

100-01903-C

Calix® 100-01903 Compatible TAA 10GBase-LR SFP+ Transceiver (SMF, 1310nm, 20km, LC, DOM, -40 to 85C)

Features:

- Compliant with IEEE802.3ae 10GBASE-LR/LW
- Compliant with MSA SFP+ Specification SFF-8431
- 1310nm DFB-LD Transmitter
- Distance up to 20km
- Single 3.3V Power Supply and TTL Logic Interface
- Duplex LC Connector
- Industrial Temperature -40 to 85 Celsius
- Hot-Pluggable
- Metal with Lower EMI
- Excellent ESD Protection
- RoHS compliant and Lead Free

Applications:

- 10GBase-LR Ethernet
- 8x/10x Fibre Channel
- Access, Datacenter and Enterprise
- Mobile Fronthaul CPRI/OBSAI

Product Description

This Calix® 100-01903 compatible SFP+ transceiver provides 10GBase-LR throughput up to 20km over single-mode fiber (SMF) using a wavelength of 1310nm via an LC connector. It is capable of withstanding rugged environments and can operate at temperatures between -40 and 85C. Our transceiver is built to meet or exceed OEM specifications and is guaranteed to be 100% compatible with Calix®. It has been programmed, uniquely serialized, and tested for data-traffic and application to ensure that it will initialize and perform identically. All of our transceivers comply with Multi-Source Agreement (MSA) standards to provide seamless network integration. Additional product features include Digital Optical Monitoring (DOM) support which allows access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

ProLabs' transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S.-made or designated country end products.")

Absolute Maximum Ratings

Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
Maximum Supply Voltage	Vcc	-0.5		4	V	1
Storage Temperature	Tstg	-40		85	°C	
Operating Case Temperature	Tc	-40		85	°C	
Relative Humidity	RH	0		85	%	
Data Rate	DR	9.83	10.3125	11.3	Gb/s	2
Bit Error Rate	BER			10^{-12}		

Notes:

1. For electrical interface
2. IEEE 802.3ae

Electrical Characteristics

Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
Module Supply Voltage	Vcc	3.14	3.3	3.46	V	
Module Supply Current	Icc		200	350	mA	
Power Dissipation	PD		0.65	1.2	W	
Transmitter						
Input Differential Impedance	RIN		100		Ω	
Differential Data Input Swing	V _{IN_PP}	180		700	mV	
Transmit Disable Voltage	V _D	2		VCC	V	
Transmit Enable Voltage	V _{EN}	V _{EE}		V _{EE+0.8}	V	
Receiver						
Differential Data Output Swing	V _{OUT_PP}	300		850	mV	
Data Output Rise/Fall Time (20%-80%)	t _r /t _f	28			ps	
LOS Assert	V _{LOS_A}	2		V _{CC_HOST}	V	
LOS De-Assert	V _{LOS_D}	V _{EE}		V _{EE+0.5}	V	

Optical Characteristics

Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
Transmitter						
Output Optical Power	P _{TX}	-8.2		0.5	dBm	1
Optical Center Wavelength	λ _c	1260		1355	nm	
Optical Modulation Amplitude	OMA	-5.2			dBm	2
Extinction Ratio	ER	3.5	5.5		dB	
Spectral Width(-20dB)	Δλ			1	nm	
Side Mode Suppression Ratio	SMSR	30			dB	
Relative Intensity Noise	RIN			-128	dB/Hz	
Transmitter Dispersion Penalty	TDP			3.2	dB	
Launch Power of OFF Transmitter	P _{OUT_OFF}			-30	dBm	1
Transmitter Jitter						2
Receiver						
Optical Center Wavelength	λ _c	1260		1600	nm	
Average Receive Power	P _{RX}	-14.4		0.5	dBm	
Receiver Sensitivity @10.3Gb/s	R _{X_SEN}			-14.4	dBm	3
Receiver Reflectance	T _{R_{RX}}			-12	dB	
LOS Assert	LOS _A	-30			dBm	
LOS De-Assert	LOS _D			-17	dBm	
LOS Hysteresis	LOS _H	0.5			dB	

Notes:

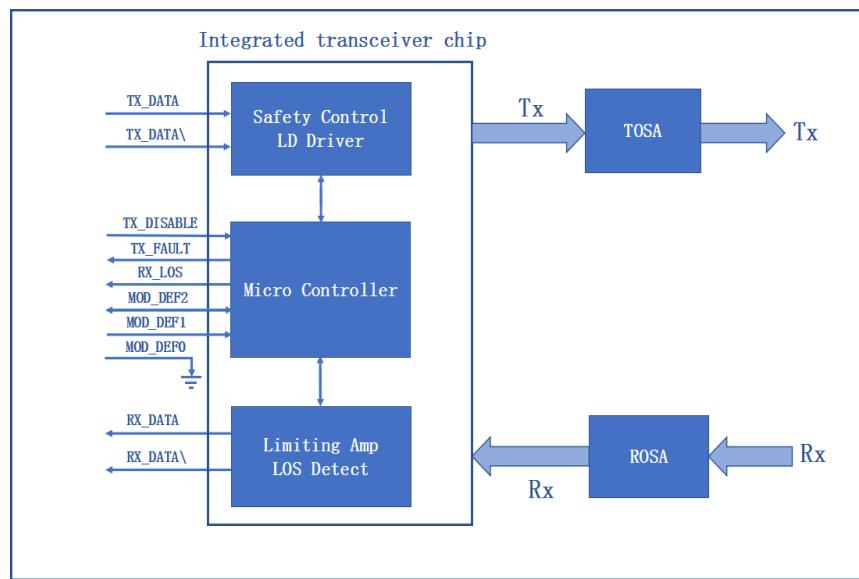
1. Average
2. According to IEEE 802.3ae requirement.
3. Test the resulting value using the minimum ER value within the defined range; BER<10⁻¹²; 2³¹-1 PRBS.

Pin Descriptions

Pin	Symbol	Name/Descriptions	Ref.
1	VeeT	Transmitter Ground.	1
2	Tx_Fault	Transmitter Fault. LVTTL-O. "High" indicates a fault condition.	2
3	Tx_Disable	Transmitter Disable. LVTTL-I. "High" or "open" disables the transmitter.	3
4	SDA	2-Wire Serial Interface Data. LVCMOS-I/O. MOD-DEF2.	4
5	SCL	2-Wire Serial Interface Clock. LVCMOS-I/O. MOD-DEF1.	4
6	MOD_ABS	Module Absent (Output). Connected to VeeT or VeeR in the module.	5
7	RS0	N/A.	6
8	Rx_LOS	Receiver Loss of Signal. LVTTL-O.	2
9	RS1	N/A.	6
10	VeeR	Receiver Ground.	1
11	VeeR	Receiver Ground.	1
12	RD-	Inverse Received Data Out. CML-O.	
13	RD+	Received Data Out. CML-O.	
14	VeeR	Receiver Ground.	
15	VccR	+3.3V Receiver Power.	
16	VccT	+3.3V Transmitter Power.	
17	VeeT	Transmitter Ground.	1
18	TD+	Transmitter Data In. CML-I.	
19	TD-	Inverse Transmitter Data In. CML-I.	
20	VeeT	Transmitter Ground.	1

Notes:

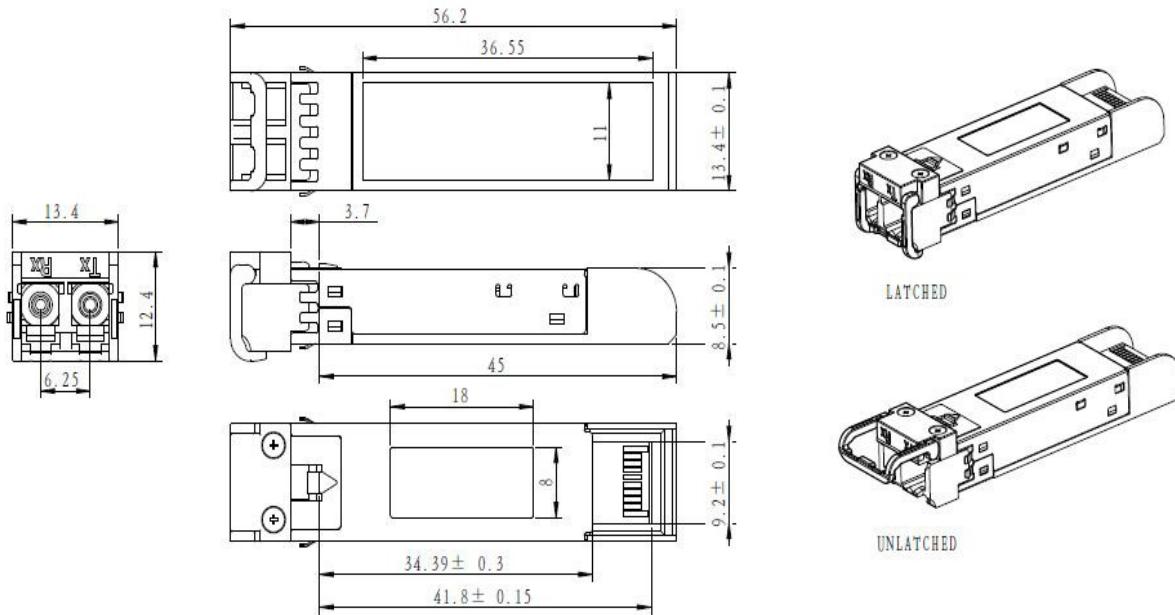
1. The module signal grounds are isolated from the module case.
2. This is an open collector/drain output that on the host board requires a 4.7KΩ to 10KΩ pull-up resistor to Host_Vcc.
3. This input is internally biased high with a 4.7KΩ to 10KΩ pull-up resistor to VccT.
4. 2-Wire Serial Interface Clock and Data lines require an external pull-up resistor dependent on the capacitance load.
5. This is a ground return that, on the host board, requires a 4.7KΩ to 10KΩ pull-up resistor to the Host_Vcc.
6. Rate select can also be set through the 2-wire bus in accordance with SFF-8472 v. 12.1. Rx Rate Select is set at Bit 3, Byte 110, and Address A2h, and Tx Rate Select is set at Bit 3, Byte 118, and Address A2h.


Note: Writing a "1" selects maximum bandwidth operation. Rate select is the logic OR of the input state of Rate Select Pin and 2-wire bus.

Electrical Pin-out Details

11	V _{EE} R	10
12	RD-	RS1
13	RD+	Rx_LOS
14	V _{EE} R	RS0
15	V _{CC} R	MOD_ABS
16	V _{CC} T	SCL
17	V _{EE} T	SDA
18	TD+	TX_DISABLE
19	TD-	TX_FAULT
20	V _{EE} T	VEET

TOWARD HOST WITH DIRECTION OF MODULE INSERTION ← → **TOWARD BEZEL**


Block Diagram

Mechanical Specifications

ALL DIMENSIONS ARE ± 0.2 mm UNLESS OTHERWISE SPECIFIED

UNIT: mm

EEPROM Information

EEPROM memory map-specific data field description is as below:

2 wire address 1010000X (A0h)		2 wire address 1010001X (A2h)	
0	Serial ID Defined by SFP MSA (96 bytes)	0	Alarm and Warning Thresholds (56 bytes)
95	Vendor Specific (32 bytes)	55	Cal Constants (40 bytes)
127	Reserved, SFF8079 (128 bytes)	95	Real Time Diagnostic Interface (24 bytes)
255		119	Vendor Specific (8 bytes)
		127	
		247	User Writable EEPROM (120 bytes)
		255	Vendor Specific (8 bytes)

About ProLabs

Our extensive experience comes as standard. For over 20 years ProLabs has delivered optical connectivity solutions that give our customers freedom and choice through our ability to provide seamless interoperability. At the heart of our company is the ability to provide state-of-the-art optical transport and connectivity solutions that are compatible with more than 100 optical switching and transport platforms.

A Complete Portfolio of Network Solutions

ProLabs is focused on innovations in optical transport and connectivity. The combination of our knowledge of optics and networking equipment enables ProLabs to be your single source for optical transport and connectivity solutions from 100Mb to 1.6T while providing innovative solutions that increase network efficiency. We provide the optical connectivity expertise that is compatible with and enhances your switching and transport equipment.

The Trusted Partner

Customer service is our number one value. ProLabs has invested in people, labs and manufacturing capacity to ensure compatible products, and immediate answers to your questions. With Engineering and Manufacturing offices in the U.K. and U.S. augmented by field offices throughout the U.S., U.K. and Asia, ProLabs is able to be our customers best advocate 24 hours a day.

Contact Information

ProLabs US

Email: sales@prolabs.com

Telephone: 952-852-0252

ProLabs UK

Email: salesupport@prolabs.com

Telephone: +44 1285 719 600