

Gateway for integration of Daikin air conditioners into KNX TP-1 (EIB) control systems

Compatible with Domestic line air conditioner commercialized by Daikin
Application's Program Version: 1.2

USER MANUAL

Issue date: 11/2024 r2.5 ENGLISH

Important User Information

Disclaimer

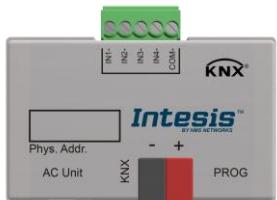
The information in this document is for informational purposes only. Please inform HMS Industrial Networks of any inaccuracies or omissions found in this document. HMS Industrial Networks disclaims any responsibility or liability for any errors that may appear in this document.

HMS Industrial Networks reserves the right to modify its products in line with its policy of continuous product development. The information in this document shall therefore not be construed as a commitment on the part of HMS Industrial Networks and is subject to change without notice. HMS Industrial Networks makes no commitment to update or keep current the information in this document.

The data, examples and illustrations found in this document are included for illustrative purposes and are only intended to help improve understanding of the functionality and handling of the product. In view of the wide range of possible applications of the product, and because of the many variables and requirements associated with any particular implementation, HMS Industrial Networks cannot assume responsibility or liability for actual use based on the data, examples or illustrations included in this document nor for any damages incurred during installation of the product. Those responsible for the use of the product must acquire sufficient knowledge in order to ensure that the product is used correctly in their specific application and that the application meets all performance and safety requirements including any applicable laws, regulations, codes and standards. Further, HMS Industrial Networks will under no circumstances assume liability or responsibility for any problems that may arise as a result from the use of undocumented features or functional side effects found outside the documented scope of the product. The effects caused by any direct or indirect use of such aspects of the product are undefined and may include e.g. compatibility issues and stability issues.

Gateway for integration of Daikin air conditioners into KNX TP-1 (EIB) control systems.
Compatible with Domestic line air conditioners commercialized by Daikin.

Application's Program Version: 1.2


ORDER CODE	LEGACY ORDER CODE
INKNXDAI001I100	DK-AC-KNX-1i

INDEX

1. Presentation	6
2. Connection	7
3. Configuration and setup	8
4. ETS Parameters	9
2.1 General dialog	9
2.1.1 Send READs for Control_ objects on bus recovery	10
2.1.2 Scene to load on bus recovery / startup	10
2.1.3 Disallow control from remote controller	10
2.1.4 Enable func "Control_ Lock Control Obj"	11
2.1.5 Enable func "Operating Hours Counter"	11
2.1.6 Enable object "Error Code [2byte]"	12
2.1.7 Enable object "Error Text Code [14byte]"	12
2.2 Mode Configuration dialog	12
2.2.1 When mode is AUTO Status_ objs report actual operating status	13
2.2.2 Enable use of Mode Cool / Heat bit object	13
2.2.3 Enable PID-Compat. Scaling Mode Objects	14
2.2.4 Enable use of + / - object for Mode	14
2.2.5 Enable use of bit-type Mode objects (for control)	15
2.2.6 Enable use of bit-type Mode objects (for status)	15
2.2.7 Enable use of Text object for Mode	16
2.2.8 Enable use of Legacy_ object for Mode	16
2.3 Special Modes Configuration dialog	16
2.3.1 Enable use of POWER mode	17
2.3.2 Enable use of ECONOMY mode	18
2.3.3 Enable use of ADDITIONAL HEATING mode	19
2.3.4 Enable use of ADDITIONAL COOLING mode	19
2.4 Fan Speed Configuration dialog	20
2.4.1 DPT object type for fanspeed	21
2.4.2 Enable use of +/- object for Fan Speed	22
2.4.3 Enable "Fan Speed Manual/Auto" objects for Control and Status	23
2.4.4 Enable use of bit-type Fan Speed objects (for Control)	23
2.4.5 Enable use of bit-type Fan Speed objects (for Status)	24
2.4.6 Enable use of Text object for Fan Speed	24
2.4.7 Enable use of Legacy_ object for Fan Speed	25
2.5 Vanes Configuration dialog	25
2.5.1 Indoor unit has U-D Vanes	25
2.5.2 Indoor unit has L-R Vanes	26
2.5.3 Enable use of Legacy_ object for Vanes	26
2.6 Humidifying Configuration dialog	26
2.6.1 AC unit has Humidifier	27
2.6.2 DPT object type for Humidifying	27
2.6.3 Enable use of +/- object for Humidifying	28
2.6.4 Enable use of bit-type Humidifying objects (for Control)	29
2.6.5 Enable use of bit-type Humidifying objects (for Status)	29
2.6.6 Enable use of Text object for Humidifying	30
2.6.7 Enable use of Legacy_ object for Humi	30
2.7 Temperature Configuration dialog	30
2.7.1 Periodic sending of "Status_ AC Setp"	31
2.7.2 Enable use of +/- object for Setpoint Temperature	31
2.7.3 Enable limits on Control_ Setpoint obj	32
2.7.4 Ambient temp. ref. is provided from KNX	32
2.8 Scene Configuration dialog	33
2.8.1 Enable use of scenes	33
2.8.2 Scenes can be stored from KNX bus	34
2.8.3 Enable use of bit objects for scene execution	35

2.8.4	Scene "x" preset	35
2.9	Switch-Off Timeouts Configuration dialog	37
2.9.1	Enable use of Open Window / Switch off timeout function	37
2.9.2	Enable use of Occupancy function	38
2.9.3	Enable use of SLEEP timeout	41
2.10	Binary Input "x" Configuration dialog	41
2.10.1	Enable use of Input "x"	42
2.10.2	Contact type	42
2.10.3	Debounce time	42
2.10.4	Disabling function	42
2.10.5	Function	42
5.	Specifications	51
6.	AC Unit Types compatibility	52
7.	Error Codes	53
	Appendix A – Communication Objects Table	55

1. Presentation

INKNXDAI001I100 allows a complete and natural integration of Daikin air conditioners with KNX control systems.

Compatible with all Domestic models commercialized by Daikin.

Main features:

- Reduced dimensions, quick installation.
- Multiple objects for control and status (bit, byte, characters...) with KNX standard datapoint types.
- Status objects for every control available.
- Timeout for Open Window and Occupancy. Sleep function also available.
- Control of the AC unit based in the ambient temperature read by the own AC unit, or in the ambient temperature read by any KNX thermostat.
- AC unit can be controlled simultaneously by the IR remote control of the AC unit and by KNX.
- Total Control and Monitoring of the AC unit from KNX, including monitoring of AC unit's state of internal variables, running hours counter (for filter maintenance control), and error indication and error code.
- Up to 5 scenes can be saved and executed from KNX, fixing the desired combination of Operation Mode, Set Temperature, Fan Speed, Vane Position and Remote Controller Lock in any moment by using a simple switching.
- Four potential-free binary inputs provide the possibility to integrate many types of external devices. Also configurable from ETS, they can be used for switching, dimming, shutter/blind control, and more

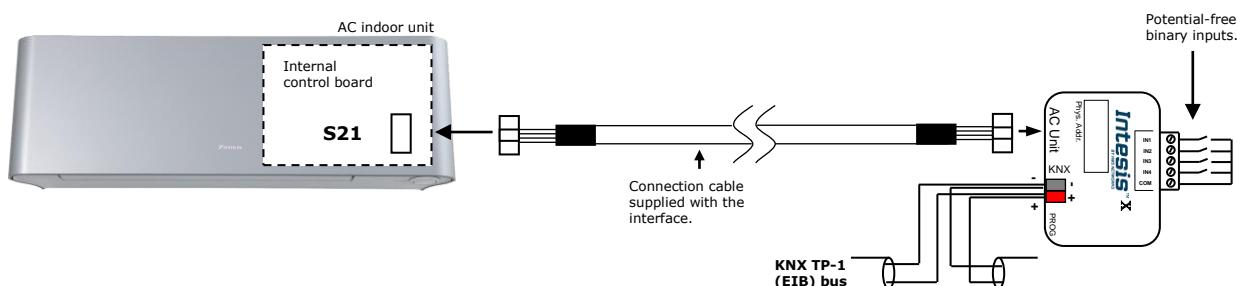
2. Connection

The interface comes with a cable for direct connection to the internal control board of the AC indoor unit.

- Connection of the interface to the AC indoor unit:

Disconnect mains power from the AC unit. Open the front cover of the indoor unit in order to have access to the internal control board. In the control board locate the socket connector marked as:

S21 in Domestic line units.


Using the cable that comes with the interface, insert one of its connectors, the one installed in the shortest uncovered part, into the socket of the INKNXDAI001I100 marked as **AC Unit**, and the other connector, the one in the largest uncovered part, into the socket **S21** of the AC unit's control board. Fix the INKNXDAI001I100 inside or outside the AC indoor unit depending on your needs; remember that INKNXDAI001I100 must be also connected to the KNX bus. Close the AC indoor unit's front cover again.

⚠ Important: The cable supplied with the interface is 1.5 m (4.9 ft) long. Do not modify its length since it may affect the correct interface's operation. Keep the cable away from power and ground wires, and never bundle them together.

- Connection of the interface to the KNX bus:

Disconnect power of the KNX bus. Connect the interface to the KNX TP-1 (EIB) bus using the KNX standard connector (red/grey) of the interface, respect polarity. Reconnect power of the KNX bus.

- Connections diagram:

Figure 2.2 Connection diagram

3. Configuration and setup

This is a fully compatible KNX device which must be configured and setup using standard KNX tool ETS.

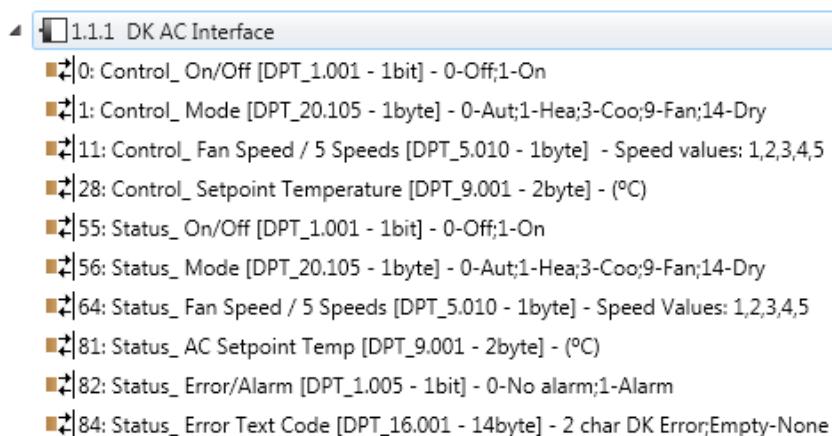
ETS database for this device can be downloaded from:

<https://intesis.com/products/ac-interfaces/daikein-gateways/daikein-knx-inputs-ac-dk-ac-knx-1i>

Please consult the README.txt file, located inside the downloaded zip file, to find instructions on how to install the database.

⚠️ *Important:* Do not forget to select the correct settings of AC indoor unit being connected to the INKNXDAI001I100 this is in "Parameters" of the device in ETS.

4. ETS Parameters


When imported to the ETS software for the first time, the gateway shows the following default parameter configuration:

Device: 1.1.1 DK AC Interface

General	Value
Mode Configuration	<input type="text" value="http://www.intesis.com"/>
Special Modes Configuration	<input type="text" value="No"/>
Fan Speed Configuration	<input type="text" value="(none)"/>
Vanес Configuration	<input type="text" value="No"/>
Humidifying Configuration	<input type="text" value="No"/>
Temperature Configuration	<input type="text" value="No"/>
Scene Configuration	<input type="text" value="No"/>
Switch-Off Timeouts Configuration	<input type="text" value="No"/>
Binary Input 1 Configuration	<input type="text" value="No"/>
Binary Input 2 Configuration	<input type="text" value="No"/>
Binary Input 3 Configuration	<input type="text" value="No"/>
Binary Input 4 Configuration	<input type="text" value="Yes"/>

Figure 4.1 Default parameter configuration

With this configuration it's possible to send On/Off (*Control_ On/Off*), change the AC Mode (*Control_ Mode*), the Fan Speed (*Control_ Fan Speed*) and also the Setpoint Temperature (*Control_ Setpoint Temperature*). The *Status_* objects, for the mentioned *Control_* objects, are also available to use if needed. Also objects *Status_ AC Setpoint Temp* and *Status_ Error/Alarm* are shown.

Figure 4.2 Default communication objects

2.1 General dialog

Inside this parameter's dialog it is possible to activate or change the parameters shown in the **Figure 4.1**.

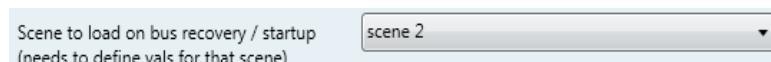
The first field shows the URL where to download the database and the user manual for the product.

2.1.1 Send READs for Control_ objects on bus recovery

When this parameter is enabled, INKNXDAI001I100 will send READ telegrams for the group addresses associated on its *Control_* objects on bus recovery or application reset/start-up.

- If set to “**no**” the gateway will not perform any action.
- If set to “**yes**” all *Control_* objects with both Transmit (**T**) and Update (**U**) flags enabled will send READs and their values will be updated with the response when received.

Figure 4.3 Parameter detail

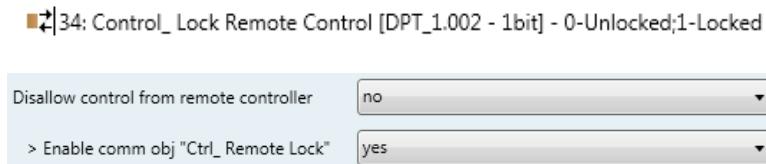

➤ [Delay before sending READs \(sec\):](#)

With this parameter, a delay can be configured between 0 and 30 seconds for the READs sent by the *Control_* objects. This is to give time enough to other KNX devices on the bus to start-up before sending the READs.

2.1.2 Scene to load on bus recovery / startup

This parameter executes a selected scene on bus recovery or startup, only if the selected scene has an enabled preset or values previously saved from KNX bus (see Scene Configuration dialog).

If the gateway is disconnected from the indoor unit the scene will not be applied, even when connecting to the indoor unit again.


Figure 4.4 Parameter detail

2.1.3 Disallow control from remote controller

This parameter allows:

- 1- Having the remote controller always locked, or
- 2- Decide through a new communication object if the RC is locked or not.

- If set to “**yes**” all the actions performed through the remote controller will be disabled.
- If set to “**no**” the remote controller will work as usually. It also appears a new parameter and the communication object *Control_Lock Remote Control*.

Figure 4.5 Communication object and parameter detail

➤ Enable comm obj "Ctrl_Remote Lock":

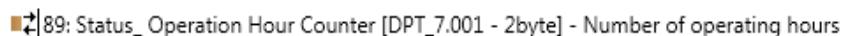
If set to "**no**" the object will not be shown.

If set to "**yes**" the *Control_Lock Remote Control* object will appear.

- When a "**1**" value is sent to this communication object, the remote controller is locked. To be unlocked a "**0**" value must be sent. The gateway remembers the last value received even if a KNX bus reset/failure happens.

⚠ Important: If an initial scene is enabled and it has as Value for Remote Lock (unchanged) or unlocked, this would unlock the remote controller because the initial scene has priority over the *Control_Lock Remote Control* communication object.

2.1.4 Enable func "Control_Lock Control Obj"


This parameter shows/hide the *Control_Lock Control Obj* communication object which, depending on the sent value, locks or unlocks ALL the *Control*_ communication objects except itself.

- If set to "**no**" the object will not be shown.
- If set to "**yes**" the *Control_Lock Control Objects* object will appear.
 - When a "**1**" value is sent to this communication object, all the *Control*_ objects will be locked. To unlock a "**0**" value must be sent, as the gateway remembers the last value received even if a KNX bus reset/failure happens.

2.1.5 Enable func "Operating Hours Counter"

This parameter shows/hides the *Status_Operation Hour Counter* communication object which counts the number of operating hours for the INKNXDAI001I100 .

- If set to "**no**" the object will not be shown.
- If set to "**yes**" the *Status_Operation Hour Counter* object will appear.
 - This object can be read and sends its status every time an hour is counted. The gateway keeps that count in memory and the status is sent also after a

KNX bus reset/failure. Although this object is marked as a *Status_* object it also can be written to update the counter when needed. To reset the counter should be written a “0” value.

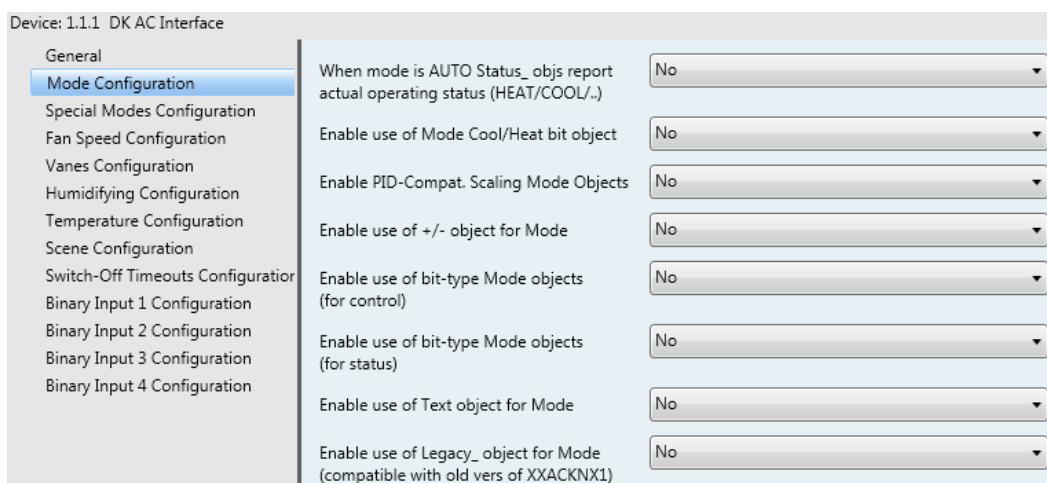
- ⚠ **Important:** This object comes by default without the write (**W**) flag activated. If is necessary to write on it, this flag must be activated.
- ⚠ **Important:** This object will also return its status, every time a value is written, only if it's different from the existing one.
- ⚠ **Important:** If the stored value is 0 hours, the gateway will not send the status to KNX.

2.1.6 Enable object “Error Code [2byte]”

This parameter shows/hides the *Status_ Error Code* communication object which shows the indoor unit errors, if occurred, in numeric format.

■ 83: Status_Error Code [2byte] - 0-No error /Any other see man.

- If set to “**no**” the object will not be shown.
- If set to “**yes**” the *Status_Error Code [2byte]* object will appear.
 - This object can be read and also sends the indoor unit error, if occurred, in numeric format. If a “0” value is shown that means no error.


2.1.7 Enable object “Error Text Code [14byte]”

This parameter shows/hides the *Status_Error Text Code* communication object which shows the indoor unit errors, if occurred, in text format.

■ 84: Status_Error Text Code [DPT_16.001 - 14byte] - 2 char DK Error;Empty=None

- If set to “**no**” the object will not be shown.
- If set to “**yes**” the *Status_Error Text Code* object will appear.
 - This object can be read and also sends the indoor unit error, if occurred, in text format. The errors shown have the same format as at the remote controller and at the error list from the indoor unit manufacturer. If the object's value is empty that means no error.

2.2 Mode Configuration dialog

Figure 4.6 Default Mode Configuration dialog

All the parameters in this section are related with the different mode properties and communication objects.

1: Control_Mode [DPT_20.105 - 1byte] - 0-Aut;1-Hea;3-Coo;9-Fan;14-Dry

The byte-type communication object for Mode works with the DPT_20.105. Auto mode will be enabled with a “0” value, Heat mode with a “1” value, Cool mode with a “3” value, Fan mode with a “9” value and Dry mode with a “14” value.

2.2.1 When mode is AUTO Status_ objs report actual operating status

This parameter shows the real status of the indoor unit when Auto mode is enabled.

- If set to “no”, when the indoor unit is set to Auto mode, all the *Status_* objects concerning mode will only show Auto enabled.
- If set to “yes”, when the indoor unit is set to Auto mode, all the *Status_* objects concerning mode will show the real mode which the machine is working (Cool, Heat, Dry, Fan). In case of the bitfield objects, also the *Status_ Mode Auto* will be shown enabled with a “1” value.

2.2.2 Enable use of Mode Cool / Heat bit object

This parameter shows/hides the *Control_* and *Status_ Mode Cool/Heat* communication objects.

2: Control_Mode Cool/Heat [DPT_1.100 - 1bit] - 0-Cool;1-Heat

57: Status_Mode Cool/Heat [DPT_1.100 - 1bit] - 0-Cool;1-Heat

- If set to “no” the objects will not be shown.
- If set to “yes” the *Control_* and *Status_ Mode Cool/Heat* objects will appear.

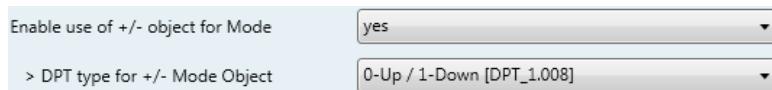
- When a “**1**” value is sent to the *Control_* communication object, **Heat mode** will be enabled in the indoor unit, and the *Status_* object will return this value.
- When a “**0**” value is sent to the *Control_* communication object, **Cool mode** will be enabled in the indoor unit, and the *Status_* object will return this value.

2.2.3 Enable PID-Compat. Scaling Mode Objects

This parameter shows/hides the *Control_ Mode Cool & On* and *Control_ Mode Heat & On* communication objects.

■ 3: Control_Mode Cool & On [DPT_5.001 - 1byte] - 0%-Off;0.1%-100%-On+Cool
 ■ 4: Control_Mode Heat & On [DPT_5.001 - 1byte] - 0%-Off;0.1%-100%-On+Heat

- If set to “**no**” the objects will not be shown.
- If set to “**yes**” the *Control_ Mode Cool & On* and *Control_ Mode Heat & On* objects will appear.
 - These objects provide compatibility with those KNX thermostats that control the demand of heating or cooling by using scaling (percentage) objects. In these thermostats, the percentage demand is meant to be applied on a fluid valve of the heating / cooling system.
 - INKNXDAI001I100 device does not provide individual control on the internal parts of the indoor unit (as can be its compressor, refrigerant valves, etc). Rather, it provides the same level of control as a (user) remote controller.
 - Objects “Control_ Mode Cool & On” and “Control_ Mode Heat & On” intend to bring compatibility between thermostats oriented to the control of custom heating / cooling systems and ready-made AC indoor units, by applying the following logic:
 - Whenever a non-zero value (>0%) is received at “Control_ Mode Cool & On”, indoor unit will switch On in COOL mode.
 - Whenever a non-zero value (>0%) is received at “Control_ Mode Heat & On”, indoor unit will switch On in HEAT mode.
 - Lastest updated object will define the operating mode
 - Indoor unit will switch off only when both objects become zero (0%) – or when an OFF is requested at object “0. Control_ On/Off [DPT_1.001 - 1bit]”


 Important: These objects function is only to send On/Off and Cool/Heat to the indoor unit. The PID (Inverter system) is calculated by the indoor unit itself. Please consider introducing an appropriate PID configuration to the external KNX thermostat to not interfere the indoor unit PID.

2.2.4 Enable use of + / - object for Mode

This parameter shows/hides the *Control_Mode* +/- communication object which lets change the indoor unit mode by using two different datapoint types.

10: Control_Mode -/+ [DPT_1.007 - 1bit] - 0-Decrease;1-Increase

- If set to “**no**” the object will not be shown.
- If set to “**yes**” the *Control_Mode* +/- object and a new parameter will appear.

Figure 4.7 Parameter detail

➤ DPT type for +/- Mode Object

This parameter lets choose between the datapoints **0-Up / 1-Down [DPT_1.008]** and **0-Decrease / 1-Increase [DPT_1.007]** for the *Control_Mode* +/- object.

The sequence followed when using this object is shown below:

- Up / Increase
- Down / Decrease

2.2.5 Enable use of bit-type Mode objects (for control)

This parameter shows/hides the bit-type *Control_Mode* objects.

- 5: Control_Mode Auto [DPT_1.002 - 1bit] - 1-Set AUTO mode
- 6: Control_Mode Heat [DPT_1.002 - 1bit] - 1-Set HEAT mode
- 7: Control_Mode Cool [DPT_1.002 - 1bit] - 1-Set COOL mode
- 8: Control_Mode Fan [DPT_1.002 - 1bit] - 1-Set FAN mode
- 9: Control_Mode Dry [DPT_1.002 - 1bit] - 1-Set DRY mode

- If set to “**no**” the objects will not be shown.
- If set to “**yes**” the *Control_Mode* objects for Auto, Heat, Cool, Fan and Dry will appear. To activate a mode by using these objects a “**1**” value has to be sent.

2.2.6 Enable use of bit-type Mode objects (for status)

This parameter shows/hides the bit-type *Status_Mode* objects.

- 58: Status_Mode Auto [DPT_1.002 - 1bit] - 1-AUTO mode is active
- 59: Status_Mode Heat [DPT_1.002 - 1bit] - 1-HEAT mode is active
- 60: Status_Mode Cool [DPT_1.002 - 1bit] - 1-COOL mode is active
- 61: Status_Mode Fan [DPT_1.002 - 1bit] - 1-FAN mode is active
- 62: Status_Mode Dry [DPT_1.002 - 1bit] - 1-DRY mode is active

- If set to “**no**” the objects will not be shown.
- If set to “**yes**” the *Status_Mode* objects for Auto, Heat, Cool and Dry will appear. When enabled, a mode will return a “**1**” through its bit-type object.

2.2.7 Enable use of Text object for Mode

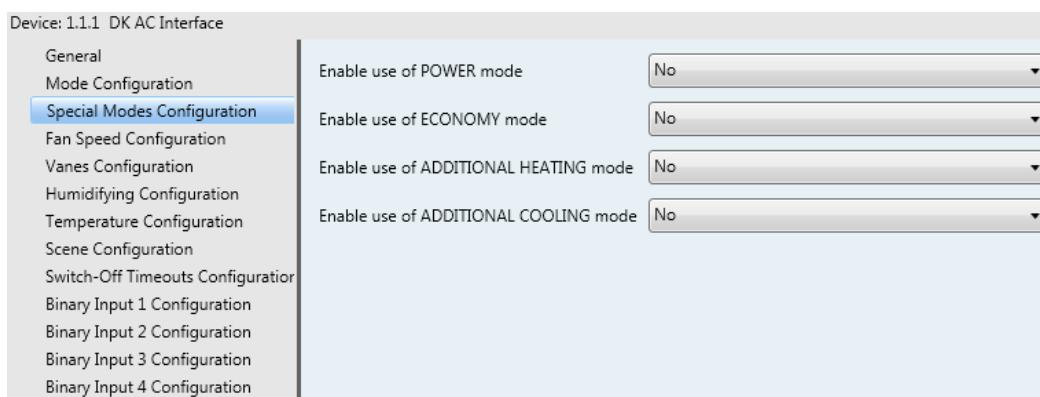
This parameter shows/hides the *Status_Mode Text* communication object.

- 63: Status_Mode Text [DPT_16.001 - 14byte] - ASCII String

- If set to “**no**” the object will not be shown.
- If set to “**yes**” the *Status_Mode Text* object will appear. Also, in the parameters, will be shown five text fields, one for each mode, that will let modify the text string displayed by the *Status_Mode Text* when changing mode.

> String when mode is AUTO	AUTO
> String when mode is HEAT	HEAT
> String when mode is COOL	COOL
> String when mode is FAN	FAN
> String when mode is DRY	DRY

Figure 4.8 Parameter detail


2.2.8 Enable use of Legacy_object for Mode

This parameter shows/hides the *Legacy_Mode* communication object

- 99: Legacy_Mode [Enumerated - 1byte] - 0-Aut;1-Hea,2-Dry,3-Fan;4-Coo

- If set to “**no**” the communication object will not be shown.
- If set to “**yes**” the *Legacy_Mode* communication object will appear. This object lets change the indoor unit mode but it uses a different data type. It is used to maintain compatibility with old gateway models.

2.3 Special Modes Configuration dialog

Figure 4.9 Default Special Modes Configuration dialog

The Special Modes can be parameterized through the ETS parameters dialog, and they can be used to give extra functionality.

- ⚠ **Important:** When executing any of the Special Modes, the real state of the indoor unit will NOT be shown in KNX.
- ⚠ **Important:** When the predefined time for the Special Mode is finished or a "0" value is sent to stop it, the previous state will be recovered.
- ⚠ **Important:** If a value concerning On/Off, Mode, Fan Speed or Setpoint Temperature is received from KNX while any Special Mode is running ("1"), the Special Mode will stop and the previous state will be recovered. The value received will be also applied then.
- ⚠ **Important:** If a value concerning On/Off, Mode, Fan Speed or Setpoint Temperature is modified through the remote controller, the Special Mode will stop WITHOUT recovering the previous state. Then the real indoor unit state will be shown in KNX including the new value received through the remote controller.

2.3.1 Enable use of POWER mode

This parameter shows/hides the *Control_Power Mode* and *Status_Power Mode* communication objects. The Power Mode lets change the Setpoint Temperature and the Fan Speed within a given period of time.

36: Control_Power Mode [DPT_1.010 - 1bit] - 0-Stop;1-Start
 85: Status_Power Mode [DPT_1.001 - 1bit] - 0-Off;1-On

- If set to "no" the objects will not be shown.
- If set to "yes" the *Control_Power Mode* and *Status_Power Mode* objects and new parameters will appear.

Figure 4.10 Parameter detail

- When a “**1**” value is sent to the *Control_* communication object Power Mode will be enabled, and the *Status_* object will return this value.
- When a “**0**” value is sent to the *Control_* communication object, Power Mode will be disabled, and the *Status_* object will return this value.

⚠ Important: This mode will ONLY work if the indoor unit is both turned on and in a Heat, Cool, Auto-Heat or Auto-Cool Mode.

➤ Action time for this mode (minutes):

Duration of Power Mode, in minutes, once started.

➤ Setpoint delta increase (HEAT) or decrease (COOL) – in Celsius:

Number of degrees Celsius that will increase in Heat Mode, or decrease in Cool Mode, while in Power Mode.

➤ Fan Speed for this mode:

Fan Speed that will be set in the unit while in Power Mode.

2.3.2 Enable use of ECONOMY mode

This parameter shows/hides the *Control_Econo Mode* and *Status_Econo Mode* communication objects. The Econo Mode lets change the Setpoint Temperature and the Fan Speed within a given period of time.

■ ↗ 37: *Control_Econo Mode* [DPT_1.010 - 1bit] - 0-Stop;1-Start
 ■ ↗ 86: *Status_Econo Mode* [DPT_1.001 - 1bit] - 0-Off;1-On

- If set to “**no**” the objects will not be shown.
- If set to “**yes**” the *Control_Econo Mode* and *Status_Econo Mode* objects and new parameters will appear.
 - When a “**1**” value is sent to the *Control_* communication object, Econo Mode will be enabled, and the *Status_* object will return this value.
 - When a “**0**” value is sent to the *Control_* communication object, Econo Mode will be disabled, and the *Status_* object will return this value.

⚠ Important: This mode will ONLY work if the indoor unit is both turned on and in a Heat, Cool, Auto-Heat or Auto-Cool Mode.

➤ Action time for this mode (minutes):

Duration of Econo Mode, in minutes, once started.

- Setpoint delta increase (HEAT) or decrease (COOL) – in Celsius:

Number of degrees Celsius that will increase in Heat Mode, or decrease in Cool Mode, while in Econo Mode.

- Fan Speed for this mode:

Fan Speed that will be set in the unit while in Econo Mode.

2.3.3 Enable use of ADDITIONAL HEATING mode

This parameter shows/hides the *Control_Start Additional Heat Mode* and *Status_Additional Heat Mode* communication objects. The Additional Heating Mode lets change the Setpoint Temperature and the Fan Speed within a given period of time.

■ 87: Status_Additional Heat [DPT_1.001 - 1bit] - 0-Off;1-On
 ■ 38: Control_Additional Heat [DPT_1.010 - 1bit] - 0-Stop;1-Start

- If set to “**no**” the objects will not be shown.
- If set to “**yes**” the *Control_Start Additional Heat Mode* and *Status_Additional Heat Mode* objects and new parameters will appear.
 - When a “**1**” value is sent to the *Control*_ communication object, Additional Heating Mode will be enabled, and the *Status*_ object will return this value.
 - When a “**0**” value is sent to the *Control*_ communication object, Additional Heating Mode will be disabled, and the *Status*_ object will return this value.

⚠ Important: This mode will *ALWAYS* turn on the indoor unit in Heat mode.

- Action time for this mode (minutes):

Duration of Additional Heating Mode, in minutes, once started.

- Setpoint temp for this mode (°C):

Setpoint temperature that will be applied while in Additional Heating Mode.

- Fan Speed for this mode:

Fan Speed that will be set in the unit while in Additional Heating Mode.

2.3.4 Enable use of ADDITIONAL COOLING mode

This parameter shows/hides the *Control_Start Additional Cool Mode* and *Status_Additional Cool Mode* communication objects. The Additional Heating Mode lets change the Setpoint Temperature and the Fan Speed within a given period of time.

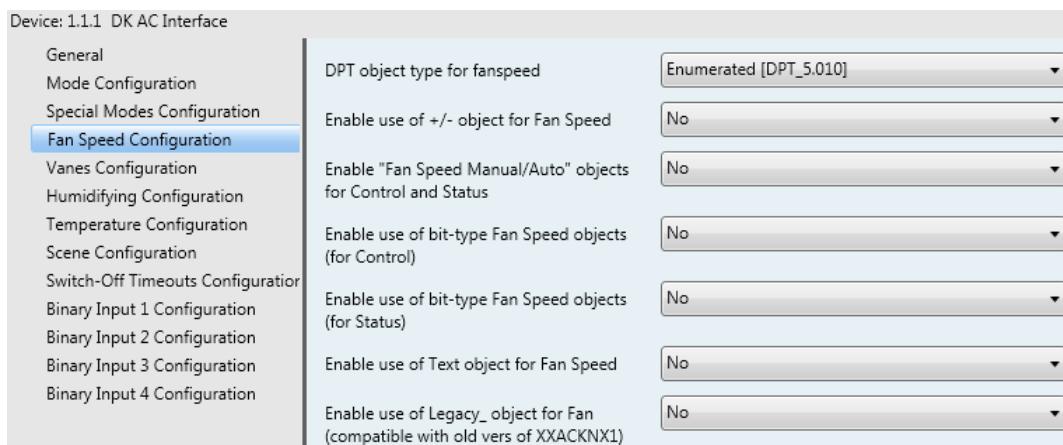
■ 39: Control_Additional Cool [DPT_1.010 - 1bit] - 0-Stop;1-Start
 ■ 88: Status_Additional Cool [DPT_1.001 - 1bit] - 0-Off;1-On

- If set to “**no**” the objects will not be shown.
- If set to “**yes**” the Control_ Start Additional Cool Mode and Status_ Additional Cool Mode objects and new parameters will appear.
 - When a “**1**” value is sent to the *Control_* communication object, Additional Cooling Mode will be enabled, and the *Status_* object will return this value.
 - When a “**0**” value is sent to the *Control_* communication object, Additional Cooling Mode will be disabled, and the *Status_* object will return this value.

⚠ *Important:* This mode will ALWAYS turn on the indoor unit in Cool mode.

➤ Action time for this mode (minutes):

Duration of Additional Cooling Mode, in minutes, once started.


➤ Setpoint temp for this mode (°C):

Setpoint temperature that will be applied while in Additional Cooling Mode.

➤ Fan Speed for this mode:

Fan Speed that will be set in the unit while in Additional Cooling Mode.

2.4 Fan Speed Configuration dialog

Figure 4.11 Default Fan Speed Configuration dialog

All the parameters in this section are related with the Fan Speed properties and communication objects.

2.4.1 DPT object type for fanspeed

With this parameter is possible to change de DPT for the *Control_Fan Speed* and *Status_Fan Speed* byte-type communication objects. Datapoints Scaling (DPT_5.001) and Enumerated (DPT_5.010) can be selected.

- When “**Enumerated [DPT 5.010]**” is selected, *Control_Fan Speed* and *Status_Fan Speed* communication objects for this DPT will appear.

- 11: Control_Fan Speed / 5 Speeds [DPT_5.010 - 1byte] - Speed values: 1,2,3,4,5
- 64: Status_Fan Speed / 5 Speeds [DPT_5.010 - 1byte] - Speed Values: 1,2,3,4,5

The first fan speed will be selected if a “1” is sent to the *Control_* object. The second one will be selected sending a “2”; the third one will be selected sending a “3”; the fourth one will be selected sending a “4”; and the last one will be selected sending a “5”.

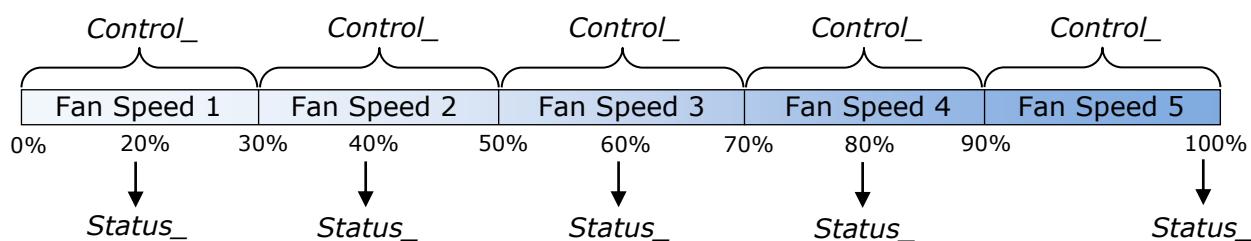
The *Status_* object will always return the value for the fan speed selected.

⚠ Important: If a “0” value is sent to the *Control_* object, the minimum fan speed will be selected. If a value bigger than “5” is sent to the *Control_* object, then the maximum fan speed will be selected.

- When “**Scaling [DPT 5.001]**” is selected, *Control_Fan Speed* and *Status_Fan Speed* communication objects for this DPT will appear.

- 11: Control_Fan Speed / 5 Speeds [DPT_5.001 - 1byte] - Thresholds:30%,50%,70% and 90%
- 64: Status_Fan Speed / 5 Speeds [DPT_5.001 - 1byte] - 20%, 40%, 60%, 80% and 100%

When a value between **0%** and **29%** is sent to the *Control_* object the first fan speed will be selected.


When a value between **30%** and **49%** is sent to the *Control_* object, the second speed will be selected.

When a value between **50%** and **69%** is sent to the *Control_* object, the third speed will be selected.

When a value between **70%** and **89%** is sent to the *Control_* object, the fourth speed will be selected.

When a value between **90%** and **100%** is sent to the *Control_* object, the fifth speed will be selected.

The *Status_* object will return a **20%** when the first speed is selected, a **40%** for the second one, a **60%** for the third one, an **80%** for the fourth one, and a **100%** for the last one.

2.4.2 Enable use of +/- object for Fan Speed

This parameter shows/hides the *Control_Fan Speed +/-* communication object which lets increase/decrease the indoor unit fan speed by using two different datapoint types.

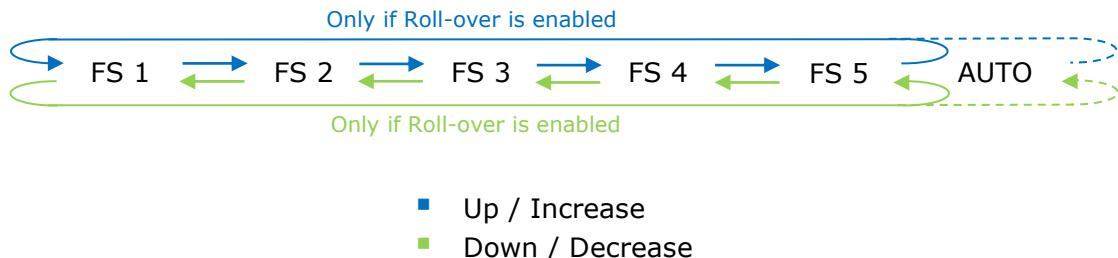
18: Control_Fan Speed -/+ [DPT_1.007 - 1bit] - 0-Decrease;1-Increase

- If set to “**no**” the object will not be shown.
- If set to “**yes**” the *Control_Fan Speed +/-* object and a new parameter will appear.

Enable use of +/- object for Fan Speed	Yes
> DPT type for +/- Fan Speed object	0-Decrease / 1-Increase [DPT_1.007]
> Does +/- sequence include fan speed AUTO?	No
> Roll over Speed at upper/lower limit (when controlling with +/- obj)	Yes

Figure 4.12 Parameter detail

➤ DPT type for +/- Fan Speed Object


This parameter lets choose between the datapoints **0-Up / 1-Down [DPT_1.008]** and **0-Decrease / 1-Increase [DPT_1.007]** for the *Control_Fan Speed +/-* object.

➤ Does +/- sequence include fan speed AUTO?

This parameter lets choose if AUTO function is included (“**yes**”) or not (“**no**”) in the sequence when using *Control_Fan Speed +/-* object as shown in the discontinuous segment at the picture below.

➤ [Roll-over Speed at upper/lower limit](#)

This parameter lets choose if roll-over will be enabled ("yes") or disabled ("no") for the *Control_Fan Speed +/-* object.

2.4.3 Enable “Fan Speed Manual/Auto” objects for Control and Status

This parameter shows/hides the *Control_Fan Speed Manual/Auto* and *Status_Fan Speed Manual/Auto* communication objects.

■ 12: Control_Fan Speed Manual/Auto [DPT_1.002 - 1bit] - 0-Manual;1-Auto
 ■ 65: Status_Fan Speed Manual/Auto [DPT_1.002 - 1bit] - 0-Manual;1-Auto

- If set to "no" the objects will not be shown.
- If set to "yes" the *Control_Fan Speed Manual/Auto* and *Status_Fan Speed Manual/Auto* objects will appear.
 - When a "1" value is sent to the *Control_* communication object, Fan Speed will be in Auto mode, and the *Status_* object will return this value.
 - When a "0" value is sent to the *Control_* communication object, Fan Speed will be in Manual mode and the first fan speed will be enabled. The *Status_* object will return this value.

⚠ **Important:** When in Auto Mode the indoor unit will choose the most appropriate fan speed, but this will be shown neither in KNX nor in the remote controller.

2.4.4 Enable use of bit-type Fan Speed objects (for Control)

This parameter shows/hides the bit-type *Control_Fan Speed* objects.

- 13: Control_Fan Speed 1 [DPT_1.002 - 1bit] - 1-Set Fan Speed 1
- 14: Control_Fan Speed 2 [DPT_1.002 - 1bit] - 1-Set Fan Speed 2
- 15: Control_Fan Speed 3 [DPT_1.002 - 1bit] - 1-Set Fan Speed 3
- 16: Control_Fan Speed 4 [DPT_1.002 - 1bit] - 1-Set Fan Speed 4
- 17: Control_Fan Speed 5 [DPT_1.002 - 1bit] - 1-Set Fan Speed 5

- If set to “**no**” the objects will not be shown.
- If set to “**yes**” the *Control_Fan Speed* objects for Speed 1, Speed 2, Speed 3, Speed 4 and Speed 5 will appear. To activate a Fan Speed by using these objects a “**1**” value has to be sent.

2.4.5 Enable use of bit-type Fan Speed objects (for Status)

This parameter shows/hides the bit-type *Status_Fan Speed* objects.

- 66: Status_Fan Speed 1 [DPT_1.002 - 1bit] - 1-Fan in speed 1
- 67: Status_Fan Speed 2 [DPT_1.002 - 1bit] - 1-Fan in speed 2
- 68: Status_Fan Speed 3 [DPT_1.002 - 1bit] - 1-Fan in speed 3
- 69: Status_Fan Speed 4 [DPT_1.002 - 1bit] - 1-Fan in speed 4
- 70: Status_Fan Speed 5 [DPT_1.002 - 1bit] - 1-Fan in speed 5

- If set to “**no**” the objects will not be shown.
- If set to “**yes**” the *Status_Fan Speed* objects for Speed 1, Speed 2, Speed 3, Speed 4 and Speed 5 will appear. When a Fan Speed is enabled, a “**1**” value is returned through its bit-type object.

2.4.6 Enable use of Text object for Fan Speed

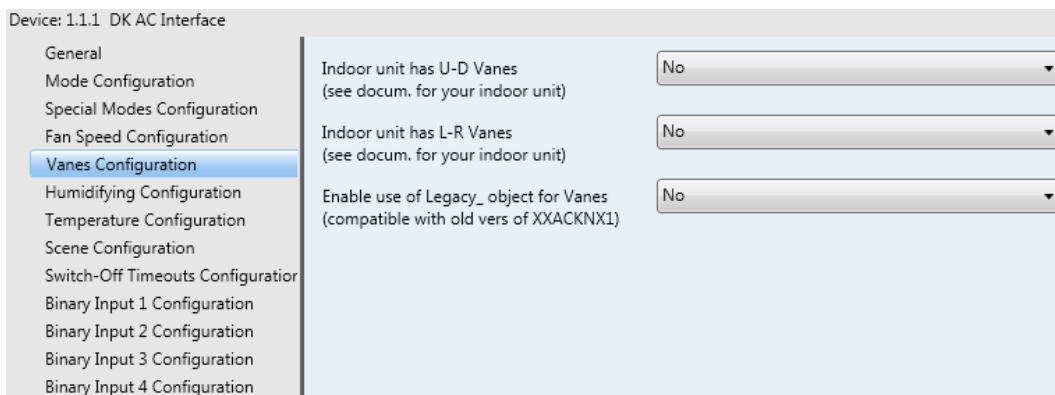
This parameter shows/hides the *Status_Fan Speed Text* communication object.

- 71: Status_Fan Speed Text [DPT_16.001 - 14byte] - ASCII String

- If set to “**no**” the object will not be shown.
- If set to “**yes**” the *Status_Fan Speed Text* object will appear. Also, in the parameters, will be shown five text fields, one for each Fan Speed, that will let modify the text string displayed by the *Status_Fan Speed Text* when changing a fan speed.

> String when fan speed is AUTO	AUTO
> String when fan speed is 1	SPEED 1
> String when fan speed is 2	SPEED 2
> String when fan speed is 3	SPEED 3
> String when fan speed is 4	SPEED 4
> String when fan speed is 5	SPEED 5

Figure 4.13 Parameter detail


2.4.7 Enable use of Legacy_ object for Fan Speed

This parameter shows/hides the *Legacy_ Fan Speed* communication object

■ 100: Legacy_ Fan Speed [Enumerated - 1byte] - 0 - Auto; 1..5 - speed 1..5

- If set to “**no**” the communication object will not be shown.
- If set to “**yes**” the communication object will appear. This object lets change the indoor unit fan speed but it uses a different data type. It is used to maintain compatibility with old gateway models.

2.5 Vanes Configuration dialog

Figure 4.14 Vanes Configuration dialog

All the parameters in this section are related with the Vanes properties and communication objects.

2.5.1 Indoor unit has U-D Vanes

This parameter lets choose if the unit has Up-Down Vanes available or not.

Indoor unit has U-D Vanes (see docum. for your indoor unit)	<input type="button" value="No"/>
--	-----------------------------------

Figure 4.15 Parameter detail

- If set to “**no**” all the communication objects for the Up-Down Vanes will not be shown.
- If set to “**yes**” all the communication objects for the Up-Down Vanes will appear.

⚠ Important: *Read the documentation of your indoor unit to check if Up-Down Vanes are available.*

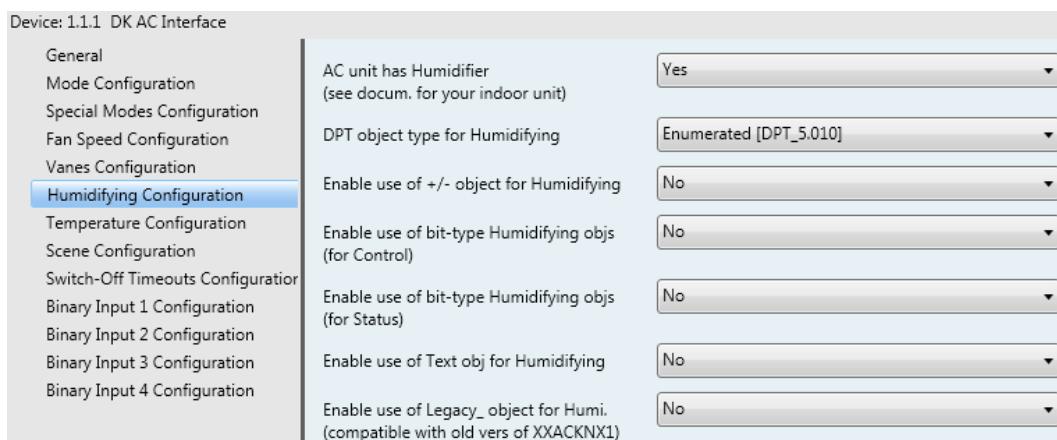
2.5.2 Indoor unit has L-R Vanes

This parameter lets choose if the unit has Left-Right Vanes available or not.

Figure 4.16 Parameter detail

- If set to “**no**” all the communication objects for the Left-Right Vanes will not be shown.
- If set to “**yes**” all the communication objects for the Left-Right Vanes will appear.

⚠ Important: *Read the documentation of your indoor unit to check if Left-Right Vanes are available.*


2.5.3 Enable use of Legacy_ object for Vanes

This parameter shows/hides the *Legacy_Swing* communication object

101: Legacy_Swing [Enumerated - 1byte] - 0-Off;1-Vertic;2-Horiz;3-Both

- If set to “**no**” the communication object will not be shown.
- If set to “**yes**” the communication object will appear. This object lets change the indoor unit vanes behavior but it uses a different data type. It is used to maintain compatibility with old gateway models.

2.6 Humidifying Configuration dialog

Figure 4.17 Default Humidifying Configuration dialog

All the parameters in this section are related with the Humidifying properties and communication objects. This functionality is only available for **xxxxx** models.

IMPORTANT: Humidifying mode on Intesis does not match Daikin remote controller behaviour.

2.6.1 AC unit has Humidifier

This parameter lets choose if the indoor unit has Humidifier or not and shows/hides the communication objects and parameters related with it.

Figure 4.18 Parameter detail

- If set to "**no**" the objects and parameters will not be shown.
- If set to "**yes**" the objects and parameters will appear.

2.6.2 DPT object type for Humidifying

With this parameter is possible to change de DPT for the *Control_Humidif.* and *Status_Humidif.* byte-type communication objects. Datapoints Scaling (DPT_5.001) and Enumerated (DPT_5.010) can be selected.

- When "**Enumerated [DPT 5.010]**" is selected, *Control_Humidif.* and *Status_Humidif.* communication objects for this DPT will appear.

■ 21: Control_Humidif. / 5 Intens. [DPT_5.010 - 1byte] - Intesity Values: 0,1,2,3,4
 ■ 74: Status_Humidif. / 5 Intens. [DPT_5.010 - 1byte] - Intesity Values: 0,1,2,3,4

The low humidifying intensity will be selected if a "**1**" is sent to the *Control_* object. The mid one will be selected sending a "**2**"; the high one will be selected sending a "**3**"; the

continuous one will be selected sending a “4”; to **turn off** the humidifying a “0” must be sent.

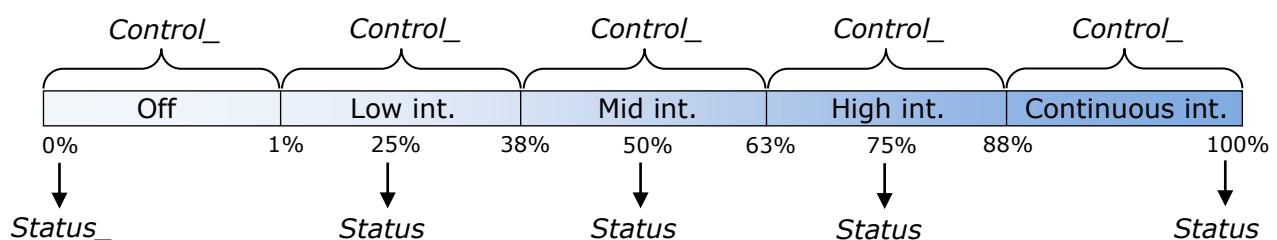
The *Status_* object will always return the value for the Humidifying intensity selected.

⚠ Important: If a value bigger than “4” is sent to the *Control_* object, then the continuous humidifying intensity will be selected.

- When “**Scaling [DPT 5.001]**” is selected, *Control_Humidif.* and *Status_Humidif.* communication objects for this DPT will appear.

21: Control_Humidif. / 5 Intens. [DPT_5.001 - 1byte] - Thresholds: 0%,13%,38%,63%,88%
74: Status_Humidif. / 5 Intens. [DPT_5.001 - 1byte] - 0%, 25%, 50%, 75% and 100%

When a value between **0%** is sent to the *Control_* object the humidifying will be turned off.


When a value between **1%** and **37%** is sent to the *Control_* object, the low humidifying intensity will be selected.

When a value between **38%** and **62%** is sent to the *Control_* object, the mid humidifying intensity will be selected.

When a value between **63%** and **87%** is sent to the *Control_* object, the high humidifying intensity will be selected.

When a value between **88%** and **100%** is sent to the *Control_* object, the continuous humidifying intensity will be selected.

The *Status_* object will return a **0%** when humidifying is turned off, a **25%** for the low intensity, a **50%** for the mid intensity, a **75%** for the high intensity, and a **100%** for the continuous intensity.

2.6.3 Enable use of +/- object for Humidifying

This parameter shows/hides the *Control_Humidifying +/-* communication object which lets increase/decrease the indoor unit humidifying intensity by using two different datapoint types.

27: Control_Humidifying -/+ [DPT_1.007 - 1bit] - 0-Decrease;1-Increase

- If set to “**no**” the object will not be shown.
- If set to “**yes**” the *Control_Humidifying +/-* object and a new parameter will appear.

Enable use of +/- object for Humidifying	Yes
> DPT type for +/- Humidifying object	0-Decrease / 1-Increase [DPT_1.007]
> Rollover Humi. at upper/lower limit (when controlling with +/- obj)	No

Figure 4.19 Parameter detail

➤ [DPT type for +/- Humidifying Object](#)

This parameter lets choose between the datapoints **0-Up / 1-Down [DPT_1.008]** and **0-Decrease / 1-Increase [DPT_1.007]** for the *Control_Humidifying* +/- object.

➤ [Roll-over Humidifying intensity at upper/lower limit](#)

This parameter lets choose if roll-over will be enabled ("yes") or disabled ("no") for the *Control_Humidifying* +/- object.

2.6.4 Enable use of bit-type Humidifying objects (for Control)

This parameter shows/hides the bit-type *Control_Humidifying* objects.

- 22: Control_Humidifying Off [DPT_1.002 - 1bit] - 1-Switch off Humidification
- 23: Control_Humidifying Low [DPT_1.002 - 1bit] - 1-Set Humidifying Low
- 24: Control_Humidifying Mid [DPT_1.002 - 1bit] - 1-Set Humidifying Mid
- 25: Control_Humidifying High [DPT_1.002 - 1bit] - 1-Set Humidifying High
- 26: Control_Humidifying Cont. [DPT_1.002 - 1bit] - 1-Set Humidifying Cont.

- If set to "no" the objects will not be shown.
- If set to "yes" the *Control_Humidifying* objects for off, low intensity, mid intensity, high intensity and continuous intensity will appear. To enable humidifying intensity by using these objects a "1" value has to be sent.

2.6.5 Enable use of bit-type Humidifying objects (for Status)

This parameter shows/hides the bit-type *Status_Humidifying Speed* objects.

- 75: Status_Humidifying Off [DPT_1.002 - 1bit] - 1-Humidifying Off
- 76: Status_Humidifying Low [DPT_1.002 - 1bit] - 1-Humidifying Low
- 77: Status_Humidifying Mid [DPT_1.002 - 1bit] - 1-Humidifying Mid
- 78: Status_Humidifying High [DPT_1.002 - 1bit] - 1-Humidifying High
- 79: Status_Humidifying Cont. [DPT_1.002 - 1bit] - 1-Humidifying Cont.

- If set to “**no**” the objects will not be shown.
- If set to “**yes**” the *Status_Humidifying* objects for off, low intensity, mid intensity, high intensity and continuous intensity will appear. When any humidifying intensity (off included) is enabled, a “**1**” value is returned through its bit-type object.

2.6.6 Enable use of Text object for Humidifying

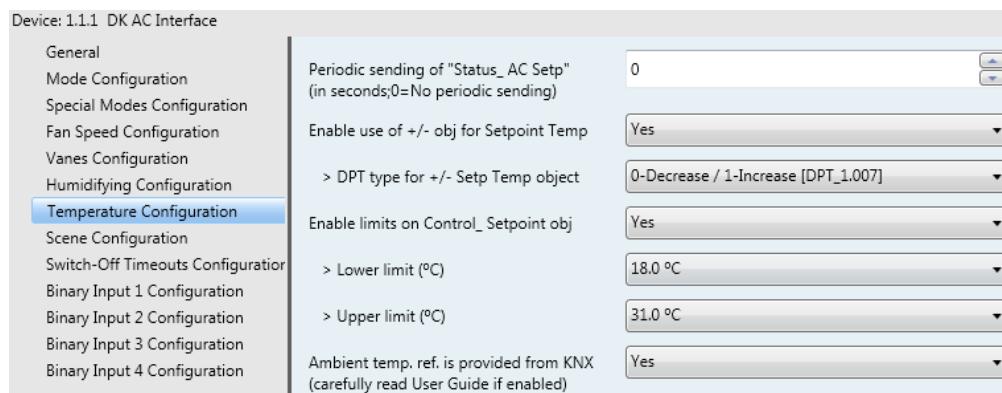
This parameter shows/hides the *Status_Humidifying Text* communication object.

- 80: Status_Humidifying Text [DPT_14.001 - 14byte] - ASCII String

- If set to “**no**” the object will not be shown.
- If set to “**yes**” the *Status_Humidifying Text* object will appear. Also, in the parameters, will be shown five text fields, one for each Fan Speed, that will let modify the text string displayed by the *Status_Humidifying Text* when changing a humidifying intensity.

> String when Humidifying is OFF	HUMI OFF
> String when Humidifying is LOW	HUMI LOW
> String when Humidifying is MID	HUMI MID
> String when Humidifying is HIGH	HUMI HIGH
> String when Humidifying is CONT.	HUMI CONT

Figure 4.20 Parameter detail


2.6.7 Enable use of Legacy_ object for Humi.

This parameter shows/hides the *Legacy_Humidifying* communication object

- 102: Legacy_Humidifying [Enumerated - 1byte] - 0-Off;1-Low;2-Mid;3-Hig;4-Cont

- If set to “**no**” the communication object will not be shown.
- If set to “**yes**” the communication object will appear. This object lets change the indoor unit humidifying intensity but it uses a different data type. It is used to maintain compatibility with old gateway models.

2.7 Temperature Configuration dialog

Figure 4.21 Default Temperature Configuration dialog

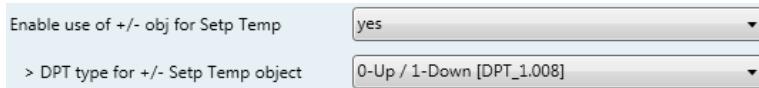
All the parameters in this section are related with the Temperature properties and communication objects.

2.7.1 Periodic sending of “Status_AC_Setp”

This parameter lets change the interval of time (in seconds, from 0 to 255) at the end of which the AC setpoint temperature is sent to the KNX bus. For a “0” value, the AC setpoint temperature will ONLY be sent on change. The AC setpoint temperature is sent through the communication object *Status_AC_Setpoint Temp*.

81: Status_AC_Setpoint Temp [DPT_9.001 - 2byte] - (°C)

Figure 4.22 Parameter detail


⚠ **Important:** In case the ambient temperature is provided from KNX, the setpoint temperature returned from this object, will be the one resulting from the formula shown in the section “2.7.4 Ambient temp. ref. is provided from KNX”.

2.7.2 Enable use of +/- object for Setpoint Temperature

This parameter shows/hides the *Control_Setpoint Temp* +/- communication object which lets change the indoor unit setpoint temperature by using two different datapoint types.

29: Control_Setpoint Temp -/+ [DPT_1.007 - 1bit] - 0-Decrease;1-Increase

- If set to “no” the object will not be shown.
- If set to “yes” the *Control_Setpoint Temp* +/- object and a new parameter will appear.

Figure 4.23 Parameter detail

➤ DPT type for +/- Setp Temp object

This parameter lets choose between the datapoints **0-Up / 1-Down [DPT_1.008]** and **0-Decrease / 1-Increase [DPT_1.007]** for the *Control_Setpoint Temp +/-* object.

(Lower limit) **18°C** **19°C** ... **30°C** **31°C** (Upper limit)

- Up / Increase
- Down / Decrease

2.7.3 Enable limits on Control_Setpoint obj

This parameter enables to define temperature limits for the *Control_Setpoint Temperature* object.

Enable limits on Control_Setpoint obj	<input type="text" value="Yes"/>
> Lower limit (°C)	<input type="text" value="19.0 °C"/>
> Upper limit (°C)	<input type="text" value="30.0 °C"/>

Figure 4.24 Parameter detail

- If set to “**no**” the setpoint temperature limits for the *Control_Setpoint Temperature* object will be the default: 18°C for the lower limit and 31°C for the upper limit.
- If set to “**yes**” it is possible to define temperature limits for the *Control_Setpoint Temperature* object.

➤ Control_Set Temp Lower limit (°C)

This parameter lets to define the lower limit for the setpoint temperature.

➤ Control_Set Temp Upper limit (°C)

This parameter lets to define the upper limit for the setpoint temperature.

⚠ Important: If a setpoint temperature above the upper defined limit (or below the lower defined limit) is sent through the *Control_Setpoint Temperature* object, it will be *ALWAYS* applied the limit defined.

⚠ Important: When limits are enabled, any setpoint temperature sent to the AC (even through scenes, special modes, etc.) will be limited.

2.7.4 Ambient temp. ref. is provided from KNX

This parameter shows/hides the *Control_Ambient Temperature* communication object which lets use an ambient temperature reference provided by a KNX device.

 30: Control_Ambient Temperature [DPT_9.001 - 2byte] - (°C)

- If set to “**no**” the object will not be shown.

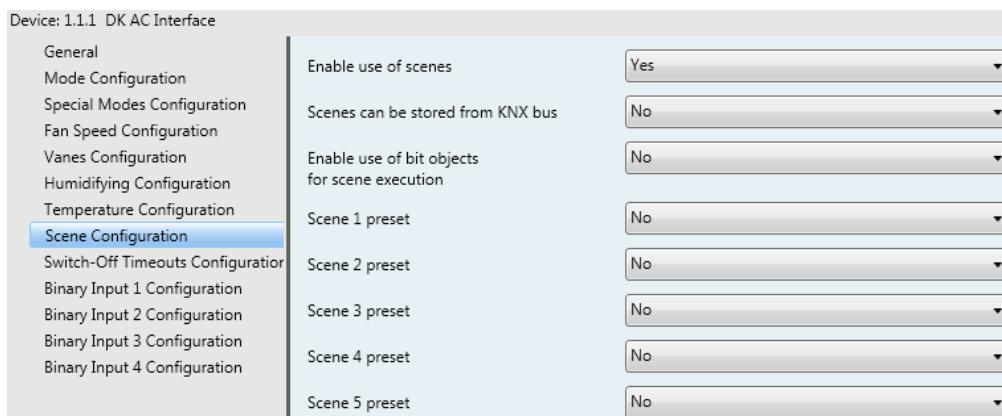
- If set to “**yes**” the *Control_Ambient Temperature* object will appear. Meant to be enabled when you want the temperature provided by a KNX sensor to be the reference ambient temperature for the air conditioner. Then, the following formula applies for calculation of real *Control_Setpoint Temperature* sent to the AC unit:

“AC Setp. Temp.” = “KNX Setp. Temp.” - (“KNX Amb. Temp.” - “KNX Setp. Temp.”)/2

- AC Setp. Temp.: AC indoor unit setpoint temperature
- KNX Amb. Temp.: Ambient temperature provided from KNX
- KNX Setp. Temp.: Setpoint temperature provided from KNX

As an example, consider the following situation:

User wants: **19°C** (“KNX Setp. Temp.”)


User sensor (a KNX sensor) reads: **21°C** (“KNX Amb Temp.”)

In this example, the final setpoint temperature that INKNXDAI001I100 will send out to the indoor unit (shown in “AC Setp. Temp.”) will become $19^{\circ}\text{C} - (21^{\circ}\text{C} - 19^{\circ}\text{C})/2 = 18^{\circ}\text{C}$. This is the setpoint that will actually be requested to Daikin unit.

This formula will be applied as soon as the *Control_Setpoint Temperature* and *Control_Ambient Temperature* objects are written at least once from the KNX installation. After that, they are kept always consistent.

Note that this formula will always drive the AC indoor unit demand in the *right* direction, regardless of the operation mode (Heat, Cool or Auto).

2.8 Scene Configuration dialog

Figure 4.25 Parameter detail

All the parameters in this section are related with the Scene properties and communication objects. A scene contains values of: On/Off, Mode, Fan speed, Vane position, Setpoint Temperature and Remote Controller Disablement.

2.8.1 Enable use of scenes

This parameter shows/hides the scene configuration parameters and communication objects.

40: Control_Execute Scene [DPT_18.001 - 1byte] - 0.4-Execute Scene 1-5

Enable use of scenes

yes

Figure 4.26 Parameter detail

- If set to “**no**” the scene parameters and communication objects will not be shown.
- If set to “**yes**” the scene parameters and communication objects will be shown. To execute a scene through the byte-type object, a value from “**0**” to “**4**” has to be sent, corresponding each one to a different scene (i.e. “0” = Scene 1;... “4” = Scene 5).

2.8.2 Scenes can be stored from KNX bus

This parameter shows/hides the *Control_Save/Exec Scene* and all the *Control_Store Scene* (if enabled) communication objects.

40: Control_Save/Exec Scene [DPT_18.001 - 1byte] - 0.4-Exec1-5;128..132-Save1-5
 41: Control_Store Scene 1 [DPT_1.002 - 1bit] - 1-Store Scene 1
 42: Control_Store Scene 2 [DPT_1.002 - 1bit] - 1-Store Scene 2
 43: Control_Store Scene 3 [DPT_1.002 - 1bit] - 1-Store Scene 3
 44: Control_Store Scene 4 [DPT_1.002 - 1bit] - 1-Store Scene 4
 45: Control_Store Scene 5 [DPT_1.002 - 1bit] - 1-Store Scene 5

- If set to “**no**” the communication objects will not be shown.
- If set to “**yes**” the communication objects and a new parameter will appear. To store a scene through the byte-type object, a value from “**128**” to “**132**” has to be sent to the object, corresponding each one to a different scene (i.e. “128” = Scene 1;... “132” = Scene 5).

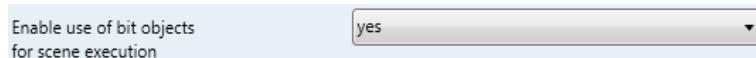
Scenes can be stored from KNX bus
 > Enable use of bit objects
 for storing scenes (from bus)

yes

yes

Figure 4.27 Parameter detail

➤ Enable use of bit objects for storing scenes (from bus)


If set to “**no**” the objects will not be shown.

If set to “**yes**” the *Control_Store Scene* objects for storing scenes will appear. To store a scene by using these objects, a “**1**” value has to be sent to the scene’s object we want to store (i.e. to store scene 4, a “1” has to be sent to the *Control_Store Scene 4* object).

2.8.3 Enable use of bit objects for scene execution

This parameter shows/hides the *Control_ Execute Scene* bit-type communication objects.

- 46: Control_ Execute Scene 1 [DPT_1.002 - 1bit] - 1-Execute Scene 1
- 47: Control_ Execute Scene 2 [DPT_1.002 - 1bit] - 1-Execute Scene 2
- 48: Control_ Execute Scene 3 [DPT_1.002 - 1bit] - 1-Execute Scene 3
- 49: Control_ Execute Scene 4 [DPT_1.002 - 1bit] - 1-Execute Scene 4
- 50: Control_ Execute Scene5 [DPT_1.002 - 1bit] - 1-Execute Scene 5

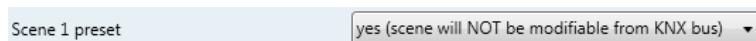


Figure 4.28 Parameter detail

- If set to “**no**” the communication objects will not be shown.
- If set to “**yes**” the communication objects will appear. To execute a scene by using these objects, a “**1**” value has to be sent to the scene’s object we want to execute (i.e. to execute scene 4, a “1” has to be sent to the *Control_ Execute Scene 4* object).

2.8.4 Scene “x” preset

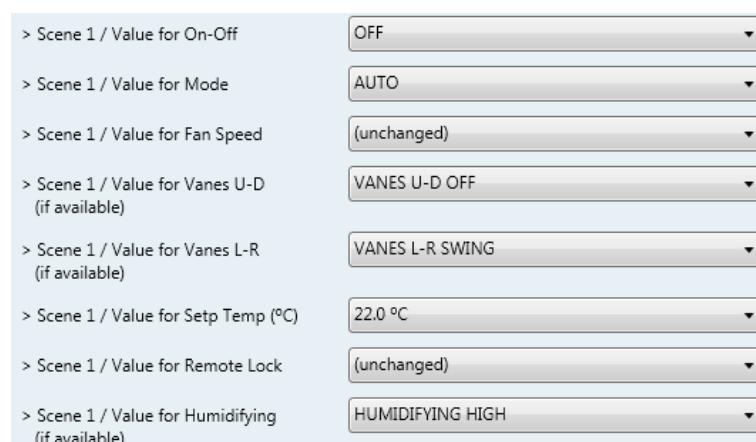

This parameter lets define a preset for a scene (the following description is valid for all the scenes).

Figure 4.29 Parameter detail

- If set to “**no**” the preset for the scene “x” will be disabled.
- If set to “**yes**” the preset will be enabled. When a scene is executed the values configured in the preset will be applied.

⚠ Important: If a scene’s preset is enabled, will not be possible to modify (store) the scene from the KNX bus.

Figure 4.30 Parameter detail

➤ Scene "x" / Value for On-Off

This parameter lets choose the power of the indoor unit when the scene is executed. The following options are available: "**ON**", "**OFF**" or "**(unchanged)**".

➤ Scene "x" / Value for Mode

This parameter lets choose the mode of the indoor unit when the scene is executed. The following options are available: "**AUTO**", "**HEAT**", "**COOL**", "**FAN**", "**DRY**", or "**(unchanged)**".

➤ Scene "x" / Value for Fan Speed

This parameter lets choose the fan speed of the indoor unit when the scene is executed. The following options are available: "**SPEED 1**", "**SPEED 2**", "**SPEED 3**", "**SPEED 4**", "**SPEED 5**", or "**(unchanged)**".

➤ Scene "x" / Value for Vane U-D (if available)

This parameter lets choose the vane position of the indoor unit when the scene is executed. The following options are available: "**VANES U-D OFF**", "**VANES U-D SWING**", or "**(unchanged)**".

➤ Scene "x" / Value for Vane L-R (if available)

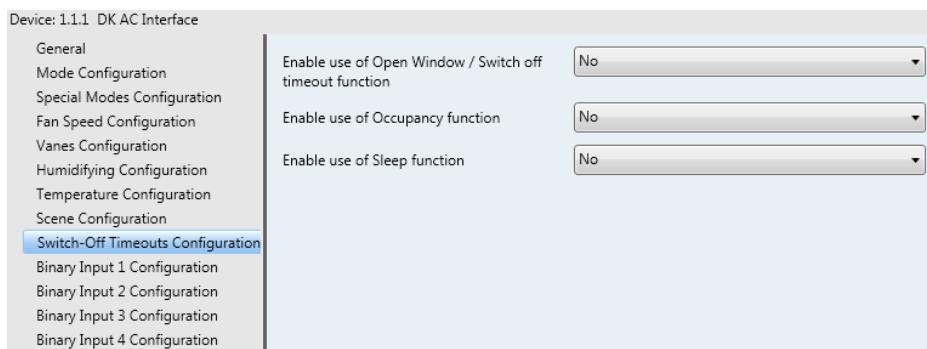
This parameter lets choose the vane position of the indoor unit when the scene is executed. The following options are available: "**VANES L-R OFF**", "**VANES L-R SWING**", or "**(unchanged)**".

➤ Scene "x" / Value for Setp Temp (°C)

This parameter lets choose the setpoint temperature of the indoor unit when the scene is executed. The following options are available: from "**18°C**" to "**31°C**" (both included), or "**(unchanged)**".

➤ Scene "x" / Value for Remote Lock

This parameter lets choose the remote controller status of the indoor unit when the scene is executed. The following options are available: "**Locked**", "**Unlocked**", or "**(unchanged)**".


➤ Scene "x" / Value Humidifying (if available)

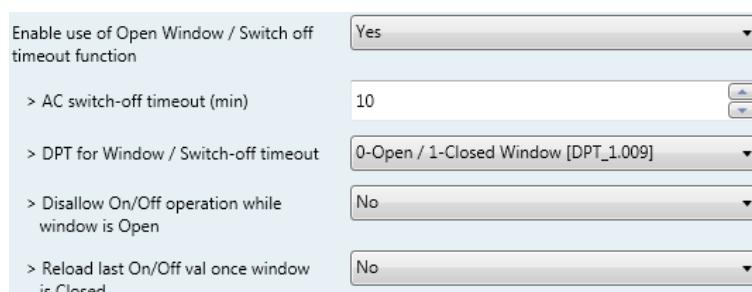
This parameter lets choose the vane position of the indoor unit when the scene is executed. The following options are available: "**HUMIDIFYING OFF**", "**HUMIDIFYING LOW**", "**HUMIDIFYING MED**", "**HUMIDIFYING HIGH**", "**HUMIDIFYING CONTINUOUS**", or "**(unchanged)**".

⚠ Important: If any preset value is configured as "**(unchanged)**", the execution of this scene will not change current status of this feature in the AC unit.

⚠ **Important:** When a scene is executed, *Status_Current Scene* object shows the number of this scene. Any change in previous items does *Status_Current Scene* show "**No Scene**". Only changes on items marked as "**(unchanged)**" will not disable current scene.

2.9 Switch-Off Timeouts Configuration dialog

Figure 4.31 Default Switch-Off Timeouts Configuration dialog


All the parameters in this section are related with the timeout properties and communication objects.

2.9.1 Enable use of Open Window / Switch off timeout function

This parameter shows/hides the *Control_Switch Off Timeout* communication object which lets Start/Stop a timeout to switch off the indoor unit.

■ 31: *Control_Window Contact Status* [DPT_1.009 - 1bit] - 0-Open;1-Closed
 ■ 31: *Control_Switch Off Timeout* [DPT_1.010 - 1bit] - 0-Stop;1-Start

- If set to "**no**" the object will not be shown.
- If set to "**yes**" the *Control_Switch Off Timeout* object and new parameters will appear. If a "**1**" value is sent to this object, and the indoor unit is already turned on, the switch-off timeout will begin. If a "**0**" value is sent to this object, the switch-off timeout will stop.

Figure 4.32 Parameter detail

➤ AC switch-off timeout (min)

This parameter lets select how much time (in minutes) to wait before switching off the indoor unit.

➤ DPT for Window / Switch-off timeout

This parameter lets choose between the datapoints **0-Open / 1-Closed Window [DPT_1.009]** and **0-Stop / 1-Start Timeout [DPT_1.010]** for the *Control_Switch Off Timeout*.

➤ Disallow On/Off operation while window is Open

If set to “**no**”, On/Off commands while the window is open will be accepted.

- If a “**1**” value is sent to the *Control_Switch Off Timeout* object the switch-off timeout period will begin again.
- If a “**0**” value is sent to the *Control_Switch Off Timeout* object, no action will be performed.

If set to “**yes**”, On/Off commands, while the window is open, will be saved (but not applied). These commands will be used in the next parameter if set to “**yes**”.

➤ Reload last On/Off val once window is closed?

If set to “**no**”, once the switch-off timeout is stopped, any value will be reloaded.

If set to “**yes**”, once the switch-off timeout is stopped, the last On/Off value sent will be reloaded.

- If a “**1**” value is sent to the *Control_Switch Off Timeout* object after the timeout period, the indoor unit will **turn on**.
- If a “**0**” value is sent to the *Control_Switch Off Timeout* after the timeout period, no action will be performed.

2.9.2 Enable use of Occupancy function

This parameter shows/hides the *Control_Occupancy* communication object which let's apply different parameters to the indoor unit depending on the presence/no presence in the room.

■ 28: Control_Occupancy [DPT_1.018 - 1bit] - 0-Not Occupied;1-Occupied

- If set to “**no**” the object will not be shown.
- If set to “**yes**” the *Control_Occupancy* object and new parameters will appear. If a “**1**” value is sent to this object (no room occupancy), the timeout will begin. If a “**0**” value is sent to this object, the timeout will stop.

Enable use of Occupancy function	yes
> Timeout to apply action (minutes)	2
> Action after timeout elapsed	Apply Preset Delta

Figure 4.33 Parameter detail

➤ Timeout to apply action (minutes)

This parameter lets choose how much time to wait (in minutes) before executing the action specified in the next parameter ("Action after timeout elapsed").

➤ Action after timeout elapsed

When **Switch-Off** is selected, once the timeout has elapsed, the indoor unit will be turned off.

When **Apply Preset Delta** is selected, once the timeout has elapsed, a delta temperature will be applied to save energy (decreasing the setpoint when in Heat mode or increasing the setpoint when in Cool mode). Also new parameters will appear.

> Temp delta decrease (HEAT) or increase (COOL) (°C)	2.0°C
> Enable secondary timeout	yes

Figure 4.34 Parameter detail

➤ Temp delta decrease (HEAT) or increase (COOL) (°C)

This parameter lets configure the delta temperature (increase or decrease) that will be applied when the timeout has elapsed.

⚠ Important: When there is occupancy again after the application of a delta, the same delta will be applied inversely. (i.e. In a room with AC in cool mode and 25°C setpoint temperature, a **+2°C** delta is applied after the occupancy timeout, setting the setpoint at 27°C because there is no occupancy in the room. If the setpoint is raised to 29°C during that period, when the room is occupied again, a **-2°C** delta will be applied and the final setpoint temperature will then be 27°C).

➤ Enable secondary timeout

If set to "**no**" nothing will be applied.

If set to "**yes**", a new timeout will be enabled and two new parameters will appear.

> Timeout to apply action (min)	2
> Action after timeout elapsed	Apply Preset Delta
> Temp delta dec (HEAT) / or inc (COOL) (°C)	2.0°C

Figure 4.35 Parameter detail➤ Timeout to apply action (minutes)

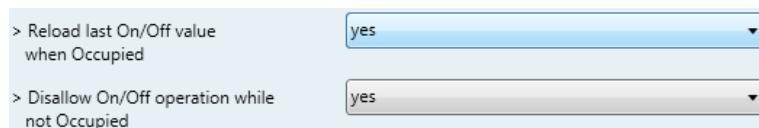
This parameter lets choose how much time to wait (in minutes) before executing the action specified in the next parameter ("Action after timeout elapsed"). This time is considered as a part of the occupancy.

➤ Action after timeout elapsed

When **Switch-Off** is selected, once the timeout has elapsed, the indoor unit will turn off.

When **Apply Preset Delta** is selected, once the timeout configured is extinguished, a delta temperature will be applied (decreasing the setpoint when in Heat mode or increasing the setpoint when in Cool mode). Also new parameters will appear.

➤ Temp delta decrease (HEAT) or increase (COOL) (°C)


This parameter lets configure the delta temperature that will be applied when the timeout is extinguished.

 Important: When there is occupancy again after the application of a delta, the same delta will be applied inversely as explained above.

➤ Disallow On/Off operation while not Occupied

If set to "**no**", On/Off commands while the window is open will be accepted.

If set to "**yes**", once **Switch-Off** action has been executed, On/Off commands will be saved (but not applied). These commands will be used in the next parameter if set to "**yes**".

Figure 4.36 Parameter detail

Consider that the countdown time (transitional time between occupancy and non-occupancy) is considered as a part of the occupancy status as explained before.

➤ Reload last On/Off value when Occupied

If set to "**no**", once the switch-off timeout has elapsed, any value will be reloaded.

If set to "**yes**", once the switch-off timeout has elapsed, the last On/Off value will be reloaded.

- If a "**1**" value is sent to the *Control_Occupancy* object after the timeout period, the indoor unit will **turn on**.

- If a “0” value is sent to the *Control_Occupancy* after the timeout period, no action will be performed.

2.9.3 Enable use of SLEEP timeout

This parameter shows/hides the *Control_Start Sleep Timeout* communication object which lets start a timeout to automatically turn off the indoor unit.

33: Control_Sleep Timeout [DPT_1.010 - 1bit] - 0-Stop;1-Start

- If set to “no” the object will not be shown.
- If set to “yes” the *Control_Start Sleep Timeout* object and a new parameter will appear. If a “1” value is sent to this object the switch-off timeout will begin. If a “0” value is sent to this object, the switch-off timeout will stop.



Figure 4.37 Parameter detail

➤ Timeout to apply action (minutes)

This parameter lets select how much time (in minutes) to wait before switching off the AC unit.

2.10 Binary Input “x” Configuration dialog

Figure 4.38 Binary Input Configuration dialog

All the parameters in this section are related with the binary inputs properties and communication objects.

2.10.1 Enable use of Input “x”

This parameter enables the use of the Input “x” and shows/hides the *Status_Inx* communication object(s) which will act as configured in the “Function” parameter.

- 91: Status_In1 - Switching [DPT_1.001 - 1bit] - 0-Off;1-On
- 93: Status_In2 - Switching [DPT_1.001 - 1bit] - 0-Off;1-On
- 95: Status_In3 - Switching [DPT_1.001 - 1bit] - 0-Off;1-On
- 97: Status_In4 - Switching [DPT_1.001 - 1bit] - 0-Off;1-On

- If set to “**no**” the objects will not be shown.
- If set to “**yes**” the *Status_Inx* object(s) and new parameters will appear.

2.10.2 Contact type

This parameter lets choose the behavior that will have the binary input depending on if the contact is normally open or normally closed.

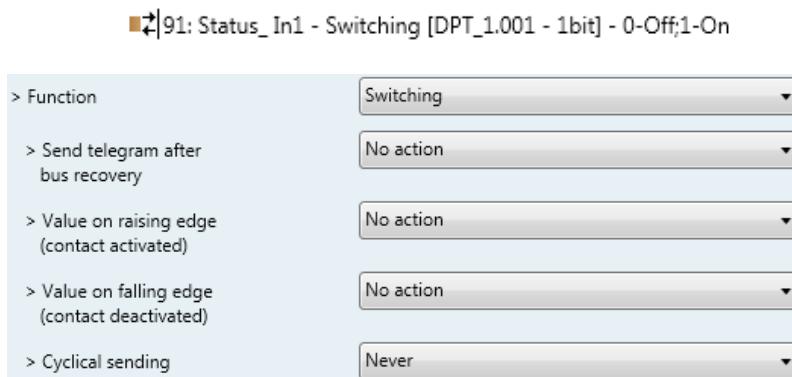
- There are two possible options to configure the contact type: “**NO: Normally Open**” and “**NC: Normally Closed**”.

2.10.3 Debounce time

This parameter lets choose a debounce time (in milliseconds) that will be applied to the contact.

2.10.4 Disabling function

This parameter shows/hides the *Control_Disable Input x* communication object which will let disable/enable the input x.


- 51: Control_Disable Input 1 [DPT_1.002 - 1bit] - 0-Enable;1-Disable
- 51: Control_Disable Input 1 [DPT_1.003 - 1bit] - 0-Disable;1-Enable;

- If set to “**no**” any object will be shown.
- When “**DPT 1.003: 0-Disable; 1-Enable**” is selected, the input can be disabled using the value “**0**” and enabled using the value “**1**”.
- When “**DPT 1.002: 0-Enable; 1-Disable**” is selected, the input can be disabled using the value “**1**” and enabled using the value “**0**”.

2.10.5 Function

This parameter lets choose the function that will have the binary input. There are 7 different functions available: Switching, Dimming, Shutter/Blind, Value, Execute Scene (internal), Occupancy (internal) and Window Contact (internal).

- When “**Switching**” is selected the communication object and new parameters for the Input “x” will appear as shown below.



Figure 4.39 Parameter detail

➤ Send telegram after bus recovery

This parameter lets select if the Binary Input “x” will send a telegram, or not, after a bus recovery, and the type of telegram sent (if enabled).

- When “**No action**” is selected, no telegram will be sent after a bus recovery.
- When “**Current status**” is selected, the binary input will send a telegram with its current status after a bus recovery. Also a new parameter will appear (see below).
- When “**On**” is selected, the binary input will send a telegram with a “**1**” value after a bus recovery. Also a new parameter will appear (see below).
- When “**Off**” is selected, the binary input will send a telegram with a “**0**” value after a bus recovery. Also a new parameter will appear (see below).

Figure 4.40 Parameter detail

➤ Sending delay after a bus recovery (seconds)

This parameter lets configure a delay (in seconds) that will be applied after a bus recovery and, after which, a telegram will be sent.

➤ Value on rising edge

This parameter lets select the value that the Binary Input “x” will send on a rising edge (contact activated).

- When “**On**” is selected, the binary input will always send telegrams with a “**1**” value.
- When “**Off**” is selected, the binary input will always send telegrams with a “**0**” value.
- When “**Toggle (On/Off)**” is selected, the binary input will send a “**1**” value after a “**0**” value and viceversa.
- When “**No action**” is selected, the binary input will not perform any action.

➤ Value on falling edge

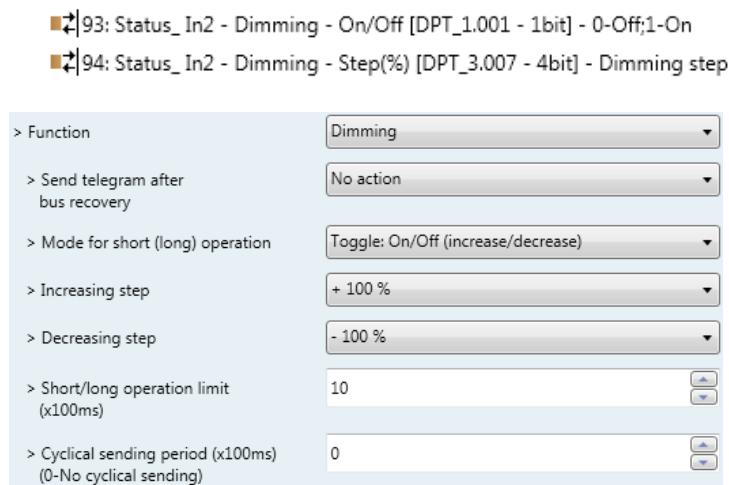
This parameter lets select the value that the Binary Input “x” will send on a falling edge (contact deactivated).

- When “**On**” is selected, the binary input will always send telegrams with a “**1**” value.
- When “**Off**” is selected, the binary input will always send telegrams with a “**0**” value.
- When “**Toggle (On/Off)**” is selected, the binary input will send a “**1**” value after a “**0**” value and viceversa.
- When “**No action**” is selected, the binary input will not perform any action.

➤ Cyclical sending

This parameter lets enable/disable cyclical sending when a determined condition is met.

- When “**When output value is On**” is selected, everytime a “**1**” value is sent, it will be sent cyclically. Also a new parameter will appear (see below).
- When “**When output value is Off**” is selected, everytime a “**0**” value is sent, it will be sent cyclically. Also a new parameter will appear (see below).
- When “**Always**” is selected, the binary input will send any value cyclically. Also a new parameter will appear (see below).
- When “**Never**” is selected, cyclical sending will be disabled.


➤ Period for cyclical sending (seconds)

This parameter lets configure a time (in seconds) for the cyclical sending.

Figure 4.41 Parameter detail

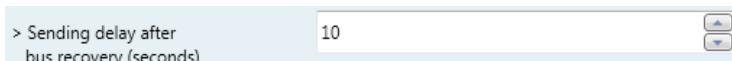

- When “**Dimming**” is selected the communication objects and new parameters for the Input “x” will appear as shown below.

Figure 4.42 Parameter detail

➤ Send telegram after bus recovery

This parameter lets select if the Binary Input "x" will send a telegram, or not, after a bus recovery, and the type of telegram sent (if enabled).

- When "**No action**" is selected, no telegram will be sent after a bus recovery.
- When "**On**" is selected, the binary input will send a telegram with a "**1**" value after a bus recovery. Also a new parameter will appear (see below).
- When "**Off**" is selected, the binary input will send a telegram with a "**0**" value after a bus recovery. Also a new parameter will appear (see below).

Figure 4.43 Parameter detail

➤ Sending delay after a bus recovery (seconds)

This parameter lets configure a delay (in seconds) that will be applied after a bus recovery and, after which, a telegram will be sent.

➤ Mode for short (long) operation

This parameter lets select the value that the Binary Input "x" will send on a rising edge (contact activated), for a short and a long operation.

- When "**On (increase)**" is selected, the binary input will always send telegrams with a "**1**" value for a short operation, and an "**increase step**" for a long operation.
- When "**Off (decrease)**" is selected, the binary input will always send telegrams with a "**0**" value for a short operation, and an "**decrease step**" for a long operation.

- When “**Toggle: On/Off (increase/decrease)**” is selected:
 - For the short operation the binary input will send a “**1**” value after a “**0**” value and viceversa.
 - For the long operation the binary input will send an “**increase step**” after a “**decrease step**” and viceversa.

⚠ **Important:** Note that the first long operation in toggle depends on the last short operation, meaning that after a “**1**” value will be sent a “**decrease step**” and after a “**0**” value will be sent an “**increase step**”.

⚠ **Important:** The time period between a short and a long operation is defined in the parameter “**Short/long operation limit (x100ms)**”.

➤ [Increasing step](#)

This parameter lets select the increasing step value (in %) that will be sent for a long operation.

➤ [Decreasing step](#)

This parameter lets select the decreasing step value (in %) that will be sent for a long operation.

➤ [Short/long operation limit \(x100ms\)](#)

This parameter lets introduce the time period difference for the short and the long operation.

➤ [Cycl. send. period in long oper. \(x100ms\)](#)

This parameter lets configure a time (in seconds) for the cyclical sending of a long operation.

- When “**Shutter/Blind**” is selected the communication objects and new parameters for the Input “x” will appear as shown below.


■ 95: Status_In3 - Shut/Blind - Step [DPT_1.023 - 1bit] - 0-Step Up;1-Step Down
■ 96: Status_In3 - Shut/Blind - Move [DPT_1.023 - 1bit] - 0-Move Up;1-Move Down

Figure 4.44 Parameter detail

➤ [Send telegram after bus recovery](#)

This parameter lets select if the Binary Input "x" will send a telegram, or not, after a bus recovery and the type of telegram sent (if enabled).

- When "**No action**" is selected, no telegram will be sent after a bus recovery.
- When "**Move Up**" is selected, the binary input will send a telegram with a "**0**" value after a bus recovery. Also a new parameter will appear (see below).
- When "**Move Down**" is selected, the binary input will send a telegram with a "**1**" value after a bus recovery. Also a new parameter will appear (see below).

Figure 4.45 Parameter detail

➤ [Sending delay after a bus recovery \(seconds\)](#)

This parameter lets configure a delay (in seconds) that will be applied after a bus recovery and, after which, a telegram will be sent.

➤ [Operation](#)

This parameter lets select the value that the Binary Input "x" will send on a rising edge (contact activated).

- When "**Up**" is selected, the binary input will always send telegrams with a "**0**".
- When "**Down**" is selected, the binary input will always send telegrams with a "**1**" value.
- When "**Toggle (Up/Down)**" is selected the binary input will send a "**0**" value after a "**1**" value and viceversa.

➤ [Method](#)

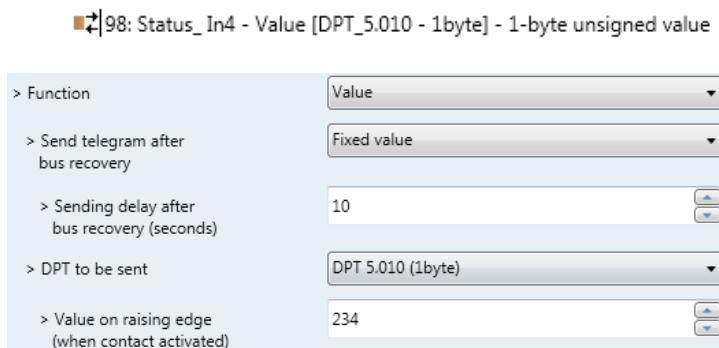
This parameter lets select the working method for the shutter/blind.

- When “**Step-Move-Step**” is selected: On a rising edge (contact activated) a step/stop telegram will be sent and will begin a time called **T1**. If a falling edge occurs (contact deactivated) during the **T1**, no action will be performed.

If the rising edge is maintained longer than **T1**, a move telegram will be sent and will start a time called **T2**. If a falling edge occurs during the **T2**, a step/stop telegram will be sent. If a falling edge occurs after **T2** no action will be performed.

- When “**Move-Step**” is selected: On a rising edge a move telegram will be sent and will begin the **T2** time. If a falling edge occurs during the **T2**, a step/stop telegram will be sent. If a falling edge occurs after **T2** no action will be performed.

⚠ Important: The **T1** time have to be defined in the “Short/long operation limit (x100ms)” parameter. Also the **T2** time have to be defined in the “Vanes adjustment time (x100ms)” parameter.


➤ Short/long operation limit (x100ms)

This parameter lets introduce the time period difference for the short and the long operation (T1 time).

➤ Vanes adjustment time (x100ms)

This parameter lets introduce the time period for the vanes adjustment/blind movement (T2 time).

- When “**Value**” is selected the communication objects and new parameters for the Input “x” will appear as shown below.

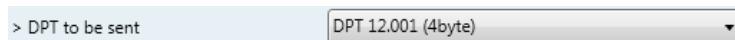
Figure 4.46 Parameter detail

➤ Send telegram after bus recovery

This parameter lets select if the Binary Input “x” will send a telegram, or not, after a bus recovery and the type of telegram sent (if enabled).

- When “**No action**” is selected, no telegram will be sent after a bus recovery.
- When “**Fixed value**” is selected, the binary input will send a telegram with the same value configured in the “Value on rising edge” parameter. Also a new parameter will appear (see below).

Figure 4.47 Parameter detail


➤ Sending delay after a bus recovery (seconds)

This parameter lets configure a delay (in seconds) that will be applied after a bus recovery and, after which, a telegram will be sent.

Figure 4.48 Parameter detail

➤ DPT to be sent

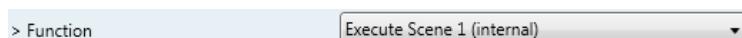

This parameter lets select the DPT type for the value that will be defined in the next parameter. This value will be sent on a rising edge (contact activated).

Figure 4.49 Parameter detail

➤ Value on rising edge (when contact activated)

This parameter lets define a value for the DPT type configured in the "DPT to be sent" parameter. This value will be sent on a rising edge (contact activated).

- When "**Execute Scene (internal)**" is selected, the binary input "x" will activate the "Scene 1", on a rising edge (contact activated).

Figure 4.50 Parameter detail

➤ Scene 1 when contact is activated

The scene 1 will be activated on a rising edge. This scene MUST be defined in the "Scene Configuration" dialog as a preset.

- When "**Occupancy (internal)**" is selected, the binary input "x" will have the same behavior as configured in the parameter "Enable use of Occupancy function" inside the "Switch-Off Timeouts Configuration" dialog.

Figure 4.51 Parameter detail

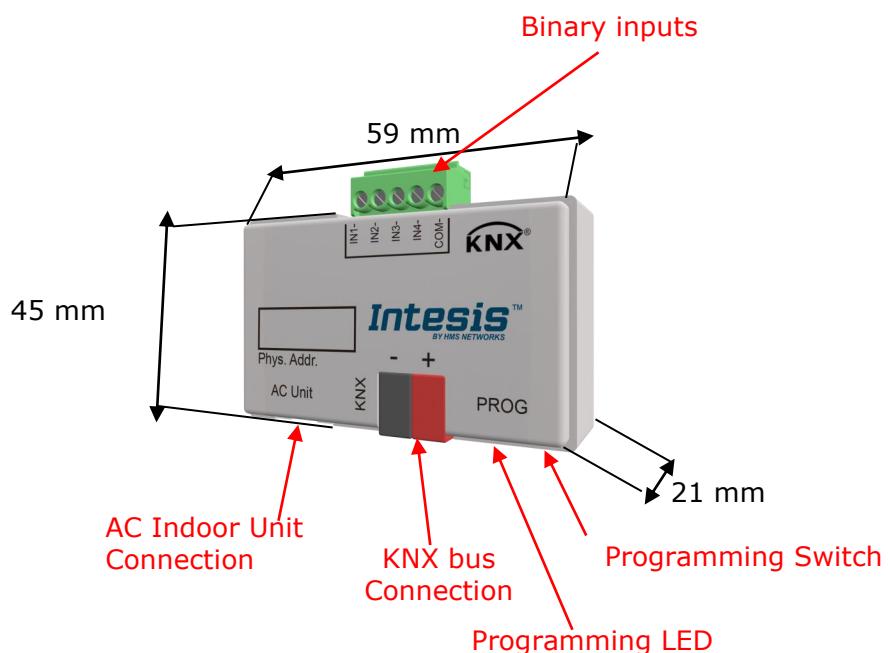

- When “**Window Contact (internal)**” is selected, the binary input “x” will have the same behavior as configured in the parameter “Enable use of Open Window / Switch off timeout function” inside the “Switch-Off Timeouts Configuration” dialog.

Figure 4.52 Parameter detail

5. Specifications

Envelope	ABS (UL 94 HB). 2,5 mm thickness
Dimensions	59 x 45 x 21 mm
Weight	35g
Colour	Light Grey
Power supply	29V DC, 7mA Supplied through KNX bus.
LED indicators	1 x KNX programming.
Push buttons	1 x KNX programming.
Binary inputs	4 x Potential-free binary inputs. Signal cable length: 5m ushielded, may be extended up to 20m with twisted. Compliant with the following standards: IEC61000-4-2 : level 4 - 15kV (air discharge) - 8kV (contact discharge) MIL STD 883E-Method 3015-7 : class3B
Configuration	Configuration with ETS.
Operating Temperature	From -25°C to 60°C
Storage Temperature	From -40°C to 85°C
Isolation Voltage	4000V
RoHS conformity	Compliant with RoHS directive (2002/95/CE).
Certifications	CE conformity to EMC directive (2004/108/EC) and Low-voltage directive (2006/95/EC) EN 61000-6-1; EN 61000-6-3; EN 60950-1; EN 50491-3; EN 50090-2-2; EN 50428; EN 60669-1; EN 60669-2-1

6. AC Unit Types compatibility.

A list of Daikin indoor unit models compatible with INKNXDAI001I100 and their available features can be found in:

https://www.intesis.com/docs/compatibilities/inxxx dai001xx00_compatibility

7. Error Codes

Error Code KNX Object	Error in Remote Controller	Error category	Error Description
17	A0	Indoor Unit	External protection devices activated
18	A1		Indoor unit PCB assembly failure
19	A2		Interlock error for fan
20	A3		Drain level system error
21	A4		Temperature of heat exchanger (1) error
22	A5		Temperature of heat exchanger (2) error
23	A6		Fan motor locked, overload, over current
24	A7		Swing flap motor error
25	A8		Overcurrent of AC input
26	A9		Electronic expansion valve drive error
27	AA		Heater overheat
28	AH		Dust collector error / No-maintenance filter error
30	AJ		Capacity setting error (indoor)
31	AE		Shortage of water supply
32	AF		Malfunctions of a humidifier system (water leaking)
33	C0		Malfunctions in a sensor system
36	C3		Sensor system of drain water error
37	C4		Heat exchanger (1) (Liquid pipe) thermistor system error
38	C5		Heat exchanger (1) (Gas pipe) thermistor system error
39	C6		Sensor system error of fan motor locked, overload
40	C7		Sensor system of swing flag motor error
41	C8		Sensor system of over-current of AC input
42	C9		Suction air thermistor error
43	CA		Discharge air thermistor system error
44	CH		Contamination sensor error
45	CC		Humidity sensor error
46	CJ		Remote control thermistor error
47	CE		Radiation sensor error
48	CF		High pressure switch sensor
49	E0	Outdoor Unit	Protection devices activated
50	E1		Outdoor unit PCB assembly failure
52	E3		High pressure switch (HPS) activated
53	E4		Low pressure switch (LPS) activated
54	E5		Overload of inverter compressor motor
55	E6		Over current of STD compressor motor
56	E7		Overload of fan motor / Over current of fan motor
57	E8		Over current of AC input
58	E9		Electronic expansion valve drive error
59	EA		Four-way valve error
60	EH		Pump motor over current
61	EC		Water temperature abnormal
62	EJ		(Site installed) Protection device activated
63	EE		Malfunctions in a drain water
64	EF		Ice thermal storage unit error
65	H0		Malfunctions in a sensor system
66	H1		Air temperature thermistor error
67	H2		Sensor system of power supply error
68	H3		High Pressure switch is faulty
69	H4		Low pressure switch is faulty
70	H5		Compressor motor overload sensor is abnormal
71	H6		Compressor motor over current sensor is abnormal
72	H7		Overload or over current sensor of fan motor is abnormal
73	H8		Sensor system of over-current of AC input
74	H9		Outdoor air thermistor system error
75	HA		Discharge air thermistor system error
76	HH		Pump motor sensor system of over current is abnormal
77	HC		Water temperature sensor system error
79	HE		Sensor system of drain water is abnormal
80	HF		Ice thermal storage unit error (alarm)
81	F0		No.1 and No.2 common protection device operates.
82	F1		No.1 protection device operates.
83	F2		No.2 protection device operates
84	F3		Discharge pipe temperature is abnormal
87	F6		Temperature of heat exchanger (1) abnormal
91	FA		Discharge pressure abnormal
92	FH		Oil temperature is abnormally high
93	FC		Suction pressure abnormal
95	FE		Oil pressure abnormal
96	FF		Oil level abnormal
97	J0		Sensor system error of refrigerant temperature
98	J1		Pressure sensor error
99	J2		Current sensor error
100	J3		Discharge pipe thermistor system error
101	J4		Low pressure equivalent saturated temperature sensor system error

102	J5	Suction pipe thermistor system error
103	J6	Heat exchanger (1) thermistor system error
104	J7	Heat exchanger (2) thermistor system error
105	J8	Oil equalizer pipe or liquid pipe thermistor system error
106	J9	Double tube heat exchanger outlet or gas pipe thermistor system error
107	JA	Discharge pipe pressure sensor error
108	JH	Oil temperature sensor error
109	JC	Suction pipe pressure sensor error
111	JE	Oil pressure sensor error
112	JF	Oil level sensor error
113	L0	Inverter system error
116	L3	Temperature rise in a switch box
117	L4	Radiation fin (power transistor) temperature is too high
118	L5	Compressor motor grounded or short circuit, inverter PCB fault
119	L6	Compressor motor grounded or short circuit, inverter PCB fault
120	L7	Over current of all inputs
121	L8	Compressor over current, compressor motor wire cut
122	L9	Stall prevention error (start-up error) Compressor locked, etc.
123	LA	Power transistor error
125	LC	Communication error between inverter and outdoor control unit
129	P0	Shortage of refrigerant (thermal storage unit)
130	P1	Power voltage imbalance, open phase
132	P3	Sensor error of temperature rise in a switch box
133	P4	Radiation fin temperature sensor error
134	P5	DC current sensor system error
135	P6	AC or DC output current sensor system error
136	P7	Total input current sensor error
142	PJ	Capacity setting error (outdoor)
145	U0	Low pressure drop due to insufficient refrigerant or electronic expansion valve error, etc.
146	U1	Reverse phase, Open phase
147	U2	Power voltage failure / Instantaneous power failure
148	U3	Failure to carry out check operation, transmission error
149	U4	Communication error between indoor unit and outdoor unit, communication error between outdoor unit and BS unit
150	U5	Communication error between remote control and indoor unit / Remote control board failure or setting error for remote control
151	U6	Communication error between indoor units
152	U7	Communication error between outdoor units / Communication error between outdoor unit and ice thermal storage unit
153	U8	Communication error between main and sub remote controllers (sub remote control error) / Combination error of other indoor unit / remote control in the same system (model)
154	U9	Communication error between other indoor unit and outdoor unit in the same system / Communication error between other BS unit and indoor/outdoor unit
155	UA	Combination error of indoor/BS/outdoor unit (model, quantity, etc.), setting error of spare parts PCB when replaced
156	UH	Improper connection of transmission wiring between outdoor and outdoor unit outside control adaptor
157	UC	Centralized address duplicated
158	UJ	Attached equipment transmission error
159	UE	Communication error between indoor unit and centralized control device
160	UF	Failure to carry out check operation Indoor-outdoor, outdoor-outdoor communication error, etc.
209	60	All system error
210	61	PC board error
211	62	Ozone density abnormal
212	63	Contamination sensor error
213	64	Indoor air thermistor system error
214	65	Outdoor air thermistor system error
217	68	HVU error (Ventiair dust-collecting unit)
219	6A	Dumper system error
220	6H	Door switch error
221	6C	Replace the humidity element
222	6J	Replace the high efficiency filter
223	6E	Replace the deodorization catalyst
224	6F	Simplified remote controller error
226	51	Fan motor of supply air over current or overload
227	52	Fan motor of return air over current / Fan motor of return air overload
228	53	Inverter system error (supply air side)
229	54	Inverter system error (return air side)
241	40	Humidifying valve error
242	41	Chilled water valve error
243	42	Hot water valve error
244	43	Heat exchanger of chilled water error
245	44	Heat exchanger of hot water error
-1	N/A	INKNXDAI001I100 Error in the communication of INKNXDAI001I100 device with the AC unit

In case you detect an error code not listed, contact your nearest Daikin technical support service for more information on the error meaning.

Appendix A – Communication Objects Table

TOPIC	OBJECT NUMBER	NAME	LENGTH	DATAPOINT TYPE		FLAGS				FUNCTION
				DPT_NAME	DPT_ID	R	W	T	U	
On/Off	0	Control_On/Off	1 bit	DPT_Switch	1.001		W	T		0 - Off; 1-On
Mode	1	Control_Mode	1 byte	DPT_HVACContrMode	20.105		W	T		0 - Auto; 1 - Heat; 3 - Cool; 9 - Fan; 14 - Dry
	2	Control_Mode Cool/Heat	1 bit	DPT_Heat/Cool	1.100		W	T		0 - Cool; 1 - Heat;
	3	Control_Mode Cool & On	1 byte	DPT_Scaling	5.001		W	T		0% - Off; 0.1%-100% - On + Cool
	4	Control_Mode Heat & On	1 byte	DPT_Scaling	5.001		W	T		0% - Off; 0.1%-100% - On + Heat
	5	Control_Mode Auto	1 bit	DPT_Bool	1.002		W	T		1 - Auto
	6	Control_Mode Heat	1 bit	DPT_Bool	1.002		W	T		1 - Heat
	7	Control_Mode Cool	1 bit	DPT_Bool	1.002		W	T		1 - Cool
	8	Control_Mode Fan	1 bit	DPT_Bool	1.002		W	T		1 - Fan
	9	Control_Mode Dry	1 bit	DPT_Bool	1.002		W	T		1 - Dry
	10	Control_Mode +/-	1 bit	DPT_Step	1.007		W			0 - Decrease; 1 - Increase
Fan Speed	11	Control_Fan Speed / 5 Speeds	1 byte	DPT_Scaling	5.001		W	T		0%-29% - Speed 1; 30%-49% - Speed 2; 50%-69% - Speed 3; 70%-89% - Speed 4; 90%-100% - Speed 5.
		Control_Fan Speed / 5 Speeds	1 byte	DPT_Enumerated	5.010		W	T		1 - Speed 1; 2 - Speed 2; 3 Speed 3; 4 - Speed 4; 5 Speed 5
	12	Control_Fan Speed Manual/Auto	1 bit	DPT_Bool	1.002		W	T		0 - Manual; 1 - Auto

	13	Control_Fan Speed 1	1 bit	DPT_Bool	1.002	W	T	1 - Fan Speed 1
	14	Control_Fan Speed 2	1 bit	DPT_Bool	1.002	W	T	1 - Fan Speed 2
	15	Control_Fan Speed 3	1 bit	DPT_Bool	1.002	W	T	1 - Fan Speed 3
	16	Control_Fan Speed 4	1 bit	DPT_Bool	1.002	W	T	1 - Fan Speed 4
	17	Control_Fan Speed 5	1 bit	DPT_Bool	1.002	W	T	1 - Fan Speed 5
	18	Control_Fan Speed +/-	1 bit	DPT_Step	1.007	W		0 - Decrease; 1 - Increase
		Control_Fan Speed +/-	1 bit	DPTUpDown	1.008	W		0 - Up; 1 - Down
Vanes	19	Control_Vanes U-D Swing	1 bit	DPT_Bool	1.002	W	T	0 - Off; 1 - Swing
	20	Control_Vanes L-R Swing	1 bit	DPT_Bool	1.002	W	T	0 - Off; 1 - Swing
Humidifying	21	Control_Humidif. / 5 Intens.	1 byte	DPT_Scaling	5.001	W	T	0% - Off; 1%-38% - Low; 39%-63% Mid; 64%-88% - High; 89%-100% - Continuous
		Control_Humidif. / 5 Intens.	1 byte	DPT_Enumerated	5.010	W	T	0 - Off; 1 - Low; 2 - Mid; 3 - High; 4 - Continuous
	22	Control_Humidifying Off	1 bit	DPT_Bool	1.002	W	T	1 - Humidifying Off
	23	Control_Humidifying Low	1 bit	DPT_Bool	1.002	W	T	1 - Humidifying Low
	24	Control_Humidifying Mid	1 bit	DPT_Bool	1.002	W	T	1 - Humidifying Mid
	25	Control_Humidifying High	1 bit	DPT_Bool	1.002	W	T	1 - Humidifying High
	26	Control_Humidifying Cont.	1 bit	DPT_Bool	1.002	W	T	1 - Humidifying Continuous
	27	Control_Humidifying +/-	1 bit	DPT_Step	1.007	W		0 - Decrease; 1 - Increase
		Control_Humidifying +/-	1 bit	DPTUpDown	1.008	W		0 - Up; 1 - Down
Temperature	28	Control_Setpoint Temperature	2 byte	DPT_Value_Temp	9.001	W	T	(°C)
	29	Control_Setpoint Temp +/-	1 bit	DPT_Step	1.007	W		0 - Decrease; 1 - Increase

		Control_Setpoint Temp +/-	1 bit	DPTUpDown	1.008	W		0 - Up; 1 - Down
	30	Control_Ambient Temperature	2 byte	DPT_Value_Temp	9.001	W	T	(°C)
Timeout	31	Control_Switch Off Timeout	1 bit	DPT_OpenClose	1.009	W	T	0 - Open; 1 - Closed
		Control_Switch Off Timeout	1 bit	DPT_Start	1.010	W	T	0 - Stop; 1 - Start
	32	Control_Occupancy	1 bit	DPT_Occupancy	1.018	W	T	0 - Not Occupied; 1 - Occupied
	33	Control_Sleep Timeout	1 bit	DPT_Start	1.010	W	T	0 - Stop; 1 - Start
	34	Control_Lock Remote Control	1 bit	DPT_Bool	1.002	W	T	0 - Unlocked; 1 - Locked
Locking	35	Control_Lock Control Objects	1 bit	DPT_Bool	1.002	W	T	0 - Unlocked; 1 - Locked
	36	Control_Power Mode	1 bit	DPT_Start	1.010	W	T	0 - Stop; 1 - Start
	37	Control_Econo Mode	1 bit	DPT_Start	1.010	W	T	0 - Stop; 1 - Start
	38	Control_Additional Heat	1 bit	DPT_Start	1.010	W	T	0 - Stop; 1 - Start
	39	Control_Additional Cool	1 bit	DPT_Start	1.010	W	T	0 - Stop; 1 - Start
Scenes	40	Control_Save/Exec Scene	1 byte	DPT_SceneControl	18.001	W	T	0 to 4 - Exec. Scene 1 to 5; 128 to 132 - Save Scene 1 to 5
	41	Control_Store Scene1	1 bit	DPT_Bool	1.002	W		1 - Store Scene
	42	Control_Store Scene2	1 bit	DPT_Bool	1.002	W		1 - Store Scene
	43	Control_Store Scene3	1 bit	DPT_Bool	1.002	W		1 - Store Scene
	44	Control_Store Scene4	1 bit	DPT_Bool	1.002	W		1 - Store Scene
	45	Control_Store Scene5	1 bit	DPT_Bool	1.002	W		1 - Store Scene
	46	Control_Execute Scene1	1 bit	DPT_Bool	1.002	W	T	1 - Execute Scene
	47	Control_Execute Scene2	1 bit	DPT_Bool	1.002	W	T	1 - Execute Scene
	48	Control_Execute Scene3	1 bit	DPT_Bool	1.002	W	T	1 - Execute Scene

	49	Control_ Execute Scene4	1 bit	DPT_Bool	1.002	W	T	1 - Execute Scene
	50	Control_ Execute Scene5	1 bit	DPT_Bool	1.002	W	T	1 - Execute Scene
Disabling	51	Control_Disable Input 1	1 bit	DPT_Bool	1.002	W	T	0 - Enable; 1 - Disable
		Control_Disable Input 1	1 bit	DPT_Enable	1.003	W	T	0 - Disable; 1 - Enable
	52	Control_Disable Input 2	1 bit	DPT_Bool	1.002	W	T	0 - Enable; 1 - Disable
		Control_Disable Input 2	1 bit	DPT_Enable	1.003	W	T	0 - Disable; 1 - Enable
	53	Control_Disable Input 3	1 bit	DPT_Bool	1.002	W	T	0 - Enable; 1 - Disable
		Control_Disable Input 3	1 bit	DPT_Enable	1.003	W	T	0 - Disable; 1 - Enable
	54	Control_Disable Input 4	1 bit	DPT_Bool	1.002	W	T	0 - Enable; 1 - Disable
		Control_Disable Input 4	1 bit	DPT_Enable	1.003	W	T	0 - Disable; 1 - Enable
On/Off	55	Status_On/Off	1 bit	DPT_Switch	1.001	R	T	0 - Off; 1-On
Mode	56	Status_Mode	1 byte	DPT_HVACContrMode	20.105	R	T	0 - Auto; 1 - Heat; 3 - Cool; 9 - Fan; 14 - Dry
	57	Status_Mode Cool/Heat	1 bit	DPT_Heat/Cool	1.100	R	T	0 - Cool; 1 - Heat
	58	Status_Mode Auto	1 bit	DPT_Bool	1.002	R	T	1 - Auto
	59	Status_Mode Heat	1 bit	DPT_Bool	1.002	R	T	1 - Heat
	60	Status_Mode Cool	1 bit	DPT_Bool	1.002	R	T	1 - Cool
	61	Status_Mode Fan	1 bit	DPT_Bool	1.002	R	T	1 - Fan
	62	Status_Mode Dry	1 bit	DPT_Bool	1.002	R	T	1 - Dry
	63	Status_Mode Text	14 byte	DPT_String_8859_1	16.001	R	T	ASCII String
Fan Speed	64	Status_Fan Speed / 5 Speeds	1 byte	DPT_Scaling	5.001	R	T	20% - Speed 1; 40% - Speed 2; 60% - Speed 3; 80% - Speed 4; 100% - Speed 5
		Status_Fan Speed / 5 Speeds	1 byte	DPT_Enumerated	5.010	R	T	1 - Speed 1; 2 - Speed 2; 3 Speed 3; 4 - Speed 4; 5 Speed 5

	65	Status_ Fan Speed Manual/Auto	1 bit	DPT_Bool	1.002	R	T	0 – Manual; 1 – Auto
	66	Status_ Fan Speed 1	1 bit	DPT_Bool	1.002	R	T	1 - Speed 1
	67	Status_ Fan Speed 2	1 bit	DPT_Bool	1.002	R	T	1 - Speed 2
	68	Status_ Fan Speed 3	1 bit	DPT_Bool	1.002	R	T	1 - Speed 3
	69	Status_ Fan Speed 4	1 bit	DPT_Bool	1.002	R	T	1 - Speed 4
	70	Status_ Fan Speed 5	1 bit	DPT_Bool	1.002	R	T	1 - Speed 5
	71	Status_ Fan Speed Text	14 byte	DPT_String_8859_1	16.001	R	T	ASCII String
Vanes	72	Status_ Vanes U-D Swing	1 bit	DPT_Bool	1.002	R	T	0 - Off; 1 - Swing
	73	Status_ Vanes L-R Swing	1 bit	DPT_Bool	1.002	R	T	0 - Off; 1 - Swing
Humidifying	74	Status_ Humidif. / 5 Intens.	1 byte	DPT_Scaling	5.001	R	T	0% - Off; 25% - Low; 50% - Mid; 75% - High; 100% - Continuous
		Status_ Humidif. / 5 Intens.	1 byte	DPT_Enumerated	5.010	R	T	0 - Off; 1 - Low; 2 - Mid; 3 - High; 4 - Continuous
	75	Status_ Humidifying Off	1 bit	DPT_Bool	1.002	R	T	1 – Humidifying Off
	76	Status_ Humidifying Low	1 bit	DPT_Bool	1.002	R	T	1 – Humidifying Low
	77	Status_ Humidifying Mid	1 bit	DPT_Bool	1.002	R	T	1 – Humidifying Med
	78	Status_ Humidifying High	1 bit	DPT_Bool	1.002	R	T	1 – Humidifying High
	79	Status_ Humidifying Cont.	1 bit	DPT_Bool	1.002	R	T	1 – Humidifying Continuous
	80	Status_ Humidifying Text	14 byte	DPT_String_8859_1	16.001	R	T	ASCII String
	81	Status_ AC Setpoint Temp	2 byte	DPT_Value_Temp	9.001	R	T	(°C)
Error	82	Status_ Error/Alarm	1 bit	DPT_Alarm	1.005	R	T	0 - No Alarm; 1 - Alarm
	83	Status_ Error Code	2 byte	Enumerated		R	T	0 - No Error; Any other see user's manual

	84	Status_ Error Text code	14 byte	DPT_String_8859_1	16.001	R	T	2 char DK Error; Empty - none
Special Modes	85	Status_ Power Mode	1 bit	DPT_Switch	1.001	R	T	0 - Off; 1-On
	86	Status_ Econo Mode	1 bit	DPT_Switch	1.001	R	T	0 - Off; 1-On
	87	Status_ Additional Heat	1 bit	DPT_Switch	1.001	R	T	0 - Off; 1-On
	88	Status_ Additional Cool	1 bit	DPT_Switch	1.001	R	T	0 - Off; 1-On
	89	Status_ Operation Hour Counter	2 byte	DPT_Value_2_Ucount	7.001	R	T	Number of operating hours
Scene	90	Status_ Current Scene	1 byte	DPT_SceneNumber	17.001	R	T	0 to 4 - Scene 1 to 5; 63 - No Scene
Binary Inputs	91	Status_ Inx - Switching	1 bit	DPT_Switch	1.001	R	T	0 - Off; 1-On
	93	Status_ Inx - Dimming - On/Off	1 bit	DPT_Switch	1.001	R	T	0 - Off; 1 - On
	95							
	97	Status_ Inx - Shut/Blind - Step	1 bit	DPTUpDown	1.008	R	T	0 - Step Up; 1 - Step Down
		Status_ Inx - Value	1 byte	DPT_Value_1_Ucount	5.010	R	T	1 byte unsigned value
	92	Status_ Inx - Value	2 byte	DPT_Value_2_Ucount	7.001	R	T	2 byte unsigned value
	94	Status_ Inx - Value	2 byte	DPT_Value_2_Count	8.001	R	T	2 byte signed value
	96	Status_ Inx - Value	2 byte	DPT_Value_Temp	9.001	R	T	Temperature (°C)
	98	Status_ Inx - Value	4 byte	DPT_Value_4_Ucount	12.001	R	T	4 byte unsigned value
		Status_ Inx - Dimming - Step(%)	1 bit	DPT_Control_Dimm.	3.007	R	T	Dimming step

	Status_ Inx - Shut/Blind -Move	1 bit	DPTUpDown	1.008	R	T	0 – Move Up; 1 – Move Down
Legacy	99 Legacy_ Mode	1 byte	Enumerated	R	T		0 – Auto; 1 – Heat; 2 – Dry; 3 – Fan; 4 – Cool
	100 Legacy_ Fan Speed	1 byte	Enumerated	R	T		0 – Auto; 1...5 – Speed 1...5;
	101 Legacy_ Swing	1 byte	Enumerated	R	T		0 – Off; 1 – Vertical; 2 – Horizontal; 3 – Both;
	102 Legacy_ Humidifying	1 byte	Enumerated	R	T		0 – Off; 1 – Low; 2 – Mid; 3 – High; 4 – Cont;