

APX-NG000XAPD Series

1000 to 1700nm InGaAs Avalanche Photodiode (APD)

The APX-NG000XAPD series consists of InGaAs Avalanche Photodiodes (APD), which come in various active area diameters of 0.2mm, 0.3mm, 0.4mm, and 0.5mm. These APDs operate at reverse bias voltages ranging from 40V to less than 80V, with a typical bias voltage of 55V. They can provide avalanche gains of up to 25. These devices are available in TO-46 metal cans and Surface Mount Technology (SMT) packages. Due to their high gain, low noise, and fast response times, these devices are ideal for use in optical communication receivers, laser range finders, and low-light-level detection systems operating in the near-infrared wavelength range (1000nm to 1700nm).

Applications

Optical Communication

Distance Measurement

Low-Light-Level Detection

Features

1000-1700nm Spectral Range

Low Dark Current

Low Capacitance

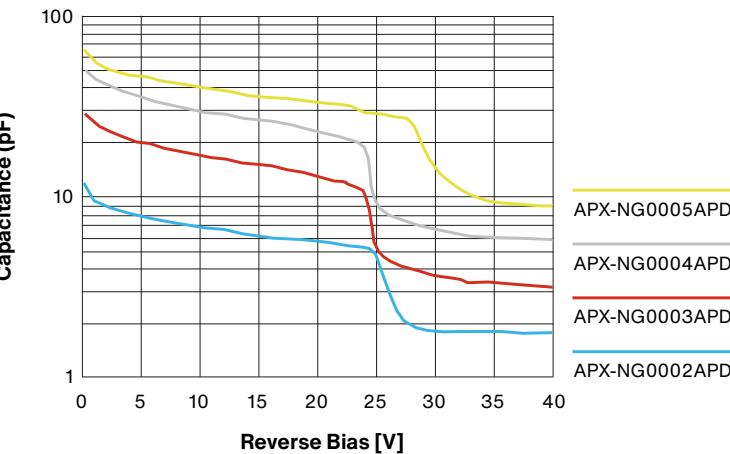
High Responsivity

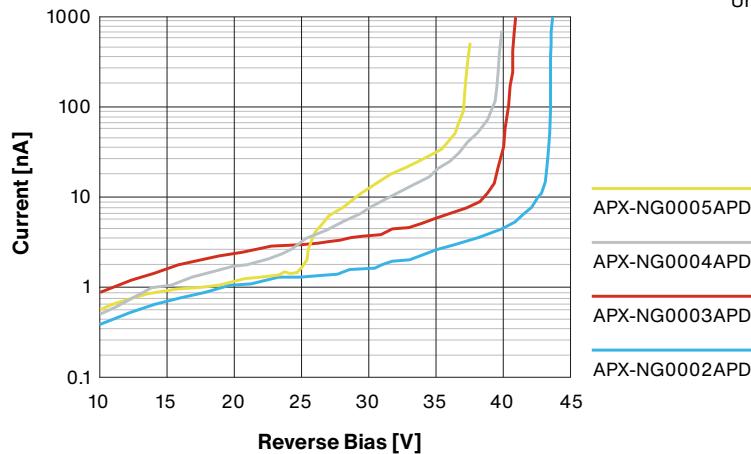
0.2mm, 0.3mm, 0.4mm and 0.5mm
Active Area Diameters

Absolute Maximum Ratings at $T_A=23\text{ }^\circ\text{C}$

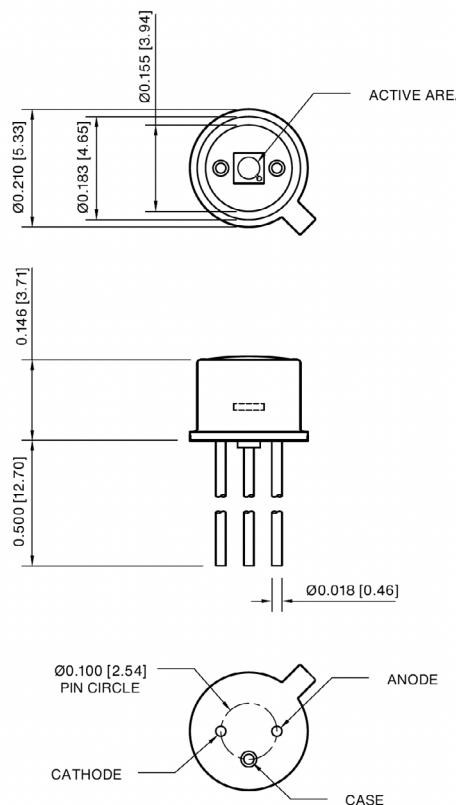

Parameter	Symbol	Min	Max	Unit
Operating Temperature	T_{OP}	-40	+85	$^\circ\text{C}$
Storage Temperature	T_{STG}	-55	+125	$^\circ\text{C}$
Package		TO-46, SMT		

Typical Electro-Optical Specifications at $T_A=23\text{ }^\circ\text{C}$


Parameter	Test Conditions	Symbol	APX-NG0002APD			APX-NG0003APD			APX-NG0004APD			APX-NG0005APD			Unit
			Min	Typ	Max										
Active Area	-	A.A.	-	0.03	-	-	0.07	-	-	0.13	-	-	0.2	-	mm ²
Active Diameter	-	A.A. _ø	-	200	-	-	300	-	-	400	-	-	500	-	µm
Spectral Range	-	$\Delta\lambda$	950	-	1650	950	-	1650	950	-	1650	950	-	1650	nm
Peak Wavelength	-	λ_{Peak}	-	1550	-	-	1550	-	-	1550	-	-	1550	-	nm
Responsivity	$\lambda=1550\text{nm}$, $M=1$	R_λ	-	0.95	-	-	0.95	-	-	0.95	-	-	0.95	-	A/W
	$\lambda=1550\text{nm}$, $M=10$	R_λ	-	9.5	-	-	9.5	-	-	9.5	-	-	9.5	-	A/W
Gain	$\lambda=1550\text{nm}$	M	-	10	30	-	10	30	-	10	30	-	10	30	-
Breakdown Voltage	$I_R=100\mu\text{A}$	V_{BR}	35	40	60	35	40	60	35	40	60	35	40	60	V
Operating Voltage	M=10	V_{OP}	-	$0.95 \times V_{BR}$	-	V									
Capacitance	M=10	C_J	-	2	-	-	3	-	-	5	-	-	9	-	pF
Dark Current	M=10	I_D	-	20	50	-	40	100	-	80	200	-	120	300	nA
Temp. Coefficient of Breakdown Voltage	$-40\text{ }^\circ\text{C}$ to $+85\text{ }^\circ\text{C}$	Γ	-	0.12	0.15	-	0.12	0.15	-	0.12	0.15	-	0.12	0.15	V/ $^\circ\text{C}$
Rise Time	M=10, $R_L=50\Omega$, $\lambda=1550\text{nm}$	T_R	-	-	0.4	-	-	0.5	-	-	0.8	-	-	1	ns

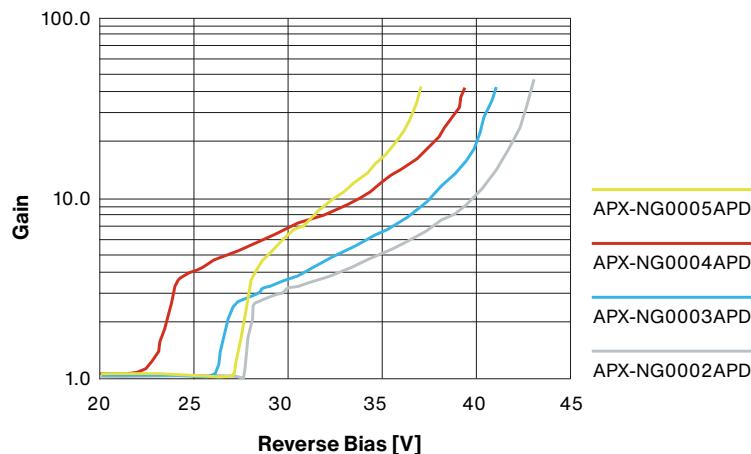

Typical Spectral Response at M=10

Typical Capacitance



Typical Dark Current

Mechanical Specification


Units are in inches [mm]*

Note: Lead soldering temperature (1/16 inches from case) 260°C for 3 sec.

* This drawing represents a T0-46 package specification. Surface Mount Technology (SMT) variants may also be available.

Typical Gain at 1550nm

General Care and Handling Instructions

Photodiodes:

Handling and Storage

- Handle Photodiodes gently to prevent damage.
- Avoid exposing Photodiodes to temperatures exceeding the storage temperature rating of the device.
- Maintain a non-condensing environment for optimum performance and lifetime.

Cleaning

- Gently clean the glass (borosilicate or quartz window) using a 50/50 mixture of Methanol and isopropyl alcohol and a soft, optical-grade pad.

Special Considerations for Plastic or Epoxy Encapsulated Photodiodes

- Protect from intense light sources such as direct sunlight.
- Avoid exposure to harsh chemicals like THINNERS, ACETONE, and TRICHLOROETHYLENE.
- Cleaning with a 50/50 mixture of Methanol and isopropyl alcohol (IPA) is recommended. Cleaning in an ultrasonic bath is generally not recommended.

CdS Photocells:

Handling and Storage

- Handle CdS Photocells gently to prevent damage.
- Avoid exposing CdS Photocells to temperatures exceeding the storage temperature rating of the device.
- Maintain a non-condensing environment for optimum performance and lifetime.

Cleaning

- Gently clean the glass or plastic covering using a 50/50 mixture of Methanol and isopropyl alcohol and a soft, optical-grade pad.

Special Considerations

- DO NOT use Vapor Phase Soldering or Reflow Soldering for CdS components.

Optocouplers and LEDs:

Handling and Storage

- Handle Optocouplers and LEDs gently to prevent damage.
- Avoid exposing the devices to temperatures exceeding the storage temperature rating of the device.
- Maintain a non-condensing environment for optimum performance and lifetime.

Cleaning

- For plastic molded devices, cleaning with a 50/50 mixture of Methanol and isopropyl alcohol is recommended. Cleaning in an ultrasonic bath is generally not recommended.

Special Considerations

- Avoid exposing plastic molded devices or epoxy glob top devices to harsh chemicals like THINNERS, ACETONE, and TRICHLOROETHYLENE.

Legal Disclaimer

Information in this data sheet is believed to be correct and reliable. However, no responsibility is assumed for possible inaccuracies or omission. Specifications are subject to change without notice.

