

AN2019-22 EVAL-1ED3122Mx12H

Evaluation board description

About this document

Scope and purpose

The gate driver evaluation board EVAL-1ED3122Mx12H with the 1ED3122MU12H or 1ED3122MC12H gate driver IC demonstrates the functionality and key features of the Infineon EiceDRIVER™ Compact gate driver ICs.

The boards contain a short circuit protection which is described in more detail in the key feature section of this document.

Details about the EiceDRIVER™ Compact 1ED3122MU12H or 1ED3122MC12H can be found at our product pages at <https://www.infineon.com/gd> or the product search.

The design of the EVAL-1ED3122Mx12H was performed with respect to the environmental conditions described in this document. The design was tested as described in this document, but not qualified regarding manufacturing, lifetime or over the full range of ambient operating conditions. The boards provided by Infineon are not subject to full production test.

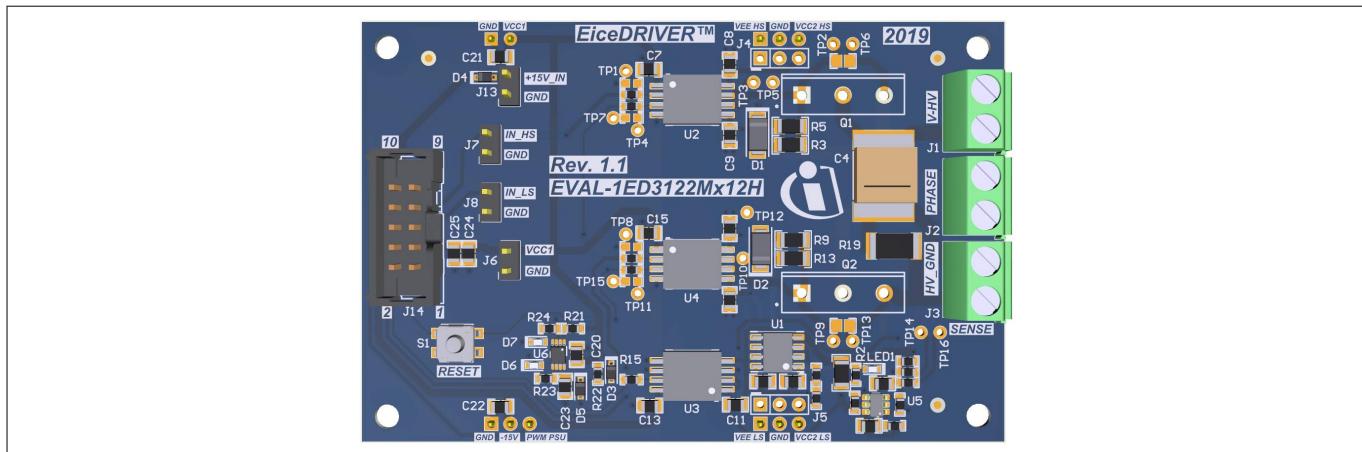
Evaluation boards are not subject to the same procedures as regular products regarding Returned Material Analysis (RMA), Process Change Notification (PCN) and Product Discontinuation (PD). Evaluation boards are intended to be used under laboratory conditions and by trained specialists only.

Intended audience

- Engineers who want to learn how to use the Infineon EiceDRIVER™
- Experienced design engineers designing circuits with Infineon EiceDRIVER™, IGBT and CoolSiC™ MOSFET
- Design engineers designing power electronic devices, like inverters

Table of contents

	Table of contents	1
1	Electrical description	2
1.1	Key features	2
1.2	Absolute maximum ratings, operating conditions and supply voltages	2
1.3	Start-up	4
1.4	Overcurrent protection	4
1.5	Connectors and pin assignment	5
2	Schematics	6
3	PCB layout	10
4	Bill of material	11
	Disclaimer	13


1 Electrical description

1 Electrical description

1.1 Key features

The evaluation board EVAL-1ED3122Mx12H is intended for the product feature evaluation of the Infineon EiceDRIVER™ Compact 1ED3122MU12H or 1ED3122MC12H in an application circuit. The key elements of the board and the product are listed here.

- Evaluation board in half-bridge configuration with two gate driver ICs to drive power switches such as IGBTs and SiC MOSFETs. The switch type can be freely chosen as seen in [Figure 1](#)
- Additional gate driver IC for isolated over-current feedback signal from high voltage side to logic control side
- Fast operational amplifier used as comparator for over-current detection

Figure 1 EVAL-1ED3122Mx12H top view

The board has a size of 85 x 55 x 15 mm³. Power switches are not included in this evaluation board and need to be ordered separately.

This board is best suited for so-called double-pulse testing. However, it requires additional considerations on thermal and power load for continuous operation. An additional high-voltage DC blocking capacitor at the high-voltage supply is recommended.

The low-voltage interface can be controlled by a pulse generator, a microcontroller or other digital circuits.

For safe operation, a fast over-current detection and protection circuit is implemented with a galvanically isolated feedback path to the low-voltage input side. The input side flip-flop latches the over-current event information. This circuit will report the fault and turn off both gate driver ICs. The S1 button, also labeled with *RESET*, clears the flip-flop to enable the gate driver ICs again.

1.2 Absolute maximum ratings, operating conditions and supply voltages

The selected components on this evaluation board as well as the gate driver ICs have maximum ratings and operating conditions to avoid damaging the individual parts and the evaluation board overall.

Table 1 **Absolute maximum ratings**

Pin/parameter name	Abs. Max.	Unit	Note
+15V_IN	-0.2 ... 20	V	input, support supply voltage

(table continues...)

1 Electrical description

Table 1 (continued) Absolute maximum ratings

Pin/parameter name	Abs. Max.	Unit	Note
<i>VCC1</i>	-0.2 ... 5.3	V	input, gate driver IC supply voltage
<i>FAULT</i>	-0.2 ... <i>VCC1</i> + 0.2	V	output, digital signal
<i>RST</i>	-0.2 ... <i>VCC1</i> + 0.2	V	input, digital signal
<i>IN_HS</i>	-0.2 ... <i>VCC1</i> + 0.2	V	input, digital signal
<i>IN_LS</i>	-0.2 ... <i>VCC1</i> + 0.2	V	input, digital signal
<i>VCC2_HS,VCC2_LS</i>	-0.2 ... 40	V	overall isolated secondary supply with reference to <i>VEE2_HS/VEE2_LS</i>
<i>VCC2_HS,VCC2_LS</i>	-0.2 ... 25	V	positive secondary supply voltage with reference to <i>GND2_HS/GND2_LS</i>
<i>GND2_HS,GND2_LS</i>	-0.2 ... 25	V	gate reference supply pin with reference to <i>VEE2_HS/VEE2_LS</i>
<i>V-HV</i>	-0.2 ... 1200	V	input, high-voltage supply, for voltages above 42 V, special high voltage lab environment is strongly recommended
Phase peak current	25	A	phase peak current for double pulse tests
<i>t_{pulse}</i>	100	μs	maximum ON pulse length for double-pulse tests
<i>f_{sw}</i>	100	kHz	maximum switching frequency for continuous operation, careful consideration of power dissipation required

The PCB assembly is optimized for a *VCC1* supply voltage of 3.3 V. For higher supply voltages, adjustment to the current limiting resistors of the status LEDs is required.

Table 2 Operating conditions and supply voltages

Pin name	Min.	Typ.	Max.	Unit	Note
<i>+15V_IN</i>	15.5	16	16.5	V	input, support supply voltage
<i>VCC1</i>	3.2	3.3	3.4	V	input, gate driver IC supply voltage
<i>FAULT</i>	-0.1	3.3	<i>VCC1</i> +0.1	V	output, digital signal
<i>RST</i>	-0.1	3.3	<i>VCC1</i> +0.1	V	input, digital signal
<i>IN_HS</i>	-0.1	3.3	<i>VCC1</i> +0.1	V	input, digital signal
<i>IN_LS</i>	-0.1	3.3	<i>VCC1</i> +0.1	V	input, digital signal
<i>VCC2_HS,VCC2_LS</i>	12	15	30	V	overall isolated secondary supply with reference to <i>VEE2_HS/VEE2_LS</i>

(table continues...)

1 Electrical description

Table 2 (continued) Operating conditions and supply voltages

Pin name	Min.	Typ.	Max.	Unit	Note
GND2_HS, GND2_LS	0		15	V	gate reference supply pin with reference to VEE2_HS/ VEE2_LS
V-HV	25		600	V	input, high voltage supply, for voltages above 42 V, special high voltage lab environment is strongly recommended

1.3 Start-up

Follow the steps below to set up, power up and perform first evaluations with the board.

Prerequisites

- Assemble fitting power switches at the location Q1 and Q2, e.g. IKQ75N120CH3 IGBTs
- Assemble an external high-voltage DC capacitor ($> 100 \mu\text{F}$) between J1-1/2 (V-HV) and J3-2 (HV_GND)
- Have low-voltage power supplies ready for input support and logic supply (+15V_IN, VCC1)
- Have isolated low-voltage power sources ready for gate driver output supply (VCC2_LS, VCC2_HS, GND2_LS, GND2_HS, VEE2_LS and VEE2_HS)
- Have a high-voltage power supply ready for HV-DC between J1-1/2 (V-HV) and J3-2 (HV_GND)
- Have an inductive load for double-pulse tests ready
- Have a dual channel PWM generator ready for half-bridge PWM input

To adapt the circuit to the application requirements, resistor or capacitor values can be changed to optimize the performance.

Power-up sequence

1. Supply +15V_IN at connector J13.2 with +16 V and connect supply GND to connector J13.1
2. Supply VCC1 at connector J6.2 with +3.3 V and connect supply GND to connector J6.1
3. The red LED D7 will turn on
4. Supply both secondary gate driver supplies with individual power sources at VCC2_HS, GND2_HS, and VEE2_HS at connector J4, and VCC2_LS, GND2_LS and VEE2_LS at connector J5 according to the assembled power switch needs
5. The green LED1 will turn on
6. Push S1 to reset the error flip-flop
7. The red LED D7 will turn off and green LED D6 will turn on
8. Connect the digital PWM generator to the digital interface connectors J7 and J8 labeled with IN_HS and GND as well as IN_LS and GND
9. Connect the high-voltage supply to connector J1.1 or J1.2 and HV_GND to J3.2.
10. Connect one end of the inductive load to J2.1 and the other end according to the double-pulse requirements to either J1.1 or J3.2 (low side or high side testing)
11. The board is now ready for double-pulse evaluation

1.4 Overcurrent protection

An overcurrent protection is implemented to protect the board and components against high current. The current is determined by measuring the voltage across the shunt resistor R19. This is available at the two test points TP14 and TP16.

The detection circuit measures the voltage across R19, sends the signal through a low pass filter R18 and C18 and compares it to a reference voltage with the comparator U5. The reference voltage is defined by the voltage

1 Electrical description

divider R12 and R20. The trip point is at approx. 32 A and can be adapted to application requirements by changing R19 and/or adapting the reference voltage divider R12 and R20.

The output signal is transferred with U3 to the low voltage domain to trigger the flip-flop and store the overcurrent event. Once the flip-flop is triggered, it turns off both gate driver ICs by the *ENABLE* signal. In addition, it reports the overcurrent event to the digital interface connector as *FAULT* signal and turns the LED7 on.

To return to normal operation, S1 needs to be pushed to reset the flip-flop. As a feedback, LED7 turns off and LED6 turns back on again.

1.5 Connectors and pin assignment

The following table describes connectors and their pin assignments on the PCB.

Table 3 Connectors and pin assignment

Connector	Pin	Marking/ function	Note
J1	1, 2	<i>V-HV</i>	High voltage power supply
J2	1, 2	<i>PHASE</i>	
J3	1	<i>SENSE</i>	
J3	2	<i>HV_GND</i>	
J4, J9	1	<i>VEE2_HS</i>	High side negative gate driver supply
J4, J9	2	<i>GND2_HS</i>	High side gate driver supply reference
J4, J9	3	<i>VCC2_HS</i>	High side positive gate driver supply
J5, J10	1	<i>VEE2_LS</i>	Low side negative gate driver supply
J5, J10	2	<i>GND2_LS</i>	Low side gate driver supply reference
J5, J10	3	<i>VCC2_LS</i>	Low side positive gate driver supply
J6, J7, J8, J11, J12, J13	1	<i>GND</i>	Logic side ground reference
J6, J12	2	<i>VCC1</i>	Logic side supply voltage, 3.3 V or 5 V
J7	2	<i>IN_HS</i>	Logic PWM input high side gate driver
J8	2	<i>IN_LS</i>	Logic PWM input low side gate driver
J11	2	<i>+15V</i>	15 V for external power supply without protection diode
J11	3	<i>PWM_PSU</i>	PWM output for external power supply from J14.9
J13	2	<i>+15V_IN</i>	15 V input supply voltage for external power supply
J14	1, 2	n.c.	not connected
J14	3	<i>VCC1</i>	Logic side supply voltage, 3.3 V or 5 V
J14	4	<i>GND</i>	Logic side ground reference
J14	5	<i>RST</i>	Reset input for overcurrent flip-flop, connected to S1
J14	6	<i>FAULT</i>	Fault feedback signal
J14	7	<i>IN_HS</i>	Logic PWM input high side gate driver

(table continues...)

2 Schematics

Table 3 (continued) Connectors and pin assignment

Connector	Pin	Marking/ function	Note
J14	8	<i>IN_LS</i>	Logic PWM input low side gate driver
J14	9	<i>PWM_PSU</i>	PWM input for external power supply to J11.3
J14	10	<i>+15V</i>	15 V for external power supply without protection diode

2 Schematics

The schematics of the evaluation board are separated into the following parts:

- Gate driver ICs with surrounding circuit
- Overcurrent detection
- Overcurrent status display
- Interfaces with connectors and reset switch

2 Schematics

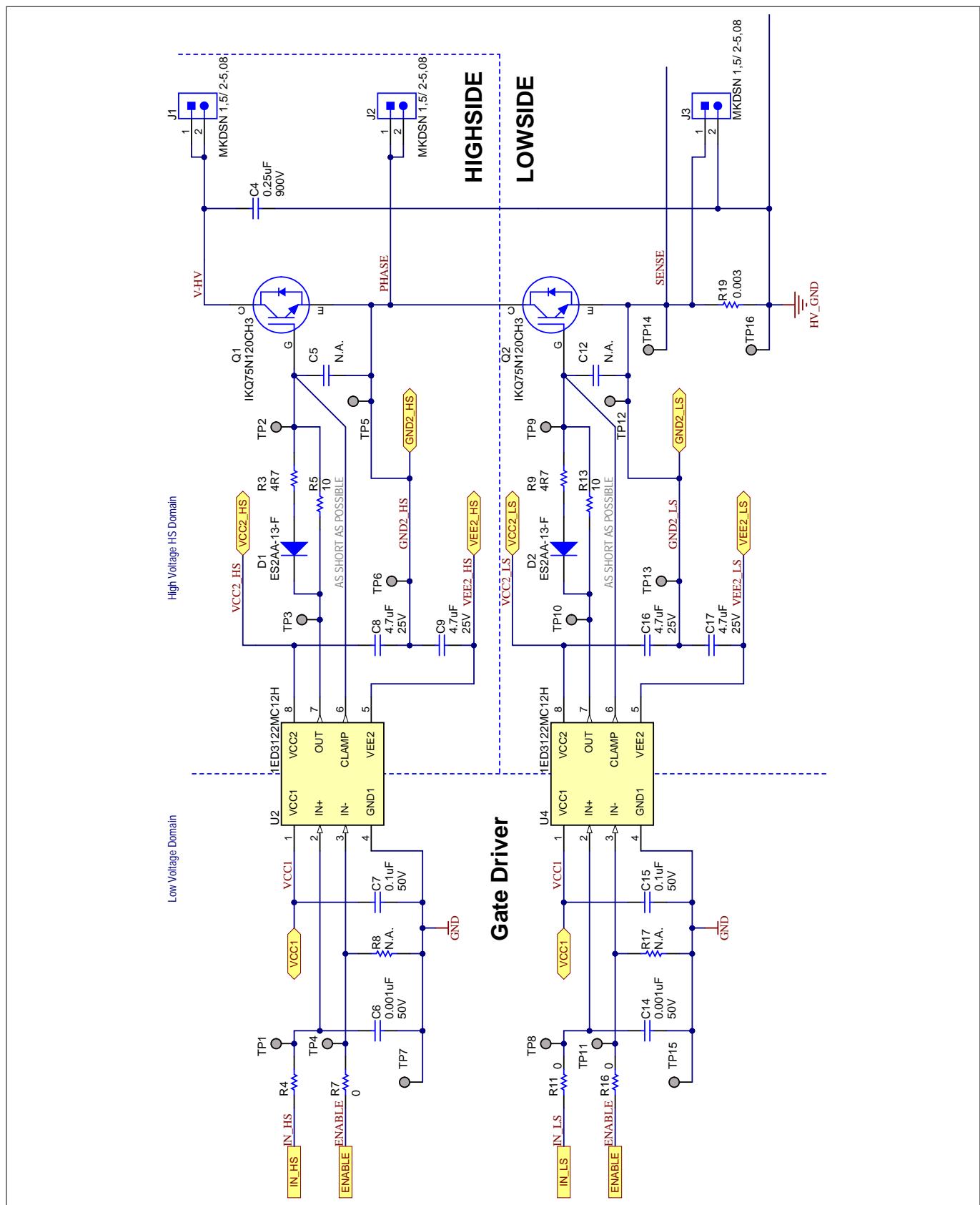
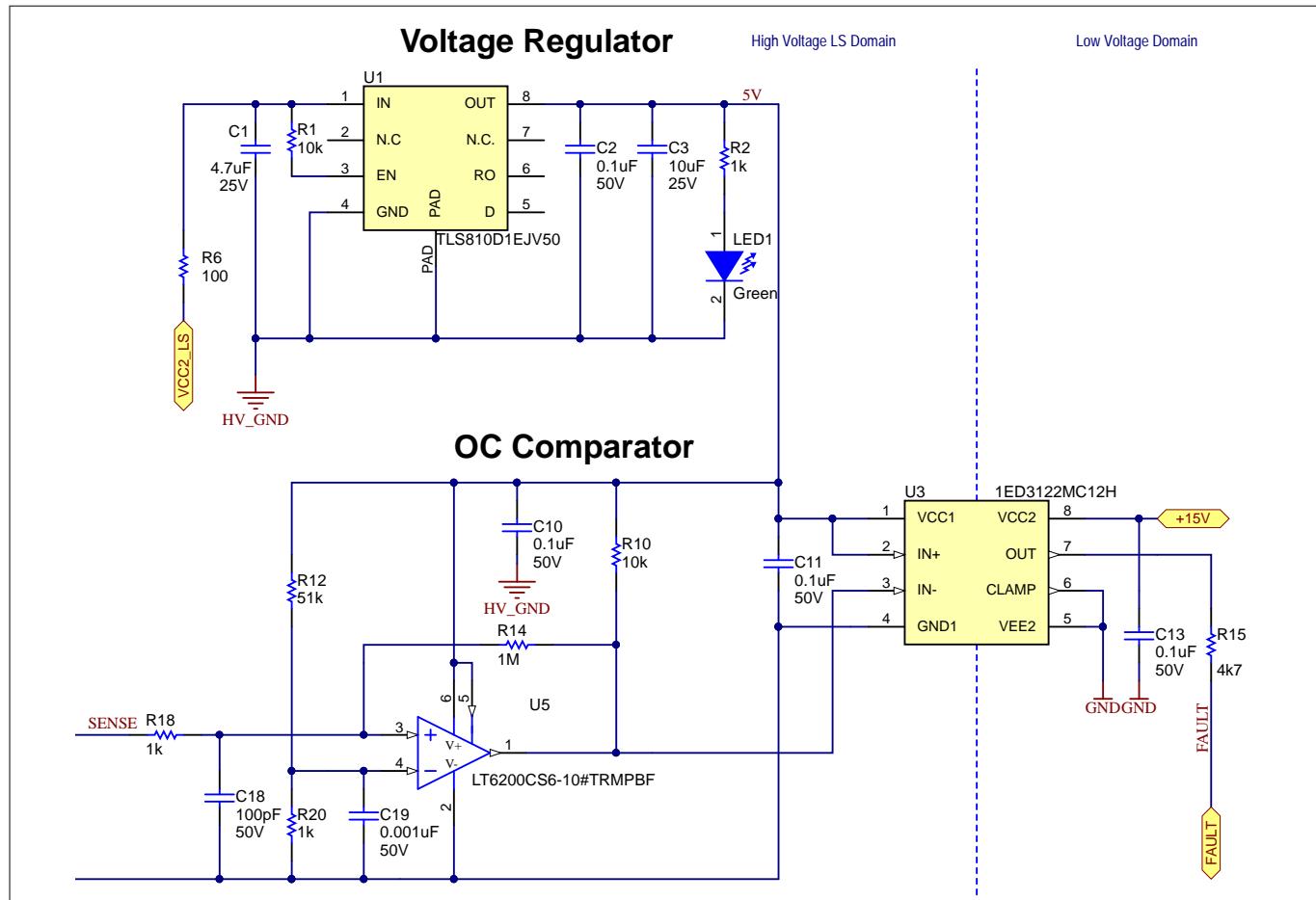



Figure 2

Schematic of gate driver ICs and surrounding circuits

Gate driver circuit with optional external input filter, output gate resistors and CLAMP connection.

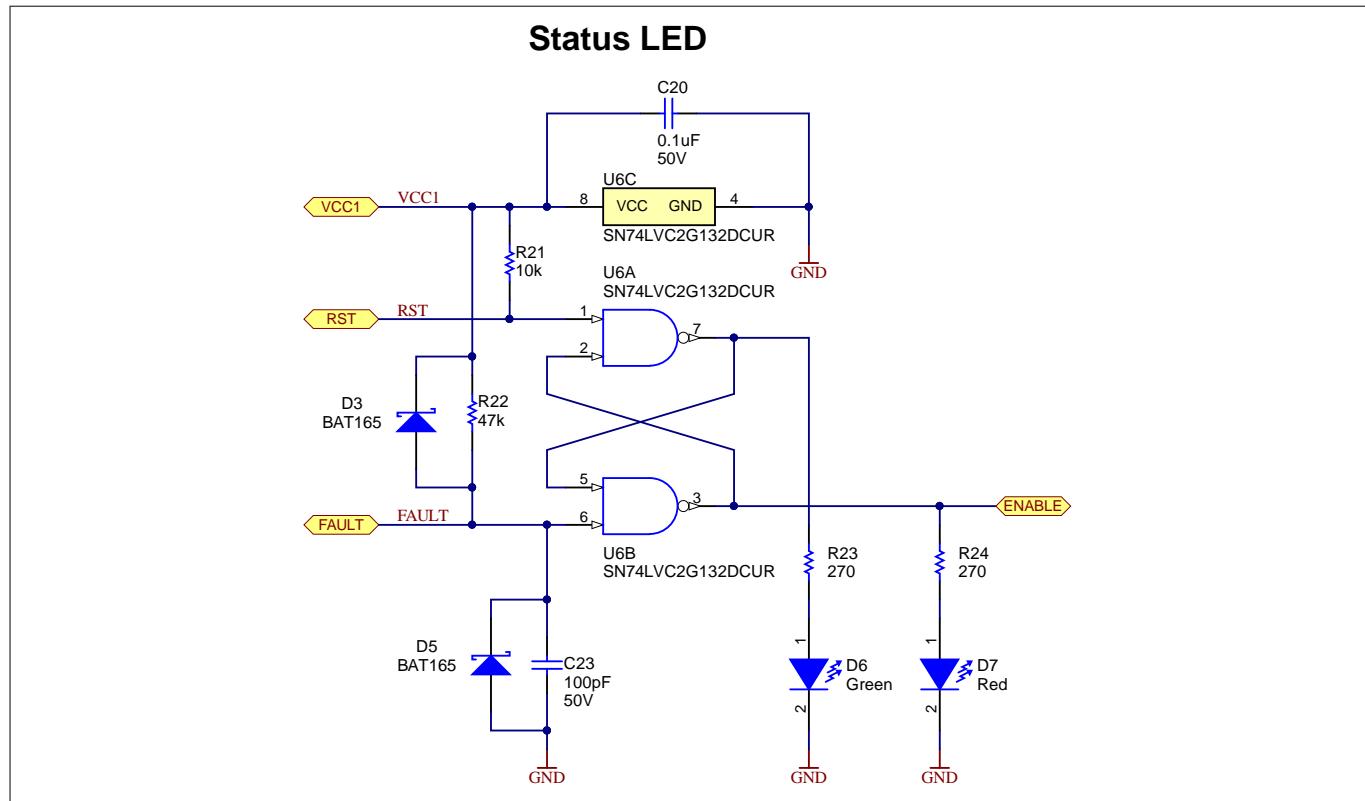
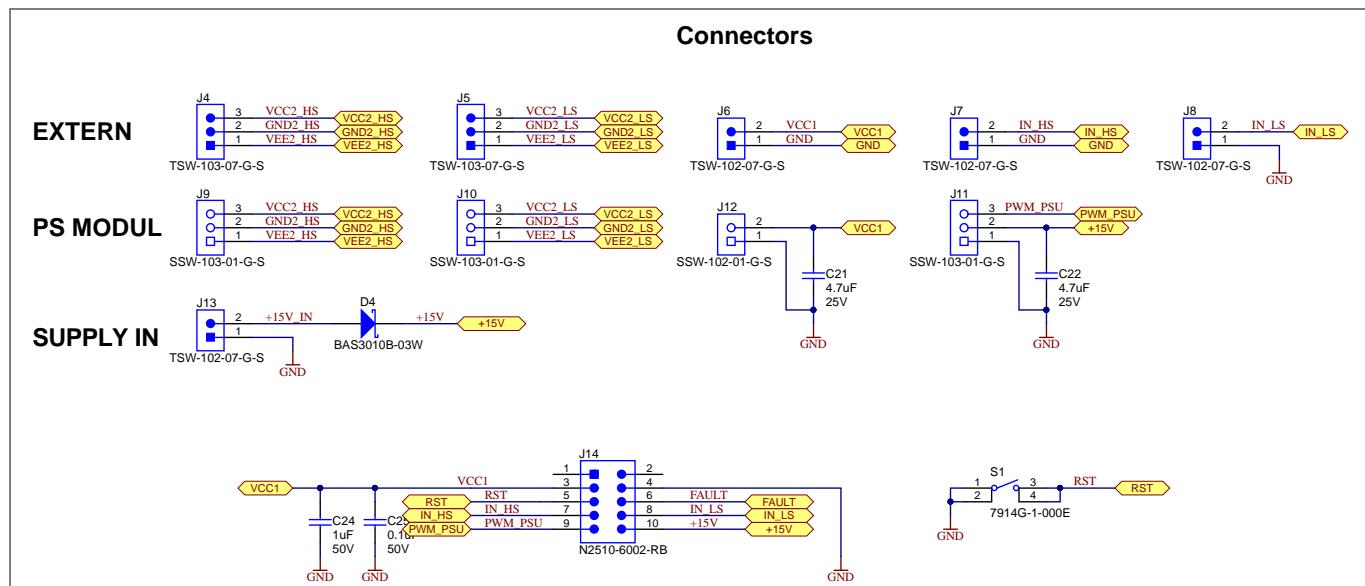

2 Schematics

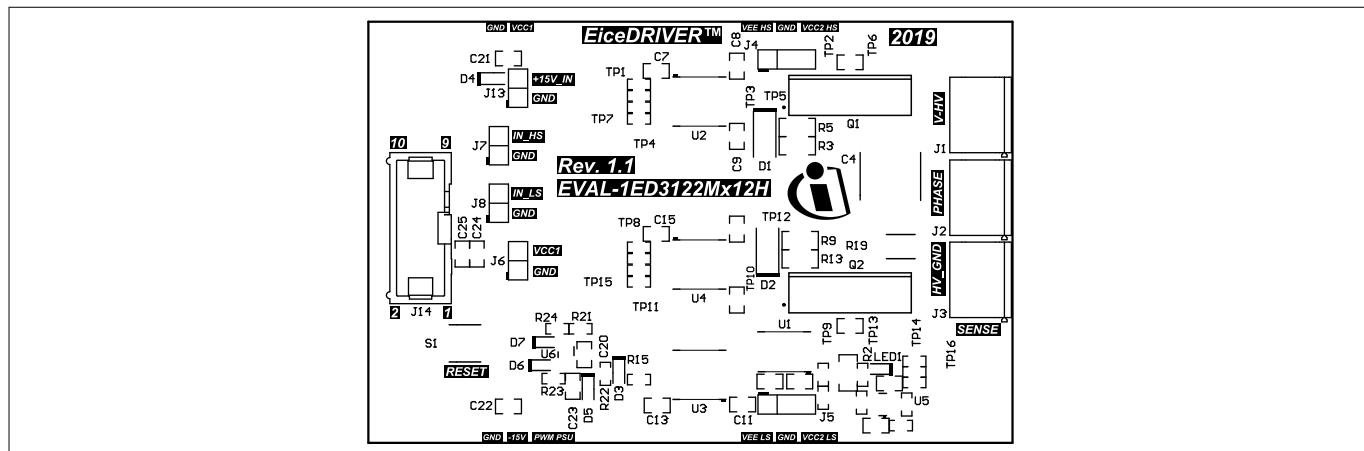
Figure 3 Schematic of overcurrent detection circuit


Overcurrent comparator with additional gate driver IC for isolated signal transmission and supporting voltage regulator.

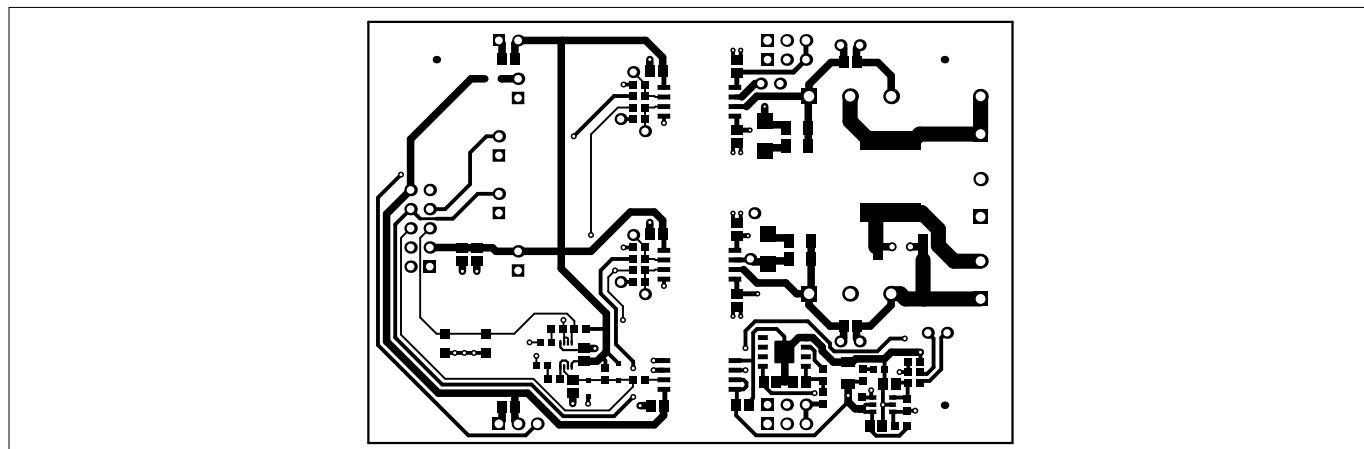
2 Schematics

Figure 4 Schematic of overcurrent status indication

Fault signal and reset input of flip-flop including status LEDs.


Figure 5 Schematic of connectors and reset switch

Interface connectors and reset button.


3 PCB layout

3 PCB layout

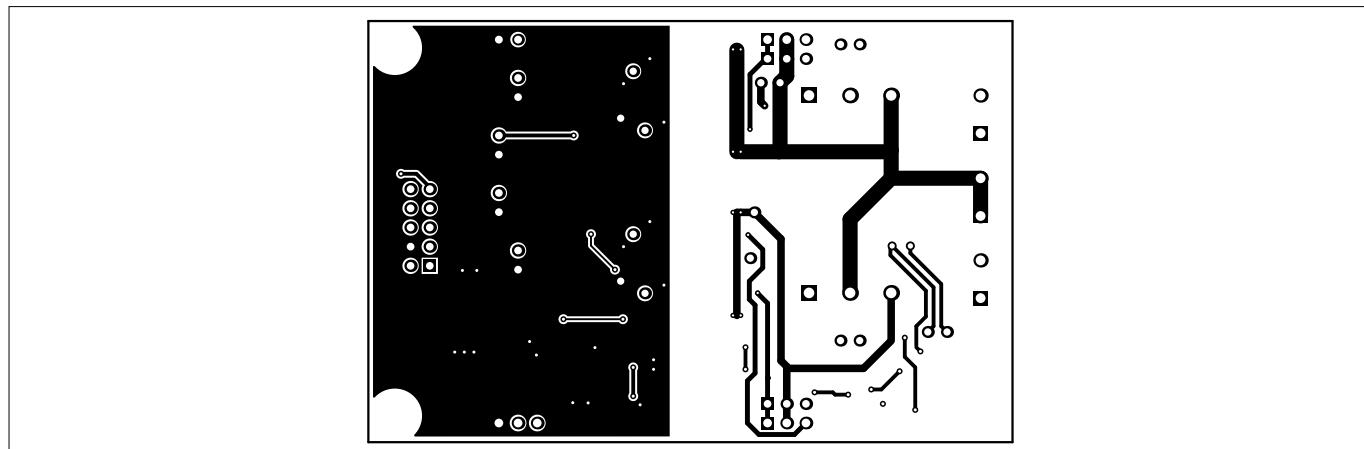

The layout from this basic schematic is intended as a starting point for developing more complex application circuits. The evaluation board has a two-layer PCB with top and bottom layer. Most components are assembled at the top layer.

Figure 6 Assembly drawing top side PCB

Figure 7 PCB layer top

Figure 8 PCB layer bottom

4 Bill of material

The BOM lists all components used for the PCB.

Table 4 Bill of material

Designator	Quantity	Description	Manufacturer	Part number
C1, C8, C9, C16, C17, C21, C22	7	CAP, CERM, 4.7µF, 25V, +/- 10%, X7R, 0805	Samsung	CL21B475KAFNNNE
C2, C7, C10, C11, C13, C15, C20, C25	8	CAP, CERM, 0.1µF, 50V, +/- 10%, X7R, 0805	Wurth Electronics	885012207098
C3	1	CAP, CERM, 10µF, 25V, +/- 10%, X7R, 1206	Wurth Electronics	885012208069
C4	1	CAP, CERM, 0.25µF, 900V, 20%, CeraLink	TDK	B58031I9254M062
C18, C23	2	CAP, CERM, 100pF, 50V, +/- 5%, NPO, 0805	Wurth Electronics	885012007057
C19	1	CAP, CERM, 0.001µF, 50V, +/- 10%, X7R, 0603	Wurth Electronics	885012206083
C24	1	CAP, CERM, 1µF, 50V, +/- 10%, X7R, 0805	Wurth Electronics	885012207103
D1, D2	2	Diode, 50 V, DO214AC	Diodes Incorporated	ES2AA-13-F
D3, D5	2	Diode, Schottky, 40 V, 0.75 A, AEC-Q101, SOD-323	Infineon Technologies	BAT165
D4	1	Diode, Schottky, 30V, 1A, AEC-Q101, SOD-323	Infineon Technologies	BAS3010B-03W
D6, LED1	2	LED, Green, SMD	Lite-On	LTST-C190GKT
D7	1	LED, Red, SMD	Lite-On	LTST-C190CKT
J1, J2, J3	3	TERM BLOCK 2POS 5mm, TH	Phoenix Contact	MKDSN 1,5 / 2-5,08
J6, J7, J8, J13	4	Header, 100mil, 2x1, Gold, TH	Samtec	TSW-102-07-G-S
J9, J10, J11	3	Receptacle, 2.54mm, 3x1, Gold, TH	Samtec	SSW-103-01-G-S
J12	1	Receptacle, 2x1, 2.54mm, Gold, TH	Samtec	SSW-102-01-G-S
J14	1	Header (shrouded), 100mil, 5x2, Gold, TH	3M	N2510-6002-RB
Q1, Q2	n.a.	1200 V power switch (not included)	Infineon Technologies	e.g. IKQ75N120CH3
R1, R10, R21	3	RES, 10k, 1%, 0.1W, 0603	Vishay-Dale	CRCW060310K0FKEA
R2, R18, R20	3	RES, 1k, 1%, 0.1W, 0603	Vishay-Dale	CRCW06031K00FKEA
R3, R9	2	RES, 4R7, 1%, 0.25W, 1206	Vishay-Dale	CRCW12064R70FKEA
R4, R7, R11, R16	4	RES, 0R, 1%, 0.1W, 0603	Vishay-Dale	CRCW0603000Z0EA

(table continues...)

4 Bill of material

Table 4 (continued) Bill of material

Designator	Quantity	Description	Manufacturer	Part number
R5, R13	2	RES, 10R, 1%, 0.25W, 1206	Vishay-Dale	CRCW120610R0FKEA
R6	1	RES, 100R, 1%, 0.1W, 0603	Vishay-Dale	CRCW0603100RFKEA
R12	1	RES, 51k, 1%, 0.1W, 0603	Vishay-Dale	CRCW060351K0FKEA
R14	1	RES, 1M, 1%, 0.1W, 0603	Vishay-Dale	CRCW06031M00FKEA
R15	1	RES, 4k7, 1%, 0.1W, 0603	Vishay-Dale	CRCW06034K70FKEA
R19	1	RES, 0R003, 1%, 3W, 2512	Bourns Inc.	CRE2512-FZ-R003E-3
R22	1	RES, 47k, 1%, 0.1W, 0603	Vishay-Dale	CRCW060347K0FKEA
R23, R24	2	RES, 270R, 1%, 0.1W, 0603	Vishay-Dale	CRCW0603270RFKEA
S1	1	Switch, Tactile, SPST-NO, 0.1A, 16V, SMT	Bourns	7914G-1-000E
U1	1	Linear Voltage Regulator 5V	Infineon Technologies	TLS810D1EJV50
U2, U3, U4	3	Single channel IGBT gate driver IC in wide body package	Infineon Technologies	1ED3122MC12H
U5	1	Rail-to-Rail Input and Output, 0.95nV/√Hz Low Noise Op Amp	Linear Technology	LT6200CS6-10#TRMPBF
U6	1	Dual 2-Input NAND Gate with Schmitt-Trigger Inputs	Texas Instruments	SN74LVC2G132DCUR

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2024-09-05

Published by

Infineon Technologies AG
81726 Munich, Germany

© 2024 Infineon Technologies AG

All Rights Reserved.

Do you have a question about any aspect of this document?

Email: erratum@infineon.com

Document reference
IFX-jqr1566804761252

Important notice

The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.