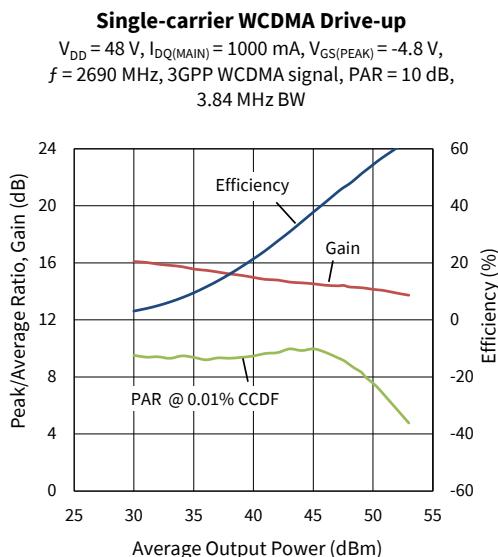


GTRB267008FC


Thermally-Enhanced High Power RF GaN on SiC
Amplifier, 620 W, 48 V, 2496 – 2690 MHz

Description

The GTRB267008FC is a 620-watt (P_{4dB}) GaN on SiC HEMT D-mode amplifier for use in multi-standard cellular power amplifier applications. It features high efficiency, and a thermally-enhanced package with earless flange.

Package Type: H-37248KC-6/2

Features

- GaN on SiC HEMT technology
- Typical pulsed CW performance, 2690 MHz, 48 V, combined outputs, 10 μ s pulse width, 10% duty cycle
 - Output power at P_{4dB} = 619 W
 - Efficiency at P_{4dB} = 72%
- Human Body Model Class 1C (per ANSI/ESDA/JEDEC JS-001)
- Pb-free and RoHS compliant

Typical RF Characteristics

Single-carrier WCDMA Specifications (tested in the Doherty evaluation board for 2496 – 2690 MHz)

$V_{DD} = 48$ V, $I_{DQ} = 1000$ mA, $V_{GS(Peak)} = -4.8$ V, channel bandwidth = 3.84 MHz, peak/average = 10 dB @ 0.01% CCDF

	P_{OUT} (dBm)	Gain (dB)	Efficiency (%)	ACPR + (dBc)	ACPR - (dBc)	OPAR (dB)
2490 MHz	49.3	14.3	55	-28.5	-28.3	7.8
2590 MHz	49.3	14.7	53	-31.7	-32.0	8.1
2690 MHz	49.3	14.2	52	-33.2	-33.5	8.1

All published data at $T_{CASE} = 25^\circ\text{C}$ unless otherwise indicated

ESD: Electrostatic discharge sensitive device—observe handling precautions!

DC Characteristics

Characteristic	Symbol	Min.	Typ.	Max.	Unit	Conditions
Drain-source Breakdown Voltage (main) (peak)	$V_{BR(DSS)}$	150	—	—	V	$V_{GS} = -8 \text{ V}$, $I_D = 10 \text{ mA}$
Drain-source Leakage Current (main) (peak)	I_{DSS}	—	—	6.3	mA	$V_{GS} = -8 \text{ V}$, $V_{DS} = 10 \text{ V}$
		—	—	8.7		
Gate-source Leakage Current (main) (peak)	I_{GSX}	—	—	-9.9	mA	$V_{GS} = -8 \text{ V}$, $V_{DS} = 50 \text{ V}$
		—	—	-13.8		
Gate Threshold Voltage (main) (peak)	$V_{GS(\text{th})}$	-3.8	-3.1	-2.3	V	$V_{DS} = 10 \text{ V}$, $I_D = 36 \text{ mA}$
						$V_{DS} = 10 \text{ V}$, $I_D = 50 \text{ mA}$

Recommended Operating Voltages

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
Drain Operating Voltage	V_{DD}	0	—	50	V	$V_{DS} = 48 \text{ V}$, $I_D = 1000 \text{ mA}$
Gate Quiescent Voltage	$V_{GS(Q)}$	-3.5	-2.8	-2.0		

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-source Voltage	V_{DSS}	125	V
Gate-source Voltage	V_{GS}	-10 to +2	
Operating Voltage	V_{DD}	55	
Gate Current (main)	I_G	36	mA
Gate Current (peak)		50.4	
Drain Current (main)	I_D	13.5	A
Drain Current (peak)		18.9	
Junction Temperature	T_J	275	°C
Storage Temperature Range	T_{STG}	-65 to +150	

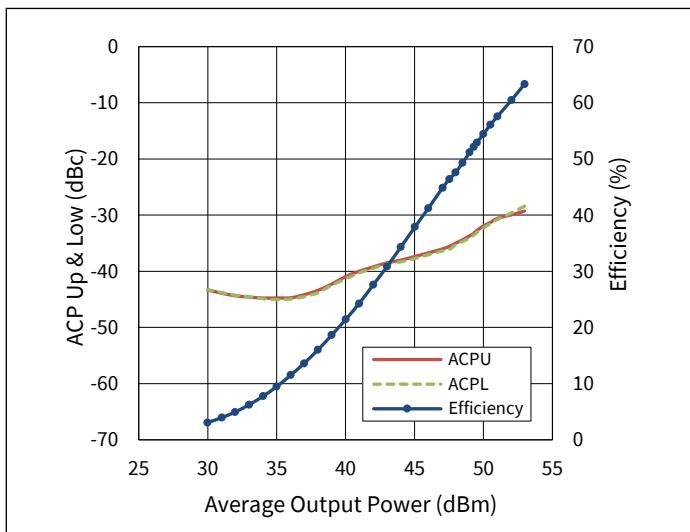
1. Operation above the maximum values listed here may cause permanent damage. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the component. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. For reliable continuous operation, the device should be operated within the operating voltage range (V_{DD}) specified above.

2. Product's qualification were performed at 225 °C. Operation at T_J (275 °C) reduces median time to failure.

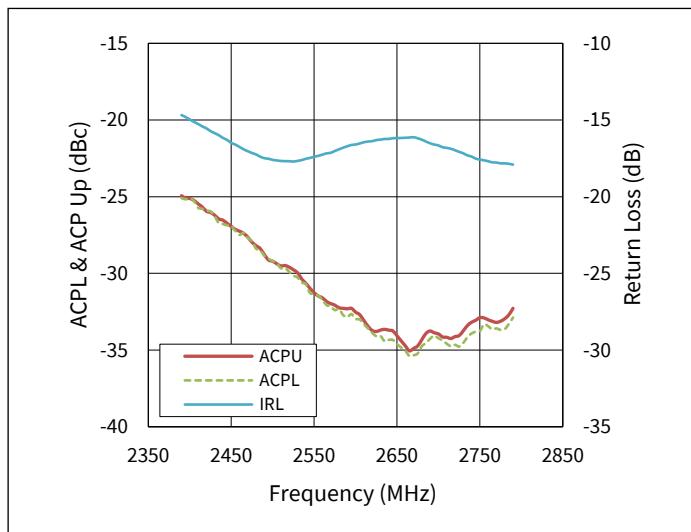
Thermal Characteristics

Parameter	Symbol	Value	Unit	Conditions
Thermal Resistance (main)	$R_{\theta JC}$	1.0	°C/W	$T_{CASE} = 85^\circ\text{C}$, 145 W DC, 48 V
Thermal Resistance (peak)		1.0		$T_{CASE} = 85^\circ\text{C}$, 145 W DC, 48 V

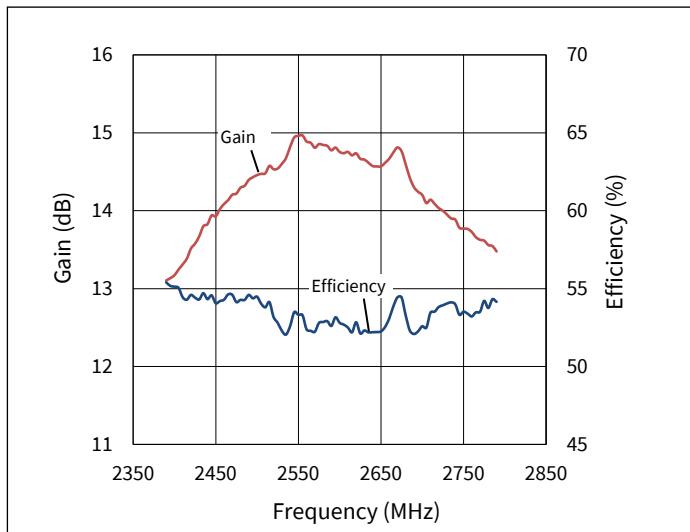
RF Characteristics


Single-carrier WCDMA Specifications (tested in the Doherty production test circuit)

$V_{DD} = 48$ V, $I_{DQ} = 1000$ mA, $P_{OUT} = 85.1$ W avg, $V_{GS(Peak)} = (V_{GS} \text{ at } I_{DQ(Peak)} = 1000 \text{ mA}) - 1.82$ V, $f = 2690$ MHz, 3GPP signal, channel bandwidth = 3.84 MHz, peak/average = 10 dB @ 0.01% CCDF


Characteristic	Symbol	Min.	Typ.	Max.	Unit
Gain	G_{ps}	12	13.5	—	dB
Drain Efficiency	η_D	43	48.7	—	%
Adjacent Channel Power Ratio	ACPR	—	-33.8	-28.5	dBc
Output PAR @ 0.01% CCDF	OPAR	6.0	6.8	—	dB

Ordering Information


Type and Version	Order Code	Package	Shipping
GTRB267008FC V1 R0	GTRB267008FC-V1-R0	H-37248KC-6/2	Tape & Reel, 50 pcs
GTRB267008FC V1 R2	GTRB267008FC-V1-R2	H-37248KC-6/2	Tape & Reel, 250 pcs

Typical Performance (data taken in the Doherty evaluation board)**Figure 1.** Single-carrier WCDMA Drive-up

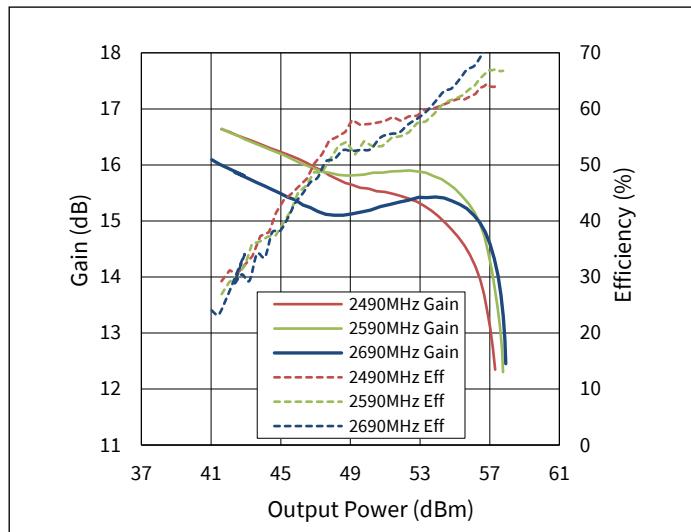

$V_{DD} = 48 \text{ V}$, $I_{DQ(\text{MAIN})} = 1000 \text{ mA}$, $V_{GS(\text{PEAK})} = -4.8 \text{ V}$,
 $f = 2690 \text{ MHz}$, 3GPP WCDMA signal, PAR = 10 dB,
BW = 3.84 MHz

Figure 2. Single-carrier WCDMA Broadband

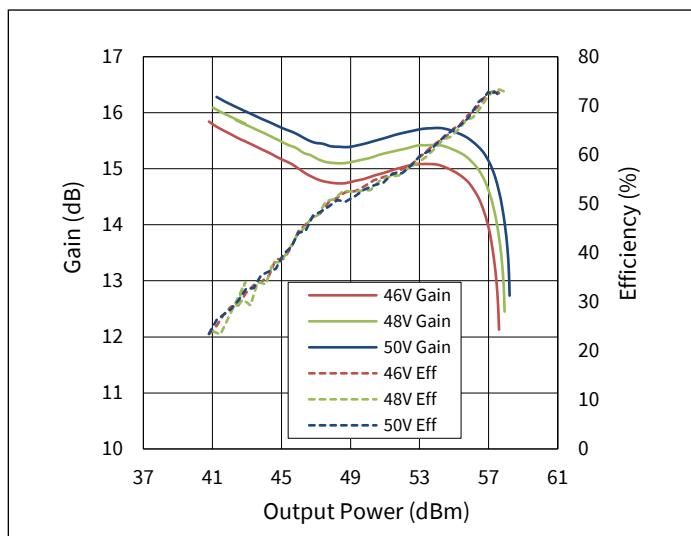
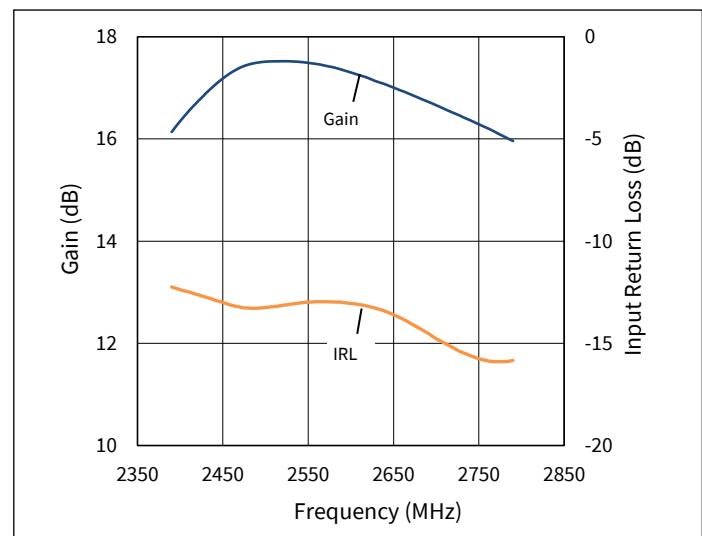


$V_{DD} = 48 \text{ V}$, $I_{DQ(\text{MAIN})} = 1000 \text{ mA}$, $V_{GS(\text{PEAK})} = -4.8 \text{ V}$,
 $P_{OUT} = 49.3 \text{ dBm}$, 3GPP WCDMA signal,
PAR = 10 dB

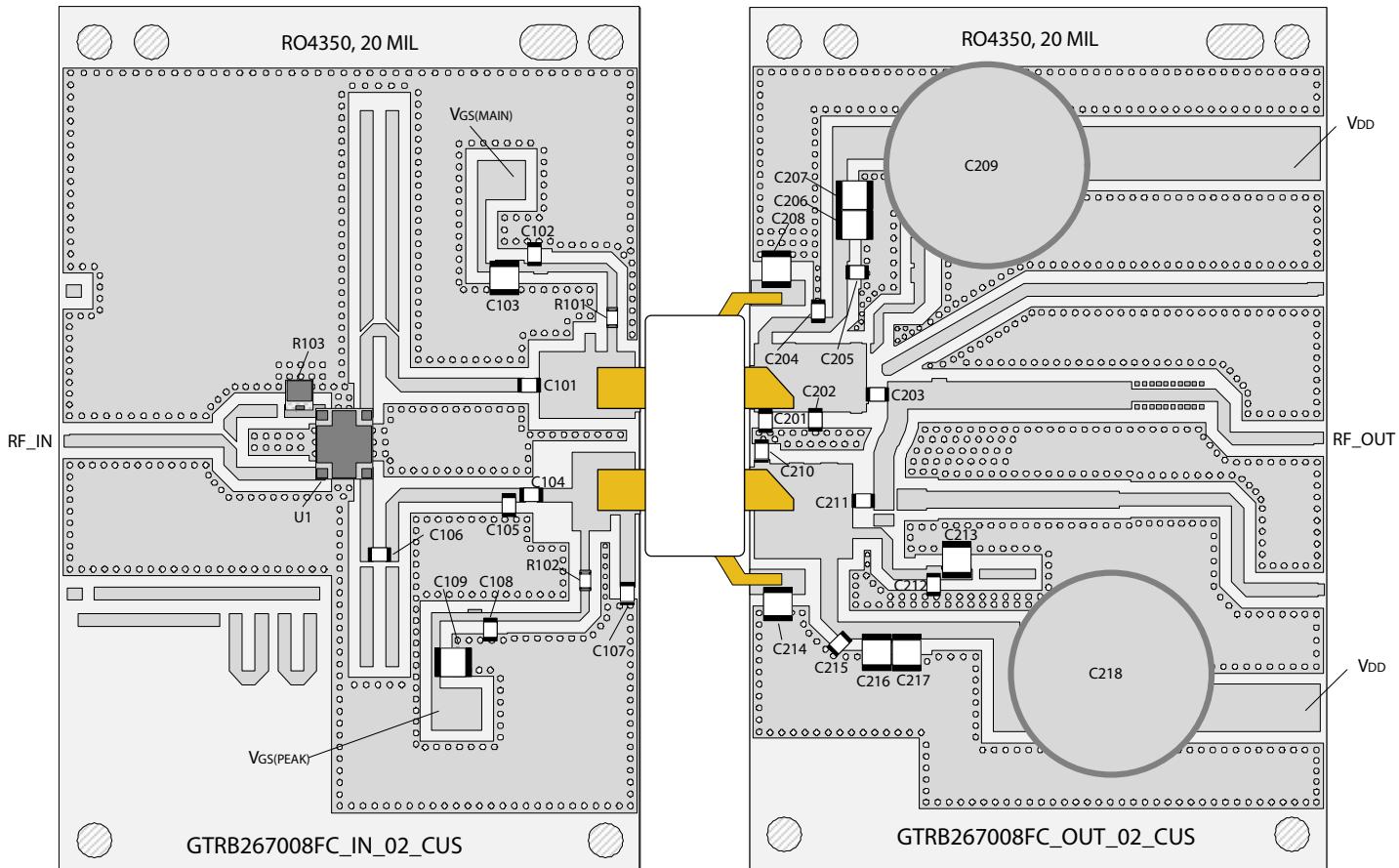
Figure 3. Single-carrier WCDMA Broadband

$V_{DD} = 48 \text{ V}$, $I_{DQ(\text{MAIN})} = 1000 \text{ mA}$, $V_{GS(\text{PEAK})} = -4.8 \text{ V}$,
 $P_{OUT} = 49.3 \text{ dBm}$, 3GPP WCDMA signal,
PAR = 10 dB

Figure 4. Pulse CW Performance

$V_{DD} = 48 \text{ V}$, $I_{DQ(\text{MAIN})} = 1000 \text{ mA}$, $V_{GS(\text{PEAK})} = -4.8 \text{ V}$

Typical Performance (cont.)**Figure 5.** Pulse CW Performance at various V_{DD} $I_{DQ(MAIN)} = 1000 \text{ mA}, V_{GS(Peak)} = -4.8 \text{ V}, f = 2690 \text{ MHz}$ **Figure 6.** Small Signal CW Gain & Input Return Loss $V_{DD} = 48 \text{ V}, I_{DQ(MAIN)} = 1000 \text{ mA}, V_{GSPEAK} = -4.8 \text{ V}$ **Load Pull Performance****Main side load pull performance** - pulsed CW signal: 10 μsec , 10% duty cycle, 48 V, $I_{DQ} = 150 \text{ mA}$, class AB


P_{3dB}											
Max Output Power							Max Drain Efficiency				
Freq [MHz]	Z_s [Ω]	Z_l [Ω]	Gain [dB]	P_{OUT} [dBm]	P_{OUT} [W]	Efficiency [%]	Z_l [Ω]	Gain [dB]	P_{OUT} [dBm]	P_{OUT} [W]	Efficiency [%]
2495	4.00-j12.35	3.03-j5.34	14.2	55.8	383.7	70.0	4.05-j1.38	15.4	53.1	203.2	79.4
2595	7.81-j12.82	2.54-j4.60	14.3	55.5	351.6	72.4	3.92-j2.77	15.0	53.7	232.8	79.7
2690	12.51-j9.50	2.42-j5.65	13.9	55.4	342.8	67.6	2.87-j3.04	15.0	53.2	207.0	81.2

Peak side load pull performance - pulsed CW signal: 10 μsec , 10% duty cycle, 48 V, $V_{GS(Peak)} = -3.3 \text{ V}$, Class B

P_{3dB}											
Max Output Power							Max Drain Efficiency				
Freq [MHz]	Z_s [Ω]	Z_l [Ω]	Gain [dB]	P_{OUT} [dBm]	P_{OUT} [W]	Efficiency [%]	Z_l [Ω]	Gain [dB]	P_{OUT} [dBm]	P_{OUT} [W]	Efficiency [%]
2495	2.63-j9.56	2.22-j6.31	14.9	57.6	576.8	67.6	2.89-j3.49	16.6	55.4	349.9	79.9
2595	3.53-j10.20	2.40-j6.20	15.3	57.4	547.0	69.6	3.13-j4.13	16.9	55.6	363.1	79.2
2690	4.46-j9.28	1.97-j6.80	15.2	57.3	530.9	62.6	2.49-j4.51	17.5	55.4	347.5	77.4

Doherty Evaluation Board, 2490 – 2690 MHz

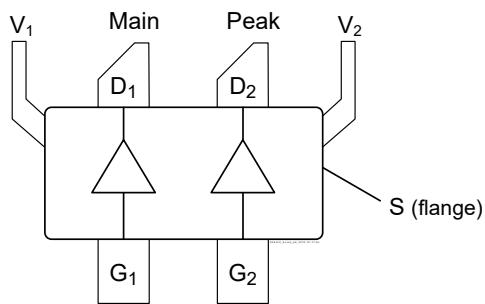
Test Circuit Part Number	LTA/GTRB267008FC-E2
PCB Information	Rogers 4350, 0.508 mm [0.020"] thick, 2 oz. copper, $\epsilon_r = 3.66$

Reference circuit assembly diagram (not to scale)

Components Information

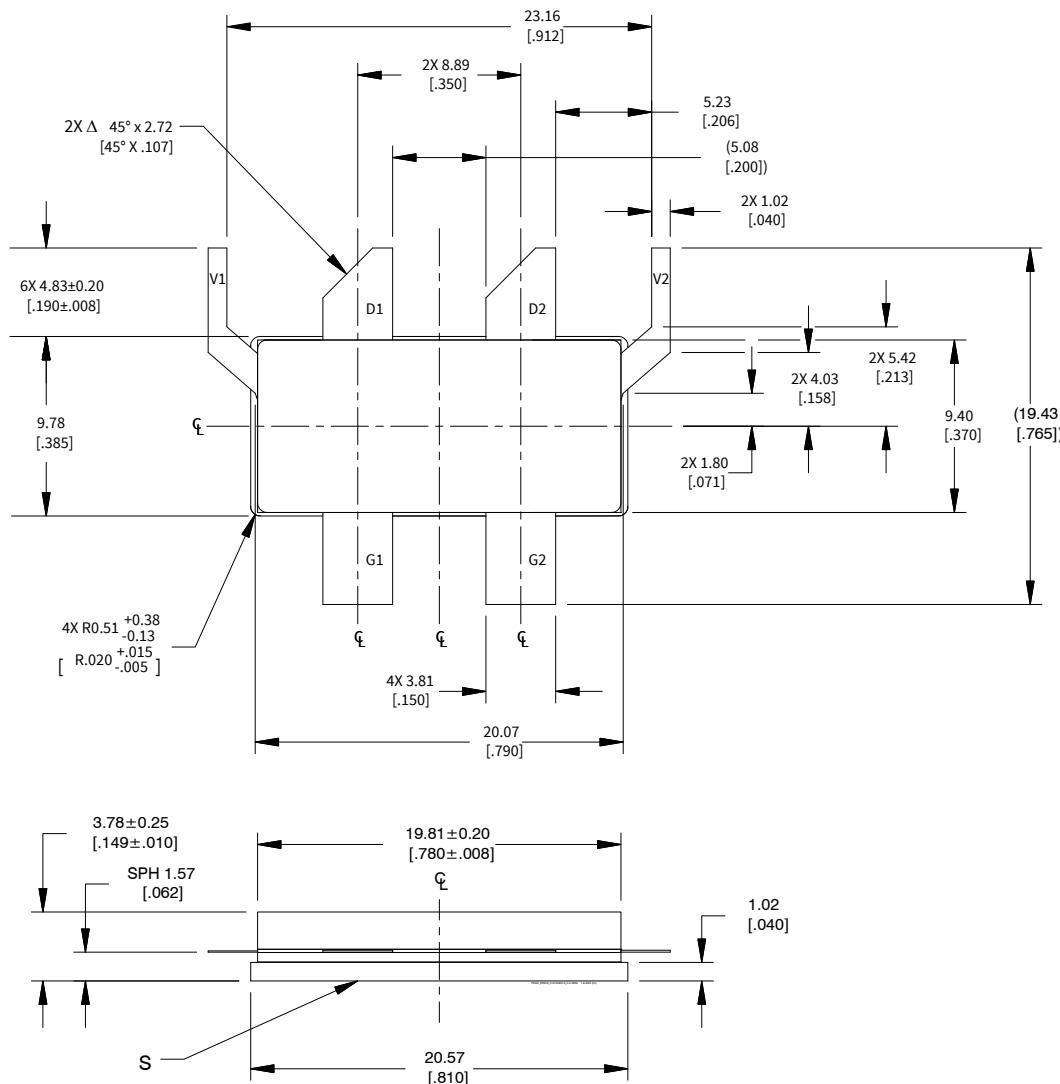
Component	Description	Manufacturer	P/N
Input			
C101	Capacitor, 10 pF	ATC	ATC600F100JT250XT
C102, C106, C108	Capacitor, 18 pF	ATC	ATC600F180JT250XT
C103, C109	Capacitor, 50 V, 10 μ F	Taiyo Yuden	UMK325C7106MM-T
C104	Capacitor, 5.1 pF	ATC	ATC600F5R1BT250XT
C105	Capacitor, 0.5 pF	ATC	ATC600F0R5BT250XT
C107	Capacitor, 0.8 pF	ATC	ATC600F0R8BT250XT
R101, R102	Resistor, 5.6 ohms	Panasonic	ERJ-3GEYJ5R6V
R103	Resistor, 50 ohms	Anaren	C8A50Z4A
U1	Hybrid Coupler	Anaren	X3C26P1-03S
Output			
C201	Capacitor, 1.5 pF	ATC	ATC600F1R5BT250XT
C202	Capacitor, 1.3 pF	ATC	ATC600F1R3BT250XT
C203	Capacitor, 2.4 pF	ATC	ATC600F2R4BT250XT
C204	Capacitor, 0.5 pF	ATC	ATC600F0R5BT250XT
C205, C212, C215	Capacitor, 18 pF	ATC	ATC600F180JT250XT
C206, C207, C208, C213, C214, C216, C217	Capacitor, 100 V, 10 μ F	Murata	GRM32EC72A106KE05L
C209, C218	Capacitor, 100 V, 470 μ F	Panasonic	ECA-2AHG47B
C210	Capacitor, 2.0 pF	ATC	ATC600F2R0BT250XT
C211	Capacitor, 5.6 pF	ATC	ATC600F5R6BT250XT

Bias Sequencing


Bias ON

1. Ensure RF is turned off
2. Apply pinch-off voltage of -5 V to the gate
3. Apply nominal drain voltage
4. Bias gate to desired quiescent drain current
5. Apply RF

Bias OFF


1. Turn RF off
2. Apply pinch-off voltage to the gate
3. Turn-off drain voltage
4. Turn-off gate voltage

Pinout Diagram (top view)

Pin	Description
D1	Drain Device 1 (Main)
D2	Drain Device 2 (Peak)
G1	Gate Device 1 (Main)
G2	Gate Device 2 (Peak)
V1	Drain video decoupling and no DC bias
V2	Drain video decoupling and no DC bias
S	Source (flange)

Lead connections for GTRB267008FC

Package Outline Specifications – Package H-37248KC-6/2**Diagram Notes—unless otherwise specified:**

1. Interpret dimensions and tolerances per ASME Y14.5M-1994
2. Primary dimensions are mm; alternate dimensions are inches
3. All tolerances ± 0.127 [$.005$]
4. Pins: D1, D2 – drain, G1, G2 – gate, V1, V2 – drain video decoupling and no DC bias, S – source (flange)
5. Lead thickness: $0.127 +0.05/-0.025$ [$.005 +0.002/-0.001$]
6. Gold plating thickness: 1.14 ± 0.38 micron [45 ± 15 microinch]

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.