

AWS IoT Example Using the
Raspberry Pi 3 and NimbeLink
CAT M1 Skywire​®
NimbeLink Corp
Updated: August 2017

PN 1001417 rev 1 ​© NimbeLink Corp. 2017. All rights reserved. 1

Table of Contents
Table of Contents 2

Introduction 3
Orderable Part Numbers 3
Overview 3
Prerequisites 3
Testing 4

AWS IoT Example 5
Amazon's AWS IoT Guide 5
AWS IoT SDK Tutorials 5
Connecting Your Raspberry Pi 5
Using the AWS IoT Embedded C SDK 5
Setup PPP Connection 5
Run Sample Applications 6

AWS IoT Shadow Sample 7
Introduction 7
Copy AWS IoT Config File 7
Navigate to the shadow_sample Directory 7
Compile and Run the Program 7

AWS IoT Python SDK Example: Basic PubSub 9
Introduction 9
Bring Down PPP Connection 9
Bring Up Ethernet or Wifi Connection 9
Download and Install AWS IoT Python SDK 9
Copy Your Certs and Key File to PubSub Directory 10
Start PPP Connection 10
Run Example Script 11

Next Steps 13
Troubleshooting 14

PN 1001417 rev 1 ​© NimbeLink Corp. 2017. All rights reserved. 2

1. Introduction
1.1 Orderable Part Numbers

Orderable Device Description Carrier Network Type

NL-AB-RPI Skywire Raspberry Pi Hat Any Any

NL-SW-LTE-SVZM20-ES LTE CAT M1, Engineering Sample Verizon LTE

NL-SW-LTE-SVZM20 LTE CAT M1 Verizon LTE

1.2 Overview
Amazon's AWS IoT provides a powerful and easy-to-use IoT management platform.
Whether you want to connect a single device, or deploy a fleet of devices, AWS IoT
provides an excellent option for usage.
This example provides an overview for using a Raspberry Pi 3, connected to a
NimbeLink Raspberry Pi Hat (NL-AB-RPI) and a NimbeLink CAT M1 Skywire®.
Note: Though we are using a NimbeLink CAT M1 Skywire embedded cellular modem in
this example, this guide is easily adaptable to use any of our Skywire modems with their
respective data connection (PPP, CDC-Ether, QMI, etc.).

1.3 Prerequisites
This application note assumes you have some familiarity with the
Raspberry Pi 3, including how to load an image of Raspbian on your
Raspberry Pi, how to connect a monitor, keyboard, and mouse to
your Raspberry Pi, how to setup an Ethernet and Wifi connection,
and basic familiarity with the Linux command line on the Raspberry
Pi. If you don't, please consult the "Help" section from the Raspberry

Pi Foundation's website and follow the guides there:
https://www.raspberrypi.org/help/
If you are unable to connect a keyboard, mouse, and monitor to your Raspberry Pi, you
can remotely connection to the Raspberry Pi using either a Serial connection or SSH.
In addition, this guide requires downloading files from Amazon AWS, so you will need
an Ethernet connection or Wifi connection for the initial setup of the Raspberry Pi.
Note: We recommend that you do not use the cellular connection to do the
downloads mentioned in this document. If performed using the cellular
connection these downloads will count against your data usage.
Finally, this guide assumes that you have verified that your CAT M1 Skywire is working
and transmitting data, and that PPP working on your Raspberry Pi 3, NL-AB-RPI, and
NL-SW-LTE-SVZM2x Skywire. If you have not done so already, please complete the
following walkthroughs and application notes:

PN 1001417 rev 1 ​© NimbeLink Corp. 2017. All rights reserved. 3

NimbeLink Skywire Raspberry Pi Adapter User Manual
http://nimbelink.com/Documentation/Development_Kits/NL-AB-RPI/1001464_NL-AB-RP
I_UserManual.pdf
Using PPP on the Raspberry Pi with CAT M1 Skywire
http://nimbelink.com/Documentation/Skywire/4G_LTE_Cat_M1/30273_NL-SW-LTE-SV
ZM21_PPP-on-CATM1_RPi.pdf
Note: Though this guide is written using the NL-SW-LTE-SVZM20 Skywire, you can use
the data connection on whichever Skywire you would like. For example, here are guides
for our LTE CAT1 Skywires:
NL-SW-LTE-GELS3 Skywire Family
CDC-Ether:
http://nimbelink.com/Documentation/Skywire/4G_LTE_Cat_1/30111_NL-SW-LTE-GELS
3_BBB_CDC-ETHER.pdf
PPP:
http://nimbelink.com/Documentation/Skywire/4G_LTE_Cat_1/30166_NL-SW-LTE-GELS
3_PPP.pdf
NL-SW-LTE-WM14 Skywire Family
CDC-Ether:
http://nimbelink.com/Documentation/Skywire/4G_LTE_Cat_1_WNC/30262_NL-SW-LTE
-WM14_CDC-ETHER.pdf
PPP: ​http://nimbelink.com/Documentation/Skywire/1001463_Document-Guide.pdf
If your Skywire is not listed above, please see the product page for your Skywire to find
the correct Application Note for PPP or CDC-ETHER/NCM/QMI connections.

1.4 Testing
This guide has been tested on the following hardware and operating systems:
Hardware
Raspberry Pi 3 Model B
Operating Systems
Raspbian 8.0 Jessie Kernel 4.4.50-v7+
Raspbian 8.0 Jessie Kernel 4.9.41-v7+

PN 1001417 rev 1 ​© NimbeLink Corp. 2017. All rights reserved. 4

http://nimbelink.com/Documentation/Development_Kits/NL-AB-RPI/1001464_NL-AB-RPI_UserManual.pdf
http://nimbelink.com/Documentation/Development_Kits/NL-AB-RPI/1001464_NL-AB-RPI_UserManual.pdf
http://nimbelink.com/Documentation/Skywire/4G_LTE_Cat_M1/30273_NL-SW-LTE-SVZM21_PPP-on-CATM1_RPi.pdf
http://nimbelink.com/Documentation/Skywire/4G_LTE_Cat_M1/30273_NL-SW-LTE-SVZM21_PPP-on-CATM1_RPi.pdf
http://nimbelink.com/Documentation/Skywire/4G_LTE_Cat_1/30111_NL-SW-LTE-GELS3_BBB_CDC-ETHER.pdf
http://nimbelink.com/Documentation/Skywire/4G_LTE_Cat_1/30111_NL-SW-LTE-GELS3_BBB_CDC-ETHER.pdf
http://nimbelink.com/Documentation/Skywire/4G_LTE_Cat_1/30166_NL-SW-LTE-GELS3_PPP.pdf
http://nimbelink.com/Documentation/Skywire/4G_LTE_Cat_1/30166_NL-SW-LTE-GELS3_PPP.pdf
http://nimbelink.com/Documentation/Skywire/4G_LTE_Cat_1_WNC/30262_NL-SW-LTE-WM14_CDC-ETHER.pdf
http://nimbelink.com/Documentation/Skywire/4G_LTE_Cat_1_WNC/30262_NL-SW-LTE-WM14_CDC-ETHER.pdf
http://nimbelink.com/Documentation/Skywire/1001463_Document-Guide.pdf

2. AWS IoT Example
2.1 Amazon's AWS IoT Guide
Amazon has written an excellent guide for getting started with AWS IoT. We will be
following that guide, with a few additional steps added in to have this work using the
cellular network with the Skywire modem.

2.2 AWS IoT SDK Tutorials
Amazon's AWS IoT Guide starts with an introduction, located here:
http://docs.aws.amazon.com/iot/latest/developerguide/sdk-tutorials.html
Open the link on your Raspberry Pi (or workstation, that is connected to your Raspberry
Pi), and read the introduction. Once completed, click on the first link under "Contents",
which is "Connecting Your Raspberry Pi":
http://docs.aws.amazon.com/iot/latest/developerguide/iot-sdk-setup.html

2.3 Connecting Your Raspberry Pi
Follow this guide to create your Amazon AWS IoT account, register a Thing, and get
certificates:
http://docs.aws.amazon.com/iot/latest/developerguide/iot-sdk-setup.html
Helpful Tip: The guide talks about a "root CA certificate". You will download that
certificate on the next step.
Once you have completed the guide on this page, click "Next >>" at the bottom of the
page, or click "Using the AWS IoT Embedded C SDK" link.

2.4 Using the AWS IoT Embedded C SDK
Follow this guide to download the AWS IoT Embedded C SDK, move the certification
files to the proper location, setup the subscribe_publish_sample example:
http://docs.aws.amazon.com/iot/latest/developerguide/iot-embedded-c-sdk.html
Stop following the guide at the step "Run Sample Applications".

2.5 Setup PPP Connection
At this point, you can use the Skywire modem’s PPP connection to send data to AWS
IoT. Disconnect your Ethernet or Wifi connection, and start your PPP connection
according to this guide for the Skywire M1 modem:
http://nimbelink.com/Documentation/Skywire/4G_LTE_Cat_M1/30273_NL-SW-LTE-SV
ZM21_PPP-on-CATM1_RPi.pdf

PN 1001417 rev 1 ​© NimbeLink Corp. 2017. All rights reserved. 5

http://docs.aws.amazon.com/iot/latest/developerguide/sdk-tutorials.html
http://docs.aws.amazon.com/iot/latest/developerguide/iot-sdk-setup.html
http://docs.aws.amazon.com/iot/latest/developerguide/iot-sdk-setup.html
http://docs.aws.amazon.com/iot/latest/developerguide/iot-embedded-c-sdk.html
http://nimbelink.com/Documentation/Skywire/4G_LTE_Cat_M1/30273_NL-SW-LTE-SVZM21_PPP-on-CATM1_RPi.pdf
http://nimbelink.com/Documentation/Skywire/4G_LTE_Cat_M1/30273_NL-SW-LTE-SVZM21_PPP-on-CATM1_RPi.pdf

2.6 Run Sample Applications
Once you have established your PPP connection, continue following Amazon's AWS
IoT guide at the place you left off, "Run Sample Applications":
http://docs.aws.amazon.com/iot/latest/developerguide/iot-embedded-c-sdk.html

PN 1001417 rev 1 ​© NimbeLink Corp. 2017. All rights reserved. 6

http://docs.aws.amazon.com/iot/latest/developerguide/iot-embedded-c-sdk.html

3. AWS IoT Shadow Sample
3.1 Introduction
Now that you have a PPP connection using the NimbeLink Skywire modem, we will
walk through another example for AWS IoT. In this example, we will send data to a
Thing Shadow. For more information about Shadows, please see the below page:
http://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html
Note​: Section 3 assumes you have completed Section 2. If you have not, please
complete Section 2.

3.2 Copy AWS IoT Config File
If you are not already, navigate to the following directory:
$ cd [path to deviceSDK]/sample_apps/shadow_sample/

Note: This is the directory you ended up in at the end of Section 2.
Copy the ​aws_iot_config.h​ file to the example shadow_sample directory:
$ cp aws_iot_config.h ../shadow_sample/

3.3 Navigate to the shadow_sample Directory
Next, navigate to the shadow_sample directory:
$ cd ../shadow_sample/

3.4 Compile and Run the Program
Use make to compile to program:
$ make -f Makefile

Now run the program:
$./shadow_sample

The program will send information to your AWS IoT Dashboard. You should see
something similar to the following:

PN 1001417 rev 1 ​© NimbeLink Corp. 2017. All rights reserved. 7

http://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html

AWS IoT SDK Version(dev) 1.1.2-

DEBUG: main L#181 Using rootCA
/home/pi/aws/deviceSDK/sample_apps/shadow_sample/../../certs/VeriSign-Class
3-Public-Primary-Certification-Authority-G5.pem
DEBUG: main L#182 Using clientCRT
/home/pi/aws/deviceSDK/sample_apps/shadow_sample/../../certs/3640a6fd11-certificate.pem.crt
DEBUG: main L#183 Using clientKey
/home/pi/aws/deviceSDK/sample_apps/shadow_sample/../../certs/3640a6fd11-private.pem.key
Shadow Init
Shadow Connect
DEBUG: aws_iot_shadow_connect L#77 Thing Name MyRaspberryPi
DEBUG: aws_iot_shadow_connect L#78 MQTT Client ID MyRaspberryPi
DEBUG: registerJsonTokenOnDelta L#104 delta topic $aws/things/MyRaspberryPi/shadow/update/delta

===

On Device: window state false
Update Shadow: {"state":{"reported":{"temperature":25.500000,"windowOpen":false}},
"clientToken":"MyRaspberryPi-0"}

Update Accepted !!

===

On Device: window state false
Update Shadow: {"state":{"reported":{"temperature":26.000000,"windowOpen":false}},
"clientToken":"MyRaspberryPi-1"}

Update Accepted !!

===

On Device: window state false
Update Shadow: {"state":{"reported":{"temperature":26.500000,"windowOpen":false}},
"clientToken":"MyRaspberryPi-2"}

Update Accepted !!

===

On Device: window state false
Update Shadow: {"state":{"reported":{"temperature":27.000000,"windowOpen":false}},
"clientToken":"MyRaspberryPi-3"}

PN 1001417 rev 1 ​© NimbeLink Corp. 2017. All rights reserved. 8

4. AWS IoT Python SDK Example: Basic
PubSub

4.1 Introduction
Amazon has an SDK available for Python, as well. In this example, we will walkthrough
the same example outlined in Section 2.
Note​: this guide assumes that you have completed Section 2 at least through Section
2.3, and have completed this guide:
http://docs.aws.amazon.com/iot/latest/developerguide/iot-sdk-setup.html
In addition, this guide assumes that you have the root CA certificate. If you do not,
please follow the Python README to get your root CA certificate:
https://github.com/aws/aws-iot-device-sdk-python/blob/master/README.rst

4.2 Bring Down PPP Connection
If you have the Skywire modem PPP connection still up, bring it down to download the
AWS IoT Python SDK. To do this, issue:
$ sudo poff vzw-SVZM2x

Once your PPP interface is down, remove the USB connection and power cable from
the development kit.

4.3 Bring Up Ethernet or Wifi Connection
Attach your Ethernet cable or setup your Wifi connection.

4.4 Download and Install AWS IoT Python SDK
Navigate to your preferred download directory. This example will navigate to the ​pi user
directory:
$ cd /home/pi/

Once you are in your preferred directory, download and install the AWS IoT Python
SDK. There are multiple methods to do this, depending on your preference. Please see
the AWS IoT Python SDK README for detailed information:
https://github.com/aws/aws-iot-device-sdk-python/blob/master/README.rst
This example will use the "Build from source" method, which required cloning the Github
repo and installing the Python SDK.
First, make sure you have git installed:
$ sudo apt-get update && sudo apt-get install git

PN 1001417 rev 1 ​© NimbeLink Corp. 2017. All rights reserved. 9

http://docs.aws.amazon.com/iot/latest/developerguide/iot-sdk-setup.html
https://github.com/aws/aws-iot-device-sdk-python/blob/master/README.rst
https://github.com/aws/aws-iot-device-sdk-python/blob/master/README.rst

Next, clone the repo:
$ git clone https://github.com/aws/aws-iot-device-sdk-python.git

Once the download completes, navigate to that directory:
$ cd aws-iot-device-sdk-python

Finally, install the SDK:
$ python setup.py install

Note: You may receive errors about not having permissions to install the SDK. If that is
the case, run the command as root:
$ sudo python setup.py install

4.5 Copy Your Certs and Key File to PubSub
Directory

For this example, we are going to have the cert and key files in the same directory as
our Python script. In this case, we want to move the file to:
$ aws-iot-device-sdk-python/samples/basicPubSub

Copy the following files:
xxxxxxxxxx-certificate.pem.crt

xxxxxxxxxx-private.pem.key

root-CA.pem

to the above directory:
$ cp [cert location] aws-iot-device-sdk-python/samples/basicPubSub

$ cp [priv key location] aws-iot-device-sdk-python/samples/basicPubSub

$ cp [root CA location] aws-iot-device-sdk-python/samples/basicPubSub

Note: your filenames may be different than the above. What you need is your root
certificate, device certificate, and private key files.
In addition to this, you will need the AWS IoT MQTT Host, which was provided in the
guide linked in Section 4.1.

4.6 Start PPP Connection
Bring down your Ethernet or Wifi connection, and start the PPP connection according to
this guide:
http://nimbelink.com/Documentation/Skywire/4G_LTE_Cat_M1/30273_NL-SW-LTE-SV
ZM21_PPP-on-CATM1_RPi.pdf

PN 1001417 rev 1 ​© NimbeLink Corp. 2017. All rights reserved. 10

http://nimbelink.com/Documentation/Skywire/4G_LTE_Cat_M1/30273_NL-SW-LTE-SVZM21_PPP-on-CATM1_RPi.pdf
http://nimbelink.com/Documentation/Skywire/4G_LTE_Cat_M1/30273_NL-SW-LTE-SVZM21_PPP-on-CATM1_RPi.pdf

4.7 Run Example Script
Now that you have your endpoint, as well as your root CA certificate, device certificate,
and private key in the same directory as the Python script, run the script according to
the following syntax:
$ python basicPubSub.py -e [endpoint] -r [rootCAFilePath] -c
[certFilePath] -k [privateKeyFilePath]

Note: This description is available in the basicPubSub.py file.
So, for this example, we run:
$ python basicPubSub.py -e 1234567890abcd.iot.us-west-2.amazonaws.com
-r VeriSign-Class\ 3-Public-Primary-Certification-Authority-G5.pem -c
1234567890-certificate.pem.crt -k 1234567890-private.pem.key

Once you run this script, you should see something similar to below:
2017-04-18 13:39:24,121 - AWSIoTPythonSDK.core.protocol.mqttCore - DEBUG - Load CAFile from:
VeriSign-Class 3-Public-Primary-Certification-Authority-G5.pem
2017-04-18 13:39:24,121 - AWSIoTPythonSDK.core.protocol.mqttCore - DEBUG - Load Key from:
3640a6fd11-private.pem.key
2017-04-18 13:39:24,122 - AWSIoTPythonSDK.core.protocol.mqttCore - DEBUG - Load Cert from:
3640a6fd11-certificate.pem.crt
2017-04-18 13:39:24,122 - AWSIoTPythonSDK.core.protocol.mqttCore - DEBUG - Custom setting for
backoff timing: baseReconnectTime = 1 sec
2017-04-18 13:39:24,122 - AWSIoTPythonSDK.core.protocol.mqttCore - DEBUG - Custom setting for
backoff timing: maximumReconnectTime = 32 sec
2017-04-18 13:39:24,123 - AWSIoTPythonSDK.core.protocol.mqttCore - DEBUG - Custom setting for
backoff timing: minimumConnectTime = 20 sec
2017-04-18 13:39:24,123 - AWSIoTPythonSDK.core.protocol.mqttCore - DEBUG - Custom setting for
publish queueing: queueSize = -1
2017-04-18 13:39:24,123 - AWSIoTPythonSDK.core.protocol.mqttCore - DEBUG - Custom setting for
publish queueing: dropBehavior = Drop Newest
2017-04-18 13:39:24,124 - AWSIoTPythonSDK.core.protocol.mqttCore - DEBUG - Custom setting for
draining interval: 0.5 sec
2017-04-18 13:39:24,124 - AWSIoTPythonSDK.core.protocol.mqttCore - DEBUG - Set maximum
connect/disconnect timeout to be 10 second.
2017-04-18 13:39:24,124 - AWSIoTPythonSDK.core.protocol.mqttCore - DEBUG - Set maximum MQTT
operation timeout to be 5 second
2017-04-18 13:39:24,125 - AWSIoTPythonSDK.core.protocol.mqttCore - INFO - Connection type: TLSv1.2
Mutual Authentication
2017-04-18 13:39:24,765 - AWSIoTPythonSDK.core.protocol.mqttCore - DEBUG - Connect result code 0
2017-04-18 13:39:24,772 - AWSIoTPythonSDK.core.protocol.mqttCore - INFO - Connected to AWS IoT.
2017-04-18 13:39:24,772 - AWSIoTPythonSDK.core.protocol.mqttCore - DEBUG - Connect time
consumption: 110.0ms.
2017-04-18 13:39:24,773 - AWSIoTPythonSDK.core.protocol.mqttCore - DEBUG - Started a subscribe
request 1
2017-04-18 13:39:24,873 - AWSIoTPythonSDK.core.protocol.mqttCore - DEBUG - _resubscribeCount: -1
2017-04-18 13:39:24,874 - AWSIoTPythonSDK.core.protocol.mqttCore - DEBUG - Subscribe request 1
sent.
2017-04-18 13:39:24,875 - AWSIoTPythonSDK.core.protocol.mqttCore - DEBUG - Subscribe request 1
succeeded. Time consumption: 100.0ms.

PN 1001417 rev 1 ​© NimbeLink Corp. 2017. All rights reserved. 11

2017-04-18 13:39:24,875 - AWSIoTPythonSDK.core.protocol.mqttCore - DEBUG - Recover subscribe
context for the next request: subscribeSent: False
2017-04-18 13:39:26,878 - AWSIoTPythonSDK.core.protocol.mqttCore - DEBUG - Try to put a publish
request 2 in the TCP stack.
2017-04-18 13:39:26,879 - AWSIoTPythonSDK.core.protocol.mqttCore - DEBUG - Publish request 2
succeeded.
Received a new message:
New Message 0
from topic:
sdk/test/Python

2017-04-18 13:39:27,882 - AWSIoTPythonSDK.core.protocol.mqttCore - DEBUG - Try to put a publish
request 3 in the TCP stack.
2017-04-18 13:39:27,883 - AWSIoTPythonSDK.core.protocol.mqttCore - DEBUG - Publish request 3
succeeded.
Received a new message:
New Message 1
from topic:
sdk/test/Python

2017-04-18 13:39:28,885 - AWSIoTPythonSDK.core.protocol.mqttCore - DEBUG - Try to put a publish
request 4 in the TCP stack.
2017-04-18 13:39:28,886 - AWSIoTPythonSDK.core.protocol.mqttCore - DEBUG - Publish request 4
succeeded.
Received a new message:
New Message 2
from topic:
sdk/test/Python

PN 1001417 rev 1 ​© NimbeLink Corp. 2017. All rights reserved. 12

5. Next Steps
Amazon has multiple AWS IoT SDKs available for download, depending on your
application and coding preference. You can view them all here:
http://docs.aws.amazon.com/iot/latest/developerguide/iot-sdks.html
Combined with NimbeLink's Skywire family of embedded cellular modems, you can
develop your connected IoT device with ease.

PN 1001417 rev 1 ​© NimbeLink Corp. 2017. All rights reserved. 13

http://docs.aws.amazon.com/iot/latest/developerguide/iot-sdks.html

6. Troubleshooting
Depending on your Skywire data connection, you may need to increase the timeout
amount to allow enough time to work. For example, if you run into errors in Section 2,
you can set the timeout by editing the file:
and modifying:
connectParams.mqttCommandTimeout_ms = 2000;
connectParams.tlsHandshakeTimeout_ms = 5000;

to larger values, such as ​10000​.
Save the file, run the ​make​ command outlined in Amazon's guide, and try again.

PN 1001417 rev 1 ​© NimbeLink Corp. 2017. All rights reserved. 14

