

MOTIX™ TLE92102 multi-MOSFET gate driver IC evaluation board

User guide

Z8F80826675

About this document

Scope and purpose

This user guide contains information about the MOTIX™ TLE92102 multi-MOSFET gate driver IC evaluation board, which is designed to evaluate hardware and software functionality of the MOTIX™ TLE92102 multi-MOSFET gate driver *integrated circuit (IC)*. This user guide provides extensive information about the board's layout, schematic, jumper settings, interfaces, and how to use the GUI. The MOTIX™ TLE92102 multi-MOSFET gate driver IC evaluation board can be used during design-in, for evaluation and measurement of characteristics, and to test features and configuration options of the MOTIX™ TLE92102 multi-MOSFET gate driver IC.

Intended audience

This document is intended for anyone using the MOTIX™ TLE92102 multi-MOSFET gate driver IC evaluation board.

Note: The *printed circuit board (PCB)* and auxiliary circuits are *NOT optimized for final customer design*.

Important notice

“Evaluation Boards and Reference Boards” shall mean products embedded on a printed circuit board (PCB) for demonstration and/or evaluation purposes, which include, without limitation, demonstration, reference and evaluation boards, kits and design (collectively referred to as “Reference Board”).

Environmental conditions have been considered in the design of the Evaluation Boards and Reference Boards provided by Infineon Technologies. The design of the Evaluation Boards and Reference Boards has been tested by Infineon Technologies only as described in this document. The design is not qualified in terms of safety requirements, manufacturing and operation over the entire operating temperature range or lifetime.

The Evaluation Boards and Reference Boards provided by Infineon Technologies are subject to functional testing only under typical load conditions. Evaluation Boards and Reference Boards are not subject to the same procedures as regular products regarding returned material analysis (RMA), process change notification (PCN) and product discontinuation (PD).

Evaluation Boards and Reference Boards are not commercialized products, and are solely intended for evaluation and testing purposes. In particular, they shall not be used for reliability testing or production. The Evaluation Boards and Reference Boards may therefore not comply with CE or similar standards (including but not limited to the EMC Directive 2004/EC/108 and the EMC Act) and may not fulfill other requirements of the country in which they are operated by the customer. The customer shall ensure that all Evaluation Boards and Reference Boards will be handled in a way which is compliant with the relevant requirements and standards of the country in which they are operated.

The Evaluation Boards and Reference Boards as well as the information provided in this document are addressed only to qualified and skilled technical staff, for laboratory usage, and shall be used and managed according to the terms and conditions set forth in this document and in other related documentation supplied with the respective Evaluation Board or Reference Board.

It is the responsibility of the customer’s technical departments to evaluate the suitability of the Evaluation Boards and Reference Boards for the intended application, and to evaluate the completeness and correctness of the information provided in this document with respect to such application.

The customer is obliged to ensure that the use of the Evaluation Boards and Reference Boards does not cause any harm to persons or third party property.

The Evaluation Boards and Reference Boards and any information in this document is provided "as is" and Infineon Technologies disclaims any warranties, express or implied, including but not limited to warranties of non-infringement of third party rights and implied warranties of fitness for any purpose, or for merchantability.

Infineon Technologies shall not be responsible for any damages resulting from the use of the Evaluation Boards and Reference Boards and/or from any information provided in this document. The customer is obliged to defend, indemnify and hold Infineon Technologies harmless from and against any claims or damages arising out of or resulting from any use thereof.

Infineon Technologies reserves the right to modify this document and/or any information provided herein at any time without further notice.

Safety precautions

Safety precautions

Note: Please note the following warnings regarding the hazards associated with development systems.

Table 1 Safety precautions

	<p>Caution: The heat sink and device surfaces of the evaluation or reference board may become hot during testing. Hence, necessary precautions are required while handling the board. Failure to comply may cause injury.</p>
	<p>Caution: Only personnel familiar with the drive, power electronics and associated machinery should plan, install, commission and subsequently service the system. Failure to comply may result in personal injury and/or equipment damage.</p>
	<p>Caution: The evaluation or reference board contains parts and assemblies sensitive to electrostatic discharge (ESD). Electrostatic control precautions are required when installing, testing, servicing or repairing the assembly. Component damage may result if ESD control procedures are not followed. If you are not familiar with electrostatic control procedures, refer to the applicable ESD protection handbooks and guidelines.</p>
	<p>Caution: A drive that is incorrectly applied or installed can lead to component damage or reduction in product lifetime. Wiring or application errors such as under-sizing the motor, supplying an incorrect or inadequate DC supply, or excessive ambient temperatures may result in system malfunction.</p>
	<p>Caution: The evaluation or reference board is shipped with packing materials that need to be removed prior to installation. Failure to remove all packing materials that are unnecessary for system installation may result in overheating or abnormal operating conditions.</p>

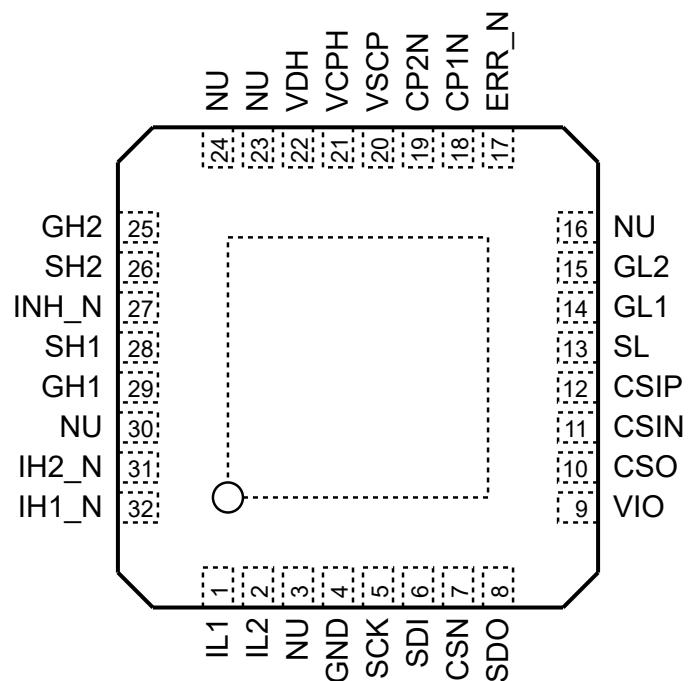
Table of contents

Table of contents

Table of contents	4	
1	The board at a glance	5
1.1	TLE92102 pinout	5
1.2	Block diagram	5
1.3	Technical data	6
2	Board information	8
2.1	Connectors	8
2.1.1	Power connector	8
2.1.2	uIO-stick interface	9
2.1.3	Motor connectors and topologies	9
2.1.4	Micro header	9
2.2	Jumper setting	10
2.3	SMD test points	12
3	Assembly view	14
4	Software toolchain	16
5	Design files	17
5.1	Schematic	17
5.2	Layout	18
5.3	Bill of material	22
	Glossary	26
	References	27
	Revision history	28
	Disclaimer	29

1 The board at a glance

1 The board at a glance


MOTIX™ TLE92102 multi-MOSFET gate driver IC evaluation board provides a straightforward and user-friendly tool for becoming acquainted with Infineon's multi-MOSFET driver IC TLE92102QVW (TLE92102).

It is designed for easy connection to a vehicle-level power supply and can be controlled via SPI. All relevant control pins are accessible through a dedicated 8×2 header using the uIO-stick. Additionally, it can be evaluated using Traveo Starter Kit, CYT7II-B-E-1M-SK, with [MOTIX™ TLE92102 application software](#).

The board allows the internal logic power supply of TLE92102 to be provided either through the uIO-stick or from external sources. It enables control of Phase 1 and 2, which allows operation of up to two motors connected to OUT1 and OUT2 via the provided screw terminal block motor connectors. Furthermore, the board offers a low-side shunt configuration for measuring and monitoring load current.

1.1 TLE92102 pinout

The TLE92102 [IC](#) comes in a small VQFN 32-pin 5x5 mm package, supporting automated optical inspection capability (AOI). It is AEC-Q100, Grade 0 qualified, and developed according to ISO 26262 ed. 2018, ASIL-B.

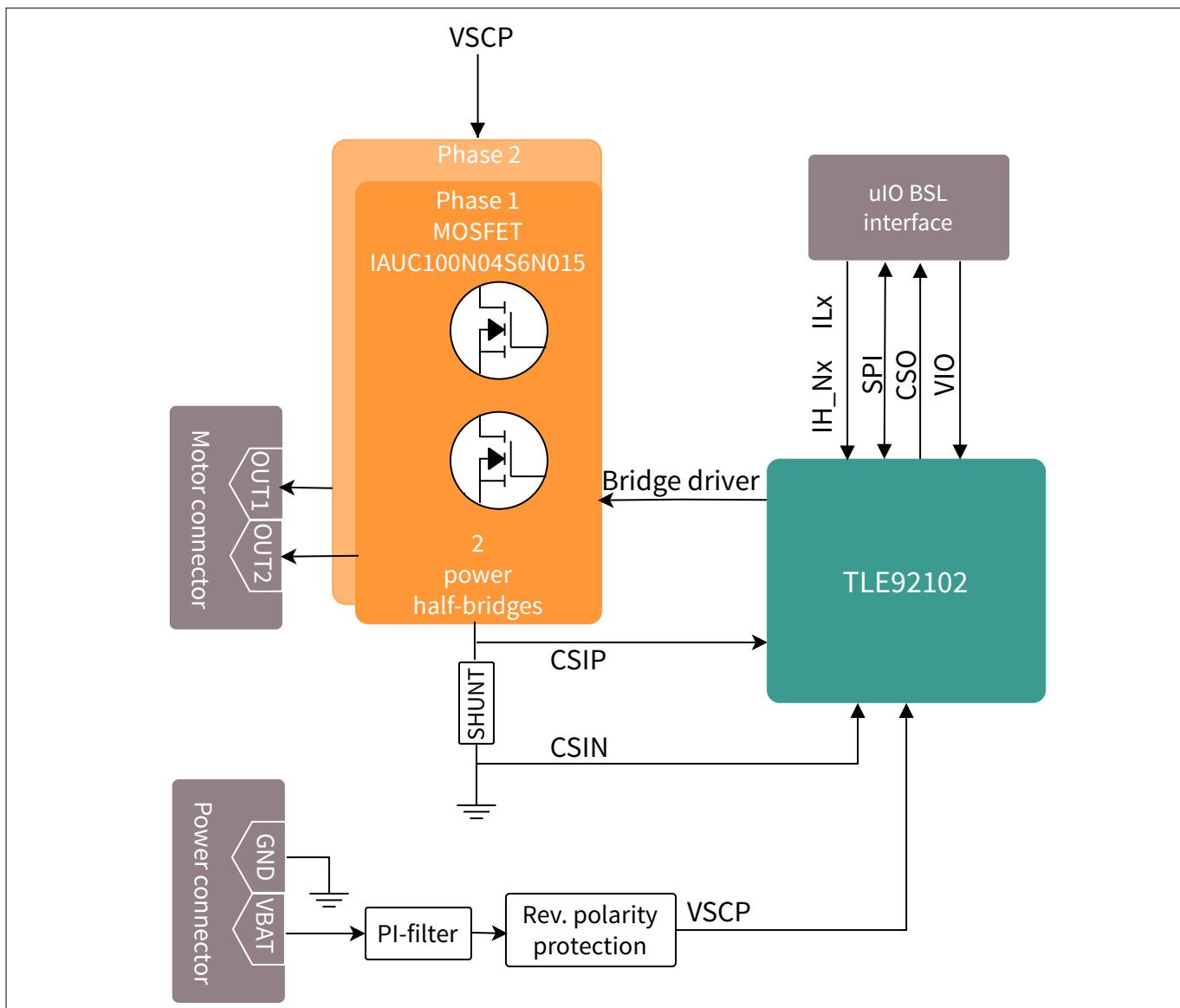


Figure 1 TLE92102 pinout

1.2 Block diagram

The following block diagram shows an overview of the main modules and their connections on the evaluation board.

1 The board at a glance

Figure 2 Block diagram

Infineon's TLE92102 is a multi-MOSFET gate driver IC providing control of up to 4 n-channel MOSFETs in a half-bridge configuration. It supports up to 2 half-bridges for DC motor control applications, such as 12 V power lift gates, 12 V power seat controls, or other 12 V automotive DC motor applications.

The MOTIX™ TLE92102 multi-MOSFET gate driver IC evaluation board is equipped with PI filter and active reverse polarity protection. The PI filter ensures a stable voltage free from noise or ripple for the VSCP pin. Additionally, active reverse polarity protection safeguards against incorrect input voltage polarity. For more details, please refer to the [Schematic](#).

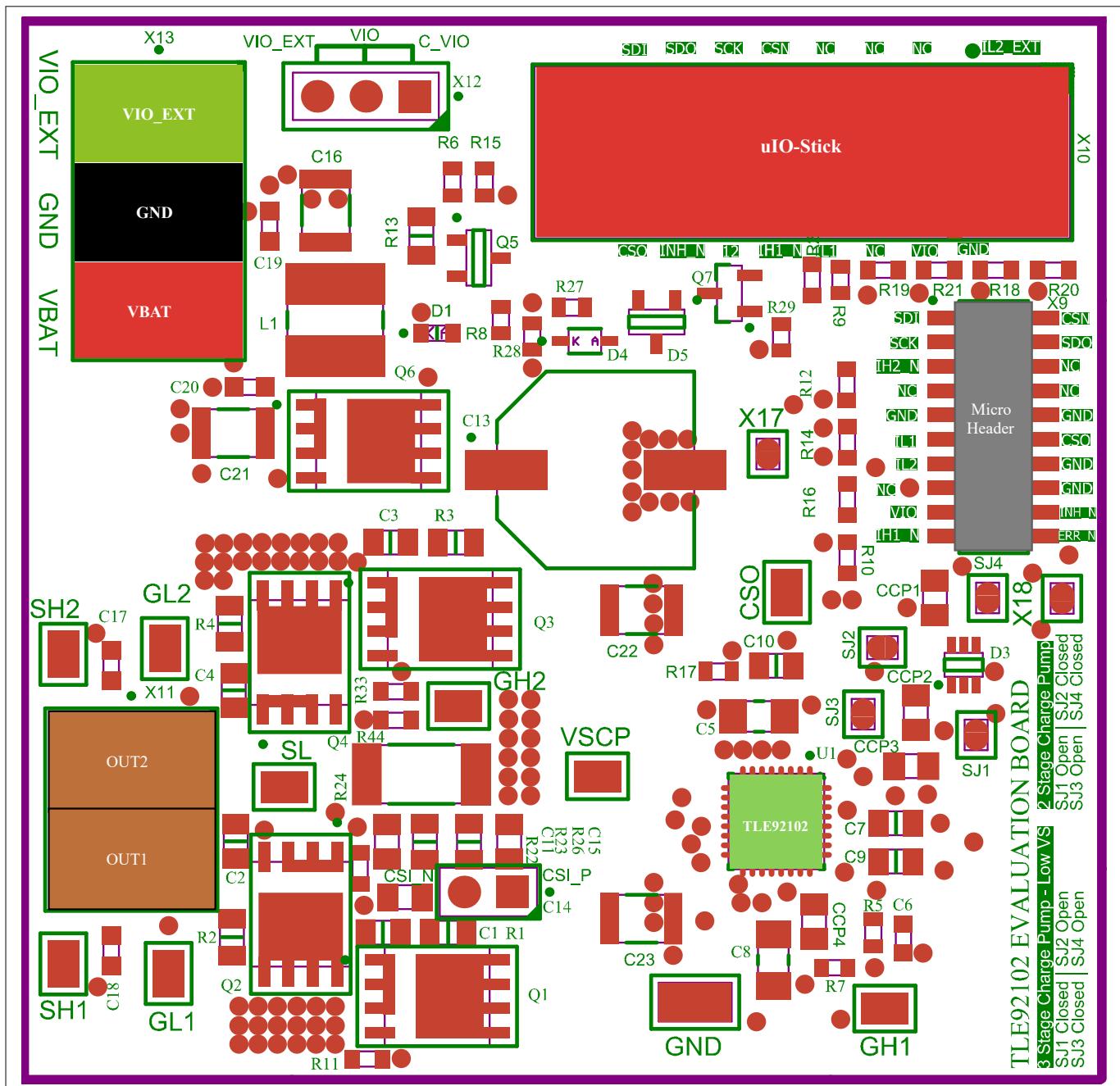
The half bridge 1-2 consists of Infineon's MOSFET, IAUC100N04S6N015, OptiMOS™ 6 40 V power MOS technology in the 5 x 6 mm² SS08 leadless package with the highest quality level and robustness for automotive applications.

1.3 Technical data

Technical data of MOTIX™ TLE92102 multi-MOSFET gate driver IC evaluation board is specified in the table below. Current capability for supply and motor phases is limited to 15 A by the default screw terminal block for battery supply, X13 and the motor phase connector, X11.

1 The board at a glance

Table 2 **Technical data**

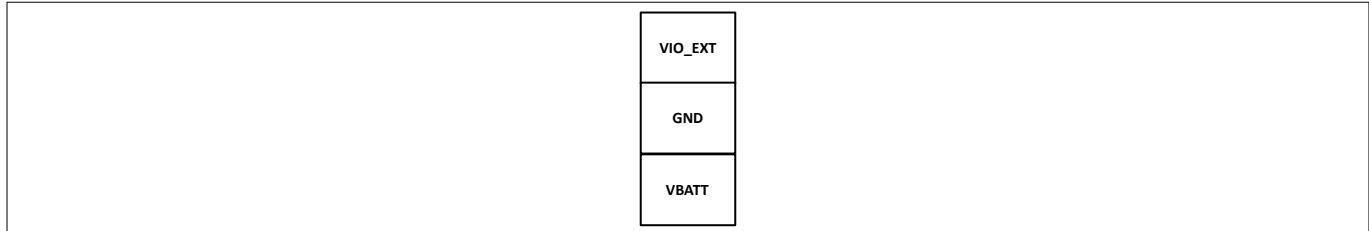

Supply voltage (VSCP/VBAT)	12 V (typ), 29 V(max)
Supply current	15 A (DC current)
Motor current	15 A (max current)
Board power	200 W
Logic power supply (VIO)	5 V

Note: *Logic power supply(VIO) of MOTIX™ TLE92102 multi-MOSFET gate driver IC evaluation board is dependent on the logic supply of the connected microcontroller, that is, 3.3V or 5V.*

2 Board information

2.1 Connectors

Several external connections are available on the MOTIX™ TLE92102 multi-MOSFET gate driver IC evaluation board.


Figure 3 **Connections**

2.1.1 Power connector

The screw terminal block, labelled X13, is used to provide the input power supply. X13 connects the supply voltage to the VBAT and ground to GND. In addition to the main power supply (VBAT), the TLE92102 EVAL board requires a logic supply, referred to as VIO, which can range from 3.0 V to 5.5 V. If the VIO is supplied externally,

2 Board information

the logic supply voltage should be connected to VIO_EXT, with the ground connected to GND. For more information, please refer to " [Jumper setting](#) ".

Figure 4 Power connector

2.1.2 uI/O-stick interface

X10 connector is for the uI/O-stick interface. The uI/O-stick interface is used to establish communication with the TLE92102 for programming of the registers and to control the DC motor via the GUI. The pinout is shown [Figure 5](#):

PWM/ GPIO	NC	NC	NC	CSN	SCK	SDO	SDI
1	3	5	7	9	11	13	15
2	4	6	8	10	12	14	16

GND VIO NC PWM/
GPIO PWM/
GPIO PWM/
GPIO GPIO CSO

Figure 5 Pin configuration of uI/O-stick

2.1.3 Motor connectors and topologies

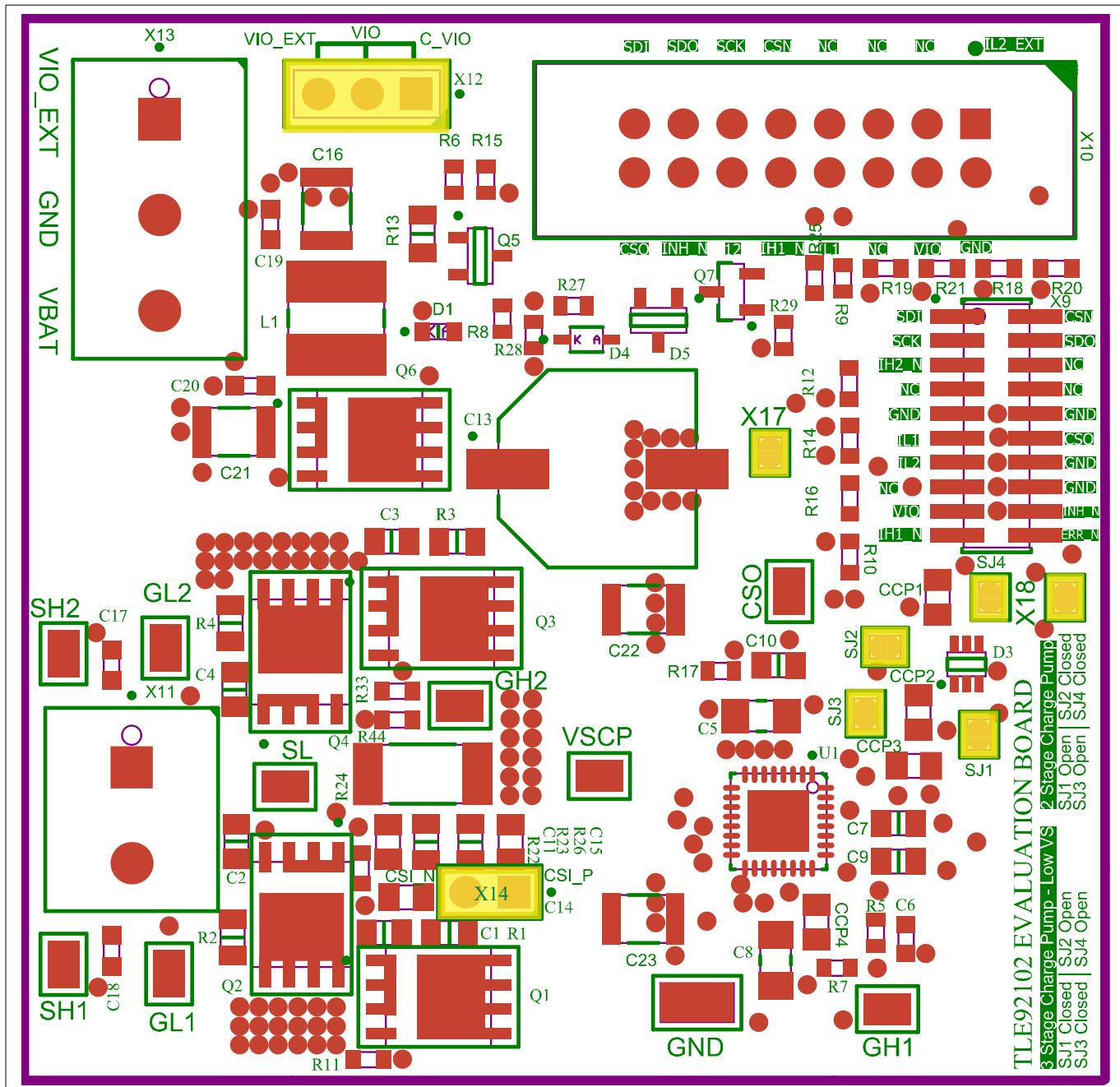
The screw terminal connector X11 is an output terminal of MOTIX™ TLE92102 multi-MOSFET gate driver IC evaluation board. And used to connect DC motors in different configurations, as shown in [Figure 6](#):

Figure 6 Motor connector and configuration

2.1.4 Micro header

X9 is a micro header with 10x2 pins, a 1.27 mm pitch, featuring all digital pins and CSO from TLE92102. This micro header is intended for testing purposes. The pinout for X9 header is shown [Figure 7](#):

2 Board information


C_SDI	C_SCK	IH2_N	NC	GND	C_IL1	IL2	NC	C_VIO	C_IH1_N
1	3	5	7	9	11	13	15	17	19
2	4	6	8	10	12	14	16	18	20

C_CSN C_SDO NC NC GND CSO GND GND INH_N ERR_N

Figure 7**Micro header****2.2 Jumper setting**

This chapter discusses about the various jumper settings present on MOTIX™ TLE92102 multi-MOSFET gate driver IC evaluation board and its functionality, as shown in [Figure 8](#).

2 Board information

Figure 8 Board Jumpers

X12: in addition to the main power supply (VBAT), the TLE92102 EVAL board requires a logic supply, referred to as VIO. By default, X12 is left open as the VIO pin for the TLE92102 [IC](#), is powered by the uIO stick.

VIO can be supplied through VIO_EXT from the X13 connector in case it is powered by Traveo Starter Kit, CYT711-B-E-1M-SK or external logic supply. In this configuration, the VIO pin should be connected to the VIO_EXT pin of the X12 connector.

When VIO is supplied via the C_VIO pin of the X9 connector, the VIO pin should be connected to the C_VIO pin of the X12 connector.

X14: X14 connectors serve as the test points for the current-sense amplifier, designated as CSI_P and CSI_N. These connectors can be shorted if the *current-sense amplifier (CSA)* is not needed.

X17 and X18: for the solder jumpers, X17 and X18 are used to supply input signals to IL2 and IH2_N of TLE92102. These signals can come either from the same GPIO/PWM pin or from separate GPIO/PWM pins on the uLO-stick.

2 Board information

By default, X17 is closed while X18 is open, ensuring that the input signals to IL2 and IH2_N of TLE92102 are received from the same GPIO/PWM pin on the uIO-stick.

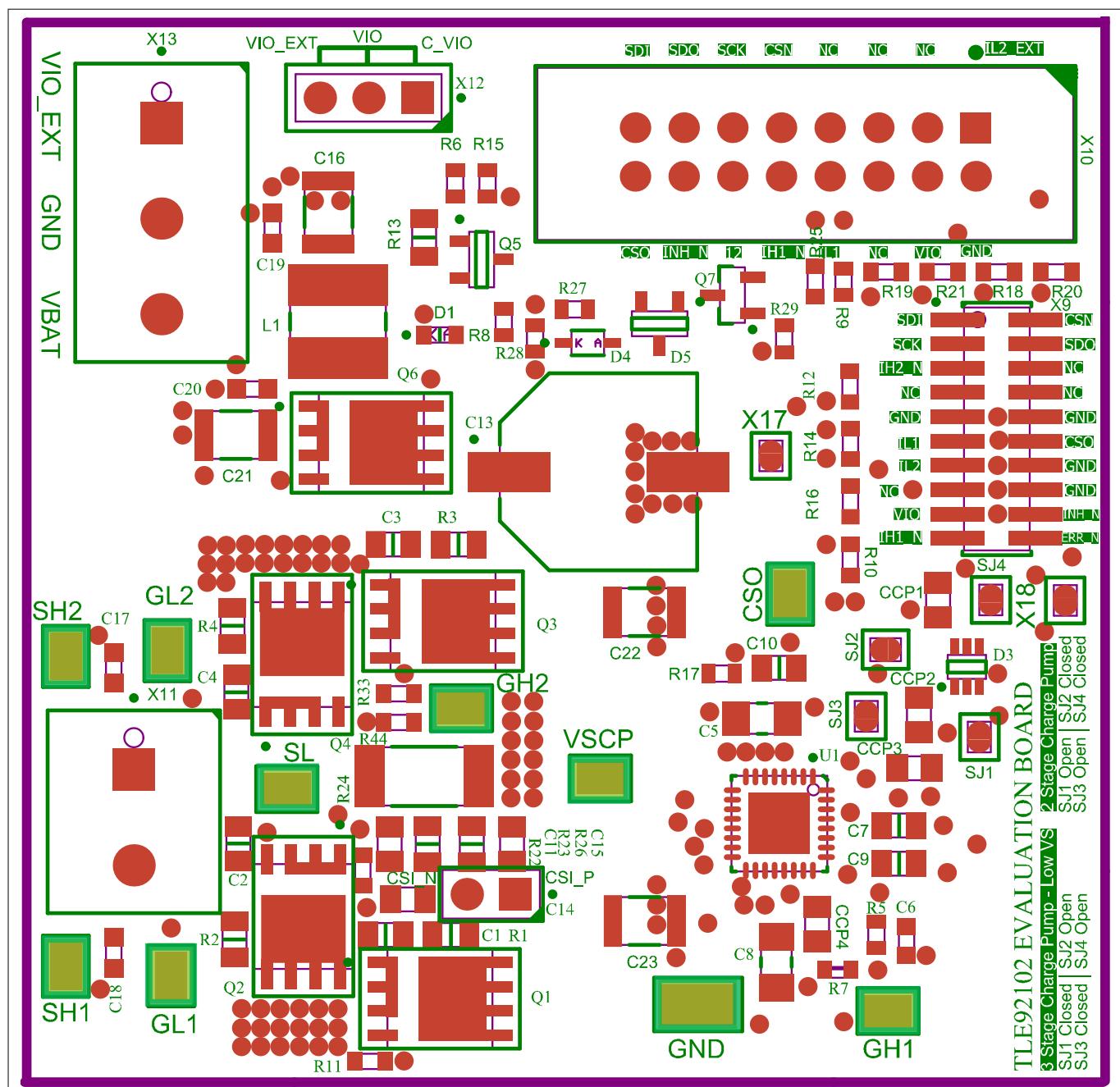
In an alternate configuration, X18 can be closed and X17 kept open, allowing input signals to IL2 and IH2_N of TLE92102 to be sourced from separate GPIO/PWM pins on the uIO-stick.

SJ1, SJ2, SJ3, and SJ4: these solder jumpers are used to configure the charge pump for either a two-stage or three-stage operation, depending on the voltage supply of VSCP(VBAT) specified in the datasheet.

By default, SJ2 and SJ4 are closed while SJ1 and SJ3 remain open, allowing the charge pump to operate in a two-stage mode for the voltage range of VSCP mentioned in datasheet with P-numbers: P_GEN_07_01, P_GEN_07_02, and P_GEN_07_03.

To configure the charge pump for three-stage operation, close SJ1 and SJ3 while keeping SJ2 and SJ4 open. This setup is applicable for the voltage range of VSCP specified in the datasheet with P-number: P_GEN_07_04.

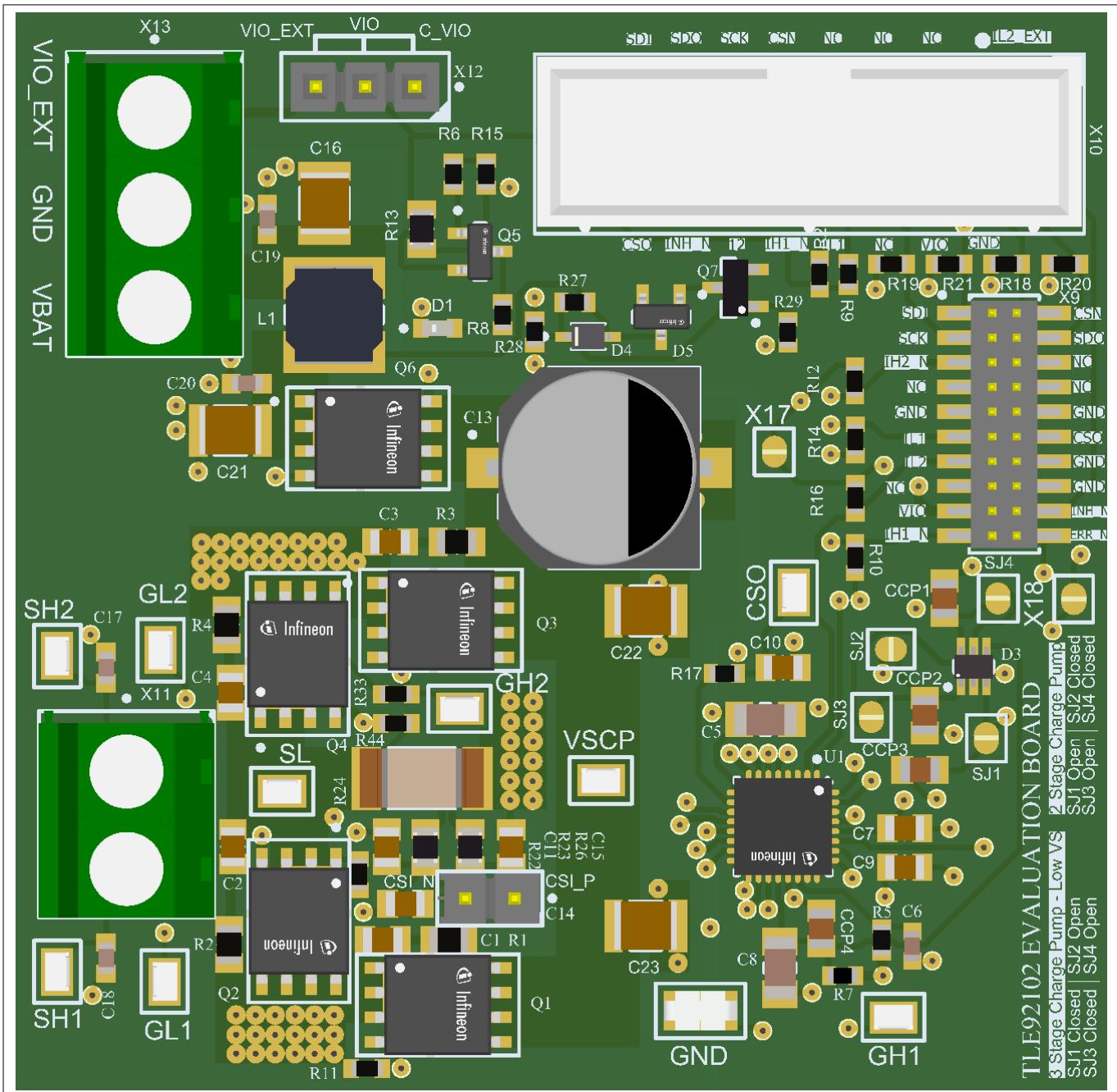
2.3 SMD test points


The TLE92102 EVAL board features 10 SMD test points for evaluation and testing. The board includes test points for gate signals:

- GH1, GH2
- GL1, GL2
- SH1, SH2
- SL
- VSCP
- GND
- CSO

Which are highlighted in the image below within the green box.

2 Board information


Figure 9

SMD test points

3 Assembly view

3

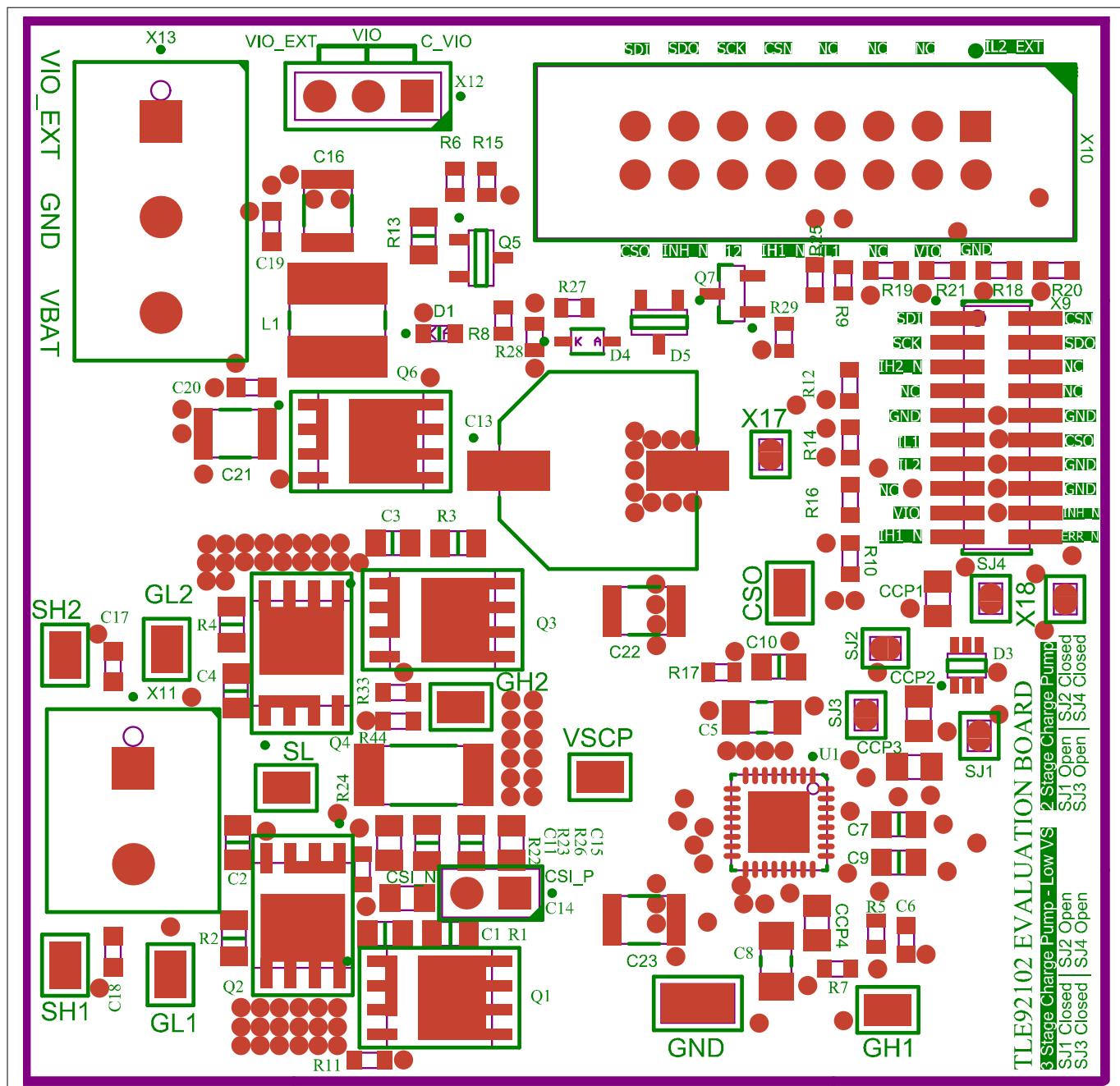

Assembly view

Figure 10

TLE92102 evaluation board - top view

3 Assembly view

Figure 11

TLE92102 evaluation board - Component's placement

4 Software toolchain

4 Software toolchain

The TLE92102 EVAL board comes with a GUI tool and embedded software for easy evaluation. Please refer to the MOTIX™ Multi-MOSFET driver TLE92102 website for more information.

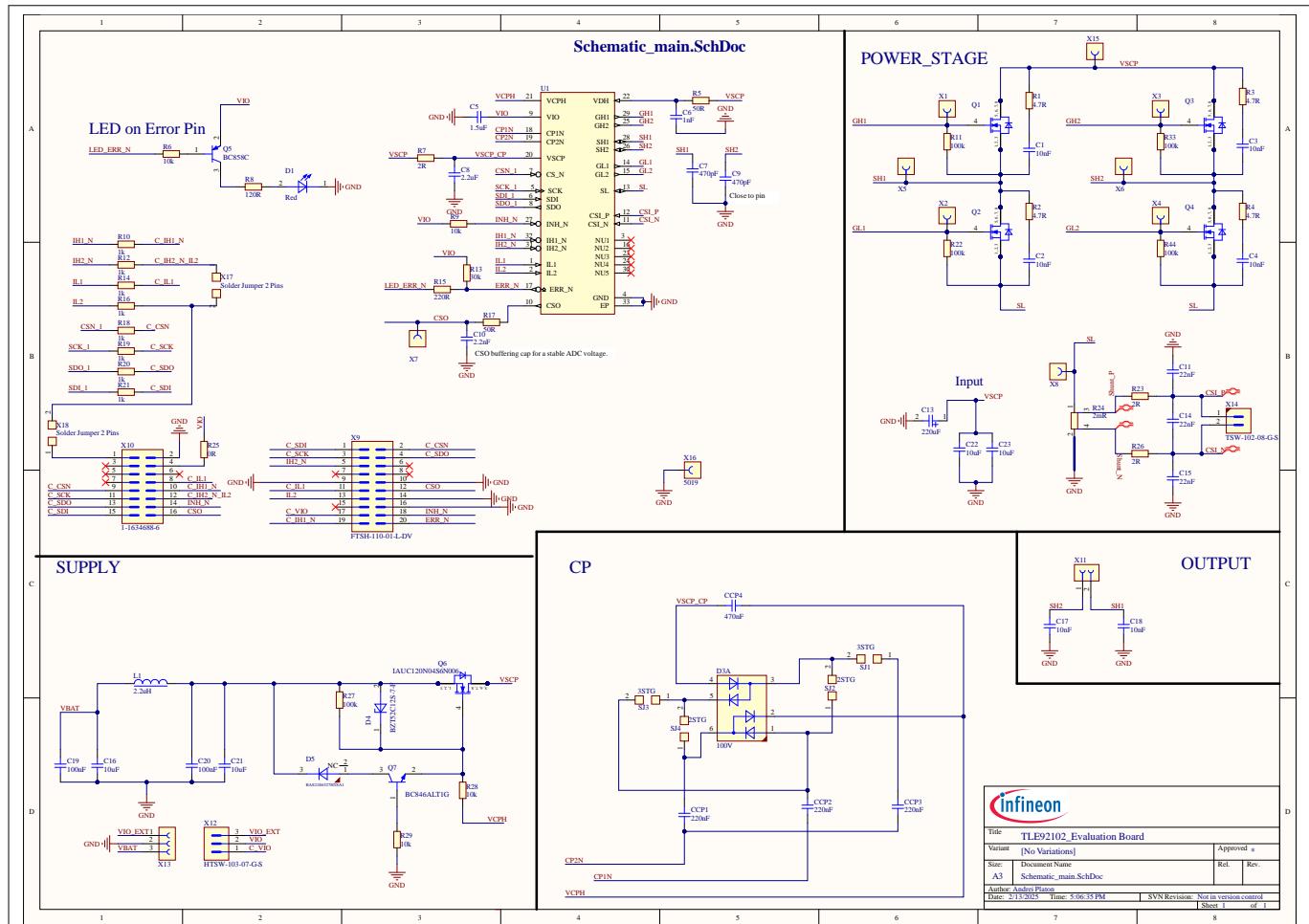
MOTIX™ TLE92102 device driver: a software library that enables users to configure and operate the TLE92102 device.

<https://softwaretools.infineon.com/tools/com.ifx.tb.tool.motixtle92102devicedriver>

MOTIX™ TLE92102 application software: a set of example applications that demonstrate the use of the TLE92102 device driver in conjunction with the MOTIX™ TLE92102 evaluation board and Traveo Starter Kit, CYTVII-B-E-1M-SK.

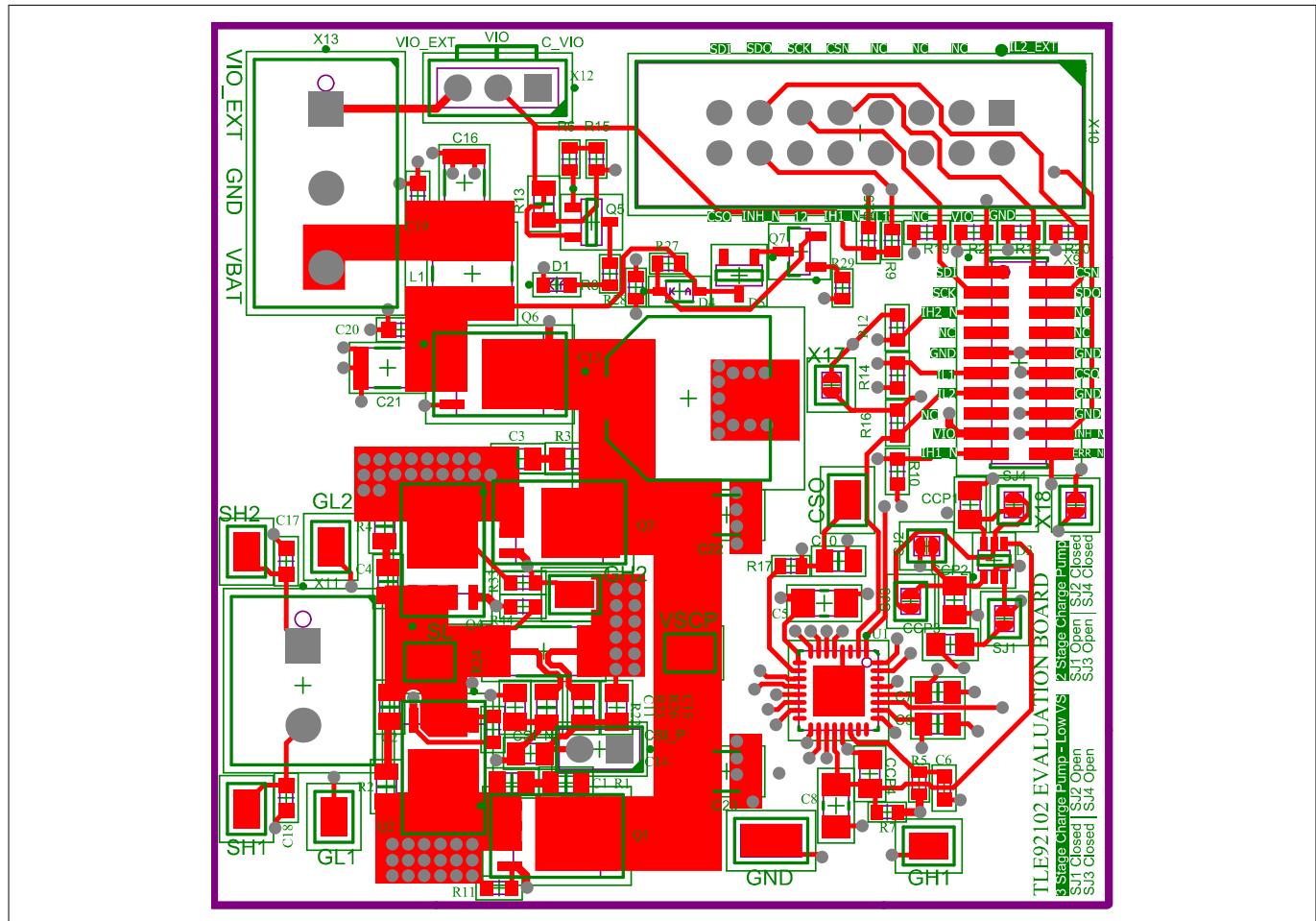
<https://softwaretools.infineon.com/tools/com.ifx.tb.tool.motixtle92102applicationsoftware>

Note: *The Config Wizard tool for MOTIX™ multi-MOSFET driver ICs will be updated with the TLE92102 device in the future, allowing easy configuration of the automotive motor gate driver TLE92102 IC product.*


Note: *In the event that access to the tool or software is not available, please reach out to your local Infineon partner.*

5 Design files

5 Design files


The following chapter includes schematics and layouts of the MOTIX™ TLE92102 multi-MOSFET gate driver IC evaluation board.

5.1 Schematic

Figure 12
Schematic of MOTIX™ TLE92102 multi-MOSFET gate driver IC evaluation board

5.2

Layout

Figure 13

Layout of the evaluation board - layer 1- top layer

5 Design files

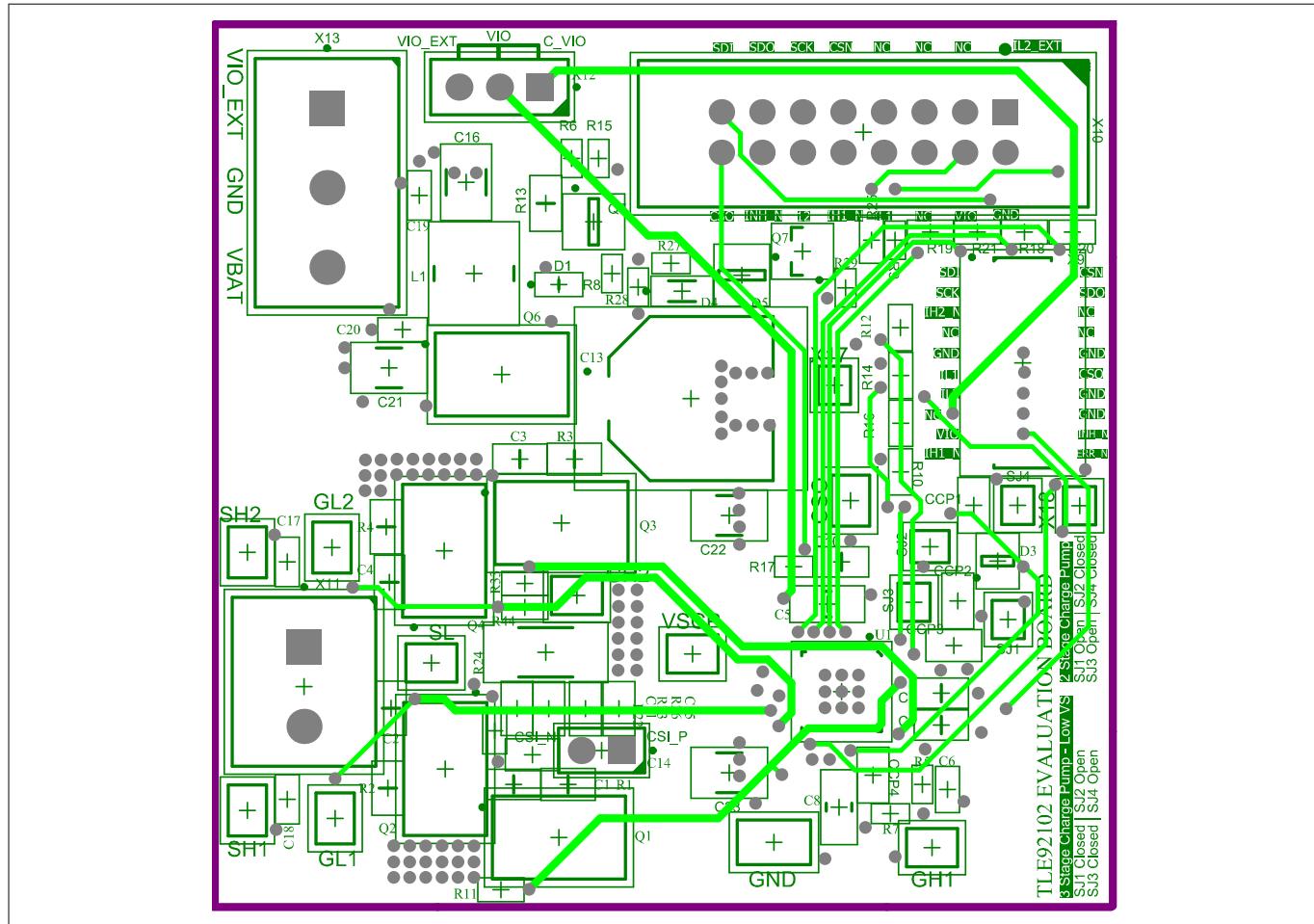


Figure 14

Layout of the evaluation board - layer 2

5 Design files

Figure 15 Layout of the evaluation board - layer 3

5 Design files

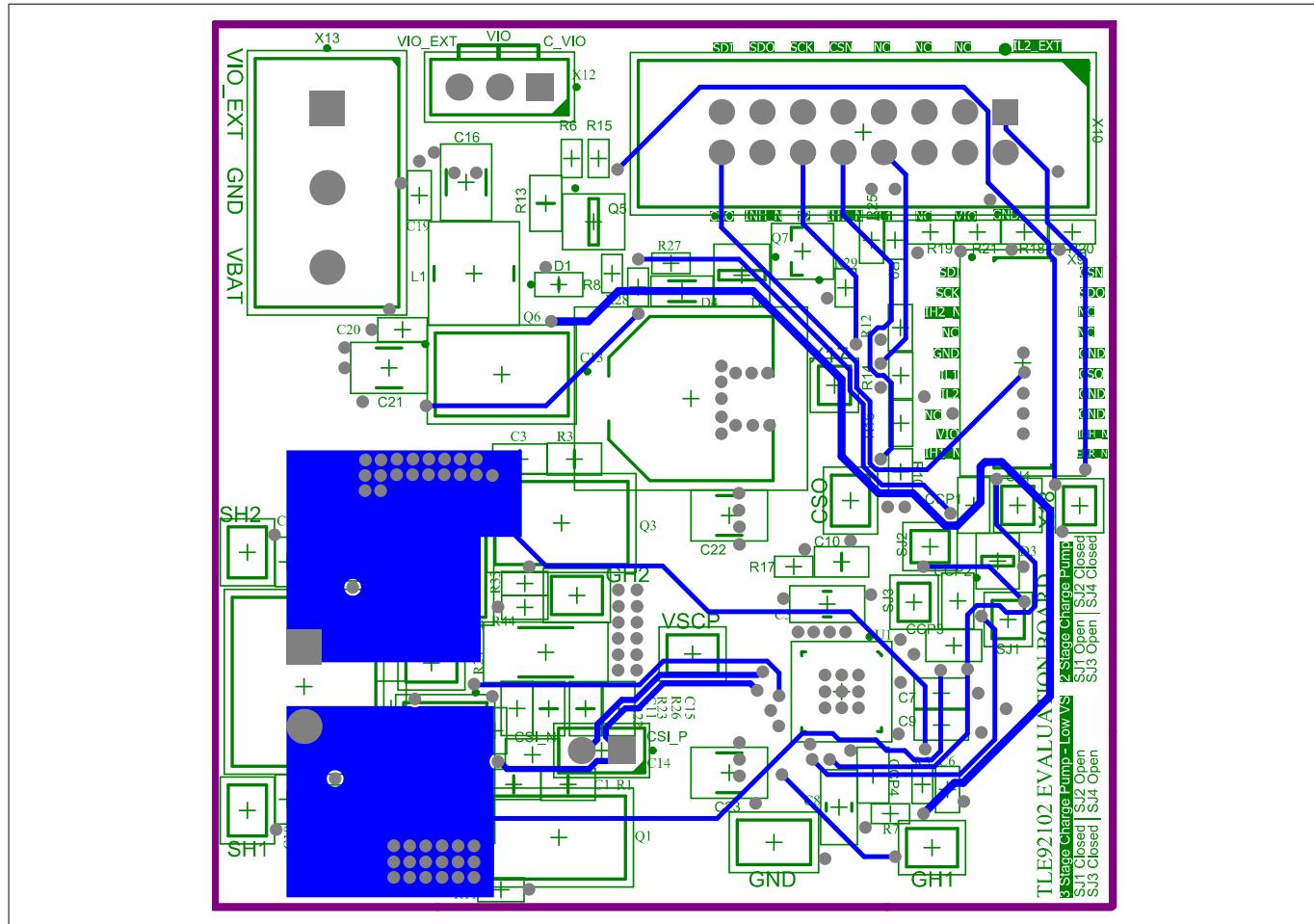


Figure 16

Layout of the evaluation board - layer 1- bottom layer

5 Design files

5.3 Bill of material

Table 3 Bill of materials for TLE92102 EVAL board

Designator	Description	Quantity	Manufacturer Order Number	Manufacture
C1, C2, C3, C4	CAP/CERA/10nF/100V/20% / X7R (EIA) / -55°C to 125°C/0805(2012) / SMD / -	4	GRM21BR72A103MA01	MuRata
C5	CAP/CERA/1.5uF/25V/10% / X8R (EIA) / -55°C to 150°C/1206(3216) / SMD / -	1	CGA5L3X8R1E155K160A B	TDK
C6	CAP/CERA/1nF/50V/10% / X8R (EIA) / -55°C to 150°C/63(1608) / SMD / -	1	GCM188R91H102KA37	MuRata
C7, C9	CAP/CERA/470pF/50V/10% / X7R (EIA) / -55°C to 125°C/0805(2012) / SMD / -	2	GRM216R71H471KA01	MuRata
C8	CAP/CERA/2.2uF/50V/10% / X8L (EIA) / -55°C to 150°C/1206(3216) / SMD / -	1	CGA5L1X8L1H225K160A C	TDK
C10	CAP/CERA/2.2nF/50V/10% / X7R (EIA) / -55°C to 125°C/0805(2012) / SMD / -	1	GRM219R71H222KA17	MuRata
C11, C14, C15	CAP/CERA/22nF/50V/5% / X7R (EIA) / -55°C to 125°C/0805(2012) / SMD / -	3	GCM216R71H223JA37	MuRata
C13	CAP/ELCO/220uF/50V/20% / - / -55°C to 105°C/10.30mm L X 10.30mm W X 10.50mm H/SMD / -	1	EEEFK1H221P	Panasonic
C16, C21, C22, C23	CAP/CERA/10uF/50V/10% / X7R (EIA) / -55°C to 125°C/1210(3225) / SMD / -	4	GRM32ER71H106KA12	MuRata
C17, C18	CAP/CERA/10nF/50V/20% / X7R (EIA) / -55°C to 125°C/0603(1608) / SMD / -	2	GRM188R71H103MA01	MuRata
C19, C20	CAP/CERA/100nF/50V/10% / X7R (EIA) / -55°C to 125°C/0603(1608) / SMD / -	2	06035C104K4Z2A	AVX

(table continues...)

5 Design files

Table 3 (continued) Bill of materials for TLE92102 EVAL board

Designator	Description	Quantity	Manufacturer Order Number	Manufacture
CCP1, CCP2, CCP3	CAP/CERA/ 220nF/50V/10% / X8R (EIA) / -55°C to 150°C/ 0805(2012) / SMD / -	3	CGA4J3X8R1H224K125AB	TDK
CCP4	CAP/CERA/ 470nF/50V/10% / X8L (EIA) / -55°C to 150°C/ 0805(2012) / SMD / -	1	CGA4J1X8L1H474K125A	TDK
D1	Standard 0603 SMD LED, 2.1V Red, Luminous Intensity 63 mcd	1	TLMS1100-GS08	Vishay
D3	High Speed Switching Diode with Reverse Polarity Protection	1	BAV99S	Nexperia
D4	Surface Mount Zener Diode	1	BZT52C12S-7-F	Diodes Incorporated
D5	Silicon Switching Diode	1	BAS21E6327HTSA1	Infineon Technologies
L1	IND/STD/2.2uH/ 2.6A/30% / -40°C to 85°C/36mR/ 2020(5050) / Inductor,Chip;5.00mm L X 5.00mm W X 2.20mm H/SMD / -	1	LQH5BPN220MT0L	MuRata
Q1, Q2, Q3, Q4	OptiMOS- 6 Power-Transistor	4	IAUC100N04S6N015	Infineon Technologies
Q5	PNP Silicon AF Transistor	1	BC858C	Infineon Technologies
Q6	OptiMOS- 6 Power-Transistor	1	IAUC120N04S6N006	Infineon Technologies
Q7	General Purpose Transistors NPN Silicon	1	BC846ALT1G	ON Semiconductor
R1, R2, R3, R4	RES/STD/4.7R/ 500mW/1% / 100ppm/K / -55°C to 155°C/0805(2012) / SMD / -	4	CRCW08054R70FKTAHP	Vishay
R5, R17	RES/STD/50R/ 100mW/1% / 100ppm/K / -55°C to 155°C/0603(1608) / SMD / -	2	CRCW060350R0FKEA	Vishay

(table continues...)

5 Design files

Table 3 (continued) Bill of materials for TLE92102 EVAL board

Designator	Description	Quantity	Manufacturer Order Number	Manufacture
R6, R9, R28, R29	RES/STD/10k/ 100mW/1%/ 100ppm/K / -55°C to 155°C/0603/SMD / -	4	CRCW060310K0FKEA	Vishay
R7	RES/STD/2R/63mW/ 0.1% / 25ppm/K / -55°C to 155°C/0603(1608) / SMD / -	1	CPF0603B2R0E1	TE Connectivity
R8	RES/STD/120R/ 100mW/1%/ 100ppm/K / -55°C to 155°C/0603/SMD / -	1	CRCW0603120RFK	Vishay
R10, R12, R14, R16, R18, R19, R20, R21	RES/STD/1k/ 100mW/5%/ 100ppm/K / -55°C to 155°C/0603(1608) / SMD / -	8	RC0603FR-071KL	Yageo
R11, R22, R33, R44	RES/STD/100k/ 100mW/1%/ 100ppm/K / -55°C to 155°C/0603(1608) / SMD / -	4	RC0603FR-07100KL	Yageo
R13	RES/STD/30k/ 125mW/1%/ 100ppm/K / -55°C to 155°C/0805(2012) / SMD / -	1	CRCW080530K0FK	Vishay
R15	RES/STD/220R/ 100mW/1%/ 100ppm/K / -55°C to 155°C/0603(1608) / SMD / -	1	CRCW0603220RFK	Vishay
R23, R26	RES/STD/2R/ 500mW/1%/ 100ppm/K / - / 0805(2012) / SMD / -	2	CRCW08052R00FKEA HP	Vishay
R24	RES/STD/2mR/3W/1%/ 50ppm/K / -55°C to 170°C/2512(6332) / SMD / -	1	BVT-I-R0020-1.0	Isabellenhuette
R25	RES/STD/0R/ 100mW/0R/0ppm/K / -55°C to 155°C/ 0603(1608) / SMD / -	1	AC0603JR-070RL	Yageo

(table continues...)

5 Design files

Table 3 (continued) Bill of materials for TLE92102 EVAL board

Designator	Description	Quantity	Manufacturer Order Number	Manufacture
R27	RES/STD/100k/ 100mW/1%/ 100ppm/K / -55°C to 155°C/0603(1608) / SMD / -	1	CRCW0603100KFK	Vishay
SJ1, SJ3	Solder Jumper 2 Pins	2	Solder Jumper 2 Pins	Infineon Technologies
SJ2, SJ4	Solder Jumper 2 Pins	2	Solder Jumper 2 Pins	Infineon Technologies
U1	Automotive 2-Phase Bridge Driver Unit	1	TLE92102QVW	Infineon Technologies
X1, X2, X3, X4, X5, X6, X7, X8, X15	SMD Circuit Probe Pad	9	RCT-0C	TE Connectivity
X9	Surface Mount Micro Header, 1.27 mm Pitch, 20 Pin, 10Pins Per Row, Dual Row, Vertical, 3.4A	1	FTSH-110-01-L-DV	TE Connectivity
X10	Through hole .025 SQ Shrouded Header, 2.54mm pitch, 16 pin, vertical, double row	1	1-1634688-6	TE Connectivity
X11	Conn Terminal Block 2 POS 5mm Solder ST Thru-Hole 16A/Contact Box	1	20020316-G021B01LF	Amphenol FCI
X12	Through hole .025 SQ Post Header, 2.54mm pitch, 3 pin, vertical, single row	1	HTSW-103-07-G-S	Samtec
X13	Conn Terminal Block 3 POS 5mm Solder ST Thru-Hole 16A/Contact Box	1	20020316-G031B01LF	Amphenol FCI
X14	Through hole .025 SQ Post Header, 2.54mm pitch, 2 pin, vertical, single row	1	TSW-102-08-G-S	Samtec
X16	Test Point, Compact, Surface Mount, Finish-Silver Plate	1	5019	Keystone Electronics Corp.
X17, X18	Solder Jumper 2 Pins	2	Solder Jumper 2 Pins	Infineon Technologies

Glossary**Glossary****CSA**

current-sense amplifier (CSA)

Special-purpose amplifiers that output a voltage proportional to the current flowing in a power rail. They utilize a "current-sense resistor" to convert the load current in the power rail to a small voltage, which is then amplified by the current-sense amplifiers.

IC

integrated circuit (IC)

A miniature electronic circuit built on the surface of a thin substrate of a semiconductor material.

PCB

printed circuit board (PCB)

A board that mechanically supports and electrically connects electronic components using conductive tracks, pads, and other features etched from copper sheets laminated onto a non-conductive substrate.

References

1. TLE92102 datasheet available on www.infineon.com
2. TLE92102 user manual available on www.infineon.com
3. IAUC100N04S6N015, Infineon's OptiMOS™ 6 40 V power MOS [webpage](#)
4. CYTVII-B-E-1M-SKTraveo™ II Low-Cost, Arduino Compatible Evaluation Board [webpage](#)

Revision history

Document version	Date of release	Description of changes
Rev. 1.00	2025-07-23	User guide available

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2025-07-23

Published by

**Infineon Technologies AG
81726 Munich, Germany**

© 2025 Infineon Technologies AG

All Rights Reserved.

Do you have a question about any aspect of this document?

Email: erratum@infineon.com

**Document reference
IFX-lqu1742375699066**

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com)

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.