

FEATURES

- RoHS compliant
- Maxim MAX250/MAX251/MAX253 compatible
- EN62368-1 TUV certificate of compliance
- Isolation to 6kV_{DC}
- Toroidal construction
- Industry-standard pinout
- UL 94 V-0 package materials
- Fully encapsulated
- Compatible with RoHS soldering systems
- Backward compatible with Sn/Pb soldering systems

DESCRIPTION

The 76250ENC converter transformer is specifically designed for use with Maxim chipsets to provide isolated RS232 interfaces. A carefully controlled turns ratio ensures consistent performance whilst a toroidal construction minimises EMI.

The 76253/XXENC converter transformers are specifically designed for use with the MAX253 chip set to provide isolated power supplies. The 5V version can supply 1W and the 3.3V version can supply 500mW. A centre tapped secondary winding allows for full bridge, half bridge or voltage doubling.

SELECTION GUIDE

Order Code	Input Voltage	Output Voltage	Max. Output Current	Isolation Voltage	Turns Ratio
	V	V	mA	V _{DC}	
76250ENC	-	-	-	6000	1CT:1
76253/35ENC	3.3	5.0	100	6000	1: $\sqrt{5}$
76253/55ENC	5.0	5.0	200	6000	1:1.33

76250ENC CHARACTERISTICS

Parameter	Conditions	Min.	Typ.	Max.	Units
Primary Inductance, L _p (1&5)	10kHz, 100mV	1.0	2.0	2.9	μH
Leakage Inductance, L _l (1&5) ²	100kHz, 100mV		35	40	μH
Interwinding Capacitance, C _{WW} (1&2)	100kHz, 100mV		1.5	3.0	pF
D.C. Resistance, R _{DC} (1&5)	<0.1Vdc		1.0	2.0	Ω
Volt-time Product, E _T (1&5)		50			Vμs

76253/35ENC CHARACTERISTICS

Parameter	Conditions	Min.	Typ.	Max.	Units
Primary Inductance, L _p (1&5)	100kHz, 250mV	140	200		μH
Secondary Inductance, L _s (2&6)	100kHz, 250mV	700	1000		μH
Leakage Inductance, L _l (1&5) ²	100kHz, 250mV		5.0	7.0	μH
Interwinding Capacitance, C _{WW} (1&2)	100kHz, 250mV		2.7	3.5	pF
D.C. Resistance, R _{DC} (1&5)	<0.1Vdc		0.4	0.8	Ω
Volt-time Product, E _T (1&5)		25	35		Vμs

76253/55ENC CHARACTERISTICS

Parameter	Conditions	Min.	Typ.	Max.	Units
Primary Inductance, L _p (1&5)	100kHz, 250mV	80		150	μH
Secondary Inductance, L _s (2&6)	100kHz, 250mV	142		267	μH
Leakage Inductance, L _l (1&5) ²	100kHz, 250mV		7.0	10.0	μH
Interwinding Capacitance, C _{WW} (1&2)	100kHz, 250mV		2.7	3.5	pF
D.C. Resistance, R _{DC} (1&5)	<0.1Vdc		0.5	0.9	Ω
Volt-time Product, E _T (1&5)		30	40		Vμs

ABSOLUTE MAXIMUM RATINGS

Operating free air temperature range 76250ENC	0°C to 70°C
Operating free air temperature range 76253/XXENC	-40°C to 85°C
Storage temperature range	-50°C to 125°C
Lead temperature 1.5mm from case for 10 seconds	300°C
Peak current, I _{PK} 76250ENC	300mA
Peak current, I _{PK} 76253/XXENC	400mA
Isolation voltage (flash tested for 1 second)	6000Vdc

SOLDERING INFORMATION³

Peak wave solder temperature	300°C for 10 seconds
Pin finish	Matte tin

All specifications typical at T_A=25°C

1 Refer to mechanical dimensions for pin locations shown in brackets.

2 With pins 2 & 6 short circuited.

3 For further information, please visit <https://www.murata.com/en-global/products/power/rohs>

For full details go to
<https://www.murata.com/en-global/products/power/rohs>

TECHNICAL NOTES**ISOLATION VOLTAGE**

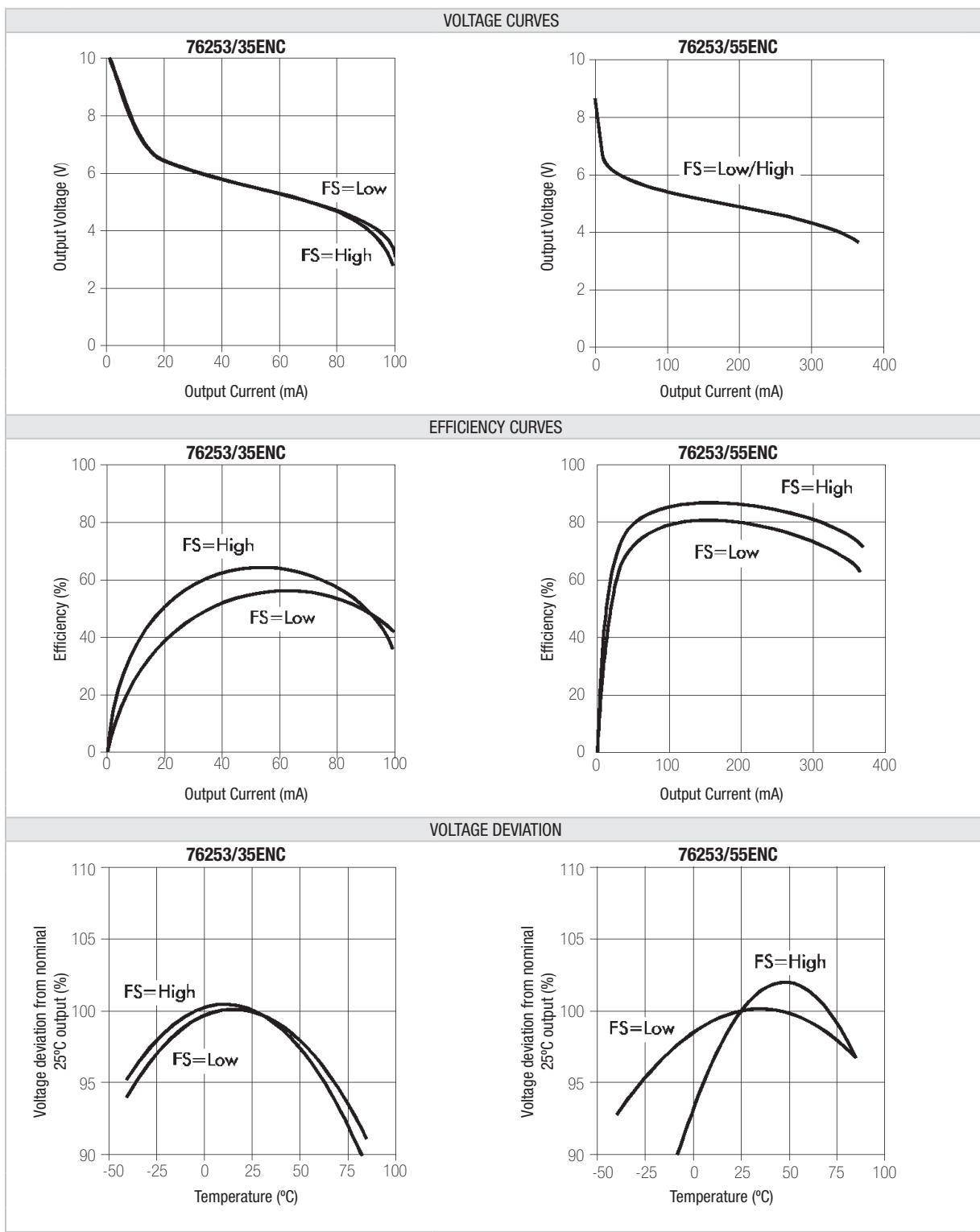
'Hi Pot Test', 'Flash Tested', 'Withstand Voltage', 'Proof Voltage', 'Dielectric Withstand Voltage' & 'Isolation Test Voltage' are all terms that relate to the same thing, a test voltage, applied for a specified time, across a component designed to provide electrical isolation, to verify the integrity of that isolation.

All products in this series are 100% production tested at their stated isolation voltage.

This series is certified by TUV to EN62368-1 with a working voltage of 300Vrms for Reinforced Insulation systems.

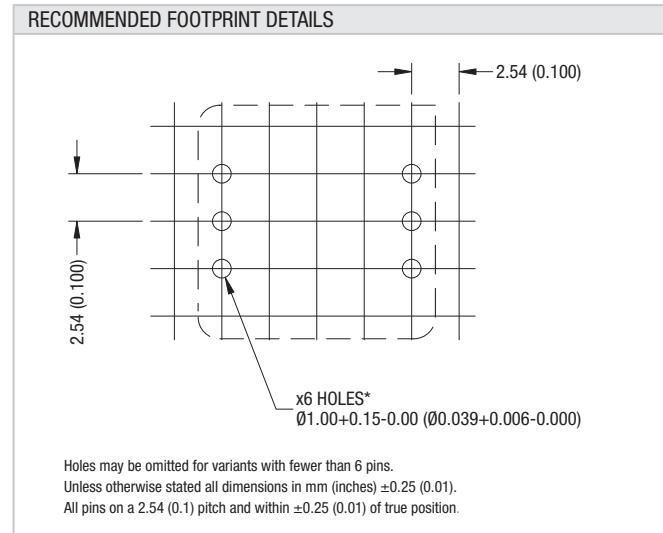
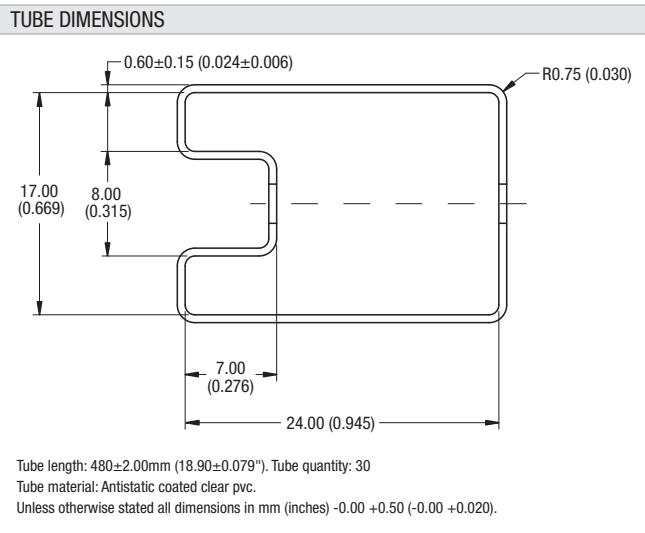
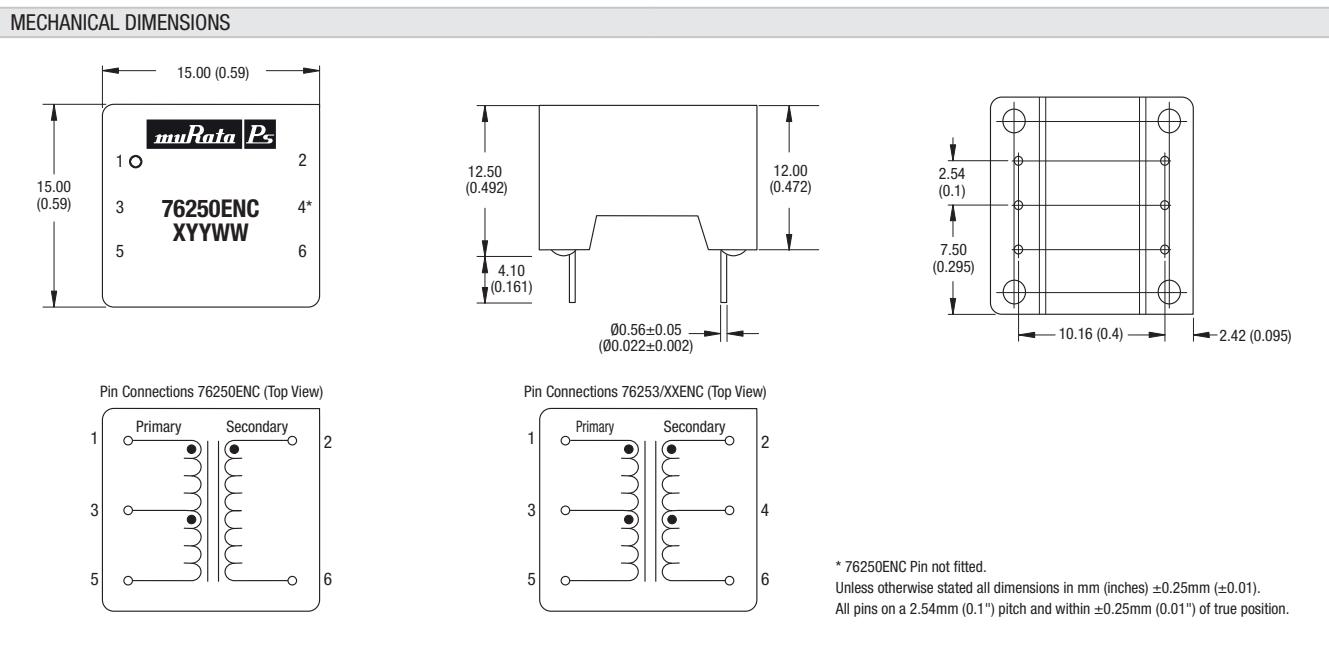
REPEATED HIGH-VOLTAGE ISOLATION TESTING

It is well known that repeated high-voltage isolation testing of a barrier component can actually degrade isolation capability, to a lesser or greater degree depending on materials, construction and environment. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from the specified test voltage.


SAFETY APPROVAL**EN62368-1**

The 7625xENC series has been certified by TUV to EN62368-1 for reinforced insulation to a working voltage of 300Vrms, 2500Vpk and a working frequency of 30kHz. Operation above 30kHz would need evaluation during system level evaluation.

Working altitude OVC II 5000m.




Creepage and clearance is 9.3mm.

TYPICAL CHARACTERISTICS (VOLTAGE CURVES)

All curves are derived from testing with the Maxim MAX235 IC using the circuit shown in application note [MPAN-03](#).

PACKAGE SPECIFICATIONS

DISCLAIMER

Unless otherwise stated in the datasheet, all products are designed for standard commercial and industrial applications and NOT for safety-critical and/or life-critical applications.

Particularly for safety-critical and/or life-critical applications, i.e. applications that may directly endanger or cause the loss of life, inflict bodily harm and/or loss or severe damage to equipment/property, and severely harm the environment, a prior explicit written approval from Murata is strictly required. Any use of Murata standard products for any safety-critical, life-critical or any related applications without any prior explicit written approval from Murata shall be deemed unauthorised use.

These applications include but are not limited to:

- Aircraft equipment
- Aerospace equipment
- Undersea equipment
- Power plant control equipment
- Medical equipment
- Transportation equipment (automobiles, trains, ships, etc.)
- Traffic signal equipment
- Disaster prevention / crime prevention equipment
- Data Processing equipment

Murata makes no express or implied warranty, representation, or guarantee of suitability, fitness for any particular use/purpose and/or compatibility with any application or device of the buyer, nor does Murata assume any liability whatsoever arising out of unauthorised use of any Murata product for the application of the buyer. The suitability, fitness for any particular use/purpose and/or compatibility of Murata product with any application or device of the buyer remain to be the responsibility and liability of the buyer.

Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm, and take appropriate remedial actions. Buyer will fully indemnify and hold Murata, its affiliated companies, and its representatives harmless against any damages arising out of unauthorised use of any Murata products in any safety-critical and/or life-critical applications.

Remark: Murata in this section refers to Murata Manufacturing Company and its affiliated companies worldwide including, but not limited to, Murata Power Solutions.

This product is subject to the following [operating requirements](#) and the [Life and Safety Critical Application Sales Policy](#):
Refer to: <https://www.murata.com/en-eu/products/power/requirements>

Murata Power Solutions (Milton Keynes) Ltd. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice.

© 2023 Murata Power Solutions (Milton Keynes) Ltd