

0231A321-C

Huawei® 0231A321 Compatible TAA 1000Base-ZX SFP Transceiver (SMF, 1550nm, 100km, LC, DOM)

Features:

- INF-8074 and SFF-8472 Compliance
- Duplex LC Connector
- Single-mode Fiber
- Commercial Temperature 0 to 70 Celsius
- Hot Pluggable
- Metal with Lower EMI
- Excellent ESD Protection
- RoHS Compliant and Lead Free

Applications:

- 1000Base-ZX Ethernet
- 1x Fibre Channel
- Access and Enterprise

Product Description

This Huawei® 0231A321 compatible SFP transceiver provides 1000Base-ZX throughput up to 100km over single-mode fiber (SMF) using a wavelength of 1550nm via an LC connector. It can operate at temperatures between 0 and 70C. Our transceiver is built to meet or exceed OEM specifications and is guaranteed to be 100% compatible with Huawei®. It has been programmed, uniquely serialized, and tested for data-traffic and application to ensure that it will initialize and perform identically. All of our transceivers comply with Multi-Source Agreement (MSA) standards to provide seamless network integration. Additional product features include Digital Optical Monitoring (DOM) support which allows access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

ProLabs' transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S.-made or designated country end products.")

Absolute Maximum Ratings

Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
Operating Temperature	T _c	0		70	°C	
Storage Temperature	T _{stg}	-40		85	°C	
Supply Current	I _{cc}		200	300	mA	1
Maximum Voltage	V _{max}	-0.5		4	V	1
Bit Error Rate	BER			10 ⁻¹²		
Data Rate			1.25 1.062		Gbps	2

Notes:

1. For the electrical power interface.
2. IEEE 802.3. FC-PI-2 Rev. 5.

Electrical Characteristics

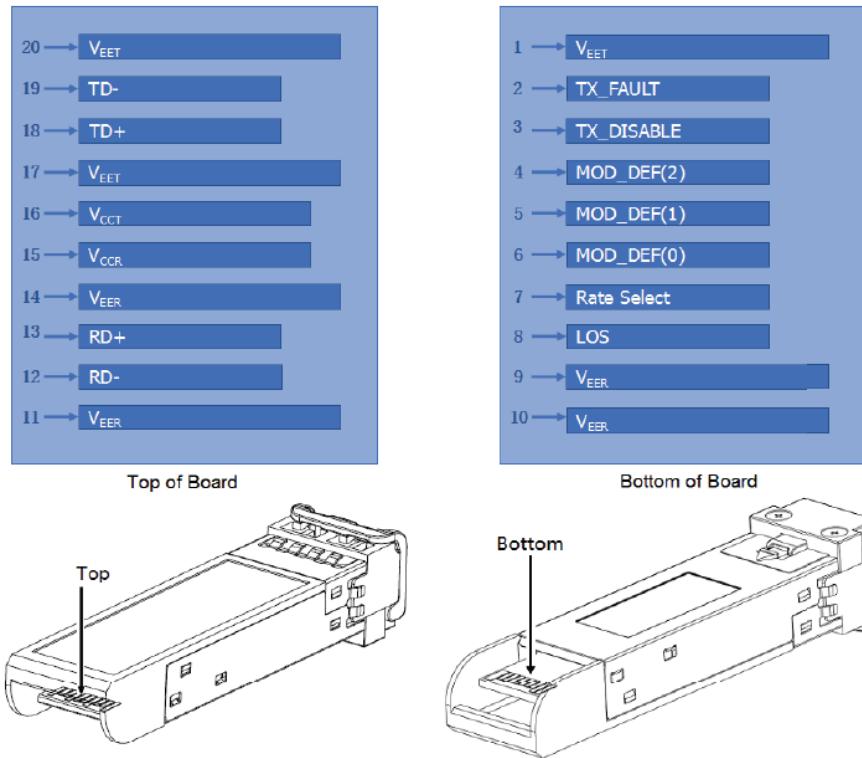
Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
Supply Voltage	V _{cc}	3.14	3.3	3.46	V	
Transmitter						
Input Differential Impedance	R _{IN}		100		Ω	
Single-Ended Data Input Swing	V _{IN,pp}	250		1200	mV	
Transmit Disable Voltage	V _D	V _{cc} - 1.3		V _{cc}	V	
Transmit Enable Voltage	V _{EN}	V _{ee}		V _{ee} + 0.8	V	
Transmit Disable Assert Time				10	μs	
Receiver						
Single-Ended Data Output Swing	V _{OUT,pp}	300	400	800	mV	
Data Output Rise/Fall Time (20-80%)	T _{r/T_f}			300	ps	
LOS Fault	V _{LOS_A}	V _{cc} - 0.5		Host_V _{cc}	V	
LOS Normal	V _{LOS_D}	V _{ee}		V _{ee} + 0.5	V	

Optical Characteristics

Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
Transmitter						
Output Optical Power	Ptx	0		5	dBm	1
Optical Center Wavelength	λ_C	1530		1570	nm	
Extinction Ratio	ER	9			dB	
Side-Mode Suppression Ratio	SMSR	30			dB	
Spectral Width (-20dB)	$\Delta\lambda$			1	nm	
Optical Rise/Fall Time (20-80%)	Tr/Tf			180	ps	
Relative Intensity Noise	RIN			-120	dB/Hz	
Deterministic Jitter Contribution	DJ			60	ps	
Total Jitter Contribution	TJ			130	ps	
Receiver						
Receiver Overload	POL	0		dBm		
Optical Center Wavelength	λ_C	1260		1600	nm	
Receiver Sensitivity	Rx_Sen			-27	dBm	
Optical Return Loss	ORL	12			dB	
Receiver Electrical 3dB Upper Cutoff Frequency				1500	MHz	
LOS Assert	LOSA	-35			dBm	
LOS De-Assert	LOSD			-27	dBm	
LOS Hysteresis	LOSH	0.5			dB	

Notes:

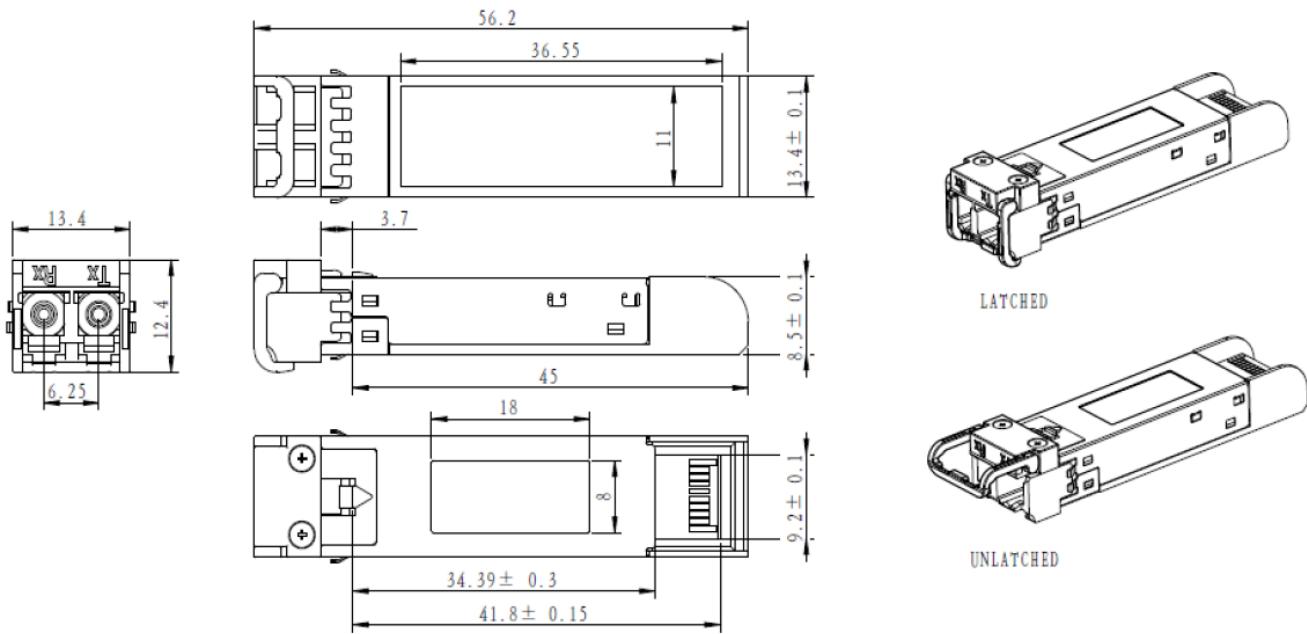
1. Class 1 product.


Pin Descriptions

Pin	Symbol	Name/Description	Notes
1	VeeT	Transmitter Ground (Common with Receiver Ground).	1
2	Tx_Fault	Transmitter Fault. Not Supported.	
3	Tx_Disable	Transmitter Disable. Laser output disabled on "high" or "open."	2
4	SDA	Module Definition 2. Data Line for Serial ID.	3
5	SCL	Module Definition 1. Clock Line for Serial ID.	3
6	MOD_ABS	Module Definition 0. Grounded within the module.	3
7	RS0	No Connection Required.	
8	LOS	Loss of Signal Indication. "Logic 0" indicates normal operation.	4
9	RS1	Receiver Ground (Common with Transmitter Ground).	1
10	VeeR	Receiver Ground (Common with Transmitter Ground).	1
11	VeeR	Receiver Ground (Common with Transmitter Ground).	1
12	RD-	Receiver Inverted Data Out. AC Coupled.	
13	RD+	Receiver Non-Inverted Data Out. AC Coupled.	
14	VeeR	Receiver Ground (Common with Transmitter Ground).	1
15	VccR	Receiver Power Supply.	
16	VccT	Transmitter Power Supply.	
17	VeeT	Transmitter Ground (Common with Receiver Ground).	1
18	TD+	Transmitter Non-Inverted Data In. AC Coupled.	
19	TD-	Transmitter Inverted Data In. AC Coupled.	
20	VeeT	Transmitter Ground (Common with Receiver Ground).	1

Notes:

1. The circuit ground is isolated from the chassis ground.
2. Disabled: $T_{dis} > 2V$ or open, enabled $T_{dis} < 0.8V$.
3. Should be pulled up with $4.7k\Omega$ to $10k\Omega$ on the host board to a voltage between 2V and 3.46V.
4. LOS is an open collector output.


Electrical Pad Layout

Transceiver Block Diagram

Mechanical Specifications

All dimensions are ± 0.2 mm unless otherwise specified.

Unit: mm

About ProLabs

Our extensive experience comes as standard. For over 20 years ProLabs has delivered optical connectivity solutions that give our customers freedom and choice through our ability to provide seamless interoperability. At the heart of our company is the ability to provide state-of-the-art optical transport and connectivity solutions that are compatible with more than 100 optical switching and transport platforms.

A Complete Portfolio of Network Solutions

ProLabs is focused on innovations in optical transport and connectivity. The combination of our knowledge of optics and networking equipment enables ProLabs to be your single source for optical transport and connectivity solutions from 100Mb to 1.6T while providing innovative solutions that increase network efficiency. We provide the optical connectivity expertise that is compatible with and enhances your switching and transport equipment.

The Trusted Partner

Customer service is our number one value. ProLabs has invested in people, labs and manufacturing capacity to ensure compatible products, and immediate answers to your questions. With Engineering and Manufacturing offices in the U.K. and U.S. augmented by field offices throughout the U.S., U.K. and Asia, ProLabs is able to be our customers best advocate 24 hours a day.

Contact Information

ProLabs US

Email: sales@prolabs.com
Telephone: 952-852-0252

ProLabs UK

Email: salesupport@prolabs.com
Telephone: +44 1285 719 600