

MMS4X00-NS400-C

Mellanox® MMS4X00-NS400 Compatible TAA 400GBase-DR4 PAM4 OSFP112 RHS Transceiver (SMF, 1310nm, 500m, MPO, DOM, CMIS 5.0)

Features:

- 4x100G PAM4 Data Rates
- Single 3.3V Power Supply
- Hot Pluggable OSFP Form Factor
- Electrical Interface Compliant with 100Gbps Per Lane Defined by IEEE 802.3ck
- I2C Management Interface Compliant to CMIS Rev5.0
- Compliant with IEEE 802.3 bs 400GBASE-DR4
- PIN Receiver
- Internal CDR on Both Transmitter and Receiver Channels
- Cooled 1310nm EML Laser
- Operating Temperature: 0 to 70 Celsius
- RoHS Compliant and Lead-Free

Applications:

- 400GBase Ethernet

Product Description

This Mellanox® MMS4X00-NS400 compatible OSFP112 RHS transceiver provides 400GBase-DR4 throughput up to 500m over single-mode fiber (SMF) PAM4 using a wavelength of 1310nm via an MPO connector. It can operate at temperatures between 0 and 70C. Our transceiver is built to meet or exceed OEM specifications and is guaranteed to be 100% compatible with Mellanox®. It has been programmed, uniquely serialized, and tested for data-traffic and application to ensure that it will initialize and perform identically. All of our transceivers comply with Multi-Source Agreement (MSA) standards to provide seamless network integration. Additional product features include Digital Optical Monitoring (DOM) support which allows access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

ProLabs' transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S.-made or designated country end products.")

Absolute Maximum Ratings

Parameter	Symbol	Min.	Typ.	Max.	Unit
Maximum Supply Voltage	Vcc	-0.5		3.6	V
Supply Voltage	Vcc	3.13	3.3	3.47	V
Storage Temperature	Tstg	-40		85	°C
Operating Temperature	Tc	0	40	70	°C
Relative Humidity	RH	15		85	%
Data Rate			106.25±100ppm		Gbps

Notes:

1. Stressed in excess of the Absolute Maximum Ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of the datasheet. Exposure to Absolute Maximum Ratings for extended periods can adversely affect device reliability.

Electrical Characteristics

Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
Module Supply Current	Icc			2.87	A	
Power Dissipation	P _{DISS}			9	W	
Transmitter						
Input Differential Impedance	ZIN	90	100	110	Ω	
Differential Data Input Swing	V _{IN,pp}			900	mVp-p	
DC Common-Mode Input Voltage		-350		2850	mV	
Receiver						
Output Differential Impedance	ZOUT	90	100	110	Ω	
Differential Data Output Swing	V _{OUT,pp}			900	mVp-p	1
Dual Function Signals						
INT/RSTn	V_INT/RSTn_1	0.000	0.000	1.000	V	2
	V_INT/RSTn_2	0.000	0.000	1.000	V	3
	V_INT/RSTn_3	1.500	1.900	2.250	V	4
	V_INT/RSTn_4	2.750	3.000	3.465	V	5
LPWn/PRSn	V_LPWn/PRSn_1	0.000	0.950	1.100	V	6
	V_LPWn/PRSn_2	1.400	1.700	2.250	V	7
	V_LPWn/PRSn_3	2.750	3.300	3.465	V	8

Notes:

1. Internally AC coupled but requires an external 100Ω differential load termination.
2. INT/RSTn voltage for no Module.

3. INT/RSTn voltage for Module installed, H_RSTn=Low.
4. INT/RSTn voltage for Module installed, H_RSTn=High, M_INT=Low.
5. INT/RSTn voltage for Module installed, H_RSTn=High, M_INT= High.
6. LPWn/PRSn voltage for Module installed, H_LPWn=Low.
7. LPWn/PRSn voltage for Module installed, H_LPWn =High.
8. LPWn/PRSn voltage for no Module.

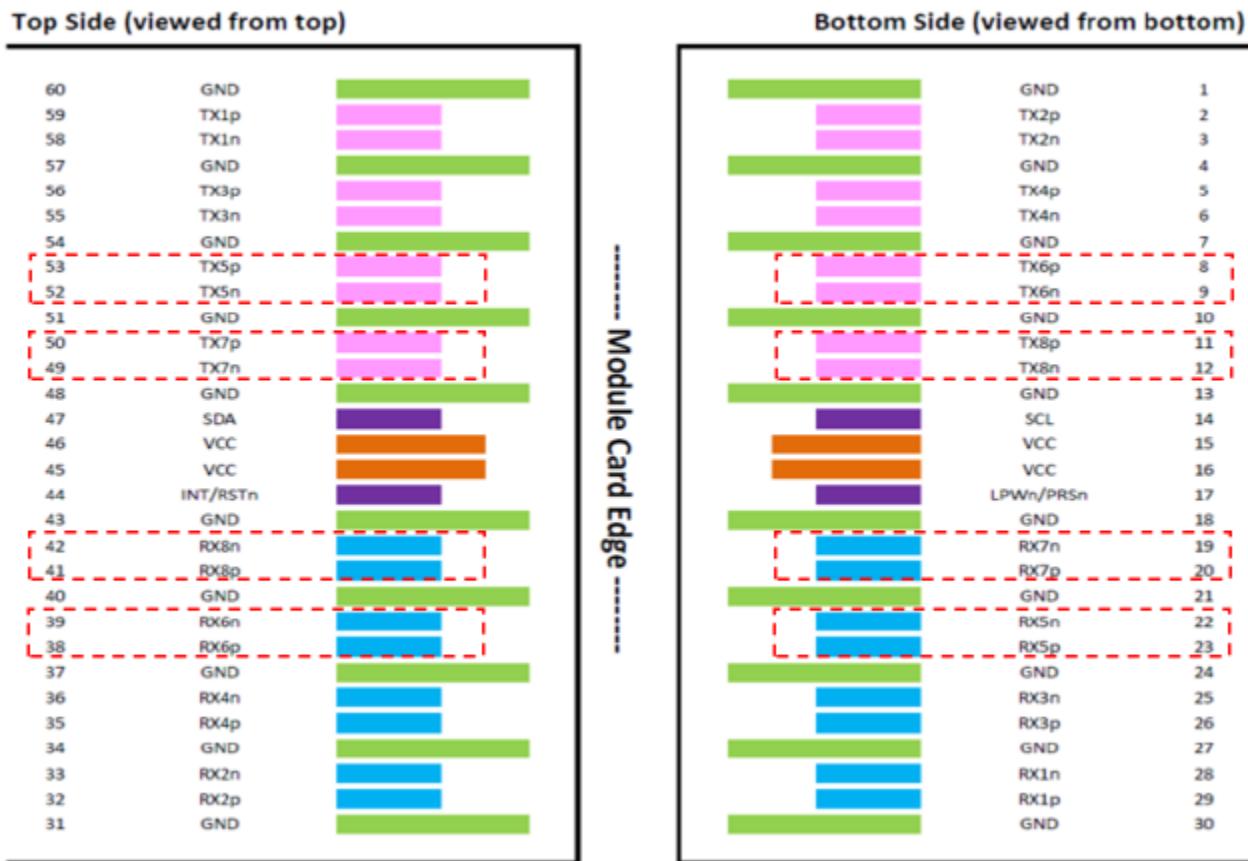
Optical Characteristics

Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
Transmitter						
Average Launch Power Per Lane	Pavg	-2.9		4	dBm	1
Outer Optical Modulation Amplitude Per Lane	POMA	-0.8		4.2	dBm	1
Extinction Ratio	ER	3.5			dB	
Lane Wavelengths	λ	1304.5		1317.5	nm	
Side-Mode Suppression Ratio	SMSR	30			dB	
Transmitter and Dispersion Penalty Eye Closure Per Lane	TDECQ			3.4	dB	
Launch Power in OMAouter Minus TDECQ Per Lane	OMA-TDECQ	-2.2			dBm	
Average Launch Power of Off Transmitter	Poff			-15	dBm	
Optical Return Loss Tolerance	ORLT			21.4	dB	
Transmitter Reflectance				-26	dB	
Receiver						
Lane Wavelengths	λ	1304.5		1317.5	nm	
Receiver Sensitivity (OMA)	RxSENS			-3.9	dBm	2
Receiver Overload Per Lane (Pavg)	POL	4			dBm	
Damage Threshold Per Lane		5			dBm	
Receiver Power Per Lane (OMAouter)	OMA			4.2	dBm	
Receiver Reflectance				-26	dB	
LOS De-Assert	LOSD			-10	dBm	
LOS Assert	LOSA	-16			dBm	
LOS Hysteresis		0.5			dB	

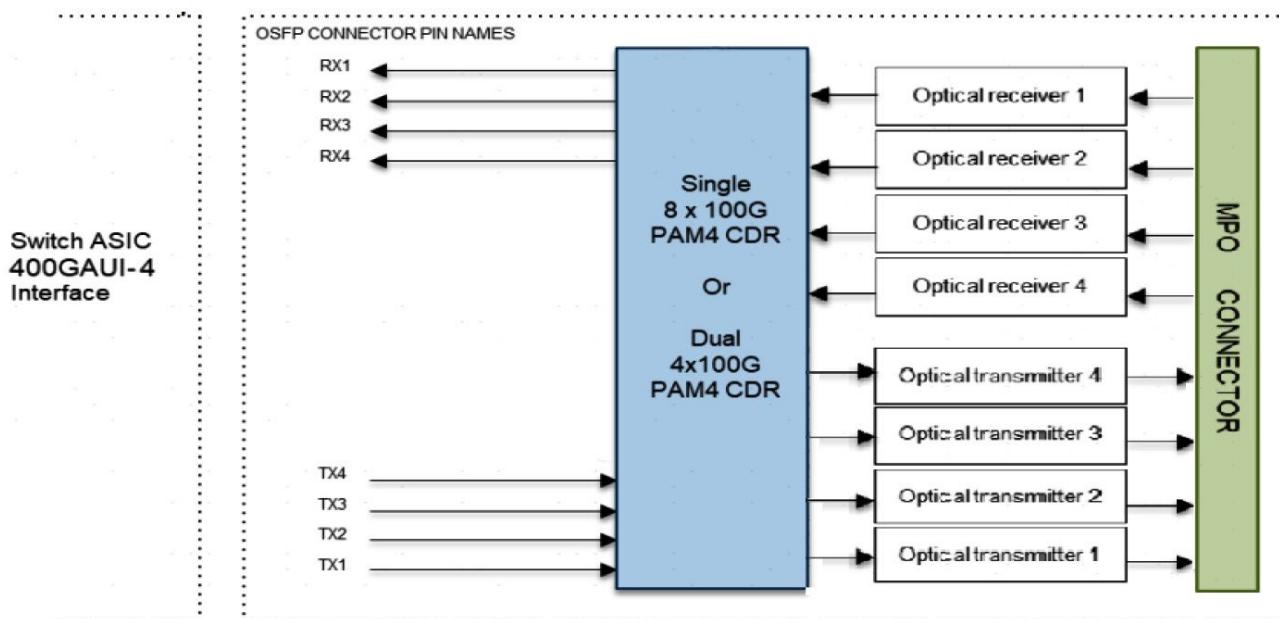
Notes:

1. Class 1 Laser Safety per FDA/CDRH and EN (IEC) 60825 regulations.
2. Measured with PRBS31Q test pattern, 53.125GBd, PAM4, and BER<2.4E⁻⁴.

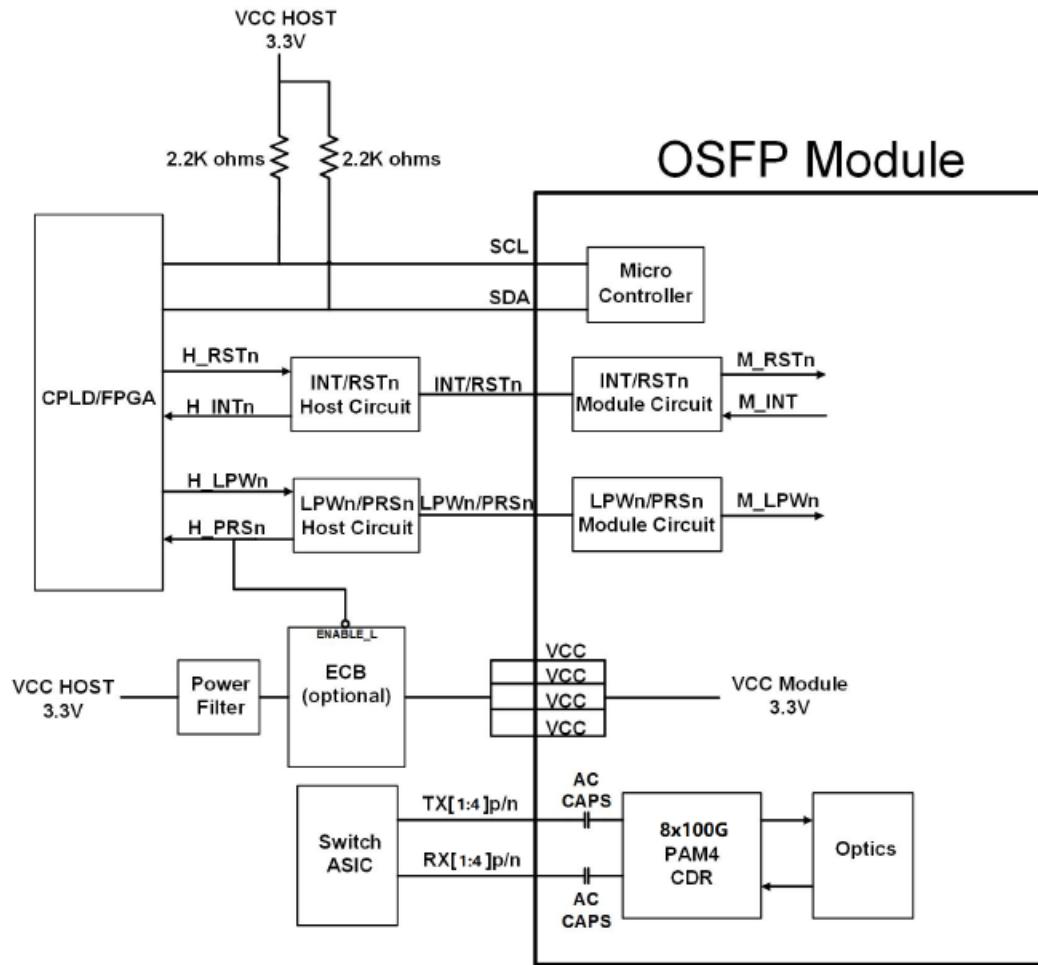
Pin Descriptions

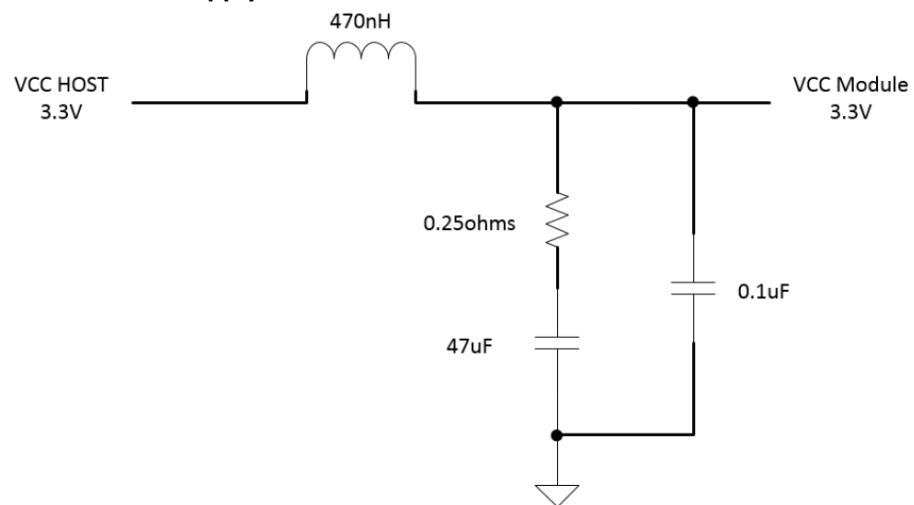

Pin	Logic	Symbol	Name/Description	Direction	Plug Sequence	Notes
1		GND	Module Ground.		1	
2	CML-I	Tx2+	Transmitter Non-Inverted Data.	Input from Host	3	
3	CML-I	Tx2-	Transmitter Inverted Data.	Input from Host	3	
4		GND	Module Ground.		1	
5	CML-I	Tx4+	Transmitter Non-Inverted Data.	Input from Host	3	
6	CML-I	Tx4-	Transmitter Inverted Data.	Input from Host	3	
7		GND	Module Ground.		1	
8	CML-I	Tx6+	Transmitter Non-Inverted Data.	Input from Host	3	
9	CML-I	Tx6-	Transmitter Inverted Data.	Input from Host	3	
10		GND	Module Ground.		1	
11	CML-I	Tx8+	Transmitter Non-Inverted Data.	Input from Host	3	
12	CML-I	Tx8-	Transmitter Inverted Data.	Input from Host	3	
13		GND	Module Ground.		1	
14	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock.	Bi-Directional	3	1
15		Vcc	+3.3V Power Supply.	Power from Host	2	
16		Vcc	+3.3V Power Supply.	Power from Host	2	
17	Multi-Level	LPWn/PRSn	Low-Power Mode/Module Present.	Bi-Directional	3	2
18		GND	Module Ground.		1	
19	CML-O	Rx7-	Receiver Inverted Data.	Output to Host	3	
20	CML-O	Rx7+	Receiver Non-Inverted Data.	Output to Host	3	
21		GND	Module Ground.		1	
22	CML-O	Rx5-	Receiver Inverted Data.	Output to Host	3	
23	CML-O	Rx5+	Receiver Non-Inverted Data.	Output to Host	3	
24		GND	Module Ground.		1	
25	CML-O	Rx3-	Receiver Inverted Data.	Output to Host	3	
26	CML-O	Rx3+	Receiver Non-Inverted Data.	Output to Host	3	
27		GND	Module Ground.		1	
28	CML-O	Rx1-	Receiver Inverted Data.	Output to Host	3	
29	CML-O	Rx1+	Receiver Non-Inverted Data.	Output to Host	3	
30		GND	Module Ground.		1	
31		GND	Module Ground.		1	
32	CML-O	Rx2+	Receiver Non-Inverted Data.	Output to Host	3	
33	CML-O	Rx2-	Receiver Inverted Data.	Output to Host	3	
34		GND	Module Ground.		1	
35	CML-O	Rx4+	Receiver Non-Inverted Data.	Output to Host	3	

36	CML-O	Rx4-	Receiver Inverted Data.	Output to Host	3	
37		GND	Module Ground.		1	
38	CML-O	Rx6+	Receiver Non-Inverted Data.	Output to Host	3	
39	CML-O	Rx6-	Receiver Inverted Data.	Output to Host	3	
40		GND	Module Ground.		1	
41	CML-O	Rx8+	Receiver Non-Inverted Data.	Output to Host	3	
42	CML-O	Rx8-	Receiver Inverted Data.	Output to Host	3	
43		GND	Module Ground.		1	
44	Multi-Level	INT/RSTn	Module Interrupt/Module Reset.	Bi-Directional	3	2
45		Vcc	+3.3V Power Supply.	Power from Host	2	
46		Vcc	+3.3V Power Supply.	Power from Host	2	
47	LVCMOS-I/O	SDA	2-Wire Serial Interface Data.	Bi-Directional	3	1
48		GND	Module Ground.		1	
49	CML-I	Tx7-	Transmitter Inverted Data.	Input from Host	3	
50	CML-I	Tx7+	Transmitter Non-Inverted Data.	Input from Host	3	
51		GND	Module Ground.		1	
52	CML-I	Tx5-	Transmitter Inverted Data.	Input from Host	3	
53	CML-I	Tx5+	Transmitter Non-Inverted Data.	Input from Host	3	
54		GND	Module Ground.		1	
55	CML-I	Tx3-	Transmitter Inverted Data.	Input from Host	3	
56	CML-I	Tx3+	Transmitter Non-Inverted Data.	Input from Host	3	
57		GND	Module Ground.		1	
58	CML-I	Tx1-	Transmitter Inverted Data.	Input from Host	3	
59	CML-I	Tx1+	Transmitter Non-Inverted Data.	Input from Host	3	
60		GND	Module Ground.		1	


Notes:

1. Open-drain with pull-up resistor on the host.
2. See pin description of OSFP MSA for required circuit.


Electrical Pad Layout


Block Diagram

Recommended Application Interface Block Diagram

Recommended Host Board Power Supply Filter Network

About ProLabs

Our extensive experience comes as standard. For over 20 years ProLabs has delivered optical connectivity solutions that give our customers freedom and choice through our ability to provide seamless interoperability. At the heart of our company is the ability to provide state-of-the-art optical transport and connectivity solutions that are compatible with more than 100 optical switching and transport platforms.

A Complete Portfolio of Network Solutions

ProLabs is focused on innovations in optical transport and connectivity. The combination of our knowledge of optics and networking equipment enables ProLabs to be your single source for optical transport and connectivity solutions from 100Mb to 1.6T while providing innovative solutions that increase network efficiency. We provide the optical connectivity expertise that is compatible with and enhances your switching and transport equipment.

The Trusted Partner

Customer service is our number one value. ProLabs has invested in people, labs and manufacturing capacity to ensure compatible products, and immediate answers to your questions. With Engineering and Manufacturing offices in the U.K. and U.S. augmented by field offices throughout the U.S., U.K. and Asia, ProLabs is able to be our customers best advocate 24 hours a day.

Contact Information

ProLabs US

Email: sales@prolabs.com
Telephone: 952-852-0252

ProLabs UK

Email: salessupport@prolabs.com
Telephone: +44 1285 719 600