

IQS320 DATASHEET

2 Channel Proximity Sensing / Single Channel Proximity Sensing with Reference Tracking Controller including Movement and SNR Boost User Interfaces. The device is specifically designed for SAR and other similar high performance proximity sensing requirements. The device features an I²C communications interface and the option to run the device in a standalone mode.

1 Device Overview

The IQS320 ProxFusion® IC is a self-capacitive sensing device optimised to work in SAR and similar applications that require the detection of very small capacitive changes in a high capacitive load environment. The sensor is fully I²C compatible with the ability to operate in a standalone mode. On-chip calculations allow the device to process small movements, and detect the smallest possible changes in capacitance. It is recommended to use the *SNR Boost UI* in conjunction with the *Reference UI* in applications with sensitive or critical proximity triggers and high capacitance load environments.

1.1 Main Features

- > Dual channel self-capacitance Sensor
- > 2 External sensor pad connections
- > External sensor options:
 - 2 self-capacitance sensors
 - 1 self-capacitance sensor with a reference tracking sensor
- > Built-in basic functions:
 - Automatic tuning
 - Noise filtering
 - Debounce & Hysteresis
 - High performance in high capacitive load conditions
- > Built-in Signal processing options:
 - Touch/Proximity output
 - Movement User Interface
 - Reference User Interface
 - Signal to Noise Ratio Boost User Interface by means of over-sampling (add Reference UI for optimal performance)
- > Design simplicity
 - PC Software for debugging & optimal setup for performance
- > I²C communication interface with IRQ/RDY(up to fast plus -1 MHz)
- > Event and streaming modes with I²C
- > Selectable I²C address
- > Standalone output mode
- > Supply Voltage 1.71 V to 3.5 V
- > Package options
 - WLCSP11 (1.48 x 1.08 x 0.345 mm) - interleaved 0.35 mm x 0.35 mm ball pitch
 - DFN12 (3 x 3 x 0.75 mm) - 0.5 mm pitch
 - QFN20 (3 x 3 x 0.55 mm) - 0.4 mm pitch

WLCSP11 Package

DFN12 Package

QFN20 Package

1.2 Applications

- > SAR Safety Sensor
- > Keyboard back-lighting
- > Wireless charger wake-up

1.3 Block Diagram

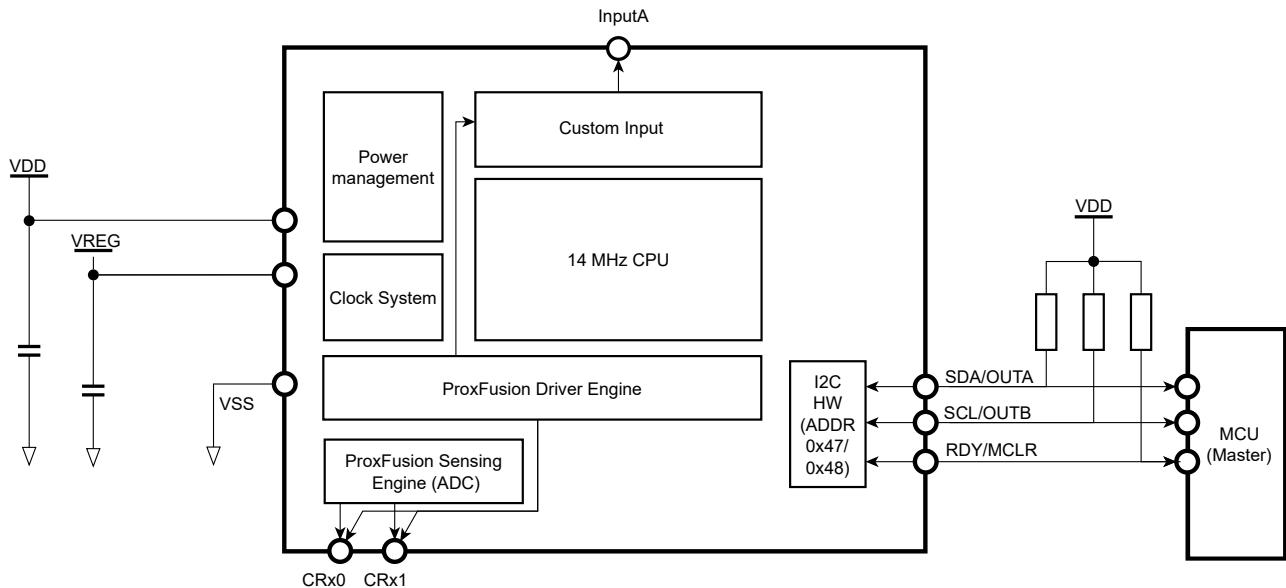
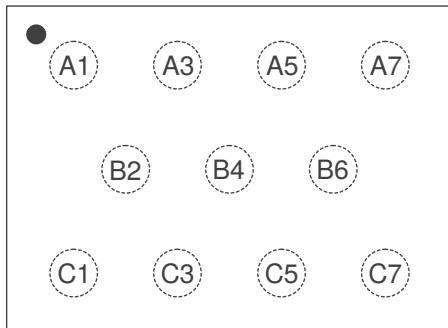


Figure 1.4: Functional Block Diagram

Contents

1 Device Overview	1
1.1 Main Features	1
1.2 Applications	1
1.3 Block Diagram	2
2 Hardware Connection	6
2.1 WLCSP11 Pin Diagram	6
2.2 DFN12 Pin Diagram	6
2.3 QFN20 Pin Diagram	7
2.4 Signal Descriptions	7
2.5 Reference Schematic	8
3 Electrical Characteristics	11
3.1 Absolute Maximum Ratings	11
3.2 Recommended Operating Conditions	11
3.3 ESD Rating	11
3.4 Current Consumption	12
4 Noise Performance	13
5 Timing and Switching Characteristics	14
5.1 Reset Levels	14
5.2 MCLR Pin Levels and Characteristics	14
5.3 Miscellaneous Timings	14
5.4 Digital I/O Characteristics	15
5.5 I ² C Characteristics	15
6 ProxFusion® Module	16
6.1 Channel Options	16
6.2 Count Value	16
6.2.1 Max Counts	16
6.2.2 Linearise Counts	16
6.3 Reference Value/Long-Term Average (LTA)	16
6.3.1 Reseed	16
6.4 Prox and Touch Thresholds	17
6.5 Event Timeout	18
6.6 Filter Betas	18
6.7 Automatic Tuning Implementation (ATI)	18
6.8 Automatic Re-ATI	19
6.8.1 Description	19
6.8.2 Conditions for Re-ATI to Activate	19
6.8.3 ATI Error	20
7 Hardware Settings	20
7.1 Charge Transfer Frequency	20
7.2 Reset	20
7.2.1 Reset Indication	20
7.2.2 Software Reset	21
7.2.3 Hardware Reset	21

8 Additional Features	21
8.1 Reference UI	21
8.2 Movement UI	22
8.2.1 Movement Threshold	22
8.3 SNR Boost UI	22
8.4 Standalone Mode	22
8.4.1 ATI Indication	23
8.5 Watchdog Timer	24
9 I²C Interface	25
9.1 I ² C Module Specification	25
9.2 I ² C Address	25
9.3 I ³ C Compatibility	25
9.4 Memory Map Addressing and Data	25
9.5 Ready (RDY) Indicator	25
9.6 Communications Window	26
9.7 I ² C Transaction Timeout	26
9.8 Terminate Communication	26
9.9 Invalid Communications Return	26
9.10 I ² C Interface	27
9.10.1 I ² C Streaming	27
9.10.2 I ² C Event Mode	27
9.11 Event Mode Communication	27
9.11.1 Events	27
9.11.2 Force Communication	27
9.12 Read/Write Check Disable	28
9.12.1 Program Flow Diagram	29
10 Memory Map Register Descriptions	30
11 Ordering Information	32
11.1 Ordering Code	32
11.2 Top Marking	32
11.2.1 WLCSP11 Package Marking	32
11.2.2 DFN12 Package Marking Options	32
11.2.3 QFN20 Package Marking Options	33
12 Package Specification	34
12.1 Package Outline Description – WLCSP11	34
12.2 Package Footprint Description – WLCSP11	35
12.3 Package Outline Description – DFN12	36
12.4 Package Footprint Description – DFN12	37
12.5 Package Outline Description – QFN20	38
12.6 Package Footprint Description – QFN20	39
12.7 Tape and Reel Specifications	40
A Memory Map Descriptions	42
A.1 Version Information (0x00 – 0x09)	42
A.2 System Status (0x10)	42
A.3 Sensor Setup 0 (0x20, 0x30)	43
A.4 Conversion Frequency Setup (0x21, 0x31)	43
A.5 Prox Control (0x22, 0x32)	44

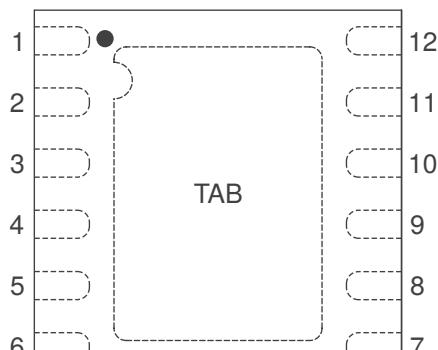


A.6	Timing Generator Control & Prox Input (0x23, 0x33)	44
A.7	Inactive Rxs & Calibration Capacitor Selection (0x24, 0x34)	45
A.8	ATI Setup (0x25, 0x35)	45
A.9	ATI Multipliers and Dividers (0x27, 0x37)	45
A.10	Compensation (0x28, 0x38)	46
A.11	Prox Settings (0x40, 0x50)	46
A.12	Touch Settings (0x41, 0x51)	46
A.13	Movement Settings (0x42, 0x52)	47
A.14	Counts Filter Beta & LTA Filter Beta (0x60)	47
A.15	LTA Fast Filter Beta & Movement Beta (0x61)	47
A.16	System Control (0x70)	47
A.17	Event Timeouts (0x73)	48
A.18	Events Enable & SNR Boost Factor (0x74)	48
A.19	Reference Scaling (0x75)	49
A.20	I ² C Settings (0x80)	49
B	Revision History	50
C	Known Issues	51

2 Hardware Connection

2.1 WLCSP11 Pin Diagram

Table 2.1: 11-pin WLCSP Package



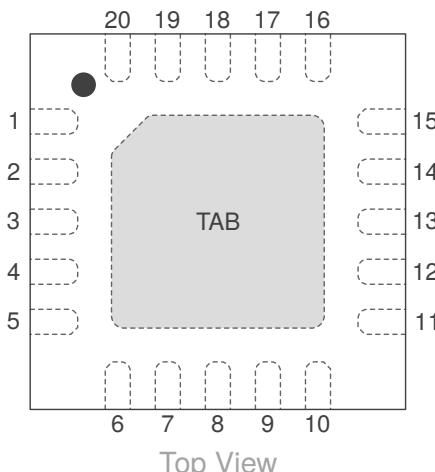
Top View

Pin no.	Signal
A1	CRx1/CTx1
A3	VREG
A5	SDA/OutA
A7	VSS
B2	CRx0/CTx0
B4	Unused
B6	InputA
C1	Unused
C3	SCL/OutB
C5	VDD
C7	RDY/MCLR

2.2 DFN12 Pin Diagram

Table 2.2: 12-pin DFN Package

Top View


Pin no.	Signal
1	InputA
2	SDA/OutA
3	VDD
4	VREG
5	SCL/OutB
6	Unused
7	CRx0/CTx0
8	NC
9	CRx1/CTx1
10	Unused
11	RDY/MCLR
12	VSS

Area name	Signal
TAB	Thermal pad (floating)

2.3 QFN20 Pin Diagram

Table 2.3: 20-pin QFN Package (Top View)

Pin no.	Signal	Pin no.	Signal
1	Unused	11	NC
2	CRx0/CTx0	12	NC
3	CRx1/CTx1	13	NC
4	NC	14	NC
5	NC	15	NC
6		16	NC
7	Unused	17	RDY/MCLR
8	VDD	18	InputA
9	VSS	19	SDA/OutA
10	NC	20	SCL/OutB

Area name	Signal
TAB ⁱ	Thermal pad (floating)

2.4 Signal Descriptions

Table 2.4: Signal Descriptions

Function	Signal Name	Signal Type	Pin Type ⁱⁱ	Description
ProxFusion®	CRx0/CTx0	Analog	IO	ProxFusion® channel
	CRx1/CTx1	Analog	IO	
	Unused	-	IO	
	InputA	Digital	O	InputA pad
	Unused	-	O	Unused pad
GPIO	RDY/MCLR	Digital	IO	Active pull-up, 200k resistor to VDD. Pulled low during POR, and MCLR function enabled by default. VPP input for OTP
Digital Out/ I ² C	SDA/OutA	Digital	IO	Digital Output / I ² C Data (Debugging)
	SCL/OutB	Digital	IO	Digital Output / I ² C Clock (Debugging)
Power	VDD	Power	P	Power supply input voltage
	VREG	Power	P	Internal regulated supply output
	VSS	Power	P	Analog/Digital Ground

ⁱ It is recommended to connect the thermal pad (TAB) to VSS.ⁱⁱ Pin Types: I = Input, O = Output, I/O = Input or Output, P = Power

2.5 Reference Schematic

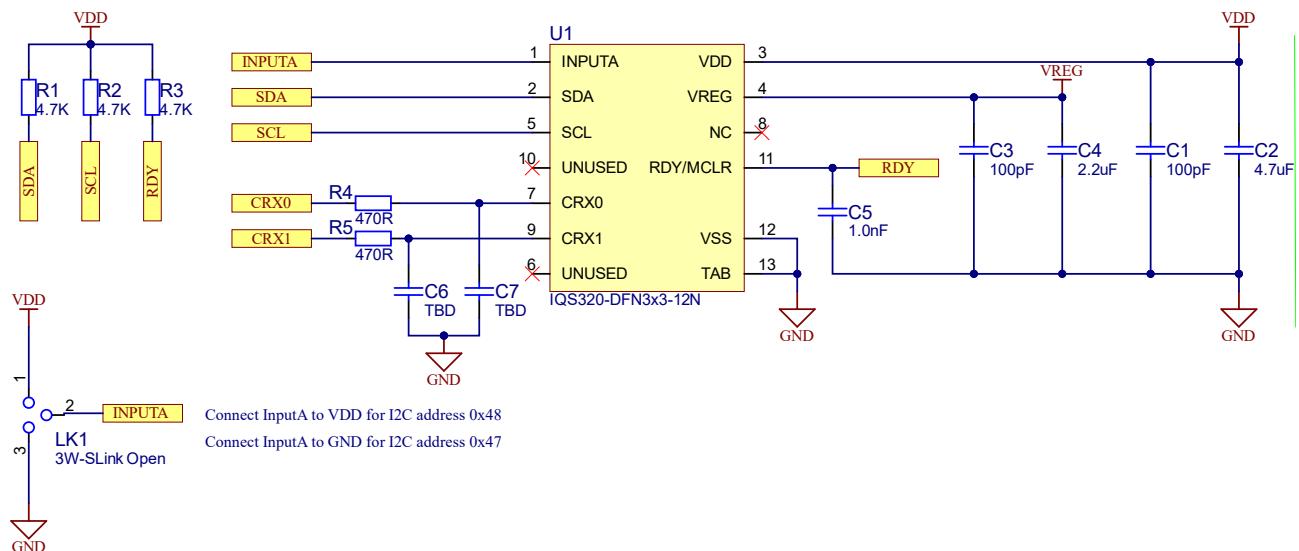


Figure 2.1: DFN12 I²C Reference Schematic

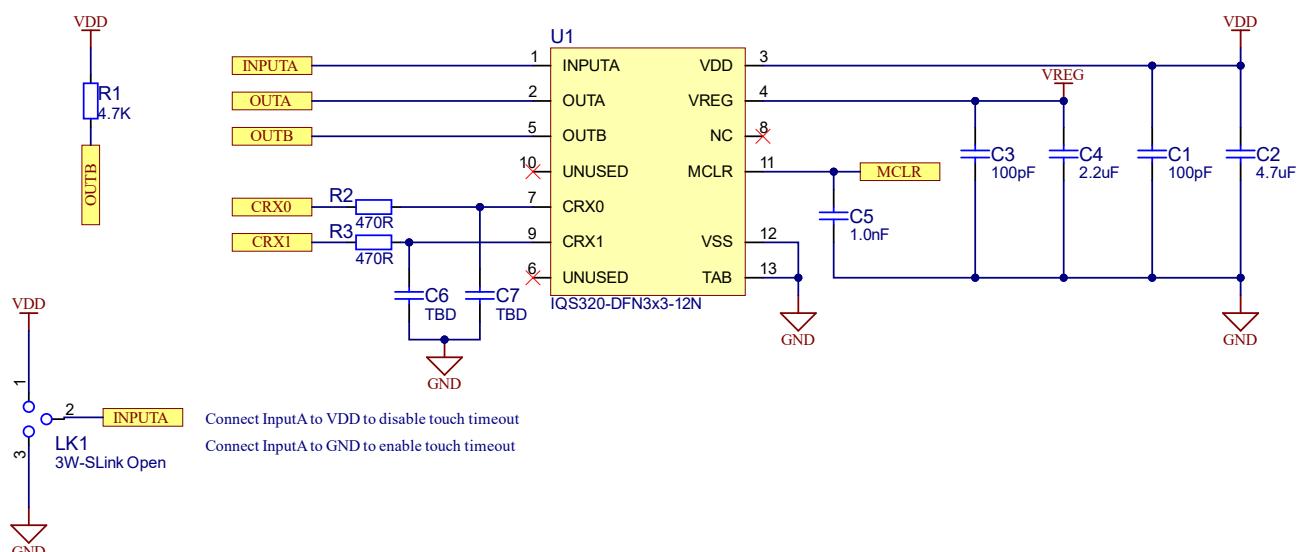


Figure 2.2: DFN12 Standalone Reference Schematic

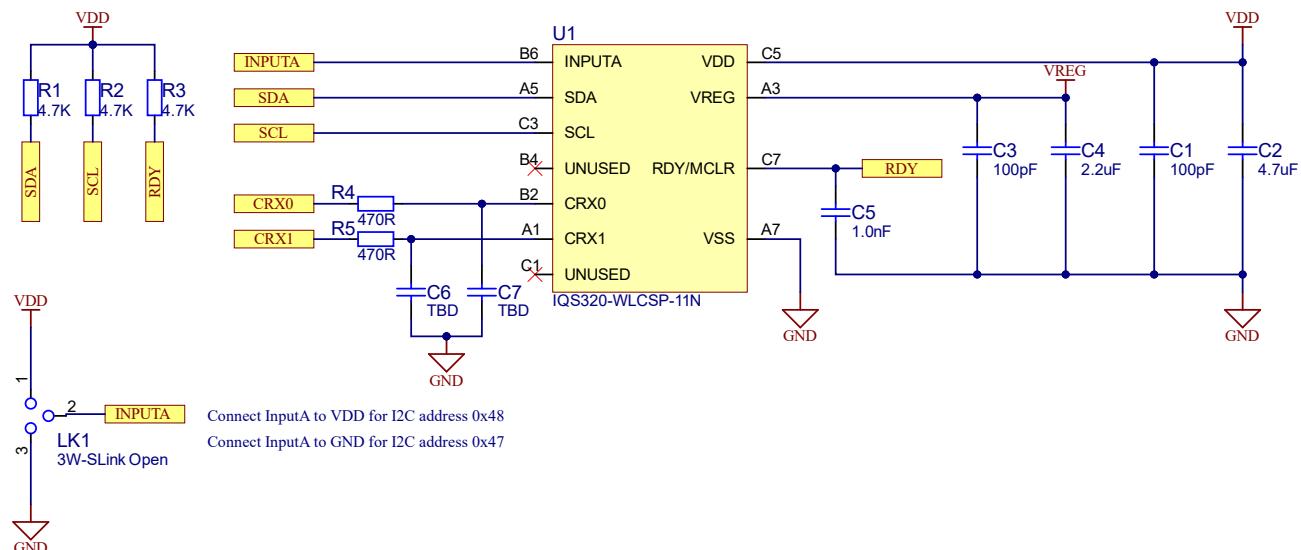


Figure 2.3: WLCSP11 I²C Reference Schematic

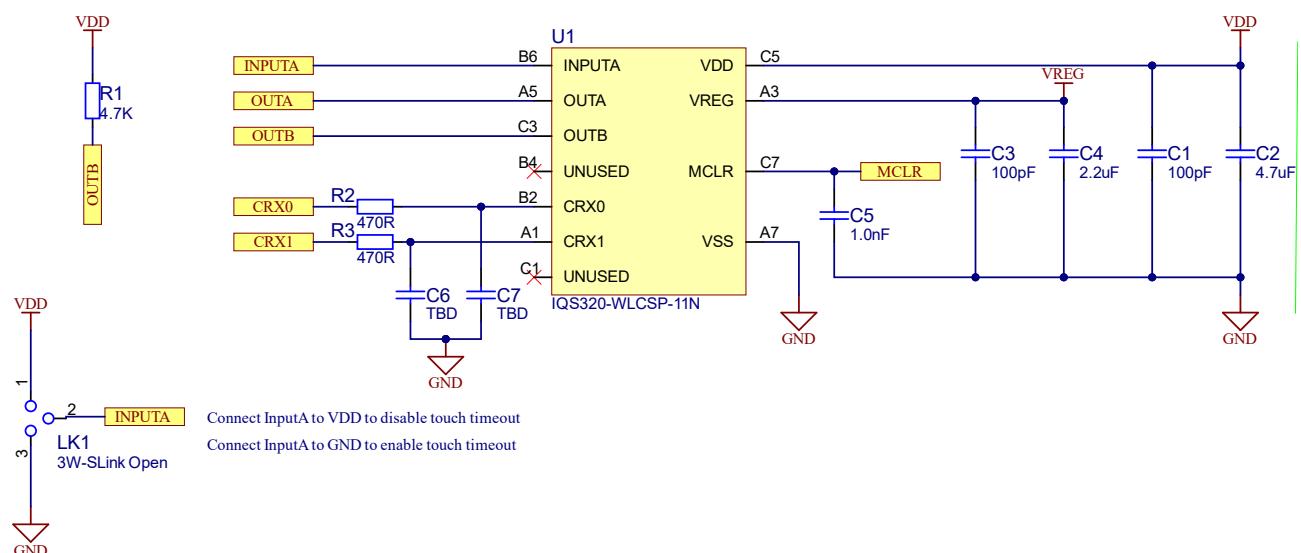


Figure 2.4: WLCSP11 Standalone Reference Schematic

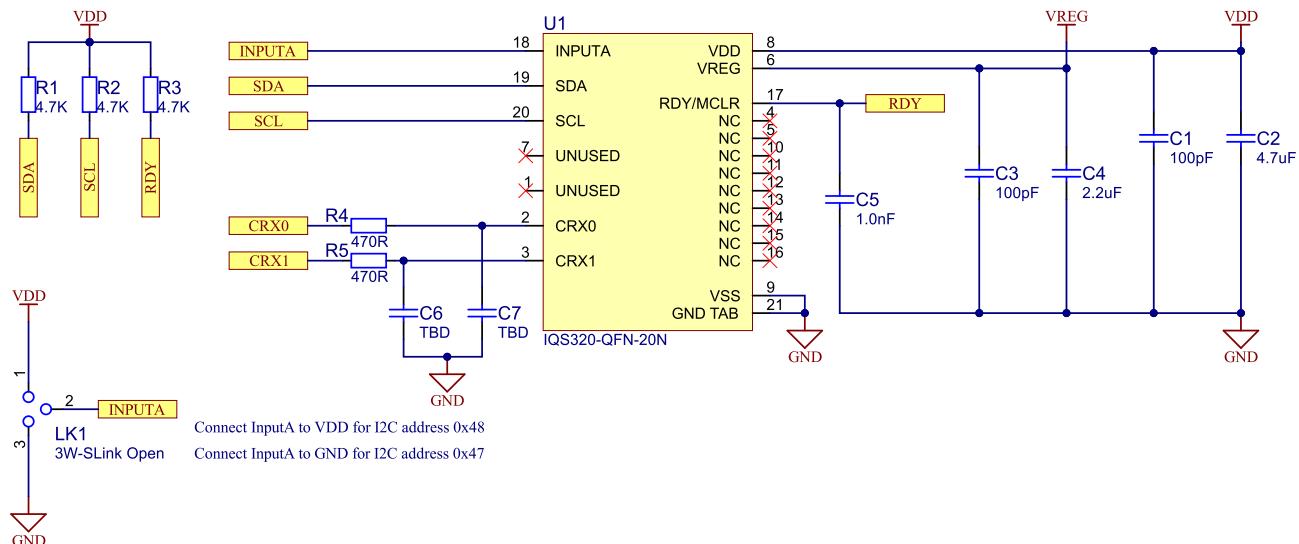


Figure 2.5: QFN20 I²C Reference Schematic

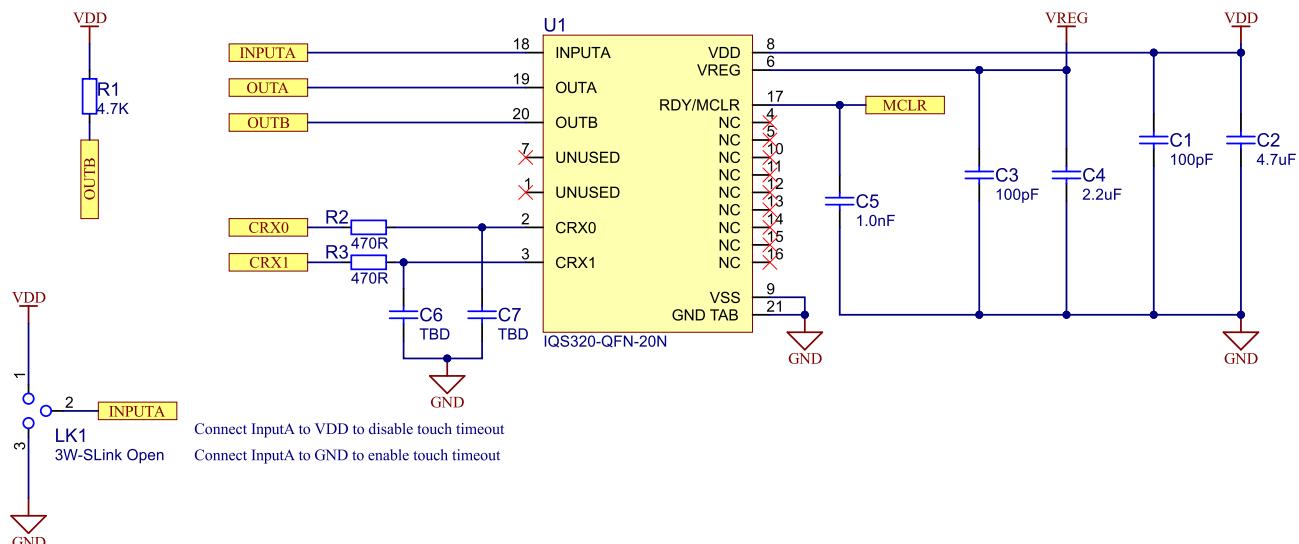


Figure 2.6: QFN20 Standalone Reference Schematic

ⁱ The TBD capacitors are used to balance the loads on CRx0/CTx0 and CRx1/CTx1. Please refer to Section 8.1 for more information.

3 Electrical Characteristics

3.1 Absolute Maximum Ratings

	Min	Max	Unit
Voltage applied at VDD pin to VSS	1.71	3.6	V
Voltage applied to any ProxFusion® pin	-0.3	VREG	V
Voltage applied to any other pin (referenced to VSS)	-0.3	VDD + 0.3 (3.6 V max)	V
Storage temperature, T_{stg}	-40	85	°C

3.2 Recommended Operating Conditions

Recommended operating conditions		Min	Nom	Max	Unit
VDD	Supply voltage applied at VDD pin	1.71		3.6	V
VREG	Internal regulated supply output for analog domain		1.53		V
VSS	Supply voltage applied at VSS pin	0	0	0	V
T_A	Operating free-air temperature	-40	25	85	°C
C_{VDD}	Recommended capacitor at VDD	$2 \times C_{VREG}$	$3 \times C_{VREG}$		µF
C_{VREG}	Recommended external buffer capacitor at VREG, ESR \leq 200 mΩ	2^i	4.7	13	µF
$C_{X_{SELF-VSS}}$	Maximum capacitance between ground and external electrodes (self-capacitance mode)			400 ⁱⁱ	pF
$RC_{X_{SELF}}$	Series (in-line) resistance of all self-capacitance pins in self-capacitance mode	0 ⁱⁱⁱ	0.47	10 ^{iv}	kΩ

3.3 ESD Rating

	Value	Unit
$V_{(ESD)}$ Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ^v	± 2000 V

ⁱ Absolute minimum allowed capacitance value is 1 µF, after taking derating, temperature, and worst-case tolerance into account. Please refer to the [AZD004](#) application note for more information regarding capacitor derating.

ⁱⁱ $RC_x = 0 \Omega$.

ⁱⁱⁱ Nominal series resistance of 470 Ω is recommended to prevent received and emitted EMI effects. Typical resistance also adds additional ESD protection.

^{iv} Series resistance limit is a function of f_{xfer} and the circuit time constant, RC . $R_{max} \times C_{max} = \frac{1}{(6 \times f_{xfer})}$ where C is the pin capacitance to VSS.

^v JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±2000 V may actually have higher performance.

3.4 Current Consumption

Sensor Setup: Channels = 2
ATI Base = 80
ATI Target = 2600
 F_{xfer} = 875 kHzⁱ

Interface Selection: Event mode

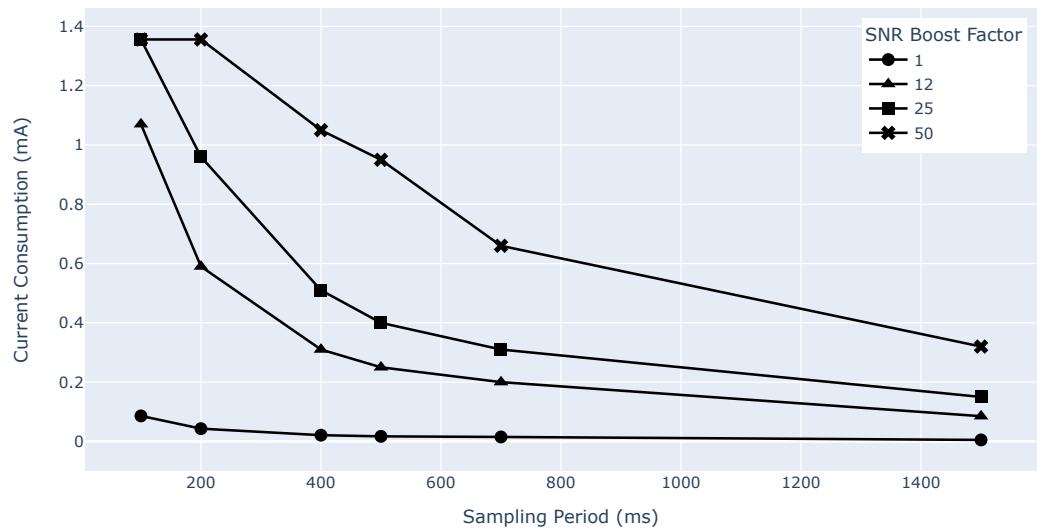


Figure 3.1: Sampling Period vs Current Consumption at different SNR Boost Factors

ⁱ The sampling period and current consumption will increase and decrease according to F_{xfer}

4 Noise Performance

Sensor Setup: Reference tracking = enabled
ATI Base = 80
ATI Target = 2600
 F_{xfer} = 875 kHz
Signal = 25 fF

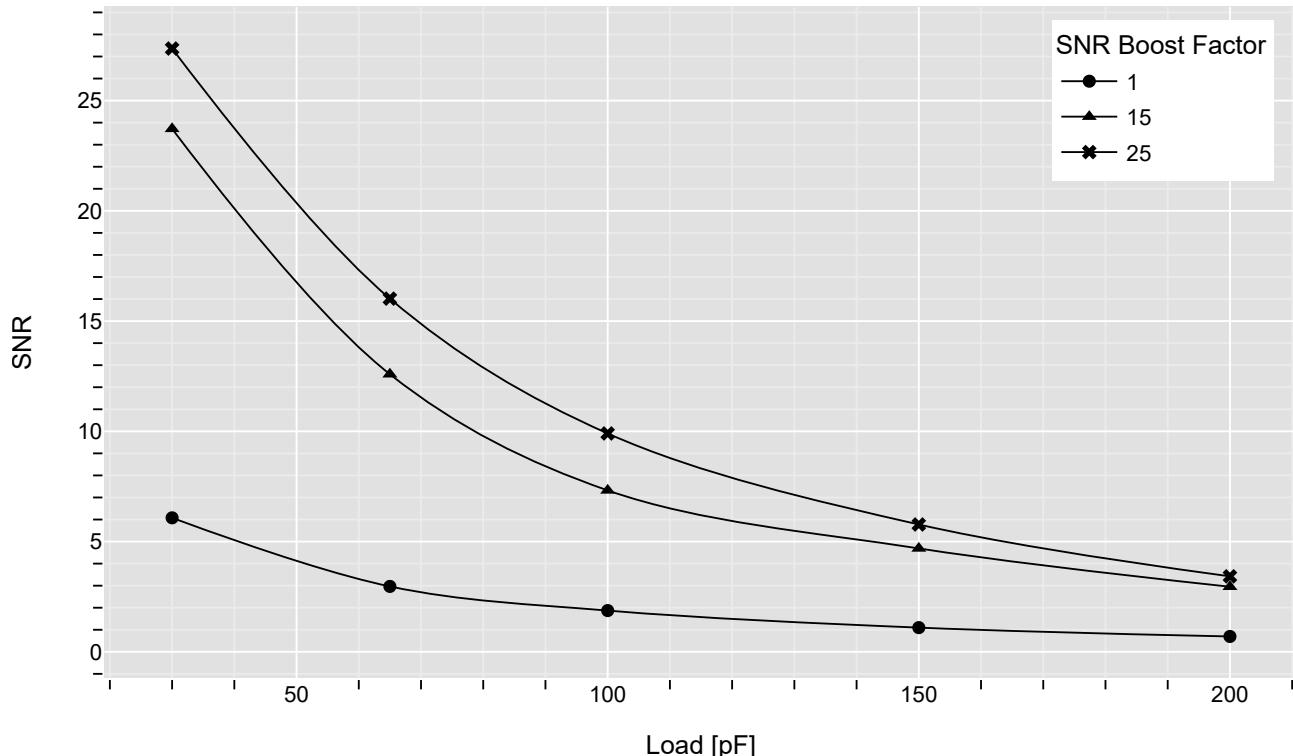


Figure 4.1: SNR vs Load Capacitance at various SNR Boost Factors and different Beta coefficients for a 25 fF signalⁱ

ⁱ Using High SNR Boost Factors will cause a decrease in the dynamic resolution of the signal.

5 Timing and Switching Characteristics

5.1 Reset Levels

Table 5.1: Reset Levels

Parameter		Min	Max	Unit
V _{VDD}	Power-up (Reset trigger) – slope > 100 V/s		1.65	V
	Power-down (Reset trigger) – slope < -100 V/s	0.9		

5.2 MCLR Pin Levels and Characteristics

Table 5.2: MCLR Pin Characteristics

Parameter		Conditions	Min	Typ	Max	Unit
V _{IL(MCLR)}	MCLR Input low level voltage	VDD = 3.3 V	VSS – 0.3	-	1.05	V
		VDD = 1.7 V			0.75	
V _{IH(MCLR)}	MCLR Input high level voltage	VDD = 3.3 V	2.25	-	VDD + 0.3	V
		VDD = 1.7 V	1.05			
R _{PU(MCLR)}	MCLR pull-up equivalent resistor		180	210	240	kΩ
t _{PULSE(MCLR)}	MCLR input pulse width – no trigger	VDD = 3.3 V	-	-	15	ns
		VDD = 1.7 V			10	
t _{TRIG(MCLR)}	MCLR input pulse width – ensure trigger		250	-	-	ns

Figure 5.1: MCLR Pin Diagram

5.3 Miscellaneous Timings

Table 5.3: Miscellaneous Timings

Parameter		Min	Typ	Max	Unit
f _{xfer}	Charge transfer frequency (derived from f _{OSC})	55	500-1500	7000	kHz
f _{OSC}	Master CLK frequency tolerance 14 MHz	13.23	14	14.77	MHz

5.4 Digital I/O Characteristics

Table 5.4: Digital I/O Characteristics

Parameter	Test Conditions	Min	Max	Unit
V_{OL}	SDA/OutA & SCL/OutB Output low voltage	$I_{sink} = 20 \text{ mA}$		0.3 V
V_{OL}	InputA Output low voltage RDY/MCLR Output low voltage	$I_{sink} = 10 \text{ mA}$		0.15 V
V_{OH}	Output high voltage	$I_{source} = 20 \text{ mA}$	$VDD - 0.2$	V
V_{IL}	Input low voltage			$VDD \times 0.3$ V
V_{IH}	Input high voltage		$VDD \times 0.7$	V
C_{b_max}	SDA & SCL maximum bus capacitance		550	pF

5.5 I²C Characteristics

Table 5.5: I²C Characteristics

Parameter	Min	Max	Unit
f_{SCL}	SCL clock frequency	1000	kHz
$t_{HD,STA}$	Hold time (repeated) START	0.26	μs
$t_{SU,STA}$	Setup time for a repeated START	0.26	μs
$t_{HD,DAT}$	Data hold time	0	ns
$t_{SU,DAT}$	Data setup time	50	ns
$t_{SU,STO}$	Setup time for STOP	0.26	μs
t_{BUF}	Bus free time between a STOP and START condition	0.5	μs
t_{SP}	Pulse duration of spikes suppressed by input filter	0	50 ns

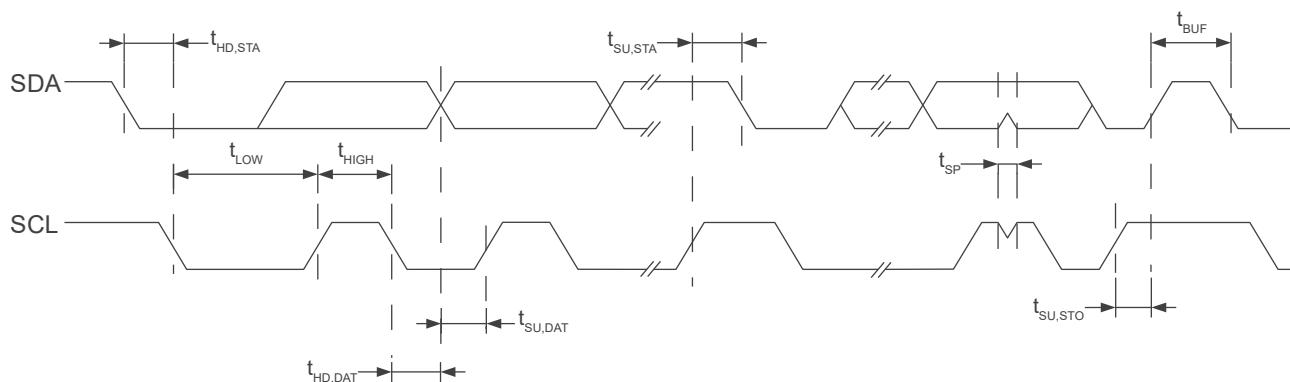


Figure 5.2: I²C Mode Timing Diagram

6 ProxFusion® Module

The IQS320 contains a single ProxFusion® module that uses patented technology to measure and process the sensor data.

6.1 Channel Options

The IQS320 is a dual channel self-capacitive sensor intended for SAR and similar proximity applications.

The below application notes provide background and information on applications where the IQS320 would be a suitable choice.

- > Azoteq Sensing Technologies: [AZD004](#)
- > Capacitive Sensing Design Guide: [AZD125](#)

6.2 Count Value

The sensing measurement returns a count value for each channel. Count values are inversely proportional to capacitance. The counts are filtered with the SNR Boost UI which oversamples the raw counts to improve the SNR, as such the counts do not reflect the target counts set by the user. The counts are shifted with a DC offset to a counts value of 16383 after an ATI occurs to ensure that measurements with large amounts of oversampling do not encounter numerical overflow.

Channel filtered counts are reported in the *Channel X Filtered Counts* registers.

6.2.1 Max Counts

Each channel is limited to having a count value smaller than the configurable limit. The limit is set by the *Max Counts* setting in the *Prox Control* register. If the ATI setting or hardware causes measured count values higher than this, the conversion will be stopped, and the max value will be read for that relevant count value. This max value refers to a single raw measurement before oversampling has been applied.

6.2.2 Linearise Counts

If the *Linearise Counts* bit in the *Sensor Setup 0* register is set, the IQS320 linearises the counts before reporting them. If this option is set the counts are inverted and the *Invert* bit in the *Sensor Setup 0* register must be set to invert the channel logic.

6.3 Reference Value/Long-Term Average (LTA)

User interaction is detected by comparing the measured count values to some reference value called the Long Term Average (LTA). The LTA of a sensor is slowly updated to track changes in the environment. During a touch or proximity event, the LTA is frozen.

Channel LTA's are reported in the *Channel X LTA* registers.

6.3.1 Reseed

Since the LTA for a channel is critical for the device to operate correctly, there could be known events or situations which would call for a manual reseed. A reseed takes the latest measured counts, and

seeds the LTA with this value, therefore updating the value to the latest environment.

A reseed command can be given by setting the *Reseed* bit in the *System Control* register. The *Reseed* bit is automatically cleared once the reseed has been completed.

6.4 Prox and Touch Thresholds

Each channel has its own independently adjustable proximity and touch thresholds. If the difference between the channel's counts and LTA (also referred to as the *Delta* of the counts), exceeds the thresholds, an event will be triggered. Once a channel enters a proximity or touch state, the relevant *CHx Prox* or *CHx Touch* bits will be set in the *System Status* register, and will remain set until the channel leaves its proximity or touch state.

The *Prox Event* or *Touch Event* bits will be set in the *System Status* register when entering and exiting an the relevant state.

With non-inverted channel logic and dual direction sensing disabled, a channel will enter the proximity state if

$$\Delta = \text{LTA} - \text{Counts}$$

$$\Delta > \text{Prox Threshold}$$

for more than the number of consecutive samples specified by the *Prox Debounce Enter* field in the *Prox Settings* register. The channel will exit the proximity state if the above condition is not met for more than the number of consecutive samples specified by the *Prox Debounce Exit* field. The *Prox Threshold* is set in the *Prox Settings* register.

A channel will enter the touch state if

$$\Delta > \text{Touch Threshold Counts}$$

and exit touch state if

$$\Delta < \text{Touch Threshold Counts} - \text{Touch Hysteresis Counts}$$

Where the *Touch Hysteresis Counts* is

$$\text{Touch Hysteresis Counts} = \frac{\text{Touch Hysteresis}}{256} \times \text{Touch Threshold Counts}$$

and the *Touch Threshold Counts* is

$$\text{Let } k = \text{Post ATI Counts Snapshot} \times \text{SNR Boost Factor}$$

$$\text{Touch Threshold Counts} = \begin{cases} k \times \frac{\text{Touch Threshold}}{256} & \text{if } k < 16383 \\ 16383 \times \frac{\text{Touch Threshold}}{256} & \text{if } k \geq 16383 \end{cases}$$

The *Touch Threshold* and *Touch Hysteresis* are set in the *Touch Settings* register.

Setting a channel's *Invert* bit in the *Sensor Setup 0* register will invert the logic above. This setting is required because counts increase with user interaction when sensing mutual capacitance and inductance, and decrease when sensing self-capacitance.

If the *Dual Direction* bit in the *Sensor Setup 0* register is set, the proximity and touch thresholds will be applied in both directions, meaning that a channel will be in a proximity or touch state if

$$\text{Counts} > (\text{LTA} + \text{Threshold}) \text{ or } \text{Counts} < (\text{LTA} - \text{Threshold})$$

6.5 Event Timeout

A channel will be reseeded and therefore exit a proximity or touch state if it has been in a proximity or touch state for longer than the relevant time specified by the timeouts in the *Event Timeouts* register.

The times specified by the event timeouts apply to all channels.

6.6 Filter Betas

An Infinite Impulse Response(IIR) filter is applied to the digitized raw input for both the counts value and the LTA.

Damping options for the counts filters, LTA filters and movement filters are defined in the *Counts & LTA Filter Betas* and *LTA Fast Filter & Movement Beta* registers.

$$\text{Damping factor} = \frac{\text{Beta}}{256}$$

The *Fast Filter Band* determines when the fast beta filter is used. Fast filtering is applied to the LTA if the channel counts drift away from the LTA in the opposite direction to the sensing direction by more than the *Fast Filter Band*. Once the difference between the counts and LTA is less than the fast filter band the normal filter is used again.

6.7 Automatic Tuning Implementation (ATI)

The ATI is a sophisticated technology implemented in ProxFusion® devices to provide optimal performance over a wide range of sensing electrode capacitances and inductance, without modification of external components.

The choice of ATI parameters has a significant impact on channel performance. The ATI algorithm is responsible for selecting each channel's dividers, multipliers and compensation.

When the *ATI Mode* in the *ATI Setup* register is set to 'Full', the *Coarse Fractional Divider*, *Fine Fractional Divider*, *Coarse Fractional Multiplier* and *Fine Fractional Multiplier* fields in the *ATI Multipliers and Dividers* register are set by the ATI algorithm using the value in the *ATI Base* register as an input to the algorithm. The coarse parameters are set before the fine parameters. Generally, a lower base value will increase sensitivity.

Each channel's *Compensation Value* and *Compensation Divider* in the channel's *Compensation* register are set by the ATI algorithm using the *ATI Resolution Factor* in the *ATI Setup* register. A higher

resolution factor will generally increase sensitivity.

When an ATI is triggered, the algorithm will first adjust the dividers and multipliers so that the counts are as close to the *ATI Base* as possible. The *Compensation Value* and *Compensation Divider* are then adjusted until the counts are as close as possible to the ATI Target, where:

$$\text{ATI Target} = (\text{Counts after dividers and multipliers have been set}) \times \left(\frac{\text{ATI Resolution Factor}}{16} \right)$$

In certain cases it is desirable to fix some or all of the dividers and multipliers at design time. For these cases, the *ATI Mode* can be set to 'ATI from Fine Fractional Divider', 'ATI from Compensation Divider' or 'Compensation Only'.

For inductive measurements, the *Compensation Value* should be minimised and the *Compensation Divider* should be maximised or disabled. This is achieved by setting the *ATI Resolution Factor* to '16' with ATI enabled, or disabling ATI and setting both the *Compensation Value* and *Compensation Divider* to '0'.

It is recommended to set the *ATI Mode* to 'Full' and to allow the ATI algorithm to select the dividers, multipliers and compensation.

6.8 Automatic Re-ATI

6.8.1 Description

Re-ATI will be triggered if certain conditions are met. One of the most important features of the Re-ATI is that it allows easy and fast recovery from an incorrect ATI, such as when performing ATI during user interaction with the sensor. This could cause the wrong ATI Compensation to be configured, since the user affects the capacitance of the sensor. A Re-ATI would correct this. It is recommended to always have this enabled.

When a re-ATI occurs the *ATI Event* bit in the *System Status* register will be set. It is cleared when read by the master through I²C.

6.8.2 Conditions for Re-ATI to Activate

A re-ATI is executed when the LTA of a channel drifts outside of the *ATI Band*. The band is centered around the ATI Target. The *ATI Band* for all channels is configured in the *ATI Setup* register.

$$\text{Re-ATI Boundary} = \text{LTA snapshot} \pm \text{ATI Band}$$

Where the *ATI Band* is computed by

$$\text{Small ATI Band} = \left(\frac{1}{16} \times \text{ATI TARGET} \times \text{SNR Boost Factor} \right)$$

$$\text{Large ATI Band} = \left(\frac{1}{8} \times \text{ATI TARGET} \times \text{SNR Boost Factor} \right)$$

Note that I²C communications are disabled for the duration of the ATI process.

6.8.3 ATI Error

After the ATI algorithm is executed, a check is done to see if there are any errors. The *ATI Error* bit in the *System Status* register is set if the following is true for any channel after the ATI has completed:

- Counts are outside the **Re-ATI Boundary** upon completion of the ATI algorithm

If any of these conditions are met, the corresponding error flag will be set *ATI Error*. The flag status is only updated again when a new ATI algorithm is performed.

A Re-ATI will not be automatically triggered if an ATI Error occurs. If an ATI Error occurs the master should manually trigger a re-ATI by setting the *Re-ATI* bit in the *System Control* register. The *Re-ATI* bit is automatically cleared by the IQS320.

7 Hardware Settings

Settings specific to hardware and the ProxFusion® Module charge transfer characteristics can be changed.

Only certain parameters are described below. The other hardware parameters are not discussed as they should only be adjusted under guidance of Azoteq support engineers.

7.1 Charge Transfer Frequency

The charge transfer frequency (F_{xfer}), also known as the conversion frequency, is set using the *Conversion Frequency Fraction* and *Conversion Frequency Period* fields in the *Conversion Frequency Setup* register. For high resistance sensors, it might be needed to decrease F_{xfer} .

It is recommended to always set the *Conversion Frequency Fraction* to '127' and to select the conversion frequency with the *Conversion Frequency Period*.

The *Dead Time Enable* option in the *Prox Input and Control* register must be considered when setting the conversion frequency. Dead time should always be enabled for capacitance measurements.

Please refer to Table A.1 to select suitable *Conversion Frequency Period* values for the desired conversion frequency.

7.2 Reset

7.2.1 Reset Indication

After a reset, the *Reset Event* bit in the *System Status* register will be set to indicate a reset event occurred. The *Reset Event* bit is cleared when the master sets the *ACK Reset* bit in the *System Control* register.

After a reset event, the chip's settings revert to their start-up values. To recover, the master must first acknowledge the reset event by setting the *ACK Reset* bit, and then re-write all the application settings to the IQS320 over I²C.

7.2.2 Software Reset

The IQS320 can be forced to reset by setting the *Soft Reset* bit in the *System Control* register.

7.2.3 Hardware Reset

Pulling the Ready / Master Clear (RDY/MCLR) pin low will hard reset the device. When a communications window is open, the IQS320 disables MCLR functionality and pulls RDY/MCLR low. Therefore, the master cannot hard reset the IQS320 when RDY/MCLR is low.

For MCLR reset levels see Section 5.2.

8 Additional Features

8.1 Reference UI

The IQS320 implements a Reference Tracking User Interface (Reference UI). The Reference UI can be enabled by setting the *Reference Tracking* bit in the *System Control* register.

When *Reference Tracking* is enabled, CH0 is the dedicated sensing channel and CH1 is the dedicated reference channel as illustrated in Figure 8.1. CH0 and CH1 can be configured to be either CRx0/CTx0 or CRx1/CTx1.

The reference channel sensor should be exposed to the same conditions and capacitive loads as the sensing channel, and the user should not be able to affect the counts of the reference channel.

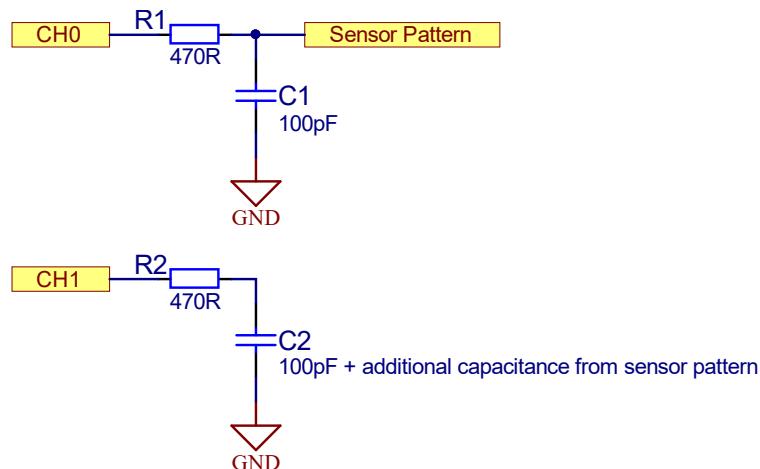


Figure 8.1: Example hardware schematic for Reference UI with 100 pF load capacitor.

The reference channel adjusts the counts of the primary sensing channel by subtracting the change in counts of the reference channel from the counts of the primary sensing channel. The change in counts of the reference channel is calculated by taking a snapshot of the LTA of the reference channel after the device completes an ATI routine and subtracting the counts of the reference channel from the snapshot.

The Reference UI is able to reduce the effects of sensor drift due to temperature. The Reference UI also has the ability to reduce noise that is common to both sensing and reference channels which improves the signal to noise ratio (SNR). The Reference UI performs best when used in conjunction with the *SNR Boost UI*.

The *Reference Multiplier* and *Reference Divider* in the *Reference Scaling* register is used to compensate for any differences in the amount of drift between the sensing and reference channel.

$$\text{Counts}_{\text{Adjusted}} = \text{Counts} - (\text{Counts}_{\text{Ref}} - \text{Counts}_{\text{Ref LTA Snapshot}}) \times \frac{\text{Multiplier}_{\text{Ref}}}{\text{Divider}_{\text{Ref}}}$$

8.2 Movement UI

The IQS320 implements a Movement User Interface (Movement UI). The Movement UI can be enabled by setting the *Movement Enable* bit in the *Sensor Setup 0* register.

When in a touch state and no movement is detected on a channel, the channel will reseed once the touch timeout expires and the channel will exit the touch state. However, if the Movement UI is enabled, any movement will cause the touch timeout timer to reset, thereby keeping the channel in a touch state.

The movement is calculated by subtracting a filtered version of the counts from the counts of the channel, resulting in a pseudo-gradient function representing the movement of a channel. The damping factor used to calculate the movement can be set by the *Movement Beta* field in the *LTA Fast Filter & Movement Beta* register. A higher value will increase the sensitivity of the movement detector.

8.2.1 Movement Threshold

When the *Channel x Movement* value exceeds the *Movement Threshold* set in the *Movement Settings* register, an event will be triggered. Once movement is detected, the relevant *CHx Movement* bit will be set in the *System Status* register, and will remain set until there is no movement detected.

Similar to the *Proximity Threshold*, the *Movement Threshold* uses debouncing to enter and exit a movement event. The *Movement Debounce* settings can be adjusted in the *Movement Settings* register.

8.3 SNR Boost UI

The IQS320 implements a Signal to Noise Ratio Boost User Interface (SNR Boost UI).

The signal to noise ratio is drastically improved by oversampling which decreases the quantisation noise while increasing the sampling resolution of the signal. Oversampling the signal will increase the sampling time and current consumption of the device. It should be noted that there is a decrease in the dynamic resolution at High SNR Boost Factors.

The *SNR Boost Factor* setting in the *Events Enable & SNR Boost Factor* register controls how many times the signal should be oversampled. SNR boost is disabled by setting the *SNR Boost Factor* to a value of 1. *SNR Boost Factor* values larger than 50 are not recommended.

8.4 Standalone Mode

The IQS320 is able to run in a standalone mode. Standalone mode can be entered by setting the *Interface Selection* to standalone in the *System Control* register.

In standalone mode, InputA is used to toggle the touch event timeout. The timeout can be disabled by connecting InputA to VDD. If InputA is connected to VDD then the touch state will never timeout and the device will remain in touch until the counts are no longer above the touch threshold. Connecting

InputA to VSS will enable the touch event timeout. When the touch event timeout is reached, the LTA on that channel will reseed causing the channel to exit the touch state ⁱ.

The I²C lines are used as digital outputs in standalone mode. SDA/OutA is a push-pull active high output and SCL/OutB is an open-drain active low output. These outputs will be active if any channel is in a touch state.

In standalone mode, an I²C ready window will occur once on startup to allow the user to enter an I²C debugging mode where the user can access the settings and stream data as if in I²C streaming mode. To enter the debugging mode, write 0xC0 to the *System Control* register in the startup window. The device can be set back to standalone mode from the I²C debugging mode and will retain any settings written to itⁱⁱ.

8.4.1 ATI Indication

ATI indication can be enabled on the IQS320 device in standalone mode. SDA/OutA and SCL/OutB will be active while an ATI is active. An ATI event will always occur on startup which will indicate that the device is powered on. This can be enabled by setting the *ATI Indication* bit in the *System Control* register.

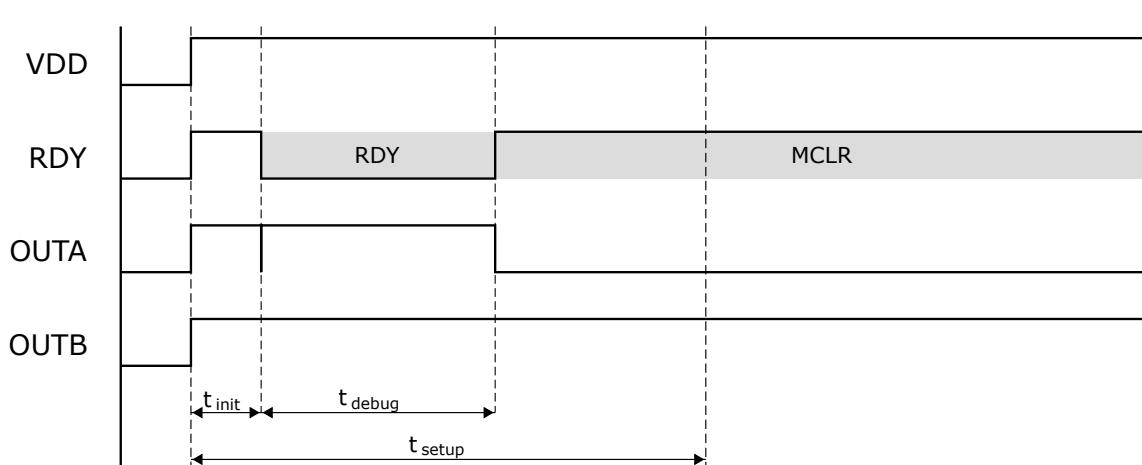
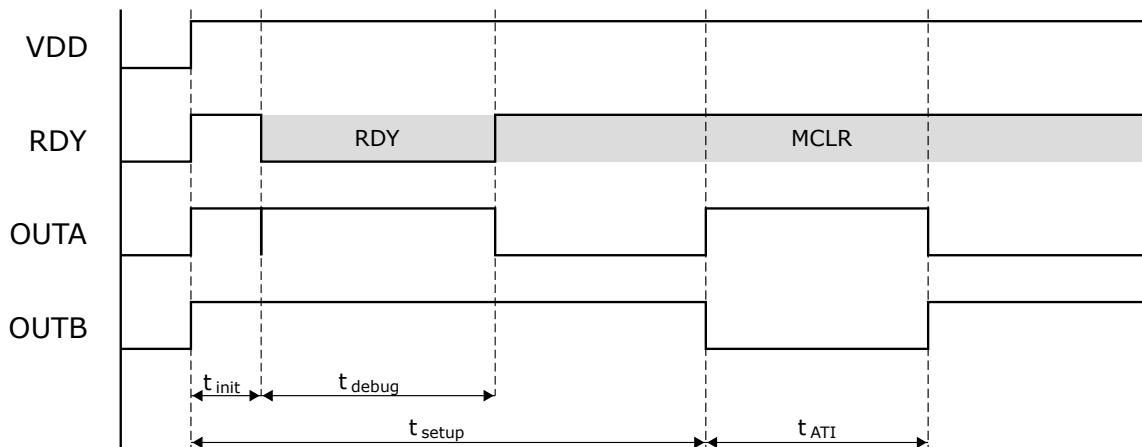



Figure 8.3: Power On Sequence Specification with ATI indication disabled

ⁱ Do not leave InputA in a floating state.

ⁱⁱ After the device exits debugging mode, a reset or power cycle is required to start another debugging session.

Timing Parameter	Nominal	Tolerance	Unit
Initialisation	10.0	-	ms
Setup	361.5	-	ms
Debug window	208.5	-	ms
ATI	220.0	±20	ms

8.5 Watchdog Timer

The IQS320 implements a hardware watchdog timer. The watchdog timer is set to expire after 255ms if not kicked and will trigger a software reset upon expiration.

During I²C communication the IQS320 kicks the watchdog timer whenever a byte level read or write occurs. Therefore, if the master initiates communication by sending an I²C START condition and does not complete the I²C transaction, the IQS320 will reset after 255 ms.

The I²C transaction is completed either when an I²C STOP notification is sent by the master or when the master ends the communication as described in Section 9.8.

Outside of a communications window, the IQS320 will automatically kick the watchdog every cycle. The master is not required to manually kick the watchdog.

9 I²C Interface

9.1 I²C Module Specification

The device supports a standard two wire I²C interface with the addition of a RDY (ready interrupt) line. The RDY pin also serves as a Master Clear (MCLR) and can be used to hard reset the device (Section 7.2.3). Byte level clock stretching is allowed. The communications interface of the IQS320 supports the following:

- › *Fast-mode-plus* standard I²C up to 1 MHz.
- › Streaming data as well as event mode.
- › The provided interrupt line (RDY) is an open-drain active low implementation and indicates a communication window.

The IQS320 implements 8-bit addressing with 2 bytes at each address.

9.2 I²C Address

The 7-bit device address is 0x47 ('01000111') with an alternate address which is 0x48 ('01001000'). The full address byte for address 0x47 will thus be 0x8F (read) or 0x8E (write) and the full address byte for address 0x48 will thus be 0x91 (read) or 0x90 (write)ⁱ.

The device will check if InputA is set to VSS or VDDⁱⁱ. If it is set to VSS it will choose to use address 0x47 and if it is set to VDD then it will choose to use address 0x48. This check is only performed on start up and the state of InputA will not affect the device address after startup.

9.3 I³C Compatibility

This device is not compatible with an I³C bus due to clock stretching allowed for data retrieval.

9.4 Memory Map Addressing and Data

The memory map implements 8-bit addressing. Data is formatted as 16-bit words meaning that two bytes are stored at each address. For example, address 0x10 will provide two bytes. The next two bytes read will be from address 0x11.

The 16-bit data is sent in little endian byte order (least significant byte first).

9.5 Ready (RDY) Indicator

The IQS320 has an open-drain active low RDY signal to inform the master that updated data is available. It is optimal for the master to use this as an interrupt input and initiate I²C communication only when the RDY signal is low.

The RDY line also serves as an reset pin. Reset functionality is described in Section 7.2.3.

ⁱ The device will also acknowledge an I²C address of 0x46 for address 0x47 and 0x49 for address 0x48. Writing to this address will cause the IQS320 to enter a low level debugging mode and should not be done under normal operating conditions. Therefore, both 0x47 and 0x46 or 0x48 and 0x49 are reserved on the I²C bus when using the IQS320.

ⁱⁱ Do not leave InputA in a floating state.

9.6 Communications Window

When the device has data for the master, it will pull the RDY line low. This indicates that the device has opened its communications window and is expecting the master to address it. When the communication window is closed the IQS320 releases the RDY line. For information on when the communications window is closed see Section 9.8.

Transfer of data between the master and slave must occur during the communications window (RDY is low). If the master wishes to initiate communication outside of a communications window (RDY is high), a force communications request must be made. Section 9.11.2 describes the force communications request sequence.

9.7 I²C Transaction Timeout

If the communication window is not serviced within the time specified in milliseconds by the *I²C Transaction Timeout* register, the communications window is closed (RDY goes high) and processing continues as normal. This allows the system to continue and keep reference values up to date even if the master is not responsive. However, the data for the closed window will be lost. The default *I²C Transaction Timeout* is set to 200 ms. The *I²C Transaction Timeout* must be between 2 ms and 230 ms. The *I²C Transaction Timeout* is measured from the start of the communications window (RDY goes low).

Once communication between the master and the IQS320 has begun (START condition on I²C lines), the I²C transaction timeout is disabled leaving the watchdog timer in control. For more information on the behaviour of the device under these conditions see Section 8.5.

9.8 Terminate Communication

A standard I²C STOP will close the current communication window.

If the *Stop Bit Disable* bit in the *I²C Settings* register is set, the device will not respond to a standard I²C STOP. The communication window must be terminated using the end communications command (0xFF) shown in Figure 9.1.

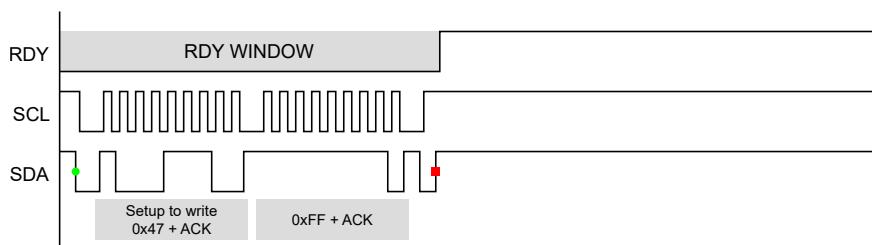


Figure 9.1: Force Stop Communication Sequence

9.9 Invalid Communications Return

The device will give an invalid communication response (0xEE) under the following conditions:

- > The host is trying to read from a memory map register that does not exist.
- > The host is trying to read from the device outside of a communication window (i.e. while RDY = high).

9.10 I²C Interface

The IQS320 has 2 I²C interface types. The I²C interface is selected by adjusting the *Interface Selection* in the *System Control* register.

9.10.1 I²C Streaming

I²C Streaming mode refers to constant data reporting at the relevant sampling period specified in the *Sampling Period* register.

9.10.2 I²C Event Mode

In event mode the RDY line will only go low when one or more of the enabled events are triggered or if the device resets. This is usually enabled since the master does not want to be interrupted unnecessarily during every cycle if no activity occurred.

9.11 Event Mode Communication

For event mode to function correctly the following requirements must be met:

- > Required events must first be enabled from the *Events Enable* register.
- > Enabled events must be serviced by reading from the *System Status* register (0x10) to ensure all event flags are cleared. If these flags are not cleared continuous reporting (RDY interrupts) will persist after every conversion cycle similar to streaming mode.

9.11.1 Events

Enabled events are reported in the *System Status* register when triggered. Global events can be individually enabled by setting the relevant bit in the *Events Enable* register.

The following events are available:

Table 9.1: Events Descriptions

Event	Trigger Condition
ATI Error	There has been an error during the ATI process
ATI Event	ATI has been triggered
Movement	There has been a transition of the movement state for either channels
Touch	There has been a transition of the touch state for either channels
Prox	There has been a transition of the prox state for either channels

9.11.2 Force Communication

In streaming mode, the IQS320 I²C will provide Ready (RDY) windows at intervals specified by the sampling period. Ideally, communication with the IQS320 should only be initiated in a RDY window. A communication request described in the figure below will force a RDY window to open. In event mode RDY windows are only provided when an event is reported. A RDY window must be requested to write

or read settings outside of this provided window. The time between the communication request and the opening of a RDY window (t_{wait}) is typically less than 0.5 msⁱⁱⁱ.

Communications has a higher priority than sampling on the IQS320. If forced communications occurs while the data is being sampled, the current data sample will be discarded and the previous sample will be retained. The period between force communications should be an integer multiple or longer than the sampling rate.

The communication request sequence is shown in Figure 9.2.

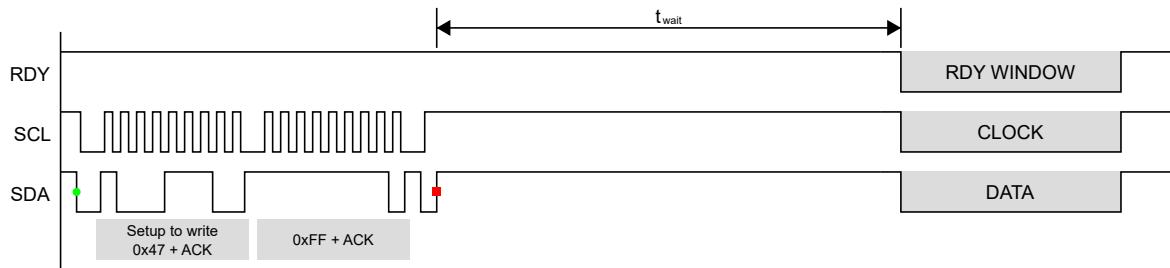


Figure 9.2: Force Communication Sequence

9.12 Read/Write Check Disable

By default, some registers such as the counts and LTA values are read only. Writing to these registers over I²C will have no effect. Setting the *Read/Write Check Disable* bit in the *I²C Settings* register will allow the master to write to any register and force its value.

ⁱⁱⁱ Only applicable for *Default Configuration 200*.

9.12.1 Program Flow Diagram

The program flow for event mode communication is shown in Figure 9.3.

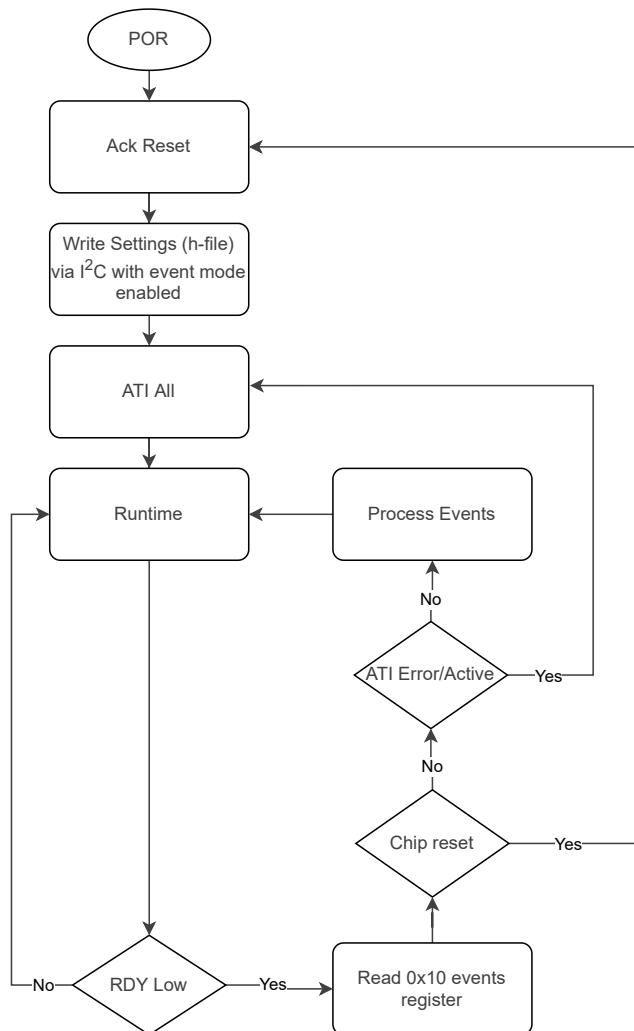


Figure 9.3: Program Flow Diagram

10 Memory Map Register Descriptions

Address	Data (16bit)	Notes
0x00 - 0x09	Version details	See Appendix A.1
Read Only	System Information	
0x10	Systems Status	See Appendix A.2
0x11	Channel 0 Filtered Counts	
0x12	Channel 1 Filtered Counts	
0x13	Channel 0 LTA	
0x14	Channel 1 LTA	
0x15	Channel 0 Movement	
0x16	Channel 1 Movement	
0x17	Channel 0 Pre Reference Tracking	
0x18	Channel 1 Pre Reference Tracking	
0x19	Channel 0 Raw	
0x1A	Channel 1 Raw	
0x1B	Channel 0 Post ATI Snapshot	
0x1C	Channel 1 Post ATI Snapshot	
Read/Write	Sensor 0 Setup	
0x20	Sensor Setup 0	See Appendix A.3
0x21	Conversion Frequency Setup	See Appendix A.4
0x22	Prox Control	See Appendix A.5
0x23	Timing Generator Control & Prox Input	See Appendix A.6
0x24	Inactive Rxs & Calibration Capacitor Selection	See Appendix A.7
0x25	ATI Setup	See Appendix A.8
0x26	ATI Base	16-bit value
0x27	ATI Multipliers and Dividers	See Appendix A.9
0x28	ATI Compensation	See Appendix A.10
Read/Write	Sensor 1 Setup	
0x30	Sensor Setup 0	See Appendix A.3
0x31	Conversion Frequency Setup	See Appendix A.4
0x32	Prox Control	See Appendix A.5
0x33	Timing Generator Control & Prox Input	See Appendix A.6
0x34	Pad Control and Calibration Capacitor Selection	See Appendix A.7
0x35	ATI Setup	See Appendix A.8
0x36	ATI Base	16-bit value
0x37	ATI Multipliers Selection	See Appendix A.9
0x38	ATI Compensation	See Appendix A.10
Read/Write	Channel 0 Setup	
0x40	Prox Settings	See Appendix A.11
0x41	Touch Settings	See Appendix A.12
0x42	Movement Settings	See Appendix A.13
Read/Write	Channel 1 Setup	
0x50	Prox Settings	See Appendix A.11
0x51	Touch Settings	See Appendix A.12
0x52	Movement Settings	See Appendix A.13
Read/Write	Filter Betas	
0x60	Counts Filter Beta & LTA Filter Beta	See Appendix A.14
0x61	LTA Fast Filter Beta & Movement Beta	See Appendix A.15
0x62	Fast Filter Band	16 bit value
Read/Write	System Control	
0x70	System Control	See Appendix A.16

0x71	Sampling Period	16-bit value (ms) Range: 0 - 3000
0x72	I ² C Transaction Timeout	16 bit value (ms) Range: 2 - 230
0x73	Event Timeouts	See Appendix A.17
0x74	Events Enable & SNR Boost Factor	See Appendix A.18
0x75	Reference Scaling	See Appendix A.19
Read/Write	I²C Low Level Settings	
0x80	I ² C Setup	See Appendix A.20

11 Ordering Information

11.1 Ordering Code

IQS320 zzz ppb

IC NAME	=	IQS320
DEFAULT CONFIGURATION	= 100	I ² C
	= 200	I ² C ⁱ
PACKAGE TYPE	= CS	WLCSP-11 package
	= QF	QFN-20 package
	= DN	DFN-12 package (On special order only ⁱⁱ)
BULK PACKAGING	b = R	WLCSP-11 Reel (3000pcs/reel) QFN-20 Reel (2000pcs/reel) DFN-12 Reel (6000pcs/reel)

Figure 11.1: Order Code Description

11.2 Top Marking

11.2.1 WLCSP11 Package Marking

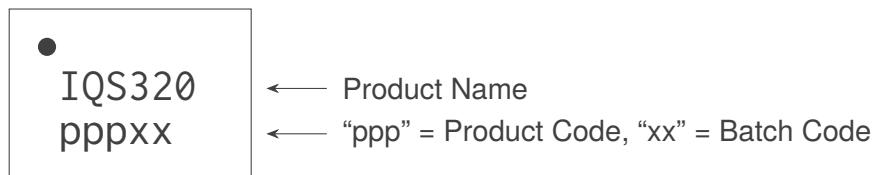


Figure 11.2: IQS320-WLCSP11 Package Top Marking

11.2.2 DFN12 Package Marking Options

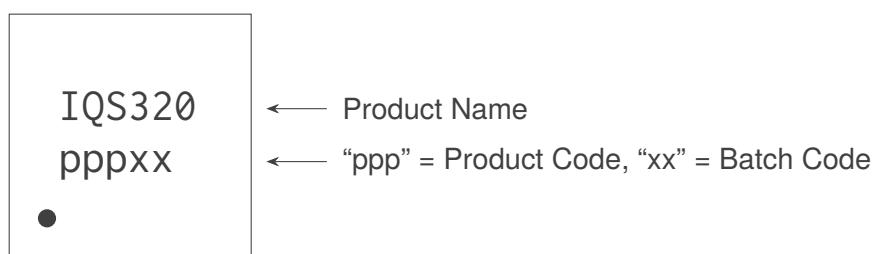
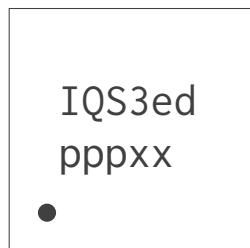


Figure 11.3: IQS320-DFN12 Package Top Marking


ⁱ Improved force communications response time

ⁱⁱ Special order codes are subject to larger minimum order quantities, longer lead times, and are non-cancel, non-returnable.

← Product Name
← “ppp” = Product Code, “xx” = Batch Code

Figure 11.4: IQS3dd-DFN12 Package Top Marking

← Product Name
← “ppp” = Product Code, “xx” = Batch Code

Figure 11.5: IQS3ed-DFN12 Package Top Marking

11.2.3 QFN20 Package Marking Options

← Product Name
← “ppp” = Product Code, “xx” = Batch Code

Figure 11.6: IQS320-QFN20 Package Top Marking

12 Package Specification

12.1 Package Outline Description – WLCSP11

This package outline is specific to order codes ending in WLCSP.

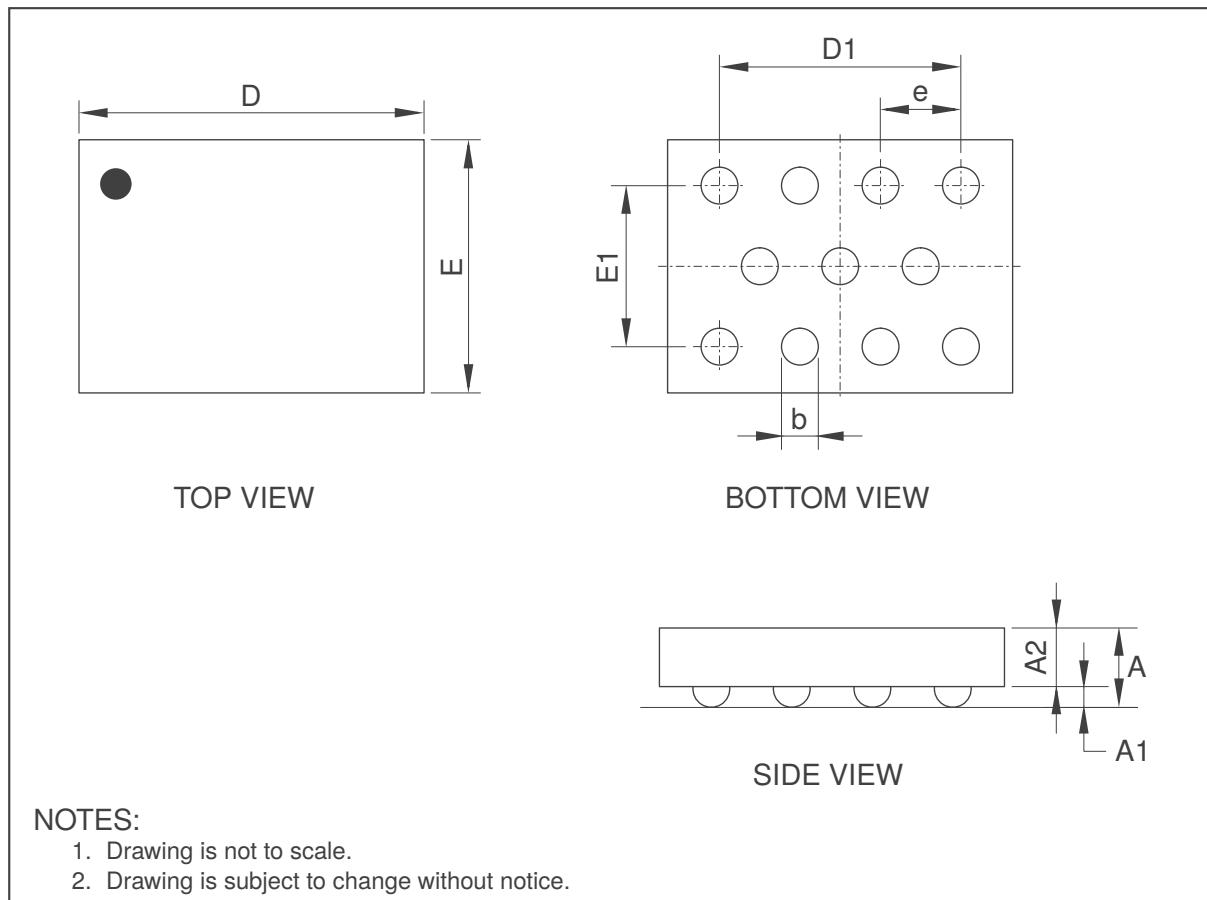


Figure 12.1: WLCSP11 (1.48x1.08) Package Outline Visual Description

Table 12.1: WLCSP11 (1.48x1.08) Package Outline Visual Description (mm)

Dimension	Min	Nom	Max
A	0.303	0.345	0.387
A1	0.076	0.090	0.104
A2	0.227	0.255	0.283
D	1.46	1.48	1.50
E	1.06	1.08	1.10
D1		1.05 BSC	
E1		0.700 BSC	
b	0.136	0.160	0.184
e		0.350 BSC	

12.2 Package Footprint Description – WLCSP11

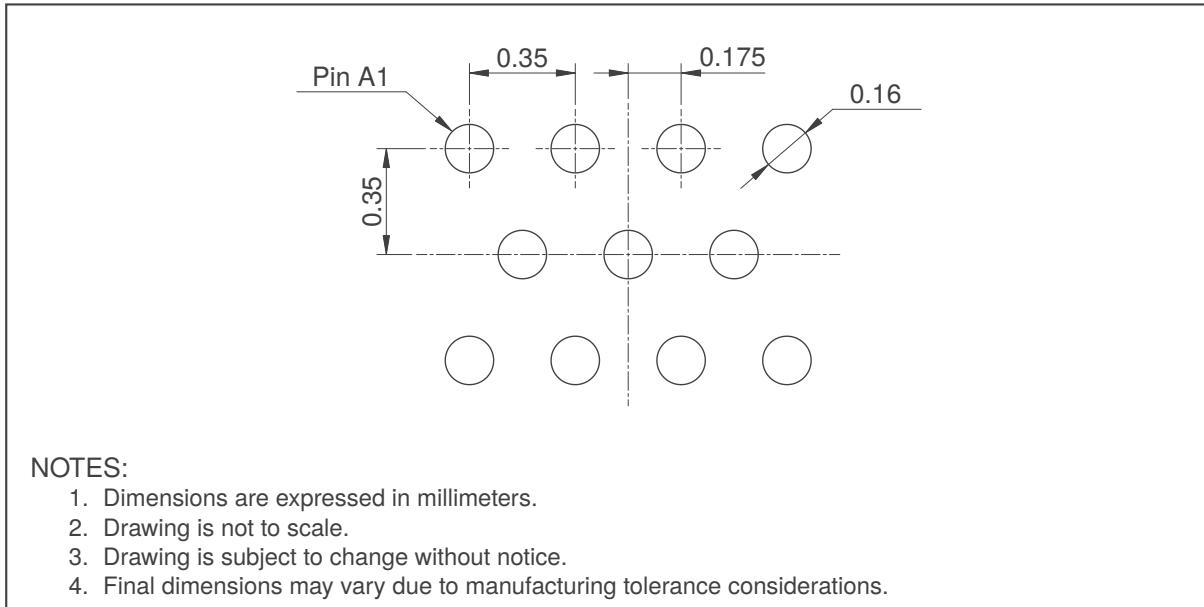


Figure 12.2: WLCSP11 Recommended Footprint

12.3 Package Outline Description – DFN12

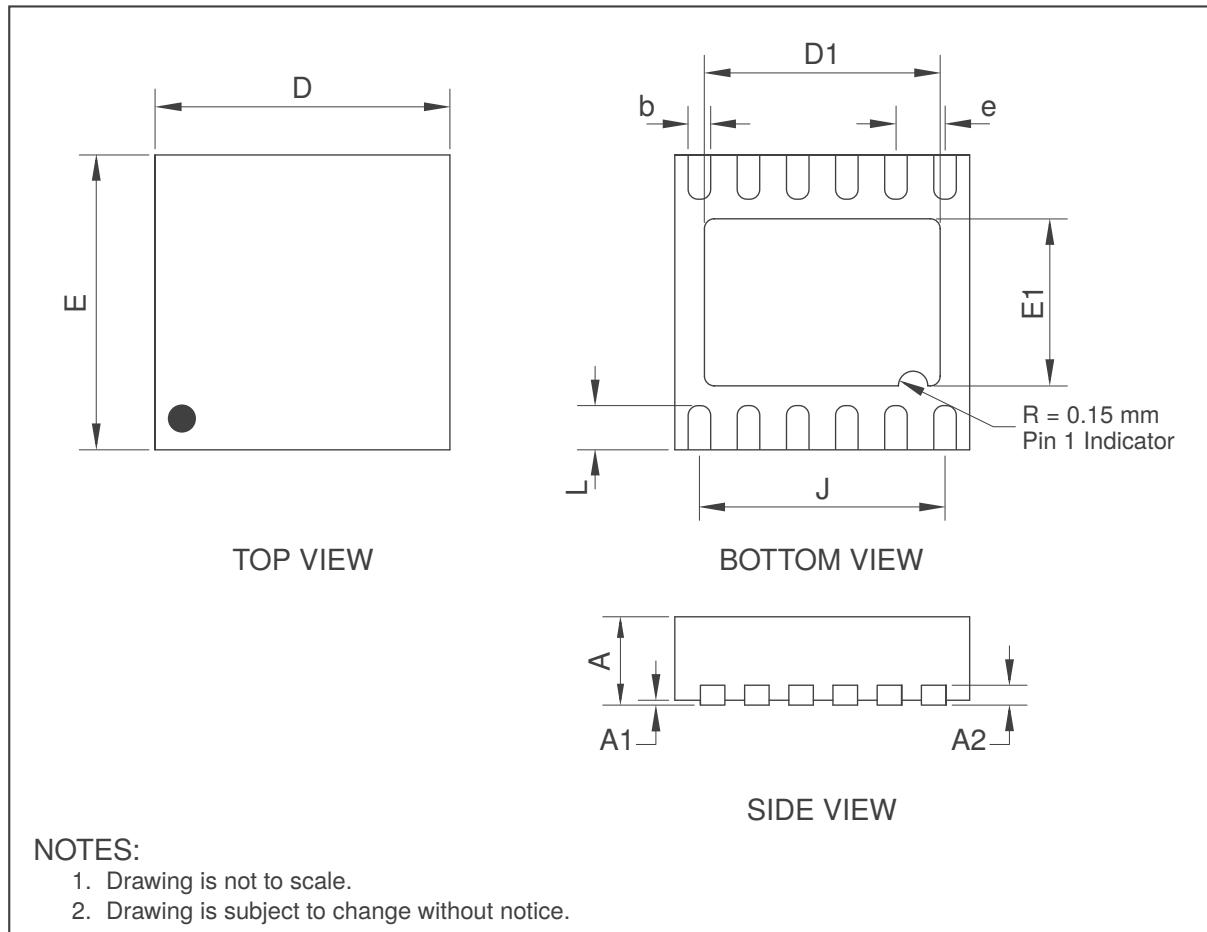


Figure 12.3: DFN (3x3)-12 Package Outline Visual Description

Table 12.2: DFN (3x3)-12 Package Outline Visual Description (mm)

Dimension	Min	Nom	Max
A	0.70	0.75	0.80
A1	0.00		0.05
A2	0.203 REF		
D	2.95	3.00	3.05
E	2.95	3.00	3.05
D1	2.35	2.40	2.45
E1	1.65	1.70	1.75
J	2.50 REF		
L	0.40	0.45	0.50
b	0.18	0.23	0.28
e	0.50 BSC		

12.4 Package Footprint Description – DFN12

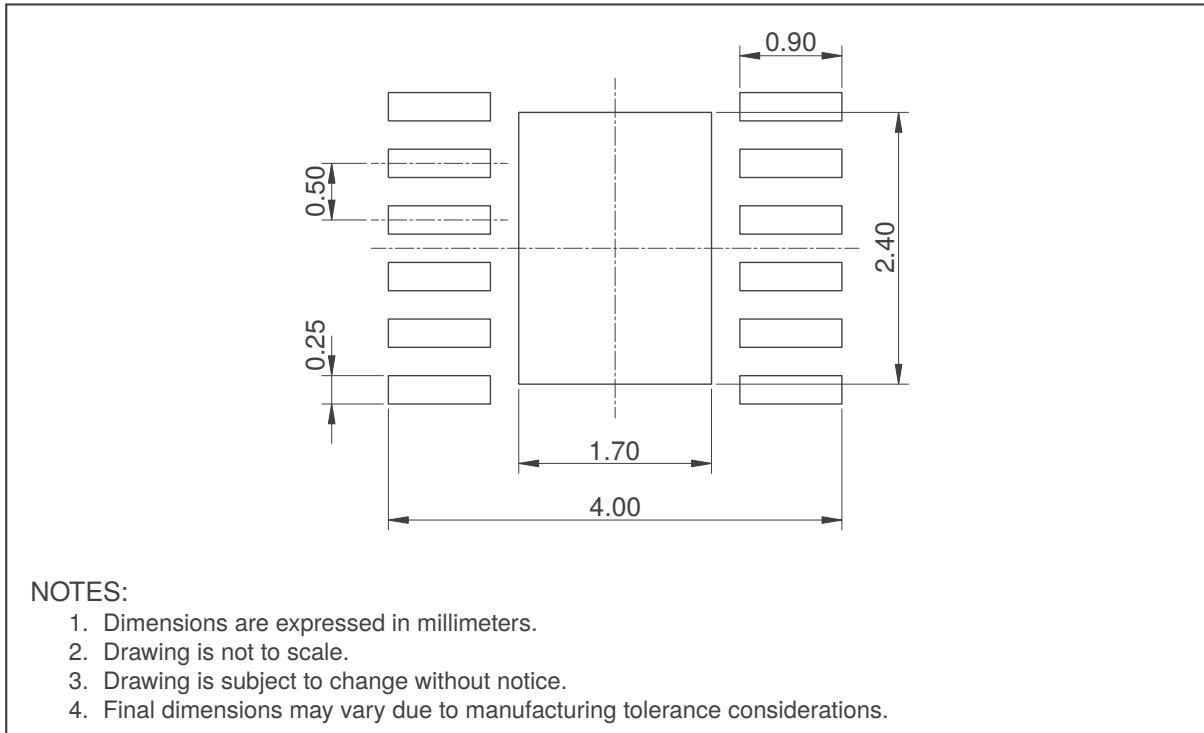


Figure 12.4: DFN12 Recommended Footprint

12.5 Package Outline Description – QFN20

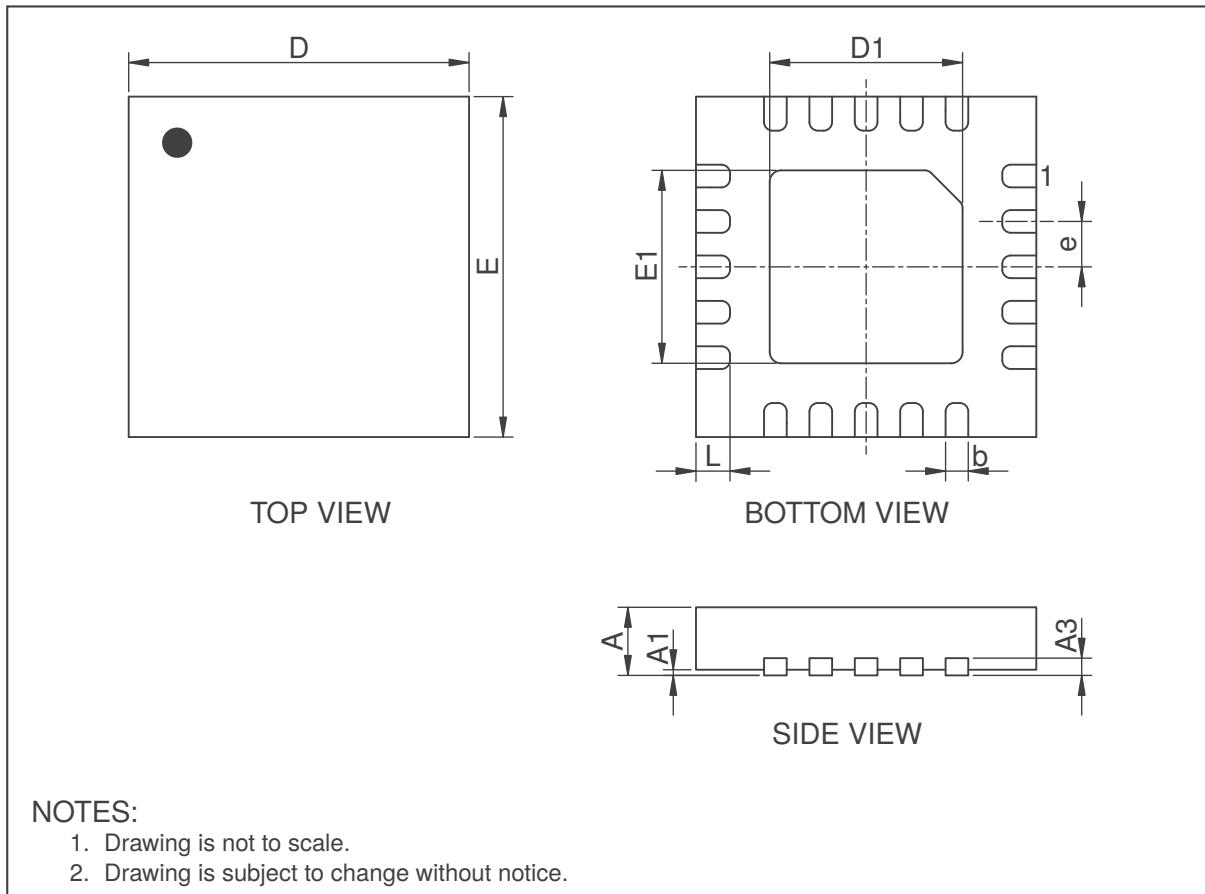
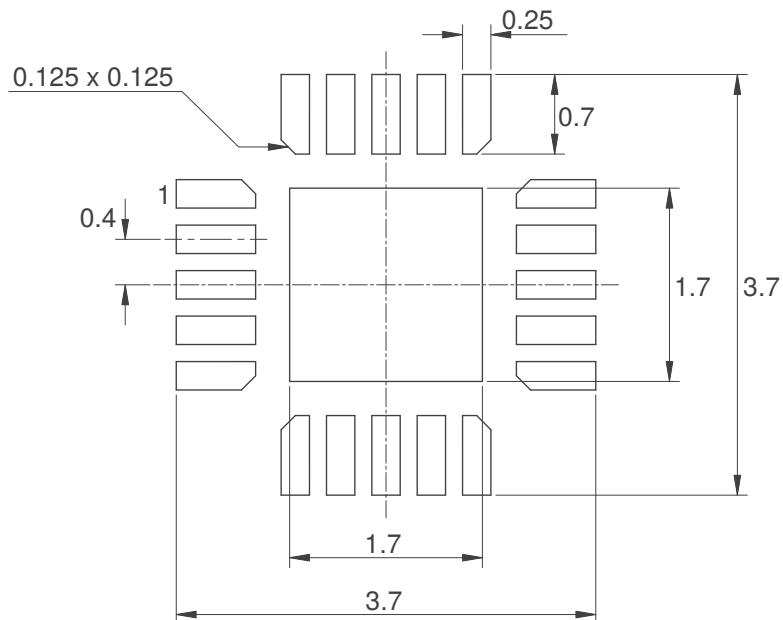
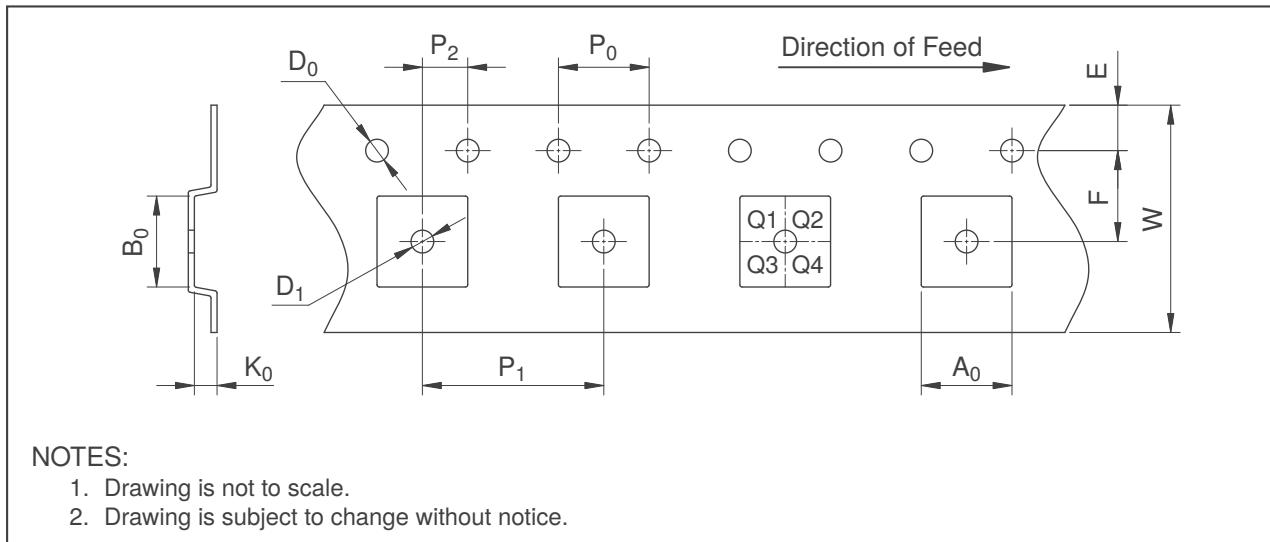



Figure 12.5: QFR (3x3)-20 Package Outline Visual Description

Table 12.3: QFR (3x3)-20 Package Outline Dimensions [mm]

Dimension	Min	Nom	Max
A	0.50	0.55	0.60
A1	0	0.02	0.05
A3	0.152 REF		
b	0.15	0.20	0.25
D	2.95	3.00	3.05
E	2.95	3.00	3.05
D1	1.60	1.70	1.80
E1	1.60	1.70	1.80
e	0.40 BSC		
L	0.25	0.30	0.35

12.6 Package Footprint Description – QFN20



NOTES:

1. Dimensions are expressed in millimeters.
2. Drawing is not to scale.
3. Drawing is subject to change without notice.
4. Final dimensions may vary due to manufacturing tolerance considerations.

Figure 12.6: QFN20 Recommended Footprint

12.7 Tape and Reel Specifications

Figure 12.7: Carrier Tape Specification

Table 12.4: Carrier Tape Dimensions [mm]

Dimension	Package		
	WLCSP11	DFN12	QFN20
A ₀	1.35	3.30	3.30
B ₀	1.75	3.30	3.30
K ₀	0.50	1.10	0.75
D ₀	1.50	1.55	1.50
D ₁	0.60	1.50	1.55
E	1.75	1.75	1.75
F	3.50	5.50	5.50
P ₀	4.00	4.00	4.00
P ₁	4.00	8.00	8.00
P ₂	2.00	2.00	2.00
W	8.00	12.00	12.00
Pin 1 Quadrant	Q2	Q1	Q2

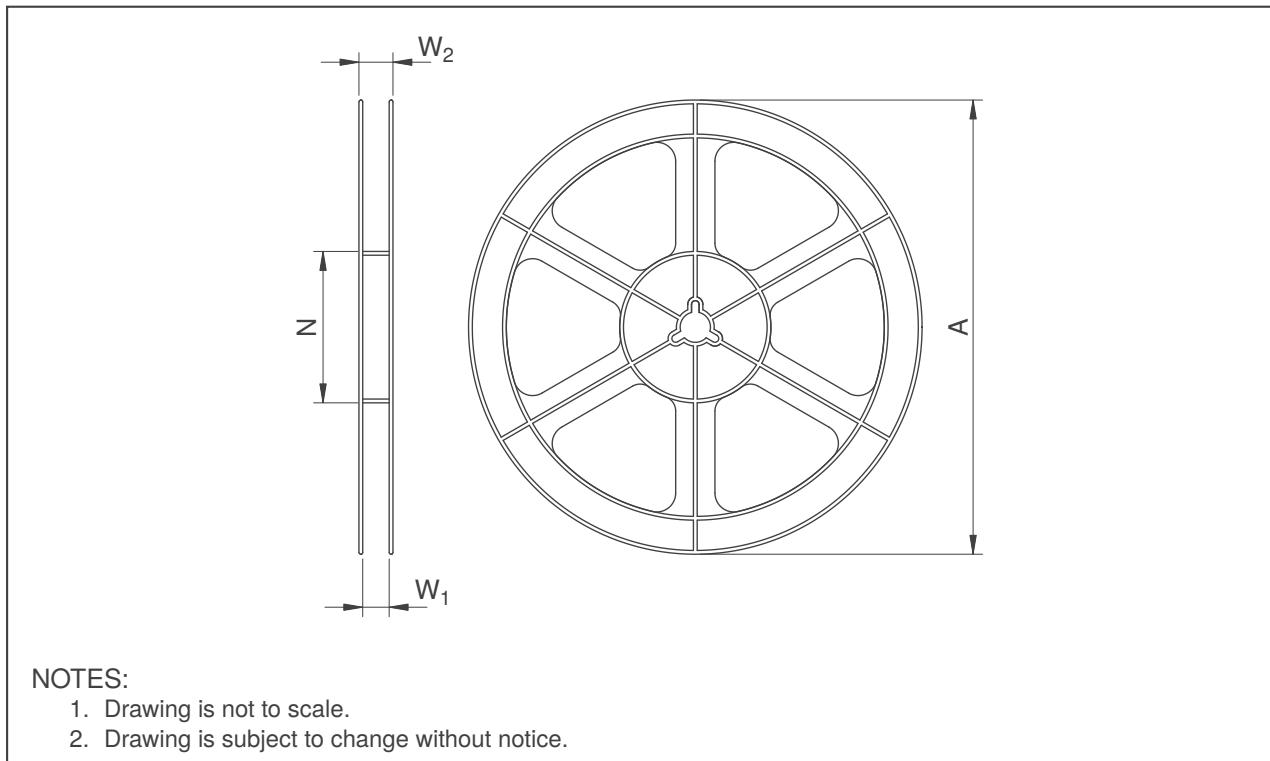


Figure 12.8: Reel Specification

Table 12.5: Reel Dimensions [mm]

Dimension	Package		
	WLCSP11	DFN12	QFN20
A	179	330	178
N	55	100	60
W ₁	8.4	12.4	12.4
W ₂ (Max)	14.4	18.4	18.4

A Memory Map Descriptions

Please note: All fields marked *Reserved* should not be modified.

A.1 Version Information (0x00 – 0x09)

Address	Category	Name	Order Code	
			100	200
0x00	Application Version Information	Product Number	1304	
0x01		Major Version	1	
0x02		Minor Version	0	1
0x03		Reserved		
0x04		Reserved		
0x05 - 0x09		Reserved		

A.2 System Status (0x10)

Bit	15	14	13	12	11	10	9	8
Description	Reserved		CH1 Movement	CH1 Touch	CH1 Prox	CH0 Movement	CH0 Touch	CH0 Prox

Bit	7	6	5	4	3	2	1	0
Description	Reserved	Reset Event	ATI Error	ATI Active	ATI Event	Movement Event	Touch Event	Prox Event

> Bit 13-8: CHx Touch/Prox/Movement

For CHx Movement

- 0: CHx not in Movement
- 1: CHx in Movement

For CHx Touch

- 0: CHx not in Touch
- 1: CHx in Touch

For CHx Prox

- 0: CHx not in Prox
- 1: CHx in Prox

> Bit 6: Reset Event

- 0: No Reset Event occurred
- 1: Reset Event occurred

> Bit 5: ATI Error

- 0: No ATI Error occurred
- 1: ATI Error occurred

> Bit 4: ATI Active

- 0: No ATI routine active
- 1: ATI routine active

> Bit 3: ATI Event

- 0: No ATI Event occurred
- 1: ATI Event occurred

> Bit 2: Movement Event

- 0: No Movement Event occurred
- 1: Movement Event occurred

> Bit 1: Touch Event

- 0: No Touch Event occurred
- 1: Touch Event occurred

> Bit 0: Prox Event

- 0: No Prox Event occurred
- 1: Prox Event occurred

A.3 Sensor Setup 0 (0x20, 0x30)

Bit	15	14	13	12	11	10	9	8
Description	Reserved	CalCap Rx	CalCap Tx		Reserved		CTx1	CTx0

Bit	7	6	5	4	3	2	1	0
Description			Reserved		Movement Enable	Invert	Dual Direction	Linearise Counts

- > Bit 14: **CalCap Rx**
 - 0: CalCap Rx not selected
 - 1: CalCap Rx selected
- > Bit 13: **CalCap Tx**
 - 0: CalCap Tx not selected
 - 1: CalCap Tx selected
- > Bit 9-8: **CTxx**
 - 0: CTxx disabled
 - 1: CTxx enabled
- > Bit 2: **Movement Enable**
 - 0: Movement disabled
 - 1: Movement enabled
- > Bit 2: **Invert**
 - 0: Do not invert channel logic
 - 1: Invert channel logic
- > Bit 1: **Dual Direction**
 - 0: Single direction thresholds
 - 1: Dual direction thresholds
- > Bit 0: **Linearise Counts**
 - 0: Do not Linearise counts
 - 1: Linearise counts

A.4 Conversion Frequency Setup (0x21, 0x31)

Bit	15	14	13	12	11	10	9	8
Description					Conversion Frequency Period			

Bit	7	6	5	4	3	2	1	0
Description					Conversion Frequency Fraction			

- > Bit 15-8: **Conversion Frequency Period**
 - Range: 0 - 127
- > Bit 7-0: **Conversion Frequency Fraction**
 - Fix to 127

It is recommended to fix the *Fraction* value to 127. For capacitive sensing, please refer to the following table to determine the *Period* value for the desired conversion frequency. The *Dead Time* setting must be enabled.

Table A.1: Supported Conversion Frequency Parameters for Capacitive Sensing

FRACTION	PERIOD	Conversion Frequency f_{xfer}
127	2	1.75 MHz
	3	1.40 MHz
	5	1.00 MHz
	7	778 kHz
	12	500 kHz
	16	389 kHz
	23	280 kHz

* The maximum recommended conversion frequency for self-capacitive sensing is 1 MHz.

A.5 Prox Control (0x22, 0x32)

Bit	15	14	13	12	11	10	9	8
Description	Reserved	0v5 Discharge	Reserved	CS Size	Reserved	Reserved	S/H Bias Select	
Bit	7	6	5	4	3	2	1	0
Description	Max Counts				Reserved			

- > Bit 14: **0v5 Discharge**
 - 0: Disabled
 - 1: Enabled
- > Bit 12: **Cs Size**
 - 0: Use 40pF Cs
 - 1: Use 80pF Cs
- > Bit 9-8: **S/H Bias Select**
 - 00: 2 μ A
 - 01: 5 μ A
 - 10: 7 μ A
 - 11: 10 μ A
- > Bit 7-6: **Max Counts**
 - 00: 1023
 - 01: 2047
 - 10: 4095 (recommended)
 - 11: 16383

A.6 Timing Generator Control & Prox Input (0x23, 0x33)

Bit	15	14	13	12	11	10	9	8
Description			Reserved		Calibration Cap Select	Reserved	Rx1	Rx0
Bit	7	6	5	4	3	2	1	0
Description	Reserved	Dead Time Enable			Reserved			

- > Bit 11: **Calibration Capacitor Select**
 - 0: Calibration Capacitor enabled
 - 1: Calibration Capacitor disabled
- > Bit 9-8: **Rxx**
 - 0: Rxx Disabled
 - 1: Rxx Enabled

> Bit 6: **Dead Time Enable**

- 0: Dead Time Disabled
- 1: Dead Time Enabled

A.7 Inactive Rxs & Calibration Capacitor Selection (0x24, 0x34)

Bit	15	14	13	12	11	10	9	8
Description	Reserved							
Bit	7	6	5	4	3	2	1	0
Description	Calibration Capacitor					Inactive Rxs		

> Bit 7-4: **Calibration Capacitor**

- Calibration Capacitor size = $0.5\text{pF} \times \text{Calibration Capacitor}$
- Max value = 7 (Calibration Capacitor size = 3.5pF)

> Bit 3-0: **Inactive Rxs**

- Selects state of CX's when not in use
- 0x00: Floating
- 0x05: Bias voltage
- 0x0A: VSS
- 0x0F: VREG

A.8 ATI Setup (0x25, 0x35)

Bit	15	14	13	12	11	10	9	8
Description	ATI Resolution Factor							
Bit	7	6	5	4	3	2	1	0
Description	ATI Resolution Factor					ATI Band	ATI Mode	

> Bit 15-4: **ATI Resolution Factor**

> Range: 0-4095

> Bit 3: **ATI Band**

- 0: Small ATI Band
- 1: Large ATI Band

> Bit 2-0: **ATI Mode**

- 000: Disabled
- 001: Compensation Only
- 010: ATI from Compensation Divider
- 011: ATI from Fine Fractional Divider
- 100: Full

A.9 ATI Multipliers and Dividers (0x27, 0x37)

Bit	15	14	13	12	11	10	9	8
Description	Fine Fractional Multiplier						Coarse Fractional Multiplier	
Bit	7	6	5	4	3	2	1	0
Description	Coarse Fractional Multiplier					Coarse Fractional Divider		

> Bit 15-14: **Fine Fractional Multiplier**

- Range: 0 - 3

> Bit 13-9: **Fine Fractional Divider**

- Range: 0 - 31
- > Bit 8-5: **Coarse Fractional Multiplier**
- Range: 0 - 15
- > Bit 4-0: **Coarse Fractional Divider**
- Range: 0 - 31

A.10 Compensation (0x28, 0x38)

Bit	15	14	13	12	11	10	9	8
Description	Compensation Divider					Reserved	Compensation	
Bit	7	6	5	4	3	2	1	0
Description	Compensation							

- > Bit 15-11: **Compensation Divider**
- Range: 0 - 31
- > Bit 9-0: **Compensation**
- Range: 0 - 1023

A.11 Prox Settings (0x40, 0x50)

Bit	15	14	13	12	11	10	9	8
Description	Prox Debounce Exit				Prox Debounce Enter			
Bit	7	6	5	4	3	2	1	0
Description	Prox Threshold							

- > Bit 15-12: **Prox Debounce Exit**
 - 0: Prox Debounce Exit disabled
 - Number of debounce conversions on Prox Exit (4-bit value)
- > Bit 11-8: **Prox Debounce Enter**
 - 0: Prox Debounce Enter disabled
 - Number of debounce conversions on Prox Enter (4-bit value)
- > Bit 7-0: **Prox Threshold**
 - 8 bit value

A.12 Touch Settings (0x41, 0x51)

Bit	15	14	13	12	11	10	9	8
Description	Touch Hysteresis							
Bit	7	6	5	4	3	2	1	0
Description	Touch Threshold							

- > Bit 15-12: **Touch Hysteresis**
 - Range: 0-255
- > Bit 7-0: **Touch Threshold**
 - Range: 0-255

A.13 Movement Settings (0x42, 0x52)

Bit	15	14	13	12	11	10	9	8
Description	Movement Debounce Exit							Movement Debounce Enter

Bit	7	6	5	4	3	2	1	0
Description	Movement Threshold							

- › Bit 15-12: **Movement Debounce Exit**
 - 0000: Movement Debounce Exit disabled
 - Number of debounce conversions on Movement Exit (4-bit value)
- › Bit 11-8: **Movement Debounce Enter**
 - 0000: Movement Debounce Enter disabled
 - Number of debounce conversions on Movement Enter (4-bit value)
- › Bit 7-0: **Movement Threshold**
 - 8 bit value

A.14 Counts Filter Beta & LTA Filter Beta (0x60)

Bit	15	14	13	12	11	10	9	8
Description	LTA Beta							

Bit	7	6	5	4	3	2	1	0
Description	Counts Beta							

A.15 LTA Fast Filter Beta & Movement Beta (0x61)

Bit	15	14	13	12	11	10	9	8
Description	Movement Beta							

Bit	7	6	5	4	3	2	1	0
Description	LTA Fast Beta							

A.16 System Control (0x70)

Bit	15	14	13	12	11	10	9	8
Description	Reserved							

Bit	7	6	5	4	3	2	1	0
Description	ATI Indication	Reference Tracking	Interface Selection	Reseed	Re-ATI	Soft Reset	Ack Reset	

- › Bit 7: **ATI Indication**
 - 0: ATI indication disabled
 - 1: ATI indication enabled
- › Bit 6: **Reference Tracking**
 - 0: Reference tracking disabled
 - 1: Reference tracking enabled
- › Bit 5-4: **Interface Selection**
 - 10: Standalone
 - 01: I²C Events
 - 00: I²C Streaming
- › Bit 3: **Reseed**

- 0: No Reseed
- 1: Trigger Reseed

> **Bit 2: Re-ATI**

- 0: No Re-ATI
- 1: Trigger Re-ATI

> **Bit 1: Soft Reset**

- 0: No Soft Reset
- 1: Trigger Soft Reset

> **Bit 0: ACK Reset**

- 0: No ACK Reset
- 1: ACK Reset

A.17 Event Timeouts (0x73)

Bit	15	14	13	12	11	10	9	8
Description	Prox Event Timeout							

Bit	7	6	5	4	3	2	1	0
Description	Touch Event Timeout							

> **Bit 15-8: Prox Event Timeout**

- Prox Event Timeout = Prox Event Timeout × 512ms
- Set to 0 to disable
- Maximum value: 127

> **Bit 7-0: Touch Event Timeout**

- Touch Event Timeout = Touch Event Timeout × 512ms
- Set to 0 to disable
- Maximum value: 127

A.18 Events Enable & SNR Boost Factor (0x74)

Bit	15	14	13	12	11	10	9	8
Description	SNR Boost Factor							

Bit	7	6	5	4	3	2	1	0	
Description	Reserved					ATI Event	Movement Event	Touch Event	Prox Event

> **Bit 15-8: SNR Boost Factor**

- Recommended values: 1-50

> **Bit 5: ATI Error Mask**

- 0: ATI error disabled
- 1: ATI error enabled

> **Bit 3: ATI Event Mask**

- 0: ATI event disabled
- 1: ATI event enabled

> **Bit 2: Movement Event Mask**

- 0: Movement event disabled
- 1: Movement event enabled

> **Bit 1: Touch Event Mask**

- 0: Touch event disabled
- 1: Touch event enabled

> **Bit 0: Prox Event Mask**

- 0: Prox event disabled
- 1: Prox event enabled

A.19 Reference Scaling (0x75)

Bit	15	14	13	12	11	10	9	8
Description	Reference Divider							

Bit	7	6	5	4	3	2	1	0
Description	Reference Multiplier							

> Bit 15-8: **Reference Divider**

- Range: 0 - 255

> Bit 7-0: **Reference Multiplier**

- Range: 0 - 255

A.20 I²C Settings (0x80)

Bit	15	14	13	12	11	10	9	8
Description	Reserved							

Bit	7	6	5	4	3	2	1	0
Description	Reserved						R/W Check Disable	Stop Bit Disable

> Bit 1: **Read/Write Check Disable**

- 0: Read/Write Check enable
- 1: Read/Write Check disabled

> Bit 0: **Stop Bit Disable**

- 0: Stop Bit enabled
- 1: Stop Bit disabled

B Revision History

Release	Date	Changes
v1.0	September 2022	Initial release
v1.1	September 2022	Updated reference schematics
v1.2	September 2022	Updated naming convention for VDD
v1.3	October 2022	Update description for reference UI and SNR boost UI
v1.4	October 2022	Update description for reference UI
v1.5	October 2022	Grammar correction
v1.6	November 2022	Updated counts register memory map description Updated format
v1.7	September 2023	Updated I ² C section Updated force communication description Updated Count Value description Updated SNR Boost UI description Updated memory map description Updated order code information
v1.8	April 2024	Added program flow diagram Changed report rate to sampling period Moved equations from appendix to relevant sections Update MCLR capacitor to 1nF Updated current consumption section Fixed DFN12 package pin 1 marking
v1.9	February 2025	Added QFN20 package Update ordering information to list DFN12 as special order
v1.10	December 2025	Updated formatting Updated reference schematics Added revision history and known issues section

C Known Issues

Two Channel "Cross-talk"

Versions Affected:

v1.1 and below.

Issue Description:

On the IQS320, a known issue arises when two channels are active without reference tracking and oversampling is enabled by setting the SNR boost factor larger than 1. If one channel automatically triggers an ATI (due to a timeout or because it drifts out of the ATI band), the second channel behaves incorrectly. Only a single sample is captured during the ATI instead of accumulating the expected set of samples.

Recommended Workaround

It is recommended to ignore events on the other channel during the ATI routine or simply disable the oversampling by setting the SNR boost factor to 1.

Contact Information

South Africa (Headquarters)		China
Physical Address	1 Bergsig Avenue Paarl 7646 South Africa	Room 501A, Block A T-Share International Centre Taoyuan Road, Nanshan District Shenzhen, Guangdong, PRC
Tel	+27 21 863 0033	+86 755 8303 5294 ext 808
Email	info@azoteq.com	info@azoteq.com
USA		Taiwan
Physical Address	7000 North Mopac Expressway Suite 200 Austin TX 78731 USA	Xintai 5th Road, Sec. 1 No. 99, 9F-12C Xizhi District 221001 New Taipei City Taiwan
Tel	+1 512 538 1995	+886 932 219 444
Email	info@azoteq.com	info@azoteq.com

Visit www.azoteq.com
for a list of distributors and worldwide representation.

Patents as listed on www.azoteq.com/patents-trademarks/ may relate to the device or usage of the device.

Azoteq®, Crystal Driver®, IQ Switch®, ProxSense®, ProxFusion®, LightSense™, SwipeSwitch™, Dycal™, TriggerMax™, WearMax™, and the logo are trademarks of Azoteq.

The information in this Datasheet is believed to be accurate at the time of publication. Azoteq uses reasonable effort to maintain the information up-to-date and accurate, but does not warrant the accuracy, completeness or reliability of the information contained herein. All content and information are provided on an "as is" basis only, without any representations or warranties, express or implied, of any kind, including representations about the suitability of these products or information for any purpose. Azoteq disclaims all warranties and conditions with regard to these products and information, including but not limited to all implied warranties and conditions of merchantability, fitness for a particular purpose, title and non-infringement of any third party intellectual property rights. Azoteq assumes no liability for any damages or injury arising from any use of the information or the product or caused by, without limitation, failure of performance, error, omission, interruption, defect, delay in operation or transmission, even if Azoteq has been advised of the possibility of such damages. The applications mentioned herein are used solely for the purpose of illustration and Azoteq makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Azoteq products are not authorized for use as critical components in life support devices or systems. No licenses to patents are granted, implicitly, express or implied, by estoppel or otherwise, under any intellectual property rights. In the event that any of the abovementioned limitations or exclusions does not apply, it is agreed that Azoteq's total liability for all losses, damages and causes of action (in contract, tort (including without limitation, negligence) or otherwise) will not exceed the amount already paid by the customer for the products. Azoteq reserves the right to alter its products, to make corrections, deletions, modifications, enhancements, improvements and other changes to the content and information, its products, programs and services at any time or to move or discontinue any contents, products, programs or services without prior notification. For the most up-to-date information and binding Terms and Conditions please refer to www.azoteq.com.