

Features

- GaN on SiC Technology
- Pulsed CW Performance, 2020 MHz, 48 V, 10 μ s Pulse Width, 10% Duty Cycle, Combined Outputs
- Output Power @ $P_{3dB} = 350$ W
- Efficiency @ $P_{3dB} = 65\%$
- Human Body Model Class 1C (per ANSI/ESDA/JEDEC JS-001)
- Pb-free and RoHS* Compliant
- Thermally Enhanced Package

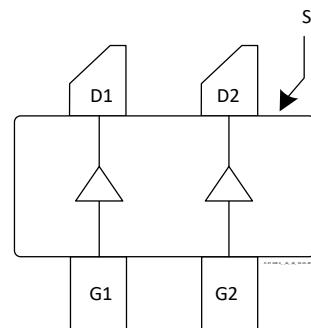
Applications

- Cellular 5G Infrastructure

Description

The GTRB204402FC/1 is a 350 W (P3dB) GaN on SiC HEMT amplifier designed for use in multi-standard cellular power applications. It features high efficiency, and a thermally-enhanced package with earless flange.

Typical RF Performance


Single-Carrier WCDMA Specifications¹:

$V_{DD} = 48$ V, $I_{DQ} = 150$ mA, $V_{GS(Peak)} = -5.5$ V, $T_C = 25^\circ\text{C}$, Channel Bandwidth = 3.84 MHz, Peak/Average = 10 dB @ 0.01% CCDF

Parameter	Frequency (MHz)	Units	Typical
Output Power	1930	dBm	47.5
	1975		47.5
	2020		47.5
Gain	1930	dB	15.9
	1975		16.0
	2020		16.1
Efficiency	1930	%	59.7
	1975		59.7
	2020		61.5
ACPR+	1930	dBc	-27.2
	1975		-27.1
	2020		-26.6
ACPR-	1930	dBc	-27.4
	1975		-27.2
	2020		-26.6
OPAR	1930	dB	8.6
	1975		8.7
	2020		8.1

1. Measurements taken on Evaluation Board.

Functional Schematic

Pin Configuration

Pin #	Function
D1	Drain Device 1 (Main)
D2	Drain Device 2 (Peak)
G1	Gate Device 1 (Main)
G2	Gate Device 2 (Peak)
S	Source (flange)

Ordering Information

Part Number	Package
GTRB204402FC1V1-R0	Tape and Reel, 50 pcs
GTRB204402FC1V1-R2	Tape and Reel, 250 pcs

1 * Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

RF Characteristics

Single-Carrier WCDMA Specifications²: $V_{DD} = 48$ V, $I_{DQ} = 150$ mA, $P_{OUT} = 56.2$ W avg., $V_{GS(PEAK)} = -5.5$ V, $T_C = 25^\circ\text{C}$, $f = 2020$ MHz, 3GPP Signal, Channel Bandwidth = 3.84 MHz, Peak/Average = 10 dB @ 0.01% CCDF

Parameter	Units	Min.	Typ.	Max.
Gain	dB	14.7	16.6	—
Drain Efficiency	%	53.0	59.4	—
Adjacent Channel Power Ratio	dBc	—	-26.8	-24.5
Output PAR @ 0.01% CCDF	dB	7.3	7.8	—

2. Measurements taken in Doherty Production Test Fixture.

DC Characteristics

Parameter	Test Conditions	Units	Min.	Typ.	Max.
Drain-Source Breakdown Voltage	$V_{GS} = -8$ V, $I_D = 10$ mA Main, Peak	V	150	—	—
Drain-Source Leakage Current	$V_{GS} = -8$ V, $V_{DS} = 10$ V Main Peak	mA	—	—	3.1 6.3
Gate-Source Leakage Current	$V_{GS} = -8$ V, $V_{DD} = 50$ V Main Peak	mA	—	—	-5 -10
Gate Threshold Voltage	$V_{DS} = 10$ V, $I_D = 18$ mA, Main $V_{DS} = 10$ V, $I_D = 36$ mA, Peak	V	-3.8	-3.1	-2.3

Recommended Operating Voltages

Parameter	Test Conditions	Units	Min.	Typ.	Max.
Drain Operating Voltage	—	V	0	—	50
Gate Quiescent Voltage	$V_{DS} = 48$ V, $I_D = 150$ mA	V	-3.6	-2.9	-2.1

Absolute Maximum Ratings^{3,4,5}

Parameter	Absolute Maximum
Drain Source Voltage	125 V
Gate Source Voltage	-10 V to +2 V
Operating Voltage	55 V
Gate Current Main Peak	18 mA 36 mA
Drain Current Main Peak	6.75 A 13.50 A
Junction Temperature	+275°C
Storage Temperature	-65°C to +150°C

3. Exceeding any one or combination of these limits may cause permanent damage to this device.

4. MACOM does not recommend sustained operation near these survivability limits.

5. Product's qualification were performed @ +225°C. Operation @ T_J (+275°C) reduces median time to failure.

Thermal Characteristics

Parameter	Test Conditions	Units	Min.	Typ.	Max.
Thermal Resistance ($R_{\theta JC}$) Main Peak	$T_C = +85^\circ\text{C}$, 48 V 76 W DC 136 W DC	°C/W	—	1.8 1.0	—

Bias Sequencing

Bias ON

1. Ensure RF is turned off
2. Apply pinch-off voltage of -5 V to the gate
3. Apply nominal drain voltage
4. Bias gate to desired quiescent drain current
5. Apply RF

Bias OFF

1. Turn RF off
2. Apply pinch-off voltage to the gate
3. Turn-off drain voltage
4. Turn-off gate voltage

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1C devices.

Thermally Enhanced GaN Amplifier

350 W, 48 V, 1930 - 2020 MHz

MACOM®

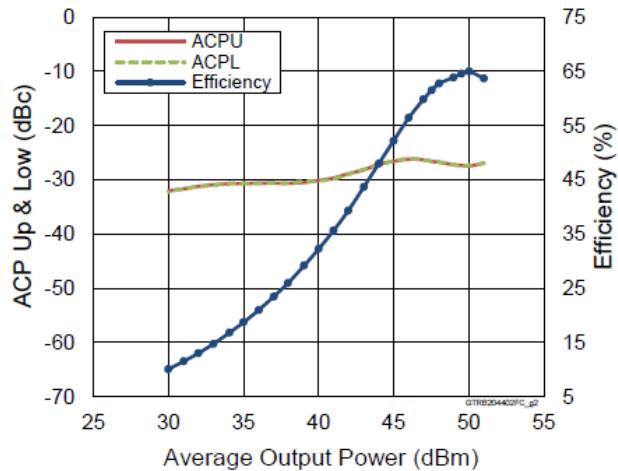
GTRB204402FC/1

Rev. V2

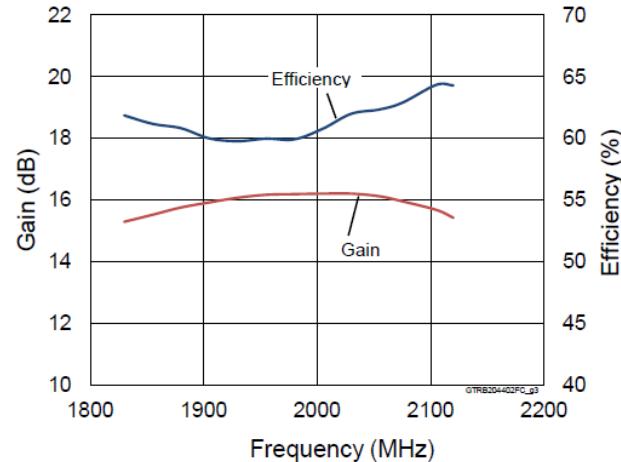
Load Pull Performance: Pulsed CW Signal: 10 μ s, 10% Duty Cycle

Main Side:

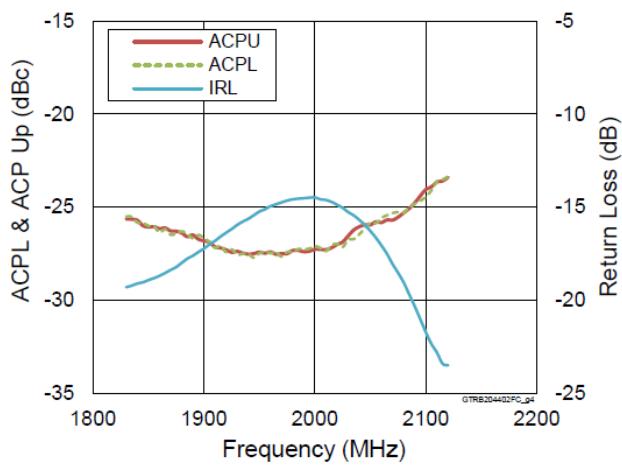
Frequency (MHz)	Z_{SOURCE} (Ω)	Maximum Output Power				
		$V_{\text{DS}} = 48 \text{ V}$, $I_{\text{DQ}} = 150 \text{ mA}$, $T_c = 25^\circ\text{C}$, P3dB, Class AB				
		Z_{LOAD} (Ω)	Gain (dB)	P_{3dB} (dBm)	P_{3dB} (W)	η_D (%)
1930	5.31 - j12.2	7.44 - j9.43	17.43	52.66	184.5	74.1
2025	8.49 - j13.1	6.54 - j10.39	17.50	52.70	186.2	71.0


Frequency (MHz)	Z_{SOURCE} (Ω)	Maximum Drain Efficiency				
		$V_{\text{DS}} = 48 \text{ V}$, $I_{\text{DQ}} = 360 \text{ mA}$, $T_c = 25^\circ\text{C}$, P3dB, Class AB				
		Z_{LOAD} (Ω)	Gain (dB)	P_{3dB} (dBm)	P_{3dB} (W)	η_D (%)
1930	5.31 - j12.2	9.59 - j1.86	18.90	50.30	107.4	81.9
2025	7.77 - j3.09	7.77 - j3.09	19.50	50.40	109.7	83.1

Peak Side:


Frequency (MHz)	Z_{SOURCE} (Ω)	Maximum Output Power				
		$V_{\text{DS}} = 48 \text{ V}$, $V_{\text{GS(PEAK)}} = -5.5 \text{ V}$, $T_c = 25^\circ\text{C}$, P1dB, Class C				
		Z_{LOAD} (Ω)	Gain (dB)	P_{1dB} (dBm)	P_{1dB} (W)	η_D (%)
1930	2.97 - j7.14	2.43 - j3.67	15.85	55.42	348.3	65.0
2025	3.10 - j8.80	1.92 - j3.69	16.50	55.50	354.8	65.1

Frequency (MHz)	Z_{SOURCE} (Ω)	Maximum Drain Efficiency				
		$V_{\text{DS}} = 48 \text{ V}$, $V_{\text{GS(PEAK)}} = -5.5 \text{ V}$, $T_c = 25^\circ\text{C}$, P1dB, Class C				
		Z_{LOAD} (Ω)	Gain (dB)	P_{1dB} (dBm)	P_{1dB} (W)	η_D (%)
1930	2.97 - j7.14	2.14 - j1.18	15.70	52.53	179.1	78.1
2025	3.10 - j8.80	2.29 - j1.96	16.40	53.41	219.3	76.7


Typical Performance Curves: Data taken in production test fixture

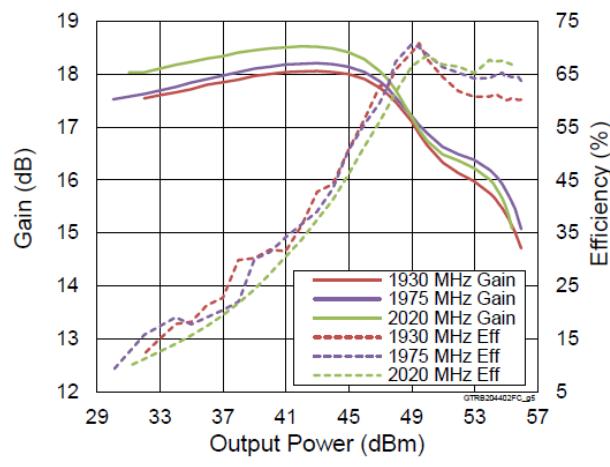

Figure 1. Single-carrier WCDMA drive-up
 $V_{DD} = 48$ V, $I_{DQ(\text{Main})} = 150$ mA, $V_{GS(\text{Peak})} = -5.5$ V,
 $f = 2020$ MHz, 3GPP WCDMA signal,
PAR = 10 dB

Figure 2. Single-carrier WCDMA broadband
 $V_{DD} = 48$ V, $I_{DQ(\text{Main})} = 150$ mA, $V_{GS(\text{Peak})} = -5.5$ V,
 $P_{OUT} = 47.5$ dBm, 3GPP WCDMA signal,
PAR = 10 dB

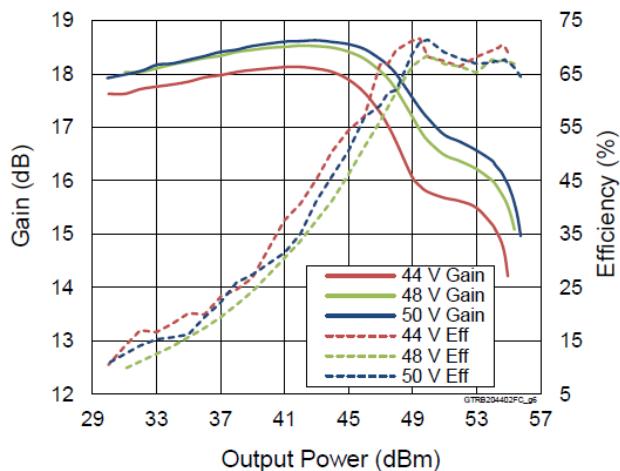


Figure 3. Single-carrier WCDMA broadband
 $V_{DD} = 48$ V, $I_{DQ(\text{Main})} = 150$ mA, $V_{GS(\text{Peak})} = -5.5$ V,
 $P_{OUT} = 47.5$ dBm, 3GPP WCDMA signal,
PAR = 10 dB

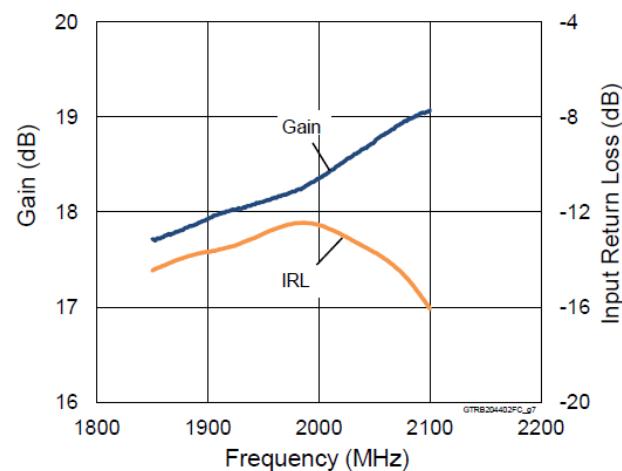


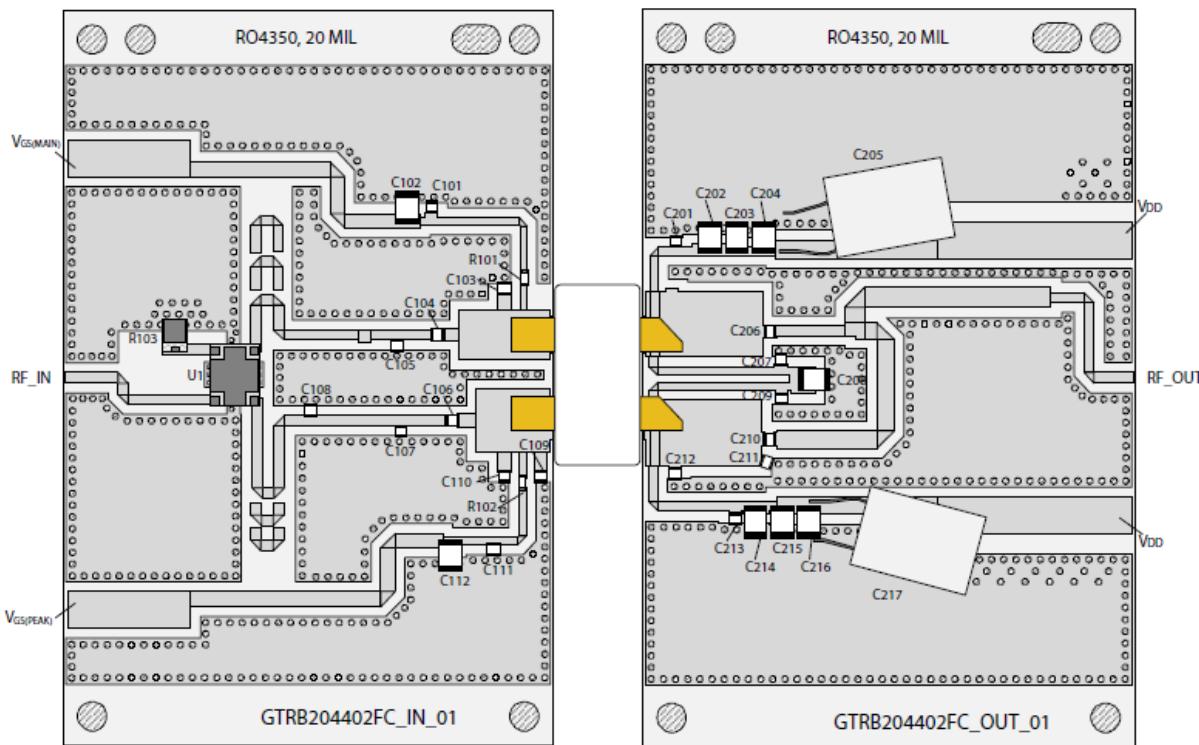
Figure 4. Pulsed CW performance
 $V_{DD} = 48$ V, $I_{DQ(\text{Main})} = 150$ mA, $V_{GS(\text{Peak})} = -5.5$ V

Typical Performance Curves: Data taken in production test fixture

Figure 5. Pulsed CW performance at various V_{DD}
 $I_{DQ(\text{Main})} = 150 \text{ mA}$, $V_{GS(\text{Peak})} = -5.5 \text{ V}$,
 $f = 2020 \text{ MHz}$

Figure 6. Small signal CW gain & input return loss
 $V_{DD} = 48 \text{ V}$, $I_{DQ(\text{Main})} = 150 \text{ mA}$, $V_{GS(\text{Peak})} = -5.5 \text{ V}$

Thermally Enhanced GaN Amplifier


350 W, 48 V, 1930 - 2020 MHz

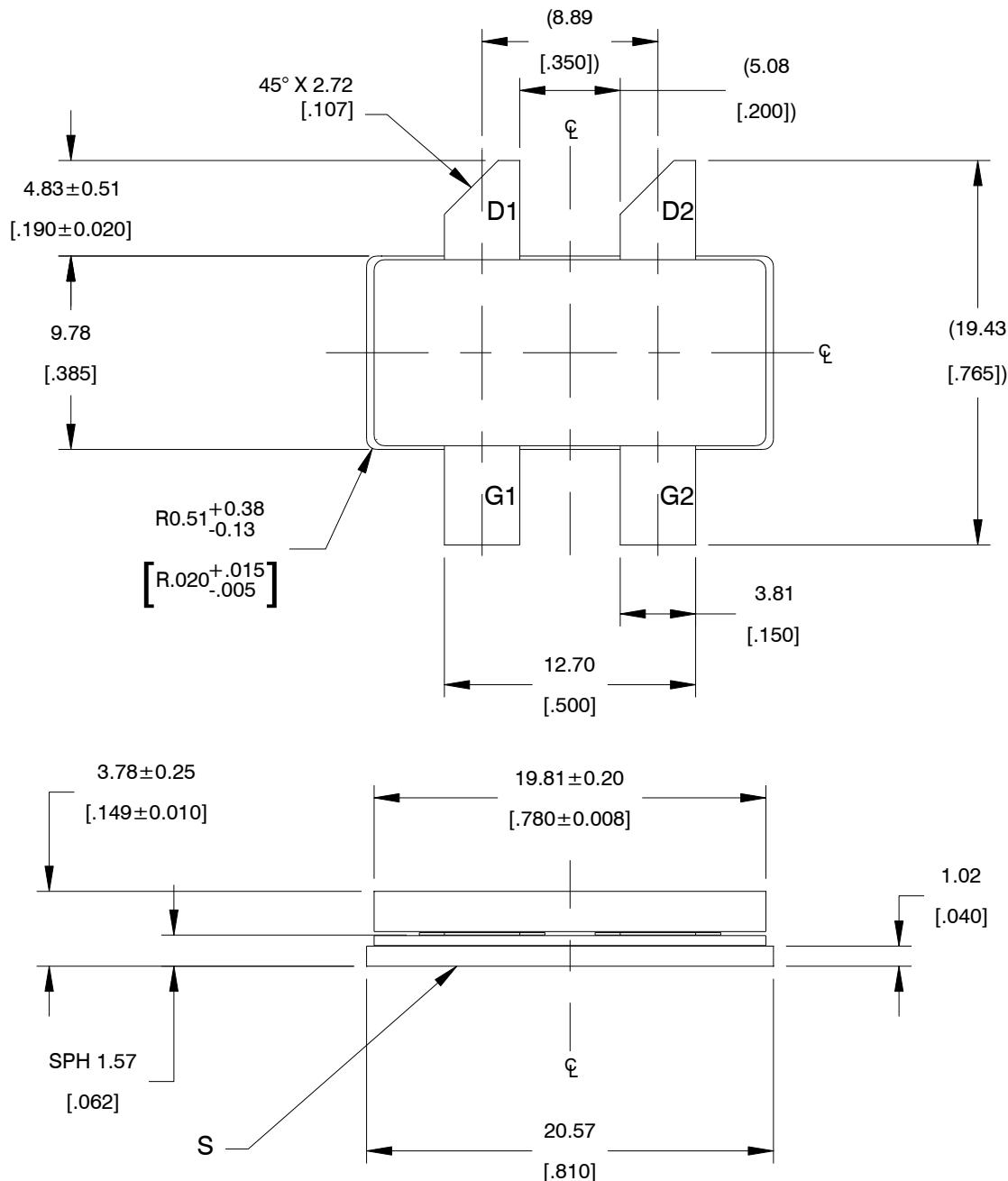
MACOM®

GTRB204402FC/1

Rev. V2

Evaluation Board: 1930 - 2020 MHz

Component	Description	Manufacturer	Manufacturer P/N
Input			
C101, C104, C106, C111	Capacitor, 18 pF	ATC	ATC600F180JT250XT
C102, C112	Capacitor, 100 V, 10 μ F	Murata Electronics	GRM32EC72A106KE05L
C103	Capacitor, 1.6 pF	ATC	ATC600F1R6CT250XT
C105	Capacitor, 1.2 pF	ATC	ATC600F1R2CT250XT
C107	Capacitor, 0.8 pF	ATC	ATC600F0R8CT250XT
C108	Capacitor, 0.6 pF	ATC	ATC600F0R6CT250XT
C109	Capacitor, 1.8 pF	ATC	ATC600F1R8CT250XT
C110	Capacitor, 1.5 pF	ATC	ATC600F1R5CT250XT
R101, R102	Resistor, 9.1 Ω	Panasonic Electronics	ERJ-3GEYJ9R1V
R103	Resistor, 50 Ω	Richardson	C8A50Z4B
U1	Hybrid Coupler	Anaren	X3C21P1-03S
Output			
C201, C207, C209, C213	Capacitor, 18 pF	ATC	ATC600F180JT250XT
C202, C203, C204, C208, C214, C215, C216	Capacitor, 100 V, 10 μ F	Murata Electronics	GRM32EC72A106KE05L
C205, C217	Capacitor, 220 μ F	Panasonic Electronics	EEE-FP1V221AP
C206	Capacitor, 2.7 pF	ATC	ATC600F2R7CT250XT
C210	Capacitor, 3.0 pF	ATC	ATC600F3R0CT250XT
C211	Capacitor, 0.8 pF	ATC	ATC600F0R8CT250XT
C212	Capacitor, 2.2 pF	ATC	ATC600F2R2CT250XT


Thermally Enhanced GaN Amplifier 350 W, 48 V, 1930 - 2020 MHz

MACOM[®]

GTRB204402FC/1

Rev. V2

Lead-Free Outline Drawing H-37248C-4

Interpret dimensions and tolerances per ASME Y14.5M-1994
Primary dimensions are mm; alternate dimensions are inches
All tolerances ± 0.127 [0.005]
Lead thickness: 0.13 ± 0.05 mm [0.005 ± 0.002 inch]
Gold plating thickness: 1.14 ± 0.38 micron [45 ± 15 microinch]

Thermally Enhanced GaN Amplifier

350 W, 48 V, 1930 - 2020 MHz

GTRB204402FC/1

Rev. V2

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.