AP32597 (Infineon

Safe application development for AURIX™
Application Kit TC3xx Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller

About this document
Scope and purpose

This application note describes product safety mechanisms and the actions that must be taken by the product
system integrator to ensure the correct operation of the device. This document should be read in conjunction
with the AURIX™ User’s Manual and with the AURIX™ Safety Manual. The associated source code includes
methods for fault injection used for testing purposes, alarm triggering, and the implementation of various
safety mechanisms listed in the Safety Manual.

Attention: This document does not provide any code suitable for production. This document does not
give a legally binding example for the implementation of safety-critical functions.

Intended audience

This application note is written for system engineers, software engineers, and functional safety managers
involved in the design or development of a safety-related system who are considering integrating the AURIX™
TC3xx microcontroller hardware as a Safety Element out of Context (SEooC) into their system.

Application note Please read the sections “Important notice” and “Warnings” at the end of this document V1.0
www.infineon.com 2024-04-04

http://www.infineon.com/

o _.
Safe application development for AURIX™ Application Kit TC3xx < | n f| neon

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Table of contents

Table of contents

About this dOCUMENT......ceuuiiiuiiiniiiniiiiiitiiiiuiiiiiittictaiittitseistastsessseissssssesssssssssssssssssssssssssssssssssssssses 1
Table Of CONtENES....ciuuiiiiiriiiriiiiiiitiiiraiitiitteittaitseieseisracsssessssissassrsssns 2
1 LY 4T [Tl d T T N 5
1.1 KBY fRATUIES ..ttt ettt et s et e st e e s e s bt s st e s se e e et e eseess e seeseassasseessasseentensesseessensesssenns 5
1.2 Abbreviations and @CrONYMSccceiieiiieiiere et e e s e s aeeteeste e beesbaesreesreesrsasntasssassseesseesssennes 10
2 DemoNnstrator PreseNtation......cccciiiiiriireiiriiiniireiirsstsesirsicrsesssesssssssssssesssssssssssssssssssssssssssss 11
2.1 HAMAWAIE .ttt ettt ettt et b e et e b s bt et et e e at et e e at et e sbeeat et e saeenbesseeabe st entenses 11
2.1.1 Y- 11 el aa] o Yo o T=T o1 =3RRI RRPR 12
2.1.1.1 TLF35584 POWET SUPPLY eveeereiiieeitierteiieeiteecieesteeseestesteeseesseesseesseesssesnsesnsesssesssessssesssesssesssesssees 12
2.1.1.2 TLE5102BD E9200 MagnetiC @aNgle SENSONcc.cvuevreeirerienienienienteieteeeessessessessesseseseneenesseenes 13
2.1.1.3 KP256 PrOSSUIE SENSON ...uviiiireireerrerreereeireeeesessteessssseesssssseessssssassssssssessssssaessssssessssssssesssssssssssssees 13
2.1.1.4 Other Safety Board COMPONENTS........ccuieieierieeieceeeectee e ete e e este e e aestesseessesseesesseessensessaensens 13
2.1.2 Default SWItCh CONFIGUIAtION ...ciiuiiieiiriieiereteeeee ettt 14
2.1.3 ApPlication Kit - TC397 TFT LEDS....cccieiieieeieesiecieeieeieesteeetesteeteesteesseesseesseesraesasesnsessasssessseesnns 15
2.2 AURIX™ MCU reSOUrCe allOCatioN.......covevveieieiririenienieniesteteteteie st stestestet et e ssessessesseseeeeneeneenenne 16
2.3 SOTEWAIE OVEIVIEW....ueiiiiiitititetetete ettt sttt ettt et et besa s b s b et e b et et et esesbesbesbesbensentensentenessenses 17
2.4 Touch display interface presentation..........c ettt r e te e nens 18
2.5 ASCLIN SNelliNTErfacte .c.ceueeieieierieeierteteete sttt ettt et et sb s bbb e e e e e e ese s ne 20
3 Boot and startup ProCedurecccieiieieieiiiieieiiiietinneietacnecetassecesassecsssssesessssesesassesssassesssassesesasses 22
3.1 ANQLOZ POWET-UP ..ttt ete sttt te st et e be st et e s ae et e saesut e besatentasbessaesbessasstesesatensessesnsensesseensens 22
3.2 BOOL FIIMWAIE. ...ttt sttt s b et e e e e e ebesbe b e b entenaensenseseesasseas 22
3.3 APPLICAtION SW SLAIUP .eveeviereeieieeeeiesee e st te e eete e et e seesse et e ssa st e sesraessassaessessesssessasseessensesseensens 22
3.3.1 Safety Kit implementation of the application SW startup.......cccceceveeeecieneeceeneneecece e 24
3.3.2 LBl T ettt sttt ettt ettt h ettt ettt e h e s bbb et et et et e a e R e s b e b e s b et et et et et eneeaeenes 25
333 MONBIST c..eiteteiteteteetest ettt et ettt et st e besbe st e be b et et et s st e sesbessesbesbese st e st entesesseebesbesensensenteneenesaeses 26
3.34 FIrMWAE ChECK .ttt sttt et et s et et et e s e e b e sba et ensesnaenses 27
3.34.1 FW_CHECK impPlementationcccccueieeieceierieseeeetese et ete e eseeste e saessesseesse s e snessessneneas 27
3.3.4.2 RESEEEMIGEOIING .ttt ettt et et ettt e bt e s st e st e sbe s be e beesseesneesaee 30
3.35 MCU_STARTUP ..ttt ettt sttt ettt et ettt et s bt ettt et et e at e s sbesbesbesbenbensenteneenesaeses 32
3.3.6 SMU ALIVE_ALARM _TEST ..ctttiteteteteitetetesiestestestesteteteseestssessessessesseteseestsseesessessessensensensenseneesenne 32
3.3.7 SMU REG_MONITOR_TEST .eettiiiieitteieciiteereiteesseriteessesreesssssteessssseessssssasssssssassssssssessssssaessssssaesssnns 33
3.3.8 MBIST ettt ettt sttt ettt ettt s st b e st st e st et et et e st e ae e s e s b e b e b et et en e e st e st e b e s b e b e s b et et et et et eneeaeenes 34
3.3.9 ENAbLe all SMU @larms ..ottt sttt st ettt s st et s e e saesaa e b e saesnsenees 34
4 Failure ManagemeEntcccciiiieiineiiniineinesioiiaecsesrscaesrsssaessesssscasssssssssssssssssessssssssasssssssssassssssassns 35
4.1 Error management CONCEPT.......ociiviiiiiiiiiiiir e 36
4.2 SMU driver iMpPlemeENntation........ocviiiiiieiieiiereee et se s e sresresste s bessbesssaesseesssesssesssaenses 36
4.2.1 Recovery Timer (RT) and watchdOg alarmsco.cceveirerireninenineeeteesee et 38
422 Fault Signaling ProtoCOL (FSP)cueiriririrenienieteieteteeeesestesiete ettt st ettt enes 39
423 POrt EMErgency StOP (PES) ..couevueieiririnienierienietetete et ste sttt st ettt saesbe st st s e s et e e e e sneenes 41
5 System-level hardware reqUIremMeENts......ccccceiieiieieecententeceecentestessncecassssssssscssssssscsscasssssssssssssans 42
51 EXEErNal VOILAZE SUPPLY .eovertiteieieieteteteest ettt sttt ettt b e st sae et sbens 42
5.2 ErTOr MONIEONTNE .ttt ettt s e st e s e bt e et e s e e s meeeee e st e smeesmeesaeesaneas 44
5.21 LY=ot Y= o USSP PP PSRP 44
5.2.2 EMergency StOP aCtiVatioN......coeoieciiiiiiiinieentee ettt st 45
5.2.3 Application software notification Via NMIOF ISRccueeieeiiiieiiceeeee e 45
5.3 External time-window WatChdOG........cocviriiiieeeeecee et sttt 45
Application note 2 V1.0

2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < | n f| neon

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Table of contents

6 Architecture for management of faultScccciuiiiiiniiniiiiiniineiiiineiinieciieiiesiseinestaccssressscsessascanes 47
6.1 Self-tests for latent fault MEtriC SUPPOITviii ettt e e te e e e e bae e e s beee e s saeaeennes 47
6.1.1 PoWeEr DUIIT-IN SEIF-TEST (PBIST) ..uuvviieeiireeeeiieeeeeireeeeesrreeeesnreeeessreeeessseeessssseeesssssesesssssssessnssesessssnnes 47
6.1.2 LOZIC DUIIE-IN SEIF-TEST (LBIST) eiieirreeeeiireeeeirreeeerrreeeesreeeeesisreeeessreeesssseeessssseeesssssesesssssssesssssssesesnnnes 47
6.1.3 Monitor built-in SEIf-TEST (MONBIST)....ciiiiiiiiiiirireeeienniirrrreeeeeeeerirrreeeeeeeesssssrareeeeesssssssssessseesssessnnes 48
6.1.4 Memory BUilt-in SEIf-TEST (MBIST) .eeeiiieeeeeiieeeeerreeeerrreeeeerreeeestreeeeerreeeesssseeeessseseessssasessssesessnnnes 48
6.2 Functional blocks and safety-related fUNCLIONScceiieiececieceeee e 50
6.2.1 MCU fUNCLION = PrOCESSING c..ecvveveeiiiieeeetiseeterteeteste st e eesteseesessesssessesssessesseessessesssessassesssessesssenses 50
6.2.1.1 CPU ettt ettt ettt b bbbttt e b e s a e b e b e bt et et e a e bt e b e be s b et et et et entenenaees 50
6.2.1.2 PrOCESSING — FCE ...ttt ettt ettt et s et b et s e et et e e st e s st e st e sasesbe e bt e eneeeneenaee 54
6.2.1.3 Processing - System timer (STM) ..c.coiririririerieieteeee ettt ettt s e et et sse s e 55
6.2.1.4 ProCeSSING — HSM ...ttt ettt ettt ettt b e e bt e s st e st e sabe s be e be e s st esneenaee 56
6.2.2 MCU function — Non-volatile MEMOIY ..ottt et es 57
6.2.2.1 PFLASH NVM ..ottt ettt et e s e e et e et e st e s se et e s seesa et esseassensesseassessesssesenseenees 57
6.2.3 MCU fUNCLion — VOLatile MEMIOIYcuieicieeceeeeee sttt ettt s a ettt be e nes 62
6.2.3.1 EXtension MemMOry (EMEM)ccicieieriieieieseetesieseetes e eseseessesaeseesssessesseessassesssessessesssessesssenses 62
6.2.3.2 LIMU ettt e rre e e e e e e s e e ettt e e e e e s e e et b bt a e e e e e e ea e bbbt e aaeeeeeee et b baaaeeeeeeenatabaaaaeeeeseannrres 64
6.2.3.3 SRAM ..ttt et e ee et e e e e e e e s b e e e e e e e e e e ba—aaeaeeee e e b bttt aeeeeeenaarbaaaaeeeeeennrtraaaaeeeeann 64
6.2.3.4 Default Application Memory (DAM)c.eeieieeieeeeeeteeetereee e te e e esresre e e se e esse s e esesseeseenes 66
6.2.3.5 Volatile MEMOIY TESE (VMT) c.eecieieceeieeeeierteeeete st te e et e re e e ste s be e e etesbeentesbesrsesesseenseseensanss 66
6.2.4 MCU FUNCLION = ADAS ...ttt ettt ettt e s e et e s se e e s se s s s e sessaessesseessessasssessessesssessesssenses 67
6.2.5 MCU fUNCLION = INtEICONNECE....itieieieeecteeee ettt e et e sre e s e s e s sn e s e se e s essesseeneas 67
6.2.5.1 System Resources INterconNECt (SRI) c..icueecieeueeieeeeeeceeeetectee ettt e e e e ae s et e beeraennens 67
6.2.6 MCU function — COMMUNICALION ..eeveieeeiiceeieieeeete sttt e e e et e sre e e be s e essesse s e e sesneenses 68
6.2.7 DireCt MEMOIY ACCESS (DMA) ...c.veeeieieereetecteetecteeeeste st e teste s e eese e e essesseessensesseensessesssensesssessessesnsenses 68
6.2.7.1 INEEITUPT ROULET (IR).eeuveeiiieeeeetieeetertee e e st e teste s et es e e s et e sse s s e sessa e sesreesaassesseessessaessessesseenses 71
6.2.8 MCU fUNCLION = INFraSTrUCLUIE c.veeieiececteeee ettt ettt e s e s e s e e e e seennenes 72
6.2.8.1 Power management SYStEM (PMS)coiiivirierienieieieeeeeeste sttt ssesses e ssessessesaenaesessaesaes 72
6.2.8.2 CLOCK vttt ettt ettt ettt et ettt sa s bbbt et et e n e bt e b e b e be b et et en s et enesaees 76
6.2.8.3 RE S E T .. ittt ettt e eeeerrrer e e e e e e ee e bbb aeeeeeesee e s abaaaaeeeeseeenssbaaaaeeeesenansssaaaaeesesenansrraanaeseesennnsees 79
6.2.8.4 System CONTrOL UNIt (SCU)..uuiiuieieieeeeeeeeetecte ettt e et sre e e et sreeaesbesreenseessessesseessensesssensens 79
6.2.8.5 Standby CONtrOLEr (SCR)...ccviieeieeeeterieeeetereetese st e e eeee e e et e s e e s estesssessessesssessesssessesseensens 86
6.2.8.6 Die TemMpPerature SENSOT (DTS) ..ccucceiieeecerreetesieeeecreereetesreeseessesseesessesseessessesssessesssessessessseses 87
6.2.9 MCU FUNCLION = INTEITACES ...uieieteeteeceeeee ettt sr e s et e s e e e e e e s e sesneeneas 88
6.2.9.1 Queued Synchronous Peripheral Interface (QSPI)ccveeeeierieeeeeeeteesrereee e 88
6.2.9.2 PO R ettt ettt ee e e e e e e e e e e e et te e e e e e e e e et braaaeeeeea e e b bttt aeeeeeea et b bt aaeeeeeeeaarareaaaeaeesenanrnes 92
6.2.9.3 Single Edge Nibble Transmission (SENT)coivererierieririeninenenienierteteeeesiessesseseessessesseeesessens 95
6.2.10 MCU function — ANalog aCqUISITION ...cc.eeciieierieriinieierteiese ettt et see et e sbe e e s sae s e e saesseenees 98
6.2.10.1 Overview of analog acquisition implementationccceevevererenieninineneneneeee e 100
6.2.10.2 Analog acquisition iMmplementation.........cccoeeeririiieneeee ettt 103
6.2.11 MCU FUNCHION = TIMEIS cuteuiiiieierieetereeterte et etesee st este st et e be st esse s e essesseessessesssessansasssesseensensesssensens 108
6.2.11.1 Overview of digital acquisition and digital actuation implementation.......c..ccccecevvevvrerucnene. 110
6.2.11.2 Digital acquisition implementationccoeeciiririirnineerereece et 113
6.2.11.3 Digital actuation implementationcococeviiiirinieecrereeee ettt 118
6.2.12 MCU function - Signal proCcessing POWEIIaiNcccecueerirererenierienierteteeeesiesiessestestesseseeeenessens 125
6.2.12.1 AMULLMU_DAM . ettt ettt et e aeaeaeaeeenas 125
6.2.13 MCU function — Safety MeChaniSMi. ..ot aens 125
6.2.13.1 Safety Management UNit (SMU)cccoevirerieiniiineerieeneteeesieteiet ettt eae s 125
Application note 3 V1.0

2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < |n f| neon ,

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Table of contents

3 3 =] = = 3PP 127
REVISION NISTOIY...iuiiiiiiiuiiiiiiiiiiaiiiiieiieianinniceecantesiossecsscasssssecsscassssssssscssssssssssssscssssssssssssssassssssssssans 128
[0 117 ol =11 1= PP 129
Application note 4 V1.0

2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < | n f| neon

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Introduction

1 Introduction

The development of a safe application can be a challenge when it comes to following strict safety rules. To ease
the development of such applications, Infineon provides the TC3xx Safety Manual. The Safety Manual defines
the safety mechanisms as an activity or a technical solution to avoid or control systematic failures and to detect
random hardware failures or control random hardware failures.

Safety mechanisms are classified in two main types:

e The technical solution, which is internal to the microcontroller by hardware (HW) or software (SW)

e Thetechnical solution, which is either in HW or SW, implemented at the system level by the system
integrator

During the design phase of AURIX™ MCUs, the most common use cases have been taken into account, and
safety requirements have been derived from these. For the implementation of these specific safety-related
functions, different SMs must be implemented according to the specification in the Safety Manual. The specific
SMis required depends on the modules used and the safety level required.

The intention of this application note is to provide implementation hints and code examples for many of these
safety mechanisms. Therefore, this document is provided with example software optimized for the Application
Kit Safety hardware, which is composed of an Application Kit - AURIX™ TC397 TFT (KIT_A2G_TC397_5V_TFT)
from Infineon and the new Safety Demo Add-on Shield Board, which is called “Evaluation Board - AURIX™ TC3xx
Safety” (EVABOARD_A2G_SAFETY) and the combination of both is called “AURIX™ Application Kit - TC3xx
Safety” (APPKIT_A2G_SAFETY). The kit is used for demonstrating the implementation of the safety mechanisms
and other diagnostics information.

In addition to the touchscreen and an ASCLIN shell interface, the add-on shield provides several buttons and
switches to trigger the injection of faults into the system. An overview of all safety-related functions and SMs
covered by the application note can be found in the tables ranging from Table 1 to Table 6.

1.1 Key features
The following key features are implemented and supported:

e Boot and startup procedure including all safety mechanisms involved
e Full SMU driver implementation including the following:
- SMU core and SMU standby
- Fault Signaling Protocol (FSP)
- Emergency stop (ES)
- Recovery timer (RT)
o Implementation of safety-related functions and the required safety mechanisms
e Faultinjection for testing of various safety mechanisms:
- PFlash ECC error injection

DMA error injection

Analog and digital acquisition error injection

Undervoltage error injection

Broken wire, etc.
e TFT touchscreen driver

Application note 5 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < | n f| neon

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Introduction

e TLF35584 PMIC driver
e ASCLIN shell interface
e STMused for basic task scheduling

Table1 Overview of Safety Related Functions covered by this application note

Safety Related Function Covered Covered SMs/Functional Use Case (FUC)
(Yes/Partly/No)
Safe computation Yes e Safety Mechanism AMU*:*

o Safety Mechanism CPU.*:*
e Safety Mechanism STM:*

e Safety Mechanism *

e Safety Mechanism DMA.*:*
e Safety Mechanism NVM.*:*
o Safety Mechanism EMEM*:*
e Safety Mechanism LMU*:*
e Safety Mechanism SRI*:*

Analog acquisition Yes e FUC0: Analog acquisition with redundant EVADC
channels

e FUC 1: Analog acquisition with redundant EDSADC
channels

e FUC 2: Analog acquisition with one EVADC channel
and one EDSADC channel

e FUC 3: Single analog acquisition with EVADC
channels

e FUC4: Single analog acquisition with one EDSADC
and one EVADC channel

Digital acquisition Yes e FUCO0: Digital acquisition with redundant TIM/TIM
channels
e FUC 1: Digital acquisition with redundant CCU6/TIM
channels
e FUC 2: Digital acquisition with redundant
CCU6/GPT12 channels
Digital actuation Yes e FUCO0: Digital actuation with redundant TOM

channels and IOM comparison

e FUC 1: Digital actuation with redundant TOM/CCU6
channels and IOM comparison

e FUC 2: Digital actuation with redundant TOM/TIM
channels and application SW comparison

e FUC 3: Digital actuation with redundant
CCU6/GPT12 channels and application SW
comparison

Sensor acquisition Partly o Safety mechanism SENT:CHANNEL_REDUNDANCY

Application note 6 V1.0
2024-04-04

Safe application development for AURIX™ Application Kit TC3xx
Safety
32-bit TriCore™ AURIX™ TC3xx microcontroller

(infineon

Introduction

Safety Related Function

Covered
(Yes/Partly/No)

Covered SMs/Functional Use Case (FUC)

External communication

Partly .

Safety mechanism QSPI:SAFE_COMMUNICATION

Avoidance or detection of
common-cause failures

Partly .

Safety mechanism
PMS:VEXT_VEVRSB_ABS_RATINGS

Safety mechanism
PMS:VEXT_VEVRSB_OVERVOLTAGE

Safety mechanism PMS:VX_FILTER

Safety mechanism :DTS_RESULT

Safety mechanism WATCHDOG_FUNCTION
Safety mechanism CLOCK:PLAUSIBILITY
Safety mechanism MONBIST_RESULT
Safety mechanism PORT:LOOPBACK

Safety mechanism PORT:REDUNDANCY

Safe state support

Partly .

Internal failure reporting
External failure reporting (FSP)

Alternate failure reporting (As
FSP_ERROR_PIN_MONITOR is implemented)

Coexistence of HW/SW elements

Yes .

Safety mechanism ISR_MONITOR

Table 2 Overview of implemented Safety Mechanisms - Safe startup

Safety Mechanism (SM) App. Note section C function name
LBIST_CFG 3328&6.1.2 safetyKitSswLbist
LBIST_MONITOR 3328&6.1.2 safetyKitSswLbist
LBIST_RESULT 3.3.2&6.1.2 safetyKitSswLbist
MONBIST_CFG 3.3.3&6.1.3 Ifx_Ssw_Monbist
MONBIST_RESULT 33.3&6.1.3 Ifx_Ssw_Monbist
MCU_FW_CHECK 3.3.4 safetyKitSswMcuFwCheck
MCU_STARTUP 335 safetyKitSswMcuStartup
ALIVE_ALARM_TEST 3.3.6 safetyKitSswAliveAlarmTest
REG_MONITOR_TEST 3.3.7 safetyKitSswRegMonitorTest
MBIST 33.8&6.1.4 safetyKitSswMbist

Application note

V1.0
2024-04-04

Safe application development for AURIX™ Application Kit TC3xx

Safety

(infineon

32-bit TriCore™ AURIX™ TC3xx microcontroller

Introduction

Table 3 Overview of implemented Safety Mechanisms - Analog acquisition

Safety Mechanism (SM)

App. note section

C function name

CONVCTRL:CONFIG_CHECK

6.2.10

initCONVCTRL

EVADC:CONFIG_CHECK 6.2.10 initEVADCGroups
EVADC:DIVERSE_REDUNDANCY 6.2.10 initAAcqFuco
initAAcqFuc2
initAAcgFuc4BrokenWR
EVADC:PLAUSIBILITY 6.2.10 plausibilityCheck
EVADC:VAREF_PLAUSIBILITY 6.2.10 evadcVarefPlausibilityCheck
EDSADC:DIVERSE_REDUNDANCY 6.2.10 initAAcqFucl
initAAcqFuc2
initAAcqFuc4BrokenWR
EDSADC:PLAUSIBILITY 6.2.10 plausibilityCheck
EDSADC:VAREF_PLAUSIBILITY 6.2.10

edsadcVarefPlausibilityCheck

Table 4 Overview of implemented Safety Mechanisms - Digital acquisition

Safety Mechanism

App. note section

C function name

TIM_REDUNDANCY

6.2.11&6.2.11.2

checkRedundancyGTMTIM

GTM_CCU6_REDUNDANCY

6.2.11&6.2.11.2

checkRedundancyTIMCCU6

CCU6_CAPTURE_MON_BY_GPT12

6.2.11&6.2.11.2

plausibiltyCheckDAcqFuc2

TIM_CLOCK_MONITORING

6.2.11&6.2.11.2

initEclkMonitoring

Table 5 Overview of implemented Safety Mechanisms - Digital actuation

Safety Mechanism

App. note section

C function name

I[OM_ALARM_CHECK

6.2.11&6.2.11.3

alarmCheckGTMIOM

CCU6_GPT12_MONITORING

6.2.11&6.2.11.3

plausibilityCheckDActFuc3

TIM_CLOCK_MONITORING

6.2.11&6.2.11.3

initEclkMonitoring

TOM_TIM_MONITORING

6.2.11&6.2.11.3

gtmTimPwmMissionlsrDActFuc2

Application note

V1.0
2024-04-04

Safe application development for AURIX™ Application Kit TC3xx

Safety

(infineon

32-bit TriCore™ AURIX™ TC3xx microcontroller

Introduction

Table 6 Overview of implemented Safety Mechanisms - Other

Safety Mechanism

App. note section

C function name

.:REG_MONITOR_TEST 6.2.3.3 safetyKitRunRegMonitorTest
DMA: * 6.2.7 initAndRunDmaTransaction
DTS_CFG 6.2.8.6 initDieTemperatureSensors
DTS_RESULT 6.2.8.6 dtsMeasurementISR
CONVCTRL:ALARM_CHECK 6.2.10 initCONVCTRL
APPLICATION_SW_ALARM 6.2.13.1 softwareCoreAlarmTriggerSMU
STM:MONITOR 6.2.1.3 runStmMonitoring
CLOCK:0OSC_MONITOR 6.2.8.2

IfxScuCcu_init

GTM_CONFIG_FOR_GTM

6.2.11&6.2.11.2

initDAcqFucO

IOM_CONFIG_FOR_GTM

6.2.11&6.2.11.3

initDActFucO

MON_REDUNDANCY_CFG 6.2.8.1 initVoltageMonitors
VX_MONITOR_CFG 6.2.8.1 initVoltageMonitors
SMU:CONFIG 48&6.2.13.1 initSMUModule
enableFSPcoreSMU
enableFSPstdbySMU
PFLASH: * 6.2.2.1 runinterityCheckPFLASH,
runUpdateCheckPFLASH,
runWordlineFailDetectPFLASH
EMEM:DATA_INTEGRITY 6.2.3.1 runDatalntegrityEMEM
ISR_MONITOR 6.2.7.1 isrMonitor
CLOCK:PLAUSIBILITY 6.2.8.2 initQSPI5ClockPlausibility
QSPI:SAFE_COMMUNICATION 6.2.9.1 initQSPISafeCommunication
PORT:LOOPBACK, 6.2.9.2 runPortLoopback,
PORT:REDUNDANCY
runPortRedundancy
SENT:CHANNEL_REDUNDANCY 6.2.9.3

initTLE5012Modules
checkRedundancySENT

Application note

V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < |n f| neon ,

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Introduction

1.2 Abbreviations and acronyms
Note: For a list of abbreviations, acronyms, and safety-related definitions, see [1], [2], [3], and [4].
Note: In this document, the AURIX™ Application Kit - TC3xx Safety is also referred to as “Application Kit

Safety” or “Safety Kit”. Also, “Evaluation Board - AURIX™ TC3xx Safety” is also called “Safety
Evaluation Board” or “Evaluation Board”.

Application note 10 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < |n f| neon

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Demonstrator presentation

2 Demonstrator presentation

2.1 Hardware

The dedicated full name of the demonstrator is "AURIX™ Application Kit - TC3xx Safety" and it is composed of
two PCBs:

e Application Kit - AURIX™ TC397 TFT (KIT_A2G_TC397_5V_TFT)
e Evaluation Board - AURIX™ TC3xx Safety (EVABOARD_A2G_SAFETY)

The Application Kit - AURIX™ TC397 TFT itself features a TC397 microcontroller, a TFT touch display, and a
TLF35584 safe system power supply. The add-on Evaluation Board - AURIX™ TC3xx Safety is composed of
multiple additional sensors, undervoltage protection circuitry, buttons, and switches allowing to demonstrate
the behavior of AURIX™ MCUs in the presence of a fault. Different faults such as a lockstep error can be directly
injected through the touch display of the Application Kit - AURIX™ TC397 TFT, PFlash error can be injected via a
dedicated button on the Evaluation Board.

Note: Do not run the demo without the Evaluation Board - AURIX™ TC3xx Safety (add-on shield board) as
multiple alarms will be reported.

Figure 1 shows the board with dedicated naming.

Application Kit - AURIX™ TC397 ‘
TFT i \ =
Evaluation Board — AURIX™ ‘88 hhd
TC3xx Safety AURIX™ Application Kit -
TC3xx Safety
Figure 1 AURIX™ Application Kit - TC3xx Safety

Figure 2 shows the schematic of Evaluation Board - AURIX™ TC3xx Safety. See the Application Kit Manual TC3x7
for the schematic of Application Kit - AURIX™ TC397 TFT.

Application note 11 V1.0
2024-04-04

Safe application development for AURIX™ Application Kit TC3xx

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller

Demonstrator presentation

infineon

i

JYSSYYYES
PRk

TITLL
YYYTY

Ll x

ey

DIGACT/A

TYYYYYYYTT

25

TYYYY

LIEX
iy

E

TN 2
L Repuspancy2

D

b

s
DIGACTACQTOY_UC

DIGACT/ACQ TOGROUN

uL

y
wesx von |2 j
s e 2o ik vemoe £ Lo
5 B 2 0
S st e - [
™ s0 o [o
gy % o

o o awi—|
e [i

3 L
o Voo

s y
1
SIALLCF

s vuc

3o IFAI(IIE_AMSIPWMSPC)

S0 IFBIIF_BHS2)

IFCH(CLIIE_IDXHS3)
T

- ? SENT TO GROUND

@D

IFAXLIF_AHSIPWMSPC)

\‘\ 5 9o IFB(IIF_BHS2)
ﬁw{;4{2k4mu
o IFCACLIIE_IDXHSY
o

an—
s o
vop2 L e

S

Tl

ADD_BUTTONI

ss
T

ADD_BUTTON2

s
"'? LB N TO GROUND

an

v e

RFTS

2 i€
NesN vop 2
3 B2 -

Mo owe Pk [
SDO anp B GND
B

(infineon

' \ [

: \

2.1.1 Safe components

Figure 2 Schematic of Evaluation Board - AURIX™ TC3xx Safety (add-on shield board)

Application Kit - AURIX™ TC397 TFT including TLF35584 itself has been designed to follow the safety guidelines.
To demonstrate the safety application capability, the Safety Evaluation Board also contains other safety
components, such as sensors and actuators. The following section provides a detailed overview of all

components available on both PCBs.

2.1.1.1 TLF35584 power supply

TLF35584 is a multi-voltage safety supply for safety-relevant applications supplying 5V or 3.3V MCUs,
transceivers, and sensors by an efficient and flexible pre-/post-regulator concept over a wide input voltage
range. The multiple built-in safety features enable easy realization of microcontroller applications, fulfilling the
highest Automotive Safety Integrity Level (ASIL-D):

e Independent voltage monitoring block with reset function

e Configurable functional and window watchdog

e Error monitoring
e 16-bit SPlinterface

o Safe state control with two safe state signals with programmable delay

e Inputvoltage monitoring (overvoltage switch-off)

Application note

12

V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < | n f| neon

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Demonstrator presentation

TLF35584 provides a windowed or question-and-answer watchdog; it must be configured for the required
functionality. The application configures the power supply via SPI; by default, TLF35584 will start as a
windowed watchdog via SPI. If not triggered, it will reset the system. The chip provides different voltages for
ADC reference, communication, controller supply, and other functionalities. SPI communication to and from
TLF35584 is protected with an odd parity bit.

See Section 5.1 for more information on the usage of TLF35584. See the latest datasheet for more information
about TLF35584 [4].

Note: TLF35584 provides a Microcontroller Programming Support (MPS) mode, which is enabled by
default via a hardware pull-up of the TLF35584 MPS pin to 5 V on the evaluation board. While being
in MPS mode, the contribution of a watchdog or error monitoring failure to an AURIX™ reset via
ROT is blocked.

2.1.1.2 TLE5102BD E9200 magnetic angle sensor

TLE5102BD magnetic angle sensor is a dual-die position sensor based on the giant magnetoresistance (GMR)
effect. All connections and sensors are implemented twice. The sensor supports various interfaces to a
controller, such as SPC (based on SENT SAE J2716), SPI, Hall, incremental interface, and PWM. SPC and SPI
communication is end-to-end protected with a CRC checksum. SPI can be used in parallel with the other
interfaces.

By default, the magnetic angle sensor is configured to the SPC interface mode but can be reconfigured to the
necessary interface at runtime using SPI. For more information, see the TLE5102 BD datasheet.

2.1.1.3 KP256 pressure sensor

The KP256 pressure sensor is connected to the microcontroller via SPI. It also houses a temperature sensor.
The communication is protected with an odd parity bit. This sensor demonstrates the QSPI redundancy for
future use case.

2.1.1.4 Other Safety Board components

e Pin-to-pin circuitry with switches to inject hardware faults

e Redundant temperature sensors for safe analog measurement demonstration

e Potentiometer with switch for analog measurement with hardware fault injection

e Encoder

e Single Bit Error (SBE), Double Bit Error (DBE) and Multiple Bit Error (MBE) buttons to inject NVM PFlash error
e Debug LEDs for different purposes

e Action switches (error pin, Emergency Stop, etc.)

e Current pump circuitry to demonstrate undervoltage safety mechanisms

e Four parallel switches to change the functionality between pressure sensor and safe QSPI communication
(where two QSPI of the AURIX™ TC3xx MCU are connected with each other (loopback) to simulate a safe
communication safety mechanism)

e Connector for broken-wire case simulation

Application note 13 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < |n f| neon ,

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Demonstrator presentation

2.1.2 Default switch configuration

This section describes the default hardware configuration where no fault injection is active. In general, the
default switch configuration does not interrupt each signal.

Attention: This default configuration must be observed to avoid any unintended alarm directly after power-
on reset.

Table7 Default state of switches and LEDs

Switch Default state Comment

Swi1 Right Used

Sw2 Right Used

SW3 Right Do not care/not used
SW4 Left Used

SW5 Right SENT/SPC

SwWe Down Used

SW7 Down Used

SW8 Down Used

SW9 Down Used

SW10 Right Used

SW11 Right Used

SW12 Right Used

D1 On/~50% brightness PWM out

D2 Depends on the selected |0 example | On when running the TOM_IOM demo
D4 On brightness SMU_FSP

D5 0On/50% brightness GTM_EXCLK

D6 On SENT Protocol

D7 On SENT Protocol

D8 off Spare

D9 Toggling QSPI Protocol

JP1 Connected BWD

JP2 Connected BWD

Application note 14 V1.0

2024-04-04

@ []
Safe application development for AURIX™ Application Kit TC3xx |n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Demonstrator presentation

o

Evaluation Board - TC2xx,TC3xx Safety U3.1

BUI
UU SIHULATION “e
545 ?95? "jm. ggs "
| O):- 1@
i .) ~

.
45 e) © Dy BROKEN BROKEN
AN § @ luee uice
SMU_FSP. SMU_FSP
BUTTONI BUTTON2 TO U_UC TO GROUND D2

‘ RS
ma_’ Asisg @si7p @ s | ; : ,-'M"

2l)b e o
(" Y 5 ¥ B N ¢

DBE HBE STALL CDU

OGLES- AG

1
4 ACT/ACG ACT/ACQ
] j 1512 (0){c] HCT/HCG CHECK?2 CHECK1 Dlg ﬁCT/ﬁCG

GROUND
A I
] o 1
% LOOPBACK

T0 GQOUND LBIN
BB, 7O GROUND
SPI SUl2.~ ® Sull

o
)|
'mloaa 10 P1%.5 -TmJ csomeores W
‘oz . Ttouuc ™™ TOGROND ¢ oL SENSOR|
Figure 3 Default state of switches and jumper on the Evaluation Board - AURIX™ TC3xx Safety
2.1.3 Application Kit - TC397 TFT LEDs

Application Kit - TC397 TFT offers four LEDs (D107 to D110) which can be used by the application software. For
Application Kit Safety, they are used for the following purposes:

e LEDO (D107): Signals the successfulinitialization of the application software

e LED1 (D108): Life hold indication, blinking serviced by CPUS.

e LED2 (D109): Indicates that a background task is running the infinite while loop to determine if any bit of an
SMU alarm status register is set. If yes, which means an SMU alarm is active, this LED is turned on.

e LED3(D110): Port Emergency Stop. LED “off” when ES is activated.

See the Application Kit TC397 TFT Manual TC3x7 for further information about all nine LEDs on the PCB.

Application note 15 V1.0
2024-04-04

o~ _.
Safe application development for AURIX™ Application Kit TC3xx < | n f| neon

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Demonstrator presentation

(] [] L
o reees siecc @ @
[1] ee -
o ® :D.u,:._ +PORS I. LAKE = a: Py
®ieee® EE [:],[:] SE Qe
meees : . @J.——ﬂ—-———- * V_UC power indication
_— + RESET: ESRO reset state
:::::::: .. . - | TLF safe state
. ’i *n 552
nf‘ H
e . T .
. + E @) :s | © LEDOon: Startup finished
. E (I3 » LED1 blinking: System is alive, toggled by CPU5
o = Cl}:: + LED2 on: SMU alarm is active
;:_\.' !.‘._:; « LEDS3 off: PES
Figure 4 Application Kit TC397 TFT LED usage
2.2 AURIX™ MCU resource allocation

For more information about the AURIX™ MCU resource allocation and project configuration, see the following
configuration files:

o \AppSw\AppKit\Cfg_Illd\Configuration.h

\AppKit\Cfg_llld\Configurationlsr.h
AppSw\AppKit\AppKit_Cfg.h
\

AppSw\SafetyKit\SafetyKit_Cfg.h

AppSw

\
\
e |
e |

See Table 9 and Table 10 for additional information on resource allocation.

Application note 16 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < |n f| neon ,

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Demonstrator presentation

2.3 Software overview

Figure 5 shows the project structure. In addition to the six CpouX_Main.c (x=0...5) files, the relevant application
software is stored in the AppSw folder, which consists of the two folders AppKit and SafetyKit and the two
Stm_Scheduler files used as System Timer (STM) for basic periodic task scheduling.

The AppKit (for Application Kit - AURIX™ TC397 TFT) folder contains software specific for the display, touch
application, and ASCLIN shell Interface. The SafetyKit folder includes all the code for the safety features
implemented and required for this specific application note.

The software project is free-of-cost without any legal binding, and it is developed in the free-of-charge AURIX™
Development Studio (ADS) integrated development environment (IDE). The project can be easily found in the
ADS via import project functionality. It is not tested on other IDE platforms. Some software implementations
are based on other AURIX™ - TC3xx Microcontroller expert trainings, which can be found on the Infineon
webpage.

Application note 17 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx | n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Demonstrator presentation

I=s ILLD_TC39B_ADS_SAFETY_KIT (in illd_tc39b_ads_safety_kit)
i Includes
v £ AppSw
&% AppKit
v &£ SafetyKit
&£ 00_Ssw
£ 01 Smu
= 02_Safety_Mechanisms
&% 03_AnalogAcquisition
&£ 04_DigitalAcquisition_Digital Actuation
&£ 05_Avoid_Detect_CCF
= 0b_Safe_Computation
et 07_Sensor_Acquisition
&£ 08_Ext_Communication
et 09_Fault_Injection
& 10_Tft
&£ 11_T135584
[SafetyKit_Cfg.h
[SafetyKit_Main.c
& SafetyKit_Main.h
[Stm_Scheduler.c
[# Stm_Scheduler.h
&% Configurations
&% Images
&% Libraries
[Cpul_Main.c
[Cpul_Main.c
[Cpu2_Main.c
[Cpu3_Main.c
[Cpu4_Main.c
[Cpu5_Main.c
[¥ changelog.md
= Lcf_Gnuc_Tricore_Te.lsl

=| Lcf_Tasking_Tricore_Tc.lsl

[*] README.md
Figure 5 Project folder structure
2.4 Touch display interface presentation

The Application Kit - AURIX™ TC397 TFT features a touchscreen display, which is used to show the status
information, real-time data, or to trigger different actions such as error injection. The default TFT view and an
alarm pop-up window are shown in Figure 6. The alarm pop-up has four options to select:

e Resetalarm

e Ignorealarm

e Reset SMU

e Reset system

Application note 18 V1.0
2024-04-04

Safe application development for AURIX™ Application Kit TC3xx
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Demonstrator presentation

infineon

DIE temperature

SafetyKit TC397 ADS SW 3U1 HW 3U1 LBIST status

Higher DIE T :
Supply voltage, A T TR ~_——MONBIST Status
ES stat d\ﬂ"ﬁ%” Uoltage - 4.99U8 limit: 4.50
Stallis and clear UDDP3 Uoltage: 3.29U Limit: 32320]\FW check status
- \gonE Uoltage : 1.25U Limit: 1.18U
Lockstep error injection lear Emergency Stop| I MBIST Status

M“ks::p aﬁsor :.n.]ect:l.on

Start/stop potentiometer y Stap’ ante. ABC. oogturiny OMIOM out imi
Pl ClockPlaus : 100.16 U610M out Undervoltage Limits
ADC measuremen DMA inject ECC OMTIM out

Clock Plausibilty

DMA Error injection selection

Digital Acquisition / Digital

Actuation example selection
]"‘-——Analog Acquisition example

Figure 6 Demonstrator TFT display overview

The TFT display has some more menus available:

e SMU Test Result
e Switch off option
e Keyboard for updating voltage value

STDOUT1 and GRAPHO are not used currently but keep there just for future or user use.

The Figure 7 below is an illustration of the above three options.

Application note 19

V1.0
2024-04-04

Safe application development for AURIX™ Application Kit TC3xx | n f| neon

Safety
32-bit TriCore™ AURIX™ TC3xx microcontroller
Demonstrator presentation

afetyKit TC397 ADS SU 3U1 HW
I1ST

Angle Sens2: 2

VEXT VUoltage

UDDP3 Uoltage:

CORE Uoltage =
Clear Emergency Stop

A inject ECC err
inject %RC error 6GPT12 out
inject Dest errop) T
inject TS erron DSADC+EDSADC Keyboard to change UV limits
ADC+EDSADC
EUADC 1 PINN
STDOUT1L W GRAPH® WOFF

Startup test results
SafetyKit TC397 ADS SW 3U1 HW 301

afetyKit TC397 ADS SU SUllsIIIJ 301

Higher DIE Te IST: passed
Angle Sensi: 2 3. '? °c ECK: passed
Angle Sens2: 261.8 °C| 5 5

ﬂ%ﬁ;allnltage H UEXT Uoltaye : 4. U limit:

! pa GCORE SWITCHOFF THE BOARD? 18U Undervoltage limit |3.020 |

SMU_core_FSP_config: p. Clear

SMU_core_FSP_reaction : pas Locks| | ox | [cancEL i ~[1]2]3]4[s]s]2[s]2]o]\] [Back]«]r|

SMU_core_SY_alarm_trigger: Hun s 1 =
TAB|Q|W|E|R|T|Z|U|I|O|P|U]|+|<'

Higher DIE Temp.:
Angle Sensi: 272. '? “C

BHIJtdhy_FSPE_driuing_ennble pu: f
SMU_stdby_FSP1_driving_enable: QSP ClockPlaus :
SMU_core_alarm_PES_set: pass DMA inject ECC d A|S|D|F|G|H|J|K|L|D |& |#

SMU_SFF_trigger_test: pass| DMA inject CRC error
DMA inject Dest error t [>]e]r]c]u]e]n]n].]-

DMA inject TS errox|

iMENU [STDOUT® [STDOUTi [GRAPHB NOFF

Figure7 TFT Display menu options

2.5 ASCLIN shell interface

The AURIX™ Application Kit TC3xx Safety has another option as ASCLIN shell interface (terminal use). Currently,
the following three options are available:

o standby: Switch TFL35584 to standby or TLF30682 to disabled state

e Showtlf: Show the status of the TLF35584 register

o trigAlalrm: Trigger a SMU alarm

To use the shell interface, power the Application Kit and connect it to the PC via a USB connector. Open a
terminalin ADS (see Figure 8) and adjust the configuration as given below (user serial port can be different).

Z++ Projects X g Project Explorer

a

Settings

Serial port: | COM3 v|
Baud rate: | 115200 v|
Data size: 8 ~
Parity: None »
Stop bits: |1 b
Encoding: Default (1ISO-8859-1) ~

Figure 8 ASCLIN shellinterface configuration

V1.0

Application note 20
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx | n f| neon ,
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Demonstrator presentation

After a successful USB connection, the following messages will be displayed in the terminal:

Hello World
I am the Safety Application kit TC397 ADS SW 3V1 with HW 3Vi1...

Enter 'help' to see the available commands

Shell>j

Figure 9 ASCLIN shellinterface successful connection

Type “help” and press Enter to display the list of functionalities available via this interface. See Figure 10.

Shell>help
standby : Switch TLF35584 to standby or TLF30682 to disable state
showt1f : Show status of TLF register
trigAlarm : Trigger an SMU alarm
help : Display command list, and command help.
Figure 10 ASCLIN shellinterface available commands

To get the syntax of a command type the command name and then type “?”(question mark) to list the syntax of
the command:

Shell>trigAlarm
Syntaxerror : invalid node
Shell>trigAlarm ?
Syntax : trigAlarm AG AN
> Trigger the SMU alarm AN of group AG
Shell>|}

Figure 11 ASCLIN shellinterface syntax correction

Application note 21 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < | n f| neon

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Boot and startup procedure

3 Boot and startup procedure

3.1 Analog power-up

When the device comes from an unpowered state and the external power supply reaches 2.4 V, the internal
circuitry is activated, and the power management system (PMS) checks the 100 MHz backup clock source
(fBACK). If the clock is stable, PBIST (Safety Mechanism PBIST) is automatically executed. The device is released
from the cold PORST reset only if the PBIST is executed successfully.

3.2 Boot firmware

After PORST release, the system firmware (FW) execution is started by CPUQ. The firmware (FW) is a code stored
in Boot ROM that is automatically executed by the device after every reset. The FW is configurable via UCB
registers and is composed of the following parts (among others):

Startup Software (SSW)

The internal SSW firmware contains procedures for device initialization. Depending on the type of reset the
device is coming from, the startup software will execute different tasks. Some parts may already be initialized
when coming from a reset other than cold PORST. The start-up software takes care of:

e Flash ramp-up

o Device Configuration

e RAM Initialization

e Selection and execution of Startup Modes

e LBIST execution

e Lockstep configuration

e Ending the startup software and starting the User Code

For more information about the firmware execution flow, see the figure “AURIX™ TC3xx Platform Firmware:
main flow” in the AURIX™ TC3xx User’s Manual [1].

Checker Software (CHSW)

The checker software verifies that all safety-critical aspects of the startup software have been executed
correctly and thus everything is prepared for the execution of the user code.

For more information about the CHSW execution flow, see “AURIX™ TC3xx Platform Checker Software
Overview” in the AURIX™ TC3xx User’s Manual [1].

Bootstrap Loaders (BSL)

The BSL routines provide mechanisms to load a user program into the RAM of CPUO. This loaded code is started
after exiting the Boot ROM. Therefore, after a successful execution of the firmware, the application software is
started.

3.3 Application SW startup

During the execution of the application SW startup from a lockstep, the user code is responsible for the
execution of several operations for ensuring that latent faults are not present, and for the correct initialization
of the MCU before starting the runtime execution.

Application note 22 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx |n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Boot and startup procedure

In particular, the application SW must:

e Execute the logic build-in self-test (LBIST) if not already performed during FW
e Evaluate the result of LBIST

e Configure, run, and check the result of MONBIST for ensuring the absence of latent faults in the secondary
voltage monitors and standby SMU alarm path

e Execute MCU_FW_CHECK

o Verify the correct configuration settings installed by FW as described in MCU_STARTUP

e Test the functionality of the SMU core alive monitor by the Safety Mechanism ALIVE_ALARM_TEST
e Configure, run, and check the result of MBIST for ensuring the absence of faults in RAM

e Ensure to enable all SMU alarms relevant for the application. In particular, the user code must re-enable
alarms that were disabled during the configuration procedure

Figure 12 shows the sequence of safety mechanisms involved from an unpowered state to a full operational
state of (see the legend on the bottom right for the respective color information):

Analog Startup

SM PBIST

PORST deasserted

SSW RAM INIT

SM MCU_STARTUP_PREQS_SSW
LBIST failed
SM MCU:LBIST
LBIST passed

\
LBIST failed //
SM LBIST
(if not executed by SSW)
LBIST passed [Aurix(TM) Safety Mechanism
Boot firmware phase
Application SW startup phase
SM MONBIST P implemented by SafetyKit oriLLD
_ User-Application
Note: Derived from AURIX TC3xx Safety Manual v2.0, Figure 7
Figure 12 Safety mechanisms sequence during startup
Note: Depending on the application, additional safety mechanisms at startup are required. For example,
if a non-lockstep CPU is used for safety-relevant tasks, all safety mechanisms of the non-lockstep
CPU must be considered.
Application note 23 V1.0

2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx |n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Boot and startup procedure

3.3.1 Safety Kit implementation of the application SW startup

The full application SW startup sequence can be observed in the following two code snippets. The first one
shows the sequential execution of all steps involved; the corresponding macros to enable or disable individual
steps can be observed in the second one.

Code Listing 1 Safe application software startup code example

/* Execute the sequence of SMs when coming from an un-powered state. */

void runSafeAppSwStartup(void)

{

#if SAFETYKIT_CFG_SSW_ENABLE_LBIST_BOOT || SAFETYKIT_CFG_SSW_ENABLE_LBIST_APPSW
safetyKitSswLbist();

#tendif

/* Evaluate reset after LBIST execution */

g _SafetyKitStatus.resetCode = safetyKitEvaluateReset();

/* Evaluate if coming from standby mode */
g_SafetyKitStatus.wakeupFromStandby = safetyKitEvaluateStandby();

#if SAFETYKIT_CFG_SSW_ENABLE_MONBIST
g_SafetyKitStatus.sswStatus.monbistStatus = failed;

/* MONBIST Tests and evaluation
* SM:PMS:MONBIST_CFG and SM:MONBIST_RESULT */
Ifx_Ssw_Monbist();
g_SafetyKitStatus.sswStatus.monbistStatus = passed;
#endif /* SAFETYKIT _CFG_SSW_ENABLE_MONBIST */

#if SAFETYKIT_CFG_SSW_ENABLE_MCU_FW_CHECK
/* SM:MCU_FW_CHECK */
safetyKitSswMcuFwCheck();

#endif /* SAFETYKIT_CFG_SSW_ENABLE_MCU_FW_CHECK */

#if SAFETYKIT_CFG_SSW_ENABLE_MCU_STARTUP
/* SM:MCU_STARTUP */
safetyKitSswMcuStartup();

#endif /* SAFETYKIT_CFG_SSW_ENABLE_MCU_STARTUP */

#if SAFETYKIT_CFG_SSW_ENABLE_ALIVE_ALARM_TEST
safetyKitSswAliveAlarmTest();
#endif /* SAFETYKIT_CFG_SSW_ENABLE_ALIVE_ALARM_TEST */

#if SAFETYKIT_CFG_SSW_ENABLE_REG_MONITOR_TEST
/* SM:SMU:REG_MONITOR_TEST */
safetyKitSswSmuRegMonitorTest();

#endif /* SAFETYKIT_CFG_SSW_ENABLE_REG_MONITOR_TEST */

#if SAFETYKIT_CFG_SSW_ENABLE_MBIST

/* SM:MBIST */

safetyKitSswMbist();
#endif /* SAFETYKIT_CFG_SSW_ENABLE_MBIST */

/* Configure the alarm action for all SMU alarms with default configuration.

* Some configuration might get overwritten with specific configuration later

in the function initSMUModule() */

safetyKitEnableAl1SMUAlarms();

b
\AppSw\SafetyKit\00 Ssw\SafetyKit SSW.c

Application note 24 V1.0
2024-04-04

o~ _.
Safe application development for AURIX™ Application Kit TC3xx | n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Boot and startup procedure

Code Listing 2 Macros to enable or disable steps of application SW startup

/**/

/**/

#define SAFETYKIT_CFG_SSW_ENABLE_LBIST_BOOT 1
#define SAFETYKIT_CFG_SSW_ENABLE_LBIST_ APPSW
#define SAFETYKIT_CFG_SSW_ENABLE_MONBIST

#define SAFETYKIT_CFG_SSW_ENABLE_MCU_FW_CHECK
#define SAFETYKIT CFG_SSW_ENABLE_MCU_STARTUP
#define SAFETYKIT_CFG_SSW_ENABLE_ALIVE_ALARM TEST
#define SAFETYKIT_CFG_SSW_ENABLE_REG_MONITOR_TEST
#define SAFETYKIT_CFG_SSW_ENABLE_MBIST

PR RRRRR

\AppSw\SafetyKit\SafetyKit Cfg.h

3.3.2 LBIST

As already mentioned in the sections 3.2 Boot firmware and 3.3 Application SW startup, the LBIST can be either
executed by hardware during the boot firmware or by the application software during the application SW
startup. Both ways are supported by Application Kit Safety.

To execute the LBIST during the firmware, LBIST must be enabled via the LBIST enable bit (LBISTENA) in the
boot mode index (BMI), see Code Listing 3.

As stated in Safety Mechanism LBIST_CFG, LBIST can be executed with different configurations. The only
recommended configuration, which should be used is ‘Configuration A’, which is given in the device specific
User’s Manual Appendix [2]. This configuration obtains the best coverage with an execution time less than 6 ms
and reasonable power consumption. In fact, with the wrong configuration, LBIST execution can drain too much
current that power monitoring will reset the device. To avoid any kind of misconfiguration of the LBIST, use the
proper configuration in the User Configuration Block (UCB) UCBOA4.

The correct execution of the LBIST and the resulting signature is always verified by the application SW (Safety
Mechanism LBIST_RESULT).

See Section 6.1.2 Logic built-in self-test (LBIST) for more information.

Application note 25 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx |n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Boot and startup procedure

Code Listing 3 Eor disabling LBIST execution during boot firmware

const Ifx Ssw _Bmhd bmhd_© orig =

{

#if SAFETYKIT CFG_SSW_ENABLE_LBIST_BOOT
Ox01FE, /* 0x000: .bmi: Boot Mode Index (BMI) */
0xB359, /* 0x002: .bmhdid: Boot Mode Header ID (CODE) = B359H */
0xA0000000, /* 0x004: .stad: User Code start address */
OxFA2586D5, /* 0x008: .crc: Check Result for the BMI Header (offset 00 */
Ox05DA792A, /* 0x00C: .crcInv: Inverted Check Result for the BMI Header */

#else
OX00FE, /* 0x000: .bmi: Boot Mode Index (BMI) */
0xB359, /* 0x002: .bmhdid: Boot Mode Header ID (CODE) = B359H wf
0xA0000000, /* 0x004: .stad: User Code start address L/
0x31795570, /* 0x008: .crc: Check Result for the BMI Header (offset @0 */
OxCE86AASF, /* 0x00C: .crcInv: Inverted Check Result for the BMI Heade */

#endif

[..]

const Ifx_Ssw_Bmhd bmhd_© copy =

{

#if SAFETYKIT_CFG_SSW_ENABLE_LBIST_BOOT
Ox01FE, /* 0x000: .bmi: Boot Mode Index (BMI) */
0xB359, /* 0x002: .bmhdid: Boot Mode Header ID (CODE) = B359H */
0xA0000000, /* 0x004: .stad: User Code start address */
OxFA2586D5, /* 0x008: .crc: Check Result for the BMI Header (offset 00 */
Ox05DA792A, /* 0x00C: .crcInv: Inverted Check Result for the BMI Heade */

#else
OX00FE, /* 0x000: .bmi: Boot Mode Index (BMI) </
0xB359, /* 0x002: .bmhdid: Boot Mode Header ID (CODE) = B359H 3
0xA0000000 , /* 0x004: .stad: User Code start */
0x31795570, /* 0x008: .crc: Check Result for the BMI Header (offset 00 */
OxCE86AAS8F, /* 0x00C: .crcInv: Inverted Check Result for the BMI Heade */

#tendif

[..]

\Configurations\Ifx Cfg SswBmhd.c

Note: Check whether BMHD has been programmed successfully by verifying the value of the “bmi”
variable of the “bmhd_0_orig” structure (bmi = 0x01FE if LBIST is enabled and bmi = OxFE if LBIST is
disabled).

3.3.3 MONBIST

See Section 6.1.3 Monitor built-in self-test (MONBIST).

Application note 26 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < | n f| neon

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Boot and startup procedure

3.3.4 Firmware check

The Safety Mechanism MCU_FW_CHECK is required for detecting failures (random hardware and systematic
hardware and software), which may have affected the correct execution of the firmware.

In particular:

e Random hardware faults (RHF) can appear as transient or permanent faults and affect one of the hardware
parts (CPU, buses, FLASH) that are needed by the firmware

e Systematic faults (hardware/software) can be generated by incorrectly programming a UCB and other

registers, which control the firmware execution. Because the number of possible combinations cannot be
tested during firmware development, the application needs to verify that firmware execution was correct.

Depending on the AURIX™ device and the kind of reset performed, the firmware execution varies. Therefore, the
application software must verify the correct content of the registers and flags that are relevant for the specific
type of reset. For the complete list of registers and SMU alarms expected content, see “Appendix A” of the
AURIX™ TC3xx Safety Manual [3].

If one of the relevant registers or SMU flags do not report the expected value (“fail” condition), it can be
concluded that the firmware execution has been corrupted by:

e Firmware systematic fault: Can be caused by a specific UCB register combination, leading to an incorrect
firmware sequence and MCU initialization

e Hardware transient fault: Can be caused by EM interference or other transitory events affecting some
hardware part (for example CPUO) during the firmware execution

e Hardware permanent fault: Can be caused by faults in the hardware (undetected by LBIST), affecting
some hardware part (for example, CPU0) which lead to a firmware execution misbehavior

For firmware systematic faults and hardware permanent faults, the firmware check will fail after every reset,
while hardware transient faults have an extremely low probability to affect the device in the same way again
during a second attempt. Therefore, if the firmware check fails, it is recommended to perform a second attempt
by triggering a device reset (ideally of the same type). If the check fails again, it should be concluded that the
device is affected by a permanent hardware fault, and the device should be considered as not reliable.

3.3.4.1 FW_CHECK implementation

The implementation of Safety Mechanism MCU_FW_CHECK requires various steps. In this example, the main
steps are as follows (see Code Listing 4, for the Application Kit Safety implementation of the firmware check):

e Check that the expected SMU alarms have been triggered (registers SMU_AG[0->11])
e Verification of the content of the SCU_STMEM([3-6] registers
e Verification of the content of the SCU_LCLCON[0->1] registers

o Verification of the content of the SSH registers (MCi_ECCD, MCi_FAULTSTS, and MCi_ERRINFOI[0], with “i”
representing every SRAM used in the application)

Attention: Register values depend on the AURIX™ device type and reset type. For the full list of registers
and their expected values, see “Appendix A” of the AURIX™ TC3xx Safety Manual.

Application note 27 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < | n f| neon

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Boot and startup procedure

If all registers and SMU alarms report the expected values, the application SW must:

e Clearthe content of the registers mentioned in the tables in “Appendix A” of the Safety Manual [3]
e Clearthe SMU alarms SMU_AG[0... 11]

o Clearthe corresponding reset status bits in RSTSTAT register

e Proceed further

As already mentioned, if any of the registers do not report the expected values, it shall be assumed that the
firmware has not been executed as expected. It is recommended to perform a second attempt by triggering a
device reset (ideally of the same type).

STMEM check

The execution performed by the SSW is checked by the CHSW that indicates the status of several modules in
these four registers at the end of each reset:

e SCU_STMEM3
e SCU_STMEM4
e SCU_STMEMS5
e SCU_STMEM®6

For more details, see Section 3.1.2.2 “Checks performed by CHSW and exit information” in the AURIX™ TC3xx
User Manual. The expected values of these registers are available in Section 3.1 “Checker Software exit
information for ALL CHECKS PASSED” of the device-specific User’s Manual Appendix [2].

LCLCON check

During SSW execution, lockstep cores are enabled according to the UCB_BMHD registers. After each reset
(except an application reset), the application software must verify the status of the LCLCON[0->1] registers
according to the enabled lockstep cores:

e SCU_LCLCONO
e SCU_LCLCON1

SSH register check

For each memory controller (MC) used in the application, this routine verifies that the alarm and error status
registers are reporting the expected values. The values mainly depend on the reset type. The following registers
are verified:

e ECCD
e FAULTSTS
e ERRINFO [0]

Application note 28 V1.0
2024-04-04

Safe application development for AURIX™ Application Kit TC3xx
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Boot and startup procedure

infineon

Code Listing 4 Code snippet of firmware check implementation
* SM:MCU_FW_CHECK
* */
void safetyKitSswMcuFwCheck(void)
{

if(g_SafetyKitStatus.resetCode.resetType == safetykitResetTypeColdpoweron)

/* Initialize the g_sswStatusXram data if it was a Cold PORST */
g sswStatusXram->mcuFwcheckRuns = 0;

/* Increment the firmware check execution counter */
g_sswStatusXram->mcuFwcheckRuns++;
if (
/* Read SMU alarm register values and compare with expected ones(listed in Appendix A of the
* Safety Manual)
* Note: depending on the device and reset type different register values are expected */
(TRUE == safetyKitFwCheckSmuStmemLclcon(fwCheckSMUTC39B, fwCheckSMUTC39BSize,
g_SafetyKitStatus.resetCode.resetType, fwCheckVerificationSMU)) &&
/* Read SCU_STMEM register values and compare with expected ones(listed in Appendix A of the
* Safety Manual) */
(TRUE == safetyKitFwCheckSmuStmemLclcon(fwCheckSTMEMTC39B, fwCheckSTMEMTC39BSize,
g_SafetyKitStatus.resetCode.resetType, fwCheckVerificationSTMEM)) &&
/* Read SCU_LCLCON register values and compare with expected ones (listed in Appendix A of the
* Safety Manual) */
(TRUE == safetyKitFwCheckSmuStmemLclcon(fwCheckLCLCONTC39B, fwCheckLCLCONTC39BSize,
g_SafetyKitStatus.resetCode.resetType, fwCheckVerificationLCLCON)) &&
/* Read SSH register values of all RAM and compare with expected ones (listed in Appendix A of
* the Safety Manual)*/
(IfxMtu_MbistSel_none == safetyKitFwCheckSsh(g_SafetyKitStatus.resetCode.resetType))
)

/* If all four checks have passed set FW check status variable to "passed" */
g_SafetyKitStatus.sswStatus.mcuFwcheckStatus = passed;

/* If all registers and SMU alarm registers have reported the expected values .. */
/* .. clear the content of the registers mentioned in the Appendix table */
safetyKitFwCheckClearSSH(g_SafetyKitStatus.resetCode.resetType);

/* .. clear the SMU alarms SMU_AGO..11 */

safetyKitFwCheckClearSmuAlarms (fwCheckSMUTC39B, fwCheckSMUTC39BSize);

/* .. clear the corresponding reset status bits in RSTSTAT register */
IfxScuRcu_clearColdResetStatus();

}
else
{
g SafetyKitStatus.sswStatus.mcuFwcheckStatus = failed;
/* If FW check has failed during its first execution trigger the check again */
if(g_sswStatusXram->mcuFwcheckRuns < SAFETKIT_FW_CHECK_MAX_RUNS)
{
/* Clear COLD PORST reason to preserve the data on the SCR XRAM */
IfxScuRcu_clearColdResetStatus();
safetyKitFwCheckRetriggerCheck(g_SafetyKitStatus.resetCode.resetType);
}
¥
[--]

\AppSw\SafetyKit\00_Ssw\SafetyKit SSW 02 _MCU_FW_CHECK.c

Application note 29

V1.0

2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < | n f| neon

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Boot and startup procedure

Attention: Debugger influence
Debuggers might have an (undefined) interference to the firmware behavior and alarms set
during firmware execution. Therefore, it is mandatory to disconnect the debugger before
performing any reset and reconnect it at the end of the firmware execution. Otherwise, the
SMU alarms and/or SSH registers may not report expected values.

Attention: “Early” execution
The firmware check (Safety Mechanism MCU_FW_CHECK) is recommended to perform its
execution in the earliest stage possible of the startup. One reason for that is that SMU ALMs
and/or SSH registers might be accidentally influenced by actions within the application
software. Another reason is that, to meet the startup timing requirements, the application
must be able to detect a fault in the firmware check and trigger a second reset (if required) as
soon as possible.

3.3.4.2 Reset triggering

If one of the checks shown in the previous sections is not met, the application must reset the microcontroller at
least once. As described in Section 9.1.2.2 “Reset Types” of the AURIX™ TC3xx User Manual [1], there are four
kinds of resets that can be used in an application:

e Cold power-on reset (cold PORST)

e Warm power-on reset (warm PORST)
e System reset

e Application reset

There are several methods for generating a reset. In general, a PORST (cold or warm) requires the external
power supply to either remove the power supply voltage (cold PORST) or assert the PORST pin (warm PORST).
System and application resets can be generated by application software through the SWRSTCON and RSTCON
registers, respectively. It is possible to store the number of reset events (except for cold PORST) in the Standby
Controller Extension RAM, which retains its contents during all resets except cold PORST.

Cold reset through LBIST

If the external power supply is unable to generate a cold PORST by removing the supply voltage, it is possible to
simulate a cold PORST by triggering a “fake” LBIST. This can be achieved by setting LBISTCTRLO.PATTERNS =0
and triggering a new LBIST execution by software. The LBIST controller will start and immediately stop the
LBIST scan chain. At the end of the LBIST execution, the MCU internally automatically triggers an internal reset,
which from a firmware execution point of view is equivalent to a cold PORST.

Ensure the following before launching a new LBIST execution:

e Reset the LBIST controller to its initial state and set the “done” bit to zero again by setting
LBISTCTRLO.LBISTRES =1.

o Clearthe cold reset status bits by setting LBISTCTRL2.CLRC = 1.

At the next startup, the application software can detect that an LBIST reset has been executed by checking
RSTSTAT.STBYR =0 and RSTSTAT.LBTERM = 1. The registers and SMU alarms will report the values expected for
a cold reset. If one of the checks fails again (it does not necessarily have to be the same condition that failed at
the cold PORST), the device must be considered faulty.

Application note 30 V1.0
2024-04-04

o~ _.
Safe application development for AURIX™ Application Kit TC3xx | n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Boot and startup procedure

See Code Listing 5 for the Safety Application Kit implementation and Section 9.3.3 “LBIST Support” in the
AURIX™ TC3xx User’s Manual [1] for more details.

Code Listing 5 Code snippet of function safetyKitTriggerLbist

/*

* SM:LBIST_CFG

* */
void safetyKitTriggerLbist(void)
{

*/

/* Increment counter variable which counts the LBIST requests via Application SW
g_sswStatusXram->1bistAppSwReq++;

/* Clear COLD PORST reason to preserve the data on the SCR XRAM */
IfxScuRcu_clearColdResetStatus();

/* Trigger LBIST */
if (IFX_SCU_CHIPID_CHREV_TC39X_BD == MODULE_SCU.CHIPID.B.CHREV)

{
/* Default signature for TC39X-BD device */
IfxSculbist_triggerInline(&IfxSculbist_defaultConfig tc39x_bd);
}
else
{
IfxSculbist_triggerInline(&IfxSculLbist_defaultConfig);
}
while(1)
{
_nop(); /* After triggering LBIST wait for warm reset */
}

} \AppSw\SafetyKit\00 Ssw\SafetyKit SSW 00 LBIST.c

Warm PORST

A warm PORST is generated by an assertion of the PORST pin while keeping the external power supply voltage
stable. After a warm PORST, it is possible to configure the firmware to perform a RAM initialization (through the
PROCONRAM register) and even to retrigger an LBIST execution (although this is not necessary). The standby
domain remains functional during a warm PORST, so the standby RAM (Memory Controller instances 77 and 78)
are not accessed during the consequent firmware execution.

System and application reset

System and application resets can be easily triggered by the application software during runtime by
configuring the following registers. See Code Listing 6 for the Application Kit Safety implementation.

e Configure RSTCON.SW with the required reset (0x1 system, 0x2 application)
e Configure SWRSTCON.SWRSTREQ = 0x1

Application note 31 V1.0
2024-04-04

o~ _.
Safe application development for AURIX™ Application Kit TC3xx | n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Boot and startup procedure

Code Listing 6 Code snippet of function safetyKitTriggerSwReset

/*
* This function triggers either a SW Application Reset or a SW System Reset, based
on the parameter resetType
k */
void safetyKitTriggerSwReset(SafetyKitResetType resetType)
{
/* Get the CPU EndInit password */
uintl6 cpuEndinitPw = IfxSculWdt_getCpuWatchdogPassword();

/* Configure the request trigger in the Reset Configuration Register */
IfxScuRcu_configureResetRequestTrigger (IfxScuRcu_Trigger_sw, (IfxScuRcu_Reset-
Type)resetType);

/* Clear CPU EndInit protection to write in the SWRSTCON register of SCU */
IfxScuWdt_clearCpuEndinit(cpuEndinitPw);

/* Trigger a software reset based on the configuration of RSTCON register */
IfxCpu_triggerSwReset();

/* The following instructions are not executed if a SW reset occurs */
/* Set CPU EndInit protection */
IfxScuWdt_setCpuEndinit(cpuEndinitPw);

} \Appsw\SafetyKit\00 Ssw\SafetyKit SSW.c

3.3.5 MCU_STARTUP

Before entering run mode, the application SW must check for any corruption of data stored in the safety-
relevant registers.

To verify whether the contents of these registers is correct, the user code must store a data checksum
accumulated over all safety-relevant registers and application-dependent safety registers. When this
calculation is completed, the application software must compare the calculated result with an expected
checksum stored in the NVM.

See the implemented function void safetyKitSswMcuStartup (void) and to the Safety Mechanism
MCU_STARTUP section in the Safety Manual [3] for more information.

3.3.6 SMU ALIVE_ALARM_TEST

If a malfunction occurs, the primary part of the SMU (SMU_core) generates an internal alive signal to the
standby part of the SMU (SMU_stdby). The SMU Core Alive signal is generated if one of the following conditions
is met:

e Analarm event occurs while SMU_core is in RUN or FAULT state and the SMU_core alive monitor detects
that a reaction has not been generated by SMU_core.

e Awatchdog or recovery timer alarm event occurs while the SMU_core is in START state and the SMU_core
alive monitor detects that a reaction has not been generated by SMU_core.

e The application issues an SMU_ActivateFSP or SMU_ActivatePES command, but the appropriate reaction is
not generated by SMU_core.

e The alarm configuration is changed while this alarm is being processed.

Application note 32 V1.0
2024-04-04

o~ _.
Safe application development for AURIX™ Application Kit TC3xx | n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Boot and startup procedure

According to Safety Mechanism ALIVE_ALARM_TEST, the application software must, at least once per driving
cycle, test the SMU core alive monitor and its connection to the SMU standby by triggering the alive alarm.

See the Application Kit Safety implementation (Code Listing 8) and Section 15.3.1.2.5 “Interface to SMU_stdby”
in the User’s Manual [1] and Safety Mechanism ALIVE_ALARM_TEST in the Safety Manual [3] for more
information.

Code Listing 7 Code snippet of function safety mechanism ALIVE_ALARM_TEST

/* SM:ALIVE_ALARM_TEST */

void safetyKitSswAliveAlarmTest(void)

{
g_SafetyKitStatus.smuStatus.smuCoreAliveTestSts
g_SafetyKitStatus.smuStatus.smuCoreAliveTestClearSts

NA;
NA;

if((g_SafetyKitStatus.resetCode.resetType == safetyKitResetTypeColdpoweron) ||
(g_SafetyKitStatus.resetCode.resetType == safetyKitResetTypelbist))
{

/* Start SMU Alive Test */
IfxSmu_startAliveTest();

/* Poll for command status (success) */
uint8 timeout = OxFF;

while (SMU_STS.B.RES != QU &% timeout > 0)
{

timeout--;

/* Wait for ALM21[16] - SMU Alive Monitor Alarm */
while(IfxSmuStdby_getSmuStdbyAlarmStatus(21, 16) != IfxSmuStdby AlarmStatusFlag_faultExist)
{

—nop();

/* Set smuCoreAliveTestSts SMU status variable which is displayed on TFT */
g_SafetyKitStatus.smuStatus.smuCoreAliveTestSts = pass;

/* Stop alive test */

IfxSmu_stopAliveTest();

/* Clear the ALM21[16] which is triggered by the Core alive test */
IfxSmuStdby_setSmuStdbyAlarmStatusFlag(21, 16, IfxSmuStdby AlarmStatusFlag_faultExist);

/* Poll for command status (success) */
timeout = OxFF;

while (SMU_STS.B.RES != QU &% timeout > 0)
{

timeout--;

/* Check if alarm is cleared */
if(IfxSmuStdby_getSmuStdbyAlarmStatus(21, 16) == IfxSmuStdby AlarmStatusFlag_noFaultExist)

g_SafetyKitStatus.sswStatus.aliveAlarmTestStatus = passed;
/* Set smuCoreAliveTestClearSts SMU status variable which is displayed on TFT */
g_SafetyKitStatus.smuStatus.smuCoreAliveTestClearSts = pass;

}

else
g_SafetyKitStatus.sswStatus.aliveAlarmTestStatus = failed;
/* Set smuCoreAliveTestClearSts SMU status variable which is displayed on TFT */
g_SafetyKitStatus.smuStatus.smuCoreAliveTestClearSts = fail;

}

} \AppSw\SafetyKit\00_ Ssw\SafetyKit SSW 04 ALIVE ALARM TEST.c

3.3.7 SMU REG_MONITOR_TEST

According to Safety Mechanism REG_MONITOR_TEST, the application software must execute the register
monitor test of all relevant functional blocks by setting the related bit in the RMCTL register. The register
monitor test should have a timeout greater than the value listed in the Safety Manual. At the end of the test, the
application software must check the result by reading the RMEF register.

See the Application Kit Safety implementation (Code Listing 8) and Safety Mechanism REG_MONITOR_TEST in
the Safety Manual [3] for more information.

Application note 33 V1.0
2024-04-04

Safe application development for AURIX™ Application Kit TC3xx
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Boot and startup procedure

Code Listing 8 Code snippet of Safety Mechanism REG_MONITOR_TEST

infineon

void safetyKitSswSmuRegMonitorTest(void) {
[..]
/* Iterate through all modules listed in the SmuRegMonitorModule enumeration */
for (SmuRegMonitorModule testModeEnable = smuRegMonitorModuleMTU; testModeEnable < numSmuRegMonitorModule;
testModeEnable++)

{
/* Enable the test */
IfxSmu_setRegMonTestModeEnable(testModeEnable);
tStart = IfxStm_get(&MODULE_STMO);
/* Wait until test is done, as long test is not finished measure the execution time */
do{
tExecution = IfxStm_get(&MODULE_STMO) - tStart;
}
while(!(IfxSmu_getRegisterMonitorStatus() & (1U << testModeEnable)));
/* Disable the test */
IfxSmu_clearRegMonTestModeEnable(testModeEnable);
/* Convert the time to seconds */
tExecutionInSec = tExecution / IfxStm_getFrequency(&MODULE_STM®);

/* Vvalidation */
if(IfxSmu_getRegisterMonitorErrorFlag() & (1U << testModeEnable))

smuRegMonitorTestPassed = FALSE;
}

if(tExecutionInSec > SMU_REG_MONITOR_TEST_MAX_TIME_SEC)

smuRegMonitorTestPassed = FALSE;

}
/* Set g_SafetyKitStatus.smuStatus variable */

if(smuRegMonitorTestPassed == TRUE)
{

g_SafetyKitStatus.smuStatus.smuSafetyFlipFlopTriggerTestSts = pass;
g_SafetyKitStatus.smuStatus.smuSafetyFlipFlopTestResultCheckSts = pass;

/* CLear all Safety Flip-Flop uncorrectable errors which are raised during the test */

/* Required for g_SafetyKitStatus.smuStatus variable */

boolean alarmClearedSuccessful = FALSE;

SmuStatusType result = pass;

for(uint8 errorId = @; errorId < NUM_UNCORRECTABLE_ERRORS; errorId++)
if(safetyFfUncorrectableErrors[errorId].smuType == TYPE_SMU_CORE)

IfxSmu_clearAlarmStatus(safetyFfUncorrectableErrors[errorId].alarmName);
if(IfxSmu_getAlarmStatus(safetyFfUncorrectableErrors[errorId].alarmName) == FALSE)

alarmClearedSuccessful = TRUE;

}
else if (safetyFfUncorrectableErrors[errorId].smuType == TYPE_SMU_STDBY)
if (clearBitSMUstdby(safetyFfUncorrectableErrors[errorId].alarmName) == fail)

result = fail;

}
-]
if (REG_MONITOR_TEST_PASSED)
g_SafetyKitStatus.sswStatus.regMonitorTestStatus = passed;
else

g_SafetyKitStatus.sswStatus.regMonitorTestStatus = failed;

}

}
\AppSw\SafetyKit\00_Ssw\SafetyKit_ SSW_05_SMU_REG_MONITOR_TEST.c

3.3.8 MBIST

See Section 6.1.4 for more information on memory built-in self-test (MBIST).

3.3.9 Enable all SMU alarms

The Safety Manual recommends enabling all SMU alarms relevant for the application. In particular, the user

must re-enable all alarms that must be disabled during the startup configuration procedure.

See the function void safetyKitEnableAllSMUAlarms (void)in
\AppSw\SafetyKit\00_Ssw\SafetyKit_SSW.c.

Application note 34

V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < |n f| neon ,

Safety
32-bit TriCore™ AURIX™ TC3xx microcontroller
Failure management

4 Failure management

Note: See AURIX™ TC3xx Safety Manual [3], Chapter 6 “Safety Mechanisms” and AURIX™ TC3xx User’s
Manual [1], Chapter 15 “Safety Management Unit (SMU)”.

The cornerstone of AURIX™ failure management is the Safety Management Unit (SMU). The Safety Mechanism
SMU:CONFIG is required to configure the SMU reaction for each possible alarm. The SMU is the central
component of the safety architecture, providing a generic interface to manage the behavior of the
microcontroller under the presence of faults. The SMU centralizes all the alarm signals related to different
hardware and software-based safety mechanisms. The purpose of the SMU is to configure the behavior of each
alarm. Those alarms can be individually configured to trigger internal actions and/or notify externally the
presence of faults through a fault signaling protocol. The severity of each alarm must be configured according
to the needs of the safety application(s): by default, every alarm reaction is disabled, apart from the watchdog
timeout alarms.

The SMU is split in two parts:

e SMU_core: Located in the core domain; responds to all alarms generated by modules supplied by the SPB
clock

e SMU_stdby: Located in the stand-by domain; responds to all alarms generated by modules supplied by the
BACK clock

Scu

-

1sanbay 1959y
1sanbau AN
1s3nbay (u)alp|

h J

Core Fsp

Modules supplied by SPB clock

Alarm > SMU —
Stdby
Modules supplied by BACK clock - Recovery Timer
@ @ o}
9] 9] 9]
1%} 1%} 1%3
- N w
yy

Figure 13 Simplified SMU concept

Application note 35 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < | n f| neon

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Failure management

4.1 Error management concept

To configure the specific action to be taken, the alarm signals at the input of the SMU are mapped with the
alarm configuration registers. There is a one-to-one relationship between an alarm group index ALM<n> signal
and the alarm configuration and status registers (AG<n=). Each group is made of up to 32 input alarms.

Each alarm can be configured with a different “primary” behavior:

e SMU interrupt service request: IGCSx (x=0 .. 2) with the AGC. IGCSx register controls how the SMU triggers
interrupt requests to the interrupt router

e Non-maskable interrupt (NMI): High-priority interrupt, which cannot be masked (cannot be ignored by the
system)

e CPU reset request
e Application or system reset request
e Disablethe alarm

The list can be completed with a “second” behavior:

e FSP: See Section 4.2.2
e Recovery timer: See Section 4.2.1

4.2 SMU driver implementation

The initsMUModule function (see Error! Reference source not found.) contains a test of Safety Mechanism
SMU:LOCK to ensure proper SMU functionality. Afterwards, structures are filled according to the configured
alarm configuration (globalAlarmConfig structure) of each alarm. For alarm mapping, see the User’s Manual
Appendix [2].

Application note 36 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx |n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Failure management

Code Listing 9 Fault injection to trigger FSP via SMU_STDBY

void initSMUModule(void)

{
/* Prevention of double SMU reset */
IfxScuWdt_clearSafetyEndinit (IfxScuWdt_getSafetyWatchdogPassword());
SCU_WDTSCON1.B.CLRIRF = 1;
IfxSculWdt_setSafetyEndinit(IfxScuWdt_getSafetyWatchdogPassword());

/* Initialize the structure containing the execution state of SMU sensitive functions */
initFunctionExecutionStatusSMU(&g_SafetyKitStatus.smuStatus);

/* Test if SM:SMU:LOCK is working */
enableKeysTestSMU();

/* Reset alarmCounter */
g_SafetyKitStatus.smuAlarmPending.alarmCounter = 0;

/* Set result to fail */
SmuStatusType result = fail;

/* Fill the RuntimeAlarmHandle structures and configure alarms */
result = initSMUAlarmsSMU();
g_SafetyKitStatus.smuStatus.smuCoreAlarmConfigSts = result;

/* Enable and configure the PES */
uint8 pesAction = onPESIGCS1;

g_SafetyKitStatus.unlockConfig &= IfxSmu_unlockConfigRegisters();
if (g_SafetyKitStatus.unlockConfig == TRUE)

g_SafetyKitStatus.smuStatus.unlockConfigRegisterSMU = pass;
}

else

{
}

g SafetyKitStatus.smuStatus.unlockConfigRegisterSMU = fail;

IfxSmu_configAlarmActionPES(pesAction);
IfxSmu_temporaryLockConfigRegisters();

/* Validation if PES configuration was successful */
IfxScuWdt_clearSafetyEndinitInline(IfxScuWdt_getSafetyWatchdogPasswordInline());
if (MODULE_SMU.AGC.B.PES != pesAction){

result = fail;

IfxScuWdt_setSafetyEndinitInline(IfxSculWdt_getSafetyWatchdogPasswordInline());
g_SafetyKitStatus.smuStatus.smuCoreAlarmPESSetSts = result;

/* Enable and configure the recovery Timer (maximum value for the duration is @xffffff) */
enableRecoveryTimerSMU(Oxffffff);

/* Enable and configure the FSP */
enableFSPcoreSMU(IfxSmu_FspMode_TimeSwitchingProtocol, IfxSmu_FspPrescalarl_referenceClockDiv2,
IfxSmu_FspPrescalar2_referenceClockDiv4096);

enableFSPstdbySMU();

/* Enable the SMU */
result = activateSMU();
g_SafetyKitStatus.smuStatus.smuCoreInitSts = result;

/* Check if IGCSx group config is valid and if SMU ISRs are reachable */
result = checkIsrConfigSMU();
g_SafetyKitStatus.smuStatus.smuCoreAlarmConfigSts &= result;

} \AppSw\SafetyKit\01 Smu\SMU\SMU.c

Application note 37 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx | n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Failure management

4.2.1 Recovery Timer (RT) and watchdog alarms

Note: See the section “Safety Mechanism SMU:RT” in the AURIX™ TC3xx Safety Manual [3], Section
15.3.1.5.7 “Recovery timer” and Section 15.3.1.5.8 “Watchdog alarms” in the AURIX™ TC3xx User’s
Manual [1].

The SMU implements two recovery timers (RTO and RT1) to monitor the response time of a RESET, NMI, or
interrupt triggered by an alarm. If the RT is not serviced before it times out, an alarm is generated.

Two independent instances (RTO and RT1) are available. The recovery timer duration (identical for all
instances) is configured in the SMU_RTC register. It is possible to enable or disable each instance; however,
both instances are enabled by default because recovery timers are required for the operation of the CPU
watchdog timers.

The alarm mapping consists of a pair of parameters {GIDi, ALIDi} (with i = 0..3), where GIDi is a group identifier
and ALIDi is the alarm identifier belonging to the group. Four {GIDi, ALIDi} pairs can be configured per recovery
timer instance.

If a recovery timer is enabled and for any of the {GIDi, ALIDi} pairs an alarm event occurs and if an internal
action is configured leading to an internal action (the alarm status must be cleared), the recovery timer is
automatically started by hardware.

Once a recovery timer event has occurred, the recovery timer starts and counts until the software stops it with
IfxSmu_stopRT (). If the timer expires, an internal SMU alarm (Recovery Timer Timeout) is issued.

Watchdog alarm processing

The safety manual states that a special processing including the recovery timer is required to ensure the correct
microcontroller behavior if the watchdog timers (WDT) are not serviced by software or firmware. It must be
ensured that the microcontroller is reset after a pre-warning phase, where the software can still perform some
critical actions:

e Every timeout alarm must activate an NMI.

e Recovery Timer 0 must be configured to service WDT timeout alarms for Safety WDT, CPUO WDT, CPU1 WDT
and CPU2 WDT.

e Recovery Timer 1 must be configured to service WDT timeout alarms for CPU3 WDT, CPU4 WDT and CPU5
WDT.

e Recovery Timer 0 and Recovery Timer 1 timeout alarms must be configured to issue a reset request and
activate the fault signaling protocol.

Figure 14 shows an example for RTAC 0 and the related four WDT (Safety WDT, CPUO WDT, CPU1 WDT and CPU2
WDT). As shown, if any of the four mentioned watchdog timers has on overflow (timeout), an SMU alarm will be
raised which is configured to issue an NMI. The SMU is also configured to automatically start Recovery Timer 0 if
an NMl is triggered; therefore, Recovery Timer 0 starts incrementing directly after one of the watchdog
timeouts. This pre-warning phase enables the application to react to the fault. If the system can solve the issue
and to stop Recovery Timer 0, a Recovery Timer overflow is prevented; therefore, a reset request to the SCU
(application or system reset) which would have occurred after the overflow is also avoided.

Application note 38 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx | n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Failure management

NMI Request
forwarded to all available CPUs

SCu sSMuU
r WDTx Alarms
L RTACOx[31:0] l configured to trigger

recovery timer
Safety WDT | | timeout ip Alarm Configuration

timeout -

WDTO > WDTx Alarms . .
configured to issue NMI | start | Recovery Timer 0 | —
WDT1 timeout » (reset configuration) S —
timeout
WDT2 [| ik Timer Counter
WDT1 and WD T 2 are only reset value
svailable in devices with = SMU_RTC.RTD

muliple GPUs

Alarm Configuration = Ox3FFF (Fevr_-:kJ

Recovery Timer O

‘Applicaﬁon Reset g ResetReq | timeout configured to < timeout
or issue Reset Request
System Reset (reset configuration)

RTACO00[31:0] Selects Alarms to be used by Recovery Timer 0

‘ RES[6:0] ‘ ALID 1[4:0] ‘ GID1[3:0] ‘ RES[6:0] ‘ ALID 0[4 :0] ‘ GIDO[3:0] ‘

RTACO01[31:0] Selects Alarms to be used by Recovery Timer 0

’ RES[6:0] l ALID 3[4:0] ‘ GID3([3:0] ‘ RES[6:0] I ALID 2[4:0] ‘ GID2(3:0] ‘

‘ ALIDn[4:0] Alarm Index within GIDn [2:0] Group

Note: Derived from AURIX TC3xx User’s Manual v2.0.0, Figure 162 Watchdog timeout alarm configuration (RTAC 0)

Figure 14 Watchdog timeout alarm configuration (RTAC 0)

4.2.2 Fault Signaling Protocol (FSP)

The Fault Signaling Protocol (FSP) enables the microcontroller to report a critical situation to an external safety
controller device to control the safe state of the safety system.

The fault signaling protocol is configured through the FSP register and has three possible states (STS register):

Power-on reset
Fault-free (FSP not asserted)
Fault (alarm asserting FSP)

FSP can be configured with three possible protocols, which define the FSP behavior for fault-free and fault
state:

Bi-stable protocol (default)
Dynamic dual-rail protocol

Time-switching protocol (recommended protocol for the usage of AURIX™ MCUs together with the TLF35584
PMIC)

Application note 39 V1.0

2024-04-04

o~ _.
Safe application development for AURIX™ Application Kit TC3xx | n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Failure management

As shown in Code Listing 28, all four lockstep comparator alarms are enabled to trigger the FSP (“enable
external reaction” column). It is also possible to configure SMU_stdby alarms to trigger the FSP (see the
alarmStdbySMUReactionEnabledFSP structure).

Most safety applications will reset the system after an SMU alarm has occurred. For the Application Kit Safety
application, many alarms will clear the alarm and resume. This FAULT to RUN state transition is possible only if
SMU_AGC.EFRST is enabled (see the iLLD function I1£fxSmu_enableFaultToRunState which is called inside
the configSMUFSPcore function).

After an alarm occurs, the Application Kit Safety application clears the alarm and releases FSP in the
coreAlarmReactionClearsMu function (SMU.c).

SMU_stdby alarms must be handled differently compared to SMU_core alarms. If an SMU_stdby alarm event
has occurred, it can be cleared by writing to the SMU_stdby registers rather than the core SMU_AGx registers.
See the example in Code Listing 10.

Code Listing 10 Fault injection to trigger FSP via SMU_STDBY

/*
* Test the FSP for the stdby alarm
* %/
void testFSPstdbySMU()
{
IfxScuWdt_clearSafetyEndinitInline (IfxScuWdt_getSafetyWatchdogPasswordInline ());
/*
* An over-voltage event is triggered when the threshold is crossed in
* a lower to higher voltage transition. Greater than or equal compare
* is used.
*/
PMS_EVRMONCTRL.B.EVRCOVMOD = ©Ox1;

/* Value to trigger the fault */
PMS_EVROVMON. B.EVRCOVVAL = 0x00;

IfxScuWdt_setSafetyEndinitInline (IfxScuWdt_getSafetyWatchdogPasswordInline ());

/* Clear SMU_stdby ALM for VDD over voltage fault */
IfxScuWdt_clearSafetyEndinitInline (IfxScuWdt_getSafetyWatchdogPasswordInline ());

/* Default value when the micro controller is reset via Power on reset */
PMS_EVROVMON.B.EVRCOVVAL = OXFE;

/* Preparing for bit clearing, with ASCE */
PMS_CMD_STDBY.U |= 0x40000008;

/* Clear the status flag error related to over voltage */
PMS_AG20_STDBY.B.SF4 = 1;

IfxScuWdt_setSafetyEndinitInline (IfxScuWdt_getSafetyWatchdogPasswordInline ());
} \AppSw\SafetyKit\01_Smu\SMU\FSP\SMU_stdby FSP.c

Note: Write access to PMS_EVRMONCTRL.EVRCOVMOD is Safety Endinit protected.

Note: See the section “Safety Mechanism SMU:FSP_MONITOR” in the AURIX™ TC3xx Safety Manual [3]
and Section 15.3.1.8 “Fault Signaling Protocol (FSP)” in the AURIX™ TC3xx User’s Manual [1].

Application note 40 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < |n f| neon ,

Safety
32-bit TriCore™ AURIX™ TC3xx microcontroller
Failure management

4.2.3 Port Emergency Stop (PES)

This feature provides a fast reaction without the intervention of SW. The selected output ports are immediately
set-switched to the input function if an alarm occurs. The Port Emergency Stop request to the SCU can be
activated by any of the following situations:

e Port Emergency Stop configured for the port via Pn_ESR - see TC3xx User Manual, Section 14.4.13
“Emergency Stop Register”

e Activate PES

e Analarm event with SMU_AG<x>FSP enabled and FSP.PES enabled

e Analarm event with an internal action configured in SMU_AG<x>CFx registers and SMU_AGC.PES enabled
for that action

The PES feature can be configured for an internal action via the iLLD function
IfxSmu_configAlarmActionPES. See Section 6.2.8.4.

Application note 41 V1.0
2024-04-04

o~ _.
Safe application development for AURIX™ Application Kit TC3xx < | n f| neon

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
System-level hardware requirements

5 System-level hardware requirements

The Application Kit - TC3xx Safety utilizes the Application Kit TC397 TFT as a mainboard for running the safety
demonstration. This board already implements the system-level hardware elements required when developing
a safe application (see Section 3.3 “System Level Hardware Requirements” in the Safety Manual [3]).

The system-level hardware requirements are focused on:

e External voltage supply
e Error monitor
e External time-window watchdog

AURIX 2G
Safety Power
Supply
™ Reset L1 = | /PORST
Function
le| Voltage . »] VEXT
Monitor
Safe State Error
Activation Safe ™ Monitor [= [] smurse
-] State
Control
| watchdog | [J= {1 cro
™ M 4 -
SPI [= =] SPl
Figure 15 System-level hardware requirements overview

All the system-level hardware requirements are fulfilled by one external component, the Infineon TLF35584QV
multi-voltage safety microprocessor supply, which was already introduced in Section 2.1.1.

5.1 External voltage supply

In order to operate safely, AURIX™ MCUs should be powered with a stable voltage supply (see Safety Mechanism
PMS:VEXT_VEVRSB_ABS_RATINGS in the Safety Manual). TLF35584QV features a low-drop post regulator
3.3V/600 mA or 5.0 V/600 mA for MCU supply. An external device, which can be different from the supply
voltage device, should monitor the supply voltage and disable it in case of a limit violation (see “Safety
Mechanism PMS:VEXT_VEVRSB_OVERVOLTAGE” in the Safety Manual). TLF35584 includes an independent
voltage-monitoring function of all output voltages for overvoltage and undervoltage conditions. An overvoltage
condition detected for a predefined time will trigger the shutdown of the related regulator. Every overvoltage
and undervoltage event is stored in a SPI status register.

Application note 42 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx | n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
System-level hardware requirements

If the MCU is exposed to a voltage level exceeding the operating conditions for longer than the specified time, a
permanent fault can occur. Those faults would be detected by startup self-tests such as MONBIST or LBIST, or
even a failure to start up.

Note: See the latest TLF35584 datasheet for more information [4].

] = =0 § "]

“o[eoeem= . seee Z% .- S

leseee _“(eeee e -
)

12C(P15)or OSFI4(PZD) el | B . o
" |RTC i B
I me e) N
P37 ..
.o
.e iy, E
e H g
b 2 2
VP b 5 F
.o T

QsPR2PI5)

LB A RN R R A RN RENERENENNNEHN]
LA X XN EEEEEE SN ERRREN)

_-J.]:.'IEI-I:EESELCUIES AG APPLICATION KIT TC3%7 u2.0° QN
Note: Derived from Application Kit Manual TC3X7 v2.1, Figure 2-1 Application Kit TC3X7 Block Schematic and
Figure 2-2 Application Kit TC3X7 V2.0 Top Placement

=

!

Figure 16 TLF35584 power supply on the Application Kit TC397 TFT

Electromagnetic noise or other sources of disturbances can degrade the quality of the supply voltage (see
Safety Mechanism PMS:VX_FILTER). TLF35584 does not detect such events. Decoupling capacitors must be
installed near the AURIX™ MCU to avoid effects from short voltage spikes and high-frequency oscillations. See
the application notes for BGA and TQFP/LQFP packages on PCB design and layout that list recommended
capacitor values and placement.

The Application Kit TC397 schematic provides the following example (Figure 17):

Application note 43 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx | n f| neon ,
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
System-level hardware requirements

V_UC CB101

W204 1l
VEXT =53~ 1000

B3 | ,
VEXT =35 Il_

| VEXT QSTcRi03 100n i F Tt T .
i T1l T i | TLF 0 B pcie i
| VEVRSB v | L QuC [lGND |
| vDDp3 ALY & 100n GND: sy ATWFIOV |
| VDDP3][3);8 CB]O4= | oco 3 4 cho |GND!
| VFLEX (VEXT) ———e C|‘|3105 e | 0 VREF sV4TRF/10V 1
; ool 1 e S [T
5 vDD/vDpsp & 00" GNDL Qri ATWF10V
: VDD /VDDSB —=——s¢ | b QT1 =33 & e JGND !
: PR CB106 : . il ! .
: VDD W' ms : ! QT2 4, 7uF/10V !
i VDD ————t - | 32 a Cli3 !
' N7 Lo QT2 Il IGND !
! VDD ——a - v Il JGND,
| VDD —yi4 ¢ GND : : 4,TuF/10V :
e o] |

p VDD 'W' !

i vbD gt i

! VDD :

T, N o_f;.'_D;;il;e_cf_fr_o;n_.;;;pllication Kit Manual TC3X7 v2.1, Figure 7-2 Schematic - CPU and Power Supply

Figure 17 Decoupling capacitors for supply voltage filtering
5.2 Error monitoring

Some critical internal errors should be reported externally to create an external response such as warm reset.
There are three ways of signaling an error:

e Fault signaling protocol (FSP) pin activation
e Emergency Stop
e Application software notification via NMI or ISR

5.2.1 FSP activation

The Fault Signaling Protocol (FSP) feature can be used to report a critical situation to an external component
(Safety Mechanism FSP_ERROR_PIN_MONITOR). On the Application Kit - AURIX™ TC397 TFT, the external device
used to monitor the AURIX™ MCU is the TLF35584 PMIC. In particular, the FSP pin P33.8 (SMU_FSPO) is used as
the TLF35584 ERR input. It is also routed to the Evaluation Board - AURIX™ TC3xx Safety (add-on shield board)
for error injection (see Figure 18).

The SMU can be configured to trigger an FSP reaction on a per-alarm basis. At the register level, this is done by
setting the SMU_AGXFSP bit field corresponding to the alarm. At a higher level, using the provided SMU driver, it
can be done by enabling the external reaction of the specific alarms inside the globalalarmConfig array.

As already mentioned in Section 4.2.2, in Application Kit Safety, all lockstep comparator errors are configured
to trigger the FSP (see Code Listing 28). For more information, see the section “Safety Mechanism
FSP_ERROR_PIN_MONITOR” in the AURIX™ TC3xx Safety Manual [3].

Application note 44 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < | n f| neon

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
System-level hardware requirements

V_UuC

—:l/:li
59

== SMU_FSPTOV_UC
<[

o P33.8

’I 14
510 TOR

7N SMU_FSP TO GROUND

=+

D4
GND Blue

x>

GND

Figure 18 Circuitry for FSP signal fault injection

Note: By default, TLF35584 does not react to any fault. This is because the microcontroller programming
support pin is asserted by hardware, putting TLF35584 in a debug mode and disabling the switch
to the FAILSAFE mode. This allows the user to debug the system without worrying about safety
features (e.q., error pin monitoring or watchdogs). By removing the resistor R127 on the
Application Kit TC397 TFT PCB and by assembling a 2-pin jumper on JP201, debug mode can be
enabled and disabled in a more flexible way. For more information, see the Application Kit TC397
manual [5] and the TLF35584 datasheet [4].

5.2.2 Emergency Stop activation

The Emergency Stop (ES) feature can also be used to report a critical situation to an external component
(Safety Mechanism ES_ERROR_PIN_MONITOR). Any combination of the FSP pin activation, ES pin activation, NMI
request, and ISR request can be used depending on the system environment.

As FSP features are already used for monitoring by an external device, the ES feature is not implemented to
report a critical situation to an external component; therefore, it is also not implemented on Application Kit
Safety. The system integrator is responsible to determine the *_ERROR_PIN_MONITORING safety mechanism to
implement.

5.2.3 Application software notification via NMl or ISR

The third way to signal an erroneous behavior is to use the software-based external failure reporting interface
(Safety Mechanism SW_ERROR_PIN_MONITOR). It can be done through any kind of reporting interface such as ES
activation, FSP pin activation, NMI request, or Interrupt Service Request (ISR).

5.3 External time-window watchdog

An external device with an independent reference clock and with the functionality of a time-window watchdog
supervises the AURIX™ microcontroller. This external device must initiate the transition to the system safe state
if a fault, which can lead to the violation of a system safety goal is detected. This is necessary to control
common-cause failures initiated by external stress conditions or internal failures of the microcontroller, which
may lead to a state where the microcontroller cannot signal an internal failure.

Some systems implement external watchdogs supporting program flow monitoring with a question-answer
protocol. Although these functions can be taken over by the internal watchdogs so there is no need for such a

Application note 45 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < |n f| neon ,

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
System-level hardware requirements

device; complex external watchdogs are still supported by the AURIX™ microcontroller. In this case, a separate
window watchdog may not be required.

For more information, see the “Safety Mechanism WATCHDOG_FUNCTION” section in the Safety Manual [3].

Note: By default, TLF35584 does not react to any fault. This is because the microcontroller programming
support pin is asserted by hardware, putting TLF35584 in a debug mode and disabling the switch
to the FAILSAFE mode. This allows the user to debug the system without worrying about safety
features (e.qg., error pin monitoring or watchdogs). By removing the resistor R127 on the Evaluation
Board TC397 PCB and by assembling a 2-pin jumper on JP201, debug mode can be enabled and
disabled in a more flexible way. For more information, see the Evaluation Board Manual [5] and
the TLF35584 datasheet [4].

Application note 46 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < | n f| neon

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

6 Architecture for management of faults

6.1 Self-tests for latent fault metric support

The AURIX™ TC3xx platform supports automatic and user-triggered built-in self-test. The following section
describes the available built-in self-test in AURIX™ TC3xx microcontroller.

6.1.1 Power built-in self-test (PBIST)

The power BIST (Safety Mechanism PBIST) is implemented in the hardware to identify power-related faults: in
particular, faults related to voltage monitoring mechanisms. This SM is automatically executed before PORST,
and releases the AURIX™ MCU from reset only after the test succeeds.

PBIST has no possible configuration from the user.

6.1.2 Logic built-in self-test (LBIST)

The LBIST module oversees the testing of the digital logic of the MCU. The logic BIST (LBIST) executes structural
tests (the tests use scan chains) and checks the digital logic of the MCU to detect hard errors. The LBIST is used
as a safety mechanism (Safety Mechanism LBIST) and contributes to achieving the latent fault metric (LFM)
target.

The idea behind the LBIST is that, for a given chain of flip-flops (FF) with some combinational logic in between,
if an input sequence is shifted through the chain, the chain should be in a predictable state when the input
sequence is fully loaded. That state can then be captured in a single cycle. The relationship between the input
and the captured state of the chain can be computed into an expected fixed signature. In case of an unexpected
signature, the presence of a fault can be deduced.

For a flip-flop chain of length n, 2" possible combinations should be tested to be sure to detect any latent fault.
Unfortunately, this would take an unreasonable time, considering the number of flip-flops. To cope with that
issue, randomized patterns are used. Multiple patterns can be tested to maximize the chance of finding a fault.
The completed logic circuitry to be tested is divided into scan chains. Each scan chain is loaded with the
pattern. The result of each scan chain is compacted into a single signature.

The software integrator is responsible for checking the proper execution of the LBIST and for checking the
generated signature against the expected signature. The signature values can be found in the variant-specific
User Manual Appendix.

As the complete circuitry of the chip is filled with a random pattern, a reset is required to bring the chip back to
the default state. Awarm PORST will be automatically generated at the end of the LBIST execution. The AURIX™
internal firmware follows the path for a cold power-on reset.

All digital modules in AURIX™ TC3xx, except for the PMS sub-block, are covered by LBIST scan chains. All CPUs,
peripherals, ports (excluding pads), and the HSM are tested by the LBIST. PMS modules (EVR, SCR WUT,
SMU_STDBY. etc.) are not covered by the LBIST. The PMS register interface is covered. Non-covered modules
can be used to store the number of LBIST executions in case of an error (e.g., the standby controller extension
RAM (XRAM)).

All safety mechanisms (for example: SRAM and PFlash ECC, MPUs, bus SMs, and all SMU alarms and the
SMU_CORE) are covered through the LBIST. Therefore, there is no need to test the safety mechanisms again
(for example by software) after a proper LBIST execution. Analog and mixed signal modules are not covered by

Application note 47 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < | n f| neon

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

LBIST. Simply repeating the LBIST (for example with the same or different seed) does not improve the
coverage.

LBIST does not test the SRAMs, PFlash, or DFlash memories. The RAMs have to be tested separately by the
MBIST. However, SRAM redundancy registers are part of the scan chain and therefore corrupted. Therefore,
SRAMs contents are not reliable after the LBIST and must be initialized after the LBIST before use. By default,
SRAMs are initialized after the cold power-on reset followed by the internal firmware, unless changed in
HF_PROCONRAM.RAMIN. Similarly, LBIST does not test the flash itself, but the surrounding/digital logic (for
example, FSI or ECC blocks) is tested.

The execution of the LBIST should be monitored as stated by Safety Mechanism LBIST_MONITOR. A normal
LBIST completes within 6 ms. Because the MCU digital logic is not available during LBIST execution, an external
device is responsible for making sure that the LBIST completes. An external WDT can be used for this purpose,
as highlighted in Safety Mechanism WATCHDOG_FUNCTION. After PORST deassertion, the external power supply
waits for a first SPI message from the MCU, which will serve the external WDT. If the wait time exceeds the
allowed time window because of a problem during the startup sequence, the appropriate reaction must be
taken at the system level.

The ESRO and ESR1 pins are put into weak pull-down state during the LBIST execution state. Therefore, these
pins can used as an alternative option to check the LBIST progress.

6.1.3 Monitor built-in self-test (MONBIST)

The secondary monitor BIST (Safety Mechanism MONBIST) is a user-triggered test that provides a higher latent
fault coverage for secondary monitors, associated alarms, and error pin fault logic routed to the standby SMU.
The test should be triggered at startup immediately after enabling the SMU.

As mentioned in Safety Mechanism MONBIST_CFG in the AURIX™ TC3xx Safety Manual [3] and in the
corresponding section in the User Manual [1], the test procedure requires 16 steps. After the procedure has
finished, the application software must check the MONBIST results in MONBISTSTAT (Safety Mechanism
MONBIST_RESULT). That procedure is fully covered by the Infineon Low Level Drivers (iLLDs), either as a
function as part of the application SSW (void Ifx Ssw Monbist (void))or as part of the SMU_stdby (void
IfxSmuStdby startSmuStdbyMonBist (void)).

As shown in Code Listing 1 Safe application software startup code example, the function of the application SSW
is used within this application note.

6.1.4 Memory built-in self-test (MBIST)

As mentioned in the “Safety Mechanism MBIST” section in the Safety Manual [3], the MBIST checks the SRAM
integrity. The SRAM areas are not covered by the LBIST. To increase the latent fault detection coverage, this
memory check is necessary.

The full non-destructive test (NDT) described in Section 13.3.8.1 “Non-Destructive Test (NDT)” of the User’s
Manual [1] is fully implemented in the iLLD function IT£xMtu runMbistAll (mbistGangConfig).

As also stated in the “Safety Mechanism MBIST” section of the Safety Manual [3], the application software must
prevent any attempt of read or write operations on the memory during the execution. The respective
preparation steps to prevent these read or write attempts are shown in Code Listing 11.

Application note 48 V1.0
2024-04-04

Safe application development for AURIX™ Application Kit TC3xx
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

infineon

Note: During an MBIST, the memories being tested are not accessible. To prevent unintended memory
accesses, bus masters like CPU1...CPUS5, etc. are kept disabled during the test. Because this MBIST
example is executed on CPUO, it is required that CPU0.DSPR and CPUO. PSPR should not be
accessible during the test; otherwise, the MBIST will fail. Therefore, during this test, no RAMs of
CPUO are accessed because the function and struct etc. are stored in PFlash and the local
variables are handled by the core registers. The number of local variables used should not exceed
the core registers, because any violation will be stored on the stack and cause the MBIST to fail
(e.g., using local vector also or struct definitions). Therefore, it is the responsibility of the user to

ensure adherence to this constraint while performing MBIST.

Code Listing 11 Code snippet of function safetyKitSswMbist

/* SM:VMT:MBIST */
void safetyKitSswMbist(void)

g_SafetyKitStatus.sswStatus.mbistStatus = notEvaluated;
/* Preparations for MBIST */
/* Disable all other CPUs, but of course not the one which is executing the function */
IfxCpu_ResourceCpu coreIndex = IfxCpu_getCoreIndex();
if(coreIndex != IfxCpu_ResourceCpu_0){
IfxCpu_setCoreMode(&MODULE_CPU®, IfxCpu_CoreMode_idle);

3
#if (IFXCPU_NUM_MODULES > 1)
if(corelIndex != IfxCpu_ResourceCpu_1){
IfxCpu_setCoreMode (&MODULE_CPU1, IfxCpu_CoreMode_idle);
}
#endif
#if (IFXCPU_NUM_MODULES > 2)
if(coreIndex != IfxCpu_ResourceCpu_2){
IfxCpu_setCoreMode(&MODULE_CPU2, IfxCpu_CoreMode_idle);

)
#if (IFXCPU_NUM_MODULES > 3)
#endif
if(corelIndex != IfxCpu_ResourceCpu_3){
IfxCpu_setCoreMode(&VMODULE_CPU3, IfxCpu_CoreMode_idle);

¥
#if (IFXCPU_NUM_MODULES > 4)
#endif
if(coreIndex != IfxCpu_ResourceCpu_4){
IfxCpu_setCoreMode(&MODULE_CPU4, IfxCpu_CoreMode_idle);

)
#if (IFXCPU_NUM_MODULES > 5)
#endif
if(corelIndex != IfxCpu_ResourceCpu_5){
IfxCpu_setCoreMode(&MODULE_CPUS, IfxCpu_CoreMode_idle);

¥
#endif

/* Disable CPU caches */
IfxCpu_setDataCache (0);
IfxCpu_setProgramCache (0);

/* If DMA master is enabled disable it */

boolean dmaWasEnabled = FALSE;

if(MODULE_DMA.CLC.B.DISS ==)

{
dmaWasEnabled = TRUE;
uint16 passwd = IfxScuWdt_getCpuWatchdogPassword();
IfxScuWdt_clearCpuEndinit(passwd);
MODULE_DMA.CLC.B.DISR = 1;
IfxScuWdt_setCpuEndinit(passwd);

¥

/* MBIST Tests and evaluation */
boolean nBistError = TRUE;
nBistError = IfxMtu_runMbistAll(mbistGangConfig);

/* check if there was any error */
if (nBistError == FALSE)
{
g_SafetyKitStatus.sswStatus.mbistStatus = passed;

else
{

g_SafetyKitStatus.sswStatus.mbistStatus = failed;
}

/* Clear all ECCD and FAULTSTS registers of the tested memory */
safetyKitClearMbistSshRegisters();

/* Enable DMA module again if it got disabled before */
if(dmaWasEnabled)
{

uint16 passwd = IfxScuWdt_getCpuWatchdogPassword();
IfxScuWdt_clearCpuEndinit(passwd);
MODULE_DMA.CLC.B.DISR = 0;
IfxSculWdt_setCpuEndinit(passwd);

}

} \AppsSw\SafetyKit\00 Ssw\SafetyKit SSW_06 MBIST.c

Application note 49

V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < | n f| neon

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

6.2 Functional blocks and safety-related functions
6.2.1 MCU function - processing

6.2.1.1 CPU

The TC3xx family utilizes the TriCore™ 1.62P (TC1.6P) core hardware, which is based on TC1.6P core with
enhancements in memory distribution and protection and other aspects. Additionally, depending on the
variant, up to four CPUs are protected by a lockstep mechanism, which allows to run up to ASIL-D applications.
From a functional perspective, the two CPU categories (lockstep and non-lockstep) offer the same
performance.

For more information, see the “CPU” section in the Safety Manual [3].

6.2.1.1.1 CPU memory and time protection

The CPU offers several hardware measures for protection on memory and resource accessed, as well as timer-
based mechanisms for detecting timing violations of software:

o Safety mechanisms based on master TAG ID

o Safety mechanisms based on access privilege levels

o Safety mechanisms based on ENDINIT and SAFETY_ENDINIT

o Safety mechanisms based on program memory and data memory regions

o Safety mechanism to detect unintended interrupt request from the HW elements

For more information on these safety mechanisms, see the “Coexistence of HW/SW elements” chapter in the
AURIX™ Safety Manual [3].

6.2.1.1.2 Lockstep CPU

AURIX™ TC3xx offers up to four lockstep CPUs; these lockstep CPUs are an important part of supporting safety.
Lockstep is an optional safety mechanism that can be enabled during startup (see BMI.LSENAx in the AURIX™
TC3xx User Manual [1]).

A lockstep CPU is composed of a master core and a checker core. To detect a transient fault on the CPU (for
example, due to charged particle interference), the checker core executes the same instructions as the master
core. The checker core cannot be utilized for purposes other than performing the same tasks as the master
core. The same code is executed by both the master core and the checker core but for the checker core, it is
delayed by two clock cycle to reduce common-cause failures. In addition, the checker core is physically
positioned in a different silicon area from the master core to avoid common-cause failures related to the
layout. The result of the master and checker core is compared after the realignment. If the comparison fails, an
alarm is raised to the SMU.

The logic covered by this hardware redundancy does not only cover the CPU, but also the associated logic.
These are the logic areas duplicated for each master core and checker core:

e TriCore™TC1.62P core

e CPUSFRand CSFR

e Master and slave interfaces to SRI
e Masterinterface to SPB

Application note 50 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < |n f| neon ,

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

e Interface to the interrupt router

e Interface to the SCU

e Interface to the program memories (PMI)
e Interfacesto the data memories (DMI)

e Interfaces to the program flash (PFl)

Figure 19 shows an overview of the architectural elements of a lockstep CPU.

ali]
Master
—>
Core E:|
[0-=n]
xX[i
cmpli] encode
yli]
i bfi]
| f| Checker
Core

Figure 19 Simplified overview of lockstep architecture

Fault coverage and hardware self-test

Latent faults are covered by the LBIST, while transient faults in the comparison logic can be detected by the
continuously running background self-test of the lockstep comparator. This self-test is executed every 8192
clock cycles on the master core, and then on the checker core. The complete self-test cycles are therefore
repeated every 16,384 clock cycles. If there is no discrepancy, the self-test will not signal an alarm to the SMU.

Safety Kit implementation of lockstep error injection

To ensure that the lockstep mechanism is working correctly and that an alarm will be transmitted correctly to
the SMU, lockstep provides a feature to manually inject faults in the comparator logic. This self-test is
implemented in Application Kit Safety to demonstrate the lockstep safety mechanism. This feature can be
started by the application software by writing ‘1’ to the LCLT1 bitfield of the LCLTEST register. This in turn
reports a lockstep comparator error alarm to the SMU. Because the master and checker cores are covered by
the LBIST and the background comparator self-test, the fault injection test is not required in typical
applications: it is provided here as a means of demonstrating lockstep error detection.

By selecting “Lockstep error injection” on the TFT main menu, a lockstep fault will be injected in CPU1. The
fault will be only injected if no alarm is pending and if the lockstep is enabled. The result is a triggering of SMU
alarm, which is shown on the TFT display (see Figure 20).

Application note 51 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx |n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

Angle Sensi:

Angle Sens2: 2

UEXT Uoltage limit:
UDDP3 Uoltage: 3.29U limit:
CORE Uoltage := 1.24U limit:
Clear Emergency Stop|

ockstep error injection

UADC+EDSADC
EUADC 1 PINN
STDOUT1 W GRAPH@® NOFF

Angle Sensl: 272.6 °C
Angle Sens2: 261.8 °C
UERT

RESET ALM I GNORE

RESET SMU RESET SYS

Figure 20 CPU1 lockstep error injection via TFT

Note: Two SMU alarms are pending because the SMU is configured to trigger both the lockstep alarm as
well as the Emergency Stop on a lockstep error event. See sections 4.2.3 and 5.2.1 for more details.

Application note 52 V1.0
2024-04-04

o~ _.
Safe application development for AURIX™ Application Kit TC3xx | n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

Code Listing 12 Lockstep error injection example code

void injectLockstepError(IfxSmu_Alarm lockstepAlarm)
{

/* Step 1: Check if alarm is pending */

if (IfxSmu_getAlarmStatus(lockstepAlarm) == TRUE)

conio_ascii_printfxy (DISPLAYSTDOUT1, 1, 2, (uint8 *)"Lockstep error pending");
return;

}

boolean errorInjected = FALSE;

switch(lockstepAlarm)
{
case IfxSmu_Alarm_CPU@_Lockstep_ComparatorError:
/* Step 2: Check if lockstep is enabled */
if(SCU_LCLCON®.B.LS® == 1){
/* Step 3: Inject lockstep error */
SCU_LCLTEST.B.LCLTO = 1;
errorInjected = TRUE;
}
break;
case IfxSmu_Alarm_CPU1_Lockstep_ComparatorError:
if(SCU_LCLCON1.B.LS1 == 1){
SCU_LCLTEST.B.LCLT1 = 1;
errorInjected = TRUE;
}
break;
case IfxSmu_Alarm_CPU2_Lockstep_ComparatorError:
if(SCU_LCLCON®@.B.LS2 == 1){
SCU_LCLTEST.B.LCLT2 = 1;
errorInjected = TRUE;
}
break;
case IfxSmu_Alarm_CPU3_Lockstep_ComparatorError:
if(SCU_LCLCON1.B.LS3 == 1){
SCU_LCLTEST.B.LCLT3 = 1;
errorInjected = TRUE;
}

break;

default:
__debug();
}

if(errorInjected)

conio_ascii_printfxy (DISPLAYSTDOUT1, 1, 2, (uint8 *)"Lockstep error injected");
}
else

{
}

conio_ascii_printfxy (DISPLAYSTDOUT1, 1, 2, (uint8 *)"Lockstep not running");

}
\AppSw\SafetyKit\04 Fault Injection\SafetyKit Lockstep.c

6.2.1.1.3 Non-lockstep CPU

The only architectural difference between a non-lockstep CPU and a CPU with lockstep is the missing
redundant CPU (called the “checker core”). While there is no performance difference between both, the non-
lockstep CPUs do not have dedicated mechanisms for fault detection. Therefore, software safety mechanisms
may be needed. Infineon’s AUTOSAR MCAL package offers a software-based self-test (SM[SW]:CPU:SBST) to
support applications on non-lockstep CPUs.

6.2.1.1.4 CPU RAM

Each CPU utilizes different RAM blocks as local memories, which can be affected by transient or permanent
faults. Therefore, the CPU RAM has the same safety mechanisms common to all SRAM blocks, as described in

Application note 53 V1.0
2024-04-04

o~ _.
Safe application development for AURIX™ Application Kit TC3xx | n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

the “MCU Function - Volatile Memory” section of the AURIX™ TC3xx Safety Manual [3] or in Section 6.2.3.3 of
this document.

6.2.1.2 Processing - FCE

The Flexible CRC Engine (FCE) is a hardware unit connected as a slave to the System Peripheral Bus (SPB) that
provide an acceleration engine for CRC algorithms. For more information, see the “FCE” section in the AURIX™
TC3xx Safety Manual [3].

In Application Kit Safety, the FCE module is used for CRC calculation for a different data integrity purpose and
therefore it contains implementation of the Safety Mechanism CRC_CFG, as shown in Code Listing 13.

Code Listing 13 FCE initialization

/* SM:CRC_CFG */
void initFCECRC()
{
/* Disable interrupts */
boolean interruptState = IfxCpu_disableInterrupts();

/* Create FCE module configuration */
IfxFce_Crc_Config fceConfig;
IfxFce Crc_initModuleConfig(&fceConfig, &MODULE_FCE);

/* ISR priorities and interrupt target */
fceConfig.isrPriority = ISR_PRIORITY_FCE_ER;
fceConfig.isrTypeOfService = (IfxSrc_Tos)IfxCpu getCoreIndex();

/* Initialize module */
IfxFce Crc_initModule(&g fceCrc.fce, &fceConfig);

/* Initialize CRC kernel with default configuration */
IfxFce_Crc_CrcConfig crcConfig;
IfxFce Crc_initCrcConfig(&crcConfig, &g fceCrc.fce);

/* For All CRC calculations */

/* Enable Interrupt in case of CRC Mismatch */
crcConfig.enabledInterrupts.crcMismatch = TRUE;
crcConfig.useDma = TRUE;

/* Initialize FCE CRC */

crcConfig.crcKernel = IfxFce_CrcKernel_o;
crcConfig.fceChannelld = IfxDma_ChannelId 20,
IfxFce_Crc_initCrc(&g_fceCrc.fceCrc, &crcConfig);

/* Enable interrupts again */
IfxCpu_restorelnterrupts(interruptState);
} \AppSw\SafetyKit\06 Safe Computation\SafetyKit Fce.c

Application note 54 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < | n f| neon

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

6.2.1.3 Processing - system timer (STM)

The STM is a free-running 64-bit timer that is enabled immediately after application reset and can be read by
the application SW. Each CPU has a dedicated STM. The STM can be configured to generate compare-match ISR
by using dedicated registers.

Monitoring concept

Permanent and transient hardware faults in the STM may corrupt the timer value or interrupt generation.
Because the STM is not a part of the duplication area of the CPU, the application software is responsible for
executing plausibility checks using an independent timer (see Safety Mechanism STM:MONITOR in the AURIX™
TC3xx Safety Manual [3]).

Safety Kit implementation of the safety mechanism STM:MONITOR

The Safety Mechanism STM:MONITOR states that the plausibility check should be implemented using a
secondary timing module. Because there is one dedicated system timer per CPU, one STM can be used to
monitor the other, and vice-versa. In this example, it is implemented in such a way that every CPU should call
the runstmMonitoring function periodically. By calling this function, the value of the STM timer of the calling
CPU and the value of the STM timer of another CPU will be compared. For example, CPUOQ validates the STM
timer value of CPUO and CPU1, while CPU1 compares the values of STM1 and STM2, and so on.

If the deviation of two STM timer values is higher than two milliseconds, an appropriate reaction must be
triggered (e.g., application reset).

Application note 55 V1.0
2024-04-04

Safe application development for AURIX™ Application Kit TC3xx
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

Code Listing 14 Safety Mechanism STM:MONITOR code example

infineon

void runStmMonitoring(IfxCpu_ResourceCpu cpuIndex)
{

Ifx_STM *stmX;

Ifx_STM *stmY;

switch (cpuIndex) {
case IfxCpu_ResourceCpu_0:
stmX = &MODULE_STMO;
stmY = &MODULE_STM1;
break;
case IfxCpu_ResourceCpu_1:

stmX = &MODULE_STM1;
stmY = &MODULE_STM2;
break;

case IfxCpu_ResourceCpu_2:
stmX = &MODULE_STM2;
stmY = &MODULE_STM3;
break;

case IfxCpu_ResourceCpu_3:

stmX = &MODULE_STM3;
stmY = &MODULE_STM4;
break;

case IfxCpu_ResourceCpu_4:
stmX = &MODULE_STM4;
stmY = &MODULE_STM5;
break;

case IfxCpu_ResourceCpu_5:
stmX = &MODULE_STM5;
stmY = &MODULE_STMO;
break;

default: while (1) {}; break;

}

uint8 repeatNtimes = 5;
while(repeatNtimes)

/* Compare tick counter of STM module X and STM module Y, raise alarm if deviation is greater
than 2 milliseconds */

/* Get STM counter values */

uint64 stmXvalue = IfxStm_get(stmX);

uint64 stmYvalue = IfxStm_get(stmY);

uint64 stmDifference = stmXvalue > stmYvalue ? stmXvalue - stmYvalue : stmYvalue - stmXvalue;

if(stmDifference > (2*IFX_CFG_STM_TICKS_PER_MS))

{
/* Try N times, if difference is still too high trigger appropriate reaction. */
repeatNtimes--;
if(repeatNtimes == 0)

/* Safety manual recommends an application reset but it is disabled for Safety Kit demonstration */
#if (STM_APP_RESET == @)

/* Trigger appropriate reaction */

softwareCoreAlarmTriggerSMU(SOFT_SMU_ALM_STM);

#else
/* Trigger appropriate reaction */
safetyKitTriggerSwReset(safetyKitResetTypeApplication);
#tendif
}
}
else
break;
}

} \AppSw\SafetyKit\06 Safe Computation\SafetyKit StmMon.c

6.2.1.4 Processing - HSM

The Hardware Security Module (HSM) is a separate processor subsystem dedicated for security tasks. Because

it is not meant for safety-related applications, it is not part of this application note.

Application note 56

V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < | n f| neon

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

6.2.2 MCU function - Non-volatile memory

The non-volatile memory (NVM) subsystem consists of the data memory unit (DMU), program flash interface
(PFI), and non-volatile memory module (comprising the flash standard interface (FSI), program and data flash
memories and program flash read write buffer (PFRWB)). For more details, see Section 6 of the AURIX™TC3xx
User’s Manual [1].

6.2.2.1 PFlash NVM

The program flash (PFlash) is divided into one or more banks, each connected to a CPU. It is used by the
application to store program code and data constants. Compute performance is optimized by using a point-to-
point interface to minimize the latency and maximize the bandwidth. Each PFlash is connected to a PFlash read
write buffer (PFRWB) that performs the ECC correction and detection, and provides the read data to the system.

The following structure terms are used for the PFlash module.

e Flash module: Contains non-volatile memory (NVM) with its own digital logic; in the PFlash, there are one
more PF banks

e Bank: Supports concurrent operation with some limitations. One bank is equal to three physical sectors:
PS0, PS1, and PS2.

o Physical sector: One PS is equal to 64 logical sectors, i.e., SO to S63. Each physical sector is equal to 1 MB.

e Logical sector: One logical sector is equal to 16 KB, and each logical sector is equal to 32-word line. It is the
smallest unit to erase PFlash.

e Word line: One word line is equal 512 bytes and is equal to 16 pages
e Page: Smallest unit that can be programed. One page is equal to 32 bytes

For detailed description, features, and multiple sector partition, see the AURIX™ TC3xx User’s Manual [1].
Safety Kit implementation

The following external safety mechanisms are implemented in AURIX™ Application Kit - TC3xx Safety and
belong to safe computation.

Safety mechanism PFlash: INTEGRITY_CHECK

For the implementation of this SM, dummy safety data is stored at PF0 in array at the address 0xA010 0000. At
each run cycle, the CRC of this dummy safety data is calculated via the FCE module and compared with the
expected CRC value. If the calculated CRC does not match the expected CRC, a software alarm will be
generated.

Application note 57 V1.0
2024-04-04

o~ _.
Safe application development for AURIX™ Application Kit TC3xx | n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

Code Listing 15 Safety Mechanism PFLASH: INTEGRITY_CHECK
#define DATA_LENGTH_WORDS_IC 25U /* Message data size in words (32-bit) */
#define PFLASHO_START_ADDRESS_IC 0xA0100000 /* Cached address where the

user wants to store the safety data i.e. Bank Pfo */

/* data stored at Pf@ memory space for SM:PFLASH:INTEGRITY_CHECK */

const uint32 dummySafetyDatalc [DATA_LENGTH_WORDS_IC] __at(PFLASHO_START_AD-
DRESS_IC)=

{

0xbe9957bb, Oxl1lc706cle, 0x14c3db3f, Ox7fbl17a93, ©xb@d9d5a7, 0x768093e0,
0x88b206a0, ©xc51299e4, Oxe8a97d48, 0x89367f27, ©x70095984, Oxec@30f75,
oxdc22f8d4, 0xd951407b, ©x34ael8c6, Ox4d47ba7d, Ox@e2ed622, Ox4a2e90d3,
Oxdaec3752, oxcd3edllc, ©x36b416b7, ©x8ea28658, ©Oxdd37eee3, 0x23928b62,
0x84eb4b22,

1

/*
* Data integrity by check by CRC calculation comparison
* SM:PFLASH:INTEGRITY_CHECK
*/
void runIntegrityCheckPFLASH(void)
{
uint32 *safetyDatalntegrityCheck = (uint32 *)PFLASHO_START_ADDRESS_IC;
/* CRC calculation with FCE Kernel @ (CRC32) */
runCrcCheckFCE(CRC_EXPECTED_RESULT_IC, safetyDataIntegrityCheck,
DATA_LENGTH_WORDS_IC);
} \AppSw\SafetyKit\6 Safe Computation\SafetyKit NvmPflash.*

Safety Mechanism PFLASH: UPDATE_CHECK

For the implementation of this SM, dummy safety data is stored at PF1 in array at the address 0xA040 0000
where the expected CRC is also known. Every time there is an update of this safety data, the CRC of this
updated safety data must be calculated via the FCE module. After the calculation, the application SW compares
whether the calculated CRC matches the expected CRC; software alarm will be generated if a mismatch occurs.

There is also the possibility to inject single-bit errors, double-bit errors, and multiple-bit errors via a dedicated
button on Application Kit Safety. Single-bit and double-bit errors can be detected and corrected, while
multiple-bit errors can only be detected in the AURIX™ TC3xx microcontroller.

Injecting an error is done with the following steps:

Erase and write flash to the dedicated data.

Read the PFlash.

Automatically calculate the ECC value of one page and store it in MODULE_PFI1.ECCR.B.RCODE.
Store the ECC in WCODE i.e., MODULE_DMU.HF_ECCW.B.WCODE = MODULE_PFI1.ECCR.B. RCODE.

Change the configuration so that the next time when a read occurs, the flash takes the ECC value from
WCODE.

6. Write the inject error data to flash. You can only enter error from ‘0’ to ‘1’ but not the other way around.
7. Change the configuration again to automatic ECC.
8. Make dummy read again to trigger the ECC error.

ok W E

Application note 58 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx |n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

Code Listing 16 Safety Mechanism PFLASH:UPDATE_CHECK
#tdefine PF1_SBE_STARTING_ADDRESS OxA0400000 //0x80400000 /* Address of the
PFLASH 1 where the data is written */
#define PF1_DBE_STARTING_ADDRESS 0xA0400020 //0x80400000 /* Address of the
PFLASH 1 where the data is written */
#define PF1_MBE_STARTING_ADDRESS 0xA0400040 //0x80400000 /* Address of the

PFLASH 1 where the data is written */

void injectPflashEccError(uint8 err_inj_type)

{

[..]
/* Get the current password of the CPU WatchDog module */

passwordEndInit = IfxScuWdt_getCpuWatchdogPasswordInline (&MOD-
ULE_SCU.WDTCPU[IfxCpu_getCoreIndex()]);

/* Write data at dedicated address in PFLASH */
writePFLASH(injectErrorAddressPF1l, &dataPflashUpdate[9]);

/* SM:PFLASH:UPDATE_CHECK */
runUpdateCheckPFLASH(injectErrorAddressPF1);

/* Make dummy read to get ECC value of working Page */
dummyRead = MEM(injectErrorAddressPF1);

IfxScuWdt_clearCpuEndinitInline (&MODULE_SCU.WDTCPU[IfxCpu_getCoreIndex()],
passwordEndInit);

/* Write in WCODE field the valid ECC value of working Page */
MODULE_DMU.HF_ECCW.B.WCODE = MODULE_PFI1.ECCR.B.RCODE;

/* Change ECC encoding configuration so that ECC code is taken from WCODE */
MODULE_DMU.HF_ECCW.B.PECENCDIS = 3U;

IfxScuWdt_setCpuEndinitInline (&MODULE_SCU.WDTCPU[IfxCpu_getCoreIndex()], pass-
wordEndInit);

/* write to Pflash with error value */
writePFLASH(injectErrorAddressPF1, &injectErrorPflashData[@]);

/* Change ECC encoding configuration so that ECC code is automatically calcu-
lated */

IfxScuWdt_clearCpuEndinitInline(&MODULE_SCU.WDTCPU[IfxCpu_getCoreIndex()],
passwordEndInit);

MODULE_DMU.HF_ECCW.B.PECENCDIS = 0QU;

IfxScuWdt_setCpuEndinitInline (&MODULE_SCU.WDTCPU[IfxCpu_getCoreIndex()], pass-
wordEndInit);

/* Make dummy read to trigger the ECC error */
dummyRead = MEM(injectErrorAddressPF1);

/* Restore the interrupts state */
IfxCpu_restorelnterrupts(interruptState); */

}\AppSw\SafetyKit\6_Safe_Computation\SafetyKit_PflashProgramming.c

Application note 59 V1.0
2024-04-04

@ []
Safe application development for AURIX™ Application Kit TC3xx |n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

The Evaluation Board - AURIX™ TC3xx Safety V3.1 has three dedicated buttons (see Figure 21) to inject SBE,
DBE, and, MBE.

UV SINULATION
Ledar

sS4 @ ssA
.')‘ '
" -
ADD_ 7 SMU_FSP. SMU_FSP
2 TO U_UC TO GROUND

‘°.7’ 3‘3'9? g - g o1
)((1 13

h '& % N i N)]
)

SBE
' A ACT/ACO
S11) P W'&' L DIG ﬁCT/ﬁCO CHECK?2
| Su4 M 020 | To u_lic

. - S
=) : ’{ Su10. b
! GTM_ECLK %4 %)“ oﬁ . 2

otn_eck MK Grm ecik 4@ LooPBACK)|

T0 v_UC TO GROUND < BIN '
j TO GROUND — i BR
" Pl SHWI2, gz SWIl. <SENT
s ’ * ! TO GROUND

&1

= { | | ‘.L f J 34 i
J
B owd REUUNDANUY2 REOUNDANCY!
1YL 111Iu2 4 s7 @ 4 co @

Figure 21 SPE, DBE, and MBE dedicated buttons

Pressing the SBE button injects a single-bit error; as a result, the following alarm is generated:

SafetyKit TC397 ADS SW 3U1 HYW 3U1

Higher DIE Temp.: 64.
Angle Sensl: 2?’2.‘? og|
ﬂglo Sens2: 261.8 °C
UERT

Figure 22 SBE SMU alarm

The DBE button can be used to inject a double-bit error. When pressed, the following alarm is generated.
AURIX™ can correct single-bit and double-bit errors.

Application note 60 V1.0
2024-04-04

Safe application development for AURIX™ Application Kit TC3xx

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

infineon

BafetyKit TC397 ADS SW 3U1 HW 3U1

Higher DIE Temp.: 65.3°C
Angle Sensi: 272.7

Angle Sens2: 261.

UERT

RESET ALM 1 GNORE

RESET SMU RESET SY¥S

Figure 23 DBE SMU alarm

Pressing the MBE button injects a multiple-bit error; the corresponding alarm is generated. In AURIX™, multiple-

bit error is only detected but not corrected.

Angle Sensi: 272.7
ﬂngle Sens2: 261.

1 GNORE

RESET SYS

SA
2 EUADC 1 PINN
STDOUT® N STDOUT1 W GRAPHA WOFF

Figure 24 MBE SMU alarm

Safety Mechanism PFlash: WL_FAIL_DETECT

When a DBE occurs, there is high probability that the complete word line (WL) is corrupted. Therefore, when an
SMU alarm is generated indicating DBE correction, the application software must verify the integrity of PFlash
word line in which the DBE occurred by reading the next 10 pages and monitor the multiple-bit error.

Application note 61

V1.0
2024-04-04

o~ _.
Safe application development for AURIX™ Application Kit TC3xx | n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

Code Listing 17 Safety Mechanism PFLASH:WL_FAIL_DETECT

const AlarmConfigStruct globalAlarmConfig[USER_ALARM_NUMBER] =
{

[..]
{IfxSmu_Alarm_FSI_PFlash_SingleBitError, IfxSmu_InternalA-
LarmAction_igcs2, FALSE, FALSE, NULL_PTR},

{IfxSmu_Alarm_FSI_PFlash_DoubleBitError, IfxSmu_InternalA-
LarmAction_igcs2, FALSE, FALSE, &enablePflashWlFailDetect},

{IfxSmu_Alarm_FSI_Multiple_ BitErrorDetectionTrackingBufferFull, IfxSmu_Inter-
nalAlarmAction_1igcs2, FALSE, FALSE, NULL_PTR},

[..]
1

/* function to enable flag when dbe occur */
void enableWlFailDetectPFLASH (void)

{
}

/* read the 10 pages after double bit error injected address
* SM:PFLASH:WL_FAIL DETECT
*/

void runWordlineFailDetectPFLASH(void)

{

doubleBitErrorOccur = TRUE;

uint32 i;
uint32 *dataWlFaildetectPFLASH[NUM OF PAGES];

/* read 10 pages to check if any page is corrupted */
for(i=0; i < NUM_OF_PAGES; i++)
{

}

}\RppSw\SafetyKit\6 Safe Computation\SafetyKit NvmPflash.c

dataWlFaildetectPFLASH[i] = (uint32 *)(PFLASH1_DBE_ADDRESS + (i*ex18));

6.2.3 MCU function - Volatile memory

6.2.3.1 Extension Memory (EMEM)

Extension Memory (EMEM) can be used for ADAS applications, calibration, or trace data storage alternatively; it
contains the RAM blocks (EMEM tiles). EMEM has interface to Multi Core Debug Solution (MCDS), SPU to EMEM
Protocol (SEP), Shared Resource Interconnect (SRI), and Back Bone Bus (BBB) protocol. EMEM has the following
features:

e Software may configure the operation mode of each individual EMEM tile
e 16 KB eXtra Trace Memory (XTM) for trace data only
e Standby power supply for TCM and XCM

Application note 62 V1.0
2024-04-04

o~ _.
Safe application development for AURIX™ Application Kit TC3xx | n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

Application Kit Safety implementation

The Safety Application Kit contains implementation of Safety Mechanism EMEM:DATA_INTEGRITY. Here, if the
system integrator wants to use EMEM in a safety-critical application, the application SW must check the
corruption of data stored at the EMEM caused by random hardware faults by using information redundancy.
The application SW must compare the CRC expected with the measured one and respond accordingly.

Code Listing 18 shows the implementation of this SM in Application Kit Safety. The dummy safety data is stored
at start address of the EMEM at 0xB900 0000, and the expected CRC valued is calculated. While at the start of
the program, the CRC will measure via the FCE module and compare it with the expected value; a software
alarm is generated if a mismatch occurs.

Code Listing 18 Safety Mechanism EMEM: DATA_INTEGRITY
#define CRC_EXPECTED_RESULT_EMEM OxXA7EE4C1C /* EMEM Integrity Check */
#define DATA_LENGTH_WORDS_EMEM 8U /* Message data size in words
(32-bit) */

uint32 dummySafetyDataEmem [DATA_LENGTH_WORDS_EMEM] =

{
0x0e9957bb, Ox1c706cle, Ox14c3db3f, Ox7fbl7a93, Oxbod9odsa7, ©x768093e0,
0x88b206a0, Oxc51299e4,

1

/*

* SM:EMEM:DATA_INTEGRITY */
/* put data to EMEM

*/
void initDataEMEM(void)

{
uint32 *ptrEmemStartAdd = (uint32 *)IFXEMEM_START_ADDR_CPU;

/* put the dummy data to EMEM */

uint32 i;

for (i=0;i<(DATA_LENGTH_WORDS_EMEM);i++)
{

}

*ptrEmemStartAdd++ = dummySafetyDataEmem[i];

}

/* Start the calculation
* SM:EMEM:DATA_INTEGRITY *
*/
void runDataIntegrityEMEM(void)

{
uint32 *ememSafetyData = (uint32 *)IFXEMEM_START_ADDR_CPU;

/* CRC calculation with FCE Kernel @ (CRC32) */
runCrcCheckFCE(CRC_EXPECTED_RESULT_EMEM, ememSafetyData,
DATA_LENGTH_WORDS_EMEM) ;

} \RppSw\SafetyKit\6 Safe Computation\SafetyKit Emem.c

Application note 63 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < | n f| neon

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

6.2.3.2 LMU

Currently not implemented.

6.2.3.3 SRAM

There are separate instances of SRAMs in the MCU. SRAM blocks implement various hardware SMs to assert
data integrity using error detection and correction code (ECC/EDC). The SMs also includes a verification of the
address logic. See the AURIX™ TC3xx Safety Manual [3] for the complete list of the internal hardware SMs.

The application software is responsible for running and checking the BIST for latent fault detection in the SRAM
Safety Flip-Flop (SFF) once per driving cycle using Safety Mechanism MCi:REG_MONITOR. The software
integrator should identify all the relevant MCU blocks that need the REG_MONITOR test, execute it in software,
check the execution time, and check the result of the BIST. See Safety Mechanism MCi:REG_MONITOR_TEST of
each RAM module, where “MCi” designates the specific RAM module under test.

A dedicated SMU alarm is triggered for every MONITOR_TEST if an error occurs. The application software is
responsible for clearing the affected register after running the test:

e MCi.ECCD
e MCIi.FAULTSTS
e SMU alarm (if raised)

Safety Kit implementation of the safety mechanism MCi: REG_MONITOR_TEST

The REG_MONITOR test is executed immediately after the application SW startup (see Section 3.3).
The test consists of the following steps, which is shown in Code Listing 19:

1. Startthe test.

2. Monitor the execution time with a simple timeout counter.

3. Checkif an error was raised (an SMU alarm is raised by hardware anyway).

4. Clearthe ECCD and FAULTSTS registers.

5. Report the error status.

Application note 64 V1.0

2024-04-04

o~ _.
Safe application development for AURIX™ Application Kit TC3xx | n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

Code Listing 19 Code snippet of the REG_MONITOR_TEST function

/* SM:*:REG_MONITOR_TEST */
void safetyKitRunRegMonitorTest(void)

{
g_SafetyKitStatus.regMonitorTestAllFB = NA;
boolean regMonitorTestPassed = TRUE;

for(int i = @; i < safetyKitRegMonSetSize; i++)
IfxMtu_MbistSel regToCheck = safetyKitRegMonSet[i];

/* register monitor test if each SSH */
regMonitorTestPassed &= safetyKitRunSshRegMonitorTest(regToCheck);

}

if(regMonitorTestPassed == TRUE){
g_SafetyKitStatus.regMonitorTestAllFB = pass;

}
else{

g_SafetyKitStatus.regMonitorTestAllFB = fail;
}

/* run SSH register monitor test */
boolean safetyKitRunSshRegMonitorTest(uint32 sshReg)

{
Ifx_MTU_MC *mc = &VODULE_MTU.MC[sshReg];

boolean sshRegMonitorTestPassed = TRUE;

uint64 tStart, tExecution;

float64 tExecutionSec;

uint16 password = IfxScuWdt_getSafetyWatchdogPassword();
IfxScuWdt_clearSafetyEndinit(password);

/* Trigger the SFF self test */

mc->ECCS.B.SFFD = 1;
IfxScuWdt_setSafetyEndinit(password);

tStart = IfxStm_get(&MODULE_STM@);
/* Wait until test is done, as long test is not finished store measure the execution time */
do{

tExecution = IfxStm_get(&VODULE_STMO) - tStart;

}

while(mc->ECCS.B.SFFD != 0);

/* Convert the time to seconds */

tExecutionSec = tExecution / IfxStm_getFrequency(&ODULE_STMO);

/* Validation */
uintl6 regMISCERR = mc->FAULTSTS.B.MISCERR;
if(regMISCERR != @)

sshRegMonitorTestPassed = FALSE;

if(tExecutionSec > REG_MONITOR_TEST_MAX_TIME_S)

{
sshRegMonitorTestPassed = FALSE;

/* Clear SSH */
mc->ECCD.U = 0x0;

password = IfxScuWdt_getSafetyWatchdogPassword();
IfxScuWdt_clearSafetyEndinit(password);
mc->FAULTSTS.U = 0x0;
IfxScuWdt_setSafetyEndinit(password);

return sshRegMonitorTestPassed;
} \Appsw\SafetyKit\02_ Safety Mechanisms\SafetyKit RegMon.c

6.2.3.3.1 LMU_DAM

The Default Application Memory (DAM) is a Shared Resource Interconnect (SRI) peripheral providing access to
volatile memory resources. Its primary purpose is to provide 64 KB or 32 KB of local memory for general-
purpose usage. The amount of memory available depends on the product.

The following features are implemented in the DAM:

e 64 KB of SRAM depending on the product:
- Organized as 64-bit words
- Support for byte, half-word, and word accesses as well as double-word and burst accesses

Application note 65 V1.0
2024-04-04

o~ _.
Safe application development for AURIX™ Application Kit TC3xx | n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

e Protection of DAM SRAM contents:
- Eight programmable address regions can be protected
- Each address range has a programmable list of bus masters permitted read or write access based on the

unique master Tag 1D
The DAM SRAM can be used for code execution or data storage.

Safety Kit implementation

If the system Integrator wants to use LMU_DAM in safety-critical applications, the application software must
monitor the corruption of data stored in LMU_DAM caused by random hardware faults. For this purpose, the
use of CRC comes in; the CRC expected value of data stored at LMU_DAM must be compared with the calculated
CRC at the start of program via the FCE module and activate the SMU software alarm according to the result.

Code Listing 20 Safety Mechanism LMU_DAM: DATA_INTEGRITY
#define CRC_EXPECTED_RESULT_LMU_DAM@ OXA7EE4C1C /*1mu Dam@ Integrity Check */
#define DAMO_START_ADDRESS OxB04000O0 /*Cached address of DAM where the user stores the
safety data*/
#define DATA_LENGTH_WORDS_DAM 8u /* Message data size in words (32-bit) */
uint32 dummySafetyDatalmuDam [DATA_LENGTH_WORDS_DAM] =
{
0x0e9957bb, ©0x1c706cle, 0x14c3db3f, Ox7fbl17a93, Oxb@d9d5a7, 0x768093e0, 0x88b206a0,
0xc51299e4,
s

/* SM:AMU.LMU_DAM:DATA_INTEGRITY
* Initialization of DLMU
* This function is called from main during initialization phase

*/
void initDatalLMUDAM(void)
{
uint32 *ptrStartAddrDAMe = (uint32 *)DAMO_START_ADDRESS;
uint32 i;
for (i=0; i < DATA_LENGTH_WORDS_DAM; i++)
/* store the Dummy LMU DAM data to DAM@ */
*ptrStartAddrDAMO++ = dummySafetyDatalmuDam[i];
}
}
/*

* data integrity by checking CRC
* SM:AMU.LMU_DAM:DATA_INTEGRITY
*/

void runDataIntegrityLMUDAM(void)

uint32 *safetyDatalMUDAM = (uint32 *)DAM@_START_ADDRESS;
/* CRC calculation with FCE Kernel @ (CRC32) */

runCrcCheckFCE(CRC_EXPECTED_RESULT_LMU_DAM@, safetyDatalMUDAM, DATA_LENGTH_WORDS_DAM);
}

\AppSw\SafetyKit\6 Safe Computation\SafetyKit LmuDam.c

6.2.3.4 Default Application Memory (DAM)

6.2.3.5 Volatile Memory Test (VMT)

The Volatile Memory Test (VMT) module contains the hardware for the MBIST functionality: Safety Mechanism
MBIST. Faults affecting the functionality are covered by the LBIST. See Section 6.1.4 Monitor built-in self-test
(MONBIST) for more information.

Application note 66 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < | n f| neon

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

6.2.4 MCU function - ADAS

The current version of Application Kit Safety does not support ADAS.
6.2.5 MCU function - interconnect

6.2.5.1 System Resources Interconnect (SRI)
The AURIX™ TC3xx platform has three independent on-chip connectivity resources:

e System Resources Interconnect Fabric (SRI Fabric)
e System Peripheral Bus (SPB)
e Backbone Bus (BBB)

The SRI fabric connects the TriCore™ CPUs, DMA module, and other high-bandwidth requestor TriCore™
memories, and other resources for instruction fetches and data accesses.

An SRl error condition can be detected by both masters and slaves depending on the condition. Errors are
reported via alarms to the SMU or interrupts or traps by a CPU. There are three error types:

e SRl protocol errors
e SRl transaction ID errors
e SRIEDCerrors

Safety Application Kit implementation

The Safety Application Kit contains the implementation of Safety Mechanism SRI: ERROR_HANDLING where
Safety Manual V2.0 says that if the SRI triggers an error interrupt request, the application SW must check the
type of SRI error and the stored SRI diagnostic information. The application SW must evaluate the type of error
and trigger the most appropriate reaction. The types of SRl errors are readable via ERRADDRx (x=0 ... 15), ERRX,
PESTAT, TIDSTAT, and PECON.

In Application Kit Safety, this SM runs periodically and checks the SRl error. See the
storeSriDiagnosticInfo (void) and runSriErrorInjection (void) functionsin
\AppSw\SafetyKit\06_Safe_Computation\SafetyKit_Sro_Error_Handling.c.

The user can also manually inject an error via CPU_SEGEN (used to inject the SRI error). The error injection is
done via the TFT display. In the TFT display, press SRl inject error as shown in Figure 25. After pressing SRl inject
error from the TFT menu, the following SMU alarm will appear.

Application note 67 V1.0
2024-04-04

Safe application development for AURIX™ Application Kit TC3xx |n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

Higher DIE Temp.: 65.

Angle Sensl: 2?2 P b

Angle Sens2: 260.9 °C

UEKT Uoltage : 4.99U U limit: 4.58U
UDDP3 Uoltage: 3. U limit: 3.82U
CORE Voltage : 1.25 U limit: 1.18U

Clear Emergency Stop|

Lockstep error injection IMCCUb in
Run safe ADC capturing

Stop safe ADC capturing OMIOM out
QSPI ClockPlaus : 180.18us

CU6GPT12 out

DMA inject TS errop| DSADC+EDSADC
=l SRI inject error| UADC+EDSADC
EUADC 1 PINR

STDOUTL W GRAPH@ WOFF

RESET ALM 1 GNORE

RESET SMU RESET SYS

SADC
1 PINR
STDOUT1 l GRHPHB OFF

Figure 25 SRl on TFT menu and alarm after error injection

Note: Some code is commented out for this SM to inject different types of SRI errors. Uncomment the
related code and then see the corresponding SMU alarm for the SRl error.

6.2.6 MCU function - Communication

6.2.7 Direct Memory Access (DMA)

The Direct Memory Access (DMA) controller moves data from source addresses to destination addresses
without the intervention of the CPU or other on-chip resources. The DMA module provides numerous safety
mechanisms to detect failures on its own. Some errors, such as ENDINIT protection violation, generate SMU
alarms on their own. Other errors are handled by Safety Mechanism DMA:ERROR_HANDLING:

e Transaction Request Lost (TRL)
e Source Error (SER)

e Destination Error (DER)

o DMA RAM Error (RAMER)

e DMA Linked List Error (DLLER)
e Safe Linked List Error (SLLER)

Finally, some failures need a combination of various safety mechanisms to be detected:

e Address CRC error: Safety Mechanism DMA:ADDRESS_CRC
o Data CRC error: Safety Mechanism DMA:DATA_CRC
e Transaction time: Safety Mechanism DMA:TIMESTAMP

e Supervision: Safety Mechanism DMA:SUPERVISION

Application note 68 V1.0
2024-04-04

o~ _.
Safe application development for AURIX™ Application Kit TC3xx | n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

The SMs that do not report errors directly to the SMU are collected under Safety Mechanism DMA:SUPERVISION.
The application software is responsible for triggering the appropriate reaction.

Safety Kit implementation of an DMA transaction with error injection

The Application Kit Safety DMA example is programmed to move a memory array from the source to
destination. All the safety mechanisms mentioned above regarding DMA are implemented. Multiple ways of
injecting an error are possible - see the user interface on Figure 26:

e ECCerrorinjection. Handled by Safety Mechanism DMA:SRI_TRANSACTION_INTEGRITY > ALM8[23]
Code Listing 21 DMA ECC error injection

void runSriErrorInjection()
{
/* Error injection DMA */
if(injectErrorECC == TRUE)
/* This error will generate ALM8[23]: Alarm: DMA SRI ECC Error */
IfxSculWdt_clearCpuEndinit(IfxScuWdt_getCpuWatchdogPassword());
/* CPUx SRI Error Generation Register */

__mtcr(CPU_SEGEN, 0x80000201);
IfxSculWdt_setCpuEndinit(IfxSculWdt_getCpuWatchdogPassword());
injectErrorECC = FALSE;

}
[--]
}
\AppSw\SafetyKit\04 Fault Injection\SafetyKit Sri ErrorHandling.c

o Destination error: Destination is an uninitialized module. Handled by Safety Mechanism DMA:SUPERVISION.

Code Listing 22 DMA destination error injection
void initAndRunDmaTransaction(void)
{
[-.]
/* SM:DMA:ADDRESS_CRC : compute the expected address CRC stored sdcrc */
if(injectDestinationError)
{
/* Destination is an uninitialized module */
cfg.destinationAddress = (uint32)wrongDestination;
injectDestinationError = FALSE;
}
else
{
cfg.destinationAddress = (uint32)destination;
}
[..]
}
\AppSw\SafetyKit\04 Fault Injection\SafetyKit Dma.c

e CRCerrorinjection: CRC calculated by the SM[SW] is corrupted. Handled by Safety Mechanism
DMA:SUPERVISION.

Application note 69 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx | n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

Code Listing 23 DMA CRC error injection

void initAndRunDmaTransaction(void)
{
[--]
/* SM:DMA:ADDRESS_CRC : compute the expected address CRC stored sdcrc
* SM:DMA:DATA_CRC : compute the expected data CRC stored rdcrc */
accumulateCRC((uint8 *)source, (uint8 *)destination, BUFFER_SIZE, 1, 4, 0);
/* CRC error injection
* SM:DMA:DATA_CRC : compute the expected data CRC stored rdcrc */
if(injectCrcError == TRUE)
{
/* Corrupt CRC */
rdcrc = rdcrc -1;
injectCrcError = FALSE;
}
[.-]
}
\AppSw\SafetyKit\04 Fault Injection\SafetyKit Dma.c

e Transaction time: Handled by Safety Mechanism DMA:TIMESTAMP

Code Listing 24 DMA timestamp

void isrCHeODMA(void)

{ [-]
/* Implement SM:DMA:TIMESTAMP

* ok /
dmaTotalTimestampCount = destination[BUFFER_SIZE] - transactionStartTimeStamp;

if((dmaTotalTimestampCount >= THRESHOLD_MAX_TIMESTAMP_COUNT) ||
(dmaTotalTimestampCount <= THRESHOLD_MIN_TIMESTAMP_COUNT))

{
error |= DMA_TIMING_ERROR;
}
[.]}
void initAndRunDmaTransaction(void)
{ [-]

transactionStartTimeStamp = IfxDma_getTimestamp(chn.dma);
/* check if time stamp error flag is on */
if (TRUE == injectTimestampError)
{
transactionStartTimeStamp = transactionStartTimeStamp - 5; /* corrupt
time stamp current value */
/* transactionStartTimeStamp = transactionStartTimeStamp + 5; *//* corrupt
time stamp current value */
injectTimestampError = FALSE;
}
/* Start DMA transaction */

IfxDma_Dma_startChannelTransaction(&chn);}
\AppSw\SafetyKit\04 Fault Injection\SafetyKit Dma.c

Application note 70 V1.0
2024-04-04

Safe application development for AURIX™ Application Kit TC3xx

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

infineon

Higher DIE Temp.: 65.4°C
Angle Sensi: 272.8 °C
Angle Sens2: 2608.9 °C
UERT Uoltage : 4.99U
UDDP3 Uoltage: 3.28U
CORE VUoltage = 1.24V
Clear Emergency Stop
Lockstep error injection

OSPT M1arkPlans =

DMA inject ECC error
DMA inject CRC error
DMA inject Dest error

DMA inject TS error

afetyKit TC397 ADS SW 3U1 HW 3U1

limit: 4.58U
limit: 3.82U
limit: 1.18U

IMCCU6 in

UADC+EDSADC

EUADC 1 PINA

Figure 26 Application Kit Safety DMA demonstration error injection

6.2.7.1 Interrupt Router (IR)

The Interrupt Router (IR) module schedules interrupts (here called “service requests”) from external resources,
internal resources, and the SW to the CPU and the DMA modules (here called “service provider”). For details of

this module, see Chapter 16 of the AURIX™ TC3xx User Manual.

Safety Kit implementation

Application Kit Safety contains the implementation of the Safety Mechanism ISR_MONITOR, which is related to
the IR module. The application SW must detect the missed or unintended service request for safety-related
interrupts. When a missed or unintended safety-related interrupt is detected, the application SW must trigger
the most appropriate reaction depending on the application. There are different ways to implement this SM,
but the safety application contains a plausibility check of periodic interrupt: certain interrupts are expected
periodically (e.g., ATOM generates interrupt of every falling or rising edge). Based on this expected rate (or for
example, within each FTTI), the application must implement periodic checks for plausibility of this interrupt

i.e., if an expected interrupt is missing or unintended interrupts occur.

Application note 71

V1.0
2024-04-04

o~ _.
Safe application development for AURIX™ Application Kit TC3xx | n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

Code Listing 25 Safety Mechanism ISR_MONITOR DMA
/*
* Interrupt Service Routine of the ATOM
* */
void interruptHandlerGtmAtom(void)
IfxGtm_Atom_Timer_acknowledgeTimerIrq(&g_timerDriver); /* Reset the timer event */
currentTicksOnTimMission = STM@_TIM@.B.STM_31_0; /* take the STM ticks value
*/
}
/*
* SM:IR:ISR_MONITOR
* k)
void isrMonitor()
{

uint32 diffTicksOnTimMission;
if (currentTicksOnTimMission != previousTicksOnTimMission)

diffTicksOnTimMission = currentTicksOnTimMission - previousTicksOnTimMission;
if (diffTicksOnTimMission > MAX_THRESHOLD_TICK || diffTicksOnTimMission <
MIN_THRESHOLD_TICK)

{
IfxPort_togglePin(ISR_MONITOR_LED_D8.port, ISR_MONITOR_LED_D8.pinIndex);
}
previousTicksOnTimMission = currentTicksOnTimMission;
}
}
/*

* This function initializes the ATOM
* SM:GTM_CONFIG_FOR_ATOM

**/
void initGTMATOM(void)
{
IfxGtm_enable(&MODULE_GTM); /* Enable GTM */
IfxGtm_Atom_Timer_Config timerConfig; /* Timer configuration structure */
IfxGtm_Atom_Timer_initConfig(&timerConfig, &MODULE_GTM); /* Initialize default parame-
ters */

timerConfig.atom = IfxGtm_Atom 0;

timerConfig.timerChannel = IfxGtm Atom_Ch_0;

timerConfig.clock = IfxGtm_Cmu_CLk_0;

timerConfig.base.frequency = ATOM_FREQ;

timerConfig.base.isrPriority = ISR_PRIORITY_ATOM_ISR_MONITOR;
timerConfig.base.isrProvider = IRQ_GET_TOS(ISR_PROVIDER_ISR_MONITOR);

IfxGtm_Atom_Timer_init(&g_timerDriver, &timerConfig); /* Ini-
tialize the ATOM */

IfxGtm_Atom_Timer_run(&g_timerDriver);
} \AppSw\SafetyKit\06 Safe Computation\SafetyKit Isr Monitor.c

6.2.8 MCU function - Infrastructure

6.2.8.1 Power management system (PMS)

The PMS handles multiple voltage levels required to supply the different power domains of the AURIX™ TC3xx
MCU. Depending on the HWCFG[1,2] pins, the PMS is responsible for distributing and monitoring the supplied
voltages or to generate the voltages itself if single-supply mode is selected. The PMS is responsible for checking
all the voltages (generated or supplied). Each voltage range has a primary undervoltage limit, and a user-
configurable secondary upper and lower limit (Safety Mechanism VX_MONITOR_CFG). The primary monitor
protects the device from incorrect operation at low voltages by generating a cold PORST. The secondary
monitor alerts the system of a potential danger through the SMU. See Figure 27 and Figure 28 for an overview of
supply monitors.

Application note 72 V1.0
2024-04-04

Safe application development for AURIX™ Application Kit TC3xx

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

infineon

The secondary voltage monitor is configurable. As soon as the voltage exceeds or falls below a pre-configured
voltage level from the secondary voltage monitor, an alarm will be triggered. Additionally, the upper and lower
threshold voltage levels can be set up for single-supply voltages. These are used to trigger an SMU alarm to
indicate a fault whenever the levels are crossed.

Overload / ol
. o Short B
Detection
EVRC(VDD)
EVR33 (VDOP3)
VDD
VDDP3 VDD VoD o
o VDDP3 vooes | Standby 5
alarms SMU uw
VEXT VEXT
VEVRSB Over/ Core [j
VOOM A[S)gc:ﬂndg:y Spke Under SN Error
p onitors > > =
anavy 1“_':: Voltage Pin x
ADC Monitors VEXT (x] evaluation
PLPBG + | vDOPD VDDP3 ’ [
e fo | j
VEXT (EVRPR) VDD o
VDDP3 VEVRSB @
VDD Power BIST startup and VDDM &
Secondary Monitor runtime alarms
SHPBG check against PLPBG VDDPD .
L] VREF VREF
SHPBG |——P»
EVADC Channel
EVADC
VAREF
Cold
Under-Voltage Power-on
’ Evaluation ‘ Reset
Flash supply
Flash monionng
Power BIST
VEXT
VEVRSB
OO Over/ Under- il
P Voltage Spike . HSM
Detection

Note: Derived from AURIX TC3xx User’s Manual v2.0.0, Figure 109 Supply Monitor Overview

Figure 27 Supply monitor overview

Application note 73 V1.0

2024-04-04

Safe application development for AURIX™ Application Kit TC3xx

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

infineon

Secondary Over- &
Undervoitage
onitoring Monitonng

Reset Vaive: SMU

550V
525V
500V

alarm genarated at
SWDOVVAL ~5.5V

4rsv
v p=-=—====t=e=|f---1

400V

Reset Value 3s0v

Resetgenerated —__ | _ _ _ _ __ 1 ___||___
at <257 V]

300v

| SWOUWAL range
=(297TV-475V

Reset Vaiue : SMU

alarm generaied af
SWDUVVAL ~2.97 V

Primary
Undervoltage
Monitoring

Secondary Over- &
Undervoltage
Monitoring

Feset Vaive BV -

Reset generated
at <297 v T
300V

Reset Value: SMU
alarm generated at
EVAIOVVAL- 363 V

EVRIIOVVAL range
=347- 383V

EVRIIUVVAL range
=207V-313V

Reset Value : SMU
alarm generated at
EVRISUVVAL ~ 297V

Vexr External Supply Monitor

EVR33 Voltage Monitor

Secondary Over- &
Undenvoltage
Monitoring

1375V

1313V == ——

125V

Reset Vaive : 1188V
[leset generated ~_ |- —————— T |

1< 1.125V
1125V

Reset Value: SMU
alarm generaied at
EVRGOVVAL ~ 1.375V

EVRCOWVAL range
=1.313-1.375V

EVRCUVVAL range
=1125V-1.188V

Reset Valve : SMU
alarm generated at
EVACUVVAL ~ 1.125 V

EVRC Voltage Monitor

Secondary Over- & Undervollage
Monitoring

e

Reset Value: SMU
alarm generated at

SBOVVAL ~55V

_ SBOVVAL range
= (347 V-55V)

SBUVVAL range
=RITV-4T5V)

Reset Value : SMU

~— alamm generated at

SBUVVAL ~2.97 V

Secondary Over- & Undervoltage
Monitoring

550V
525V
500V
475V
450V

400V

3sov

300V

Reset Value: SMU
alarm generated at
VDDMOVVAL ~5.5 V

_ VDDMOVVAL range
T =(34TV-55V)

VDDMUVVAL range
=RITV-475V)

Reset Value : SMU
alarm generated at
VODMUVVAL ~ 2.97 V

Secondary Over- & Undervoltage
Monitoring

138V

128 v

1.19v

113V -

-~ alarm generated at

Jd_ PREOVVAL range

Reset Value: SMU

PREOVVAL ~ 1.4V

=138-14V

PREUVVAL range
=113V-119V

Reset Value : SMU

alarm at
PREUVVAL~ 1.13 V

Vevrse External Supply Monitor

Vvopu External Supply Monitor

Note: Derived from AURIX TC3xx User’s Manual v2.0.0, Figure 112 Voltage Monitoring - VEXT, VDDP3 & VDD and
Figure 113 Voltage Monitoring - VEVRSB, VDDM & VDDPD

EVR Pre Reg / VDDPD Voltage Monitor

Figure 28 Voltage monitoring ranges

Safety Kit implementation of the PMS voltage monitoring

To demonstrate the functionality of the internal voltage monitor, the external voltage supply can be loaded
with an external pull-down switch. With the encoder, the voltage can be adjusted through the DC voltage of the
pull-down switch. All undervoltage limits are adjustable using the touchscreen (Figure 32). If a limit is violated,
a secondary monitor SMU alarm is triggered. The lower screenshots show the messages triggered by an SMU
alarm (violation of the undervoltage limit).

To demonstrate the voltage monitoring safety mechanism, the supplied voltage delivered by TLF35584 must be
putin an unstable state. No self-test mechanism is present for this purpose in the AURIX™ MCU or in TLF35584
devices. For such cases, a special circuitry is designed on the Evaluation Board Safety as shown in Figure 30 and
Figure 31. The idea is to overload the TLF35584 (V_UC) power line with a pull-down switch; the pull-down
switch is PWM controlled by the AURIX™ TC3xx MCU. This PWM generation is controlled via the incremental
encoder counter (EN1) as shown in Figure 29.

Once the critical current capability of TLF35584 is reached, the voltage will drop. Once the voltage drops below
the AURIX™ secondary monitor threshold, an SMU alarm will be raised. If the voltage drop exceeds the
TLF35584 critical undervoltage threshold, TLF35584 will trigger a PORST. The code for that example is provided
in \AppSw\SafetyKit\04_Fault_Injection\SafetyKit_UndervoltageSimulation.c.

Buttons and switches should be operated sequentially on the Safety Board because short-
circuits will appear when enabling simultaneously a strong pull-up and a strong pull-down
circuitry on the same line. This could permanently damage the demo setup. In such cases, the
board can also enter a safe mode due to the overtemperature condition. In that case, the
board is temporarily unusable (but not damaged) for approximately one minute.

Attention:

74 V1.0

2024-04-04

Application note

o _.
Safe application development for AURIX™ Application Kit TC3xx |n f| neon

Safety
32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

©

Evaluation Board - TC2xx,TC3xx Safety U3.1

Pulldown switch
PWM controlled

Pulldown switch

PWM command
J

3w 3. BROKEN BROKEN
B @ WIRE MIRE
2 1

SHU_FSP

Figure 29 Overview of undervoltage simulation
Vv uc vV ucC vV uc
7N
D3 L1
5 2 MSS2P2-M3/89A 100uH
99R g AN2 ANIS
QlA
6 o EIT\T _LCI
IR 4.7uF
P02.0 R3 2 |J> T ANI3 ANI6 ANI9
|
10k l\l_) e Q
3 _], o 1 | IPBRONO6S2L-11
P33.11 R4 5 I) 6 !
- —_
10K |\L -9k
4
MMDT3904HE3-TP GND GND
GND
Figure 30 Undervoltage fault injection circuitry
Application note 75 V1.0

2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx |n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

- Poweer line TLF

—— » Signal line

vV UC

Counter
increment

AU RIXTM Curf::t'vlmd

|
| GND
. .
Figure 31 V_UC overloading concept
Higher DIE Temp.: Higher DIE Temp.:
Angle Sensl: 272.5 ©°(Angle Sensl: 272.5 ©°(]
Anale Sens2: 261.3 °C A g
Measured | UERT Uoltage : 4.99U| U linit: 4.50U Threshold UEXT Uoltage : 4.99V)|
voltages | UDDP3 Uoltage: 3.29U U Iimit: 3.820 |
CORE Voltage := 1.24U] U limit: 1.18U Voltages Undervoltage limit IQ.SBBB i
~[1]z]]a]s]s]z]s]2 [a]5] [mack[«[r] | medity
e |a|u]e]r]r[z[u]t]o[p]u]+] limits
4 A|SID|F|G|H|J|K|L[O & |#
t I>I*iI“IcI"IBI"I"I-IiI-I'
I
iMENU B sTDoUT® M STDOUT1 M GRAPH@ WOFF
Default Menu UV threshod selection
Safetylit TC397 ADS SW 3Ui HY Vi SafetyKit TC397 ADS SW 3Bu1 HY 3vim
Higher DIE Temp.: 67. Higher DIE Temp.: 66.1
Angle Sensl: 272.5 ©°C| Angle Sensl: 272.6 ©°C|
Angle Sens2: 261.2 °C| Angle Sens2: 261.2 °C|
UEXT UEXT
SADC SADC
C 1 PINN ADC 1 PINN
STDOUT1 M GRAPH@® WOFF STDOUT1 M GRAPH@ WOFF
V_UC < EVRUVMON.SWDUVVAL V_UC < HSMUVMON.SWDUVVAL

Figure 32 Triggering an undervoltage alarm

6.2.8.2 Clock

The clock system is built up as a chain composed of different building blocks, which allow different function
parts for the complete chain. The building blocks are:

» Basic clock generation (clock source)

e Clock speed upscaling (PLLs)

e Clock distribution (CCU)

e Individual clock configuration (peripherals)

For more details, see Chapter 10 of the AURIX™ T3xx User’s Manual [1].

Application note 76 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < |n f| neon ,

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

Safety Kit implementation

Application Kit Safety implements the Safety Mechanism CLOCK:PLAUSIBILITY where the application SW must
evaluate the different clock frequencies provided by PERPLLCON1.K2 and PERPLLCON1.K3 with a time
measurement based on the SYSPLLCON1.K2 clock frequency. If the application SW does not match the
calculated and expected clock frequency values, the application SW must trigger an alarm.

In Application Kit Safety, the QSPI5 module is used to implement this SM. The following steps are used:

1. Initialize the QSPI5 module.
- Master mode
XXL mode
DMA enabled
Baud rate of 10 MHz
Enabled phase transition (PT) interrupt

2. Fill data into transmit buffer of size 125 bytes.
3. Start the QSPI master data transfer.
4. Capture the time via the STM timer on two PT interrupts.
- First Interrupt will occur at the start of frame (SoF).
- Another interrupt will occur at the end of frame (EoF).
5. Calculate the different EoF time and SoF time taken via the STM timer.
6. Compare the resulting value with the range of theoretical values limit and respond accordingly.

Error! Reference source not found. shows the implementation of these steps; the real-time calculated value
can be seen on TFT menu as shown in Figure 33.

Application note 7 V1.0
2024-04-04

Safe application development for AURIX™ Application Kit TC3xx
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

Code Listing 26 Safety Mechanism CLOCK: PLAUSIBILITY DMA

infineon

/* Handle QSPI5 Phase Transition interrupt */
void isrQSPI5Pt(void)
{
[..]
Y/
* This function initializes the QSPI5 module
**/
void initQSPI5ForClockPlausibility(void)

{
g _SafetyKitStatus.qspiEofandSofTimeDifference.timeMinimumThreshold = TRANS-
FER_TIME_MIN_LIMIT;
g_SafetyKitStatus.qspiEofandSofTimeDifference.timeMaximumThreshold = TRANS-
FER_TIME_MAX_LIMIT;

/* Initialize the Master */
initQSPI5SMaster();
initQSPI5MasterChannel();
initQSPI5MasterBuffers();
}
/*
* Function to check clock Plausibility on every EOF event
* SM:CLOCK:PLAUSIBILITY
* %/
void checkClockPlausibility(void)
{
/* check clock plausibility range */
if ((g_SafetyKitStatus.qspiEofandSofTimeDifference.timeDifference > TRANS-
FER_TIME_MAX_LIMIT) ||
(g_SafetyKitStatus.qspiEofandSofTimeDifference.timeDifference < TRANS-
FER_TIME_MIN_LIMIT))

/* check plausibility test failed, Trigger SMU software alarm */
softwareCoreAlarmTriggerSMU(SOFT_SMU_ALM_CLOCK_PLAUS);

}

else

/* check plausibility test passed */

} \AppSw\SafetyKit\05 Avoid Detect CCF\SafetyKit CloclPlausibility.c

UEXT Uoltage = limit: 4.58U
UDDP3 Voltage: 3.29U U limit: 3.82U
CORE VUoltage = 1. U limit: 1.18U
Clear Emergency Stop
Lockstep error injection IMCCU6 in
Run safe ADC capturing
Cénn safa OANM fandtandna OHIOH out
QSPI ClockPlaus : 180.88us] out
UrH 1NnJect Eul EFrror out
DMA inject CRC error out
DMA inject Dest error
DMA inject TS error DSADC+EDSADC
SRI inject error UADC+EDSADC
EUADC 1 PINB
STDOUTA STDOUT1 WM GRAPHA MOFF

Figure 33 Clock plausibility TFT real-time value

Application note 78

V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < | n f| neon

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

6.2.8.3 RESET

RESET is responsible for configuring and controlling reset events based on the reset trigger source that
generates the request. For more information, see the “RESET” section in the Safety Manual [3].

6.2.8.4 System Control Unit (SCU)
The SCU is responsible for controlling various system functions, including:

e Reset Control (RCU)

e External Request Handling (ERU)
e Emergency Stop (ES)

e System registers

e Watchdog Timers (WDT)

e Trap generation ([TRAP])

External request handling (ERU)

Even though there is no need to implement any additional SMs for the SCU module, Application Kit Safety
demonstrates the configuration of the Emergency Stop feature and includes fault injection to trigger a safety
watchdog timer overflow.

The safety code contains Safety Mechanism SCU:ERU_CONFIG implementation as described in the safety
manual: the application software must configure the ERU parameters and start external request processing by
the ERU according to the User Manual description.

Safety Kit implementation

The Safety Kit provides a button (Stall CPU): see the “Watchdog timer (WDT)” section for details. The Stall CPU
button is based on ERU; therefore, this ERU is initialized according to the SCU:ERU_CONFIG safety mechanism.
The ERU input pin is used to trigger a high-priority interrupt when the Stall CPU button is pressed.

Application note 79 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx | n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

Code Listing 27 Code snippet of ERU configuration

/*SM:SCU: ERU_CONFIG
* %/
void initERU(void)
{
/* Trigger pin */
g_configERU.reqPin = STALL_CPU_PIN; /* Select external request pin */

/* Initialize this pin with pull-down enabled
* This function will also configure the input multiplexers of the ERU (Register EX-
ISx)
*/
IfxScuEru_initRegPin(g_configERU.reqPin, IfxPort_InputMode pullDown);

/* Determine input channel depending on input pin */
g_configERU.inputChannel = (IfxScuEru_InputChannel) g_configERU.reqPin->channelld;

/* Input channel configuration */

IfxScuEru_enableRisingEdgeDetection(g_configERU.inputChannel); /* Interrupt triggers on
rising edge (Register RENx) and */

/* Signal destination */

g_configERU.outputChannel = IfxScuEru_OutputChannel_1; /* OGU channel 1 */

/* Event from input ETL1 triggers output OGU1l (signal TRx@) */

g_configERU.triggerSelect = IfxScuEru_InputNodePointer_1;

/* Connecting Matrix, Event Trigger Logic ETL block */

/* Enable generation of trigger event (Register EIENx) */
IfxScuEru_enableTriggerPulse(g_configERU.inputChannel);

/* Determination of output channel for trigger event (Register INPx) */
IfxScuEru_connectTrigger(g_configERU.inputChannel, g configERU.triggerSelect);

/* Configure Output channels, OutputGating Unit OGU (Register IGPy) */
IfxScuEru_setInterruptGatingPattern(g_configERU.outputChannel, IfxScuEru_Inter-
ruptGatingPattern_alwaysActive);

/* Service request configuration */
/* Get source pointer depending on outputChannel (SRC_SCUERU® for outputChannel@) */
g _configERU.src = &MODULE_SRC.SCU.SCUERU[(int) g_configERU.outputChannel % 4];
IfxSrc_init(g_configERU.src, IRQ_GET_TOS(ISR_PROVIDER_ERU_IN2), ISR_PRIORITY_ERU_IN2);
IfxSrc_enable(g_configERU.src);

} \Appkit\SafetyKit\0@9_Fault_Injection\SafetyKit_Stall Cpu.c

Emergency Stop (ES)

Even though there is no need to implement any additional SMs for the SCU module, Application Kit Safety
demonstrates the configuration of the Emergency Stop feature and includes fault injection to trigger a safety
watchdog timer overflow.

The ES feature provides a fast and software-independent response to an emergency event. As a reaction to an
emergency event, selected output ports can be immediately placed into a defined state. This feature can also
be used as an external failure reporting interface that enables the communication of the presence of an internal
microcontroller failure to an external safe state controller (See Safety Mechanism ES_ERROR_PIN_MONITOR in
the Safety Manual [3]). The safe state of the port in the case of an ES is part of the port configuration.

Safety Kit implementation of the ES feature
The ES feature is enabled for the port pin of LED3 in such a way that:

e LED3is ON by default (LOW sate)
e LED3is OFF when ES is activated (HIGH state)

See Figure 35.

Application note 80 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx | n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

As shown in Code Listing 28, all four lockstep error SMU alarms are configured to trigger ES
(IfxSmu_InternalAlarmAction issetto “IGCS1” and the function IfxSmu configAlarmActionPES is
called with the parameter PES ON IGCS1).

The ES status flag bits (EMSF and SEMSF) indicate if an Emergency Stop event has occurred. The state of the ES
flagis also indicated by the color of the ES display entry on the TFT screen (see Figure 36). A red color indicates
that the flag has been set and that an ES event has occurred. The flag must be cleared to allow a new response
if another ES request event occurs. The flags can be cleared by clicking on the entry on the display.

The importance of clearing the flags can be easily understood by triggering the ES for the first time. The LED3
port willimmediately enter its safe state by turning off the LED. The ES also triggers a second SMU alarm
(additionally to the alarm, which has occurred due to the initial fault injection), which leads to an alarm pop-up
window on the display. Even after clearing all alarms, the port does not resume with its initial fault-free
operation. Only after clearing the flags (via the TFT, see Figure 36), the LED will turn on again.

Attention: If a second ES event occurs before the flags are cleared, nothing will happen.

Code Listing 28 Code snippet to configure Port ES for IGCS1 alarms

const AlarmConfigStruct globalAlarmConfig[USER_ALARM_NUMBER] = {
[..]

¥ m m e e e e IGCSL === === == === m oo e e e e e oo

,,,,,, */
{IfxSmu_Alarm_CPU6_Lockstep_ComparatorError, IfxSmu_InternalAlarmAction_igcsl, TRUE, FALSE, NULL_PTR},
{IfxSmu_Alarm_CPU1_Lockstep_ComparatorError, IfxSmu_InternalAlarmAction_igcsl, TRUE, FALSE, NULL_PTR},
{IfxSmu_Alarm_CPU2_Lockstep_ComparatorError, IfxSmu_InternalAlarmAction_igcsl, TRUE, FALSE, NULL_PTR},
{IfxSmu_Alarm_CPU3_Lockstep_ComparatorError, IfxSmu_InternalAlarmAction_igcsl, TRUE, FALSE, NULL_PTR},

[..]

s

/*

* Initial SMU module

k */

void initSMUModule(void)

{

[..]

/* Validation if PES configuration was successful */
IfxScuWdt_clearSafetyEndinitInline(IfxScuWdt_getSafetyWatchdogPasswordInline());
if(MODULE_SMU.AGC.B.PES != pesAction)

{

}
IfxScuWdt_setSafetyEndinitInline(IfxScuWdt_getSafetyWatchdogPasswordInline());
g SafetyKitStatus.smuStatus.smuCoreAlarmPESSetSts = result;

[..1]

HAppSw\SafetyKit\01_Smu\SMU\SMU.c

result = fail;

Application note 81 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx | n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

System Control Unit

Synchronous Control

SMU PES activation Set [semsrl
(e.g. from Alarm Event) | I

IPSELl | POL I IENONl ISEMSFNi |EMSFMI | MODEI
Clear Set

SMU & |set
GFSCU_E ﬁ[

A

4

0 NY Asynchronous Control \
PortAD— —) 3 0 —-> Port Emergency
Glitch filter 1 0 1 Stop

» SMU Alarm

“Extemal Emergency
PortB D Stop Event”

/e

Note: Derived from AURIX TC3xx User’s Manual v2.0.0, Figure 79 Emergency Stop Control

Figure 34 Emergency Stop control overview
¢ . Hewoee Eeese °°
o0 o0 .:ﬁl ‘UbTooooo oc...@ o
. . - ~PORS) WAKE == Y
..o.o..:... ﬂ g ﬁs o i= o o
. @ U1
sessiii oo T o
ESRO
.(!nﬂnenn . @ *" -
o f
o + B
. =
.e = > LED3 used as configured PES
. E - > Normal = HIGH
0. , ES->LOW

Figure 35 Emergency Stop status visualized with LED connected to Port Emergency Stop (PES)

Application note 82 V1.0
2024-04-04

Safe application development for AURIX™ Application Kit TC3xx
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

Code Listing 29 Code snippet for ES submodule configuration

infineon

/*
* Function to initialize the emergency stop
* */
void initEmergencyStop(void)
{
uintl6 cpuWatchdogPasswd = IfxScuWdt_getCpuWatchdogPassword();

/* PORT configuration for ES */

/* Clear CPU Endinit to enable configuration */
IfxSculWdt_clearCpuEndinit(cpuWatchdogPasswd);

/* Enable ES function for EMERGENCY STOP_LED PIN (LED3) */

/* SET CPU Endinit */
IfxSculWdt_setCpuEndinit(cpuWatchdogPasswd);
}

/*
* function clear the emergency stop flags
* */
void clearEmergencyStopFlags(void)
{
MODULE_SCU.EMSSW.B.EMSFM = 2; /* ©blo */
MODULE_SCU.EMSSW.B.SEMSFM = 2; /* @ble */
} \AppSw\SafetyKit\02 Safety Mechanisms\SafetyKit EmergencyStop.c

IfxPort_setPinModeOutput (EMERGENCY_STOP_LED_PIN.port, EMERGENCY_STOP_LED_PIN.pinIndex, \
IfxPort_OutputMode_pushPull, IfxPort_OutputIdx_general);
IfxPort_setPinLow(EMERGENCY_STOP_LED_PIN.port, EMERGENCY_STOP_LED_PIN.pinIndex);

EMERGENCY_STOP_LED_PIN.port->ESR.U |= 1 << EMERGENCY_STOP_LED_PIN.pinIndex;

Higher DIE Temp.:

nngla Sensl: 272.8 uc

Angle Sens2: ZEB B °C]
1tage 4.99V| U limit: 4.580

U limit: 3.820

U _limit: 1.18U

Start lockstep error
injection

Observe that Emergency Stop
is active (red highlighted text
and LED3 should be off)

[RESET _ALM) 1GNORE
Observe the activation of

CPU1_Lockstep_error RESET SHU RESET 5SS
alarm and reset it

Higher DIE Temp.:
Angle Sensl: 8
Angle Sens2:
UEKT Uoltage

Clear E Stop

Observe the activation of
SMU_Pin_FS_Activation
alalrm and reset it

1GNORE

IRESET_8YS

S|
; e ns 2 _EVUADC 1 PINI
Press "Reset SMU ENU Il STDOUT@ W STDOUT1 M GRAPHG NOFF
alalrms” to reopen

alalrm window

Figure 36 Lockstep fault injection to demonstrate ES activation

Application note 83

V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < | n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

Safety watchdog
The safety watchdog timer has two main use cases:

e Asasystem-level periodic watchdog timer, which needs to be serviced to avoid an overflow and therefore,
an SMU alarm request

e To protect safety-critical system registers from unintended write access with a safety ENDINIT sequence.

The safety ENDINIT must be cleared to open a small time window for configuration of these registers; after the
configuration, the application software must set the ENDINIT again to avoid an SMU alarm. Write accesses to
these registers without the clearing safety ENDINIT results in an SMU alarm request. The safety watchdog
implements the Safety Mechanism SAFETY_WATCHDOG. Each set of safety ENDINIT protected registers is listed
in its own safety mechanism: for example, Safety Mechanism CLOCK:SAFETY_ENDINIT.

Attention: Buttons and switches should be operated sequentially on the Safety Board because short-circuits
will appear when enabling simultaneously a strong pull-up and a strong pull-down circuitry on
the same line. This could permanently damage the demo setup. If such an event occurs, the board
can also enter a safe mode due to the overtemperature condition. In such a case, the board is
temporarily unusable (but not damaged) for approximately one minute.

Safety Kit implementation of the safety watchdog service with fault injection

The safety watchdog is serviced every millisecond from the CPU3 STM interrupt routine. By pressing the Stall
CPU button (see Figure 37), every CPU except the CPU which handles SMU alarms, will be trapped ina while
loop inside a high-priority interrupt routine. This prevents the triggering of the STM interrupt routine and
therefore, the servicing of the safety watchdog timer.

s @i

Sp_§ B 3 v o3 3 sop_3

‘§|) 2. 9 i! ol L roven
F k—r oz, B ! i HIRE

SMU_FSP. SHU_FSP
T0 U_UC TO GROUND

e
¥ 3 acraco AcT/ACO

DIG ﬁCT/ﬁCQ CH[CK2 CHECK1 OIG ACT/ACQ
T0 U UC 0 GROUND

Figure 37 Stall CPU button to trlgger watchdog timeout alarm

As already explained in Section 4.2.1, the WDT timeout alarms require special processing. Therefore, a
watchdog timeout alarm is configured to trigger an NMI (see Code Listing 20) and to start the recovery timer. On
triggering of the NMI, the code execution will jump to the callout function safetyKitNmiCallout (see 0).
Inside the callout function, a check is done which detects if the NMl is called because of an SMU alarm.
Afterwards, it will be verified inside the detectAlarmsourcesMu function; if it was triggered by an alarm,
which is also intended to trigger the NMI and which is also not pending. If this is the case, the recovery timer will
be stopped, and code execution can continue. This means that if the STALL_CPU button is pressed the first
time, the expected System Control Unit (SCU) watchdog timeout alarm will be triggered and the corresponding
NMI message (see Figure 38) will be displayed.

Application note 84 V1.0
2024-04-04

o~ _.
Safe application development for AURIX™ Application Kit TC3xx | n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

If the STALL_CPU button is pressed a second time (without resetting of the alarm with the RESET_ALM button
on the TFT), the recovery timers will not be stopped again because the alarm is still pending (refer to the
detectAlarmSourceSMU function). The recovery timer overflow is configured to result in a reset request (see
Code Listing 20).

Areset can be avoided by clearing the SCU watchdog alarm with the RESET_ALM button on the TFT.

Code Listing 30 Code snippet for SMU configuration of watchdog timeout alarm

t#tdefine SMU_ALARM_WHICH_TRIGGERS_NMI IfxSmu_Alarm_SCU_Watchdog TimeOut

const alarm_config_struct global_alarm_config[USER_ALARM_NUMBER] =

{SMU_ALARM_WHICH_TRIGGERS_NMI, IfxSmu_InternalAlarmAction_nmi, FALSE, TRUE,
&SafetyKitWatchdogAlarmHandling},

{IfxSmu_Alarm_SMU_Timer@_TimeOut, IfxSmu_InternalAlarmAction_reset, FALSE, FALSE, NULL_PTR},
{IfxSmu_Alarm_SMU_Timerl_TimeOut, IfxSmu_InternalAlarmAction_reset, FALSE, FALSE, NULL_PTR},
[--]

s

void initSMUModule(void)

{

[--]

/* Enable and configure the recovery Timer (maximum value for the duration is exffffff) */
enableRecoveryTimerSMU(Oxffffff);
[-.]
}

\AppSw\SafetyKit\01_Smu\SMU\SMU.c

Application note 85 V1.0
2024-04-04

Safe application development for AURIX™ Application Kit TC3xx
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

Code Listing 31 Code snippet for NMI callout safetyKitNmiCallout

infineon

void safetyKitNmiCallout (IfxCpu_Trap trapWatch)

/* Check if NMI was called due to an SMU alarm */

if ((IfxSmu_getAlarmExecutedStatus(IfxSmu_AlarmExecutionStatus_nmi)) &&
(IfxScuCcu_getTrapStatusFlag(IfxScuCcu_Traprequest_smu)))

{

/* Implement appropriate reaction */

{

sint16 nbrRaisedAlarm;

/* Check if an alarm, which is intended to trigger an NMI has been triggered, if yes stop re-

covery timer */
/* Note: if the alarm is triggered a second time before it got reset via the TFT, the function
* detectAlarmSourceSMU() will not stop the recovery timer. Therefore, when the Stall CPU but-

ton is pressed a
* second time, the recovery timer will timeout and hence it will trigger a reset. */

if (nbrRaisedAlarm > @)
{
#if USE_SAFETYKIT_TFT
popMessage = "NMI ACTIVATED!";
conio_driver.dialogmode = SHOWSMUALARM;
ttendif /* USE_SAFETYKIT_TFT */
/* ASC_SHELL print is executed from endless background task */

¥

/* Clear alarm executed status bit*/
IfxSmu_clearAlarmExecutedStatus (IfxSmu_AlarmExecutionStatus_nmi);

/* Clear SMU Alarm Trap Request Flag */
IfxScuCcu_clearTrapStatusFlag(IfxScuCcu_Traprequest_smu);

}

} \AppSw\SafetyKit\01 Smu\SMU\SMU.c

nbrRaisedAlarm = detectAlarmSourceSMU(&alarmsThatTriggerNMI[@], nbrAlarmsThatTriggerNMmI);

BafetyKit TC397 ADS SW 3Ui HW 3U1i N
BIST: not done

Highey DIE Temp.: 68.4°C
Angle Sensl: 272.6 °C
Angle Sens2: 261.1 °C

1 GNORE

RESET SYS

s
2 EUADC 1 PINN
STDOUT1 W GRAPHA NOFF

Figure 38 NMI alert because of watchdog timeout alarm

Note: For more information on watchdog timeout alarms and the recovery timer, see Section 0.

6.2.8.5 Standby Controller (SCR)

The SCRis an XC800 8-bit microcontroller that runs during the standby mode of the MCU. Its main function is to

control the wakeup signals and some 1/0 pads (marked with SCR) during the MCU standby period.

For more information, see the “SCR” section in the AURIX™ TC3xx Safety Manual [3].

Application note 86

V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx | n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

6.2.8.6 Die Temperature Sensor (DTS)

Proper AURIX™ MCU operation is guaranteed within the Operating Conditions listed in the datasheet, which
includes limits for ambient temperature and junction temperature. There are two die temperature sensors
(DTS) available on the AURIX™ microcontroller to help applications approximate the junction temperature: a
Power Management System (PMS) DTS located near the regulators, and a core DTS located closer to the CPU
cores. These two sensors are part of Safety Mechanism DTS: TEMPERATURE_MONITOR. If either DTS exceeds the
limit defined in its DTSLIM register, an SMU alarm is raised as defined in the Safety Manual:

e ALMS8[30] SMU alarm for die temperature underflow in the core domain

e ALM9[0
e ALM9[1

[

e ALMS8[31] SMU alarm for die temperature overflow in the core domain
[SMU alarm for die temperature overflow in the PMS domain
[

]
] SMU alarm for die temperature underflow in the PMS domain

The Safety Manual specifies that the difference between the PMS and core DTS should not exceed 9°C. This
check is not performed in hardware, so this periodic checking should be part of the application. An SMU
software alarm should be raised if the temperature difference exceeds the value specified in the Safety Manual.

Application Kit Safety implementation of the die temperature sensor comparison

Both temperatures are compared to each other. If the difference exceeds 9°C, an SMU software alarm will be
triggered.

Code Listing 32 Code snippet for the Safety Mechanism: DTS_RESULT implementation

void dtsMeasurementISR(void)

{

[--]
float32 dieTemperaturePms;
float32 dieTemperatureCore;

/* Get the new PMS die temperature measurement */
dieTemperaturePms = IfxDts_Dts_getTemperatureCelsius();

/* Also get the CORE die temperature from DTSCSTAT register of SCU module */
dieTemperatureCore = IfxDts_Dts_convertToCelsius((uint16)MODULE_SCU.DTSCSTAT.B.RESULT);

/* SM:DTS_RESULT */
/* Calculate the absolute value of the temperature difference, trigger SMU software alarm
if value is above limit. */
float32 dieTempDifference;
dieTempDifference = (dieTemperatureCore > dieTemperaturePms) ?
dieTemperatureCore - dieTemperaturePms :
dieTemperaturePms - dieTemperatureCore;

[.]

if(dieTempDifference > MAX_DIE_TEMP_DIFF)
{

¥
}

\AppSw\SafetyKit\02 Safety Mechanisms\SafetyKit DieTemp.c

SMU_SMU_core_SW_alarm_trigger(SOFT_SMU_ALM DTS);

Application note 87 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < | n f| neon

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

6.2.9 MCU function - Interfaces

The MCU interface designates all the modules that allow communication with off-chip devices:

e ERAY

e GETH

e HSSL

e MCMCAN
e QSPI

e PORT

e PSI5

e PSI5S

e SENT

e 12C

e ASCLIN
e MSC

e EBU

e SDMMC
e CIF

The AURIX™ TC3xx MCU does not implement hardware safety mechanisms for those modules, except for the
hardware safety mechanisms that are common to all SRAM blocks. Multiple SMs are created to ensure safe
communication. The application software must implement safe communication, which detects random
hardware faults, systematic faults, and interference, which can lead to message corruption and protocol
violation, including temporal and random faults of safety-related data transferred over the interface. When a
failure is detected, the application software must trigger a response. The idea is similar for every module.
Depending on the possibilities available, the following measures must be implemented:

e Insert redundancy on communication level (CRC and data ID)
e Frame counter
e Timeout monitoring

e Hardware redundancy (for example, two or more independent channels acquiring data from one or more
sensors)

e Loopback (thatis, reading back an output to detect a fault)

This application note only demonstrates the QSPI, PORT, and SENT interfaces.

6.2.9.1 Queued Synchronous Peripheral Interface (QSPI)

The main purpose of the QSPI module is to provide synchronous serial communication with external devices
using Clock, Data In, Data Out, and Slave Select signals. The focus of the module is set to fast and flexible
communication: either point-to-point or master-to-many slaves communication. For details of the QSPI
module, see the AURIX™ TC3xx User Manual [1].

To ensure the safety and integrity of the data transmitted over QSPI, the application SW is responsible to
implement safe communication SM (Safety Mechanism QSPI:SAFE_COMMUNICATION according to AURIX™ TC3xx
Safety Manual. Thus, the SM consists of appending the payload data, data ID, a frame counter, and CRC base on

Application note 88 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < |n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

payload data of the frame on a frame. These frames should be sent regularly by the QSPI master and received
independently by the QSPI slaves. Once a frame is received, safety mechanisms are activated to ensure the
integrity of the data. In parallel, a timeout and a time checking mechanism are also activated.

Safety Kit implementation

In Application Kit Safety, there are two different QSPI instances connected to each other using the loopback
concept. The QSPI4 instance works as a master, while the QSPI3 module is in slave mode. In the initialization
function, data is filled into the master buffer. The communication is based on sending data from the master to
the slave. This communication, frame length, and pin connection are shown in Figure 39.

p22.2 CS Cs P02.4
Master PB22.3 SCLK Frame & SCLK P02.7 Slave
QSPI4 P22.0 MTSR [SESSss MTSR P02.6 QSPI3
P22.1 MRST fe MRST P02.5
0 {32 bits | a2 baes] 32 b] 32 bits |
Data Id Paylca::ll Data Frame :!:unter c;c

Figure 39 QSPI communication protocol

To use this QSPI configuration, the four switches must be in downward direction as shown in Figure 40.

Application note 89 V1.0
2024-04-04

Safe application development for AURIX™ Application Kit TC3xx |n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

» .
Evaluation Board =~ TC2xx/TC3xx Safety V3.1

|

w IM*YIW

r sy ¥ ' 559 3 | O 59' $ sop 9 2 ? I -
| Lesl s §
) ,Ju | | BCNEN BROKEN
q g 5 ’ w2, ! t 8 ' o -

SMuU_Fsp
BUYIW W"W ID U LE T0 GROUND

10y _gsioy gsizp FHY 3
| 1
] iil A
et (3 e STAL CPU %5
. g : oIg AcTonco oo Dlﬁ‘hcl—’ﬁcc
o o :
suy p 00 plsxz' oo c e "Seoa 18 acis
j o

ﬂ SROKEN PCB l"l

LN'
s -;;_, @. =l 'Vsl REDUNDANCY2 RED r:Cw\{n
§§ | [
g8 - 8:0:

t;klmamnue l l SENT_SPC/
11

Figure 40 QSPI error injection

The data is divided into four frames, each of which contains four 32-bit elements. Four of these elements
correspond to the payload data, while the remaining three are data ID, a frame counter, and a CRC element.
The CRC element is calculated based on the payload data. To calculate the CRC, the TriCore™ CPU instruction
CRC32is used. Note that CRC calculation is performed on the slave side only, because the CRC and frame
counter the master transmits are pre-computed and stored in corresponding buffer.

The master device runs on CPU2 and sends the frames to the slave device every 100 ms without looking at what
was received on the slave side (with the masterTransmitDataSafeCommQSPI () function
inmSafetyKit_Main.c).

When the slave device detects in its Rx interrupt that the master has sent all the data of each frame, the frame
receive flag is enabled and the communication safety measures (data validation) related to the frame are
executed. In case of any errors, such as mismatching CRC or Frame Counter (FC), the system raises an alarm.
For both, there is recalculation done on the slave side and compared with the data sent by the master side (see
08_Ext_Communication/SafetyKit_QSPI_Safe_Communication.c). Then the slave is configured to receive the
next frame.

The detection of incorrect timings and timeouts are managed by another independent safety measure that is
triggered every 100 ms. (see the salveTimingvalidation () function in SafetyKit_Main.c). The slave side
running on CPU3.

Error injection

To simulate these errors, the ADD_BUTTON2 push button highlighted in Figure 40 can be used. When the
button is first pressed, an early frame error is triggered; when it is pressed again, a late frame error is injected.
When the button is pressed for the third time, a normal frame will start. When the button is pressed to trigger
an early or late frame, frames are sent too early (every 90 ms instead of 100 ms) or too late (every 110 ms

Application note 90 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx |n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

instead of 100 ms) on the master side respectively. If an error is detected, the communication is not stopped;
the user has the information that an error is detected and can choose how to manage this error on the TFT
display.

To trigger a timeout error, the Chip Select need to be disconnected by switching SW7 shown in Figure 40 in the
upward direction. In this case, the slave stops receiving the data sent by the master, which in turn leads to an
overflow of the timer counter.

The data corruption can be triggered by disconnecting SW8; it means that the data is not sent via MOSI, even
though the Slave Select and CLK are connected and the slave buffer is filled with the 0x0 value. Thus, the data
does not match, resulting in the data corruption alarm appearing. For each of the errors detected, the Safety Kit
can generate a different output error message using the same software alarm (ALM10).

If there is any data mismatched (CRC, Data ID, or frame counter), the corresponding software alarm (frame
corrupt message) will appear. While the LED D9 should be toggling every 100 ms which indicates that the QSPI
communication is working fine. To inject the error, change the direction of any switch as shown in Figure 39;
LED D9 will not be toggling, which indicates that the data sent is not received via QSPI communication and
therefore, an alarm will appear.

Higher DIE Temp.:
Angle Sensl: 2801.2 °C
Angle Sens2: 143.8 °C
UEXT

Angle Sensl: 281.2 °C
Angle Sens2: 143.8 °C
UERT

RESET ALM I GNORE I GNORE

RESET SMU RESET SYS RESET SYS

Angle Sensl: 281.2 °C

Angle Sensl: 2801.2 °C
Hag%o Sens2: 143.8 °C

Angle Sens2: 143.8 °C
ERT

RESET ALM 1GNORE RESET ALM 1GNORE
. 1 U

RESET SHM RESET SYS RESET SM RESET SYS

SADC
2 EUADC 1 PINE
STDOUT1 W GRAPH@ NOFF

SADC
2 EUADC 1 PINN
STDOUT1 W GRAPH® NOFF

Figure 41 QSPI safe communication alarm

Note: Safety Mechanism ERAY:SAFE_COMMUNICATION, Safety Mechanism GETH:SAFE_COMMUNICATION,
Safety Mechanism HSSL:SAFE_COMMUNICATION, and Safety Mechanism
MCMCAN:SAFE_COMMUNICATION are not implemented but the idea is the same as of Safety
Mechanism QSPI:SAFE_COMMUNICATION.

Application note 91 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx |n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

6.2.9.2 PORT

When using the port for digital or analog applications, two SMs are recommended, depending on the direction
of the signal. For safe capture, it is recommended to use a redundant port (Safety Mechanism
PORT:REDUNDANCY) with one or more signal sources for the same information. For a safe signal emission, a
port loopback (Safety Mechanism PORT:LOOPBACK) should be used to monitor the emitted signal.

For hardware redundancy, see the application note AP32405. This application note provides the guidance to
avoid common-cause failures at the port level by selecting the redundant port to use in a valid region
considering the region used for the monitored port. For each package, the application note provides a map of
the package region (designated as a group), and a truth table of the redundant port selection compared to the
mission port selected. “True” implies that this region is safe to choose for a redundant port compared to the
mission port region.

A B C D E F G H J K L M N P R T v v w b 4
2 | vss |pts of 22! ”g—' ”:—’Im_llm_s P20_0|P21_5|P21_s) S0~ ’“;“ ‘gcf' 722.0|P22_2|P23_4|P23_2|P23 0| vexr | vss | 20
19 VOO | V3 [p1s 2 720! ":-'Im_v P20_1 |P20.2 21 3| P21 K | o | P22t P23 P23 a2 s | vext | yE§)yeaz 3| 19
18 |p1s 1 W:’ Top View a2 4Pz 2| 18
17 |p1s_e|pis.a vss |r20_9(P20_6 ”.;‘sl"‘n'i‘lm_t m_o'm,-' mlnu p22_5 22,6 p2.5| ves pa2_1|p3z.0| 17
16 |p1s_s|preo voo | vss “:°-|“:‘-',",;-; Tex | Tus ”ﬁ-‘lmlm_o p22_4|p23.7| vss |p22.7 e il K
15 Im,||m_4 p15_7| voo = CX)
AGET
14 [pra_s|pres p1s_8|p1ss voo | vss [PAP | err | vss | voo P33_11P33_1 p33_8|pa3 | 14
I 0 LSS ‘ s
13 |m_p|m_c| P14_7|P1a2 Voo vss | vss | vss | vss Voo P34_s|pae s P33 6|33 7| 13
12 lna_llna_ol |wlm vss | vss vss | vss vss | vss P34 2|Pae_3 P33 s|p3as| 12
AGBT |
1" P o100 DAPE | vss | vss [v vss | vss | ™ VEVR | oas 4 3| 1
2 |) lPﬂ. 1 }ié_ﬁ;\ v | it -
10 |p112 |m_c P10 OTF | vss A p/ss | vss | mov Ano | At 533 1| 10
Dlss)
9 |p1s ":-‘ |m_cln1_1 vss | vss vss | vss vss | vss Ang | Ana anz | ans | o
R CTR] CIX ANG 8
1| 2
7 |m..|'ﬂ_1 7
6 |"U|"..‘ 6
5 |P10_2{P10_5 5
4+ |p10.slpio.s s
3 [pioz|vexr 3
2 |vext 2
1 | net [r20 '
A B

Figure 42 TC3971/0 ball groups in the LFBGA292 package

Application note 92 V1.0
2024-04-04

o~ _.
Safe application development for AURIX™ Application Kit TC3xx < | n f| neon

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

NET A

Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | Group 7 | Group 8 | Core

Group 1| FALSE | FALSE | TRUE TRUE TRUE TRUE TRUE | FALSE | FALSE

Group 2 | FALSE | FALSE | FALSE | TF TRUE RUE F - FALSE

0| Group 3| TRUE | FALSE | FALSE | FALSE | TRUE | TRUE | 1 T FALSE

Group 4 RUE F FALSE FALSE FALSE ; FALSE

I |Group5| TRUE - E | FALSE | FALSE | FALSE : FALSE

Ll Group 6 RUE F F TRUE FALSE FALSE FALSE f FALSE

z Group 7 TRUE] ; 1 I [TRUE FALSE FALSE FALSE FALSE

Group 8 | FALS - R TRUE RU : FALSE | FALSE | FALSE

Core | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE
Figure 43 Truth table with the valid I/O pin groups for the mission and monitor signals

corresponding to the ball-out groups in the LFBGA292 package

Safety Application Kit implementation

The Safety Application Kit contains implementation of Safety Mechanism PORT:LOOPBACK and Safety
Mechanism PORT:REDUNDANCY.

For these two SMs, the Safety Manual V2.0 stipulates that that application SW must configure and use
redundant GPIO communication to detect faults (when receiving information) or allow the receiver to detect
faults (when transmitting information). An appropriate response for a fault is application-dependent.

The PORT:LOOPBACK safety mechanism is implemented because S1 as mission signal on Px.y (P00.4) works as
the output and is given to the outer world. The same signal is looped back to the S2 monitor signal and given
back to Pa.b (P33.5) pin as the input. The application SW then compares both values and respond accordingly.

ER———- .
A i (. .
- Faeeem— 0
Package . ., FPI <>
| =
> T
FPI
PORT CPU

Figure 44 Safety Mechanism PORT:LOOPBACK overview

Note that the direction of SW10 as shown in Figure 45 must be toward the right, where it means that S1is
looped back to S2.

Application note 93 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx |n f| neon

Safety
32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

» 7 DRUKEN
B " WIRE
SHU_FSP 2
BUTTON1 BUTTON2 TO U_UC TO GROUND

pep P <y B o o
f a1 . 'd - .)
LJ > 2 WA),L B T Dy :
i N 8 &4)'l 6
E n.as STALL Fpu 3 i Peund oy
: o ACT,ACA ACT/ACQ ek
e Hi HECK1 /f
A CHECK?2 CHEC IERocT

f o1 ;] @s12 DIG ACT

g
) | & .
’ J [
CCKLK' .) ' o .su
GTM_ECLK
TO GROUND | BIN S A) lf%ﬁrl
~'» _TO GROUND ¥ BROKEN PCB
_sp1 SHI2, 7 Sull. «SENT SENT
\ ‘L » ~ ! TO GROUND T0 U_UC
f ’— '7'] ‘ -]
owds owd REUUNDANCY2 REDUNDANCY!

y ."A:-i'i @

Figure 45 Port loopback switch on the Safety Evaluation Board

The fault can be injected via SW10. If SW10 is towards the right, it means that the S1 is looped back on S2, but
when you change the direction of SW10 to the left, it means that S1 is no more connected to S2 (the value
coming on S1is not given on S2). Therefore, the compare result in the application SW will trigger an alarm. On
the display, you will see the following alarm:

Angle Sensli: 272.7
Angle Sens2: 268.

RESET ALM I GNORE

RESET SHMU RESET SYS

A
2 EUADC 1 PINN
STDOUT1L W GRAPH® WOFF

Figure 46 SMU alarm popup for port SMs

Safety Mechanism PORT:REDUNDANCY is also implemented in the Safety Application Kit. From Safety Manual
V2.0, the assumed scenario (B) is implemented: the application SW receives a safety-critical input value (called
signal S1 “Mission”) on pin Px.y (P02.3) from external sender (0 or 5V in the safety case). To detect faults on S1,
it receives on pin Pa.b (P23.2) the same information on signal S2 “Monitor”. The information on signals S1 and
S2 is cyclically compared. The scenario is illustrated as follows:

Application note 94 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < |n f| neon ,

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

1 —— > Py -—
I—) -------- i R A
PackaT -~ — FPI — 2
: o ..:,. Pa_b i .,
FPI
PORT U

Figure 47 Safety Mechanism PORT:REDUNDANCY overview

In the safety application, SW11 (REDUNDANCY1) and SW12 (REDUNDANCY2) work as S1 and S2 respectively. If
SW11 is on towards the right, it means that S1 is connected to VCC; if the direction is to the left, it means it is
connected to GND. The same applies to SW12 as well. Therefore, to inject an error, either SW direction should
be the oppositei.e., if SW11is to the left, SW12 must be on the right and vice versa. This means that SW11is
connected to VCC while SW12 is connected to GND. If the application SW compares the result, an SMU alarm
will pop up as shown in Figure 46.

Note: Due to limited number of software alarms, the same alarm is used for Port (loopback and
redundancy) and as well for SENT SMs.

6.2.9.3 Single Edge Nibble Transmission (SENT)

The Single Edge Nibble Transmission (SENT) module communicates with the external world via one I/0O line for
each channel. This module supports a Short PWM Code (SPC) protocol, which enhances the standardized SENT
protocol defined by SAE J2716 042016. SPC enables the usage of enhanced protocol functionality due to the
ability to select between “synchronous”, “range selection”, and “ID selection” protocol modes, or even
“bidirectional transmit mode”. For the Safety Application Kit use case ID selection mode, up to four sensors are
selected on a bus (bus mode, 1 master with up to 4 slaves). This allows parallel connection of up to four sensors
using only three lines (VDD, GND, OUT) as illustrated in the following. For more detailed description of SENT

Module, see the AURIX™ User’s Manual.

Sens 1 T
VDD CPU
Dout o I_'] L Capcom-Unit
GND L <—| || Outpin (OD)
Sens 2
VDD
Dout T
GND L
Figure 48 SPC ID selection mode
Application note 95 V1.0

2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < |n f| neon

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

Safety Manual V2.0 includes the Safety Mechanism SENT:CHANNEL_REDUNDANCY, which states that the
application SW must use two or more independent SENT channels for acquiring data from one or more sensors.
Upon receiving a new value, the results captured by the independent channels must be compared by the
application W. If the application SW detects a mismatch, the application SW must trigger an appropriate
response.

Safety Kit implementation

In Application Kit Safety, a dual-die TLE5012 GMR angle sensor is used, where two sensors are built-in. As two
redundant sensors are used by two redundant SENT channels, SPC triggers from the Generic Timer Module
(GTM) should be redundant to avoid common-cause failures. Figure 49 illustrates the SENT module
implemented redundantly to read the value from two sensors. Both redundant channels (mission “S1” and
monitor “S2”) are identical; the mission signal is in green color while the monitor signal is blue colored. In the
safety software, the following pins are used:

e P00.5(SENT4B IN and SPC4 OUT) as S1

e P14_6(TOM2_6N, TOUT86) as GTM trigger for S1
e P00.10 (SENT9B IN and SPC9 OUT) as S2

e P20.0 (TOMO_6, TOUT59) as GTM trigger for S2

@ Mission ws)
: P > SENT CHa |[------- <
I P K="= e > |'—' -n
1
— .. H T <>
Package..> ,' SENT i m =)
g : groseeeeeeee gl)2 E
v SENT CHBD e L. - =
i =
O A | %)
= : i . ~
_____________________ O .
Ports/Package SENT FPI CPU

Figure 49 Safety Mechanism SENT:CHANNEL_REDUNDANCY

Application Kit Safety has some constraints to find the SENT/SPC pins to avoid common-cause failures. Figure
50 contains different pin combinations where common-cause failure can be avoided.

-Can be used as signal pairs -DRCviolation
G2 H2 IR 2 14 K1 Ka K2 K5 F2
Ball Pin Symbol P01 P00.3 P004 PO0.5 PO0.6 P00.7 POO.S POO.S P00.10 P07
G2 P00.1 SENT_SPCO
H2 P00.3 SENT_SPC2
1 P00.4 SENT_SPC3
2 P00.5 SENT_SPC4
Ja P00.6 SENT_SPCS
K1 P00.7 SENT_SPCE
Ka P00.8 SENT_SPC7
K2 P00.9 SENT_SPC8
K5 P00.10 SENT_SPCY
F2 P02.7 SENT_SPC1

Figure 50 SENT SPC pin selections

Application note 96 V1.0
2024-04-04

o~ _.
Safe application development for AURIX™ Application Kit TC3xx | n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

The GTM TOM used to trigger the SPC pulse runs at 100 Hz; on every PWM pulse rising edge, the SPC pulse on
length according to the sensor ID (Application Kit Safety using the same ID for both sensors but with different
GTM pulse and SPC pulse) is generated. The sensor then replies according to the pulse; with RDI/RSI interrupt
and the sensor data available, the angle is accordingly calculated. The application SW compares the data from
both sensors, checks the boundary conditions, and responds accordingly. The application SW is shown in
Error! Reference source not found..

Code Listing 33 Safety Mechanism SENT:CHANNEL_REDUNDANCY

/*
* Init SENT and GTM module
*/
void initTLE5012Modules ()
{
/* Initial SENT module in SPC mode for TLES5012 */
initSENTwithSPCMode();

/* Initial GTM TOM module for cyclic triggering of SPC Pulse */
initTriggerInputGTMTOM();
}
/*
* Function to check SENT redundancy
* SM:SENT:CHANNEL_REDUNDANCY
* */
void checkRedundancySENT()
{
[..]

if ((g_SafetyKitStatus.sentRedundancy.angleMaximumThreshold > THRESHOLD_VALUE) ||
(g_AppSENT.sentCrcCalculated[@] != g_AppSENT.sentCrcReceived[@]) |
(g_AppSENT.sentCrcCalculated[1] != g_AppSENT.sentCrcReceived[1]))

if(alarmCount > 5)
{

/* It is commented because most of the time magnet is not on the
top of the sensor and hence this alarm will pop up every time. User can uncomment
and see the reaction on tft display */

/* softwareCoreAlarmTriggerSMU(SOFT_SMU_ALM PORT_SMs); */

alarmCount = 0;

}

alarmCount++;

}
}

} \AppSw\SafetyKit\07_ Sensor Acg\SafetyKit SentChannel Redundancy.c

The real-time TLE5012 shown on the TFT display is highlighted in Figure 51. Apply the magnet provided with
the AURIX™ Application Kit - TC3xx Safety package on the GMR sensor to view the change in angle value. The
derivation between the two angles from the two sensors is also shown in Figure 51.

On the Evaluation Board, move SW5 (SENT broken PCB) toward the left. It means that sensor 2 is no more
connected to the AURIX™ MCU; thus, the value of both sensors do not match. Correspondingly, an alarm is
displayed. You can also simulate the conditions of SENT to GND and SENT to VCC with this board.

Note: The software alarm is commented out; if you don’t have the magnet on the sensor, this alarm will
be triggering every time. You can uncomment while placing the magnet on the sensor.

Application note 97 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < | n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

Angle Sensl:

fingle Sensi: 292.7 “EI
Angle Sens2:

Angle Sens2: 268.92 °C

UEAL VOLTAgE = <4.YYV limit:=
UDDP3 Voltage: 3.28U limit:
CORE Voltage : 1.25U limit:
Clear Emergency Stop

Lockstep error injection

I GNORE
QSPI ClockPlaus
DMA inject ECC errop
DMA inject CRC error
DMA inject Dest errop
DMA inject TS error

RESET SYS

SADC
2 EUADC 1 PINN
STDOUT1 N GRAPHO WOFF

EUADC 1 PINN
STDOUT1 W GRAPH® NOFF

Figure 51 TLE5012 angle values (180° angle shift)

Once the angle difference deviates from the threshold value, the software alarm will pop up.

Note: The Safety Mechanism PSI5:CHANNEL_REDUNDANCY is not implemented but the idea is the same
as of Safety Mechanism SENT:CHANNEL_REDUNDANCY. Due to the limited number of software
alarms, the same alarm is used for Port (loopback and redundancy) and as well for SENT SMs.

6.2.10 MCU function - Analog acquisition

This section presents different use cases for the acquisition of safety-related input signals. Three different
modules of the AURIX™ microcontroller are required: the converter control (CONVCTRL) module, the enhanced
versatile analog-to-digital converter (EVADC), and the enhanced delta-sigma analog-to-digital converter
(DSADC) module (see the AURIX™ TC3xx User Manual [1] for more information on the nominal functionality of
these modules).

Using these modules, a total of five different use cases are presented in the Safety Manual; these are also
covered by this application note. These use cases describe the use of the EVADC and the EDSADC for performing
an acquisition of analog signals in different applications.

The following lists and Table 8 present an overview of all functional use cases mentioned in the AURIX™ TC3xx
Safety Manual [3], and lists the functional blocks and SMs required for their implementation:

Analog acquisition function use cases:

e Functional Use Case 0 (FUCO): Analog acquisition with redundant EVADC channels
e Functional Use Case 1 (FUC1): Analog acquisition with redundant EDSADC channels

():
():
e Functional Use Case 2 (FUC2): Analog acquisition with one EVADC channel and one EDSADC channel
e Functional Use Case 3 (FUC3): Single analog acquisition with EVADC channels

():

¢ Functional Use Case 4 (FUCA4): Single analog acquisition with one EDSADC and one EVADC channel

Application note 98 V1.0
2024-04-04

Safety

o _.
Safe application development for AURIX™ Application Kit TC3xx < | n f| neon

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

Table 8 Overview of SMs required for analog acquisition functional use cases

Functional block | SM needed Required for FUC(s)

CONVCTRL e Safety Mechanism CONVCTRL:CONFIG_CHECK | e Analogacquisition FUCO
(verifies whether the safety-relevant registeris | o Analog acquisition FUC1
properly configured) e Analog acquisition FUC2

e Analog acquisition FUC3
e Analogacquisition FUC4

EVADC o Safety Mechanism EVADC:PLAUSIBILITY e Analogacquisition FUCO
(compares values of mission and monitor « Analogacquisition FUC2
channels + system-specific limit values check) « Analog acquisition FUC3

. Safe.t)./ Mechanism EVADC:VAREF_PLAUSIBILITY « Analog acquisition FUC4
(verifies the ADC reference voltage)
e Safety Mechanism
EVADC:DIVERSE_REDUNDANCY
(checks the redundancy at the module level)
e Safety Mechanism EVADC:CONFIG_CHECK
(verifies whether safety-relevant registers are
properly configured)

EDSADC e Safety Mechanism EDSADC:PLAUSIBILITY e Analog acquisition FUC1
(compares values of mission and monitor ¢ Analog acquisition FUC2
channels + system-specific limit values check) |4 Analog acquisition FUC4

o Safety Mechanism EDSADC:VAREF_PLAUSIBILITY
(verifies the ADC reference voltage)

e Safety Mechanism
EDSADC:DIVERSE_REDUNDANCY
(checks the redundancy at the module level)

The system integrator should also take care of the common-cause failures (CCF) when selecting the redundant
port pins (see Section 6.2.9.1 for more information). See Section 6.2.10.2 for the Application Kit Safety analog
acquisition use cases example.

Additional safety features

The EVADC implements test features, which may be used in a safety-related application to check the proper
routing of the signal from the source to the EVADC kernel:

o Converter Diagnostics connects an internally generated, defined signal to the converter to test the proper
operation of the converter

o Multiplexer Diagnostics connects a weak pull-up or pull-down device to an input channel to test the
correct operation of the internal analog input multiplexer. A subsequent conversion can then confirm the
expected modified signal level. Multiplexer diagnostics can be enabled for channels CH1 and CH2 of each

group.

e Pull-Down Diagnostics connects a weak pull-down device to an input channel to test the external
connection to a sensor. The strong pull-down can be used to discharge an external buffer capacitor.

Application note

99

V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx |n f| neon

Safety
32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

o Broken-Wire Detection preloads the converter network with a selectable level before sampling the input
channel to test the proper connection of an external analog sensor to its input pin. The result will then
reflect the preloaded value whether the input signal is no longer connected. If buffer capacitors are used, a
certain number of conversions may be required to reach the failure indication level. The broken-wire
detection can be enabled for each channel separately: see “Single analog acquisition with one EDSADC and
one EVADC channel (FUC3) and additional broken-wire detection” in Section 6.2.10.2.

6.2.10.1 Overview of analog acquisition implementation

The Safety Evaluation Add-on Shield board features multiple analog Input signals, which can be sampled with
the EVADC and/or the EDSADC module. These analog inputs signals and circuitry can be seen in Figure 52 and in

Table 9.

Evaluation Board - TC2xx/TC3xx Safety V3.

ANO_P00.12

Q
2.2uF

GND GND

GND

AN2 ANI8

;Lo
IR 4. 7uF
ANI3 ANI6 ANIY

R Pl

>~
R28
10k £ Bl Gl
2T w AN2S P40.1

SMU_FSP. SmU_FSP = ¢
1000570 B30 Ens z BROKEN_WIRE2 _L” BROKEN WIRE
8.

@inen ;.
299 9

<3 3

Ol pg
o

¥ '.3.- s 1 3=
] I)]

$-d 016 016 ’
¥ 3 acraco AT
DIG ACTHRCO CHECK2 CHECKL

10 U lc
PR ;

cPy

0I6 ACT/ACO
TO GROUND

GND

X om_ecx @ @ LOOPBACK
TO GROUND | gIN |
s To@ U
NT
* ! T0 GROUND

Figure 52 Visual overview of analog input signals available on the Safety Evaluation Board

Attention: Buttons and switches should be operated sequentially on the Safety Board because short-
circuits will appear when enabling simultaneously a strong pull-up and a strong pull-down
circuitry on the same line. This could permanently damage the demo setup. In case of such an
event, the board can also enter a safe mode due to the overtemperature condition. In that
case, the board is temporarily unusable (but not damaged) for approximately one minute.

100 V1.0

Application note
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < | n f| neon

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

Table9 Overview of analog input signals and their EVADC/EDSADC functionality
ID [Signal Input pin/ | EVADC / EDSADC functionality
symbol
1 |RV110kQNTCEVADC input AN3 EVADC analog input channel 3, group 0
2 | RV210kQ NTC EVADC input P00.2 EVADC analog input channel 10, group 9
3 | EVADC reference voltage (VAREF) ANO EVADC analog input 0, channel 0, group 0
4 | RV110kQ NTC EDSADC input AN3 EDSADC negative analog input channel 0, pin A
5 | RV210kQ NTC EDSADC input P00.2 EDSADC positive analog input channel 5, pin A
6 | EDSADC reference voltage (VAREF) ANO EDSADC positive analog input channel 3, pin A
7 | Undervoltage simulation EVADC input 1 P40.12 EVADC analog input channel 3, group 2
(AN19)
8 | Undervoltage simulation EVADC input 2 P40.12 EVADC analog input channel 9, group 11
(AN19)
9 | Broken-wire potentiometer EVADC input | P40.1 EVADC analog input channel 1, group 3
10 | Broken-wire potentiometer EDSADC P40.1 EDSADC negative analog input channel 2, pin B
input

Overview of the user interface

See Figure 6 to note the buttons for the analog acquisition example selection and the buttons to start/stop the
potentiometer ADC measurement.

Note: All FUCs except the analog acquisition FUC3 with additional broken-wire detection can be selected
via the four buttons on the right. In the current version of Application Kit Safety, the ADC results of
these FUCs can only be observed via the debugger (g_analogAcquisitionStatus). As the hardware
jumper J1 and J2 are used for the broken-wire simulation, you should connect the jumper when
starting and stopping the analog acquisition FUC3 with the two TFT buttons “Run safe ADC
capturing” and “Stop safe ADC capturing”. The mark on the potentiometer should point to the
bottom of the Application Kit Safety Extension Board to avoid an alarm while starting the
measurement.

Overview of the software organization

All five analog acquisition functional use cases including all required SMs (depends on the module used in each
FUC) are fully implemented as part of this application note. As shown in Figure 53, a global source and header
file and additional files for every individual use case are provided. The global file includes functions, variables,
and data types used by every FUC; these functions, variables, and data types are called and configured
individually depending on the specific configuration requirements of each FUC. See the following sections and
the corresponding source and header files for more information.

Application note 101 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx | n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

2% 03_AnalogAcquisition
[Safetykit_AA_FUCO.c
[SafetyKit_AA_FUCOh
[SafetyKit AA_FUCT.c
[/ SafetyKit_AA_FUC1h
[SafetyKit AA_FUC2.c
[SafetyKit_AA_FUC2h
[Safetykit_AA_FUC3.c
[& SafetyKit_AA_FUC3.h
[Safetykit_AA_FUC4.c
[SafetyKit_AA_FUC4.h
[SafetyKit_AA_global.c
[SafetyKit_AA_global.h

Figure 53 Folder structure of the software for analog acquisition functional use case

Code Listing 34 Example code for selection and initialization of analog acquisition FUCs

void initSafetyKit(void)
{
[--]
/* Initialize */
/* Configure mode variables for FUCs, initialization is done in background endless loop
*/
g_SafetyKitStatus.analogAcquisitionMode = initAAcqFucéMode;
[--]
}
void runSafetyKitEndlessLoopCpu®(void)

{
[-.]
/* Initialize / Reinitialize Analog Acquisition functional use case examples */
switch(g_SafetyKitStatus.analogAcquisitionMode)
{
case initAAcqgFuc@Mode:
initAAcqFuce();
g_SafetyKitStatus.analogAcquisitionMode = runAAcqFuc@Mode;
break;
case initAAcqFuclMode:
initAAcqFucl();
g SafetyKitStatus.analogAcquisitionMode = runAAcqFuclMode;
break;
case initAAcqFuc2Mode:
initAAcqFuc2();
g SafetyKitStatus.analogAcquisitionMode = runAAcqFuc2Mode;
break;
case initAAcqFuc3Mode:
initAAcqFuc3();
g SafetyKitStatus.analogAcquisitionMode = runAAcqFuc3Mode;
break;
case initAAcqFuc4BrokenWRMode:
initAAcqFuc4BrokenWR();
g_SafetyKitStatus.analogAcquisitionMode = runAAcqFuc4BrokenWRMode ;
break;
default:
break;
YL
}

\AppSw\SafetyKit\SafetyKit Main.c

Application note 102 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx | n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

Code Listing 35 Example code for the execution of analog acquisition FUCs

/*
* This ISR function is called every 1ms by each CPU for task scheduling
* ok /
void runSafetyKitStmIsr(App_Cpu *1cl_AppCpu, IfxCpu_ResourceCpu cpuIndex){
[..]
/* Run Analog Acquisition functional use case examples */
switch(g_SafetyKitStatus.analogAcquisitionMode)
{
case runAAcqFucéMode:
runAAcqFuce();
break;
case runAAcqFuclMode:
runAAcqFucl();
break;
case runAAcqFuc2Mode:
runAAcqFuc2();
break;
case runAAcqFuc3Mode:
runAAcqFuc3();
break;
case runAAcqFuc4BrokenWRMode :
runAAcqFuc4BrokenWR();
break;
default:
break;

[..]
}

\AppSw\SafetyKit\SafetyKit Main.c

6.2.10.2 Analog acquisition implementation

The following FUCs are considered for analog acquisition described in detail in AURIX™ TC3xx Safety Manual
V2.0 [3].

Analog acquisition with redundant EVADC channels (FUCO0)

For FUCO of analog acquisition, two redundant NTC sensors are sampled with different channels of two EVADC
modules (see signal 1 and 2 in Table 9). As specified in the AURIX™ TC3xx Safety Manual [3], an ADC reference
voltage (VAREF) measurement is also required for this use case. A divider bridge is used for that purpose using
V_UC (see signal 3in Table 9 and Figure 54 for the circuit).

After a successful measurement of both signals with two different EVADC channels, the signal is further
transported to a system volatile memory and compared by the CPU.

Note: It would also be possible to measure the secondary monitor internal bandgap signal using the
Vurs signal (channel GxCH29). See Section 32.12.5 “On-Chip Supervision Signals” in the User
Manual [1]). Because Vyrsis a precision bandgap source, comparing it to the known expected
ratio with VAREF can be used to verify VAREF. Measuring GxCH29 is not yet part of the Application
Kit Safety application software.

Application note 103 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < |n f| neon ,

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

This example is also referred as "EVADC +EVADC " on TFT display menu. The port pins used for this FUCO are as
follows:

e AN3(GOCH3, IN) as S1 mission “connected to RV1 NTC sensor”
e P002 (GOCH10, IN) as S2 monitor “connected to RV2 NTC sensor”
e ANO (GOCHO, IN) V reference

|“)@ Missio:w _______ EVADC _ |
z ! . : Group x ! =
g2 Sk N
3 Package IQ v 2
TS ’ ()
c o : i 0
G T > EVADC <o
3 @ e Monitor GrOUp y
CPU
FPI
PORT/Package ADC

Figure 54 Analog acquisition with redundant EVADC channels (FUCO) overview

Analog acquisition with redundant EDSADC channels (FUC1)

The second use case nearly identical to FUCO. The only difference is that three EDSADC channels (see signals 4,
5,and 6 in Table 9 and Figure 55) are used instead of the three EVADC channels used in the previous use case.
This is possible because many analog pins support the use both as EVADC and as EDSADC input signal.

This example is also referred as “EDSADC +EDSADC “ on the TFT display menu. The port pins used for this FUC1
are as follows:

e AN3 (DSONA, IN) as S1 mission “connected to RV1 NTC sensor”

e P002 (DS5PA, IN) as S2 monitor “connected to RV2 NTC sensor”

e ANO (DS3PA, IN) V reference

-3 :; M\'ssx’o:“ _______ EDSADC _____ I
1 E , i g Group x < :)
g5 | s o
% (; Package m) %
® 95 P T & @ <> c
E-g i PR > >
o = H : i o
8 vvveiey EDSADC
= Monitor GrOUp y
CPU
FPI
PORT/Package ADC

Figure 55 Analog acquisition with redundant EDSADC channels (FUC1) overview

Application note 104 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < | n f| neon

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

Analog acquisition with one EVADC channel and one EDSADC channel (FUC2)

The analog acquisition usage with one EVADC and one EDSADC channel combines the first two functional use
cases by using an EVADC channel for the acquisition of the RV1 sensor and an EDSADC to measure the value of
the RV2 sensor (see Figure 56). Note that this could also be implemented vice versa.

This example is also referred as "EVADC +EDSADC " on TFT display menu. The port pins used for this FUC1 are
as follows:

e AN3 (GOCH3, IN) as S1 mission “connected to RV1 NTC sensor”
e P002 (DS5PA, IN) as S2 monitor “connected to RV2 NTC sensor”
e ANO (DS3PA, IN) V reference

e ANO (GOCHO, IN) V reference

Mission
> @ ~--> EVADC <
o i L---> BPI _EVADC
= (=] PaCka e Mission and_ r\kin‘torckaﬁres O
8 b g can be exchanged. SPB <> T
R - : weeee:3 BPI_EDSADC
g 2 E i :
o ,@ vonior > EDSADC €
CPU
FPI
PORT/Package ADCs

Figure 56 Analog acquisition with one EVADC channel and one EDSADC channel (FUC2)

Single analog acquisition with EVADC channels (FUC3)

In this example, a safety-related analog signal is received on a single port pin of the microcontroller (see Figure
57). This signal is later redundantly processed by two different internal resources of the EVADC (see signals 7
and 8in Table 9). Later, the CPU compares both signals to verify fault-free acquisition.

Note: The value of the analog input signal measured in this use case depends on a PWM signal
generated for the undervoltage simulation mentioned in Section 6.2.8.1. Therefore, to synchronize
the sampling of both EVADC channels, the measurement is triggered by a TOM channel.

This example is also referred as "2 EVADC 1 PIN " on TFT display menu. The port pins used for this FUCO are as
follows:

e P40.12 (G2CH3, IN) as S1 mission

e P40.12/AN19 (G11CH9, IN) as S2 monitor

Application note 105 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx |n f| neon

Safety
32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

> Misston e EVADC . ,
- sl Group x ! @
o g ! i T
c& e -
&2 Package m ﬁ 3
= E >> C
Ba - i =}
- = 52 : ')

e e EVADC Gt

onitor Group y
SPB cPU
PORT ADC
Figure 57 Single analog acquisition with EVADC channels overview

o

Evaluation Board - TC2xx,TC3xx Safety U3.1

Figure 58 Single analog acquisition with EVADC channels circuitry

Single analog acquisition with one EDSADC and one EVADC channel (FUC4) and additional broken-wire
detection

Another way to measure a single safety-related analog input signal via a single port pin of the microcontroller is
to use both an EVADC and an EDSADC channel (see Figure 59). The signal measured by both modules is also
subsequently compared by the CPU.

The port pins used for this FUCO are as follows:

e P40.1 (G3CHL1,IN) as S1 mission
e P40.1 (DS2NB, IN) as S2 monitor

Application note 106 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx |n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

P Mission . > EVADC PR

= i 1
v D sl Group x ! o
28 : L
e e e ———— 1 | [SSP— |
Q > ission an onitor channels
2 _8 ! PaCkage ?an be exc?we:\:\geé. " I g % — %
0 c H wn oy} C
-E a > >
"5 .18

S O — > EDSADC G

Monitor Group y
FPI CPU
PORT/Package ADC
Figure 59 Single analog acquisition with one EDSADC and one EVADC channel overview

This example also includes a demonstration of the broken-wire detection hardware safety features included in
the EVADC and hardware configuration of the limit check for Safety Mechanism EVADC:PLAUSIBILITY. This demo
utilizes the black potentiometer R28 to generate the captured analog input signal. Jumpers J1 and J2 emulate
a broken circuit (see Figure 60). J2 is used to break the connection to sensor (Poti), while J1 is to break the
connection of the 47 nF capacitor. If J1 is connected and when J2 is disconnected, it means that the sensor is
disconnected from the MCU but because the 47 nF capacitor is still charged and takes time to discharge, there
will be a delay in broken-wire detection. To overcome this delay, J2 is used to disconnect the 47 nF capacitor.
J1 and J2 should be connected by default and should be disconnected to see the broken-wire SMU alarm. The
VAREF signal is generated with a divider bridge out of V_UC. For the list of utilized pins, see signals 3 and 6 in
Table 9.

Evaluation Board - TC2xx/TC3xx Safety V3.1

€

{
8u1
UV SIMULATION * « (nfineon
BT ok
I B I |

vl W @) L A
N ruz, B ! ¥ 3
ADD.

SMU_FSP SHU_FSP

ADD_ 7 Vi
BUTTONI BUTTON2 T0 U_UC TO GROUND RS9 = = =
> =8 .- 3 1
P #Sh 2 oL o 2
o . { 8 - "T--n - o
g 56 e s‘"I « ys L
? w2 . sun E [T BROKEN WIRE1
@

) ®) 3 1 3=
S Pt el <3 =0 o
U RS EC W= ACRC ™

(4

DBE MBE STALL CPU

KEN_WIRE2

D16 016 s
DIG ACT '\CQACY/RCQ s 0I6 ACT,ACQ
&0 ps2 CTHACO CHECK2 CHECKL D16 ACT/AC

T
W g gs2o 2YVIF
P2 suo.

Figure 60 Single analog acquisition with one EDSADC and one EVADC channel (FUC1) and additional
broken-wire detection overview

Application note 107 V1.0
2024-04-04

Safe application development for AURIX™ Application Kit TC3xx

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

infineon

Higher DIE Temp.:

Angle Sensl: 272.6 °C
Angle Sens2: 268.7 °C

UDDP3 Uoltage:
CORE Uoltage :
Clear Emergency Stop

Start/Stop potentiometer *

ADC measurement QSPI ClockPlaus :
MA inject ECC

1nJect CRC

Vil
T: passed
: passed

Higher DIE Temp.: 56.
: passed

Angle Sensl: 274 I
Angle Sens2: 258.8 °C
ERT

2 EUADC 1 PINE
STDOUT1 W GRAPHB ROFF

Triggering if broken wire jumper are not
connected and plausibility check fails

Lockstep epror in ection

error|
error|

[BafetyKit TC327 ADS SW SU%ISHH i

T: passed
: passed
: passed
: passed

it: 4.58U

it: 3.82U
itz 1.18U

|UHDC+EDSRDC
C 1 PIHE

2 EUAD
STDOUT1 W GRAPHA IOFF
ADC result if no problem detected

SafetyKit TC397 ADS SW 3V1 HY 3ViA
: passed
: passed

Higher» DIE Tem
: passed

Angle Sensl:
Angle Sens2:
EXT

RESET ALM | IGNORE |

RESET SMU [RESET SYS

D
2 EUADC 1 PINE
STDOUT1 B GRAPHA BOFF

Trigger if the signal is outside the expected
area (result of broken wire detection)

Figure 61 Analog acquisition FUC4 with broken-wire detection display overview

Note: The alarm, which was triggered last is shown on the TFT as it overwrites the previously triggered

alarm. Therefore, the “ADC” alarm is shown, which needs to get reset to observe the older “ADC
BROKEN WIRE” alarm, which was triggered earlier.

With broken-wire detection as an additional safety feature on the EVADC channel, the plausibility check is
divided into two steps:

e Hardware boundary check on the EVADC module
e CPU comparison of the EVADC and the EDSADC conversion results

Note: See the C function initEVADCBrokenWireDetection for more details on the implementation of
the hardware boundary check. For more information of the ADC channel result comparison with
the CPU, see the C function plausibilityCheck.

6.2.11 MCU function - Timers

The following section covers various application examples for the acquisition and actuation of safety-related
digital signals by the usage of following timer modules available in the AURIX™ TC3xx family i.e., generic timer
module (GTM), capture/compare unit 6 (CCU6), and the general purpose timer unit (GPT12). See the AURIX™
TC3xx User Manual [1] for more information on the nominal functionality of these modules.

As described in the Safety Manual V2.0 [3], there are two different groups: the safety-related functions with
various functional use cases (FUCs) for the usage of timer module.

V1.0
2024-04-04

Application note 108

o _.
Safe application development for AURIX™ Application Kit TC3xx < | n f| neon

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

As described in the Safety Manual [3], the safety-related function “digital acquisition" is composed of five
different use cases for the use of these timer modules for acquisition of safety-related digital signals in different
applications. In addition, four other use cases for performing actuation of safety-related digital signals are
presented in the safety-related function “digital actuation”.

The following two lists and Table 10 present an overview of all functional use cases mentioned in the Safety
Manual [3], and provides a list of functional blocks and SMs required for their implementation.

Digital acquisition

e FUCO: Digital acquisition with redundant TIM/TIM channels
e FUC1: Digital acquisition with redundant CCU6/TIM channels
e FUC2: Digital acquisition with redundant CCU6/GPT12 channels

Digital actuation

e FUCO: Digital actuation with redundant TOM channels and IOM comparison

e FUC1: Digital actuation with redundant TOM/CCU6 channels and IOM comparison

e FUC2: Digital actuation with redundant TOM/TIM channels and application SW comparison

e FUC3: Digital actuation with redundant CCU6/GPT12 channels and application SW comparison

Table10 Overview of SMs required for digital acquisition and digital actuation functional use cases

FUC Functional block | SMs required

involved
Digital acquisition FUCO e 2XxGTMTIM o Safety Mechanism TIM_REDUNDANCY

e Safety Mechanism TIM_CLOCK_MONITORING

Digital acquisition FUC1 e GTMTIM e Safety Mechanism GTM_CCU6_REDUNDANCY

e CCUG6 o Safety Mechanism TIM_CLOCK_MONITORING
Digital acquisition FUC2 e CCU6 e Safety Mechanism

. GPTL2 CCU6_CAPTURE_MON_BY_GPT12
Digital actuation FUCO e GTMTOM e Safety Mechanism IOM_ALARM_CHECK

e |OM o Safety Mechanism TIM_CLOCK_MONITORING
Digital actuation FUC1 e GTM e Safety Mechanism IOM_ALARM_CHECK

e CCU6

e |OM
Digital actuation FUC2 e GTMTOM e Safety Mechanism TOM_TIM_MONITORING

e GTMTIM o Safety Mechanism TIM_CLOCK_MONITORING
Digital actuationFUC3 e CCU6 o Safety Mechanism CCU6_GPT12_MONITORING

e GPTI12

The system integrator should also take care of the common-cause failures (CCF) when selecting the redundant
port pins (see Section 6.2.9.1 for more information). See Section 6.2.11.2 for examples of the digital acquisition;
for digital actuation examples, see Section 6.2.11.3.

Application note 109 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx | n f| neon
Safety
32-bit TriCore™ AURIX™ TC3xx microcontroller

Architecture for management of faults

6.2.11.1

The following figure shows the components and circuitry of Application Kit Safety, which are involved in the

Overview of digital acquisition and digital actuation implementation

implementation of digital acquisition and digital actuation.

Evaluation Board - TC2xx,TC3xx Safety V3.1

.

I I]

y] |

@
3)| '7"‘ >) « ACA Bpoch sRoke
] a2, & B SN
ADD, SMU_FSP. SHU_FSP

ADD_ z
BUTTONI BUTTON2 TO U_UC TO GROUND

5y 3 K
‘ ' g TO GROUND f_k;\) I)
a..a ;..J REUUNDANY2 RECUNDANCY GTM_ECLK CHECK P15.2
4 I) £ 4
Lv]w

08z, D9

?

2 - B)]
JSRILP33.10 PI4.5 4 @
e T0 U_uc

«SENI_SPLs L
Tn Tin
TO GROUND

V_UC D2

470R

P33.12

P00.0_P00.9

-} I:IR‘) 2 “B L P003 PO22

Blue

DIG '\(T ’\(QLH[(R]

N

V_uC

RS v_uc

70R Lj
N

l)l F_‘DK ACT/ACQTOV_UC

P33.1 P332

Sw4

3
DIG ACT/ACQ CHECK2

l)l(ACT/ACQ TO GROUND

v_uc

R29
70R

y
D5 _L"ﬁ
Blue st
X 'F_‘ iTM_ECLK TO V_UC
<[]
- P23l

ANGLE SENSOR

Figure 62 Overview of digital signals available on Safety Demo Board
Attention: Buttons and switches should be operated sequentially on the Safety Board as short-circuits
will appear when enabling simultaneously a strong pull-up and a strong pull-down circuitry
on the same line. This could permanently damage the demo setup. In case of such an event,
the board can also enter a safe mode due to overtemperature condition. In that case, the
board is temporarily unusable (but not damaged) for approximately one minute.
Table11 Overview of digital signals and their GTM/IOM/CCU6/GPT12 functionality
ID | Signal Input pin/ GTM/IOM/CCU6 functionality
symbol
1 | TIM mission signal P02.8 GTM TIM3 channel 0
2 | TIM monitor signal P33.12 GTM TIM2 channel 0
TOM safety-related digital output signal. P00.0 GTM TOMO channel 4, TOUT9
Either used as dummy signal to simulate a
digital safe input signal for digital acquisition or
as TOM mission signal in digital actuation.
4 | TOM reference signal, also called “monitor P02.2 GTM TOM1 channel 10, TOUT2
signal”
5 | IOM GTM monitor input pin P33.1 IOM monitor input
6 | IOM GTM reference input signal GTMTOUT2 IOM reference input
Application note 110 V1.0

2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < |n f| neon ,

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

ID | Signal Input pin/ GTM/IOM/CCU6 functionality
symbol
ATOM safety-related digital output signal P00.0 GTM ATOMO channel0, TOUT9
ATOM channel to trigger start of CCU6 timer Pin not used, GTM ATOMO channel 1
only channel
9 | CCUG6 reference signal output, also called P00.3 CCU6 module 1, timer 12, channel
“monitor signal” 1 output
10 | IOM CCU6 reference input signal CCU61 Ccb1 IOM reference input
11 | External clock 0 (ECLKO) output signal (GTM P23.1 GTM_CLKO signal (alternate
external clock to port mapping) output 4)
12 | GTM TIM ECLK input signal P15.2 GTM TIM2 channel 5
13 | CCU6 Mission Signal P00.9 CCU61 CCB2INC input
14 | CCU6 Monitor Signal P00.9 CCU61 CCB2INC input
15 | CCU6 Output Mission P00.0 CCC60 COUT63
16 | GPT12 Monitor Signal P02.8 GPT12 T4INA

Overview of the user interface

Figure 6 shows the buttons for digital acquisition and digital actuation example selection. By pressing one of
the seven buttons, the specific FUC is initialized. Further information on the execution of the FUC can be
observed via the debugger (g9_digitalAquisitionStatus). Figure 65, Figure 74, Figure 77, and Figure 80 show the
buttons and switches that can be used for fault injection during the execution of each FUC.

Overview of the software organization

The current implementation of Application Kit Safety includes FUCO, FUC1, and FUC2 of digital acquisition and
additionally FUCO, FUC1, FUC2, and FUC3 of the safety-related function digital actuation. SMs required for each
FUC are fully implemented according to the recommendation of the Safety Manual [3]. As shown in Figure 63, a
global source and header file, additional files for every individual use case, and a configuration readback file
are provided. The global file includes the functions, variables, and data types used by every FUC. These
functions, variables, and data types are called and configured individually depending on the specific
configuration requirements of each FUC. See the following sections and the corresponding source and header
files for more information.

Application note 111 V1.0
2024-04-04

Safe application development for AURIX™ Application Kit TC3xx

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

infineon

&% 04_DigitalAcquisition_Digital Actuation

[SafetyKit_DA_global.c

[SafetyKit_DA_global.h

[SafetyKit_DAcq_FUCO.c

[# SafetyKit_DAcqg_FUCO.h

[SafetyKit_DAcg_FUC1.c

[SafetyKit_DAcq_FUCT.h

[SafetyKit_DAcq_FUC2.c

[SafetyKit_DAcq_FUC2.h

[SafetyKit_DAct_FUCO.c

[SafetyKit_DAct_FUCO.h

[£ SafetyKit_DAct_FUC1.c

[SafetyKit_DAct_FUCLh

[£ SafetyKit_DAct_FUC2.c

[/ SafetyKit_DAct_FUC2h

[SafetyKit_DAct_FUC3.c

[/ SafetyKit_DAct_FUC3.h

[SafetyKit_GtmConfigReadback.c
[# SafetyKit_GtmConfigReadbackh

Figure 63 Folder structure of software for digital acquisition and digital actuation

Code Listing 36

Example code for selection and initialization of digital acquisition and digital
actuation FUCs

void initsafetyKit(void)

[.-1

/* Initialize */

/* Configure mode variables for FUCs, initialization is done in background endless loop
g_safetyKitStatus.digitalAcqActMode = initialize_DAcq_FUCO;
[..1
}
* This function is called endless loop of CPUL main and perform digital actuation and ac-
quisition

void runsafetyKitEndlessLoopCpul(void)

if (lastDigitalAcqActMode != g_SafetyKitStatus.digitalAcgActMode)

/* Initialize / Reinitialize Digital Acquisition or Actuation functional use case

examples */
switch(g_safetyKitStatus.digitalAcqActMode)
{

case initialize_DAcq_FUCe:
initDAcqFuce();

g_SafetyKitStatus.digitalAcgActMode =

break;
case initialize DAcq_FUCI:
initDAcqFuci();

g_SafetyKitStatus.digitalAcgActMode =

break;
case initialize_DAcq_FUC2:
initDAcqFuc2();

g_SafetyKitStatus.digitalAcgActMode =

break;
case initialize_DAct_FUCe:
initDACtFuce();

g_SafetyKitStatus.digitalAcgActMode =

break;
case initialize DAct_FUCI:
initDActFuci();

g_SafetyKitStatus.digitalAcgActMode =

break;
case initialize DAct_FUC2:
initDActFuc2();

g_SafetyKitStatus.digitalAcgActMode =

break;
case initialize DAct_FUC3:
initDActFuc3();

g_SafetyKitStatus.digitalAcgActMode =

break;
default:
break;

run_DAcq_FUCO;

run_DAcq_FUC1;

run_DAcq_FUC2;

run_DAct_FUCe;

run_DAct_FUC1;

run_DAct_FUC2;

run_DACt_FUC3;

¥
lastDigitalAcqActMode = g_SafetyKitStatus.digitalAcqActMode;

}

\Appsw\SafetyKit\SafetyKit Main.c

Application note

112

V1.0
2024-04-04

@ []
Safe application development for AURIX™ Application Kit TC3xx | n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

6.2.11.2 Digital acquisition implementation
This section describes digital acquisition with different FUCs and their implementation.
Digital acquisition with redundant TIM/TIM channels (FUCO)

In FUCO of the safety-related function “digital acquisition”, two redundant digital signals are acquired by
redundant GTM timer input resources (TIM). The signal measurement results (e.g., period and duty cycle of the
signal) must be read and compared by the CPU. The two SMs TIM_REDUNDANCY and TIM_CLOCK_MONITORING
are required for the implementation of this FUC.

An illustrative example of the Safety Mechanism TIM_REDUNDANCY is shown in Figure 64; an overview of the
Application Kit Safety implementation including the Safety Mechanism TIM_CLOCK_MONITORING and the
direction of switches for fault injection are shown in Figure 65. This example is also referred as the "TIMTIM in”
example. The port pins used for this SM are as follows:

e P02.8 (TIM3_CHO, IN) as S1 mission “TIMx_CHy”
e P33.12 (TIM2_CHO, IN) as S2 monitor “TIMa_CHb”
e P00.0 (TOMO_CH4, TOUT9, OUT) generate dummy PWM which feedback to S1 and S2

c r__)@ Missiomr_______> TlMX_CHy _______

S . — :] > %

B3 i e > m 3 &

=5 Package 0 S 3| ¢

2 g > lllllllllll 5> = T x

= 5 H = =

— O H H

o® PN N

o @ Moritr | > TIMa_CHb

PORT GTM SPB(FPI) cpy

Figure 64 Illustrative example of safety mechanism TIM_REDUNDANCY

v UC

N
TTDIG ACT/ACQTOV UC

Dl(ACTVACQ TO GROUND

uk

el

GND

v_uc

(JT\! _ECLKTOV_UC
ESLKO output
L,J B2 TIM Clock
E_‘(iT™ _ECLK TO GROUND

Monitoring
GND

Figure 65 Digital acquisition with redundant TIM/TIM channels Application Kit Safety
implementation overview including highlighted buttons and switches for fault injection

Application note 113 V1.0
2024-04-04

Safe application development for AURIX™ Application Kit TC3xx |n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

Note: See Figure 3 for more information on default states of the switches.

Figure 66 shows how to trigger the configuration of all modules involved in this FUC and shows the SMU alarm
response if fault injection is triggered via the buttons or switches highlighted in Figure 65.

Higher DIE Temp.:

Angle Sensl: 62.5 °C|

Angle Sens2: 64.8 °C

UEXT Voltage : 4.99V U limit: 4.56U
UDDP3 Uoltage: 3.29V limit: 3.82V
CORE Voltage : 1. U limit: 1.18U

UADC+EDSADC
EUADC 1 PINN
STDOUT1 W GRAPH® WOFF

Higher DIE Temp.: - Higher DIE Temp.:
Angle Sensl: 62.6 ©°C| Angle Sensl: 62.6 °(]
Angle Sens2: 64.8 °C| Angle Sens2: 64.8 °C|

1
RESET ALM 1GNORE IRESET ALM 1GNORE

A
RESET SMU RESET SYS 2 RESET SMU RESET SYS

SADC
2 1 PINE
STDOUTL W GRRPHI BOFF

Figure 66 Digital acquisition with redundant TIM/TIM channels example selection at the top and
alarm reaction to fault injection via switches or buttons

Digital acquisition with redundant CCU6/TIM channels (FUC1)

In FUCL1 of the safety-related function “digital acquisition”, two redundant digital signals are acquired by
redundant GTM timer input resources (TIM) and CCU6 respectively. The signal measurement results (e.g.,
period and duty cycle of the signal) must be read and compared by the CPU. The two SMs,

GTM_CCU6_REDUNDANCY and TIM_CLOCK_MONITORING are required for the implementation of this FUC.

An illustrative example of the Safety Mechanism GTM_CCU6_REDUNDANCY and an overview of the Application
Kit Safety implementation of the FUC including the TIM_CLOCK_MONITORING safety mechanism are shown in
Figure 67 and Figure 68. This example is also referred as the “TIMCCUG6 in” example. The port pins used for this
SM are as follows:

e P33.12 (TIM2_CHO, IN) as S2 monitor “TIMx_Chy”
e P00.9 (CCU61_CC62INC, IN) as S2 monitor “CCU6”
e P00.0 (TOMO_CH4, TOUT9, OUT) generate dummy PWM which feedback to S1 and S2

Application note 114 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx |n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

Mission
c - o1 r---> TIMx_CHy - ;
(@] - H !]
— 1
= 3 : 1 1
v a i | I x
I C emmmm——— 3 — sy~ lmm > -
T Pack GTM o
ackage O
= 3 P >
= O i i :
o ¥ : i :
I T > CCUB oo H
............... S2 Monitor
. .
Figure 67 Safety Mechanism GTM_CCU6_REDUNDANCY
v_uc
= 14
Infineon = B . : ™ P33.12 8 v_uc
SAf_@sSE B v o @ siof [: SHI =
0 5 / 1 T.1 o (KT SL
52) it A 4ol 3 BROKEN BROKEN s 2 V3 DI =Y\ DIGACT/ACQTOV UC
] W2, B I N\ WURE HiRE = DIG ACT/ACQ CHECKT (7P <[
ADD_ ADD_ SMU_FSP. SHMU_FSP %
BUTTONI BUTTON2 TO U_UC TO GROUND TOM
sied Jsiop Psi7@ P s3g 3 - ccus P00.0_P00.9 — =4
J = = = ~
)|)|) | ’ ? S ; 1 SW2 Lj s
. il =l o)) ’ "% > =] 1 1) S2
.) P33.1 P332 2 N DIG ACT/ACQ TO GROUND
I G o lx |
DIG‘F\CT’ ACQ e ﬁCTE/ﬁCG DIG’RCT/'\CQ P02.3 52 -
i — <
70 0_{ic CHeEck2 CHECKL E10 Ghond DIG ACT/ACQ CHECK?2 GND
) vV UC
6TH_ECLK X em_ecik| & @ LoopBACK
IQ U UC IO GROUND - | BIN .ﬁii SENT et %7 29
TO GROUND 113 2
®spr SWIZ. & SHIL. Nty OROKEN BCB 70R
B ~ ! TO GROUNO (] 3| v_uc
. [NN 9] i & L‘j\
REUUNDANCY2 REDUNDANCY1L Ds "
78 @ e} : ¢ Blue st
-l : - SW4 A “F_'um ECLKTOV UC
26 | \ \ Y <[
e B)}' |) D ey T2 = P23.1 ESLKO output
Rl p33,10 P14.5 4 SN _sPLy @ R ¢ PI52
' 82 TIn TN TN c GTM_ECLK CHECK =2 TIM Clock
; TO U_UC TO GROUND ¢ ANGLE SENSOR
2 L - Monitoring
1= GTM ECLK TO GROUND
<[
GND

Figure 68 Digital acquisition with redundant TIM/CCu6 channels including highlighted buttons and
switches for fault injection (X == not used)

Figure 69 shows how to trigger the configuration of all modules involved in this FUC and shows the SMU alarm
reaction if fault injection is triggered via the buttons or switches highlighted in Figure 68.

Application note 115 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx |n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

afetyKit TC397 ADS SW 3U1 HY 3ViN

BIST: not done
Higher DIE Temp.:
Angle Sensi: 59.8 ©°C
Angle Sens2: 62.2 °C
UEXT Uoltage : 4.99V limit: 4.58U
UDDP3 Uoltage: 3.29U limit: 3.82U
CORE Uoltage = 1. limit: 1.18U
Clear Emergency Stop) TMTIM i

Lockstep error injection ITIMCCUG in

\.!I;B\Il.'l.iﬁ J_.II
OMIOM out
QSPI ClockPlaus :
DMA inject ECC error
DMA inject CRC error
DMA inject Dest error
DE? }njoct IS error

]
STDOUT1 M GRAPHA WOFF
SafetyKit TC397 ADS SW 3U1 HY 3Vl

Angle Sensli: 8.8 °(C
Angle Sens2: B.8 °C
UERT
UDDP3

RESET ALM 1 GNORE

RESET SMU RESET SYS

SA
2 EUADC 1 PINN
STDOUT1 M GRAPHA NOFF

Figure 69 TIM/CCU6 alarm pop-up after error injection

Digital acquisition with redundant CCU6/GTP12 channels (FUC2)

In FUC2 of the safety-related function “digital acquisition”, the MCU receives redundant signals, and each signal
is acquired by CCU6 and GPT12 respectively. The signal measurement results (e.g., period and duty cycle of the
signal) must be read and compared by the CPU. The SMs CCU6_CAPTURE_MON_BY_GPT12 are required for the
implementation of this FUC.

An illustrative example of the Safety Mechanism CCU6_CAPTURE_MON_BY_GPT12 and an overview of the
Application Kit Safety implementation are shown in Figure 70 and Figure 71 . This example is also referred as
the “CCU6GPT12 in” example. The port pins used for this SM are as follows:

e P00.9 (CCU61_CCB2INC, IN) as S1 mission “CCU6_Tx”

e P02.8 (GPT12 T4INA) as S2 monitor “GPT12_Ta”

e P00.0 (TOMO_CH4, TOUT9, OUT) generate dummy PWM which feedback to S1 and S2

Application note 116 V1.0
2024-04-04

Safe application development for AURIX™ Application Kit TC3xx |n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

Mission
- p----> CCUB_TX -----
I 1
— .9 : i o
0 = cacmeeas | S e
23 CCU6 S
o5 454 0202929202020 FdURAUS (al
D 8. E :.........> O
Momtor > GPT1 2_Ta
Figure 70 Safety Mechanism CCU6_CAPTURE_MON_BY_GPT12
98§ s B - o3 3 sop_R : ' b
])g & ¢ j} © O BROKEN _BROKE! S ;z“R a
.r .{ f_ w2, B | By S\ e Be SW1]_j
SHU_FSP. SHU_FSP v A o Sl
BUTTGNI BUTTONZ T0 U_UC TO GROUND g R) 3 DIGACT/ACQ TOV UC
s1e ,w, ,m. (] ,! e DIG ALTACQ CHECK] B‘“‘
d Q)),J O | LA 2o = = oM P00.0_P009
h " A A 94
BE o | W)1 | - .) cCcu6 n
ST 05 g 1. 2 5 m‘ﬁcr'iacu o I e DlG‘Rchcu T
? {’ N il ?312* = 70 v.0c ¢ . TO GROUND P33.1 P332 2 L3 L DI(;A(I‘A(()TO(;R()UND
)J) O 5 sy == P02.8 5 LE B
Wik oIk W)| — e — TP DIG ACT/ACQ CHECK?2 GND

em_eck HECK G ecik # @ LOOPBACK
T0 u_uc TO GROUND | BIN
“» TO GROUND
sp1 SHI2.
.
.. Jiak
[g etz oo
ow? owd. gwd REUUNDANCY2 REDUNDANCY!
Vg2) 7@ M

: ,).l ‘

y
JSENI_SPL, & W

TIN
TO GROUND ¢ ANGLE SENSOR

Figure 71 Digital acquisition with redundant CCU6/GTP12 channels including highlighted buttons
and switches for fault injection (X == not used)

Figure 72 shows how to trigger the configuration of all modules involved in this FUC and shows the SMU alarm
reaction if fault injection is triggered via the buttons or switches highlighted in Figure 71.

Application note 117 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < | n f| neon

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

afetyKit TC397 ADS SVW 3VU1 HW 3ViN
BIST: not done
Higher DIE Temp.: 63.8°C
limit: 4.58U
UDDP3 Uoltage: 3.29U limit: 3.82V
CORE Uoltage := 1.25U i8

Clear Emergency Stop
Lockstep error injection

Angle Sensli: 592.8 °C
Angle Sens2: 62.2
UEXT

I GNORE

RESET SYS

SADC
2 EUADC 1 PINNE
STDOUT1 W GRAPH@® NOFF

Figure 72 Digital acquisition with redundant CCU6/GTP12 Alarm pop-up after error injection

6.2.11.3 Digital actuation implementation
Digital actuation with redundant TOM channels and IOM comparison (FUCO0)

In FUCO of the safety-related function “digital actuation”, a safety-related digital output signal is generated
with a GTM output resource (TOM or ATOM). This signal is connected to an external actuator and also fed back
to another input port pin of the microcontroller. A second GTM output resource (TOM or ATOM) is used to
generate an internal reference signal, which is compared by the input/output monitor (IOM) against the
feedback signal. The Safety Mechanism IOM_ALARM_CHECK and Safety Mechanism TIM_CLOCK_MONITORING are
required for this FUC.

To demonstrate this FUC with Application Kit Safety, a safe PWM output signal is generated by a TOM channel,
and a redundant identical PWM is generated by another TOM channel. Both outputs are captured and
monitored by the IOM. If the two outputs diverge, the IOM generates an alarm to the SMU. The application
software should also check if the GTM is properly clocked. The implementation of that SM is also implemented
according to the recommendations in the AURIX™ TC3xx Safety Manual [3].

An illustrative example of the IOM_ALARM_CHECK safety mechanism and an overview of the Application Kit
Safety implementation of this FUC including TIM_CLOCK_MONITORING are shown in Figure 73 and Figure 74.
This example is also referred as the “TOMIOM out” example. The port pins used for this SM are as follows:

e P00.0 (TOMO_CH4, TOUT9, OUT) as S1 mission “TOMx_CHy”
e T02.2(TOM1_CH10, TOUT2, OUT) as S3 redundant internal signal “TOMa_CHb” (IOM Ref Input)
e P33.1(IOM,IN) as S2 “IOM”

Application note 118 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx |n f| neon

Safety
32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

PIN
< . TOMx_CHy ----->" >® SRR
< = Package I
=> — |
: : - = -
B _| I
: : s
O REDUND;N; O
« > UeliE Chl INTERNAL SIGNAL IOM > > &
s3 >
GTM IOM

Figure 73 Illustrative example of safety mechanism IOM_ALARM_CHECK

vuc D2 TOM Monitor/
RO 2 N 1 P00.3 P02.2 reference signal
. e 470R l<|\
. S Blue
Infineon T b h : ue
B e\ - 8 —
S4p Joss@ _J e sag § sof R
5)'ﬁ 5)g ER 'J * Oud) eROKEN BROKEN L s e
— L)] R0z, & B SNTRE o _|.j
W ADD_ ADD_ SHU_FSP_ SMU_FSP 4 Gy WX
BUTTONI BUTTON2 TO U_UC TO GROUND - 2 X DI DIGACT/ACQ TOV_UC
= 2" ‘meooal o 4 @ G S CHECK Bluc
1 s19 s173 sag DIG /4#7NQ CHECKI =
." » ’ > ,, TOM mission signal X
’).(Mt) ',1 1 27 . — P00 oy R |
¥ N) —_ v |
IOM GTM monitor input p 52
“"\ DIG ACT/ACQ TO GROUND
<[
s
DIGACT/ACQ CHECK2 @D
GTH_ECLK
T0 U_UC
M2, 5 SWIly
L H v uc
Sl 18 (IR |
on? owd. owd REUUNDANCY2 REDUNDANCYL b "5
VI1IUZ o3 9 a - St
8) o : - >
- o — < SW4 3\ GT™ ECLK TOV_UC
5 5 5 D) g +
§ .
e o | O 9 23 ECLKO output
. #Rilp3z10 145 4 4 Leenissy W 3 = E].—.l
‘Ce2 T Tin T GTM_ECLK CHECK 2:2
« Touuc TO GROUND ¢ ANGLE SENSOR LJ TIM Clock
e g
s12 monitoring
2\ GTM_ECLK TO GROUND
<[
GND

Figure 74 Digital actuation with redundant TOM channels and IOM comparison Application Kit Safety
implementation overview including highlighted buttons and switches for fault injection

Note: See Figure 3 for more information on default states of the switches.

Figure 75 shows how to trigger the configuration of all modules involved in this FUC and also shows the SMU
alarm response if fault injection is triggered via the buttons or switches highlighted in Figure 74.

Application note 119 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx |n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

afetyKit TC397 ADS SW 3U1 HY Vi

Higher DIE Temp.:
Angle Sensl: 59.3 °C
Angle Sens2: 62.1 °C
UEXT VUoltage =

UDDP3 Uoltage:

CORE Voltage =

Clear Emergency Stop

QSPI ClockPlaus :
MA inJ
ing

BIST: not done

Angle Sensl: 59.3 °C : 3.8 °
Angle Sens2: 622 oG Anole Sens?: 8.8 o0

EURDC 1 PINN - S
2 > EUADC 1 PINK
N GRAPH® BOFF 5 B GRAPHO WOFF

Figure 75 Digital actuation with redundant TOM channels and IOM comparison example selection at
the top and alarm reaction to fault injection via switches or buttons

Digital actuation with redundant TOM/CCU6 channels and IOM comparison (FUC1)

In FUC1 of the safety-related function “digital actuation”, a safety-related digital output signal is generated
with a GTM output resource (TOM or ATOM). This signal is connected to an external actuator and also fed back
to another input port pin of the microcontroller. An CCU6 output resource is additionally used to generate an
internal reference signal, which is compared by the input/output monitor (IOM) against the feedback signal.
The IOM_ALARM_CHECK safety mechanism is required for this FUC.

To demonstrate this FUC with Application Kit Safety, a safe PWM output signal is generated by an ATOM
channel and a redundant identical PWM is generated by a CCU6 channel. Both outputs are captured and
monitored by the IOM. If the two outputs diverge, the IOM generates an alarm to the SMU.

An illustrative example of the TOM_CCU6_MONITORING_WITH_IOM safety mechanism and an overview of the
Application Kit Safety implementation of this FUC are shown in Figure 76 and Figure 77. This example is also
referred as the “CCUGIOM out” example. The port pins used for this SM are as follows:

e P00.0 (ATOMO_CHO, TOUT9, OUT) as S1 mission “TOMx_CHy”.
e P00.3(CCU61_CCh1, OUT) as S3 redundant (reference) internal signal “CCU6_Ta”
e P33.1(IOM,IN)asS2“IOM”

Application note 120 V1.0
2024-04-04

Safe application development for AURIX™ Application Kit TC3xx

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

infineon

GTM
=
'_
— OI — TOMx_CHy """
<§t g Package
B <«
2 :
O g > %
L) S3 >
> O' ——p CCU6 Ta e IOM E
E INTERNAL SIGNAL
o
CCuU IOM
Figure 76 Illustrative example of Safety Mechanism TOM_CCU6_MONITORING_WITH_IOM

"
l

GTH_ ECLK
TOU

’ SHU_FSP. SHU_FSP
T0 U_UC TO GROUND

7} BROKEN BROKE
WIRE UIRE

LOOPBACK ¢)\

) dl-
ow/ .:11 .Iu.-»d REUUNDANLY2 REDUNI
Y s

. ') SENT 2 .
gm BROKEN PCB ATOM mission
T0

= 1O SIS = signal
gﬂNCVl

IOM GTM
monitor input

. Rl1p33.10 PI4.5 4 4 senisiiy W) 3
‘€82 TIn TN TN 4 b
TO0 v_uC TO GROUND

ANGLE SENSOR |

CCU6 Monitor/
Reference signal

SwWi
4 o ;
2 DIGACT/ACQTOV _UC
DIG §) CHECK 1 '”‘“
P00.0_P00.O 2

3% o
DIG ACT/ACQ CHECK2 oD

IWJS
? DIG ACT/ACQ TO GROUND
.

Figure 77

Note:

See Figure 3 for more information on default states of the switches.

Digital actuation with redundant TOM/CCU6 channels and IOM comparison Application Kit
Safety implementation overview including highlighted buttons and switches for fault

Figure 78 shows how to trigger the configuration of all modules involved in this FUC and also shows the SMU
alarm reaction if fault injection is triggered via the buttons or switches highlighted in Figure 77.

Application note

121

V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < | n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

BafetyKit TC397 ADS SW 3U1 HW 3U1

Higher DIE Temp.: 63.
ﬂngla Sensl: 61.8 °C
Ela Sens2: 63.9 °C
ERT Uoltage = 4.99V

3 Voltage: 3.28U

CORE UVoltage : 1.24V
Clear Emergency Stop

Lockstep error injection
Run safe ADC capturing ‘‘‘‘‘‘

Stop safe ADC captur n E—
QSPI ClockPlaus :
DMA in

unnc'nnsnnc
2 EUADC 1 2 EUAL P '
B GRAPHO l)l’ B GRaPH® NOF
Figure 78 Digital actuation with redundant TOM/CCU6 channels and IOM comparison example
selection at the top and alarm reaction to fault injection via switches or buttons

Digital actuation with redundant TOM/TIM channels and Application SW comparison (FUC2)

In FUC2 of the safety-related function “digital actuation”, a safety-related digital output signal request is either
generated by the CPU or by the DMA. An GTM output resource (TOM or ATOM) is used to generate this signal.
The signal is connected to an external actuator and also fed back to a GTM input resource (TIM). Finally, the
application software performs a comparison of the requested PWM output signal to the digital feedback signal.
The TOM_TIM_MONITORING and TIM_CLOCK_MONITORING safety mechanisms are required for this FUC.

To demonstrate this FUC with Application Kit Safety, a safe PWM output signal is generated by a TOM channel,
which is fed back, captured, and monitored by a TIM channel. If the period or the duty cycle of the incoming
PWM signal is not as expected, the CPU generates an alarm to the SMU. The application software should also
check if the GTM is properly clocked. The implementation of that SMis also implemented according to the
recommendations in the Safety Manual [3].

An illustrative example of the Safety Mechanism TOM_TIM_MONITORING and an overview of the Application Kit
Safety implementation of this FUC including the TIM_CLOCK_MONITORING safety mechanism are shown in
Figure 79 and Figure 80.

This example is also referred as the “TOMTIM out” example. The port pins used for this SM are as follows:

e P00.0 (TOMO_CH4, TOUT9, OUT) as S1 mission “(A)TOMa_CHb”
e P02.8 (TIM3_CHO, IN) as S2 monitor “TIMxCHy”

/"'_ -\". Mission
Lo) pmmmmmme (A)TOMa CHb <=,
S i [
2 : S
e €-mmmmo- ' % o
Package g — &
B
/A\‘ o P TiMy CHy
v SW
compare
GTM GTM
Figure 79 Illustrative example of Safety Mechanism TOM_TIM_MONITORING
Application note 122 V1.0

2024-04-04

Safe application development for AURIX™ Application Kit TC3xx |n f| neon

Safety
32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

|
k.
DI = DIGACT/ACQTOV_UC
N

dx
"E_‘mu ACT/ACQ TO GROUND

GND

P_‘(m ECLKTOV_UC
o] ESLKO output

&M ECLK TOGROUND

(»\.I

Figure 80 Digital actuation with redundant TOM/TIM channels and application SW comparison
Application Kit Safety implementation overview including highlighted buttons and
switches for fault injection

Note: See Figure 3 for more information on default states of the switches.

Figure 81 shows how to trigger the configuration of all modules involved in this FUC and also shows the SMU
alarm reaction if fault injection is triggered via the buttons or switches highlighted in Figure 80.

Higher DIE Temp.: 63.6°
Angle Sensi: BE.B og|
Angle Sens2: 64.1 °C|

6GPT12 in
OMIOM out

ﬂum“‘" out

Higher DIE Temp.: 63.4° ghe .6°
Angle Sensi: 62.1 ﬁngla Bannl Bg 1 °c
gga%a Sens2: 64.1 °C| y hnglo Sens2: 64.1 °C]

Figure 81 Digital actuation with redundant TOM/TIM channels and application SW comparison
example selection at the top and alarm reaction to fault injection via switches or buttons

Digital actuation with redundant CCU6/GPT12 channels and application SW comparison (FUC3)

In FUC3 of the safety-related function “digital actuation”, a safety-related digital output signal request is either
generated by the CPU or by the DMA. An CCU6 output resource is used to generate this signal. The signal is
connected to an external actuator and fed back to a GTP12. Finally, the application software performs a
comparison of the requested PWM output signal to the digital feedback signal. The Safety Mechanism
CCU6_GPT12_MONITORING is required for this FUC.

Application note 123 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx |n f| neon
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

To demonstrate this FUC with Application Kit Safety, a safe PWM output signal is generated by a CCU6 channel,
which is fed back, captured, and monitored by a GPT12 channel. If the period or the duty cycle of the incoming
PWM signal is not as expected, the CPU generates an alarm to the SMU. The implementation of that SMis also
implemented according to the recommendations in the Safety Manual [3].

An illustrative example of the Safety Mechanism CCU6_GPT12_MONITORING and an overview of the Application
Kit Safety implementation of this FUC are shown in Figure 82 and Figure 83. This example is also referred as the
“CCUBGPT12 out” example. The port pins used for this SM are as follows:

e P00.0 (CCUGO0_COUT63, 0UT) as S1 mission CCU6_Tx”
e P02.8 (GPT12 T4INA) as S2 monitor “GPT12_Ta”

v
BPI_CCUG6
(@)
(@)
(=
lO)
—
)

Package

Monitor

CPUx'DMA
(@)
(@)
C
)

A

«—— GPT12_Ta
SW compare

BPI_GPT12
v
BPI_GPT12

GPT12
Figure 82 Safety Mechanism CCU6_GPT12_MONITORING Overview

2
P_0

N 7} sROKEN BROKE

]'—; WIRE MIRE , |
SMU_FSP SHU_FSP 2 .
TO U_UC TO GROUND

| P332 8
| I 0) ﬁ 70R
o Zall sy 25 - =
MBE STALL cPu | «G . ‘% x) i
: y 3 AcT,ACO ACT/ACO il CCU6 mission DIG. CHECKI
P F @S2 ojs ACO CHECK2 CHECK1 A
: signal P00 POOS

S

o]) i

GTH_ECLK § 1§ LOOPBACK ¢ 71 1 G
T0 GROUND . LBIN ®, ‘%N-“ ‘L)
T0 GROUND ' [

spr SHI2. - BROKEN PR SEN

{ GTP12
suit . SENT ENT monitor input
i TO GROUND T0 U_UC

i W
TIH c8: |
TO GROUND ¢ ANGLE SENSOR |

Figure 83 Digital actuation with redundant CCU6/GPT12 channels and application SW comparison
Application Kit Safety implementation overview including highlighted buttons and
switches for fault injection

Figure 84 shows how to trigger the configuration of all modules involved in this FUC and also shows the SMU
alarm reaction if fault injection is triggered via the buttons or switches highlighted in Figure 83.

Application note 124 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < | n f| neon

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

Higher DIE Temp.:
Angle Sensl: 62.5 °C
le Sens2: 64.2 °C
T Voltage = 4.99V
UDDP3 Uoltage: 3.29U
CORE Voltage := 1.24U
Clear Emergency Stop

Lockstep error injection|
Run safe ADC capturing
Stop safe ADC capturing
QSPI ClockPlaus : 99.%4us
DMA in

EDSA AD
EUADC+EDSADC
2 EUADC 1 PIN
0 GRAPHO NOF

Higher DIE Temp.:
Angle Sensl: 62.6 °C
nngla Sens2: 64.3
UERT

Figure 84 Digital actuation with redundant CCU6/GPT12 channels and application SW comparison
example selection at the top and alarm reaction to fault injection via switches or buttons

6.2.12 MCU function - Signal processing powertrain

6.2.12.1 AMU.LMU_DAM

See Section 6.2.3.3.1.
6.2.13 MCU function - Safety mechanism

6.2.13.1 Safety Management Unit (SMU)

The SMU centralizes all the alarm signals related to the different hardware and software-based safety
mechanisms. Each alarm can be individually configured to trigger internal actions and/or notify externally the
presence of faults via a Fault Signaling Protocol (FSP). The SMU is composed of two main parts:

e SMU core: Located in the core domain, it responds to all alarms generated by modules supplied with the
System Peripheral Bus (SPB) clock.

e SMU stdby: Located in the standby domain, it responds to all alarms generated by modules supplied with
the BACK clock.

Multiple safety mechanisms for managing failures and to activate the required response are available:

Safety Mechanism SMU:RT

Safety Mechanism SMU:CCF_MONITOR
Safety Mechanism SMU:ALIVE_MONITOR
Safety Mechanism SMU:FSP_MONITOR

Application note 125 V1.0
2024-04-04

o _.
Safe application development for AURIX™ Application Kit TC3xx < |n f| neon ,

Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
Architecture for management of faults

e Safety Mechanism SMU:FPI_WRITE_MONITOR
Additionally, the system developer oversees implementing initial checks on the SMU:

o Safety Mechanism MCU_FW_CHECK
o Safety Mechanism ALIVE_ALARM_TEST

For more details on SMU, see sections 3 and 4.

Application note 126 V1.0
2024-04-04

Safe application development for AURIX™ Application Kit TC3xx
Safety

32-bit TriCore™ AURIX™ TC3xx microcontroller
References

References

Contact Infineon Support to obtain these documents.

(1]
[2]
[3]
[4]
[5]

Infineon Technologies AG: AURIX™ TC3xx User’s Manual part 1 and part 2;
Infineon Technologies AG: AURIX™ TC39x-B User’s Manual Appendix V2.0.0
Infineon Technologies AG: AURIX™ TC3xx Safety Manual v2.0

Infineon Technologies AG: TLF35584 Datasheet Rev. 2.0

Infineon Technologies AG : Application Kit TC3X7 Manual

Application note 127

(infineon

V1.0
2024-04-04

https://www.infineon.com/cms/en/about-infineon/company/contacts/support/

o _.
Safe application development for AURIX™ Application Kit TC3xx < |n f| neon ,

Safety
32-bit TriCore™ AURIX™ TC3xx microcontroller
Revision history

Revision history

Document Date Description of changes

revision

V1.0 2024-04-04 Initial version

Application note 128 V1.0

2024-04-04

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2024-04-04
Published by

Infineon Technologies AG
81726 Munich, Germany

© 2024 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?

Email: erratum@infineon.com

Document reference
AP32597

Important notice

The information contained in this application note
is given as a hint for the implementation of the
product only and shallin no event be regarded as a
description or warranty of a certain functionality,
condition or quality of the product. Before
implementation of the product, the recipient of this
application note must verify any function and other
technical information given herein in the real
application. Infineon Technologies hereby
disclaims any and all warranties and liabilities of
any kind (including without limitation warranties of
non-infringement of intellectual property rights of
any third party) with respect to any and all
information given in this application note.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

Please note that this product is not qualified
according to the AEC Q100 or AEC Q101 documents
of the Automotive Electronics Council.

Warnings

Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or any
consequences of the use thereof can reasonably be
expected to result in personal injury.

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 Introduction
	1.1 Key features
	1.2 Abbreviations and acronyms

	2 Demonstrator presentation
	2.1 Hardware
	2.1.1 Safe components
	2.1.1.1 TLF35584 power supply
	2.1.1.2 TLE5102BD E9200 magnetic angle sensor
	2.1.1.3 KP256 pressure sensor
	2.1.1.4 Other Safety Board components

	2.1.2 Default switch configuration
	2.1.3 Application Kit - TC397 TFT LEDs

	2.2 AURIX™ MCU resource allocation
	2.3 Software overview
	2.4 Touch display interface presentation
	2.5 ASCLIN shell interface

	3 Boot and startup procedure
	3.1 Analog power-up
	3.2 Boot firmware
	3.3 Application SW startup
	3.3.1 Safety Kit implementation of the application SW startup
	3.3.2 LBIST
	3.3.3 MONBIST
	3.3.4 Firmware check
	3.3.4.1 FW_CHECK implementation
	3.3.4.2 Reset triggering

	3.3.5 MCU_STARTUP
	3.3.6 SMU ALIVE_ALARM_TEST
	3.3.7 SMU REG_MONITOR_TEST
	3.3.8 MBIST
	3.3.9 Enable all SMU alarms

	4 Failure management
	4.1 Error management concept
	4.2 SMU driver implementation
	4.2.1 Recovery Timer (RT) and watchdog alarms
	4.2.2 Fault Signaling Protocol (FSP)
	4.2.3 Port Emergency Stop (PES)

	5 System-level hardware requirements
	5.1 External voltage supply
	5.2 Error monitoring
	5.2.1 FSP activation
	5.2.2 Emergency Stop activation
	5.2.3 Application software notification via NMI or ISR

	5.3 External time-window watchdog

	6 Architecture for management of faults
	6.1 Self-tests for latent fault metric support
	6.1.1 Power built-in self-test (PBIST)
	6.1.2 Logic built-in self-test (LBIST)
	6.1.3 Monitor built-in self-test (MONBIST)
	6.1.4 Memory built-in self-test (MBIST)

	6.2 Functional blocks and safety-related functions
	6.2.1 MCU function - processing
	6.2.1.1 CPU
	6.2.1.1.1 CPU memory and time protection
	6.2.1.1.2 Lockstep CPU
	6.2.1.1.3 Non-lockstep CPU
	6.2.1.1.4 CPU RAM

	6.2.1.2 Processing – FCE
	6.2.1.3 Processing - system timer (STM)
	6.2.1.4 Processing – HSM

	6.2.2 MCU function – Non-volatile memory
	6.2.2.1 PFlash NVM

	6.2.3 MCU function – Volatile memory
	6.2.3.1 Extension Memory (EMEM)
	6.2.3.2 LMU
	6.2.3.3 SRAM
	6.2.3.3.1 LMU_DAM

	6.2.3.4 Default Application Memory (DAM)
	6.2.3.5 Volatile Memory Test (VMT)

	6.2.4 MCU function – ADAS
	6.2.5 MCU function - interconnect
	6.2.5.1 System Resources Interconnect (SRI)

	6.2.6 MCU function – Communication
	6.2.7 Direct Memory Access (DMA)
	6.2.7.1 Interrupt Router (IR)

	6.2.8 MCU function – Infrastructure
	6.2.8.1 Power management system (PMS)
	6.2.8.2 Clock
	6.2.8.3 RESET
	6.2.8.4 System Control Unit (SCU)
	6.2.8.5 Standby Controller (SCR)
	6.2.8.6 Die Temperature Sensor (DTS)

	6.2.9 MCU function – Interfaces
	6.2.9.1 Queued Synchronous Peripheral Interface (QSPI)
	6.2.9.2 PORT
	6.2.9.3 Single Edge Nibble Transmission (SENT)

	6.2.10 MCU function – Analog acquisition
	6.2.10.1 Overview of analog acquisition implementation
	6.2.10.2 Analog acquisition implementation

	6.2.11 MCU function – Timers
	6.2.11.1 Overview of digital acquisition and digital actuation implementation
	6.2.11.2 Digital acquisition implementation
	6.2.11.3 Digital actuation implementation

	6.2.12 MCU function – Signal processing powertrain
	6.2.12.1 AMU.LMU_DAM

	6.2.13 MCU function – Safety mechanism
	6.2.13.1 Safety Management Unit (SMU)

	References
	Revision history
	Disclaimer

