
CHB011M12GM4, CHB011M12GM4T

V_{DS} **1200 V**
R_{DS(on)} **11 mΩ**

1200 V, 11 mΩ, Silicon Carbide, T-Type Module

Technical Features

- Ultra-Low Loss, High Frequency Operation
- Zero Turn-Off Tail Current from MOSFET
- Normally-Off, Fail-Safe Device Operation
- Optional Pre-Applied Thermal Interface Material
- Features Gen4 Technology with Soft Body Diode
- UL 1557 Certified

Typical Applications

- EV Chargers
- High-Efficiency Converters / Inverters
- Renewable Energy
- Smart-Grid / Grid-Tied Distributed Generation

System Benefits

- Enables Compact, Lightweight Systems
- Increased System Efficiency, due to Low Switching & Conduction Losses of SiC
- Reduced Thermal Requirements and System Cost

Key Parameters

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Conditions	Note
Drain-Source Voltage	V _{DS}			1200	V		
Maximum Gate-Source Voltage	V _{GS(max)}	-10		+23		Transient	Fig. 32 Note 1
Operational Gate-Source Voltage	V _{GS(op)}		-4/15			Static	
DC Continuous Drain Current (T _{VJ} ≤ 150 °C)	I _D			100	A	V _{GS} = 15 V, T _{HS} = 50 °C, T _{VJ} ≤ 150 °C	Notes 2,3 Fig. 20
DC Continuous Drain Current (T _{VJ} ≤ 175 °C)				100		V _{GS} = 15 V, T _{HS} = 50 °C, T _{VJ} ≤ 175 °C	
Pulsed Drain Current	I _{DM}			200		t _{Pmax} limited by T _{VJmax} V _{GS} = 15 V, T _{HS} = 50 °C	
Power Dissipation	P _D		265		W	T _{HS} = 50 °C, T _{VJ} ≤ 175 °C	Note 4 Fig. 20
Virtual Junction Temperature	T _{VJ(op)}	-40		150	°C	Operation	
		-40		175	°C	Intermittent with Reduced Life	

Note (1): Recommended turn-on gate voltage is 15 V with ±5% regulation tolerance

Note (2): Current limit at T_{HS} = 50°C calculated by I_{D(max)} = $\sqrt{(P_D / R_{DS(typ)})(T_{VJ(max)}, I_D(max))}$

Note (3): Verified by design

Note (4): P_D = (T_{VJ} - T_{HS}) / R_{TH(JH,typ)}

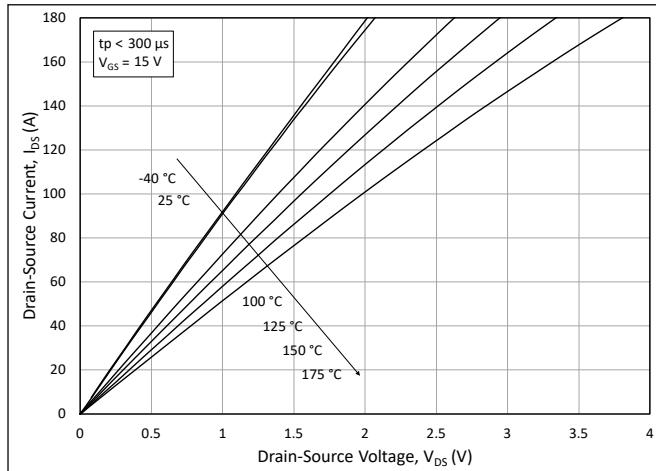
MOSFET Characteristics (Per Position) ($T_{VJ} = 25^\circ\text{C}$ unless otherwise specified)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Conditions	Note
Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	1200			V	$V_{GS} = 0\text{ V}$, $T_{VJ} = -40^\circ\text{C}$	
Gate Threshold Voltage	$V_{GS(\text{th})}$	1.8	2.5	4.0		$V_{DS} = V_{GS}$, $I_D = 28\text{ mA}$	
			2.0			$V_{DS} = V_{GS}$, $I_D = 28\text{ mA}$, $T_{VJ} = 175^\circ\text{C}$	
Zero Gate Voltage Drain Current	I_{DSS}		3	300	μA	$V_{GS} = 0\text{ V}$, $V_{DS} = 1200\text{ V}$	
Gate-Source Leakage Current	I_{GSS}		60	1200	nA	$V_{GS} = 19\text{ V}$, $V_{DS} = 0\text{ V}$	
Drain-Source On-State Resistance (Devices Only)	$R_{DS(\text{on})}$		11.0	14.9	$\text{m}\Omega$	$V_{GS} = 15\text{ V}$, $I_D = 100\text{ A}$	Fig. 2 Fig. 3
			17.6			$V_{GS} = 15\text{ V}$, $I_D = 100\text{ A}$, $T_{VJ} = 150^\circ\text{C}$	
			19.8			$V_{GS} = 15\text{ V}$, $I_D = 100\text{ A}$, $T_{VJ} = 175^\circ\text{C}$	
Transconductance	g_{fs}		77		S	$V_{DS} = 20\text{ V}$, $I_D = 100\text{ A}$	Fig. 4
			78			$V_{DS} = 20\text{ V}$, $I_D = 100\text{ A}$, $T_{VJ} = 175^\circ\text{C}$	
Turn-On Switching Energy, $T_{VJ} = 25^\circ\text{C}$ $T_{VJ} = 125^\circ\text{C}$ $T_{VJ} = 175^\circ\text{C}$	E_{on}	0.29 0.26 0.25			mJ	$V_{DD} = 400\text{ V}$, $I_D = 100\text{ A}$, $V_{GS} = -4\text{ V}/15\text{ V}$, $R_{G(OFF)} = 0\ \Omega$, $R_{G(ON)} = 0\ \Omega$, $L_o = 25\text{ nH}$	Fig. 11 Fig. 13
Turn-Off Switching Energy, $T_{VJ} = 25^\circ\text{C}$ $T_{VJ} = 125^\circ\text{C}$ $T_{VJ} = 175^\circ\text{C}$	E_{off}	0.13 0.11 0.12					
Internal Gate Resistance	$R_{G(\text{int})}$		1.4		Ω	$f = 100\text{ kHz}$	
Input Capacitance	C_{iss}		10.1		nF	$V_{GS} = 0\text{ V}$, $V_{DS} = 800\text{ V}$, $V_{AC} = 25\text{ mV}$, $f = 100\text{ kHz}$	Fig. 9
Output Capacitance	C_{oss}		0.4				
Reverse Transfer Capacitance	C_{rss}		36		pF		
Gate to Source Charge	Q_{GS}		180		nC	$V_{DS} = 800\text{ V}$, $V_{GS} = -4\text{ V}/15\text{ V}$, $I_D = 100\text{ A}$, Per IEC60747-8-4 pg 21	
Gate to Drain Charge	Q_{GD}		96				
Total Gate Charge	Q_G		405				
FET Thermal Resistance, Junction to Heatsink	$R_{th\text{ JH}}$		0.472		$^\circ\text{C}/\text{W}$	Measured with Pre-Applied TIM	Fig. 17

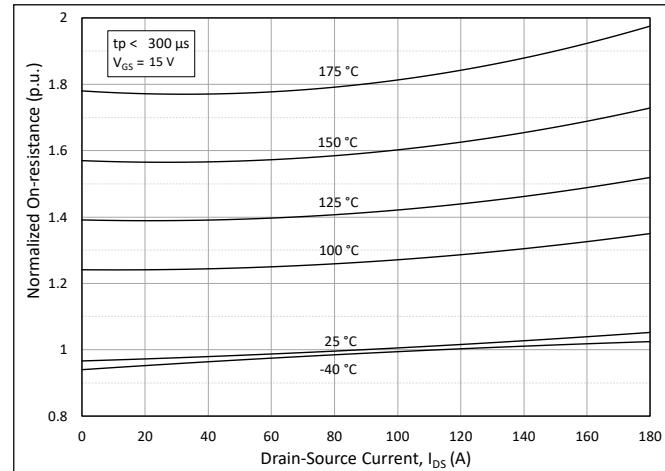
Diode Characteristics (Per Position) ($T_{VJ} = 25^\circ\text{C}$ unless otherwise specified)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Conditions	Notes
Body Diode Forward Voltage	V_{SD}		5.8		V	$V_{GS} = -4\text{ V}$, $I_{SD} = 100\text{ A}$	Fig. 7
			5.4			$V_{GS} = -4\text{ V}$, $I_{SD} = 100\text{ A}$, $T_{VJ} = 175^\circ\text{C}$	
DC Source-Drain Current (Body Diode)	$I_{SD\text{ BD}}$		58		A	$V_{GS} = -4\text{ V}$, $T_{HS} = 50^\circ\text{C}$, $T_{VJ} \leq 175^\circ\text{C}$	Notes 2,3 Fig. 20
Reverse Recovery Time	t_{RR}		27.0		ns	$V_{GS} = -4\text{ V}$, $I_{SD} = 100\text{ A}$, $V_R = 400\text{ V}$ $di/dt = 12.8\text{ A/ns}$, $T_{VJ} = 175^\circ\text{C}$	Fig. 31
Reverse Recovery Charge	Q_{RR}		2.2		μC		
Peak Reverse Recovery Current	I_{RRM}		149		A		
Reverse Recovery Energy, $T_{VJ} = 25^\circ\text{C}$ $T_{VJ} = 125^\circ\text{C}$ $T_{VJ} = 175^\circ\text{C}$	E_{RR}	0.53 0.54 0.73			mJ	$V_{DD} = 400\text{ V}$, $I_D = 100\text{ A}$, $V_{GS} = -4\text{ V}/15\text{ V}$, $R_{G(ON)} = 0\ \Omega$, $L_o = 25\text{ nH}$	Fig. 14

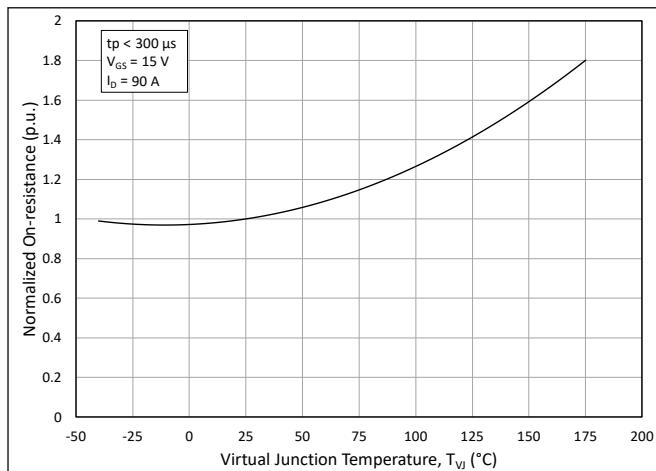
Module Physical Characteristics

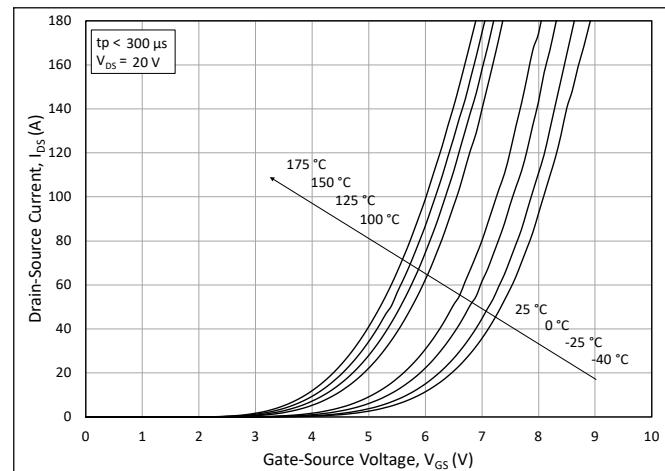

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Conditions
Package Resistance, M11	R_{pkg1}		0.57		mΩ	$T_{\text{HS}} = 125^{\circ}\text{C}$, Note 5
Package Resistance, M12	R_{pkg2}		0.76			
Package Resistance, M13 & M14	R_{pkg3}		0.81			
Stray Inductance	L_{Stray1}		17.5		nH	Between MID and DC+, f = 10 MHz
	L_{Stray2}		23.8			Between MID and DC-, f = 10 MHz
Case Temperature	T_c	-40		125	°C	
Mounting Torque	M_s		2.0	2.3	N·m	M4 bolts
Weight	W		39		g	
Case Isolation Voltage	V_{isol}	3			kV	AC, 50 Hz, 1 minute
Comparative Tracking Index	CTI	200				
Clearance Distance			5.0		mm	Terminal to Terminal
			10.0			Terminal to Heatsink
Creepage Distance			6.3			Terminal to Terminal
			11.5			Terminal to Heatsink

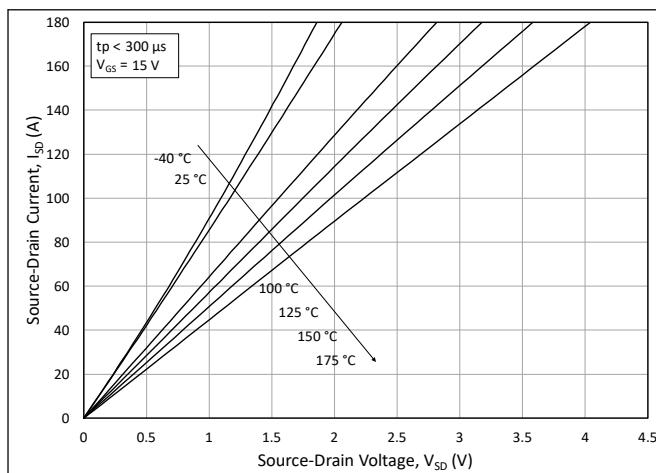
Note (5): Total Effective Resistance (Per Switch Position) = MOSFET $R_{\text{DS(on)}}$ + Switch Position Package Resistance


NTC Thermistor Characterization

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Conditions
Rated Resistance	R_{NTC}		5.0		kΩ	$T_{\text{NTC}} = 25^{\circ}\text{C}$
Resistance Tolerance at 25 °C	$\Delta R/R$	-5		5	%	
Beta Value ($T_2 = 50^{\circ}\text{C}$)	$\beta_{25/50}$		3380		K	
Beta Value ($T_2 = 80^{\circ}\text{C}$)	$\beta_{25/80}$		3468		K	
Beta Value ($T_2 = 100^{\circ}\text{C}$)	$\beta_{25/100}$		3523		K	
Power Dissipation	P_{Max}			10	mW	$T_{\text{NTC}} = 25^{\circ}\text{C}$


Typical Performance


Figure 1. Output Characteristics for Various Junction Temperatures


Figure 2. Normalized On-State Resistance vs. Drain Current for Various Junction Temperatures

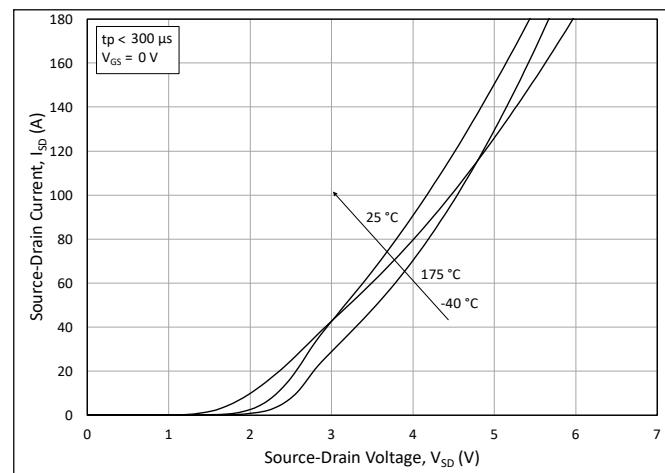

Figure 3. Normalized On-State Resistance vs. Junction Temperature

Figure 4. Transfer Characteristic for Various Junction Temperatures

Figure 5. 3rd Quadrant Characteristic vs. Junction Temperatures at $V_{GS} = 15$ V

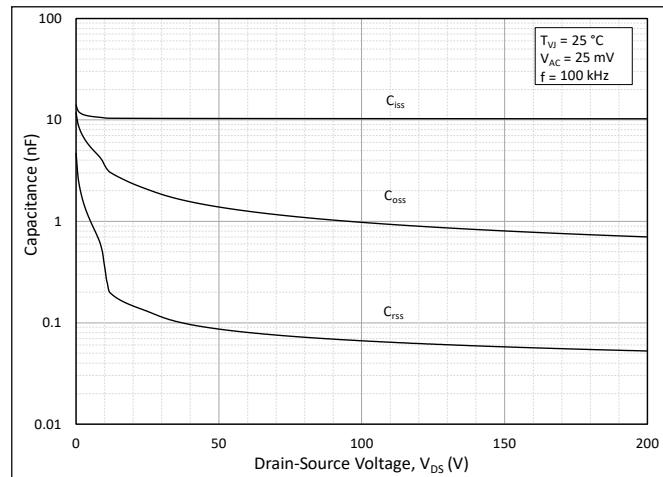
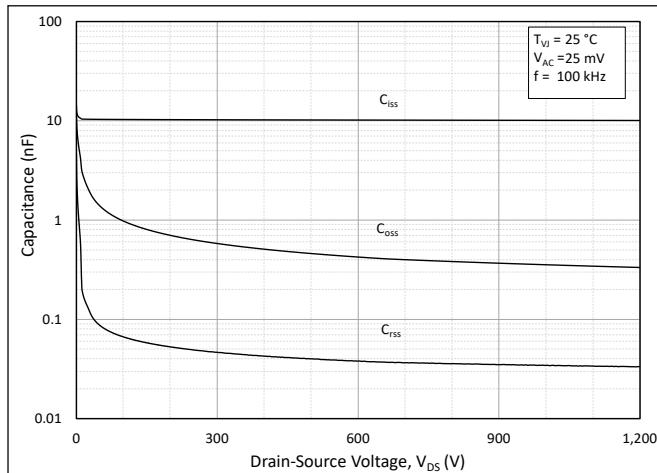
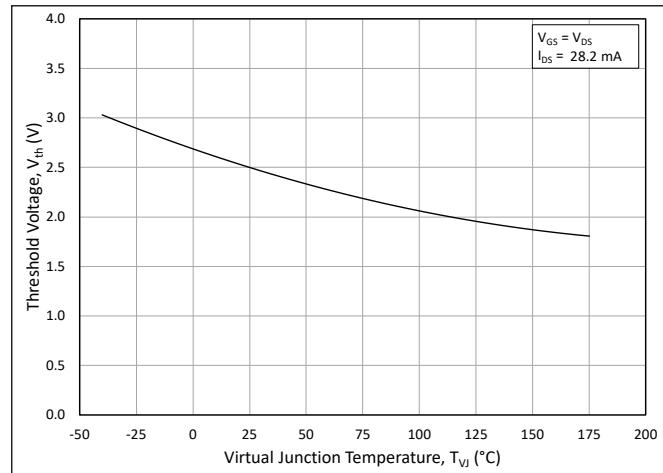
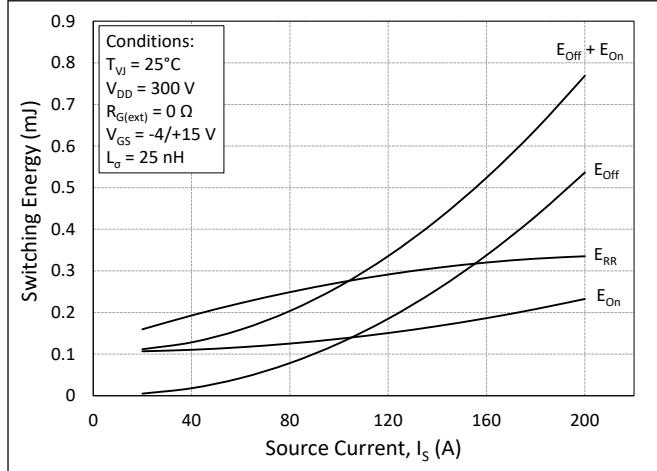


Figure 6. 3rd Quadrant Characteristic vs. Junction Temperatures at $V_{GS} = 0$ V (Body Diode)


Typical Performance


Figure 7. 3rd Quadrant Characteristic vs. Junction Temperature at $V_{GS} = -4 \text{ V}$ (Body Diode)


Figure 8. Typical Capacitances vs. Drain to Source Voltage (0 - 200V)

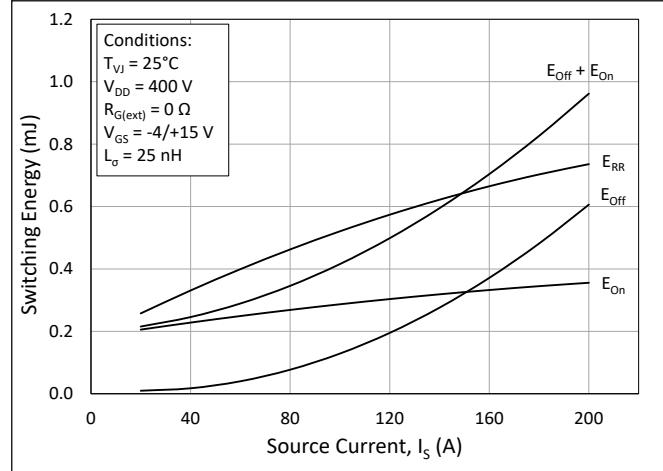

Figure 9. Typical Capacitances vs. Drain to Source Voltage (0 - 1200V)

Figure 10. Threshold Voltage vs. Junction Temperature

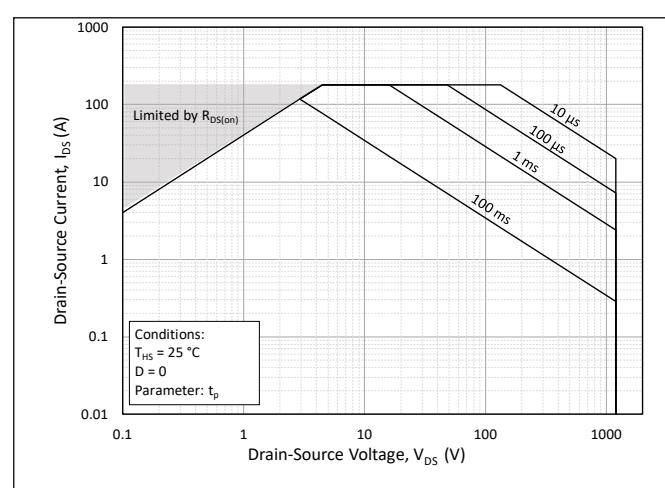
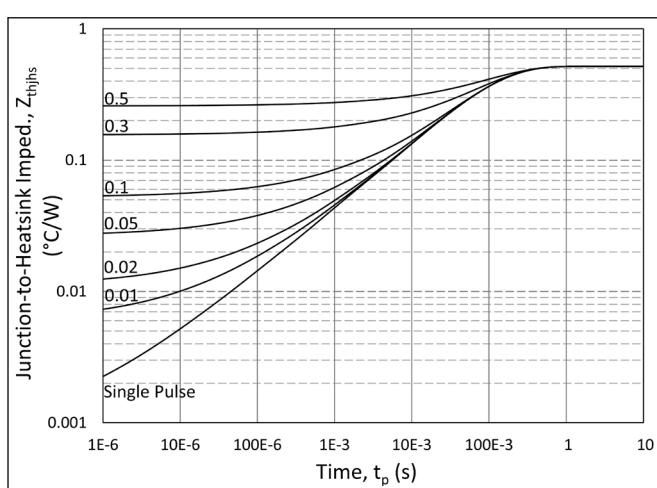
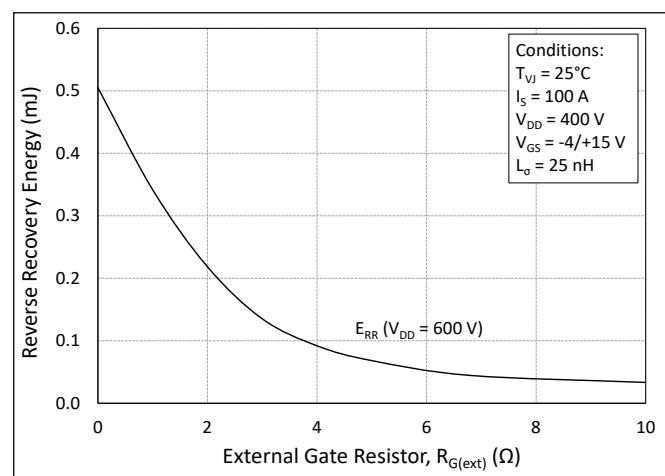
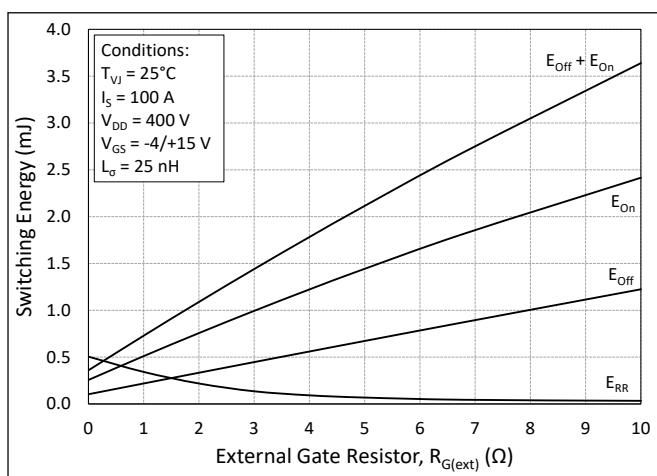
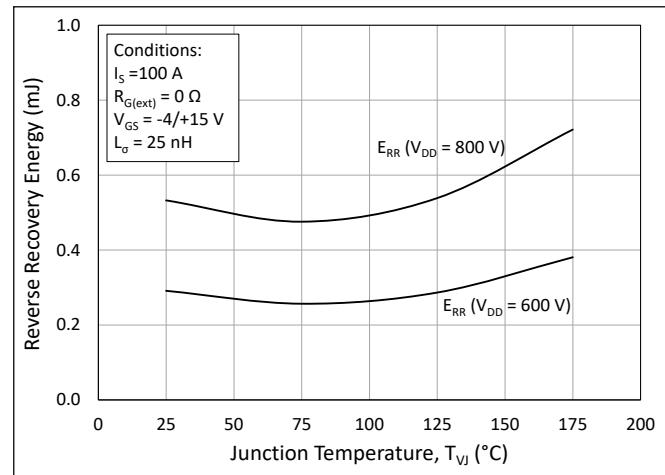
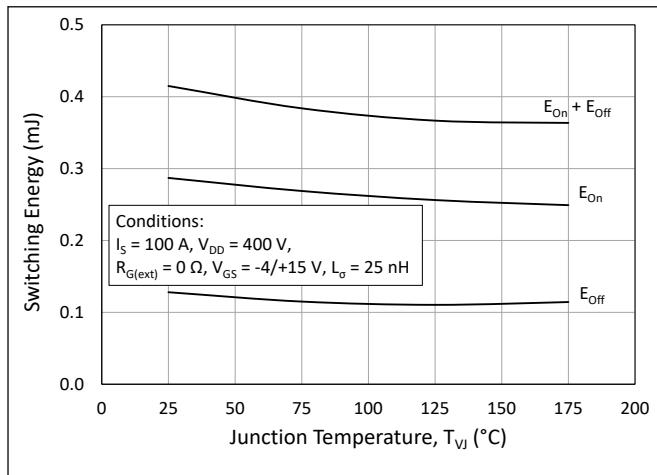







Figure 11. Switching Energy vs. Drain Current ($V_{DD} = 300 \text{ V}$)

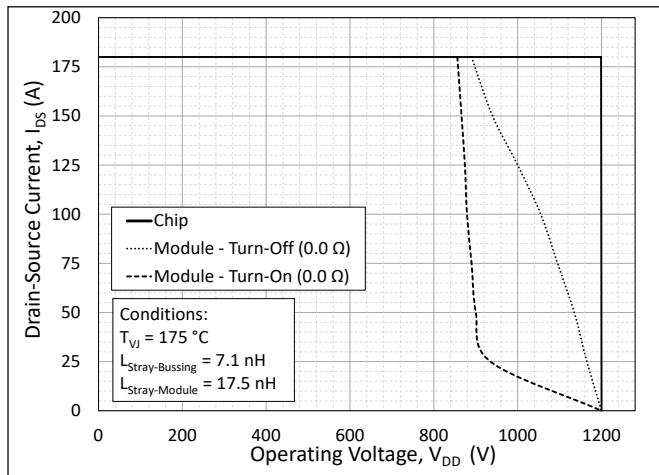
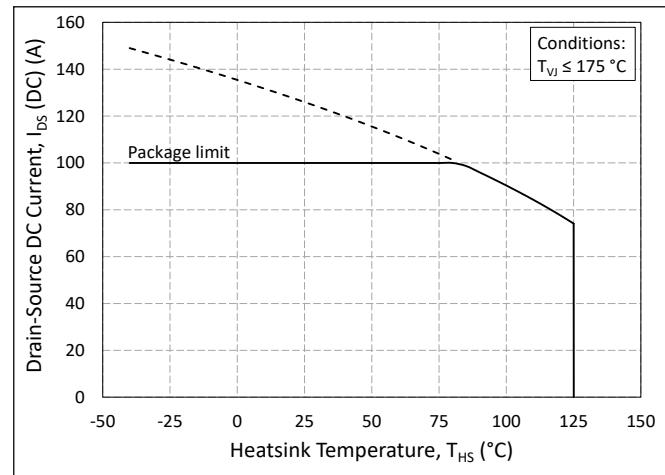
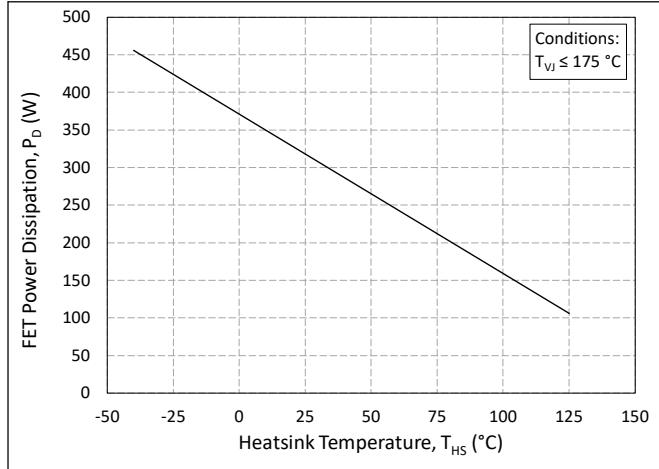


Figure 12. Switching Energy vs. Drain Current ($V_{DD} = 400 \text{ V}$)


Typical Performance


Typical Performance

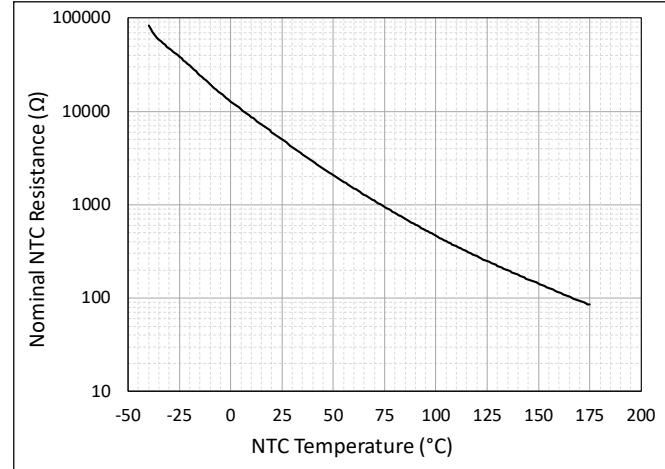
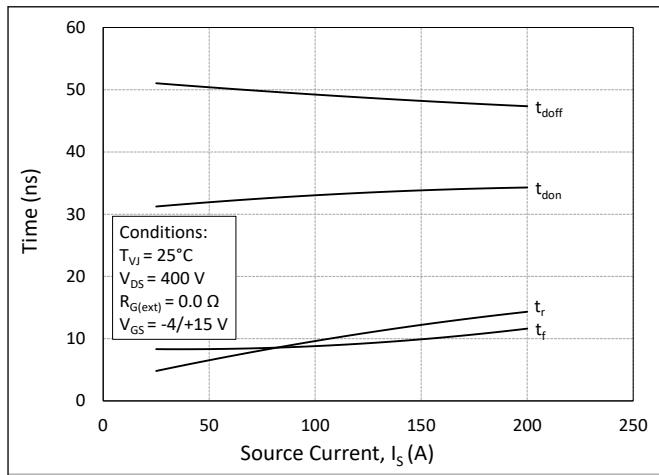
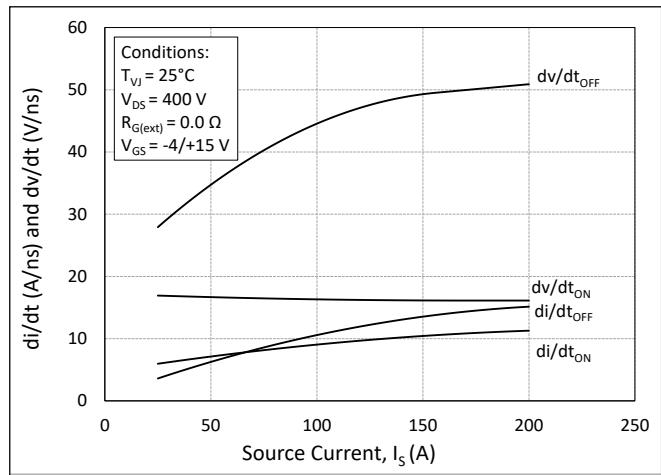

Figure 19. Switching Safe Operating Area

Figure 20. Continuous Drain Current Derating vs. Case Temperature

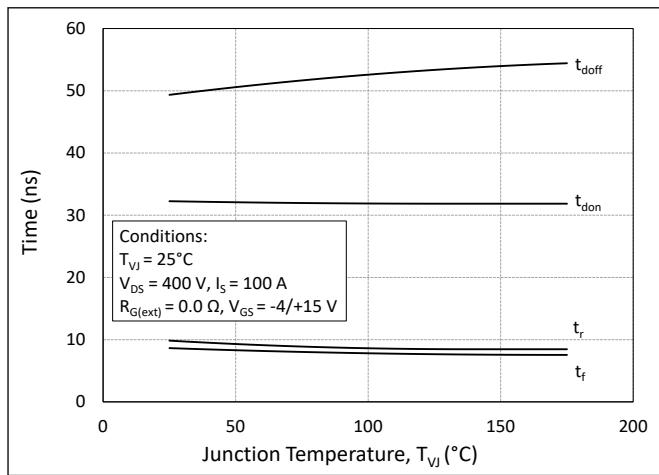
Figure 21. Maximum Power Dissipation Derating vs. Case Temperature

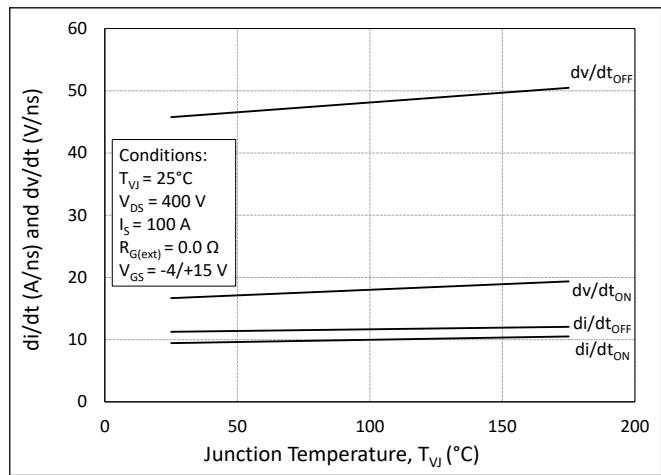

Figure 22. Nominal NTC Resistance vs. NTC Temperature

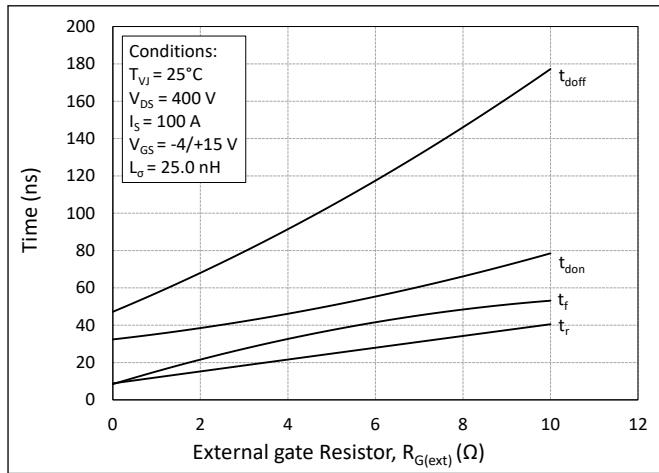
Note (6): Figures 1-10 are representative of the static MOSFET characteristics for all four switch positions.


Note (7): Figures 11-28 are representative of switch positions M11 and M14 (page 10) corresponding to the top-side high-frequency loop. The circuits for switching loss and reverse recovery measurements are shown in figures 33 and 34.

Note (8): The CGD1700HB2M-UNA, which features the UCC21710 gate driver IC from Texas Instruments, was used to evaluate dynamic performance. The typical parasitic turn-on resistance of $2.5\ \Omega$ and the parasitic turn-off resistance of $0.3\ \Omega$ are not included in the $R_{G(ext)}$ values on this datasheet.


Timing Characteristics


Figure 23. Timing vs. Source Current


Figure 24. dv/dt and di/dt vs. Source Current

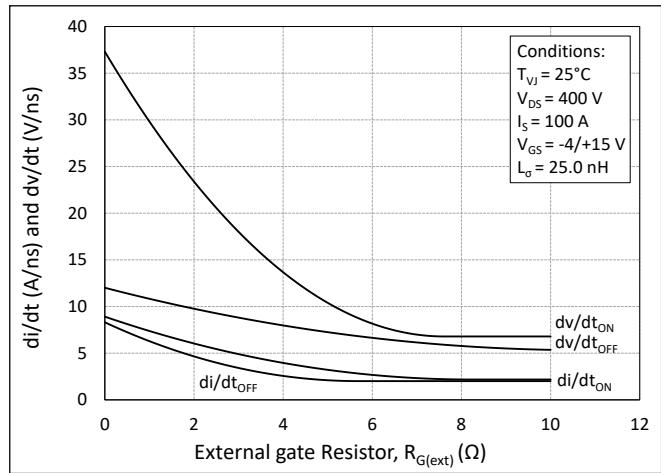

Figure 25. Timing vs. Junction Temperature

Figure 26. dv/dt and di/dt vs. Junction Temperature

Figure 27. Timing vs. External Gate Resistance

Figure 28. dv/dt and di/dt vs. External Gate Resistance

Definitions

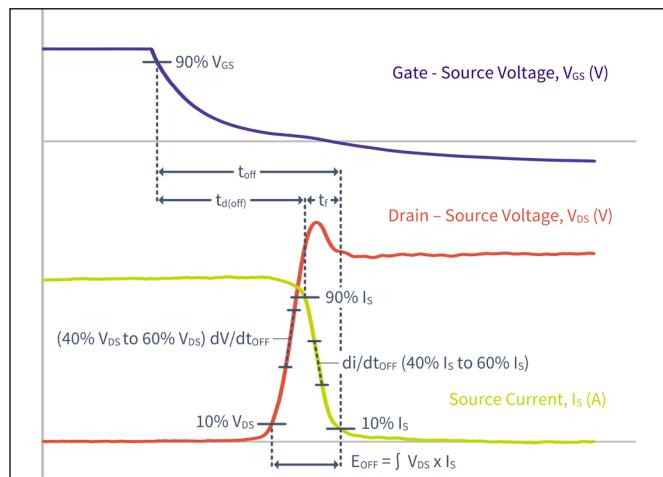


Figure 29. Turn-off Transient Definitions

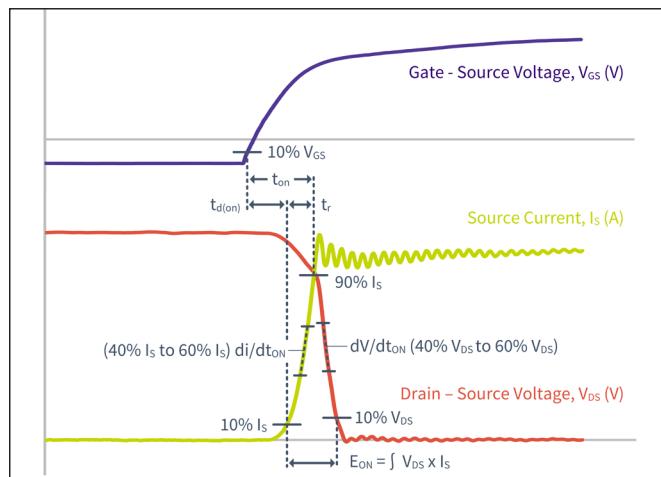


Figure 30. Turn-on Transient Definitions

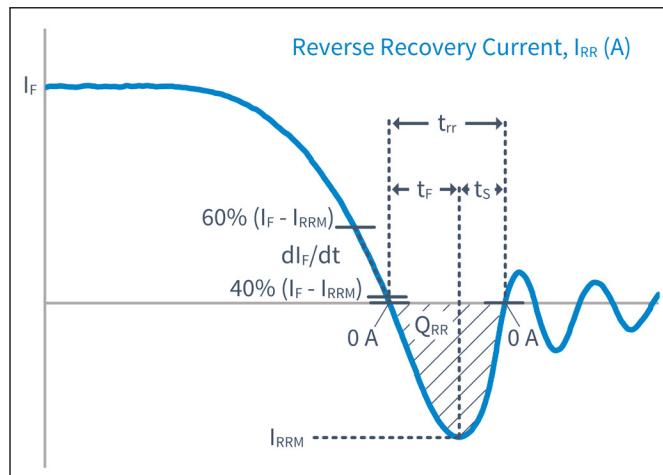


Figure 31. Reverse Recovery Definitions

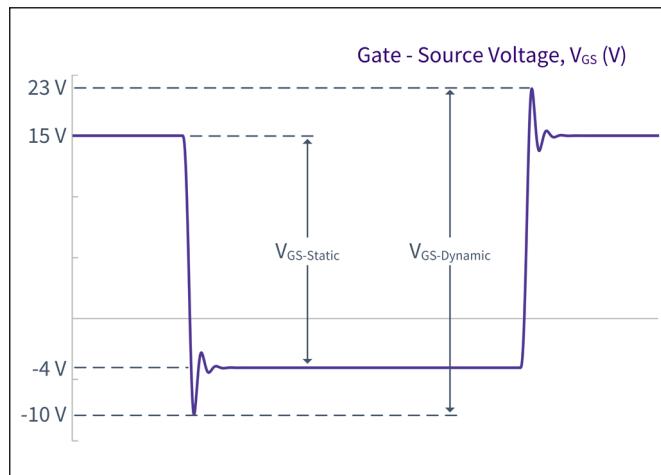


Figure 32. V_{GS} Transient Definitions

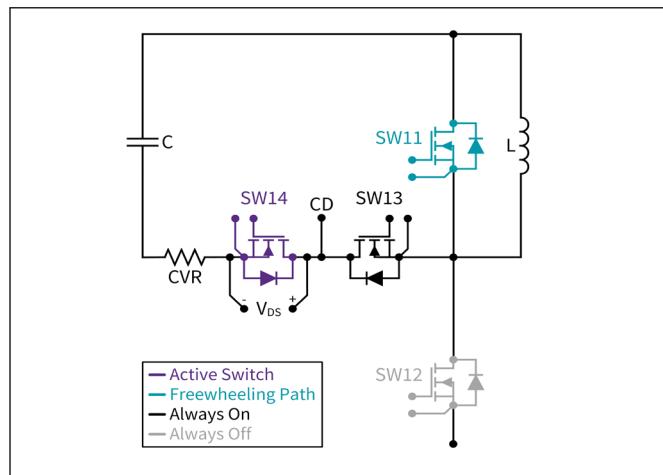


Figure 33. Switching Loss Measurement

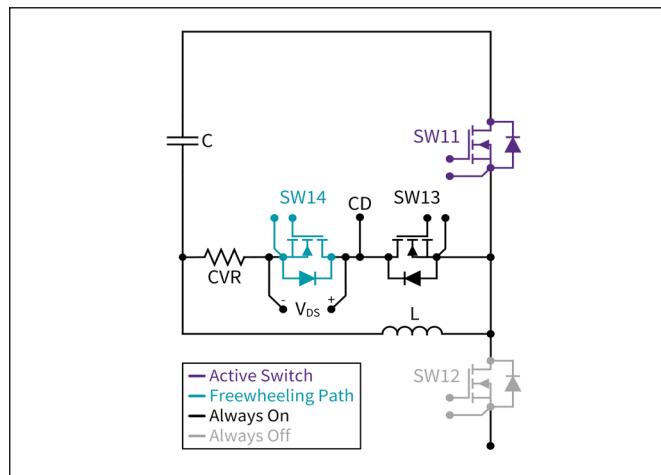
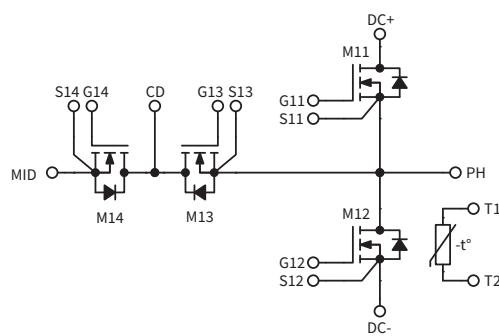
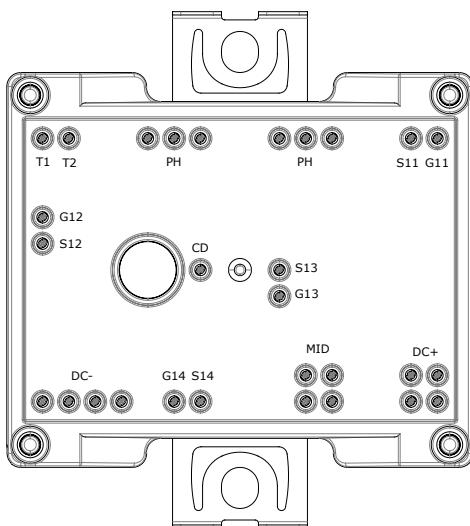
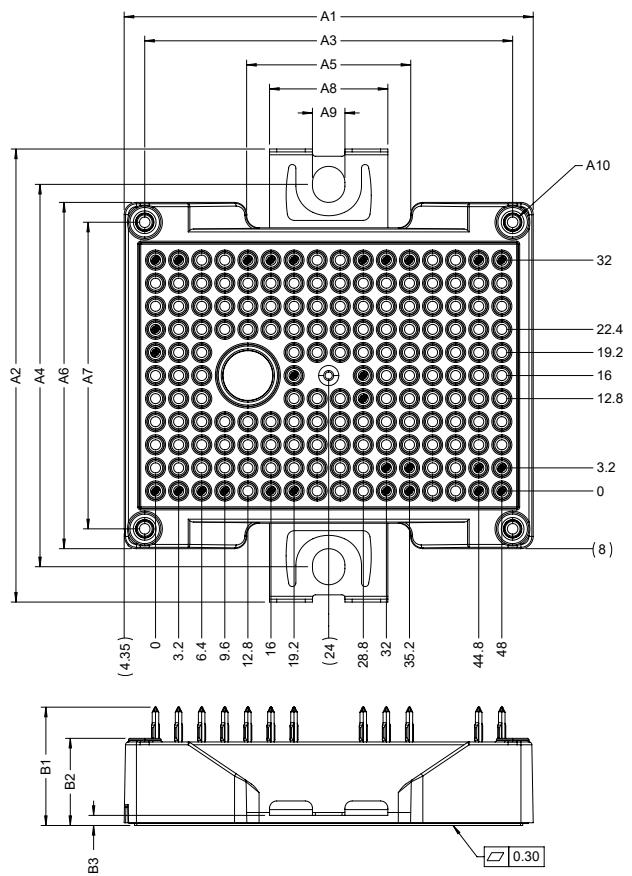





Figure 34. Reverse Recovery Measurement

Schematic and Pin Out

Package Dimension (mm)

DIMENSION TABLE		
SYMBOL	DIMENSION	TOLERANCE
A1	56.7	± 0.30
A2	62.8	± 0.50
A3	51	± 0.15
A4	(53)	REF.
A5	22.7	± 0.30
A6	48	± 0.30
A7	42.5	± 0.15
A8	16.4	± 0.20
A9	4.5	± 0.10
A10	$\phi 2.3 \nparallel 8.5$	$\phi: +0_{-0.10}$ $\nparallel: \pm 0.30$
B1	16.4	± 0.50
B2	12.0	± 0.35
B3	1.4	± 0.20
ALL PIN LOCATIONS		± 0.40

Note (9): CHB011M12GM4 and CHB011M12GM4T have been certified by UL as an “Electrically Isolated Semiconductor Devices – Component” in accordance with UL 1557. Only power modules that bear the UL marking should be considered as being covered under the UL Component Recognition Program.

Product Ordering Code

Part Number	Description
CHB011M12GM4	Without Pre-Applied Phase Change Thermal Interface Material
CHB011M12GM4T	With Pre-Applied Phase Change Thermal Interface Material

Supporting Links & Tools

Evaluation Tools & Support

- [All LTSpice Models](#)
- [All PLECS Models](#)
- [SpeedFit 2.0 Design Simulator™](#)
- [Technical Support Forum](#)

Dual-Channel Gate Driver Board

- [EVAL-ADUM4146WHA1Z: Analog Devices® Gate Driver Board](#)
- [Si823H-AxWA-KIT: Skyworks® Gate Driver Board](#)
- [ACPL-355JC: Broadcom® Gate Driver Board](#)
- [CGD1700HB2M-UNA: Wolfspeed Gate Driver Board](#)
- [CGD12HB00D: Differential Transceiver Daughter Board Companion Tool for Differential Gate Drivers](#)

Application Notes

- [CPWR-AN41: Mounting Instructions and PCB Requirements](#)
- [CPWR-AN42: Thermal Interface Material Application Note](#)
- [CPWR-AN45: Dynamic Performance Application Note](#)

Notes & Disclaimers

WOLFSPEED PROVIDES TECHNICAL AND RELIABILITY DATA, DESIGN RESOURCES, APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, WITH RESPECT THERETO, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, SUITABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

This document and the information contained herein are subject to change without notice. Any such change shall be evidenced by the publication of an updated version of this document by Wolfspeed. No communication from any employee or agent of Wolfspeed or any third party shall effect an amendment or modification of this document. No responsibility is assumed by Wolfspeed for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Wolfspeed.

The information contained in this document (excluding examples, as well as figures or values that are labeled as “typical”) constitutes Wolfspeed’s sole published specifications for the subject product. “Typical” parameters are the average values expected by Wolfspeed in large quantities and are provided for informational purposes only. Any examples provided herein have not been produced under conditions intended to replicate any specific end use. Product performance can and does vary due to a number of factors.

This product has not been designed or tested for use in, and is not intended for use in, any application in which failure of the product would reasonably be expected to cause death, personal injury, or property damage. For purposes of (but without limiting) the foregoing, this product is not designed, intended, or authorized for use as a critical component in equipment implanted into the human body, life-support machines, cardiac defibrillators, and similar emergency medical equipment; air traffic control systems; or equipment used in the planning, construction, maintenance, or operation of nuclear facilities. Notwithstanding any application-specific information, guidance, assistance, or support that Wolfspeed may provide, the buyer of this product is solely responsible for determining the suitability of this product for the buyer’s purposes, including without limitation (1) selecting the appropriate Wolfspeed products for the buyer’s application, (2) designing, validating, and testing the buyer’s application, and (3) ensuring the buyer’s application meets applicable standards and any other legal, regulatory, and safety-related requirements.

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Wolfspeed representative or from the Product Documentation sections of www.wolfspeed.com.

REACH Compliance

REACH substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact your Wolfspeed representative to ensure you get the most up-to-date REACH SVHC Declaration. REACH banned substance information (REACH Article 67) is also available upon request.

Contact info:

4600 Silicon Drive
Durham, NC 27703 USA
Tel: +1.919.313.5300
www.wolfspeed.com/power

© 2025 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc.
PATENT: <https://www.wolfspeed.com/legal/patents>

The information in this document is subject to change without notice.