Message
Hessage
Hessage
Hessage
Message
Hessage
Message
Message
Hessage

ID":

I

ID":
ID*:

1D~

ID":

D

ID":
ID":
ID":
ID":

piny

ID":

Log file: Off

Telemetry nessage send
Telemetry message send
Telemetry message send

{"Message
{"Hessage
{"Hessage

ID" 345}
ID":346}
10" 347}

Figure 2.22 Received Message

RO1ANG6455EJ0102 Rev.1.02
Jan.20.23

RENESAS

Page 17 of 32

Azure RTOS sample projects using e2 studio or IAR EW
2.6 loT Embedded SDK PnP sample project

This demonstration connects to Azure lIoT Hub using Azure lIoT middleware for Azure RTOS. This
demonstration also publishes the message to loT Hub every few seconds.

It is also possible to view device properties, view device telemetry, update device twin, call a direct method
on device and send cloud-to-device message using Azure loT Explorer.

To run this project, simply follow 2.5 loT Embedded SDK sample project.

Moreover, this sample can interact with loT Plug and Play components using Azure IoT Explorer.

To interact with loT Plug and Play components using Azure loT Explorer:

You can use Azure |loT Explorer to interact with loT Plug and Play components.

Azure loT explorer needs a local copy of the model file that matches the Model ID your device sends. The
model file lets Azure IoT explorer display the telemetry, properties, and commands that your device
implements.

If you haven't already downloaded the sample model files:
1. Create a folder called models on your local machine.

2. Save TemperatureController.json file to the models folder.

3. Save Thermostat.json file to the models folder.

To use the Azure loT explorer to verify the 10T Plug and Play device application is working:
1. InloT Explorer, select the 10T Plug and Play Settings.
2. Select Add.

3. In Local folder section and select Pick a folder and open the local models folder where you saved your
model files. Then select Save.

& 1oT Plug and Play

Pubslic Repository

Local Folder *

Selected falder

Pick a folder

Figure 2.23 loT Plug and Play Setting

RO1AN6455EJ0102 Rev.1.02 Page 18 of 32
Jan.20.23 RENESAS

https://raw.githubusercontent.com/Azure/opendigitaltwins-dtdl/master/DTDL/v2/samples/TemperatureController.json
https://raw.githubusercontent.com/Azure/opendigitaltwins-dtdl/master/DTDL/v2/samples/Thermostat.json

Azure RTOS sample projects using e2 studio or IAR EW

4. On the loT hubs page, click on the name of the hub you want to work with. You see a list of devices
registered to the 10T hub.

5. Click on the Device ID of the device you created previously.
The menu on the left shows the different types of information available for the device.
7. Select loT Plug and Play components to view the model information for your device.

loT Plug and Play components

Step 1. Your device has been discovered as a loT Plug and Play device

Madzl ID

yescam plecTemperatureController 1

Step 2. We've resclved your loT Plug and Play model
& Module identity

You model defintion has been resolved from: Local Folder Configure
& 1aT Plug and Play ¢o.

Step 3. Continue your loT Plug and Play journey by drilling down to sach component

H you hawe defined ‘Preperty’, ‘Command’ or Telemetry’ in moded diml:com:cxample:TemperatureControfier: 1, you would be able to
wee 'Default component’ in the table below. I you havea defined ‘Component’. you would be able 1o see a list of components down
Beiow,

Companents

Figure 2.24 Model Information

8. You can view the different components of the device. The default component and any additional ones.
Select a component to work with.

9. Select the Telemetry page and then select Start to view the telemetry data the device is sending for this
component.

10. Select the Properties (read-only) page to view the read-only properties reported for this component.

11. Select the Properties (writable) page to view the writable properties you can update for this
component.

12. Select a property by it's name, enter a new value for it, and select Update desired value.
13. To see the new value show up select the Refresh button.
14. Select the Commands page to view all the commands for this component.

15. Select the command you want to test set the parameter if any. Select Send command to call the
command on the device. You can see your device respond to the command in the command prompt
window where the sample code is running.

| Interface Properties (read-only] Properties (writable) Commands Telemetry |

() Refresh © Back
= Device twin You medel defintion has been resolved from: Local Folder ¢

3 Telemetry Interface Id

‘ dtmi:com:example:Thermostat;1

t method

MName

= Cloud-to-device mes.. 2 = |
Thermostat

& Module identity Description

‘ Reports current temperature and provides desired temperature control, | ™

&7 10T Plug and Play co...

Figure 2.25 loT Plug and Play Components

RO1AN6455EJ0102 Rev.1.02 Page 19 of 32
Jan.20.23 RENESAS

Azure RTOS sample projects using e2 studio or IAR EW

2.7 loT Embedded SDK with loT Plug and Play sample project

This demonstration connects to Azure lIoT Hub using Azure loT middleware for Azure RTOS. This
demonstration also publishes the message to loT Hub every few seconds.

It is also possible to view device properties, view device telemetry, update device twin, call a direct method
on device and send cloud-to-device message using Azure loT Explorer.

Moreover, this sample can interact with 0T Plug and Play components using Azure IoT Explorer.
To run this project, simply follow 2.6 loT Embedded SDK PnP sample project.

RO1AN6455EJ0102 Rev.1.02 Page 20 of 32
Jan.20.23 RENESAS

Azure RTOS sample projects using e2 studio or IAR EW

2.8 GUIX 8bpp/16bpp/16bpp_draw2d sample project
This demonstration illustrates Washing Machine application using advanced GUIX features such as:

- Widget creation

- Creating multiple screens inside the main screen

- Attaching and detaching the child screen when you switch screens
- Double-buffer toggle control for screen transition without tearing

- Radial slider, vertical and horizontal slider creation

- Running animation

It also illustrates 2 kind of color depth and use of 2D drawing engine (DRW2D) on RX family.

- sample_guix_8bpp:
sample for display of size 480 * 272 with 8 bits color look-up table (CLUTS8).

- sample_guix_16bpp:
sample for display of size 480 * 272 with 16 bits RGB 565.

- sample_guix_16bpp_draw2d:
sample for display of size 480 * 272 with 16 bits RGB 565 with 2D drawing engine.

To run each GUIX Sample project, simply follow these steps (assuming the steps described in the previous
section were done):

1. Select Go to start execution of the demonstration. As the project runs you should observe Washing
Machine GUI on board TFT panel. The four different screens are demonstrated as:

= Microsoft Azure 12:31 "
Power On

Pause

Garments

=] 8o %
Water Level

iWo70°
Temperature

O
Power OFf

Extra High

=) 80 %

Water Level

s 70°
Temperature

©
Pawer OFf

Figure 2.28 Water level selection screen

RO1AN6455EJ0102 Rev.1.02 Page 21 of 32
Jan.20.23 RENESAS

Azure RTOS sample projects using e2 studio or IAR EW

B8 Microsoft Azure

Figure 2.29 Temperature selection screen

The application demonstrates the simulation of the Washing Machine controller from the GUI perspective.

This project initializes the GUIX system, configures the GUIX drivers, initializes Canvas, creates screens
using widget creation APIs, starts the GUIX and handles the Touch Events from the Touch driver. All these
are done from the Application Thread.

To learn more about Azure RTOS GUIX, view https://docs.microsoft.com/azure/rtos/guix/.

RO1AN6455EJ0102 Rev.1.02 Page 22 of 32
Jan.20.23 RENESAS

https://docs.microsoft.com/azure/rtos/guix/

Azure RTOS sample projects using e2 studio or IAR EW

2.9 USBX device CDC-ACM Class sample project

This demonstration illustrates the setup and use of USBX device CDC-ACM Class to communicate with the
host as a serial device. This project initializes the USBX system and device stack, set the parameters for
callback when insertion/extraction of a CDC device, read from the CDC class and write to the CDC instance
using device CDC-ACM APlIs.

Before build the sample and run, you need to connect the USBO Function on Renesas Starter Kit+ for
RX65N-2MB to your computer using the USB-MiniB cable: (assuming Renesas Starter Kit+ for RX65N-2MB
is specified as Target Board)

Figure 2.30 USBO Function on Renesas Starter Kit+ for RX65N-2MB

To run the device CDC-ACM Sample project, simply follow these steps (assuming the steps described in
the previous section were done):

1. Select Go to start execution of the demonstration.

2. Verify the serial port in your OS’s device manager. It should show up as a COM port for the CDC-ACM
device.

W Intel(R) Active Management Technology - SOL (COM3)
J rial i il
W USE Sevial Device (COME)

Figure 2.31 Device Manager

3. Open your favorite serial terminal program such as Putty and connect to the COM port discovered
above. In this sample project, it is not necessary to set any other settings on the terminal program.

4. As the project runs, you should be able to observe “abcdef” returned from the CDC-ACM device when
you input enter key to the CDC-ACM device via the terminal.

Figure 2.32 Serial Terminal Window

To learn more about Azure RTOS USBX, view https://docs.microsoft.com/azure/rtos/usbx/.

RO1AN6455EJ0102 Rev.1.02 Page 23 of 32
Jan.20.23 RENESAS

https://docs.microsoft.com/azure/rtos/usbx/

Azure RTOS sample projects using e2 studio or IAR EW

2.10 USBX Host Mass Storage Class sample project

This demonstration illustrates the setup and communication with MSC device (USB flash drive) using USBX
HMSC. The sample program initializes the FileX, USBX system and USB driver stack. When a MSC device
is inserted, it reads and writes a file to MSC device using device FileX APIs.

1. Change the jumper pins (J7 and J16) on Renesas Start Kit+(RSK) for RX65N-2MB to set to USB Host
mode. (assuming Renesas Starter Kit+ for RX65N-2MB is specified as Target Board)

Note: Jumper pin numbers are different for each RSK.

2. Build USBX HMSC sample project and run.

3. Connect MSC device to USB Standard A connector (red frame) on RSK.

Figure 2.33 USB Standard A Connector on Renesas Starter Kit+ for RX65N-2MB

When the USBX HMSC driver recognizes that MSC device is connected, the sample application program
creates a "counter.ixt” file to MSC device using FileX API.

4. Disconnect MSC device from RSK and connect MSC drive to PC.

5. Confirm that “counter.txt” file is generated at the root folder in the MSC device.

- | =1 Manage DA

Home Share View Drive Tools
* u o Cut x l Lﬁﬁ New ite
=

w.] Copy path a Easy acc
Pin to Quick Copy Paste _ Move Copy Delete Rename Mew
access [7] Paste shortaut ¢ to - folder

Clipboard Organize Mew

=+ (D%) USB Drive v O O Sear
2+

ys
I My PC: ~

_J 3D Objects D

[Desktop counter.txt

Documents

< Downloads

Figure 2.34 Root Folder in MSC Device

6. Open “counter.txt” file using the binary editor on PC. It contains count up numbers from 0x0000 to
0x00FF from the address 0x00000000 as following.

RO1AN6455EJ0102 Rev.1.02 Page 24 of 32
Jan.20.23 RENESAS

Azure RTOS sample projects using e2 studio or IAR EW

ADDRESS 00 01 02 03 04 05 06 07 03 09 04 0B 0C 0D OE OF 0123456739ABCDEF
(N 0200 03000400050006000700 . .
04 00 0B 00 OC DO 0D 00 OE 00 OF QO
1200 13 00 14 0015 00 16 00 17 00
1400 1B 00 1C 00 10 00 1E 00 1F 00
22 00 23 00 24 00 25 00 26 00 27 00
24 00 2B 00 2C 00 20 00 ZE 00 ZF 00
32 00 33 00 34 00 35 00 36 00 37 00
34 00 3B 00 3C 00 30 00 3E 00 3F 00
42 00 43 00 44 00 45 00 46 00 47 00
44 00 4B 00 4C 00 40 00 4E 00 4F 00
52 00 53 00 54 00 55 00 56 00 57 00
54 00 5B 00 5C 00 50 00 5E 00 5F 00
52 00 63 00 64 00 B 00 B6 00 67 00
B4 00 6B 00 6C 00 BD 00 BE 00 BF 00
7200 73 00 74 00 f5 00 76 00 77 00
7400 7B 00 7C 00 70 00 7E 00 7F 0O wez LT
82 00 83 00 84 00 85 0086008700
84 00 8B 00 BC OO BDODBEOQDBFOD oio....,
92 00 93 00 94 00 95 0D 9B 0D 97 00
9400 9B 00 9C 00 QO OD SE QD SR 0Do.....
A2 00 A3 00 A4 00 25 00 A6 00 A7 00T.1...-.3.7.

R TR T BT TR B A TN Lo AT N T a2 [[T

Figure 2.35 Content of “counter.txt”

7. Disconnect MSC device from PC and connect the MSC device to RSK. This sample program reads
“counter.txt” in MSC device and adds the count up data from the address (0x00000200) in this file.

8. Disconnect MSC device from RSK and connect the MSC drive to PC.

Open “counter.txt” file using the binary editor on PC. It contains count up numbers from 0x0000 to
0x00FF from the address 0x00000200 as following.

ADDRESS 00 01 02 03 04 05 06 07 08 09 0A 0B OC 0D OE OF 0123456739ABC0ER
ili] 00001 07101020103010401050106010701

03010901 040008010C01 0001 0EOTOFOT ...
100011011201 1301 140115011801 1700
18 0119 01 1A 01 1B 01 1C 01 1D 01 1E 01 1F 01
200012101 220123 01 24 01 25 01 26 01 27 01
280129 01 2401 2801 2C 01 2D 01 2E 01 2F 01
30001 3101 320133013401 350136013701
38 01 39 01 34 01 3B 01 3C 01 3D 01 3E 01 3F 01
40001 41 01 42 01 43 01 44 01 45 01 46 01 47 01
48 01 49 01 44 01 4B 01 4C 01 4D 01 4E 01 4F 01
50 01 51 01 52 01 53 01 54 07 55 01 56 01 67 01
58 01 59 01 54 01 5B 01 5C 01 5D 01 5E 01 5F 01
60 01 81 01 62 01 63 01 64 01 85 01 86 01 687 01
68 01 69 01 64 01 6B 01 6C 01 8D 01 6E 01 6F 01
70001 7101 7201 73 01 74 01 75 01 76 01 77 01
7801 79 01 74 01 7B 01 7C 01 7D 01 7E 01 7F 01
80 01 81 01 82 01 83 01 84 01 85 01 86 01 87 01
88 01 89 01 84 01 8B 01 8C 01 8D 01 8E 01 8F 01
90 07 91 01 92 01 93 01 94 01 95 01 96 01 97 01
98 01 99 01 94 01 9B 01 9C 01 9D 01 9E 01 9F 01
AD 0T AT 01 A2 01 A3 01 A4 01 A3 01 A 01 A7 01

A0 A1 A AT dd AT Al AT Ar AT Am AT AT AT A Al - [

Figure 2.36 Content of “counter.txt”

10. By repeating steps 8 and 9 above, the sample program keeps updating count data to “counter.txt” file in
the MSC device.

To learn more about Azure RTOS USBX, view https://docs.microsoft.com/azure/rtos/usbx/.

RO1AN6455EJ0102 Rev.1.02 Page 25 of 32
Jan.20.23 RENESAS

https://docs.microsoft.com/azure/rtos/usbx/

Azure RTOS sample projects using e2 studio or IAR EW

2.11 ThreadX Low Power sample project

This sample project illustrates how to use ThreadX's Low Power feature. You can confirm the transition to
and resume from the following low power modes supported by the device using the Low Power Consumption
Device Driver Module (r_Ipc_rx).

Device RX130, RX140 RX65N, RX651, RX660, RX72N,
RX671
Supported low power mode Sleep Mode Sleep Mode
Deep Sleep Mode Software Standby Mode
Software Standby Mode Deep Software Standby Mode

2.11.1 Overview of sample project
1. The sample project creates one thread thread_0. The thread_0 turns on the LED when it starts.

2. After executing for about 3 seconds, suspend the own thread by tx_thread_suspend.

3. Since there is no other thread to run, Demo_LowPower_Enter configured in ThreadX “Enter low power
function” configuration is called from tx_low_power_enter of ThreadX.

4. Demo_LowPower_Enter turns off the LED and transitions to the low power consumption mode.

The low power consumption mode is resumed by the interruption of pressing the user switch. The
interrupt handler Demo_callback is called and tx_thread_resume resumes thread_0. At this point,
thread_0 does not run.

If it has transitioned to the deep software standby mode, it will be resumed by the user switch press
interrupt or RTC alarm interrupt and reboots from the reset vector.

6. Next, the Demo_LowPower_EXxit configured in the ThreadX “Exit low power function” configuration is
called from tx_low_power_exit of ThreadX. Demo_LowPower_Exit turns on the LED and returns to
ThreadX.

The resumed thread_0 runs.

8. Repeat the transition to the same low power consumption mode in steps 2 to 7 three times in total and
execute all low power consumption modes in the following order.

For RX130 and RX140:
Sleep Mode (3 times) => Deep Sleep Mode (3 times) => Software Standby Mode (3 times)
For RX65N, RX651, RX660, RX72N, RX671:

Sleep Mode (3 times) => Software Standby Mode (3 times) => Deep Software Standby Mode (1
time)

The figure shows the execution flow from suspending the thread_0 with tx_thread_suspend to resuming.

Demo_LowPower_Enter() —_— R thread_0

Demo_LowPower_Exit()

__tx_thread_schedule()

tx_low_power_enter() J J
tx_low_power_exit()

Low Power
Consumption Mode

Low Power Consumption Driver(r_Ibc_rx) R_LPC_LowPowerModeActivate() —f_‘
Interrupt & tx_thread_resume

Figure 2.37 Execution Flow after tx_thread_suspend (&thread_0)

RO1AN6455EJ0102 Rev.1.02 Page 26 of 32
Jan.20.23 RENESAS

Azure RTOS sample projects using e2 studio or IAR EW

2.11.2 Execute sample project
To run the sample project, simply follow these steps for each board:

Target Board for RX130 and Renesas Starter Kit for RX140:

1. Select Launch to download the program.

Select Resume to start execution of the project. The program stops at the breakpoint of main function.
Select Resume to restart.

The program turns LEDO on and runs for 3 seconds.

o M b

The program turns LEDO off and transitions to sleep mode. e? studio status bar will change from
Running to Sleeping as below:

Sleeping

The program is resumed by pressing the user switch (SW1). This cycle is repeated 3 times.

7. Similarly, transitions to deep sleep mode and resume by pressing the user switch is repeated 3 times. e?
studio status bar will change from Running to Standby as below:

8. Similarly, transitions to software standby mode and resume by pressing the user switch is repeated 3
times. e? studio status bar will change from Running to Standby as below:

9. Repeat from sleep mode to software standby mode.

RX65N Cloud Kit:
1. Select Launch to download the program.

2. Select Resume to start execution of the project. The program stops at the breakpoint of main
function.

Select Resume to restart.
The program turns LED1 on and runs for 3 seconds.

The program turns LED1 off and transitions to sleep mode. e? studio status bar will change from
Running to Sleeping as below:

Sleeping

6. The program is resumed by pressing the user switch. This cycle is repeated 3 times.

Similarly, transitions to software standby mode and resume by pressing the user switch is repeat 3
times. e? studio status bar will change from Running to Standby as below:)

8. The program transitions to deep software standby. e? studio status bar will change from Running to

Standby as below: ()

9. The program reboots by pressing the user switch.

RO1AN6455EJ0102 Rev.1.02 Page 27 of 32
Jan.20.23 RENESAS

Azure RTOS sample projects using e2 studio or IAR EW

(*) e2 studio status bar when deep software standby and software standby is the same. So please check
SBYCR.SSBY and DPSBYCR.DPSBY register value before executing wait instruction.

- software standby: SBYCR.SSBY=1, DPSBYCR.DPSBY=0
- deep software standby: SBYCR.SSBY=1, DPSBYCR.DPSBY=1

Renesas Starter Kit+ for RX65N-2MB, Renesas Starter Kit for RX660, Renesas Starter Kit for RX671,
RX72N Envision Kit and CK-RX65N:

1. Select Launch to download the program.

2. Select Resume to start execution of the project. The program stops at the breakpoint of main
function.

Select Resume to restart.
The program turns LED (usually LEDQ) on and runs for 3 seconds.

The program turns LED off and transitions to sleep mode. e? studio status bar will change from
Running to Sleeping as below:

Sleeping

The program is resumed by pressing the user switch (usually SW1). This cycle is repeated 3 times.

7. Similarly, transitions to software standby mode and resume by pressing the user switch is repeat 3
times. e? studio status bar will change from Running to Standby as below:)

8. The program transitions to deep software standby. e? studio status bar will change from Running to

Standby as below: ()

9. The program reboots by RTC alarm interrupt after about 30 seconds.

(*) e2 studio status bar when deep software standby and software standby is the same. So please check
SBYCR.SSBY and DPSBYCR.DPSBY register value before executing wait instruction.

- software standby: SBYCR.SSBY=1, DPSBYCR.DPSBY=0
- deep software standby: SBYCR.SSBY=1, DPSBYCR.DPSBY=1

RO1AN6455EJ0102 Rev.1.02 Page 28 of 32
Jan.20.23 RENESAS

Azure RTOS sample projects using e2 studio or IAR EW

2.11.3 Configuration of ThreadX Low Power by Smart Configurator

® You can develop own system low power operation for your product referring to this sample project and
using Smart Configurator’'s component configuration feature as below. Each configurable item
description is displayed in Macro definition view by clicking the configuration item.

#
Enable low power mode /|Enable
Enter low power function Demo_LowPower_Enter{)
Exit low power function Demo_LowPower_Exit()
Enable tickless operation in low power mode Disable
Enable threadx timer setup ¥/ Enable
Low power timer setup function Demo_LowPower_Timer_Setup
Enable threadx user timer adjust 7| Enable
Low power user timer adjust function Demo_LowPower_User_Timer_Adju
Enable threadx wait Disable
v

Macro definition:TX_LOW _POWER

TX_LOW_POWER macro can be used together with TX_ENABLE WAIT macro

Case 1: TX_LOW_POWER == 1 and TX_ENABLE_WAIT == 0: execute user-defined low power consumption function (call tx_low_power_enter/exit)
Case 2: TX_LOW_POWER == 0 and TX_ENABLE_WAIT == 1: execute only WAIT instruction in ThreadX (tx_low_power_enter/exit are not called)
Case 3: TX_LOW_POWER == 0 and TX_ENABLE_WAIT == 0: no support for low power consumption

Case 4: TX_LOW_POWER == 1 and TX_ENABLE_WAIT == 1; execute tx_low_power_enter, WAIT instruction, and tx_low_power_exit

Figure 2.38 Configuration of ThreadX Low Power

® |f the Low Power Consumption Device Driver Module (r_Ipc_rx) is used, the module executes “WAIT”
instruction inside the r_Ipc_rx module. Therefore, please note that “Enable threadx wait” must be

disabled.

® If you define your own function for “Enter low power function”, “Exit low power function”, “Low power
timer setup function” and “Low power user timer adjust function”, please modify the prototype definition
for each function in libs/threadx/tx_user.h manually as well.

/* Define Low Power usage */
#define TX_LOW_POWER 1

/* Define the Enter low power mode macro*/

~#if TX_LOW_POWER

void Demo LowPower Enter(void);

#define TX_LOW_POWER_USER_ENTER Demo_LowPower_Enter()
#endif

/* Define the Exist low power mode macro*/

~#if TX_LOW_POWER

void Demo_LowPower Exit(void);

#define TX_LOW_POWER_USER_EXIT Demo_LowPower_Exit()
#endif

/* Define Low Power tickess usage */
#define USE_TX_LOW_POWER_TICKLESS)

-#if USE_TX_LOW_POWER_TICKLESS

#define TX_LOW_POWER_TICKLESS
#endif

/* Define the TX_LOW_POWER_TIMER_SETUP macro*/

~#if TX_LOW_POWER && IUSE_TX_LOW_POWER_TICKLESS

#define USE_TX_LOW_POWER_TIMER_SETUP 1

#endif

#if USE_TX_LOW_POWER_TIMER_SETUP

void Demo LowPower Timer Setup(unsigned long tx low power next expiration); /* can not use ULONG */
#define TX_LOW_POWER_TIMER_SETUP Demo_LowPower_Timer_Setup

#endif

/* Define the TX_LOW_POWER_USER_TIMER_ADJIUST macro*/
#if TX_LOW_POWER && !USE_TX_LOW_POWER_TICKLESS
#define USE_TX_LOW_POWER_USER_TIMER_ADIUST 1
#endif

-~#if USE_TX_LOW_POWER_USER_TIMER_ADIUST

H * can not use ULONG */
#tdefine TX_LOW_POWER_USER_TIMER_ADJUST Demo_LowPower_User_Timer_Adjust()
#endif

/* Define the TX_ENABLE_WAIT usage*/
#define TX_ENABLE_WAIT e

Figure 2.39 libs/threadx/tx_user.h

RO1AN6455EJ0102 Rev.1.02 Page 29 of 32

Jan.20.23

RENESAS

Azure RTOS sample projects using e2 studio or IAR EW

® The “tx_low_power_next_expiration” parameter is passed to the “TX_LOW_POWER_TIMER_SETUP”
function. Since the tx_low_power_next_expiration is the next timer deadline (i.e., the number of ticks
before the next wakeup), a low power mode timer must be set so that the low power mode is resumed
before this tick number elapses.
When the tx_low_power_next_expiration is Oxffffffff, there is no next timer expiration date (there is no
thread waiting for a timeout), so the user may resume from the low power mode at any time.
When the tx_low_power_next_expiration is very small value, the transition to the low power
consumption mode may be omitted by judging from the transition process time and the resume process
time because it depends on the processing time of the user-defined function.

® For the latest information of Low Power APls, please refer to https://github.com/azure-
rtos/threadx/blob/master/utility/low power/low power.md .

RO1AN6455EJ0102 Rev.1.02 Page 30 of 32
Jan.20.23 RENESAS

https://github.com/azure-rtos/threadx/blob/master/utility/low_power/low_power.md
https://github.com/azure-rtos/threadx/blob/master/utility/low_power/low_power.md

Azure RTOS sample projects using e2 studio or IAR EW

2.12 Azure Device Update (ADU) sample project

This sample project illustrates over-the-air (OTA) firmware update via Microsoft Azure. Azure ADU is a cloud
service provided by Microsoft that enables deployment of OTA updating of loT devices.

When implementing ADU, secure boot loader sample project must be used together with this project. The
secure bootloader function is to verify that firmware to be run is reliable, make sure it has not been tempered,
and update it.

To run this sample, simply follow these steps: Please note that this project is not supported by IAR EW.

1. Select Azure Device Update (ADU) sample project on Select Application Window and create a
project.
Azure Device Update (ADU) sample project

® "'} This demonstration illustrates OTA firmware update. Note: this project requires
bootloader project.

2. Add new project: [File] > [New] > [Renesas C/C++ Project] and select Renesas RX. Then select
Secure bootloader sample project on Select Application Window and create the project specifying
the same device and same compiler as specified in step1.

OJFc’

After creating two projects, to setup and build the projects, please refer to Application Note (Creating a
Microsoft ADU Environment) from "3.3 File Output Settings".

Secure bootloader sample project

This sample is used together with ADU sample project to provide a secure boot

Please note that there are some differences in the project structure between the imported projects based on
the Application Note and the created projects by e? studio.

- Though ThreadX, FileX, NetX Duo will be built as library file using imported project, they will be
embedded in Azure Device Update (ADU) sample project in created project.

- “(Board Name)_adu_sample_secure_boot.esi” written in “3.9 Section Settings” does not exist in
created project. And the Application Note for imported project assumes that RX65N is used, so the
address information may differ on other MCUs. Please refer to the hardware manual of the MCUs used
and replace it with the desired value.

- There are some differences in source codes. So please ignore “3.10 Modifying the Source Code”.

& boot loader

& filex

= netxduo

> sample_azure_iot_embedded_sdk_pnp [HardwareDebug]
= threadx

Figure 2.40 imported projects based on Application Note

= boot loader
v % sample_azure_iot_embedded_sdk_pnp [HardwareDebug]
@ Includes

v = libs
= filex
= netxduo
= netxduo_addons
= threadx

= SIc

Figure 2.41 created projects by e? studio

Where project name is as below
- Azure Device Update (ADU) sample project: sample_azure_iot_embedded_sdk_pnp
- Secure bootloader sample project: boot_loader

To learn more about Azure ADU, view https://learn.microsoft.com/azure/iot-hub-device-update/.

RO1AN6455EJ0102 Rev.1.02 Page 31 of 32
Jan.20.23 RENESAS

https://www.renesas.com/search?keywords=R01AN6357
https://www.renesas.com/search?keywords=R01AN6357
https://learn.microsoft.com/azure/iot-hub-device-update/

Azure RTOS sample projects using e2 studio or IAR EW

Revision History

Description
Rev. Date Page Summary
1.00 Jul. 20, 2022 — First edition issued
1.01 Oct. 20, 2022 1, 22 Changed project name from “PnP Temperature Control
sample project” to “loT Embedded SDK with loT Plug and
Play sample project”
2 Added Azure |loT Explorer
1.02 Jan. 20, 2023 6 Improved creation procedure for IAR EW project
24, 25 Added USBX Host Mass Storage Class sample project
31 Added Azure Device Update sample project and secure
bootloader sample project

RO1AN6455EJ0102 Rev.1.02

Jan.20.23

Re Page 32 of 32
RENESAS

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an 1/0 pull-up power supply while the device is powered off. The current injection that results from input of such a signal or /0
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between Vi
(Max.) and Vin (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between ViL (Max.) and Vi (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSl is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

Notice

1.

10.

11.

12.

13.
14.

(Note1)

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2023 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Getting Started
	1.1 Creating project using e2 studio
	1.2 Creating project using IAR EW

	2. Sample Project Descriptions
	2.1 ThreadX sample project
	2.2 FileX RAM Disk sample project
	2.3 NetX Duo Ping sample project
	2.4 NetX Duo Iperf sample project
	2.5 IoT Embedded SDK sample project
	2.6 IoT Embedded SDK PnP sample project
	2.7 IoT Embedded SDK with IoT Plug and Play sample project
	2.8 GUIX 8bpp/16bpp/16bpp_draw2d sample project
	2.9 USBX device CDC-ACM Class sample project
	2.10 USBX Host Mass Storage Class sample project
	2.11 ThreadX Low Power sample project
	2.11.1 Overview of sample project
	2.11.2 Execute sample project
	2.11.3 Configuration of ThreadX Low Power by Smart Configurator

	2.12 Azure Device Update (ADU) sample project

	Revision History

