

User Manual

SKU: ABX00110

Description

The Modulino® Buttons, powered by an on-board STM32C011F4 microcontroller, features three SPST push buttons and three indicator LEDs. This setup enables both simple digital input reading via I2C and more advanced interfacing or reprogramming options. Ideal for projects that require user interaction, menu navigation, or quick control inputs.

Target Areas

Maker, beginner, education

Contents

1 Application Examples	3
2 Features	4
2.1 Contents	4
3 Related Products	4
4 Rating	4
4.1 Recommended Operating Conditions	4
5 Power Tree	5
6 Block Diagram	5
7 Functional Overview	6
7.1 Technical Specifications (Module-Specific)	6
7.2 Pinout	7
7.3 Power Specifications	9
7.4 Mechanical Information	9
7.5 I2C Address Reference	10
7.5.1 Pull-up Resistors	11
8 Device Operation	11
9 Certifications Summary	12
10 Declaration of Conformity CE DoC (EU)	12
11 Declaration of Conformity to EU RoHS & REACH 211 01/19/2021	
12 FCC WARNING	13
13 IC Caution	13
14 Conflict Minerals Declaration	13

1 Application Examples

- **Interactive Interfaces** Integrate multiple buttons into a project to navigate menus or adjust settings in real time.
- **Educational Projects** Teach fundamentals of state detection (pressed/released) and microcontroller-based I2C communication.
- **Control Panels** Combine button inputs with other Modulino® nodes (e.g., display, buzzer) for a complete user interface.

2 Features

- Three **SPST push buttons** and three on-board indicator LEDs.
- Integrated **STM32C011F4** microcontroller providing I2C interface by default.
- **Optional SWD** interface for custom firmware and advanced features.
- Designed for **3.3V** operation via the Qwiic connector (I2C).
- Ideal for **user interaction** and input within modular IoT or maker projects.

2.1 Contents

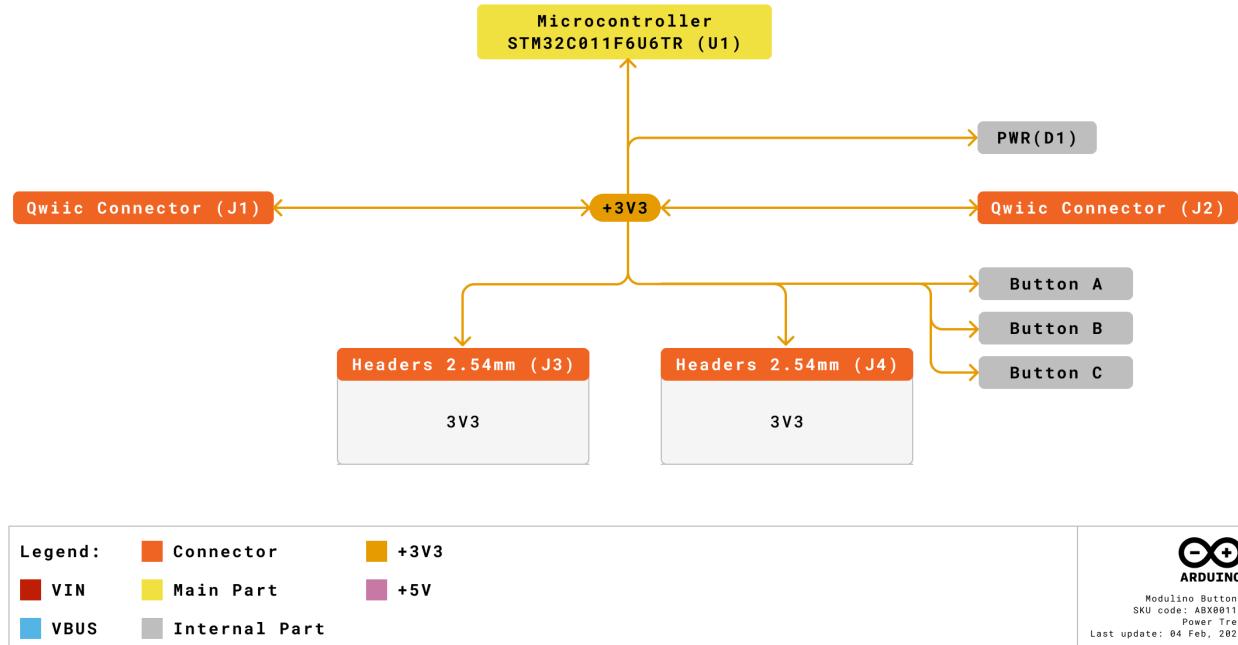
SKU	Name	Purpose	Quantity
ABX00110	Modulino® Buttons	3x push buttons and indicator LEDs	1
	I2C Qwiic cable	Compatible with the Qwiic standard	1

3 Related Products

- **SKU: ASX00027** – Arduino® Sensor Kit
- **SKU: K000007** – Arduino® Starter Kit
- **SKU: AKX00026** – Arduino® Oplà IoT Kit

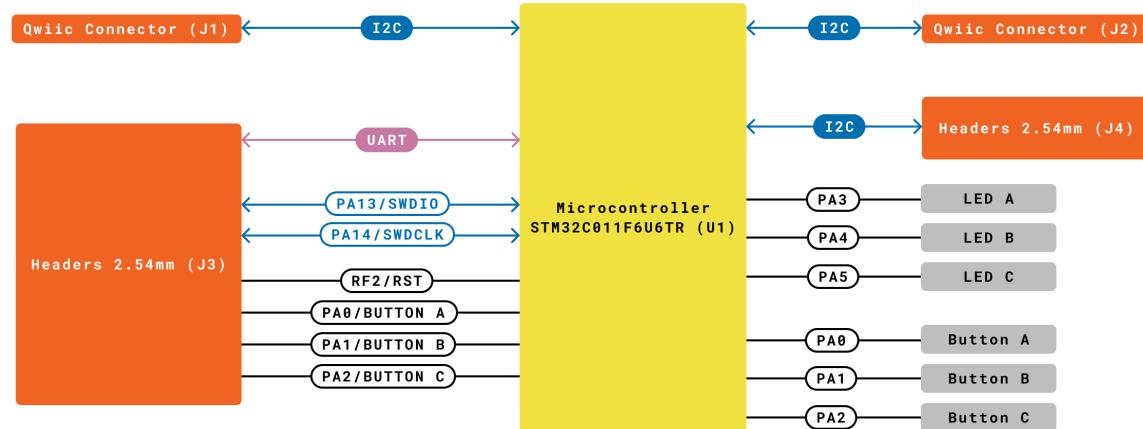
4 Rating

4.1 Recommended Operating Conditions


- **Microcontroller supply range:** 2.0V – 3.6V (STM32C011F4)
- **Powered at 3.3V** through the Qwiic interface (in accordance with the Qwiic standard)
- **Operating temperature:** -40 °C to +85 °C

Typical current consumption:

- Push buttons + LEDs: $\sim 2.5 \text{ mA} \times 3 + \sim 3.4 \text{ mA}$
- Microcontroller idle: $\sim 3.4 \text{ mA}$


5 Power Tree

The power tree for the Modulino® node can be consulted below:

6 Block Diagram

This module includes an STM32C011F4 microcontroller handling button inputs and LED outputs. It communicates via I2C by default, but can be reprogrammed via SWD for custom functionality.

7 Functional Overview

The Modulino® Buttons node has a dedicated microcontroller (STM32C011F4) which scans the three SPST push buttons and drives the three LEDs. By default, it exposes a standard I2C interface over the Qwiic connector. The on-board firmware reports button states and allows simple LED control via I2C registers. Advanced users can re-flash the microcontroller via the SWD interface for additional custom logic.

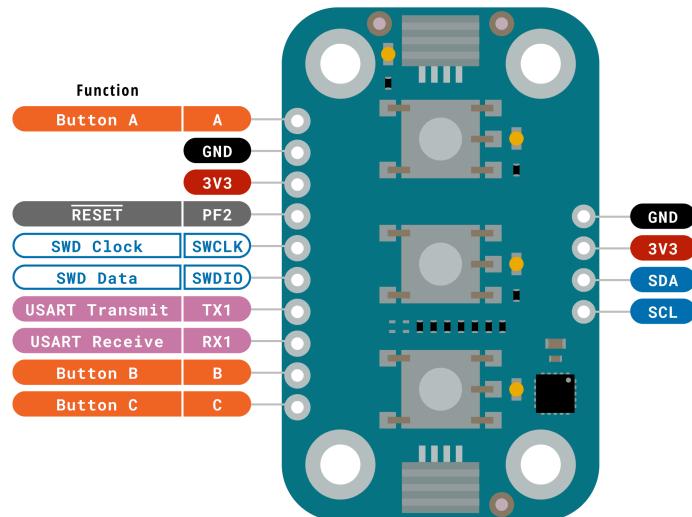
7.1 Technical Specifications (Module-Specific)

Specification	Details
Microcontroller	STM32C011F4
Accuracy	ADC: ± 2 LSB typical INL
Resolution	12-bit ADC
Supply Voltage	Min: 2.0V, Max: 3.6V
Power Consumption	$\sim 2.5 \text{ mA} \times 3 + 3.4 \text{ mA}$ (LEDs + MCU)
User Inputs	3x SPST push buttons
LEDs	3x indicator LEDs (controlled by MCU)
Communication	I2C (Qwiic), SWD (reprogramming), UART (option)

7.2 Pinout

Qwiic / I2C (1x4 Header)

Pin	Function
GND	Ground
3.3V	Power Supply (3.3V)
SDA	I2C Data
SCL	I2C Clock


These pads and the Qwiic connectors share the same I2C bus at 3.3V.

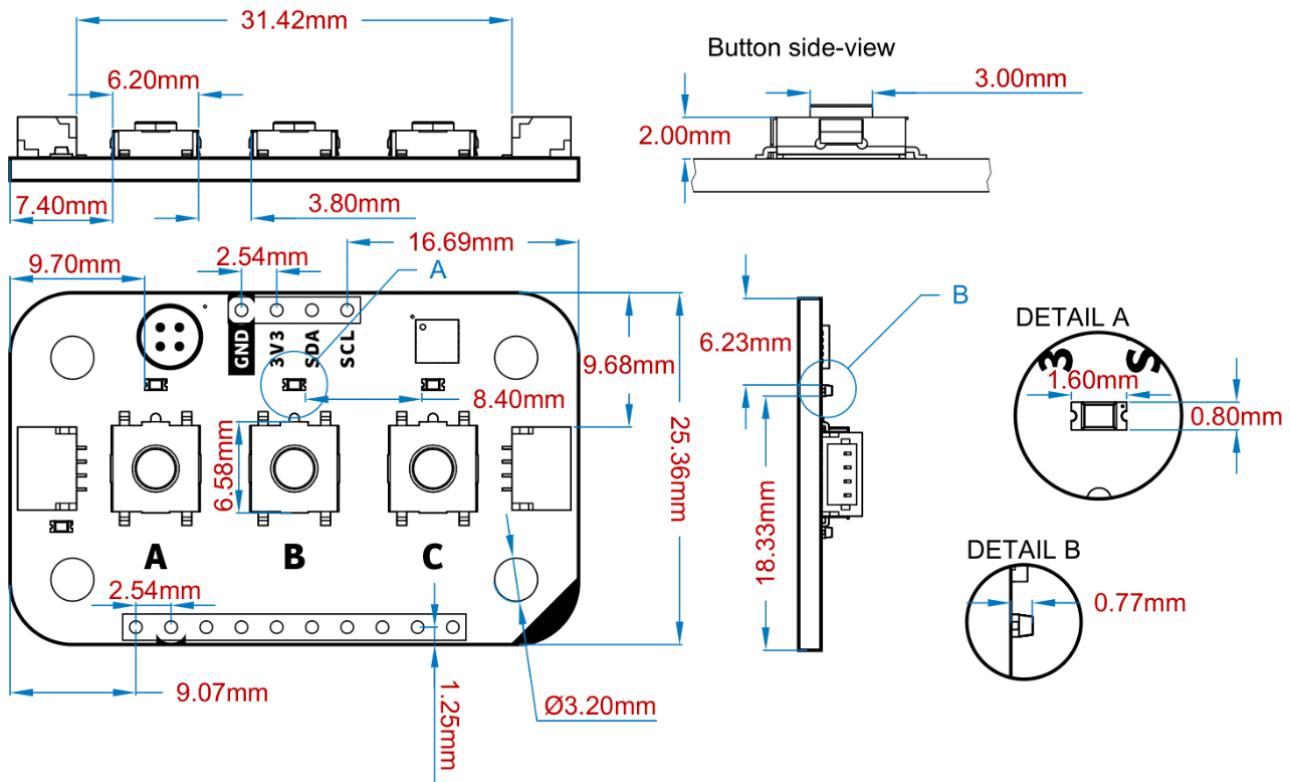
Additional 1x10 Header

Pin	Function
A	Button A
GND	Ground
3V3	3.3 V Power
PF2	RESET
SWCLK	SWD Clock
SWDIO	SWD Data
TX1	USART Transmit
RX1	USART Receive
B	Button B
C	Button C

Note:

- The board can be reprogrammed via SWD to implement custom functionality.
- Pull-up resistor pads exist for optional I2C lines, but are not populated by default.

Legend:	Digital	I2C	Other SERIAL
Power	Analog	SPI	Analog
Ground	Main Part	UART/USART	PWM/Timer



ARDUINO
Modulino Buttons
SKU code: ABX00110
Pinout
Last update: 18 Jun, 2024

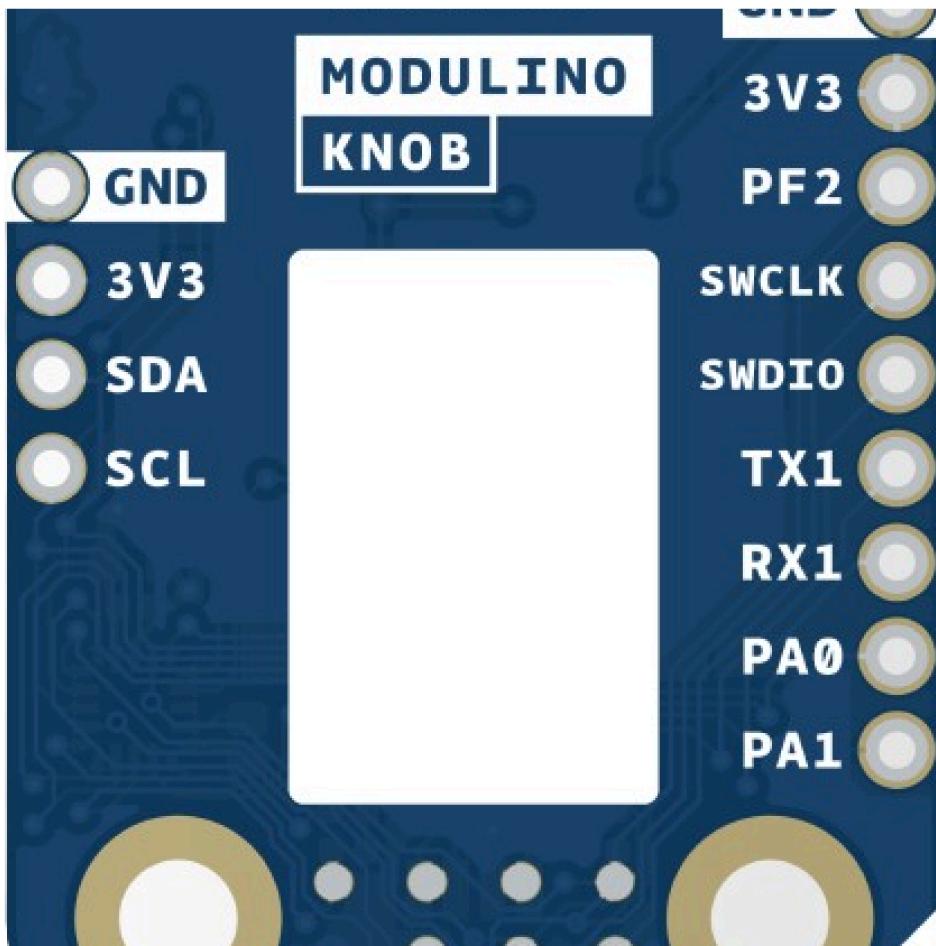
Pinout Overview

7.3 Power Specifications

- **Nominal operating voltage:** 3.3V via Qwiic
- **Microcontroller voltage range:** 2.0V–3.6V

7.4 Mechanical Information

Modulino® Buttons Mechanical Information

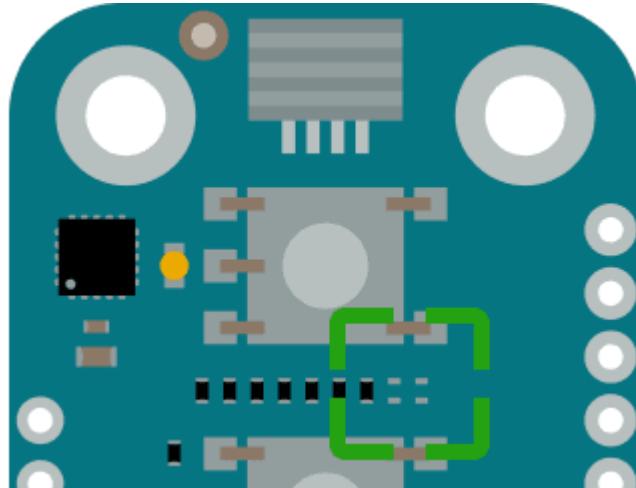

- Board dimensions: 41 mm × 25.36 mm
- Thickness: 1.6 mm (± 0.2 mm)
- Four mounting holes ($\varnothing 3.2$ mm)
 - Hole spacing: 16 mm vertically, 32 mm horizontally

7.5 I2C Address Reference

Board Silk Name	Sensor/Actuator	Modulino® I2C Address (HEX)	Editable Addresses (HEX)	Hardware I2C Address (HEX)
MODULINO BUTTONS	3x SPST Push Buttons	0x7C	Any custom address (via software config.)	0x3E

Note:

- Default I2C address is **0x7C**.
- “Hardware I2C Address” might be seen by advanced scanners, but you should use 0x7C in your code unless changed.
- A white rectangle on the bottom silk allows users to write a new address after reconfiguration.



Blank silk for identification

7.5.1 Pull-up Resistors

This module has pads for optional I2C pull-up mounting in both data lines. No resistors are mounted by default but in case the resistors are needed 4.7 K resistors in an SMD 0402 format are recommended.

These are positioned between the button B and C.

Generic pull-up resistor position

8 Device Operation

By default, the board is an I2C target device. It manages button inputs and LED outputs through integrated firmware. Simply connect it to a 3.3 V Qwiic interface. If needed, you can reprogram the STM32C011F4 via SWD to modify or extend functionality. A LED positioned near each button can be controlled through the microcontroller's GPIOs PA3, PA4 and PA5.

Certifications

9 Certifications Summary

Certification	Status
CE/RED (Europe)	Yes
UKCA (UK)	Yes
FCC (USA)	Yes
IC (Canada)	Yes
RoHS	Yes
REACH	Yes
WEEE	Yes

10 Declaration of Conformity CE DoC (EU)

We declare under our sole responsibility that the products above are in conformity with the essential requirements of the following EU Directives and therefore qualify for free movement within markets comprising the European Union (EU) and European Economic Area (EEA).

11 Declaration of Conformity to EU RoHS & REACH 211

01/19/2021

Arduino boards are in compliance with RoHS 2 Directive 2011/65/EU of the European Parliament and RoHS 3 Directive 2015/863/EU of the Council of 4 June 2015 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.

Substance	Maximum limit (ppm)
Lead (Pb)	1000
Cadmium (Cd)	100
Mercury (Hg)	1000
Hexavalent Chromium (Cr6+)	1000
Poly Brominated Biphenyls (PBB)	1000
Poly Brominated Diphenyl ethers (PBDE)	1000
Bis(2-Ethylhexyl) phthalate (DEHP)	1000
Benzyl butyl phthalate (BBP)	1000
Dibutyl phthalate (DBP)	1000
Diisobutyl phthalate (DIBP)	1000

Exemptions: No exemptions are claimed.

Arduino Boards are fully compliant with the related requirements of European Union Regulation (EC) 1907 /2006 concerning the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH). We declare none of the SVHCs (<https://echa.europa.eu/web/guest/candidate-list-table>), the Candidate List of Substances of Very High

Concern for authorization currently released by ECHA, is present in all products (and also package) in quantities totaling in a concentration equal or above 0.1%. To the best of our knowledge, we also declare that our products do not contain any of the substances listed on the "Authorization List" (Annex XIV of the REACH regulations) and Substances of Very High Concern (SVHC) in any significant amounts as specified by the Annex XVII of Candidate list published by ECHA (European Chemical Agency) 1907 /2006/EC.

12 FCC WARNING

This device complies with part 15 of the FCC Rules.

Operation is subject to the following two conditions:

(1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

13 IC Caution

This device complies with Industry Canada licence-exempt RSS standard(s).

Operation is subject to the following two conditions:

(1) This device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

14 Conflict Minerals Declaration

As a global supplier of electronic and electrical components, Arduino is aware of our obligations with regard to laws and regulations regarding Conflict Minerals, specifically the Dodd-Frank Wall Street Reform and Consumer Protection Act, Section 1502. Arduino does not directly source or process conflict minerals such as Tin, Tantalum, Tungsten, or Gold. Conflict minerals are contained in our products in the form of solder or as a component in metal alloys. As part of our reasonable due diligence, Arduino has contacted component suppliers within our supply chain to verify their continued compliance with the regulations. Based on the information received thus far we declare that our products contain Conflict Minerals sourced from conflict-free areas.

Company Information

Company name	Arduino SRL
Company Address	Via Andrea Appiani, 25 - 20900 MONZA (Italy)

Reference Documentation

Ref	Link
Arduino IDE (Desktop)	https://www.arduino.cc/en/Main/Software
Arduino Courses	https://www.arduino.cc/education/courses
Arduino Documentation	https://docs.arduino.cc/
Arduino IDE (Cloud)	https://create.arduino.cc/editor
Cloud IDE Getting Started	https://docs.arduino.cc/cloud/web-editor/tutorials/getting-started/getting-started-web-editor
Project Hub	https://projecthub.arduino.cc/
Library Reference	https://github.com/arduino-libraries/
Online Store	https://store.arduino.cc/

Revision History

Date	Revision	Changes
01/07/2025	5	Certification
17/06/2025	4	Nomenclature updates
23/05/2025	3	Fixed pinout table and power info
21/05/2025	2	Fixed info on LEDs
14/05/2025	1	First release